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Enhancing FRP-to-concrete Bond Behavior by Epoxy Ribs
Cheng Jiang, Baolin Wan and John Omboko

o sis: The bond between external bonding (EB) of fiber reinforced polymer (FRP) composite materials to
ncrete is the weakest link in the strengthened concrete flexural members. There are three mechanisms to transfer

the interfacial shear between FRP and the concrete substrate, i.e., adhesion, interlocking and friction. This paper
proposes a new approach by grooving on the concrete surface before applying epoxy to make epoxy ribs to increase
interlocking. An experimental program was conducted to verify the effectiveness of the proposed epoxy ribs. Six

ves perpendicular to the fiber direction were cut on the bonding surface of the concrete blocks. The grooves
were filled by wax in the unfilled specimens and with epoxy primer in the epoxy filled specimens before CFRP plate
was installed. The experimental results show that epoxy-filled grooves can significantly improve the bond between
FRP and concrete.
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proposes a new approach by grooving on the concrete surface before applying epoxy to make epoxy ribs to increase 
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INTRODUCTION

Structural rehabilitation by externally bonded (EB) fiber reinforced polymer (FRP) composite material is widely
adopted, largely due to its advantages of lightweight, high strength, and excellent durability [1-4]. The interfacial
bond behavior between FRP and concrete is the weakest link in the retrofitted system of concrete members. For a
composite structure combining two mechanically connected bodies, there are in total three mechanisms to transfer
the interfacial shear stress between FRP and concrete, i.e., adhesion, interlocking (or dowel action) and friction. To
solve the debonding issue and enhance the FRP-to-concrete bond behavior, researchers have suggested different
methodologies based on these three mechanisms [5-10].

This study aims to find a novel, reasonable and effective method to enhance the interfacial bond behavior between
FRP and concrete by improving interlocking effect without cutting the FRP and minimizing the damage of concrete.
In order to increase the interlocking mechanism, strong "ribs" in the adhesive layer can be formed by grooving on
the surface of concrete substrate before applying the epoxy. An experimental program was conducted in this study to
test the FRP bonded concrete specimens with and without epoxy ribs to verify the effectiveness of this proposed
approach.

RESEARCH SIGNIFICANCE

Epoxy ribs were made by filling the pre-cut grooves on the surface of concrete blocks before applying FRP. Single
shear pull out test results show that the specimens with epoxy ribs had significant better global response and local
bond-slip relationship.

EXPERIMENTAL PROGRAM

Specimen Design

Nine plain concrete blocks with dimensions of533 mm (length) x 1521010 (width) x 152 (depth) mm (21 in. x 6 in.
x 6 in.) were prepared for the bond tests of EB-FRP joints. Six specimens were cut six grooves on the surface of
each concrete substrate in transverse direction. The rest three were prepared as regular specimens without grooves.
The grooves on the concrete surfaces were designed as 3 mm (0.12 in.) in width and 5 mill (0.20 in.) in depth. The
first groove line was marked 75 mm from the edge of the concrete block to accommodate the 25 mrn (I in.) pre-
crack condition and the rest of the groove lines were 50 mm (2 in.) apart as shown in Fig. I.

The nine specimens were divided into three groups. For the six specimens with grooves, three had grooves filled
with epoxy and three with wax. The specimen details are listed in Table I. The specimen ID includes tw~
components divided by "-". "C", "F" and "U", which are the first component in specimen ID, indicate the contIo
specimens, and the specimens with and without epoxy ribs, respectively. The second term of specimen 10 shows the
number of identical specimens with the same testing conditions.
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Mlterials Properties and Specimen Preparation

A commercial ready-mixed concrete was used to prepare specimens. Seven 152 mm (6 in.) (diameter) x 305 mm (12
in.) (height) concrete cylinders were prepared for measuring the compressive and tensile strengths. The measured
concrete compressive strength and split tensile strength at 28 days are listed in Table 2.

