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ABSTRACT  

DETERMINATION OF ELEVATIONS FOR EXCAVATION 

OPERATIONS USING DRONE TECHNOLOGIES 

 

 

Yuhan Jiang 

 

Marquette University, 2020 

 

 

Using deep learning technology to rapidly estimate depth information from a 

single image has been studied in many situations, but it is new in construction site 

elevation determinations, and challenges are not limited to the lack of datasets. This 

dissertation presents the research results of utilizing drone ortho-imaging and deep 

learning to estimate construction site elevations for excavation operations. It provides two 

flexible options of fast elevation determination including a low-high-ortho-image-pair-

based method and a single-frame-ortho-image-based method. The success of this research 

project advanced the ortho-imaging utilization in construction surveying, strengthened 

CNNs (convolutional neural networks) to work with large scale images, and contributed 

dense image pixel matching with different scales. 

 

This research project has three major tasks. First, the high-resolution ortho-image 

and elevation-map datasets were acquired using the low-high ortho-image pair-based 3D-

reconstruction method. In detail, a vertical drone path is designed first to capture a 2:1 

scale ortho-image pair of a construction site at two different altitudes. Then, to 

simultaneously match the pixel pairs and determine elevations, the developed pixel 

matching and virtual elevation algorithm provides the candidate pixel pairs in each virtual 

plane for matching, and the four-scaling patch feature descriptors are used to match them. 

Experimental results show that 92% of pixels in the pixel grid were strongly matched, 

where the accuracy of elevations was within ±5 cm. 

 

Second, the acquired high-resolution datasets were applied to train and test the 

ortho-image encoder and elevation-map decoder, where the max-pooling and up-

sampling layers link the ortho-image and elevation-map in the same pixel coordinate. 

This convolutional encoder-decoder was supplemented with an input ortho-image 

overlapping disassembling and output elevation-map assembling algorithm to crop the 

high-resolution datasets into multiple small-patch datasets for model training and testing. 

Experimental results indicated 128×128-pixel small-patch had the best elevation 

estimation performance, where 21.22% of the selected points were exactly matched with 

“ground truth,” 31.21% points were accurately matched within ±5 cm.  

 

Finally, vegetation was identified in high-resolution ortho-images and removed 

from corresponding elevation-maps using the developed CNN-based image classification 

model and the vegetation removing algorithm. Experimental results concluded that the 

developed CNN model using 32×32-pixel ortho-image and class-label small-patch 

datasets had 93% accuracy in identifying objects and localizing objects’ edges. 
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 INTRODUCTION 

1.1 Background 

Excavations on construction sites are multi-scale scenes for surveying and measuring – they vary 

from the larger area cut/fill projects with aerial-range measurements to the pit/trench excavation projects 

with close-range measurements (Nunnally 2004; Barazzetti et al. 2010; Nex and Remondino 2014; Spence 

and Kultermann 2016). Surveying plays a crucial role in determining the construction site’s geometrical 

data – elevations and locations – which is important for measuring earth cut/ fill volume and designing the 

excavation plan (Nunnally 2004; Peurifoy and Garold 2014). Additionally, elevations also benefit 

construction professionals in optimizing earth moving path (Seo et al. 2011; Gwak et al. 2018), designing 

temporary hauling road (Yi and Lu 2016), estimating cost and time duration (Hola and Schabowicz 2010) 

and designing the site safety facilities as well (Wang, Zhang and Teizer 2015).  

In the past decade, surveying on constructing site had been shifted from contact method to non-

contact method. Historically, surveying operations on construction sites are accomplished by contact 

method – total station, GPS, measuring tape, level and theodolite (Nichols and Day 2010). Those tools help 

construction professionals to acquire enough site’s geometrical information – distances, angles, points’ 

positions and elevations – for measuring operations by drawing a site plan and calculating earth cut/fill 

quantities with the four-point method (Nunnally 2004; Peurifoy and Garold 2014; Spence and Kultermann 

2016). Within the past decade, the non-contact surveying methods were developed and applied in 

construction surveying, which include the terrestrial laser scanning, vehicle-borne/ Unmanned Aerial 

Vehicle (UAV)-borne LiDAR (Du  and Teng 2007; Takahashi et al. 2017; Kwon et al. 2017; Maghiar  and 

Mesta 2018) and close-range/ aerial  photogrammetry (Nassar and Jung 2012; Siebert  and Teizer 2014; 

Sung  and Kim 2016; Takahashi et al. 2017; Kwon et al. 2017; Maghiar  and Mesta 2018). These non-

contact surveying methods help construction professionals to acquire a point cloud – bunch of coordinated 

points – for creating a construction site’s digital terrain model (DTM). Then construction professionals 

accomplish the measuring works with the DTM.  

Although current surveying methods could achieve a precise result, their weaknesses are 

noticeable (Du and Teng 2007; Takahashi et al. 2017; Maghiar and Mesta 2018). The contact methods rely 
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on surveyors’ movement from a target point to next point in the construction site that leads to a time-

consuming outdoor procedure and a high probability of interfering with other construction operations. The 

non-contact methods avoid the conflict issue and reduce the surveying time to some extent by scanning 

targets from one ground station to next station or scanning targets in a well-designed flight path that 

produces a huge amount of unfiltered targets, such as the vegetation and other attached objects on the 

construction site. However, processing the scanned data in non-contact method is not fast. A previous study 

stated that the duration for estimating on-site soil volume after drone photogrammetry is one processing 

day, under the conditions as the point cloud is generated by Agisoft PhotoScan, the geometry model is 

created by Autodesk ReCap with the point cloud, and the soil volume is estimated with Autodesk Civil 3D 

(Haur et al. 2018). In addition, the air-borne LiDAR system is not a reasonable surveying equipment for 

construction application until its price drops down to a low number (Guo et al. 2017). Thus, quickly and 

accurately determining elevations of a construction site in real-time is still a challenge for the construction 

industry. 

A potential approach to minimize the processing time for determining the construction site 

elevations with image-based 3D-reconstruction method is that reducing the number of images need to be 

processed. Previous research tried 3D-reconstruction from single-frame image with other geometrical 

reference information in the past decades and confirmed that was an ill-posed problem if without any 

reference information (Van den Heuvel, 1998; Hassner and Basri 2006; Saxena et al. 2008). In recent years, 

researchers are continuously developing innovational approaches to estimate the relative-depth from a 

single-image, which takes the advantage of convolutional neural networks (CNNs) and deep learning 

(Eigen et al. 2014; Liu et al. 2015; Laina et al. 2016; Zhou et al 2017). For the construction industry, using 

the advanced artificial intelligence (AI) technologies to automatically determine elevations directly from an 

image of a construction site is an interesting research topic and meaningful challenge. Once overcome, the 

real-time 3D-reconstruction of a construction site become possible, then the automation degree of the 

excavation operations will be significantly improved (Seo et al. 2011).  
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1.2 Problem Statement 

Recently, small sized drones (a system of quadcopter, gimbal and small sized digital camera) are 

increasingly regarded as the valid, cheap alternative remote imaging platform to large UAVs in civil 

engineering applications. Small dimensions make them easily navigable in cluttered outdoor environments 

and indoor environments (Takahashi et al. 2017; Siebert and Teizer 2014). In the drone application of 

construction site elevation determination, the main challenge is measuring vertical distances (depths) from 

the camera to the construction site ground surface. In Figure 1, the attached gimbal in the drone allows the 

camera to face any desired orientation. Specifically, when the camera’s principal ray is perpendicular to the 

construction site ground surface plane, the captured image is the top-view of the construction site (Siebert 

and Teizer 2014), which is referred to as an ortho-image in this research project.  

e (0, 0)
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target point  in camera coordinate
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Figure 1 Drone-based ortho-image, camera model and coordinates 

 

Using the camera model in Figure 1 to determine the distance from the camera lens to the ground 

is an ill-posed problem, which need at least an addition overlapping ortho-image from another position, and 

the spatial relationship between these two positions should be known. For example, the traditional aerial 

photogrammetry method needs a high overlapping ratio ortho-image series to complete image-based terrain 

3D-reconstruction task (Nassar and Jung 2012; Siebert and Teizer 2014), which makes it impossible to 

generate and output the elevation data quickly. In contrast, the classic left-right stereo-vision method that is 

designed for determing depths of forward-facing objects is the fastest multiple image-based 3D-

reconstruction method (Sung and Kim 2016; Sophian et al. 2017). The stereo-vision method performs a 
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two-frame image-based 3D-reconstruction based on the triangulation model and saves all depth information 

in a depth-map (grayscale image) as the result. However, the stereo-vision method is limited to measure 

distances from objects’ surface to the stereo camera system in a close-range, because its measurable depth 

range is limited by its small baseline (the distance between the two cameras). Furthermore, stitching stereo-

vision results makes it not different from the traditional aerial photogrammetry method, and the multiple 

overlapping ortho-image based method had been confirmed that it is ineffectiveness with the large slope 

ground surface (Westoby et al. 2012; Zhao and Lin 2016). Thus, the construction industry still waits for a 

more rapid and simpler image-based 3D-reconstruction method for determining construction site 

elevations, which will help construction professionals to manage their crews and avoid excess waste during 

excavation operations. 

Previous research results have shown the feasibility of using deep learning methods to recover the 

relative depth information for each pixel of an image of indoor scenes (Eigen et al 2014; Liu et al. 2015; 

Laina et al. 2016), outdoor scenes (Chen et al. 2016; Li and Snavely 2018) and scenes from automatic 

driving applications (Garg et al. 2016). In addition, convolutional neural networks (CNNs) have been 

verified as effective and reliable in micro-scale scenes, such as estimating the surface height map from a 

single image of a foam mat and mouse pad (Zhou et al. 2017). Using deep learning method to estimate the 

construction site elevations is equal to figure out the relationship between the elevation values’ feature and 

ortho-images’ features of construction sites, which is the reference information in the single-image 3D-

reonstruction problem. To have the pixel-to-pixel relationship, the elevation values are better to save in the 

grayscale image, which is referred to as an elevation-map in this research project. However, the challenge 

is not only limited to find out an effective deep learning model from the previous research or develop a new 

deep learning model for this specific individual task, it also needs to create a comprehensive construction 

site ortho-image and elevation-map pair datasets, because there is no dataset available for training the deep 

learning model. Thus, an ortho-image-based 3D-reconstruction method should be developed in advance for 

acquiring the suitable datasets to train the deep learning model. 

Additionally, the performance of image-based 3D-reconstruction method will be affected by the 

vegetations and other ground attached objects on the rough construction site when determing the ground 

elevations. This is because the light rays are reflected on the surface of vegetation instead of the “real” 
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ground surface. In contrast, the contact surveying methods with total station, GPS, level and theodolite, can 

obtain the expected elevations as all selected target points are on the “real” ground surface. Thus, to 

improve the effective of the image-based 3D-reconstruction method in construction site elevation 

determination, the automatically detecting and removing the vegetation and other obstacles from the raw 

surveying results and determining the “real” ground elevations are needed and important for construction 

professionals to make the optimized decision in the excavation operations that heavily depend on the 

elevation information. 

Previous research also shows the feasibility of deep learning methods in object detection tasks 

using image (Schneider et al. 2018), video (Kang et al. 2018), and image segmentation tasks (Noh et al. 

2015; Badrinarayanan et al. 2017). The shortage of the current deep learning-based object detection 

methods is that using low-resolution images for training the deep learning-based object detector, which 

resizes the “ImageNet” (Deng et al. 2009) down to as small as 256×256-pixel, while the highest size is 

limited to 800×1000-pixel (Han et al. 2015). This low-resolution issue is caused by the limitation of 

computer system hardware. However, the directly exported images from a drone’s camera, such as the 

ortho-image captured by DJI Phantom 4 Pro V2.0 is as large as 3648×4864-pixel, which is extremely 

larger than the small-resolution of 256×256-pixel. Using the small-resolution image dataset to train the 

object detection or image classification deep learning model can cause the loss of detail information. 

Reducing the image size also impacts on the image segmentation, because the number of pixels for an 

object will be reduced as the image size reduced. 

In summary, to improve the speed and accuracy of image-based method for determing the 

construction site elevations for excavation operations, there is a need to develop a reliable method to collect 

construction site ortho-image and elevation-map pair datasets, develop an innovative way to train 

construction site elevation estimation deep learning model with high-resolution ortho-image and elevation-

map pair datasets, and also develop a method to automatically identify and remove the vegetation dimensions 

on the raw elevation measures of the construction site. 
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1.3 Dissertation Organization 

This dissertation includes eight chapters. This chapter is an introduction to the research 

background and problem statement. The following chapters are: 

Chapter 2: Objectives, Scope, and Methodology. This chapter describes the primary objectives of 

this study as well as its scope and methodology. 

Chapter 3: Literature Review. This chapter presents the findings from a comprehensive literature 

review on drone applications in construction operations and image-based 3D-reconstrution methods. This 

chapter also summaries the challenges and opportunities of drone and image-based method to determine 

elevations of a construction site.  

Chapter 4: Low-high Ortho-image Pair-based Elevation Determination Algorithm Design and 

Testing. This chapter presents an effective, rapid and easily-implementable two-frame-image-based 3D-

reconstruction method for the construction site elevation automatic determination.  

Chapter 5: Ortho-Image and Elevation-Map Dataset Design and Acquisition Using Drone. This 

chapter details how to use the developed low-high ortho-image pair-based elevations determination method 

to acquire high-resolution construction site ortho-image and elevation-map pair datasets for training the 

deep learning-based construction site elevation estimation model. 

Chapter 6: Ortho-Image and Deep Learning-Based Elevation Estimation Algorithm Design And 

Testing. This chapter presents a single-frame ortho-image-based 3D-reconstruction method for construction 

site elevation estimation, which is a convolutional encoder-decoder network model.  

Chapter 7: Ortho-Image and Deep Learning-Based Vegetation Identifying and Removing 

Algorithm Design and Testing. This chapter presents a CNN-based image classification method to identify 

vegetation objects on the raw construction site using the high-resolution ortho-image and determine the 

“real” ground surface elevations from the raw surveying results.  

Chapter 8: Conclusions and Recommendations. This chapter summarizes the procedures of the 

developed methods, concludes the findings of the testing experiments, and recommends potential 

improvements for future research on ortho-image and deep learning-based method in determining the 

elevation of construction sites. Contributions of this research project are outlined as well. 
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 OBJECTIVES, SCOPE AND METHODOLOGY 

2.1 Research Objectives 

To advance the construction site’s elevations determination method into a non-contact, robust and 

rapid way by taking the advantages of drone technologies and eliminating the current construction 

surveying methods’ shortfalls. This research project uses drone technologies, such as the gimbal-mounted 

camera to get a stable ortho-image, the onboard altimeter and the GPS to learn how high above the ground 

of a drone flies, and the camera model to calculate the geometrical data.  

The primary goal of this proposed research is to advance the drone applications in construction 

site elevations (surface heights) determination. The general idea is to reduce the required number of images 

in the ortho-image based 3D-reconstruction. As the progress in success of this research project, the required 

ortho-image number is decreasing from multi-frame images by the traditional drone photogrammetry 

method to two-frame images by the developed drone-based low-high ortho-image pair-based method, and 

finally reducing to single-frame image by a well-trained convolutional encoder-decoder network model. 

This goal has been realized through achieving the specified research objectives that are described as 

follows:  

1. To develop and test an innovational elevations determination algorithm to acquire a 

construction site’ elevation-map with a drone-based low-high ortho-image pair – two ortho-

images are captured in a high and a low position separately by a drone’s camera facing down 

to the ground. 

2. To create high-resolution construction site ortho-image and elevation-map pair datasets by the 

elevation determination algorithm described in the 1st objective with a drone. 

3. To develop and test an elevation estimation deep learning model with the datasets created in 

the 2nd objective for estimating a construction site’s elevations from its corresponding ortho-

images captured by a drone. 

4. To develop and test a high-resolution ortho-image classification method to identify and 

remove the vegetation obstacles from the elevation-map results in the 1st or the 3rd objectives.  



8 

 

2.2 Research Scope 

In this research project, the proposed elevation determination methods were all based on a drone 

system acquired ortho-images, which means that these elevation determination methods focuses on 3D-

reconstruction of a construction site’s ground surface and excludes the vertical-side surfaces of all attached 

objects, which makes it much simpler than traditional drone photogrammetry. But the proposed methods 

were effective in determine elevation changes in vertical slopes, which is important to excavation 

operations. 

This research project considered using one-frame ortho-image to cover a construction site as much 

as possible, which means it may  not be able to cover an entire large site such as a roadway construction 

site. In the experiments, a drone system (DJI Phantom 4 Pro V2.0) flied at 10-20 m and 20-40 m over the 

ground, which had the measurable elevation range of [-5,5] m and [-10, 10] m and the area coverage of 

8.47×8.47 m2 and 17.6×17.6 m2, respectively. In addition, this research project also considered the 

possibility of stitching ortho-images and elevation-maps results, the stitching experiments were conducted 

as well.  

The construction site ortho-image and elevation-map pair datasets were collected from a lake 

beach site at Atwater Park, Shorewood, Wisconsin. The dataset acquisition happened during the year of 

2019 with safe flight conditions. The construction site ortho-images were transformed from the 10-m flight 

height ortho-images with the high-resolution of 1568×1568-pixel. The generated elevation values were 

saved in the same sized 8-bit grayscale image, as elevation-map with the high-resolution of 1568×1568-

pixel. Then, the construction site ortho-image and elevation-map pair datasets were built up. In addition, 

the high-resolution label-images were 8-bit grayscale image used for training the deep learning-based 

image classification (vegetation identifying) model, but they were saved in 1568-row and 1568-column 

spread sheet format. In this research project, these high-resolution image datasets were not resized down to 

training the proposed deep learning model, while a high-resolution image disassembling and model 

prediction image assembling methods were developed and tested.  
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2.3 Research Methodology 

2.3.1 Literature Review 

The first phase of this research is an extensive literature review. The literature survey includes 

state-of-the-practice in construction site surveying, image-based 3D-reconstruction, and theory of image 

processing and computer vision with deep learning. The reviewed literature includes journal papers, 

research reports, conference proceedings, theses, dissertations, and online publications. 