All concrete surfaces for bonding FRP were roughening by mechanical grinding. Grooves were made by saw cut for
Specimens F and U. After grooving, specimens were cleaned up using high-pressure water together with a steel
brush to help eliminate any dirt or dust particles from the grooves and on the surface of the specimens. It also
ensured that the specimens were well roughened to achieve a strong bond between FRP and concrete. After cutting
and cleaning, the specimens were put in lab environment to dry for at least 24 hours before applying wax, epoxy and
FRP.
The grooves of three U specimens (U-I, U-2 and U-3) were filled by soft wax to avoid the penetration of applied
epoxy. The wax filling was also conducted at the edges of grooves in the specimens with epoxy interlocking (F-I, F-
2 and F-3) which was not covered by FRP. Therefore, the epoxy rib has the same width ofFRP. The concrete blocks
with grooves and wax filling are shown in Fig. 2.

Carbon FRP plate (Tyfo® UC Laminate Strip) with a nominal thickness of 1.5 mm (0.06 in.} was used in this work.
Two kinds of epoxy resin were applied (i.e., Tyfo® Sand Tyfo® TC). Tyfo® S was applied as a prime coat before
applying a layer of Tyfo® TC to the substrate. The cleaned FRP plate with Tyfo® TC was then bonded to the
concrete substrate. By this way, the epoxy ribs were formed for the specimen F-l, F-2 and F·3. The U specimens
were made with the same conditions but with the wax instead of the epoxy ribs. The control specimens without
grooves were also made by following same procedure. The mechanical properties of the FRP plate and two kinds of
epoxy are listed in Table 2.

Test Setup and Instrumentation

A single shear pull-out test was adopted to evaluate the bond behavior of the EB-FRP joints in this work. The pull
load was applied horizontally and parallel to the FRP fiber direction by a MTS actuator (Fig. 3). Conventional
electric strain gages were installed on the FRP for each specimen to measure the strain on the FRP at different
locations and calculate the experimental bond-slip relationships. The first strain gage was attached on the unbonded
region of the FRP and the second one was installed at the location where FRP started to be bonded (25 mm (I in.)
from the edge of concrete block as shown in Fig. 4). The rest of strain gages were 25 mm (I in.) apart as shown in
Fig. 4. One linear variable differential transformer (LVDT) was mounted on one side of the concrete substrate to
measure the relative displacement between FRP and concrete at the location of the pre-crack tip. All specimens were
tested with displacement control at a loading rate of 0.0127 mm/s.

TEST RESULTS AND DISCUSSION

Failure Modes and Global Responses

All specimens were loaded monotonically until suddenly failed with a thin layer of concrete skin pulling off from
the concrete substrate. The typical failure modes are shown in Fig. 5. It can be observed that the thickness of
damaged concrete of the specimens with epoxy ribs was larger than that of control and U specimens. More concrete
crushed near the epoxy ribs. The bond strengths (peak loads) in the tests are listed in Table I. The load vs. relative
displacement relationships at loaded end for the EB-FRP joints are shown in Fig. 6.

Two of control specimens were damaged without recorded data due to testing errors. The bond strength of the only
successfully tested control specimen was 34.0 kN (7.6 kips). Specimens using the same FRP and epoxy, and similar
COncreteas the control specimens tested by another researcher [II] had similar bond strengths and damage mode.
Therefore, the behavior ofC-1 can represent the specimens without grooves.

The load vs. displacement behaviors of U specimens are similar to that control specimen as shown in Fig. 6. The
average bond strength ofU specimens was 33.0 kN (7.4 kips), which is also similar to that of control specimen. For
the specimens with epoxy ribs (i.e., F-I, F-2 and F-3), the bond strength with 62.3 kN (14.0 kips) of average strength
shows a stable level and is 83% and 89% higher than that of control specimen and U specimens, respectively.
However, the load-displacement curves of specimens with epoxy ribs show larger scatter (Fig. 6) due to the effect of
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epoxy interlocking and the non-uniformity of concrete material. Not all epoxy ribs contribute the same amount of
resistance when the load is increased and the debonding crack propagates from the loaded end to the free end.
Meanwhile, concrete is a non-uniform composite material. Wall effect [12·13] of concrete, which means smaller
aggregates concentrate near the surface of the concrete specimen, leads to higher non-uniformity of surface COncrete
near the epoxy ribs. Therefore, the load-displacement curves show large differences in the three filled (F) specimens.
However, the bond strengths are similar because there are totally six ribs in each specimen and the overall
interlocking effect should not have large variation.