2.3.2 Drone Photography 

A DJI Phantom 4 Pro V2.0 (a quadcopter drone equipped with automatic flight control system, 

GPS, altimeter, gyroscope, inertial measurement unit and other sensors) was used to hover at the desired 

position over the experiment site. The flight altitude data was directly read from the drone’s remote 

controller, which has ±0.00 set as the drone takeoff point. In addition, the 3-axis gimbal enhances the 

camera’s stability, which was yielded to -90 ° when capturing ortho-images of experiment site.  

2.3.3 Image Processing and Computer Vision with Deep Learning 

A modified stereo-vision triangulation method was designed for construction site elevations 

determination in this research project. To automatically implement this computer vision method, the image 

processing of translation, rotation, resize and subpixel level image corresponding matching were conducted 

as well. In addition, the deep learning-based method with convolutional encoder-decoder model was used 

to estimate the elevation value from an ortho-image, and convolutional neural network-based image 

classification method was developed to identify the objects on the construction site.  

The configuration of the computer system hardware and software environment is Python 3.6.8, 

OpenCV 3.4.2, Keras 2.3.1, TensorFlow-GPU 1.14, CUDA 10.0 and cuDNN 7.6.4.38 on a workstation 

system with 2×Xeon Gold 5122@3.6GHz CPUs, 96GB (8GB×12) DDR4 2666 MHz memory and 4×11GB 

memory GeForce RTX 2080 Ti GPUs. 
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2.3.4 Field Experiment  

Filed experiments were conducted at a lake beach site (Atwater Park, Shorewood, WI, USA). 

Ortho-images were captured in the March, June and September of year 2019. Elevation data were generated 

from the proposed ortho-image pair-based elevation determination method. Label-images were manual 

drawn with an “Label-App” (programmed with Python 3.6.8 by the author) based on the corresponding 

ortho-image.  

2.3.5 Data Analysis  

Pearson correlation method was used to evaluate the relationship between the ortho-image pair 

matching quality and the ortho-image pair capturing quality, such as translation distance and rotation 

degree in the alignment of an ortho-image pair. Furthermore, descriptive statistic, histogram and contour 

plot were applied to evaluate the elevation differential between the deep leaning model prediction and 

“ground truth” of the selected grid points. 

2.3.6 Summary 

Conclusions were drawn based on the results of data analysis. The major findings included the 

effectiveness of the proposed two-frame ortho-image-based 3D-reconstruction method in determing the 

elevation of the experiment site and creating the ortho-image and elevation-map pair datasets for training 

the deep learning model; the comparison of the effectiveness of small-patch size and model training epoch 

in the deep learning-based elevation estimation network model and object classification network model 

with the high-resolution image datasets; and the effectiveness of the proposed vegetation removing method. 
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 LITERATURE REVIEW 

3.1 Literature Review Procedures 

The aim of this literature review is to seek an innovational approach to advance the construction 

site’s elevations determination into a non-contact, robust and rapid way by taking advantage of drone 

technologies and eliminating the current methods’ shortfalls. The specific objective is to investigate the 

potential of minimizing the processing time of drone and image-based 3D-reconstruction by reducing the 

number of images needed to be processed during the geometrical data determination process. To achieve 

that objective, two rounds of literature searches were conducted, which reversed the sequence of searches 

applied in previous review articles (Chan and Owusu 2017; Nasirian et al. 2019). Additionally, the theory 

of image processing and computer vision with deep learning were surveyed. 

The first-round used the powerful “Google Scholar” engine to search the related terms of 

construction surveying such as “3D geometric measurement,” “3D modeling,” “3D reconstruction,” “3D 

mapping,” “3D terrain surface reconstruction,” “Digital Terrain Model (DTM),” “scene depth recovery,” 

and “image surface height recovery.” This search round was not limited to the construction field, and all 

journal articles and conference proceedings were searched. After that, the overall statutes of 3D-

reconstruction methods and technologies in different disciplines were clear. Then, comparisons of those 

methods were summarized in the findings section.  

The second-round focused on the Journal of Construction Engineering and Management 

(COENG) and Automation in Construction (AUTCON), because those two journals are accepted as the top 

ranked publications in the construction field (Wing 1997; Nasirian et al. 2019). This search round was 

reserved to justify the reliability of using a drone in construction sites, and to find out which drone platform 

and sensor have been accepted and adopted in previous construction field research. The terms “Unmanned 

Aerial Vehicle,” “UAV,” “Drone,” and “MAV” were searched based on the first-round results. In detail: in 

“ASCE Library” and “ScienceDirect,” their “Advance Search” tools are used (see Figure 2) to search a 

term in “Anywhere,” and keep other options blank; if the term occurs in an article, then the article returns 

to search result; and the review articles are excluded from the search results. 
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Figure 2 Search Configuration for ASCE library (left) ScienceDirect (right)  

 

Table 1 lists the second-round search results with each screening step. The initial 15 COENG 

citations were manually screened and two duplicated articles were removed; the 139 AUTCON citations 

were exported to “RefWorks,” and duplicate articles were detected and removed by the RefWorks function, 

then 74 unique articles remained. As the terms were matched in any part of an article, the returned citations 

included the articles that did not mainly discuss the drone’s application, such as the selected terms that 

occurred in the literature review or related works part, the future research suggestion, or had the similar 

abbreviation, UAV and MAV. Thus, the full paper reading was conducted to filter those articles. After 

reading the full paper, one COENG article and 27 AUTCON articles were retained, as that research either 

discussed drone applications and problems or used drones to acquire the data. Additionally, the regression 

analysis method was adopted to predict the drone publication in COENG and AUTCON in the year of 2019 

and 2020. 

Table 1 Second-round Search Results 

Return Citations 
Journal of Construction Engineering and 

Management 
Automation in Construction 

Initial Search Terms  
Unmanned Aerial Vehicle UAV Drone MAV Total Unmanned Aerial Vehicle UAV Drone MAV Total 

7 1 5 2 15 59 53 27 4 139 

Duplicated Citations 

were removed 
13 74 

After Full Paper was 

Reviewed 
1 27 

Reference Han et al. 2018 

Aguilar et al. 2019; Bang et al. 2017; Chen et al. 2018; 
Ellenberg et al. 2016; Freimuth and König 2018; 

Hamledari et al. 2017; Han and Golparvar-Fard 2017; 

Inzerillo et al. 2018; Kim, D. et al. 2019; Kim, H. and 
Kim 2018; Kim, K. et al. 2017; Li, D. and Lu 2018; Li, F. 

et al. 2018; Metni and Hamel 2007; Moon et al. 2019; 

Morgenthal et al. 2019; Omar and Nehdi 2017; Park et al. 
2019; Phung et al. 2017; Roca et al. 2013; Seo et al. 2018; 

Siebert and Teizer 2014; Wang et al. 2016; Yang et al. 

2018; Zakeri et al. 2016; Zhang et al. 2015; Zhong et al. 
2018 
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3.2 Introduction to Excavation, Elevations/Point Cloud and Drone System 

3.2.1 Elevations Data and Excavation Operations  

Excavation is an essential construction activity to create the required planes and spaces for 

buildings and infrastructure facilities – such as footings, foundations, and underground utilities – to provide 

enough construction operating spaces for laborers and equipment (Spence and Kultermann 2016). 

According to the depth and area, excavations can be classified into three types: a) mass excavation, which 

usually removes larger amounts of earth from a huge depth and horizontal extent such as a building’s 

basement; b) structural excavation, which removes earth in a confined area within a vertical extent and it 

might need a support system during excavating; c) grading, which reconfigures the construction site’s 

landform from the irregular shape (natural/current grade) to the designed shape (finish grade). 

In each type of excavation, the construction professional needs a geometry model of the 

construction site to accurately measure the volume of the earth to be excavated—if the current elevation is 

higher than the required elevation—or placed—if the current elevation is lower than the required elevation 

(Kraig et al. 2008; Spence and Kultermann 2016). Typically, a construction site is not an ideal level plane, 

which usually has an irregular topography; it can be divided into small elements in geometry, like 

trapezoidal bodies and cones (see Figure 3); after removing the vegetation and topsoil — then soil, rocks or 

mixture materials are exposed — the construction site has a rough surface (Nichols and Day 2010). 

  
Trapezoidal Bodies Cones 

Figure 3 Excavation elements’ shapes 

 

Knowing the site’s elevations is important to the construction professionals because excavation 

operations are complicated. Excavation operations are not limited to earthmoving activities such as 

grubbing, clearing, scraping, excavating, hauling, backfilling, compacting and finishing. They also include 

the important preparing works such as surveying, measuring, and planning before the actual earthmoving. 

Additionally, excavation operations require some management works, namely safety inspecting, progress 
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monitoring and quality controlling works during excavating. Finally, documenting and recording works are 

needed after each excavation operations.  

An excavation plan links the earthmoving, surveying and measuring, progress monitoring and 

quality controlling operations. The quality of the excavation planning depends on the accuracy of the site 

surveying and measuring, which leads to a good excavation plan and lowers the project cost by balancing 

the cut/fill materials in a large-area project or a roadway project. (Seo et al. 2011; Peurifoy and Garold 

2014; Gwak et al. 2018).  

3.2.2 Point Cloud and Site Modeling 

The fundamental data used to build a 3D geometry model is a point cloud, which is a set of 

vertices (xi, yi, zi) in a three-dimensional coordinate system (Remondino 2003; Nassar and Jung 2012; Rusu 

and Cousins 2011). Additionally, each point in the point cloud has its color features— either RGB (red, 

green, blue) or BGR (blue, green, red), depending on the programming platform used. Specifically, in the 

OpenCV— open source computer vision, a library of programming functions mainly aimed at real-time 

computer vision — the color format is BGR sequence, where each color has the value 0 ~ 255; while in the 

OpenGL — open graphics library, a cross-language, cross-platform application programming interface 

(API) for rendering 2D and 3D vector graphics — the color format “glColor3f (0.0, 0.0, 0.0)” is RGB 

sequence and each color has the value 0.0 ~1.0. 

In contact surveying, target points are selected by surveyors to represent excavation objects’ 

geometry features. The excavation objects are modeled in a combination of geometry elements (Figure 3) 

or a site plan (Figure 4), then the lengths, widths, heights, and slopes of excavation objects are measured 

from the site plan or the geometry model to calculate the volume of excavation (Nichols and Day 2010). 

For a large-area grading project, the site plan usually needs to be divided into equal-sized grids. The 

deviations between the current and required elevations at the four-corners represent the grid’s cut / fill 

quantity (Peurifoy and Garold 2014; Gwak et al. 2018). While, in non-contact surveying, a target object is 

recorded as a point cloud, and a construction site is modeled in a Triangulated Irregular Network (TIN) 

model (see Figure 5) (Tsai 1993; Shewchuk 2002; Hearn et al. 2004; Sung and Kim 2016). Similar to the 

grid in the site plan, each triangle in the TIN has three corners with two elevations. Commercial software, 
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such as the Autodesk Civil 3D, can semi-automatically accomplish TIN modeling works through external 

point cloud files (Nassar and Jung 2012).  

Ideally, using point cloud to 3D model a construction site should only contain the minimum 

requirement number of target points, such as the corners of grids or triangles, to represent the site’s 

geometric shape. However, that is impossible for the existing image-based feature matching technologies, 

without manually selecting or screening. Thus, the total station and GPS surveying still are the most 

accurate surveying methods to determine elevations of a construction site. But, on the other hand, they are 

both time-consuming and expensive. The detail of existing approaches in surveying will be discussed later.  

 

Figure 4 An example of site plan with grid lines and contour lines 

 

  

Figure 5 An example of TIN model 

 

3.2.3 Drone Systems and Ortho-imaging 

The Unmanned Aerial Vehicles (UAVs) were developed and used in military applications in the 

past, because their weight, size and high cost of insurance limit their commercial applications (Van 

Blyenburgh 1999; Siebert and Teizer 2014). With the development of precise GPS, gyroscopes and 
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inexpensive inertial measurement units (IMUs), the performance of UAVs had been significantly 

improved, especially in its payload, flight endurance, stability, reliability and safety (Nex and Remondino 

2014; Siebert and Teizer 2014). The micro aerial vehicles (MAVs) are increasingly regarded as the valid, 

cheap alternative to UAVs in civil applications, and their small dimensions make them accessible to some 

spatial conditions which are inaccessible with the large UAVs, such as cluttered outdoor settings and 

indoor settings (Bernardini et al. 2014).  

The DJI Phantom series quadcopters are the most successful consumer MAV products, which are 

becoming the synonym of “Drone” to the public. A drone integrated with a gimbal-mounted camera (see 

Figure 6) is becoming the most popular remote imaging platform with diverse applications (Nex and 

Remondino 2014; Siebert and Teizer 2014; Takahashi et al. 2017), because the gimbal enhanced the 

camera’s stabilization in 3 axes (pitch, roll, yaw) and also make its rotation controllable in the pitch-axis 

from -90° to 30°, which is shown in Figure 6.  
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Figure 6 Drone system, drone-based ortho-image and geometry model 

 

Specifically, when the pitch-axis of the gimbal is at -90°, the camera is just facing down to the 

ground, to which then the image captured is called either a plan view (Zhang et al. 2015), orthophoto 

(Westoby et al. 2012; Siebert and Teizer 2014), or ortho-image— the camera’s principal ray is 

perpendicular to the ground level plane. The ground sample distance (GSD) defined in Eq. 1 is the spatial 
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resolution of an ortho-image taken by a drone at a specific height. The GSD has the unit 𝑚/𝑝𝑖𝑥𝑒𝑙 or 

𝑐𝑚/𝑝𝑖𝑥𝑒𝑙, which means each pixel of the image stands for the distance in the real-world in meters or 

centimeters. 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝐺𝑆𝐷 = min(𝐺𝑆𝐷ℎ , 𝐺𝑆𝐷𝑤) = min(
𝑍 ∙ hsensor
𝑓 ∙ h𝑖𝑚𝑎𝑔𝑒

,
𝑍 ∙ wsensor

𝑓 ∙ w𝑖𝑚𝑎𝑔𝑒

) Eq. 1 

Where, 𝑓 is focal length of the camera, with unit: mm 

 𝑍 is the flight height, distance above ground, with unit: m 

 𝛼 is the factor to convert sensor size (mm) to image resolution size (pixel) 

  

3.3 Drone Related Research on Construction Sites 

Table 2 and Table 3 summarize all drone research articles in COENG and AUTCON. The first 

drone application article occurred in 2007 in AUTCON (Metni and Hamel 2007). There was a large 

increase in drone application articles published from 2015 to 2018 (see Figure 7). Figure 8 utilized the 

second-order polynomial regression to predict the number of drone application articles published based on 

the data from 2014 to 2018, the yearly increase will be 6 articles in COENG and AUTCON for 2019 and 

2020. Comparing COENG and AUTCON, AUTCON includes more drone research than COENG. Among 

those 28 research articles, different types of drones (see Figure 9) have been used as data acquisition 

platforms, and the type of data obtained is dependent on the type of sensor installed (see Table 3):  

 

Figure 7 Number of drone applications in COENG and AUTCON 

 

 

Figure 8 Prediction of drone applications in COENG and AUTCON for 2019 and 2020 
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Table 2 Drone Applications in COENG and AUTCON Part I 

ID Reference Year Journal 
Applications 

Surveying / Modeling Safety Progress Monitoring Inspection Others 

1 Aguilar et al. 2019 2019 AUTCON 
Building / Hybrid Point Cloud: Drone and 

Terrestrial Photogrammetry 
    

2 Bang et al. 2017 2017 AUTCON     High-resolution Construction 

Site Panorama Generating 

3 Chen et al. 2018 2018 AUTCON 
Building / Hybrid Point Cloud: Drone 

Photogrammetry and Laser Scanning 
    

4 Ellenberg et al. 2016 2016 AUTCON    Bridge Deck 

Delamination 
 

5 Freimuth and König 2018 2018 AUTCON    Visual Inspection  

6 Hamledari et al. 2017 2017 AUTCON     Indoor Under-construction 

Components Detecting 

7 Han and Golparvar-Fard 2017 2017 AUTCON   Construction Performance 

Analytics 
  

8 Inzerillo et al. 2018 2018 AUTCON 
Road Pavement / Point Cloud: Drone and Close-

range Photogrammetry 
  Road Pavement 

Distress 
 

9 Han et al. 2018 2018 COENG   Construction Progress 

Monitoring 
  

10 Kim, D. et al. 2019 2019 AUTCON  Determine Distance Between Mobile 

Construction Resources 
   

11 Kim, H. and Kim 2018 2018 AUTCON 
Concrete Mixer Truck / Point Cloud: Drone 

Photogrammetry 
    

12 Kim, K. et al. 2017 2017 AUTCON  Hazard Detection    

13 Li, D. and Lu 2018 2018 AUTCON 
Construction Site / Hybrid Point Cloud: Drone 

Photogrammetry and Laser Scanning 
    

14 Li, F. et al. 2018 2018 AUTCON     Indoor Path Planning 

15 Metni and Hamel 2007 2007 AUTCON    Concrete Crack  

16 Moon et al. 2019 2019 AUTCON 
Construction Site / Hybrid Point Cloud: Drone 

Photogrammetry and Laser Scanning 
    

17 Morgenthal et al. 2019 2019 AUTCON    Bridge Structural 

Elements 
 

18 Omar and Nehdi 2017 2017 AUTCON    Concrete Bridge 

Decks 
 

19 Park et al. 2019 2019 AUTCON 
Construction Site / Hybrid Point Cloud: Drone and 

UGV Photogrammetry 
    

20 Phung et al. 2017 2017 AUTCON    Planar Surfaces Path Planning 

21 Roca et al. 2013 2013 AUTCON    Building Facades  

22 Seo et al. 2018 2018 AUTCON    Bridge Inspection  

23 Siebert and Teizer 2014 2014 AUTCON Construction Site / DTM     

24 Wang et al. 2016 2016 AUTCON     On Road Vehicles Detecting and 

Tracking 

25 Yang et al. 2018 2018 AUTCON Construction Site / DTM    Path Planning 

26 Zakeri et al. 2016 2016 AUTCON    Asphalt Pavement  

27 Zhang et al. 2015 2015 AUTCON   As-built Construction Site 

Status 
  

28 Zhong et al. 2018 2018 AUTCON    Concrete Crack  

Subtotal 9 2 3 11 6 
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Table 3 Drone Applications in COENG and AUTCON Part II 

Articles 

ID 
UAVs / Drones 

Sensors 
Raw Data and Processed Data  

Reference 3D model 2D image 

Optical Camera RGB-D Camera Thermal Camera Point Cloud 
Mesh/Texture 

surface 
Others RGB Gray 

Thermogr

aphy 

Depth-

map 
 

1 DJI Inspire 1 f =20mm, 12 MP   X       Aguilar et al. 2019 

2 X X      X    Bang et al. 2017 
3 X X   X       Chen et al. 2018 

4 6-rotor X  X      X  Ellenberg et al. 2016 

5 3DR IRIS+ X      X    Freimuth and König 2018 
6 quadcopter X      X    Hamledari et al. 2017 

7 X X   X  BIM 4D     Han and Golparvar-Fard 2017 

8 quadcopter GoPro Hero 3   X X      Inzerillo et al. 2018 
9 X X   X       Han et al. 2018 

10 3DR GoPro      X    Kim, D. et al. 2019 

11 X X   X X      Kim, H. and Kim 2018 
12 X X      X    Kim, K. et al. 2017 

13 DJI Inspire 1 Pro X   X       Li, D. and Lu 2018 

14 X X         X Li, F. et al. 2018 

15 Helicopter X      X    Metni and Hamel 2007 

16 DJI Phantom 3 X   X       Moon et al. 2019 

17 Intel Falcon 8 Sony Alpha 7R f= 35 mm   X   X    Morgenthal et al. 2019 
18 DJI Inspire 1 Pro   X      X  Omar and Nehdi 2017 

19 DJI Mavic X   X       Park et al. 2019 

20 X X      X    Phung et al. 2017 
21 8-rotor by Okto Xl  Kinect  X   X   X Roca et al. 2013 

22 DJI Phantom 4 X      X    Seo et al. 2018 

23 Mikrokopter Qual XL Sony NEX5N f=16 mm,16.1MP   X       Siebert and Teizer 2014 
24 DJI Phantom 2 X      X    Wang et al. 2016 

25 DJI Phantom 3 X   X  DTM     Yang et al. 2018 

26 QUAV platform GoPro       X   Zakeri et al. 2016 
27 X X      X    Zhang et al. 2015 

28 

8-rotor by Beijing TT 

Aviation Technology 
Co., Ltd., 

Canon 5D Mark III       X   Zhong et al. 2018 

Count 28 26 1 2 13 2 2 12 2 2 2 28 

Note: the label “X” indicates the brand and specification are not described by authors in their research articles. 
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1. The most popular drone brand adopted in these articles is “DJI”, with the “DJI Phantom” 

series (Wang et al. 2016; Seo et al. 2018; Yang et al. 2018; Moon et al. 2019), “DJI Inspire” 

(Omar and Nehdi 2017; Li, D. and Lu 2018; Aguilar et al. 2019) and “DJI Mavic” (Park et al. 

2019). Before quadcopter drones were created, remote-control helicopters were being used in 

bridge inspection (Metni and Hamel 2007). Although less common than the quadcopter drone, 

the more powerful 6-rotor (Ellenberg et al. 2016) and 8-rotor drones (Roca et al. 2013; Zhong 

et al. 2018; Morgenthal et al. 2019) have also been applied in construction research.  

2. The most common sensor is “Optical Camera” in drone applications. Two “Thermal Camera” 

were applied in bridge inspection (Ellenberg et al. 2016; Omar and Nehdi 2017), and a “RGB-

D Camera”, the Kinect, was used in the inspection of building facades (Roca et al. 2013). The 

interesting thing is that none of those articles used the drone-borne LiDAR technology.  

3. The most used 2D image style is RGB image, which is captured directly from the “Optical 

Camera” and the most used 3D model style is “Point Cloud” generated by photogrammetry or 

SfM method. The tendency to use “Point Cloud” to replace “RGB” images started in 2016 

(see Figure 10), but for some specific applications, the processing of 2D images is more 

effective and faster than the 3D model, such as surface planer inspection (Phung et al. 2017). 

4. The most two common applications are “Inspection” and “Surveying/Modeling” (see Figure 

11). The 11 inspections listed in Table 2 were mainly based on 2D images – “RGB” and 

“Infrared Thermography”. Surveying/Modeling by drone photogrammetry to produce a 3D 

point cloud is another important drone application on construction sites. The point cloud is the 

foundation to conduct other construction research, which are highly dependent on geometrical 

data, such as indoor drone path planning (Li, F. et al. 2018), and road pavement distress 

detection (Inzerillo et al. 2018). 

 

Figure 9 Drone categories of drone applications in COENG and AUTCON 
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Figure 10 Data style of drone applications in COENG and AUTCON  

 

 

Figure 11 Applications of drone research in COENG and AUTCON 

 

Other than those 28 research articles in COENG and AUTCON, the first-round of search also 

returned some drone applications which are beneficial to excavation operations. Drones started service as a 

safety visual inspection tool in excavation operations (Irizarry et al. 2012; Gheisari et al. 2014; Ashour et 

al. 2016; Gheisari and Esmaeili 2016; Kim et al. 2016). A real-time video stream of a construction site was 

captured by the drone and transferred to each safety responsibility official for visually detecting hazards 

and interacting with workers through communication speakers (Irizarry et al. 2012; Gheisari et al. 2014). 

Using drones to prevent excavation accidents is based on the knowledge that sharing the real-time 

construction site conditions to all construction participators will help participators take advantage of the 

real-time conditions to avoid the hazards (Toole 2002). Furthermore, with the site 3D point cloud, Wang et 

al. (2015) developed an algorithm to automatically extract height data from the 3D point cloud to identify 

and locate fall hazards at an excavated pit. Another approach to prevent excavation accidents by using   

guardrails to avoid workers falling into an excavation pit (Toole 2002). 

Additionally, previous research also extended drone application to other fields, such as RFID 

materials tracking on construction sites (Hubbard 2015) and construction quality control (Wang, Sun et al. 

2015). Thus, if a drone system could acquire the real-time elevations, then the efficiency of construction 

site safety management and quality control would be improved. Real-time quality control is important 
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because 6~12% of cost is wasted due to reworks of defective components, which are detected late during 

construction (Josephson and Hammarlund 1999). The improvement of planning, real-time inspecting and 

feedback can ensure the quality of construction works, reduce project duration and avoid exceeding cost as 

well (Wang, Sun, et al. 2015). 

3.4 Construction Surveying Related Research 

3.4.1 Constructions Surveying Techniques 

Figure 12 and Table 4 summarize the existing approaches and their general procedures in 

construction site surveying and modeling. Surveying (data scanning) is the starting procedure in every 

construction work, especially in excavation operations, which determines a construction site’s elevations 

and locations. The construction site surveying methods have experienced a progression from manual to 

automatic, from contact to non-contact, and from small to large scene size as well (Nex and Remondino 

2014). Modeling is the second procedure, which processes the raw data from the surveying results and 

creates a geometry model, or a site plan, of the site. The comparisons of surveying techniques are compared 

using scanning result, measurable area and distance range, capacity, advantages and disadvantages.  
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Figure 12 Approaches in construction site surveying and modeling 

 

Table 4 Comparison of Construction Surveying Techniques 

Techniques/Types Scanning results Scanning Capacity Scene Size 

C
o
n

ta
ct

 

su
rv

ey
in

g
 

Manual 

Measuring tape, 

Level, 
Theodolite 

Angular deviations, horizontal, 

vertical and slope distances 

between two target points 
1,000 selected target 

points 

≤100 m 

Semi-

automatic 

Total station ≤10 km 

GPS surveying 
A bunch of selected target points 

with GPS coordinates 
≤1000 km 

N
o

n
-

co
n

ta
ct

 

su
rv

ey
in

g
  

Ground 
Terrestrial Laser  

3D point cloud 

and 

Digital Terrain Model (DTM) 

≥10 million raw 
points 

≤100 m by setting up 

several ground stations Close-range Photogrammetry  

Drone-based 
Drone-borne LiDAR ≤ 5 km by a pre-

planned drone path Drone Photogrammetry / Drone-SfM 
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3.4.1.1 Contact Surveying 

Measuring tape, level and theodolite are manual surveying tools for small size construction sites. 

Their surveying results are angular deviations, horizontal, vertical and slope distances between two target 

points (Nichols and Day 2010). They are suitable for surveying the range of 0 ~ 100 m, and the surveying 

capacity is about 1,000 target points (Remondino and El-Hakim 2006; Nex and Remondino 2014).  

Total station and GPS surveying devices are semi-automatic surveying equipment, which are the 

most popular surveying methods on construction sites. They extend the surveying sense size to 10 km and 

1,000 km respectively (Remondino and El-Hakim 2006; Nex and Remondino 2014). Total station—an 

electronic theodolite integrated with an electronic distance measurement (EDM)—records the distance, the 

angle and the height between two target points. GPS surveying records many selected target points with 

GPS coordinates. Both have a 1,000 target points surveying capacity, which is the same as the manual 

surveying tools (Nex and Remondino 2014).  

These manual tools and semi-automatic equipment are used in contact surveying methods, which 

rely on surveyors’ movement on the construction site and the placing of the surveying device on the target 

points in a sequence. That means the target points are manually selected by surveyors, and their accuracy 

could be guaranteed. However, the manual tools and the total station need at least two cooperating 

surveyors to complete the surveying task on the construction site. This time-consuming outdoor procedure 

leads to a high probability of interfering with other construction operations on the construction site. In 

addition, they cannot provide the in-time progress data after the excavation starts. 

3.4.1.2 Non-contact Surveying 

Remote sensor based surveying methods are continuously being developed and tested in the 

construction industry, which include 3D Laser Scanning — by Terrestrial Laser (Du and Teng 2007), 

Drone-borne LiDAR (Tulldahl and Larsson 2014; Guo et al. 2017) , and Photogrammetry — by Close-

range Photogrammetry (Arias et al. 2005; Barazzetti et al. 2010; Sung and Kim 2016) and Drone 

Photogrammetry, known as Drone-SfM in computer vision (Nassar and Jung 2012; Siebert and Teizer 

2014; Haur et al. 2018).  
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These non-contact surveying methods help construction professionals to obtain a 3D point cloud 

and generate a construction site’s DTM (Digital Terrain Model). They can scan targets in the distance range 

of 100 m by setting up several ground stations, and up to 5 km using a pre-planned drone path. Their 

surveying capacity is more than 10 million raw points, while those points are recorded without manually 

selecting target points and excluding the non-target points (Nex and Remondino 2014). In addition, those 

remote surveying procedures avoid interfering with other construction operations and also reduce the 

surveying time by scanning multi-points at the same time.  

3.4.1.3 Terrestrial Laser Scanning  

The Terrestrial Laser Scanning (or ground-based 3D laser scanning) has been adopted in 

construction surveying for several years. It needs to be set up on a tripod at a fixed location in front of the 

target object, and the time of flight (TOF) method is used to determine distances from the scanner to 

targets, with a high speed of 10,000 ~100,000 points per second (Du and Teng 2007). In engineering 

practices, multi-stations laser scanning and vehicle-based laser scanning solve the coverage limitations.  

Although the drone-borne LiDAR system had been used for 3D habitat mapping in forest 

ecosystems (Guo et al. 2017), there are no published articles using the drone-borne LiDAR in COENG and 

AUTCON (see Table 3) to replace the ground-based or vehicle-based laser scanning. It is because the 

small-sized LiDAR device still needs a powerful UAV to carry, such as the DJI Matrice series, which is 

impossible for a small drone. Additionally, the investment (see Table 5) is another issue; the drone-borne 

LiDAR systems are quoted for $ 60, 000 to $ 280, 000, which is too expensive to be adopted in 

construction site surveying before its price drops down to a reasonable number.  

Among the reviewed literatures, there are two interesting applications of ground-based 3D laser 

scanning: 

1. Using ground-based 3D laser scanning as the baseline for evaluating drone photogrammetry. 

Takahashi et al. (2017), Maghiar et al. (2018) and Moon et al. (2019) designed experiments to 

compare drone photogrammetry with ground-based 3D laser scanning. The results confirmed 

that drone photogrammetry is precise enough for use in excavation operations.  
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2. Merging the point clouds from ground-based 3D laser scanning and drone photogrammetry to 

create an integrated point cloud (Kwon et al. 2017; Li, D. and Lu 2018; Chen et al. 2018; 

Moon et al. 2019). Kwon et al. (2017) tested the hybrid scanning method, which merged 

ground-based 3D laser scanning with drone photogrammetry to generate a 3D point cloud for 

an under-construction bridge. The laser scanner scanned the sides of the target in multi-

stations; the drone’s camera scanned the top view of the target, where is hard to be reached by 

the ground laser scanner. Additionally, the side views can also be supplement with ground-

camera images and vehicle-mounted camera images (Barazzetti et al. 2010; Sung and Kim 

2016; Inzerillo et al. 2018; Aguilar et al. 2019; Park et al. 2019) 

Table 5 Comparisons of Drone-based Surveying System 

System Price 
Drone 

Platform 
Sensors Calculated Spatial Resolution 

Manufactory 

Accuracy 

Matrice 200 

and 210 

LiDAR 

$ 60,000 for 

education 

 

DJI M200 Velodyne PUCK-LITE 

@10m: 0.4°*3.14rad/180°*10m 

= 6.9cm or 2.7 inch 
@5m: 0.4°*3.14rad/180°*5m 

= 3.49cm or 2.7 inch 

@50m 4.6 cm+/- 

Snoopy-V-
Series 

$ 280,000 for 
education 

DJI M600 Unknow Laser Sensor  @50m 3.2 cm+/- 

DJI Phantom 4 

Pro V2.0 

$1,799 for 

retail 

DJI Phantom 

4 Pro 

8.8 mm*13.2 mm COMS, 

Focal length =8.8 mm 

@20m: GSD=0.54 cm/px 

@40 m: GSD=1.08 cm/px 
- 

DJI Inspire 2 

(X4S) 

$4,249 for 

retail 
DJI Inspire 2 

8.8 mm*13.2 mm COMS, 

Focal length =8.8 mm 
@40 m: GSD=1.08 cm/px - 

DJI Inspire 2 
(X5S-15mm) 

$10,309 for 
retail 

DJI Inspire 2 
13 mm*17.3 mm COMS, 

Focal length =15 mm 
@40 m: GSD=0.88 cm/px - 

DJI Inspire 2 

(X5S-45mm) 

$10,309 for 

retail 
DJI Inspire 2 

13 mm*17.3 mm COMS, 

Focal length =45 mm 
@40 m: GSD=0.29 cm/px - 

 

Based on Table 2, it is clear that drone photogrammetry has the flexible range in object 3D-

reconstruction, especially in the construction field. It is not only limited to construction site surveying, but 

it also has been used to perform building 3D-reconstruction (Aguilar et al. 2019; Chen et al. 2018), create 

3D texture models of construction equipment (Kim, H. and Kim 2018) and pavement surface mesh models 

as well (Inzerillo et al. 2018). Table 5 compares the spatial resolution and price between drone 

photogrammetry and drone-borne LiDAR. Based on that comparison, the drone photogrammetry is the 

most reasonable option for excavation operations. However, determination of elevations of a construction 

site in real-time during the excavating still is a challenge, because drone photogrammetry needs at least one 

workday to transform the raw images to a coarse 3D model for measuring with commercial 
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photogrammetry software, Agisoft PhotoScan (Haur et al. 2018). The advantages and shortfalls in drone 

photogrammetry will be discussed later. 

3.4.2 Image-based 3D-reconstruction Methods 

Table 6 categorizes the image-based 3D-reconstruction methods by the type of sensor and the 

method of distance measurement between the sensor and targets.  

Table 6 Image-based Methods to Acquire Targets’ 3D-geometrical Data 

Sensors principles Scene Scale Raw Results Measuring Products Applications 

SAR 
Synthetic-aperture 

radar 

Large 

Landscape 
SAR Images DEM/DTM 

Kirscht and Rinke 1998; Nico et 

al. 2005; Huang, Q., et al. 2017 

IR Distance 

Sensor 
TOF Small/Indoor 

RBG-D 

Images 
Depth Map 

Holz et al. 2011; Huang A. S. et 

al. 2017 

Stereo Cameras  Triangulation Small/Indoor 
RGB Image 

Pairs 
Distance /Depth Map 

Sung and Kim 2016; Sophian et 

al. 2017;  

Single Camera 
Photogrammetry / 

SfM  
Small /Large RGB Images 

Points Cloud / Geometry Model/ 

DEM 

Westoby et al. 2012; Siebert and 

Teizer 2014 

 

3.4.2.1 Synthetic-aperture Radar (SAR) 

Synthetic-aperture radar (SAR) is a plane-mounted system for scanning large-scale landscapes. 

The scanning results are SAR images, and the modeling result is a DEM (digital elevation model) (Kirscht 

and Rinke 1998) or a DTM (Nico et al. 2005) depending on the application environment. In infrastructure 

construction, the ground-based SAR system (GB-SAR) has been used in dam deformation monitoring 

(Huang, Q., et al. 2017) and landslide monitoring (Noferini et al. 2007). However, SAR has the same issue 

with LiDAR, they are unable to be carried by a MAV/drone.  

3.4.2.2 Infrared Radiation (IR) Distance Sensor 

Infrared radiation (IR) distance sensor, also known as RGB-Depth camera, is a device that uses 

TOF to determine distances between the sensor and target objects. The scanning results are four-channel 

RGB-D images (see Figure 13). The resolution of the distance sensor is smaller than the color sensor, such 

as 320×240 pixels depth resolution for the old Kinect V1, and 512× 424 pixels for the latest Kinect V2. The 

accuracy of depth measurement gets worse when the distance increases; 1.5 ~ 3m is an accepted distance 
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range for measurement (Litomisky 2012). In most cases, this sensor is only used indoors, such as indoor 

scenes 3D-reconstruction (Holz et al. 2011; Huang, A.S. 2017) and body activities capturing (Guo 2018). 