The comparison of strain distribution at different loaded end slips (so) between U specimens and F specimens are
illustrated in Fig. 7. The strain values in this figure are the average of three specimens in each type of specimen
when they have same slips (so). The cases of So ~ 0.1 mm and 0.2 rnrn (0.0039 in. and 0.0079 in.) indicate the
moments when the load has not reached the peak (or turning) load yet (see Fig. 6). Meanwhile, the cases of so::: 0.3
mm and 0.4 mm (0.0118 in. and 0.0157 in.) refer to the later loading periods before failure. At beginning, there are
significant strain gradients which means the interfaces did not have any debonding. On the contrary, the similar
strain values along the FRP indicate the debonding between FRP and concrete. It can be concluded from Fig. 7 that
the F specimens had much higher FRP strains than U specimens before the failure of the specimens. Therefore, the
high strength of FRP material was used due to the epoxy interlocking.

Bond-slip relationship

The bond-slip relationship is essential to investigate the macro mechanical properties of EB-FRP specimens. In
general, there are two methods to obtain the bond-slip relationship from experimental tests: (I) directly
measurement from closely spaced strain gage data; and (2) indirect analytical solutions derived from other
experimental response such as load-displacement curves. Both methodologies were undertaken in this work to study
the bond-slip relationship. The FRP strain and bond stress can be expressed as:

(Ia)

(Ib)

where Eland (fare the elastic modulus and thickness of the FRP plate, respectively; q(x), sex) and rex) are the tensile
strain, slip and bond stress along the longitudinal direction x at a particular pull force Fi. The local slip of FRP can
be calculated using the following equation:

(I c)

in which So is the displacement at the loaded end, which was measured by LVDT in this study; Lf is the bond length
of FRP; and the zero point of x axis is set at the free end. The experimental bond-slip results can be easily calculated
using Eq. (1) from the strain gage data in the tests. Fig. 7 shows the experimental bond-slip relationship of all
specimens.

On the other hand, the bond-slip relationships can also be inversely derived from the load-displacement curves if the
form of bond-slip model is known [14]. A widely adopted bond-slip model is used in this work as Eq. (2) [2,15-16].

Eta-,-( -"-Jr( s) = j} e a I-e a (2)

There are two unknown parameters, a and p, in the bond-slip relationship, which govern the shape of the bond-slip
curve. a is the slip at the turning point of the equivalent bilinear load-slip curve; and the reciprocal of fJ determines
the initial tangential rigidity of the load-slip response curve. The more detail explanation can be found in [15].
Based on Eq. (2), the relationship between the external load applied to the FRP, F, and the relative slip between FRP
and concrete at the loaded end, so, is:
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(3)

The unknown coefficients a and p can be obtained by a numerical nonlinear regression analysis using Eq. (3) to fit
the experimental load-displacement curves of specimens. As the load-displacement curve is the global response of
the EB-FRP joint, the bond-slip relationship obtained by this indirect method is believed to be the average behavior
of the FRP-to-collcrete interface subjected to in-plane shear [14]. The obtained values of a and j3 are listed in Table
1 and the fined curves are drawn as the dotted lines in Fig. 6. By substituting the a and fJ values into Eq. (2), the
bond-slip relationships of specimens can be obtained and plotted in Fig. 8.

It is obvious that the maximum bond stress of the specimens with epoxy ribs is higher than that of U and C
specimens in the bond-slip relationships derived from both direct and indirect methods. The obtained a value of
specimen with epoxy ribs is much higher than control ones while the values of fJ are similar. The bond-slip
relationships of specimens with epoxy ribs at 75 mm (3 in.) from the loaded end have high residual bond stresses
because the bond stresses at that location were calculated from the strain gage data at 50 mm (2 in.) and 100 mm (4
in.) from the loaded end which were exactly at the epoxy rib locations. Hence, the epoxy rib has an enhancing effect
on local bond-slip relationship.