 

Figure 13 Four-channel RGB-D matrix, red, green, blue pixel, and gray depth value 

 

3.4.2.3 Stereo Camera 

Stereo camera system is the most common close-range photogrammetry device for measuring 

distance between cameras and target objects. It is made up of two cameras with the same specifications and 

parameters, the only difference between those two cameras is the baseline 𝑇 in spatial position. The 

scanning result is an image pair (see Figure 14); the 𝑙𝑒𝑓𝑡 𝑖𝑚𝑎𝑔𝑒 (𝑥𝑙 , 𝑦𝑙) and 𝑟𝑖𝑔ℎ𝑡 𝑖𝑚𝑎𝑔𝑒 (𝑥𝑟 , 𝑦𝑟) are in the same 

plane and perpendicular to each cameras’ principal ray. The triangulation method (see Eq. 2) is used to 

calculate distances between the targets and cameras, because the distances in front of the cameras have a 

negative relationship with the 𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = 𝑥𝑙
𝑝
− 𝑥𝑟

𝑝
. With this relationship, it is feasible to generate a small 

sense depth-map from the stereo camera image pair by traversing all common pixels of those two images 

(Sung and Kim 2016; Sophian et al. 2017). 

  

Figure 14 Stereo camera model with triangulation 
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𝑥𝑙
𝑝
− 𝑐𝑥
𝑓

=
𝑇𝑙
𝑍

𝑐𝑥 − 𝑥𝑟
𝑝

𝑓
=
𝑇𝑟
𝑍}
 

 
⇒ (𝑥𝑙

𝑝
− 𝑐𝑥) + (𝑐𝑥−𝑥𝑟

𝑝
) =

𝑇𝑙 + 𝑇𝑙
𝑍

𝑓

 𝑇𝑙 + 𝑇𝑙 = 𝑇 }
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𝑝
=
𝑇

𝑍
𝑓

(𝑥𝑙
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𝑝
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⇔ 𝑍 =
𝑇

𝑥𝑙
𝑝
− 𝑥𝑟

𝑝 𝑓  Eq. 2 

Where, 𝑃 is a target in front of cameras 𝑂𝑙 and 𝑂𝑟; 𝑝𝑙(𝑥𝑙
𝑝
, 𝑦𝑙

𝑝
) and 𝑝𝑟(𝑥𝑟

𝑝
, 𝑦𝑟

𝑝) are image points of 𝑃; 

 (𝑐𝑥, 𝑐𝑦) is image point of cameras, named as principal point, its ideally be the center of image plane. 

 𝑇 is the distance between cameras, named as Baseline; 𝑓 is the focal length of cameras; 

 Z is the distance between 𝑃 and Cameras  

  

3.4.2.4 Single Camera 

Structure from Monition (SfM), where 3D structure can be resolved from unordered images 

(Ullman 1979; Westoby et al. 2012), often used in drone photogrammetry, is replacing traditional aerial 

photogrammetry /aerial triangulation to generate the DTM. Both methods use cameras to capture multiple 

overlapping images, then match the same target objects in those adjacent image pairs to generate DTM. 

Figure 15 shows a three-frame aerial triangulation model, where the camera moves from left to right 

without rotation; Figure 16 shows a two-frame SfM model, where the camera moves from 𝐶0 to 𝐶1 with a 

translation ( 𝑡 = [𝑥 𝑦 𝑧]𝑇 ) and a rotation (𝑅). That is more complex than the stereo camera model (see 

Figure 14), which only has the x-axis translation between the two cameras. So, a key task in SfM is to find 

out the external position and orientation parameter [𝑡  𝑅] to align the sequence camera stations’ coordinates 

to the initial station’s coordinate. Similar to the stereo camera model, the matched point pairs in those two 

images can be found in the epipolar line pairs, while the local feature matching methods — such as SIFT, 

SURF, which will be discussed later— have replaced the epipolar line method to extract keypoint pairs 

from image pairs in SfM. Pix4D, Autodesk ReCap Pro, Agisoft PhotoScan and DroneDeploy are 

commercial softwares of drone photogrammetry, and OpenSfM is an opensource SfM library written in 

Python. 

site

Drone Path

site

Image Pairs

Overlaps

principal ray

Image 1 Image 2 Image 3

Image 1Image 2 Image 3

 

Figure 15 Overlapping ortho-image series 
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Figure 16 Two-frame structure from motion and epipolar geometry 

 

Compared with SAR, IR and stereo camera, the single digital camera with drone photogrammetry/ 

drone-SfM has several unbeatable advantages for scanning excavation objects on construction sites:  

1. A small-sized digital camera could be mounted to a drone with a 3-axis gimbal, so that the 

camera can move over a construction site without interfering with other construction 

operations.  

2. The digital camera has a larger spatial resolution than RGB-Depth cameras, so a large single 

RGB image can contain more objects than an RGB-D image.  

3. Fewer images are required to cover an entire construction site which helps to reduce the error 

caused by image matching and reduce the processing time as well (Schenk 1999; Kaehler and 

Bradski 2016). 

3.5 Drone Ortho-imaging Related 3D-reconstruction Research 

3.5.1 Requirements in Ortho-imaging  

An object that needs to be 3D-reconstructed by drone photogrammetry /drone-SfM using 

overlapping ortho-images should have a rough surface, a relatively small slope, and should be captured in a 

bright environment. This is because:  

1. Only objects with a rough enough surface can be recorded as complicated textured images, 

while objects that lack a sufficient quantity of unique detectable features — such as 

transparent materials (i.e. windows), reflective materials (i.e. windows, mirrors, glossy paint, 

water surface, snows), or the object with uniform surfaces with little variation— are unable to 

generate sufficient feature keypoints due to low contrast (Lowe 2004, Solem 2012,Westoby et 
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al. 2012 ). Applying SfM in 3D-reconstructing uniform texture objects, such as vehicles, 

requires attaching marks to target objects’ surfaces (Erickson et al. 2013).  

2. The accuracy of drone photogrammetry/drone-SfM using ortho-images is affected by the 

object’s surface slope. It has a low error rate for relatively flat ground surfaces (Haur et al. 

2018), while its error rate increases as the ground slope increases. Zhao and Lin (2016) 

concluded that the error rate has a positive relation to the slope in the range of 55° to 90°. 

That means it is unable to handle the steep, or near vertical topography (Westoby et al. 2012; 

Zhao and Lin 2016).  

3. Additionally, the brightness of the environment also impacts drone photogrammetry/drone-

SfM method’s accuracy. Westoby et al. (2012) stated that the SfM method has a questionable 

accuracy in dense vegetation areas. Zhao and Lin (2016) found that the accuracy of the SfM 

method has a negative relationship with the hillshade value in range of 0 to 170.  

Fortunately, most construction sites meet those requirements. After removing the vegetation and 

topsoil, the soil, rocks or mixture materials are exposed as seen in Figure 17, which is a richly-textured 

surface. The uniform brightness ortho-image requirement can be satisfied by using a drone to take the 

images on a sunny day. In general, the SfM works for vertical surfaces, such as the building 3D-

reconstruction cases (Aguilar et al. 2019; Chen et al. 2018), because the camera can angle toward any 

object; but, it is better to limit drone to a narrow flight region to avoid interruption with excavation 

operations for safety reasons. Therefore, the main challenge of applying ortho-imaging based 3D-

reconstruction for construction site elevation determination is that the slope of the ground surface might be 

changed to 90° after excavated, such as on the side wall of a pit. 

 

Figure 17 Example ortho-image of construction site’s surface 
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3.5.2 Ortho-Image Matching Methods  

Figure 18 shows the general procedures of 3D-reconstruction with image feature keypoint-based 

drone photogrammetry/drone-SfM method. For 3D-reconstrction of a construction site, the overlapping 

ortho-image series (Figure 15) can be either captured in a sequence or extracted from a video, where the 

adjacent ortho-images require a minimum of 70% and 40% overlap in longitudinal and traversal coverage, 

respectively (Siebert and Teizer 2014).A previous experiment (Takahashi et al. 2017) tested the higher 

longitudinal overlapping ratios from 80% to 90%, but it did not lead to a significant enhancement in the 

measurement accuracy with the increasing overlapping ratio. However, the extra unnecessary images 

require additional time to process image matching. Haur et al. (2018) reported the required time to estimate 

on-site soil volume by drone photogrammetry is one workday, as the point cloud is produced using Agisoft 

PhotoScan, the geometry model is created using Autodesk ReCap with the point cloud, and the soil volume 

is estimated with Autodesk Civil 3D. 

Images/Video

SIFT/SURF
Features

Points

Bundle 
adjustment and 

3D scene 
reconstruction
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Cloud

PMVS/CMVS 
Dense Point 

Cloud  

Figure 18 Keypoint-based SfM workflow 

 

The next step is extracting and matching keypoints from adjacent ortho-image pairs, which is 

called local feature detection and description in computer vision (Kaehler and Bradski 2016). The most 

common and widely used image local features are: the Scale-invariant Feature Transform (SIFT) – a 

famous feature detection algorithm in computer vision to detect and describe local features in images, 

which was patented in Canada by the University of British Columbia and published by David Lowe (Lowe 

1990; Lowe 2004) – and the Speeded Up Robust Features (SURF) –  another patented local feature detector 

and descriptor, which is several times faster than SIFT and more robust against different image 

transformations than SIFT (Bay et al. 2008). Figure 19 is a SIFT example, the green dots are SIFT 
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keypoints, and the matched keypoint pairs were linked with green lines. Although those green keypoints 

were matched and located correctly, the noticeable weaknesses of SIFT still exist: a) sparse keypoints are 

selected with rules, and the keypoints are randomly distributed in an image, b) the number of detected 

keypoints in an image is less than the number of pixels in the image, and c) the number of matched 

keypoints in the image pair is much less than the number of detected keypoints. Similarly, the result by 

SURF may also not be dense enough to represent a construction site’s geometrical features, because most 

candidate points are excluded by a number of criteria, like low contrast and points on edges (Solem 2012). 

This is why the SfM method does not work well with steeply sloped ground, as the points on edges have 

been removed. After getting the sparse point clouds, the Patch-based Multi-view Stereo (PMVS) / 

Clustering Views for Multi-view Stereo (CMVS) (Furukawa and Ponce 2010) will be used to generate 

dense point clouds.  

 

Figure 19 Example of SIFT keypoints matching 

 

The Normalized Cross Correlation (NCC) matching method is used to determine the relations 

between a reference patch and a target patch (Lewis 1995), which are not limited to grayscale values or 

gradient values (Solem 2012). It might be a suitable approach to match the customized pixel pairs which 

are dense and uniformly spread in the overlaps of adjacent image pairs, since that has been verified in 

PMVS (Furukawa and Ponce 2010). This is because reference pixels can be manually selected in the 

preferred styles such as implementing a densely packed and uniformly spaced pixel grid, and the best 

matched corresponding target pixels will be determined from the candidate target pixels. The NCC method 

calculates the correlation between two equally sized image patches 𝐼𝑥,𝑦∈𝑤(𝑥, 𝑦) and 𝐼′𝑥,𝑦∈𝑤(𝑥′, 𝑦′) (Kaehler and 

Bradski 2016), where the image patch is a rectangular portion (𝑊) which is centered around the interest 

pixel with size (2N + 1) × (2N + 1). Its formula is defined as Eq. 3, by subtracting the mean 𝐼,̅ 𝐼′̅and scaling 

with the standard deviation √∑ [𝐼(𝑥, 𝑦) − 𝐼]̅2𝑥,𝑦∈𝑊 , √∑ [𝐼′(𝑥, 𝑦) − 𝐼′̅]2𝑥,𝑦∈𝑊 , the 𝑁𝐶𝐶 method becomes robust to image 
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brightness changes (Solem 2012). However, compared to SIFT/SURF, the patch-based NCC is worse at 

image scaling, rotation and projection transformations, because the rectangular patch is not invariant to 

scale or rotation, and the patch size affects the matching results as well (Solem 2012). 

 
𝑁𝐶𝐶 =

∑[𝐼(𝑥, 𝑦) − 𝐼]̅[𝐼′(𝑥′, 𝑦′) − 𝐼′̅]

√∑[𝐼(𝑥, 𝑦) − 𝐼]̅2√∑[𝐼′(𝑥′, 𝑦′) − 𝐼′̅]2
 

Eq. 3 

Where, 𝐼𝑥,𝑦∈𝑤(𝑥, 𝑦): the patch for the reference image pixel (x,y) ; 𝐼′𝑥′,𝑦′∈𝑤′(𝑥′, 𝑦′) : the patch for the target image pixel (x’, y’);  

 𝐼 ̅ =
1

𝑁
∑ 𝐼(𝑥, 𝑦)𝑥,𝑦∈𝑊 : mean of patch 𝐼𝑥,𝑦∈𝑤;  𝐼′̅ =

1

𝑁
∑ 𝐼′(𝑥′, 𝑦′)𝑥′,𝑦′∈𝑊′ : mean of patch 𝐼′𝑥′,𝑦′∈𝑤′; 

 
𝑊 and 𝑊′ are rectangular patches with size (2R+1)×(2R+1), which are centered around the reference pixel (x,y) or 

candidate target pixel (x’,y’). 
  

3.5.3 Other Related Methods and Works 

3.5.3.1 Multi-scale Image-based Methods 

In traditional drone photogrammetry the overlapping images are captured at a constant altitude 

(see Figure 15). Then these images have the same constant scene scale and spatial resolution, and the 

objects in the overlapping parts have the same size, because these images meet at the pinhole camera model 

(see Figure 6). In contrast, Daftry et al. (2015) proposed a novel SfM framework of using multi-scale 

images — capturing in various depth (distance) from a building — to enhance the accuracy of the facade 

3D-reconstruction. Additionally, Matthies et al. (1997, 2007), Li, R., et al. (2002),Xiong et al. (2005) and 

Meng et al. (2013) continuously applied descent images to determine the topography of landing terrain for 

space aircraft. Those descent images were captured in the landing path at different times and at different 

altitudes, so those descent images are multi-scale images of the same terrain surface. That image-based 3D-

reconstruction result is suitable for choosing a safe landing area in planetary landing exploration tasks 

(Meng et al. 2013). Thus, capturing images at different altitudes may be an approach to enhance the image-

based 3D-reconstruction of construction sites. 

Considering the success of descent image-based research, Figure 20 shows a modified, faster 

drone photogrammetry for construction site elevation determination, which uses an ortho-image to cover 

the entire building construction site (like image 1) at the special altitude, 𝑍 = 𝑓 ∙ 𝐻𝑠𝑖𝑡𝑒 ℎ𝑖𝑚𝑎𝑔𝑒⁄ . Then 

another image (like image 2) is captured above this altitude which also covers this site. Meng et al. (2013) 

discussed that the low camera’s altitude should be half of the high camera’s altitude, so that the disparity of 

neighbor pixels around the image center could be detected in 0.5-pixel level. If this multi-scale image-
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based method can be automatically implemented using a computer system and program, then the required 

number of images used in the ortho-image based 3D-reconstruction method is minimized to two. 

site

Image 2

Image 1

Drone Path

Image 1 Image 2

 

Figure 20 Modified drone path 

 

Additionally, the multiple image-based construction site elevations determination can be improved 

in regard to model alignment. Currently, point cloud or the TIN mesh model generated from drone 

photogrammetry/drone-SfM is a scale model, which needs at least 3 ground control points (GCPs) to align 

the scale model to the real-world coordinate (Westoby et al. 2012). Furthermore, the modeling error should 

less than 50 millimeters in elevation coordinate compared with the real-world coordinates (Takahashi et al. 

2017). Then the developed image-based 3D-reconstruction method can be adapted in determing the 

construction site elevations. 

3.5.3.2 Deep learning-based Method 

Recovery the 3D geometrical data from a single-image without reference information is an ill-

posed problem (Van den Heuvel 1998; Hassner and Basri 2006; Saxena et al. 2008). The methods 

discussed in the previous section either used the equipment’s physical properties or the camera model and 

epipolar geometry as the reference information. However, previous research has shown the feasibility of 

using deep learning methods to recover the relative depth information for each pixel of an image of indoor 

scenes (Eigen et al 2014; Liu et al. 2015; Laina et al. 2016), outdoor scenes (Chen et al. 2016; Li and 

Snavely 2018) and scenes from automatic driving applications (Garg et al. 2016). In addition, convolutional 

neural networks (CNNs) have been verified as effective and reliable in micro-scale scenes, such as 

estimating the surface height map from a single image of a foam mat and mouse pad (Zhou et al. 2017).  

However, the challenge of training a deep learning model is acquiring a dataset. Previous research 

also discussed the approach for creating enough data for training the CNN model. In the automatic drive 
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application, the CNN model is trained for determining objects’ distances from a single forward-facing view 

of a car; the dataset, depth and front-view image pair are created by a stereo camera system that is installed 

on the front of the car (Garg et al. 2016). Another interesting approach to create a labeled dataset is using 

artificial images, such as generating different view images from a photogrammetry-based concrete mixer 

truck 3D-model and using these images to train a construction equipment object detector (Kim and Kim 

2018). Thus, to guarantee the accuracy of CNN-based depth recovery or image surface height estimation, 

the multiple image-based 3D-reconstruction methods still are important for acquiring datasets.  

Therefore, for the construction industry, using the advanced artificial intelligence (AI) 

technologies, such as deep learning to automatically determine elevations directly from an image of the 

construction site, is an interesting research topic and meaningful challenge. Once overcome, the real-time 

3D-reconstruction of a construction site becomes possible, and then the degree of automation of the 

excavation operations will be significantly improved (Seo et al. 2011). 

3.6 Image Processing and Computer Vision with Deep Learning 

3.6.1 Image Formation, Transformation and Convolution 

3.6.1.1 Image Formation 

Currently, a digital image is easily acquired by various cameras and other image sensors, 

especially by mobile phones and home digital cameras in our daily life; a digital image is used conveniently 

to show and share with smart phones and computers. Behind those, the most essential thing is that a digital 

image is formatted in matrices (see Figure 21). This approach is sampling an image at rectangular grids’ 

centers; the color, or intensity, at each of these center points is converted into a numerical value; apart from 

the color / intensity, everything else is discarded when storing the image in a computer (Hearn et al. 2004; 

Szeliski 2010). Thus, the computer can read and write a gray digital image as one layer (channel) two-

dimensional matrix of gray pixel values. Similarly, the RGB image and the RGB-D image, which have 

been discussed in previous sections, are able to be read and written as a three-layer (channel) two-

dimensional matrix and a four-layer(channel) two-dimensional matrix separately. Therefore, an image 

processing problem is a kind of matrix math problem.  
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A. A Matrix of Gray Pixel 
Values 

B. Three-layers RGB Matrix. Each Layer 

is a Two-dimensional Matrix of Red, 

Green or Blue Pixel Values 

C. Four-layers RGB-D Matrix. Each Layer is a 

Two-dimensional Matrix of Red, Green or Blue 

Pixel Values, and Gray Depth Value. 

Figure 21 Multi-layers image matrix formation 

 

In this matrix formation, each grid is called a pixel, and the numerical value is called the pixel 

value. Pixels can be read and written by the pixel coordinate – row index and column index of the matrix. 

In the OpenCV-Python, the row index increases from left to right and the column index increases from top 

to bottom of the image plane (see Figure 14). For example, the pixel value ‘22’ (in third row, forth column) 

of the gray image 𝐼 in Figure 21-A, can be read by value = 𝐼[2,3] or written as 𝐼[2,3] = 22, because the 

row and column index start with 0 in Python3 (Solem 2012). 

3.6.1.2 Image Transformation 

Figure 22 shows the basic set of 2D planar transformations. With this pixel coordinate (in matrix 

formation), the image 2D transformations, such as rotation or translation, could be accomplished by matrix 

multiplications (Hearn et al. 2004; Szeliski 2010). In detail: a) 2D points, pixel coordinates in an image can 

be denoted using a pair of values, 𝑥 = [𝑥 𝑦]𝑇 , or using the homogeneous coordinates as 𝑥 = [𝑥 𝑦 1]𝑇 , then an 

image translation and rotation can be done with Eq. 4. 

 

Figure 22 2D planar transformation 
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𝑖𝑚𝑎𝑔𝑒@𝐻′

 

Eq. 4 

 

Where, [𝑥 𝑦 1]𝑇, [𝑥′ 𝑦′ 1]
𝑇
, [𝑥′′ 𝑦′′ 1]𝑇is the homogeneous coordinate; 𝑡𝑥 , 𝑡𝑦 are the distances translated; θ is the 

degree rotated in anticlockwise fashion. 

  

3.6.1.3 Image Convolution 

A kernel is a small convolution matrix (see Table 7), which is used for smoothing (blurring) , 

sharpening, edge detection, and more image processing operations. Those image processing operations are 

accomplished by doing a convolution between a kernel and an image (Kaehler and Bradski 2016). The 

general expression of convolution is Eq. 5, and explained in Figure 23.  

Table 7 Common Convolution Kernel 

Operation Kernel Image result g(x,y) 

Identity 

  

Edge detection 

  

Sharpen 

  

Box blur 
(normalized) 

  

Gaussian blur 3 × 3 
(approximation) 

  

 

𝑔 = 𝑓 ∗ ℎ, or 𝑔(𝑥, 𝑦) = ∑ 𝑓(𝑖 − 𝑘, 𝑗 − 𝑙)ℎ(𝑘, 𝑙) = ∑ 𝑓(𝑘, 𝑙)ℎ(𝑖 − 𝑘, 𝑗 − 𝑙)𝑘,𝑙𝑘,𝑙  Eq. 5 

Where, 𝑔(𝑥, 𝑦) is the filtered image;𝑓(𝑥, 𝑦) is the original image;ℎ(𝑘, 𝑙) is the filter kernel.  

 

 

  
Where,  the original image on the left is filtered (convolved) with the filter kernel in the middle to yield the filtered image on 

the right; the light blue pixels indicate the source neighborhood for the light green destination pixel. 
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Figure 23 Neighborhood filtering (convolution) 

3.6.1.4 Image Pooling 

Image Pooling or down-sampling is the operation to extract image features after convolution. It is 

similar to image scale transformation. Figure 24 is the example of max pooling, which uses the max pixel 

value to stand for the feature of the 4 pixels. Another common pooling is mean pooling, which uses the 

mean of the 4 pixels to stand for their feature.  

 

Figure 24 Max pooling with a 2x2 filter and stride = 2 

 

3.6.2 Image Feature Detection and Matching 

3.6.2.1 Pixel Feature Matching 

Image features are defined base on their applications, such as edges, corner/interest points and 

blobs/regions of interest points. The basic feature is a pixel’s color or intensity. Assuming all pixels’ colors 

/ intensities are unique in two images, then the pixels’ colors / intensities can be used to match the 

corresponding objects in those two images, as the same objects have the same pixel value. However, 

directly comparing the pixel value is an ineffective method for matching pixel pairs in two adjacent images 

captured by a drone, because the environment conditions effect the images’ brightness.  

Previous sections have described that the normalized cross-correlation matching method is a 

suitable approach to match the image pairs. The correlation matching methods calculate the correlation 

between two equally sized image patches 𝐼𝑥,𝑦∈𝑤(𝑥, 𝑦) and 𝐼′𝑥,𝑦∈𝑤(𝑥′, 𝑦′) rather than two pixels only (Solem 

2012; Kaehler and Bradski 2016).  
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3.6.2.2 Keypoint Matching and Homography 

In image-based 3D-reconstruction, matching keypoint pairs is the most essential processing step. 

The SIFT and SURF detections and matching results are not dense enough to represent a construction site, 

because most points are dismissed based on several criteria, like low contrast and points on edges (Solem 

2012). That is why drone photogrammetry/drone-SfM using ortho-images does not work well in big slope 

surfaces, as the points on edges have been removed. Figure 25 shows an example of template matching 

using the SIFT keypoint and homography method. The green lines show the same points in the images 

captured in different positions. The white outline in the right image indicates the edges of the template. It 

uses matched SIFT keypoints to calculate a 3×3 perspective transformation matrix. Then, using the matrix 

to transform the four corners of the template (the left image) to its corresponding four points in the right 

image, template detection is completed (Kaehler and Bradski 2016).  

 

Figure 25 Template detection with keypoints matching and homography 

 

3.6.2.3 Other Image Features 

Image gradients are directional changes in intensities/colors of the image. Gradients in the x-axis 

and y-axis directions are computed in Eq. 6. Gradients extract feature information from images, such as 

edge detection (Solem 2012). It also can be used in feature and texture matching for images with different 

brightness or captured with different cameras. That is another approach to solve the brightness issue.  

Histogram of oriented gradients (HOG) is a feature descriptor used in object detection, which is 

used in particular suites for human detection in images (Dalal and Triggs 2005). Memarzadeh et al. (2013) 

detected the construction equipment and workers from a construction site video stream by HOG plus colors 
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features. Kim, H. and Kim, H. (2018) also developed a concrete truck detector with HOG feature and SVM 

(support vector machine) model.  

 ∇𝑓 = [
𝑔𝑥
𝑔𝑦
] =

[
 
 
 
𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦]
 
 
 

 Eq. 6 

Where, 
𝜕𝑓

𝜕𝑥
 is the derivative with respect to x (gradient in the x direction);  

 
𝜕𝑓

𝜕𝑦
 is the derivative with respect to y (gradient in the y direction).  

   

3.6.3 Object Detection, Image Classification and Image Segmentation 

In general, object detection includes the task of object classification and object localization. The 

results usually are marked with different-colored rectangular boxes for identifying different objects’ 

categories and their locations in the original image. Image classification task only needs to identify the 

main object in the image or the specific image region. Image segmentation is more detail than object 

detection and can get the result of a same sized label-image, which uses several colors to draw the different 

objects’ categories in each pixel instead of the texture in the original image.  

3.6.3.1 Limitations 

Currently, detecting vegetation from a photogrammetric point cloud based on vegetation indexes 

and points’ spatial geometrical relations (Anders et al. 2019; Cunliffe et al. 2016) has limitations because it 

only allows a ground point subset and non-ground (vegetation) point subset to be classified. In addition, the 

vegetation index methods are effective in identifying green and yellow vegetations, but ineffective with 

other colors such as the withered vegetations and shaded vegetations. That also results in the issue of 

treating other green or yellow texture objects as the vegetations.  

Previous research results have shown the feasibility of deep learning methods in objects detection 

using image (Schneider et al. 2018), video (Kang et al. 2018), point cloud (Engelcke et al. 2017), and 

image segmentation (Noh et al. 2015; Badrinarayanan et al. 2017). The limitation of the current deep 

learning-based methods is that they use low-resolution images for training the deep learning-based object 

detector, which resize the ImageNet (Deng et al. 2009) down to as small as 256×256-pixel, while the high-

resolution is limited to 800×1,000-pixel (Han et al. 2015). This issue is caused by the limitation of 

computer hardware. A directly exported image from a digital camera, such as the image captured using the 
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DJI Phantom 4 Pro V2.0, is as large as 3,648×4,864-pixel, which is extremely larger than the 256×256-

pixel. Reducing the image size impacts the effectiveness of image segmentation because the number of 

pixels for representing each single object decreases as the image resize down. For example, if the image has 

been shrunk three times, an 8×8-pixel patch in the original image becomes a single pixel in the shrunken 

image. 

3.6.3.2 Solutions 

A potential approach to avoid resizing down the high-resolution image is that separately 

identifying each 8×8-pixel small-patch of the original image and assembling them to be the high-resolution 

result. The result of this approach is same as the result of image segmentation using the low-resolution 

image. In addition, the small image patch size is better for training a deep learning-based image 

classification model, where the image classification task only needs to identify the main object in the 

image. In detail, the main object is distinguished from the background; and, no matter what other objects 

are included in the background, this small image patch will be identified as the main object’s category. 

Therefore, the possible procedures to segment a high-resolution image without resizing it may be to 

disassemble it to small-patches and recording the sequence ID, classify each small-patch with a pre-trained 

deep learning-based image classification model, assign the class-label to each small-patch, and assemble 

these small-patches to build the high-resolution results. 

3.7 Literature Review Summary 

This literature review mainly discussed the feasibilities, weaknesses, and research opportunities in 

drone technologies and image-based 3D-reconstruction methods for determing construction site elevations. 

The review was carried out using several steps. Firstly, this review evaluates the drone related publications 

in the Journal of Construction Engineering and Management and the Automation in Construction. The 

drone related research in the top ranked construction research publications has been rapidly increasing 

starting from 2015. From this comprehensive review and quantitative assessment, the following interesting 

points are outlined:  



42 

 

1. “DJI Phantom” series and “DJI Inspire” series drones are the most popular drones that have 

been adopted in the construction research projects.  

2. An optical camera is the most reasonable sensor to acquire the RGB image for inspection 

applications. 

3. The point clouds generated by photogrammetry / SfM methods have been benefiting drone 

applications in the construction research since 2016.  

4. No published article mentioned the usage of the drone-borne LiDAR technology at this 

moment. 

Secondly, this review compared the current construction surveying techniques and image-based 

3D-reconstruction method by reviewing the relative literatures from “Google Scholar.” From this 

comparative review, the following points are summarized:  

1. Determination of elevations for excavation operations is similar to 3D mapping and object 

3D-reconstruction tasks, which have a complex procedure with data collection, data 

preprocessing and 3D modeling. Previous researchers applied the commercial drone 

photogrammetry software to generate the DTM for the construction sites, while future 

research is still needed to accelerate the process of image-based 3D-reconstruction method to 

generate the real-time as-built model. 

2. 3D-reconstruction with specific equipment’s physical properties, such as LiDAR, or using the 

camera model and epipolar geometry could get state-of-the-art results, while the cost and time 

is not good enough for determing elevations on construction sites. Also, the robust algorithm 

for extracting the desired features and eliminating the noisy features from an image pair is still 

a challenge with the current image processing and computer vision methods. 

3. Taking a single ortho-image over a construction site by a drone system, then using this single-

image to estimate the construction site elevations could be a feasible approach with deep 

learning, which will reduce drone’s flying time and minimize risk of drone crash on a 

construction site. 

Therefore, considering the success of descent image cases, acquiring an ortho-image pair by drone 

at a low altitude and a high altitude may be a possible approach for faster construction site elevation 
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determination, where the low ortho-image is the overlap and the overlap parts have different scales. In 

Chapters 4 and 5, this goal was implemented by addressing three tasks: 1) to determine the distance from 

the ground surface to the drone, a modified triangulation model is required; 2) to get the most accurate 

dense corresponding matching results by NCC, the proposed image patch feature descriptors should be 

sensitive to the different scales in the ortho-image pair, and the patch size should be self-adjusting between 

small-patches for complex textured regions and large-patches for poorly textured regions; and 3) to rapidly 

and automatically compute distances, an innovative approach and algorithms need to be developed for 

generating matched pixel pairs in a dense pixel grid style while simultaneously determining the distances. 

After that, Chapter 6 discussed how to use a single ortho-image to determine geometrical data using the 

dataset created in Chapter 5.  
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 LOW-HIGH ORTHO-IMAGE PAIR-BASED ELEVATION DETERMINATION 

ALGORITHM DESIGN AND TESTING 

4.1 Introduction 

This chapter presents a modified stereo-vision triangulation method for construction site 

elevations determination, which uses a drone’s camera to capture a low-high ortho-image pair instead of a 

left-right ortho-image pair of a construction site. This low-high ortho-image pair triangulation method is 

designed to enlarge the baseline distance and increase the measurable depth range compared to the classic 

stereo-vision method. This proposed method focuses on 3D-reconstruction of the ground surface of a 

construction site and excludes the side surfaces of the attached objects, which makes it simpler than 

traditional drone photogrammetry. In detail, the low ortho-image, which covers the entirety or sometimes a 

large portion of the construction site, is captured at half the height of the high ortho-image (see Figure 26). 

Then the entire low ortho-image is contained in the overlap of the ortho-image pair. Additionally, if a 

construction site is larger than a single ortho-image frame, this proposed method can stitch its results from 

adjacent ortho-image pairs with a very narrow overlapping strip compared to the high overlapping ratio in 

traditional drone photogrammetry. 

Pixel Coordinate
Pixel Grid Sampling

Pixel Grid 

Matching and 

Virtual Elevation 

Algorithm

Elevation-Map

Ortho-Image

Point Cloud

Camera@ H

Camera@½ H

Ortho-image@H

Construction Site

Region

 

Figure 26 Workflows of low-high ortho-image pair-based method  

 

The biggest challenge in this low-high ortho-image pair-based 3D-reconstruction method is to 

performing subpixel level image corresponding matching. Most of the current developed image matching 

methods are based on extracting and matching feature keypoints. The problem is that the extracted feature 

points are not evenly distributed throughout the image pair. In addition, the traditional image-based 3D-

reconstrution methods, such as SfM, separate the image matching and geometrical data recovering into two 

different sequential processes, which wastes some computing resources. Therefore, the author developed a 
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low-high ortho-image pair pixel matching and virtual elevation algorithm, which aims to generate matched 

pixel pairs in pixel grid, while simultaneously determine the elevation data based on the low-high ortho-

image pair triangulation method and virtual elevation plane method. Additionally, testing was conducted on 

a construction site. Experimental results were evaluated and presented in this chapter to show the efficiency 

of the proposed method and the developed algorithms in a real construction site.  

4.2 Low-high Ortho-image Pair-based 3D-reconstruction Method 

4.2.1 Low-high Ortho-image Pair Triangulation Model 

Using a single ortho-image (the size of a target object in an ortho-image has a negative 

relationship with the drone flight height) to determine geometrical data is an ill-posed problem; more 

reference information is needed such as additional ortho-images and camera positions (Eigen et al 2014). 

Th developed a low-high ortho-image pair triangulation model is shown in Figure 27, where the drone 

moves vertically along its camera’s principal ray without any horizontal shift or rotation.  
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Figure 27 Low-high ortho-image pair triangulation model 

 

The low ortho-image (𝐼𝑚𝑎𝑔𝑒@𝐻/2) is captured at the low camera position 𝑂. This low altitude 

 𝐻/2 = 𝛼𝑓 𝐻𝑠𝑖𝑡𝑒 ℎ𝑖𝑚𝑎𝑔𝑒⁄  should be high enough to capture the entire construction site. The high ortho-image 

(𝐼𝑚𝑎𝑔𝑒@𝐻) is captured at the high camera position 𝑂′ with altitude 𝐻. These two ortho-images have the 
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same principal point 𝑒 with a 2:1 scaling relation, and the altitude differential between the low-high camera 

stations is the triangulation baseline 𝑇 = 𝐻/2. The 𝑊𝑜𝑟𝑙𝑑 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒(𝑋, 𝑌, 𝑍) is set at 𝐶𝑎𝑚𝑒𝑟𝑎 𝑂 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒, 

where the Z-axis is aligned with the camera’s principal ray downward to the ground. If image point pair 

𝑝(𝑥, 𝑦, 𝛼𝑓) and 𝑝′(𝑥′, 𝑦′, 𝛼𝑓) are matched, then, the target point 𝑃 (𝑋, 𝑌, 𝑍) can be calculated by Eq. 7. Especially 

when 𝑥′ = 𝑥/2, 𝑦′ = 𝑦/2, it has 𝑍 = 𝐻/2, which means the target point on 𝐺𝑟𝑜𝑢𝑛𝑑 ± 0.00. Therefore, a target 

point’s elevation (relative to the 𝐺𝑟𝑜𝑢𝑛𝑑 ± 0.00) can be determined by 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = 𝐻/2 − 𝑍. 