CONCLUSIONS

This paper proposes a novel approach to enhance the interfacial bond between externally bonded FRP and concrete.
An experimental program was conducted in this work to verify the effectiveness of this method. Both the global
response and local bond-slip relationship are enhanced due to epoxy ribs. The bond strength of the specimens with
epoxy ribs is 83% and 89% higher than those of control specimen and unfilled specimens, respectively. Such
increased strength is attributed to the interlocking provided by the epoxy ribs and the extra bond areas in the grooves.
The unfilled specimens had similar behavior and bond strength as control specimen. Therefore, the unfilled grooves
do not have significant effect on the bond between FRP and concrete. With both filled and unfilled specimens
having the same geometrical features, presence of epoxy ribs in the filled specimens plays a key role in increasing
the bond strength between FRP and concrete.
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response and local bond-slip relationship are enhanced due to epoxy ribs . The bond strength of the specimens with 

epoxy ribs is 83% and 89% higher than those of control specimen and unfilled specimens, respectively. Such 

increased strength is attributed to the interlocking provided by the epoxy ribs and the extra bond areas in the grooves. 

The unfilled specimens had similar behavior and bond strength as control specimen . Therefore, the unfilled grooves 

do not have significant effect on the bond between FRP and concrete. With both filled and unfilled specimens 

having the same geometrical features , presence of epoxy ribs in the filled specimens plays a key role in increasing 

the bond strength between FRP and concrete . 
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Table 1 - Specimen detail and test results of EB-FRP joints

Specimen Peak
Epoxy interlocking/grooving load kNID

(kips) Average Average
Spacing Width a value p value
mm mm Depth Filling mm (in.) mm (in.)
(in.) (in.) mm (in.) material

F-I 50 (2) 3 (0.12) 4.8 (0.19) 65.02 (14.62)
01949 39.47F-2 50 (2) 3 (0 12) 4.9 (0.19) Epoxy 6487 (14.58)
(0008) (1.5 73)F-3 50 (2) 3 (0.12) 50 (0.20) 57.02 (12.82)

U-I 50 (2) 3 (0.12) 4.9 (0.19) 29.74 (6.69)
0.1115 43.11U-2 50 (2) 3 (0.12) 5.0 (020) Wax 31.50 (7.08)
(0.004) ( 1.697)U-3 50 (2) 3(0.12) 50 (0.20) 37.69 (8.47)

C-I 34.0 (7.64) 0.1002 37.94C-2 (00039) ( 1.494)
C-3

Table 2 - Material properties
Product Property Value

28-day cylinder strength, MPa (ksi) 34.5 (5.0)
28-day split tensile strength, MPa (ksi) 3.62 (0.53)

Concrete
Width, mm (in.) 152 (6)substrate

Thickness, mm (in.) 152 (6)
Length, mm (in.) 533 (21)

Bond length Lf, mrn (in.) 381 (15)
Width bj, mm (in.) 51 (2)

CFRP plate
Ultimate strength, MPa (ksi) 2790 (405)
Tensile modulus, GPa (ksi) 155 (22,480)

Ultimate strain (%) 1.8
Nominal thickness, mill (in.) 1.5 (0.06)

Tensile strength, MPa (ksi) 72.4 (10.5)
Tyfo® S Tensile modulus, GPa (ksi) 3.18(461)

Epoxy Elongation capacity (%) 5.0

Tensile strength, MPa (ksi) 22.7(3.3)
Tyfo®TC Tensile modulus, GPa (ksi) 12 (174)

Elongation capacity (%) 1.88
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Fig. 1- Grooves and pre-crack condition dimensions of specimens

Fig. 2 - Waxed filled(U) and unfilled(F) specimens
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Fig. 1 - Grooves and pre-crack condition dimensions of specimens 

Fig. 2 - Waxed filled (U) and unfilled (F) specimens 
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Fig. 3 -Test setup: (a) schematic and (b) a specimen under test
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Fig. 3 -Test setup: (a) schematic and (b) a specimen under test 
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Fig. 5 -Typical failure modes
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