4.2.2 Geometry Data Determination 

[
𝑋
𝑌
𝑍
] =

[
 
 
 
 
 
 

𝐻

2𝑓𝑥

𝑥𝑥′

𝑥 − 𝑥′

𝐻

2𝑓𝑦

𝑦𝑦′

𝑦 − 𝑦′

𝐻

2

𝑥′

𝑥−𝑥′
 𝑜𝑟 

𝐻

2

𝑦′

𝑦−𝑦′
 
]
 
 
 
 
 
 

 Eq. 7 

Where, 𝑃 (𝑋, 𝑌, 𝑍) (in Camera O coordinate) is a target point in the construction site; 

 𝑝(𝑥, 𝑦, 𝛼𝑓) (in Camera O coordinate) is the image point of 𝑃 on Image@H/2; 

 𝑝′(𝑥′, 𝑦′, 𝛼𝑓) (in Camera O’ coordinate) is the image point of 𝑃 on Image@H; 

 𝑓𝑥 and 𝑓𝑦 are focal length for image in x and y direction, ideally, it has 𝑓𝑥 = 𝑓𝑦 = 𝛼𝑓. 

 𝛼 is the factor to convert sensor size (mm) to image  size (pixel) 

 

Eq. 7 derivation processes are listed as follows: 

In Figure 27, from △Ope ≌ △OPZ has, 

𝑋

𝑥
=
𝑍

𝑓𝑥
                                                                                                  (Eq. 7 − 1) 

From △Op’e’ ≌ △O’PZ has, 

𝑋

𝑥′
=
𝑍 +𝐻/2

𝑓𝑥
                                                                                          (Eq. 7 − 2) 

Minus (Eq. 7-1) from (Eq. 7-2) has, 

𝑋 (
1

𝑥′
−
1

𝑥
) =

𝐻

2

1

𝑓𝑥
⇒ 𝑋 =

𝐻

2𝑓𝑥

𝑥𝑥′

𝑥 − 𝑥′
                                                          (Eq. 7 − 3 − 1) 

Similarly,  

𝑌 =
𝐻

2𝑓𝑦

𝑦𝑦′

𝑦 − 𝑦′
                                                                                   (Eq. 7 − 3 − 2) 

From (Eq. 7-1) has,  

𝑍 =
𝑋

𝑥
𝑓𝑥                                                                                          (Eq. 7 − 4 − 1) 

Similarly,  

𝑍 =
𝑌

𝑦
𝑓𝑦                                                                                          (Eq. 7 − 4 − 2) 

Take (Eq. 7-3-1) into (Eq. 7-4-1) has,  

𝑍 =
𝐻

2

𝑥′

𝑥−𝑥′
                                                                                   (Eq. 7 − 5 − 1) 
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Similarly, take (Eq. 7-3-2) into (Eq. 7-4-2) has, 

𝑍 =
𝐻

2

𝑦′

𝑦−𝑦′
                                                                                   (Eq. 7 − 5 − 2) 

Thus, combine [𝑋, 𝑌, 𝑍]𝑇 get the Eq. 7. 

4.2.3 Method Discussion 

The low-high ortho-image pair is easily acquired in a very short time without interfering with 

other construction operations. This is because the drones’ small dimensions and their equipped automatic 

flight control system and sensors make them easily navigable in cluttered outdoor environments and allow 

them to hover at desired positions. The drone flight altitude data can be easily read directly from the remote 

controller, which has ±0.00 set as the drone takeoff point. The 3-axis gimbal helps the camera lens stably 

face the ground to capture ortho-images. 

Since the impacts of wind and GPS signal interference cannot be eliminated, a slightly horizontal 

shift and rotation may occur during the drone’s movement from the low position to the high position, which 

make the high ortho-image’s principal point slightly different from that of the low ortho-image. Thus, it is 

necessary to align the low-high ortho-image pair to the same center with a slight image rotation and 

translation.  

4.3 Pixel Grid Matching and Elevation Determination Algorithm Design 

4.3.1 Low-high Ortho-image Pair Patch Feature Descriptors 

4.3.1.1 Pixel-to-subpixel Matching and Locating 

The reference image (𝐼𝑚𝑎𝑔𝑒@𝐻/2) and target image (𝐼𝑚𝑎𝑔𝑒@𝐻) have a 2:1 scale, necessitating the 

creation of separate patch feature descriptors for each. Figure 28 indicates the four scaling directions for 

generating the four features 𝑔𝑢∗,𝑣∗(𝑢, 𝑣) for a reference pixel 𝑝(𝑢, 𝑣). The example shows that 𝑔𝑢−1,𝑣−1(𝑢, 𝑣) 

matches with target pixel 5.75, meaning that the reference pixel is the bottom-right corner of the target 

pixel. Thus, the reference pixel and the target subpixel 𝑝′(𝑢′ + 0.5, 𝑣′ + 0.5) are matched. Eq. 8 states the other 

three matching conditions. 
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Figure 28 Pixel-to-subpixel matching and locating 

 

𝐼𝑓 𝑇𝑎𝑟𝑔𝑒𝑡 𝑃𝑖𝑥𝑒𝑙 𝑝’(𝑢’, 𝑣’) 𝑚𝑎𝑡𝑐ℎ𝑠 𝑤𝑖𝑡ℎ 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑃𝑖𝑥𝑒𝑙 𝑔𝑢∗,𝑣∗(𝑢, 𝑣)

{
 
 

 
 𝑔𝑢−1,𝑣−1(𝑢, 𝑣)

𝑔𝑢,𝑣−1(𝑢, 𝑣)

𝑔𝑢−1,𝑣(𝑢, 𝑣)

𝑔𝑢,𝑣(𝑢, 𝑣)

, 

 

 𝑡ℎ𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 𝑇𝑎𝑟𝑔𝑒𝑡 𝑆𝑢𝑏𝑝𝑖𝑥𝑒𝑙 

{
 

 
𝑝′(𝑢′ + 0.5, 𝑣′ + 0.5)

𝑝′(𝑢′ + 0.0, 𝑣′ + 0.5)

𝑝′(𝑢′ + 0.5, 𝑣′ + 0.0)

𝑝′(𝑢′ + 0.0, 𝑣′ + 0.0)

, 𝑇𝑎𝑟𝑔𝑒𝑡 𝑃𝑜𝑖𝑛𝑡 𝑝′(𝑥′, 𝑦′)

{
 

 
(𝑢′ − 𝑤/2 + 0.75, 𝑣′ − ℎ/2 + 0.75)

(𝑢′ − 𝑤/2 + 0.25, 𝑣′ − ℎ/2 + 0.75)

(𝑢′ − 𝑤/2 + 0.75, 𝑣′ − ℎ/2 + 0.25)

(𝑢′ − 𝑤/2 + 0.25, 𝑣′ − ℎ/2 + 0.25)

, 

 

𝑎𝑛𝑑 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 𝑝(𝑥, 𝑦) = (𝑢 − 𝑤/2 + .5, 𝑣 − ℎ/2 + .5) 

Eq. 8 

 

Eq. 8 derivation processes are listed as follows: 

The 𝑃𝑖𝑥𝑒𝑙 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 and 𝐼𝑚𝑎𝑔𝑒 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 can be converted by (Eq. 8-1) and (Eq. 8-2). The 

𝑃𝑖𝑥𝑒𝑙 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 is a 2D-coordinate with the origin on the upper-left pixel. The 𝐼𝑚𝑎𝑔𝑒 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 is a 3D-

coordinate with the origin on the image center (𝑤/2, ℎ/2), and a fixed z-axis value (𝑓, focal length). 

𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝑃𝑖𝑥𝑒𝑙 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 (𝑢, 𝑣)𝑡𝑜 𝐼𝑚𝑎𝑔𝑒 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒(𝑥, 𝑦), {
𝑥 = 𝑢 −

𝑤

2
+ 0.5

𝑦 = 𝑣 −
ℎ

2
+ 0.5

                               (Eq. 8 − 1) 
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𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝐼𝑚𝑎𝑔𝑒 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒(𝑥, 𝑦)𝑡𝑜 𝑃𝑖𝑥𝑒𝑙 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 (𝑢, 𝑣), {
𝑢 = 𝑖𝑛𝑡 (𝑥 +

𝑤

2
)

𝑣 = 𝑖𝑛𝑡 (𝑦 +
ℎ

2
)
                            (Eq. 8 − 2) 

 

Thus, from (Eq. 8-1), has the reference point 𝑝(𝑥, 𝑦), 

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 𝑝(𝑥, 𝑦) = (𝑢 −
𝑤

2
+ 0.5, 𝑣 −

ℎ

2
+ 0.5)                                                                (Eq. 8 − 3) 

 

In (Eq. 8-1) 𝑃𝑖𝑥𝑒𝑙 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 adjusts 0.5 to get its 𝐼𝑚𝑎𝑔𝑒 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒, similarly, the 0.5 subpixel needs 

adjusts 0.25 to get its 𝐼𝑚𝑎𝑔𝑒 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒. Thus, from Eq. 8, the target pixel 𝑝′(𝑢′ , 𝑣′) can be converted to target 

point 𝑝′(𝑥 ′, 𝑦′), 

𝑇𝑎𝑟𝑔𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 𝑝′(𝑥′, 𝑦′) =

{
 
 
 
 

 
 
 
 (𝑢′ −

𝑤

2
+ 0.75, 𝑣′ −

ℎ

2
+ 0.75)

(𝑢′ −
𝑤

2
+ 0.25, 𝑣′ −

ℎ

2
+ 0.75)

(𝑢′ −
𝑤

2
+ 0.75, 𝑣′ −

ℎ

2
+ 0.25)

(𝑢′ −
𝑤

2
+ 0.25, 𝑣′ −

ℎ

2
+ 0.25)

                                                        (Eq. 8 − 4) 

4.3.1.2 Patch Feature Descriptors Matching in Low-high Ortho-image Pair 

In this research project, the single pixel feature descriptor is extended to a patch feature descriptor 

using target patch 𝑢′𝑣′=𝐼′𝑢′,𝑣′∈(2𝑅+1)×(2𝑅+1)(𝑢′, 𝑣′)  to represent the target pixel/point in the target image. The 

patch size 𝑅 is self-adapting and depends on the previous matching result. 𝑅 will be increased during the 

matching process until the minimum threshold is satisfied. Similarly, 𝑔𝑢∗,𝑣∗(𝑢, 𝑣) is extended to patches 𝑢5𝑣5, 

𝑢0𝑣5, 𝑢5𝑣0, 𝑢0𝑣0, which are reference patches of size (2𝑅 + 1) × (2𝑅 + 1) used to represent the reference 

pixel/point in its four scaling directions. Each reference patch is generated from a patch 

𝐼𝑢,𝑣∈[2×(2𝑅+1)]× [2×(2𝑅+1)](𝑢, 𝑣) in the reference image with the average pooling operation.  

As reference patch descriptors have the same size as the target patch descriptor, the NCC method 

can be used to match them. In detail, using the NCC method a) calculate the four NCC values between 

reference patch descriptors 𝑢5𝑣5, 𝑢0𝑣5, 𝑢5𝑣0, 𝑢0𝑣0 and target patch descriptor 𝑢’𝑣’; b) choose the largest NCC 

value as the matched scaling direction; and c) calculate the subpixel location for target pixel/point by Eq. 8. 

Figure 29 shows an example of a target patch descriptor and four-scaling reference patch 

descriptors with 𝑅=1, in which the 3×3 reference patches are scaled from 6×6 pixels patch 𝑢5𝑣5. Thus, with 

the predefined image scaling, the patch-based NCC method is effective for the low-high ortho-image pair 

matching.  
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u-3,v-3 u-2,v-3 u-1,v-3 u,v-3 u+1,v-3 u+2,v-3 
u-3,v-2 u-2,v-2 u-1,v-2 u,v-2 u+1,v-2 u+2,v-2 

u-3,v-1 u-2,v-1 u-1,v-1 u,v-1 u+1,v-1 u+2,v-1 
u-3,v u-2,v u-1,v u,v u+1,v u+2,v 

u-3,v+1 u-2,v+1 u-1,v+1 u,v+1 u+1,v+1 u+2,v+1 

u-3,v+2 u-2,v+2 u-1,v+2 u,v+2 u+1,v+2 u+2,v+2 
 

u-2,v-3 u-1,v-3 u,v-3 u+1,v-3 u+2,v-3 u+3,v-3 
u-2,v-2 u-1,v-2 u,v-2 u+1,v-2 u+2,v-2 u+3,v-2 

u-2,v-1 u-1,v-1 u,v-1 u+1,v-1 u+2,v-1 u+3,v-1 
u-2,v u-1,v u,v u+1,v u+2,v u+3,v 

u-2,v+1 u-1,v+1 u,v+1 u+1,v+1 u+2,v+1 u+3,v+1 

u-2,v+2 u-1,v+2 u,v+2 u+1,v+2 u+2,v+2 u+3,v+2 
 

u'-1,v'-1 u',v'-1 u'+1,v'-1 

u'-1,v' u',v' u'+1,v' 

u'-1,v'+1 u',v'+1 u'+1,v'+1 
 

𝑢5𝑣5 𝑢0𝑣5 𝑢’𝑣’ 

u-3,v-2 u-2,v-2 u-1,v-2 u,v-2 u+1,v-2 u+2,v-2 
u-3,v-1 u-2,v-1 u-1,v-1 u,v-1 u+1,v-1 u+2,v-1 

u-3,v u-2,v u-1,v u,v u+1,v u+2,v 
u-3,v+1 u-2,v+1 u-1,v+1 u,v+1 u+1,v+1 u+2,v+1 

u-3,v+2 u-2,v+2 u-1,v+2 u,v+2 u+1,v+2 u+2,v+2 

u-3,v+3 u-2,v+3 u-1,v+3 u,v+3 u+1,v+3 u+2,v+3 
 

u-2,v-2 u-1,v-2 u,v-2 u+1,v-2 u+2,v-2 u+3,v-2 
u-2,v-1 u-1,v-1 u,v-1 u+1,v-1 u+2,v-1 u+3,v-1 

u-2,v u-1,v u,v u+1,v u+2,v u+3,v 
u-2,v+1 u-1,v+1 u,v+1 u+1,v+1 u+2,v+1 u+3,v+1 

u-2,v+2 u-1,v+2 u,v+2 u+1,v+2 u+2,v+2 u+3,v+2 

u-2,v+3 u-1,v+3 u,v+3 u+1,v+3 u+2,v+3 u+3,v+3 
 

𝑢5𝑣5,𝑢0𝑣5,𝑢5𝑣0,𝑢0𝑣0 are reference patch 

descriptors of size 3×3, which are 

generated from 6×6 patches by average 
pooling from the reference image; 

𝑢’𝑣’ is target patch descriptor with 3×3 

patch; 

* patches express in Pixel Coordinate (u,v). 

𝑢5𝑣0 𝑢0𝑣0  

Figure 29 Example of patch feature descriptors 

 

4.3.2 Low-high Ortho-image Pair Pixel Matching and Virtual Elevation Algorithm 

4.3.2.1 Virtual Depth-Elevation Model 

The virtual depth-elevation plane model is shown in Figure 30, which avoids using a brute-force 

algorithm to match all pixels in the target image for determing the corresponding target pixel for a reference 

pixel. In detail, a construction site is divided into several discrete virtual planes and set the drone takeoff 

plane as the origin plane (𝐷𝑒𝑝𝑡ℎ=0). The Depth-axis has positive values below the origin plane, while the 

Elevation-axis has positive values above the origin plane. The origin plane has distance H/2 to the drone’s 

low altitude position, so the real-word point 𝑃 on a virtual plane 𝐷𝑒𝑝𝑡ℎ has distance 𝑍 = 𝐻/2 + 𝐷𝑒𝑝𝑡ℎ to the 

drone. 
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Figure 30 Virtual depth-elevation model and pixel matching and elevation determination flowchart 
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4.3.2.2 Geometry Data Determination 

Taking 𝑍 = 𝐻/2 + 𝐷𝑒𝑝𝑡ℎ   expression into Eq. 7 will results in 𝑥′ = 𝑓(𝑥, 𝐷𝑒𝑝𝑡ℎ, 𝐻/2) and 𝑦′ =

𝑓(𝑦, 𝐷𝑒𝑝𝑡ℎ, 𝐻/2). Thus, for a given reference point 𝑝(𝑥, 𝑦) and 𝐻/2 (is fixed), each virtual plane can generate a 

candidate target point 𝑝𝑖 ′(𝑥𝑖 ’, 𝑦𝑖 ’) = 𝑓(𝑥, 𝑦, 𝐷𝑒𝑝𝑡ℎ𝑖 , 𝐻/2). If the reference point matches with the candidate target 

point 𝑝𝑖 ′(𝑥𝑖 ’, 𝑦𝑖 ’) on virtual plane 𝐷𝑒𝑝𝑡ℎ𝑖 , then, the real-world point 𝑃 is located on that virtual plane with the 

specific 𝐸𝑙𝑒𝑖 = −𝐷𝑒𝑝𝑡ℎ𝑖  . The 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 (𝑋’, 𝑌’, 𝐸𝑙𝑒. ) can be determined by Eq. 9. 

[
𝑋′
𝑌′
𝐸𝑙𝑒.

] = [

𝑥 ∙ 𝐺𝑆𝐷
−𝑦 ∙ 𝐺𝑆𝐷
−𝐷𝑒𝑝𝑡ℎ 

], where 𝐸𝑙𝑒. ∈ (−
𝐻

2
,
𝐻

2
) Eq. 9 

 

Eq. 9 derivation states as follows: 

In Figure 30, 𝑍 is the distance from drone to point 𝑃, 𝐻/2 is the distance from drone to its takeoff 

plane, 𝐷𝑒𝑝𝑡ℎ is the distance from the point 𝑃 to the drone takeoff plane. It has,  

𝑍 =
𝐻

2
+ 𝐷𝑒𝑝𝑡ℎ                                                                                         (Eq. 9 − 1 − 1) 

 

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = − 𝐷𝑒𝑝𝑡ℎ                                                                                   (Eq. 9 − 1 − 2) 
 

Take (Eq. 9-1-1) into (Eq. 7-5-1) and (Eq. 7-5-2) has,  

𝐻

2

𝑥′

𝑥−𝑥′
=
𝐻

2
+𝐷𝑒𝑝𝑡ℎ ⇒ 𝑥′ = 𝑥

1 + 𝐷𝑒𝑝𝑡ℎ
2
𝐻

2 + 𝐷𝑒𝑝𝑡ℎ
2
𝐻

                                                           (Eq. 9 − 2 − 1) 

 

𝐻

2

𝑦′

𝑦−𝑦′
=
𝐻

2
+ 𝐷𝑒𝑝𝑡ℎ ⇒ 𝑦′ = 𝑦

1 + 𝐷𝑒𝑝𝑡ℎ
2
𝐻

2 + 𝐷𝑒𝑝𝑡ℎ
2
𝐻

                                                           (Eq. 9 − 2 − 2) 

 

Thus, for each 𝐷𝑒𝑝𝑡ℎ, the target point 𝑝′(𝑥′, 𝑦′) has the relationship with reference point 𝑝(𝑥, 𝑦), 

𝐷𝑒𝑝𝑡ℎ , 𝐻/2, 

𝑝(𝑥′, 𝑦′) = 𝑓 (𝑥, 𝑦, 𝐷𝑒𝑝𝑡ℎ,
𝐻

2
)                                                                             (Eq. 9 − 3) 

 

Assume candidate target point 𝑝′(𝑥′, 𝑦′) at virtual plane 𝐷𝑒𝑝𝑡ℎ matches with the reference point 

𝑝(𝑥, 𝑦), then the real-world point 𝑃 falls on that virtual plane 𝐷𝑒𝑝𝑡ℎ.  

In Figure 27, it has, 

𝑋′ = 𝑋 = 𝑥 ∙ 𝐺𝑆𝐷                                                                                      (Eq. 9 − 4 − 1) 
 

𝑌′ = −𝑌 = −𝑦 ∙ 𝐺𝑆𝐷                                                                                (Eq. 9 − 4 − 2) 
 

As the 𝑥, 𝑦 and 𝐷𝑒𝑝𝑡ℎ can be determined by (Eq. 9-3), thus combine (Eq. 9-1-2), (Eq. 9-4-1) and 

(Eq. 9-4-2) get the Eq. 9. 
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4.3.2.3 Pixel Matching and Virtual Elevation Algorithm 

The proposed matching procedure is stated in the flowchart in Figure 30, which shows that a given 

reference point/pixel can match a target point/pixel and return a virtual plane value/elevation value 

simultaneously. For matching a series of point/pixel pairs, the 𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠  set to the previous point/pixel’s 

virtual plane value. A while-loop starts at 𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 , and goes to the adjacent virtual planes by plus and 

minus the 𝐷𝑒𝑝𝑡ℎ𝑆𝑡𝑒𝑝 , until the best or most acceptable matching result is returned. The pseudocode of the 

low-high ortho-image pair pixel matching and virtual elevation algorithm is presented in Figure 31. 

 

Figure 31 Pseudocode of low-high ortho-image pair pixel matching and virtual elevation algorithm 

 

4.3.3 Low-high Ortho-image Pair Pixel Grid and Elevation-map Algorithm 

4.3.3.1 Pixel Grid Formation 

Figure 32 explains the pixel grid formation for sampling a low-high ortho-image pair matching. In 

detail, pixels are selected with an interval of 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒, and each selected pixel in a pixel grid is designed to 

𝐴𝑠𝑠𝑢𝑚𝑒  𝑵𝑪𝑪_𝑴𝑨𝑻𝑪𝑯_𝑺𝑪𝑨𝑳𝑰𝑵𝑮 _𝑳𝑨𝑩𝑬𝑳(𝒖, 𝒗,𝒖’, 𝒗’,𝑹) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝑡ℎ𝑒 𝑏𝑖𝑔𝑔𝑒𝑠𝑡  𝑁𝐶𝐶  𝑣𝑎𝑙𝑢𝑒  𝑎𝑛𝑑 𝑖𝑡𝑠 𝑆𝑐𝑎𝑙𝑖𝑛𝑔  𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  𝐿𝑎𝑏𝑒𝑙𝑆𝑐𝑎𝑙𝑖𝑛𝑔  𝑓𝑟𝑜𝑚  𝑡ℎ𝑒 𝑚𝑎𝑡𝑐ℎ   

𝑟𝑒𝑠𝑢𝑙𝑡𝑠  𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑝(𝑢, 𝑣) 𝑎𝑛𝑑 𝑡𝑎𝑟𝑔𝑒𝑡  𝑝(𝑢′ , 𝑣 ′ ) 𝑎𝑛𝑑 𝑡ℎ𝑒𝑖𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒  𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠  𝑢5𝑣5, 𝑢0𝑣5, 𝑢5𝑣0, 𝑢0𝑣0 𝑎𝑛𝑑  𝑢′𝑣 ′ 𝑖𝑛 𝑠𝑖𝑧𝑒  (2𝑅 + 1) × (2𝑅 + 1);  

𝐴𝑠𝑠𝑢𝑚𝑒  𝑰𝑴𝟐𝑷𝑿(𝒙, 𝒚) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝑡ℎ𝑒 𝑃𝑖𝑥𝑒𝑙  𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  𝑝(𝑢, 𝑣) 𝑓𝑟𝑜𝑚  𝑡ℎ𝑒 𝐼𝑚𝑎𝑔𝑒  𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  𝑝(𝑥, 𝑦);  

𝐴𝑠𝑠𝑢𝑚𝑒  𝑷𝑿𝟐𝑰𝑴(𝒖, 𝒗) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝑡ℎ𝑒 𝐼𝑚𝑎𝑔𝑒  𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  𝑝(𝑥, 𝑦) 𝑓𝑟𝑜𝑚  𝑡ℎ𝑒 𝑃𝑖𝑥𝑒𝑙  𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  𝑝(𝑢, 𝑣);    

𝐴𝑠𝑠𝑢𝑚𝑒  𝑺𝑼𝑩𝑷𝑿𝟐𝑰𝑴(𝒖, 𝒗, 𝑳𝒂𝒃𝒆𝒍𝑺𝒄𝒂𝒍𝒊𝒏𝒈) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝑡ℎ𝑒 𝐼𝑚𝑎𝑔𝑒  𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒   𝑓𝑟𝑜𝑚  𝑃𝑖𝑥𝑒𝑙  𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  𝑝(𝑢, 𝑣) 𝑎𝑛𝑑  𝐿𝑎𝑏𝑒𝑙𝑆𝑐𝑎𝑙𝑖𝑛𝑔 .   

 

𝐼𝑛𝑝𝑢𝑡 :     𝐼𝑚𝑔𝐻/2 , 𝐼𝑚𝑔′𝐻 , 𝑝(𝑢, 𝑣),𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 ,𝐷𝑒𝑝𝑡ℎ𝑠𝑡𝑒𝑝 ,𝑅,𝐻/2  

𝑂𝑢𝑡𝑝𝑢𝑡 :  𝑝(𝑥, 𝑦), 𝑝’(𝑥’, 𝑦’), 𝐷𝑒𝑝𝑡ℎ, 𝑁𝐶𝐶   

 

𝑰𝑴𝑨𝑮𝑬_𝑷𝑨𝑰𝑹_𝑴𝑨𝑻𝑪𝑯𝑰𝑵𝑮 _𝑽𝑰𝑹𝑻𝑼𝑨𝑳 _𝑬𝑳𝑬𝑽𝑨𝑻𝑰𝑶𝑵 (𝑰𝒎𝒈𝑯/𝟐, 𝑰𝒎𝒈′
𝑯

,𝒑(𝒖, 𝒗),𝑫𝒆𝒑𝒕𝒉𝒈𝒖𝒆𝒔𝒔 ,𝑫𝒆𝒑𝒕𝒉𝒔𝒕𝒆𝒑 ,𝑹,𝑯/𝟐)  

1    𝑰𝒏𝒊𝒕𝒊𝒂𝒍  𝐷𝑒𝑝𝑡ℎ = 𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 ;   𝑁𝐶𝐶𝑚𝑎𝑥 = 0; 𝑅𝑎𝑑𝑗 .𝑟𝑎𝑡𝑖𝑜 + = 1; 𝑅𝑎𝑑𝑗 .𝑟𝑎𝑡𝑖𝑜 − = 1;𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − = 𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 ;  𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + = 𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 + 𝐷𝑒𝑝𝑡ℎ𝑆𝑡𝑒𝑝     

2    𝑝(𝑥, 𝑦) = 𝑷𝑿𝟐𝑰𝑴(𝑢, 𝑣)  

3    𝒘𝒉𝒊𝒍𝒆   𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − > −𝐻/2  𝒐𝒓  𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + < 𝐻/2   

4            𝒊𝒇 𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − > −𝐻/2   

5                  𝑝’(𝑥’, 𝑦’) = 𝑓(𝑥, 𝑦,𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −,𝐻 2⁄ );   𝑝(𝑢′ , 𝑣 ′ ) = 𝑰𝑴𝟐𝑷𝑿(𝑥 ′ , 𝑦′ )  

6                  𝑁𝐶𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −, 𝐿𝑎𝑏𝑒𝑙𝑠𝑐𝑎𝑙𝑖𝑛𝑔 − = 𝑵𝑪𝑪_𝑴𝑨𝑻𝑪𝑯_𝑺𝑪𝑨𝑳𝑰𝑵𝑮 _𝑳𝑨𝑩𝑬𝑳(𝑢, 𝑣, 𝑢’, 𝑣’, 𝑅 × 𝑅𝑎𝑑𝑗 .𝑟𝑎𝑡𝑖𝑜 −)  

7                  𝒊𝒇 𝑁𝐶𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − > 𝑁𝐶𝐶𝑚𝑎𝑥   

8                        𝑁𝐶𝐶𝑚𝑎𝑥 = 𝑁𝐶𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − ;𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑡𝑐 ℎ𝑒𝑑 = 𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −; 𝑝′𝑚𝑎𝑡𝑐 ℎ𝑒𝑑 (𝑥
′ , 𝑦′ ) = 𝑺𝑼𝑩𝑷𝑿𝟐𝑰𝑴 (𝑢′ , 𝑣 ′ , 𝐿𝑎𝑏𝑒𝑙𝑠𝑐𝑎𝑙𝑖𝑛𝑔 −)  

9            𝒊𝒇 𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + < 𝐻/2   

10                𝑝’(𝑥’, 𝑦’) = 𝑓(𝑥, 𝑦,𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +,𝐻 2⁄ );   𝑝(𝑢′ , 𝑣 ′ ) = 𝑰𝑴𝟐𝑷𝑿(𝑥 ′ , 𝑦′ )  

11                𝑁𝐶𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +, 𝐿𝑎𝑏𝑒𝑙𝑠𝑐𝑎𝑙𝑖𝑛𝑔 + = 𝑵𝑪𝑪_𝑴𝑨𝑻𝑪𝑯_𝑺𝑪𝑨𝑳𝑰𝑵𝑮_𝑳𝑨𝑩𝑬𝑳(𝑢, 𝑣, 𝑢’, 𝑣’, 𝑅 × 𝑅𝑎𝑑𝑗 .𝑟𝑎𝑡𝑖𝑜 +)  

12                𝒊𝒇 𝑁𝐶𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + > 𝑁𝐶𝐶𝑚𝑎𝑥   

13                     𝑁𝐶𝐶𝑚𝑎𝑥 = 𝑁𝐶𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +;  𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑡𝑐 ℎ𝑒𝑑 = 𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +; 𝑝′𝑚𝑎𝑡𝑐 ℎ𝑒𝑑 (𝑥
′ , 𝑦′ ) = 𝑺𝑼𝑩𝑷𝑿𝟐𝑰𝑴 (𝑢′ , 𝑣 ′ , 𝐿𝑎𝑏𝑒𝑙𝑠𝑐𝑎𝑙𝑖𝑛𝑔 +)  

14         𝒊𝒇 𝑁𝐶𝐶𝑚𝑎𝑥 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤   

15                𝑅𝑎𝑑𝑗 .𝑟𝑎𝑡𝑖𝑜 −+= 0.2  

16                𝑅𝑎𝑑𝑗 .𝑟𝑎𝑡𝑖𝑜 ++= 0.2  

17         𝒆𝒍𝒔𝒆    

18                𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −−= 𝐷𝑒𝑝𝑡ℎ𝑆𝑡𝑒𝑝   

19                𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ++= 𝐷𝑒𝑝𝑡ℎ𝑆𝑡𝑒𝑝   

20  𝒓𝒆𝒕𝒖𝒓𝒏  𝑝(𝑥, 𝑦), 𝑝’𝑚𝑎𝑡𝑐 ℎ𝑒𝑑 (𝑥’, 𝑦’), 𝐷𝑒𝑝𝑡ℎ𝑚𝑎𝑡𝑐 ℎ𝑒𝑑 , 𝑁𝐶𝐶𝑚𝑎𝑥   
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share its elevation data to its neighbors within a 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 × 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 patch to create the 𝐸𝑙𝑒_𝑚𝑎𝑝. 𝑀𝑎𝑟𝑔𝑖𝑛 in each 

image edge is used to guarantee that all selected pixels have their patch descriptors.  

 

Figure 32 Pixel grid and elevation-map formation 

 

4.3.3.2 Pixel Grid and Elevation-map Formation Algorithm 

The pseudocode of pixel grid and elevation-map formation algorithm is presented in Figure 33.  

 

Figure 33 Pseudocode of pixel grid and elevation-map formation algorithm 

𝐴𝑠𝑠𝑢𝑚𝑒  𝑨[𝑵] 𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝑎 𝑛𝑒𝑤  𝐿𝑖𝑠𝑡  𝐴[ ] 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑁;   

𝐴𝑠𝑠𝑢𝑚𝑒  𝑴𝑬𝑫𝑰𝑨𝑵(𝑨[ ]) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛  𝑣𝑎𝑙𝑢𝑒  𝑜𝑓  𝐿𝑖𝑠𝑡  𝐴[ ];   

𝐴𝑠𝑠𝑢𝑚𝑒  𝑨[ ]. 𝑨𝑷𝑷𝑬𝑵𝑫(𝑩) 𝑎𝑑𝑑  𝑒𝑙𝑒𝑚𝑒𝑛𝑡  𝐵 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑛𝑑  𝑜𝑓 𝐿𝑖𝑠𝑡  𝐴[ ];   

𝐴𝑠𝑠𝑢𝑚𝑒  𝑬𝑳𝑬𝟐𝑮𝑹𝑨𝒀 (𝑬𝒍𝒆. ) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝐺𝑟𝑎𝑦 𝑣𝑎𝑙𝑢𝑒  0~255 𝑓𝑟𝑜𝑚  𝑡ℎ𝑒 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛  − 𝐻/2~𝐻/2;  

𝐴𝑠𝑠𝑢𝑚𝑒  𝑰𝒎𝒈(𝒖, 𝒗).𝑪𝑶𝑷𝒀() 𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝑎 𝑠𝑎𝑚𝑒  𝑠𝑖𝑧𝑒  𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒  𝐼𝑚𝑎𝑔𝑒/𝐴𝑟𝑟𝑎𝑦 ;  

𝐴𝑠𝑠𝑢𝑚𝑒  𝑺𝑸𝑫𝑰𝑭𝑭_𝑵𝑶𝑹𝑴𝑬𝑫 (𝒑(𝒖, 𝒗), 𝒑′[𝒏](𝒖′ , 𝒗′ )) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠   𝑡ℎ𝑒 𝑏𝑒𝑠𝑡  𝑚𝑎𝑡𝑐ℎ𝑒𝑑  𝒑′[𝑖] 𝑓𝑜𝑟  𝒑 𝑏𝑦 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑑  𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 (𝑆𝑆𝐷) ;  

𝐴𝑠𝑠𝑢𝑚𝑒  𝑪𝑼𝑻(𝑰𝒎𝒈(𝒖, 𝒗),𝑴𝒂𝒓𝒈𝒊𝒏) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝐼𝑚𝑔(𝑢, 𝑣)′𝑠 𝑐𝑒𝑛𝑡𝑟𝑎𝑙  𝑟𝑒𝑔𝑖𝑜𝑛  𝑤𝑖𝑡ℎ𝑜𝑢𝑡  𝑡ℎ𝑒 𝑀𝑎𝑟𝑔𝑖𝑛  𝑟𝑒𝑔𝑖𝑜𝑛 .   

 

𝐼𝑛𝑝𝑢𝑡 :     𝐼𝑚𝑔𝐻/2(𝑢, 𝑣),  𝐼𝑚𝑔′𝐻(𝑢
′ , 𝑣 ′ ),𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 ,𝐻/2  

𝑂𝑢𝑡𝑝𝑢𝑡 :  𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑[𝑝𝑎𝑖𝑟(𝑝(𝑢, 𝑣), 𝑝(𝑥, 𝑦), 𝑝′(𝑥 ′ , 𝑦′ ),𝐷𝑒𝑝𝑡ℎ)],   𝑃𝑜𝑖𝑛𝑡_𝐶𝑙𝑜𝑢𝑑 [𝑃(𝑋 ′ , 𝑌′ , 𝐸𝑙𝑒. )], 𝑂𝑟𝑡ℎ𝑜_𝑖𝑚𝑎𝑔𝑒(𝑢, 𝑣), 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 _𝑀𝑎𝑝(𝑢, 𝑣)  

 

𝑷𝑰𝑿𝑬𝑳_𝑮𝑹𝑰𝑫_𝑬𝑳𝑬𝑽𝑨𝑻𝑰𝑶𝑵 _𝑴𝑨𝑷( 𝑰𝒎𝒈𝑯/𝟐(𝒖, 𝒗), 𝑰𝒎𝒈′
𝑯
(𝒖′ , 𝒗′ ), 𝑮𝒓𝒊𝒅𝒔𝒊𝒛𝒆 ,𝑯/𝟐)  

1    𝑰𝒏𝒊𝒕𝒊𝒂𝒍  𝑣 = 𝑀𝑎𝑟𝑔𝑖𝑛 ;𝐷𝑒𝑝𝑡ℎ_𝑚𝑎𝑝(𝑢, 𝑣) = 𝐼𝑚𝑔𝐻/2(𝑢, 𝑣).𝑪𝑶𝑷𝒀();   𝐸𝑙𝑒_𝑚𝑎𝑝(𝑢, 𝑣) = 𝐼𝑚𝑔𝐻/2(𝑢, 𝑣). 𝑪𝑶𝑷𝒀()  

2    𝒘𝒉𝒊𝒍𝒆  𝑣 ≤ 𝐼𝑚𝑔𝐻_ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑀𝑎𝑟𝑔𝑖𝑛    

3           𝑢 = 𝑀𝑎𝑟𝑔𝑖𝑛 ;  𝑝𝐿𝑖𝑠𝑡 (𝑥, 𝑦)[5];   𝑝𝐿𝑖𝑠𝑡 ’(𝑥’, 𝑦’)[5];𝐷𝑒𝑝𝑡ℎ𝐿𝑖𝑠𝑡 [5];𝑁𝐶𝐶𝐿𝑖𝑠𝑡 [5]  

4           𝒘𝒉𝒊𝒍𝒆   𝑢 ≤ 𝐼𝑚𝑔𝐻_𝑤𝑖𝑑𝑡ℎ − 𝑀𝑎𝑟𝑔𝑖𝑛    

5                𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 = 𝐷𝑒𝑝𝑡ℎ_𝑚𝑎𝑝(𝑺𝑸𝑫𝑰𝑭𝑭 _𝑵𝑶𝑹𝑴𝑬𝑫 (𝑝(𝑢, 𝑣), [𝑝(𝑢 − 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 , 𝑣), 𝑝(𝑢 − 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 , 𝑣 − 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 ), 𝑝(𝑢, 𝑣 − 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 ), 𝑝(𝑢 + 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 , 𝑣 − 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 )]))  

6                𝑝0(𝑥, 𝑦), 𝑝0 ’(𝑥’, 𝑦’),𝐷𝑒𝑝𝑡ℎ0 ,𝑁𝐶𝐶0 = 𝑰𝑴𝑨𝑮𝑬_𝑷𝑨𝑰𝑹_𝑴𝑨𝑻𝑪𝑯𝑰𝑵𝑮 _𝑽𝑰𝑹𝑻𝑼𝑨𝑳 _𝑬𝑳𝑬𝑽𝑨𝑻𝑰𝑶𝑵 (𝐼𝑚𝑔𝐻/2 , 𝐼𝑚𝑔′
𝐻

, 𝑝(𝑢, 𝑣),𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 ,𝐷𝑒𝑝𝑡ℎ𝑠𝑡𝑒𝑝 , 𝑅,𝐻/2)  

7                𝑝1(𝑥, 𝑦), 𝑝1 ’(𝑥’, 𝑦’),𝐷𝑒𝑝𝑡ℎ1 ,𝑁𝐶𝐶1 = 𝑰𝑴𝑨𝑮𝑬_𝑷𝑨𝑰𝑹_𝑴𝑨𝑻𝑪𝑯𝑰𝑵𝑮 _𝑽𝑰𝑹𝑻𝑼𝑨𝑳 _𝑬𝑳𝑬𝑽𝑨𝑻𝑰𝑶𝑵 (𝐼𝑚𝑔𝐻/2 , 𝐼𝑚𝑔′
𝐻

, 𝑝(𝑢 − 𝑠, 𝑣),𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 ,𝐷𝑒𝑝𝑡ℎ𝑠𝑡𝑒𝑝 ,𝑅,𝐻/2)  

8                𝑝2(𝑥, 𝑦), 𝑝2 ’(𝑥’, 𝑦’),𝐷𝑒𝑝𝑡ℎ2 ,𝑁𝐶𝐶2 = 𝑰𝑴𝑨𝑮𝑬_𝑷𝑨𝑰𝑹_𝑴𝑨𝑻𝑪𝑯𝑰𝑵𝑮 _𝑽𝑰𝑹𝑻𝑼𝑨𝑳 _𝑬𝑳𝑬𝑽𝑨𝑻𝑰𝑶𝑵 (𝐼𝑚𝑔𝐻/2 , 𝐼𝑚𝑔′
𝐻

, 𝑝(𝑢 + 𝑠, 𝑣),𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 ,𝐷𝑒𝑝𝑡ℎ𝑠𝑡𝑒𝑝 ,𝑅,𝐻/2)  

9                𝑝𝟑(𝑥, 𝑦), 𝑝3 ’(𝑥’, 𝑦’),𝐷𝑒𝑝𝑡ℎ3 ,𝑁𝐶𝐶3 = 𝑰𝑴𝑨𝑮𝑬_𝑷𝑨𝑰𝑹_𝑴𝑨𝑻𝑪𝑯𝑰𝑵𝑮_𝑽𝑰𝑹𝑻𝑼𝑨𝑳 _𝑬𝑳𝑬𝑽𝑨𝑻𝑰𝑶𝑵 (𝐼𝑚𝑔𝐻/2 , 𝐼𝑚𝑔′
𝐻

, 𝑝(𝑢, 𝑣 − 𝑠),𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 ,𝐷𝑒𝑝𝑡ℎ𝑠𝑡𝑒𝑝 ,𝑅,𝐻/2)  

10             𝑝𝟒(𝑥, 𝑦), 𝑝4 ’(𝑥’, 𝑦’),𝐷𝑒𝑝𝑡ℎ4 ,𝑁𝐶𝐶4 = 𝑰𝑴𝑨𝑮𝑬_𝑷𝑨𝑰𝑹_𝑴𝑨𝑻𝑪𝑯𝑰𝑵𝑮_𝑽𝑰𝑹𝑻𝑼𝑨𝑳 _𝑬𝑳𝑬𝑽𝑨𝑻𝑰𝑶𝑵 (𝐼𝑚𝑔𝐻/2 , 𝐼𝑚𝑔′
𝐻

, 𝑝(𝑢, 𝑣 + 𝑠),𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 ,𝐷𝑒𝑝𝑡ℎ𝑠𝑡𝑒𝑝 ,𝑅,𝐻/2)   

11             𝑝(𝑥, 𝑦), 𝑝’(𝑥’, 𝑦’) ,𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶 =  𝑴𝑬𝑫𝑰𝑨𝑵  (𝑝𝐿𝑖𝑠𝑡 (𝑥, 𝑦)), 𝑴𝑬𝑫𝑰𝑨𝑵  (𝑝𝐿𝑖𝑠𝑡 ’(𝑥’, 𝑦’)) ,𝑴𝑬𝑫𝑰𝑨𝑵  (𝐷𝑒𝑝𝑡ℎ𝐿𝑖𝑠𝑡 ),𝑴𝑬𝑫𝑰𝑨𝑵  (𝑁𝐶𝐶𝐿𝑖𝑠𝑡 )  

12             𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑[𝑝𝑎𝑖𝑟(𝑝(𝑢, 𝑣), 𝑝(𝑥, 𝑦), 𝑝′(𝑥 ′ , 𝑦′ ),𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)]. 𝑨𝑷𝑷𝑬𝑵𝑫( 𝑝𝑎𝑖𝑟(𝑝(𝑢, 𝑣), 𝑝(𝑥, 𝑦), 𝑝′(𝑥 ′ , 𝑦′ ),𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶))  

13             𝑋 ′ = 𝑥 × 𝐺𝑆𝐷;  𝑌′ = −𝑦 × 𝐺𝑆𝐷 ;  𝐸𝑙𝑒. = −𝐷𝑒𝑝𝑡ℎ  
14             𝑃𝑜𝑖𝑛𝑡_𝐶𝑙𝑜𝑢𝑑 [𝑃(𝑋 ′ , 𝑌′ , 𝐸𝑙𝑒. )].𝑨𝑷𝑷𝑬𝑵𝑫(𝑃(𝑋’, 𝑌’,𝐸𝑙𝑒 . ))  

15             𝐸𝑙𝑒_𝑚𝑎𝑝(𝑢 − 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 /2: 𝑢 + 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒/2, 𝑣 − 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 /2: 𝑣 + 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 /2) = 𝑬𝑳𝑬𝟐𝑮𝑹𝑨𝒀 (𝐸𝑙𝑒. )  

16             𝐷𝑒𝑝𝑡ℎ_𝑚𝑎𝑝(𝑢 − 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 /2: 𝑢 + 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 /2, 𝑣 − 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 /2: 𝑣 + 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 /2) = 𝐷𝑒𝑝𝑡ℎ  

17             𝑢+= 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒   

18        𝑣+= 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒   

19  𝑂𝑟𝑡ℎ𝑜_𝑖𝑚𝑎𝑔𝑒(𝑢, 𝑣) = 𝐶𝑈𝑇(𝐼𝑚𝑔𝐻/2(𝑢, 𝑣),𝑀𝑎𝑟𝑔𝑖𝑛);  𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 _𝑀𝑎𝑝(𝑢, 𝑣) = 𝐶𝑈𝑇(𝐸𝑙𝑒_𝑀𝑎𝑝(𝑢, 𝑣),𝑀𝑎𝑟𝑔𝑖𝑛)  

20  𝒓𝒆𝒕𝒖𝒓𝒏    𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑[𝑝𝑎𝑖𝑟(𝑝(𝑢, 𝑣), 𝑝(𝑥, 𝑦), 𝑝′(𝑥 ′ , 𝑦′ ),𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)],𝑃𝑜𝑖𝑛𝑡_𝐶𝑙𝑜𝑢𝑑 [𝑃(𝑋 ′ , 𝑌′ , 𝐸𝑙𝑒. )],𝑂𝑟𝑡ℎ𝑜_𝑖𝑚𝑎𝑔𝑒(𝑢, 𝑣), 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 _𝑀𝑎𝑝(𝑢, 𝑣)  



54 

 

In line 6 to 10, the pixel matching and virtual elevation algorithm is repeated 5 times in pixel 

𝑝(𝑢, 𝑣) and its neighbors to enhance matching results using their median values. The distance (𝑠) to 

neighboring pixels can be adjusted from 1 to 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒. After traversed and matched all selected pixels, the 

matched results are stored in the 𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑. A 3D point cloud 𝑃𝑜𝑖𝑛𝑡_𝐶𝑙𝑜𝑢𝑑 of a construction site is created as 

well. Furthermore, an ortho-image and elevation-map (stores elevation data as 0~255 grayscale value) pair 

is created by cutting off the low ortho-image and 𝐸𝑙𝑒_𝑚𝑎𝑝 margin separately, then pixels in the ortho-image 

and elevation-map are linked. 

4.3.3.3 Pixel Grid and Elevation-map Enhancement Algorithm 

The pseudocode of pixel grid enhancement algorithm is presented in Figure 34. 

 

Figure 34 Pseudocode of pixel grid and elevation-map enhancement algorithm 

 

In the pixel grid and elevation-map algorithm, the selected pixels are traversed row by row, each 

pixel uses the previous pixel’s 𝐷𝑒𝑝𝑡ℎ value as the input variable 𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠  for matching its own 𝐷𝑒𝑝𝑡ℎ value. 

𝐴𝑠𝑠𝑢𝑚𝑒  𝑹𝑶𝑻𝑨𝑻𝑬(𝑰𝒎𝒈 ,𝑫)  𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝑎 𝑛𝑒𝑤  𝐼𝑚𝑔′ (𝑢′ , 𝑣 ′ ) 𝑏𝑦 𝑎𝑛𝑡𝑖𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒  𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔  𝐼𝑚𝑔(𝑢, 𝑣) 𝑤𝑖𝑡ℎ 𝐷 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 ;  

𝐴𝑠𝑠𝑢𝑚𝑒  𝑷𝑰𝑿𝑬𝑳_𝑮𝑹𝑰𝑫_𝑬𝑳𝑬𝑽𝑨𝑻𝑰𝑶𝑵 _𝑴𝑨𝑷( 𝑰𝒎𝒈𝑯/𝟐, 𝑰𝒎𝒈𝑯
′ ,𝑮𝒓𝒊𝒅𝒔𝒊𝒛𝒆 ,𝑯/𝟐)  𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑_𝐴𝑟𝑟𝑎𝑦[𝑟𝑜𝑤(𝑥, 𝑦 ,𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)];   

𝐴𝑠𝑠𝑢𝑚𝑒  𝑨𝑹𝑹𝑨𝒀 . 𝑺𝑶𝑹𝑻_𝟏_𝟐() 𝑠𝑜𝑟𝑡𝑠  𝑡ℎ𝑒 𝐴𝑟𝑟𝑎𝑦  𝑏𝑦 𝑖𝑡𝑠 1𝑠𝑡 𝑎𝑛𝑑  2𝑛𝑑  𝐶𝑜𝑙𝑢𝑚𝑛𝑠 ;  

𝐴𝑠𝑠𝑢𝑚𝑒  𝑨𝑹𝑹𝑨𝒀 . 𝑪𝑶𝑳[𝒊: 𝒋 ]𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝐴𝑟𝑟𝑎𝑦′𝑠 𝒊𝒕𝒉 𝑡𝑜 𝒋𝒕𝒉 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 ;  

𝐴𝑠𝑠𝑢𝑚𝑒  𝑨[ ]. 𝑳𝒐𝒘𝑭𝒆𝒏𝒄𝒆 () 𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝑡ℎ𝑒 𝐿𝑜𝑤  𝐹𝑒𝑛𝑐𝑒  𝑄1 − 1.5 × (𝑄3 − 𝑄1) 𝑜𝑓 𝐿𝑖𝑠𝑡  𝐴[ ];  

𝐴𝑠𝑠𝑢𝑚𝑒  𝑳𝑬𝑵(𝑨[ ]) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠  𝑡ℎ𝑒 𝑠𝑖𝑧𝑒  𝑜𝑓 𝐿𝑖𝑠𝑡  𝐴[ ].  

 

𝐼𝑛𝑝𝑢𝑡 :     𝐼𝑚𝑔𝐻/2(𝑢, 𝑣), 𝐼𝑚𝑔′𝐻(𝑢
′ , 𝑣 ′ ), 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 ,𝐻/2  

𝑂𝑢𝑡𝑝𝑢𝑡 :  𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 _𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑_𝐴𝑟𝑟𝑎𝑦[𝑟𝑜𝑤(𝑥, 𝑦,𝐷𝑒𝑝𝑡ℎ, 𝐶)], 𝑃𝑜𝑖𝑛𝑡_𝐶𝑙𝑜𝑢𝑑 [𝑃(𝑋 ′ , 𝑌′ , 𝐸𝑙𝑒. )], 𝑂𝑟𝑡ℎ𝑜_𝑖𝑚𝑎𝑔𝑒(𝑢, 𝑣), 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 _𝑀𝑎𝑝(𝑢, 𝑣)  

 

𝑷𝑰𝑿𝑬𝑳_𝑮𝑹𝑰𝑫_𝑬𝑵𝑯𝑨𝑵𝑪𝑬𝑴𝑬𝑵𝑻( 𝑰𝒎𝒈𝑯/𝟐(𝒖, 𝒗), 𝑰𝒎𝒈′
𝑯
(𝒖′ , 𝒗′ ),𝑮𝒓𝒊𝒅𝒔𝒊𝒛𝒆 ,𝑯/𝟐)  

1      𝑰𝒏𝒊𝒕𝒊𝒂𝒍  𝐼𝑚𝑔0 = 𝐼𝑚𝑔𝐻/2;  𝐼𝑚𝑔90 = 𝑹𝑶𝑻𝑨𝑻𝑬(𝐼𝑚𝑔0 , 90); 𝐼𝑚𝑔180 = 𝑹𝑶𝑻𝑨𝑻𝑬(𝐼𝑚𝑔0 , 180);  𝐼𝑚𝑔270 = 𝑹𝑶𝑻𝑨𝑻𝑬(𝐼𝑚𝑔0 , 270);  

         𝐼𝑚𝑔′0 = 𝐼𝑚𝑔′𝐻 ;  𝐼𝑚𝑔′90 = 𝑹𝑶𝑻𝑨𝑻𝑬(𝐼𝑚𝑔′0 , 90); 𝐼𝑚𝑔′180 = 𝑹𝑶𝑻𝑨𝑻𝑬(𝐼𝑚𝑔′0 , 180);  𝐼𝑚𝑔′270 = 𝑹𝑶𝑻𝑨𝑻𝑬(𝐼𝑚𝑔′0 , 270)  

2      𝒇𝒐𝒓 𝑖 𝒊𝒏 [0,90,180,270]  

3            𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑_𝐴𝑟𝑟𝑎𝑦𝑖[𝑟𝑜𝑤(𝑥, 𝑦 ,𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)] = 𝑷𝑰𝑿𝑬𝑳_𝑮𝑹𝑰𝑫_𝑬𝑳𝑬𝑽𝑨𝑻𝑰𝑶𝑵 _𝑴𝑨𝑷( 𝐼𝑚𝑔𝑖 , 𝐼𝑚𝑔𝑖
′ ,𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 ,𝐻/2)  

4      𝑅_𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑1[𝑟𝑜𝑤(𝑥, 𝑦 ,𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)] = 𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑_𝐴𝑟𝑟𝑎𝑦0     [𝑟𝑜𝑤(  𝑥, 𝑦 , 𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)]. 𝑺𝑶𝑹𝑻_𝟏_𝟐();   

        𝑅_𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑2[𝑟𝑜𝑤(𝑥, 𝑦 ,𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)] = 𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑_𝐴𝑟𝑟𝑎𝑦90   [𝑟𝑜𝑤(−𝑦, 𝑥 , 𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)] . 𝑺𝑶𝑹𝑻_𝟏_𝟐() ;  

        𝑅_𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑3[𝑟𝑜𝑤(𝑥, 𝑦 ,𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)] = 𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑_𝐴𝑟𝑟𝑎𝑦180 [𝑟𝑜𝑤(−𝑥, −𝑦 , 𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)] . 𝑺𝑶𝑹𝑻_𝟏_𝟐() ;  

        𝑅_𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑4[𝑟𝑜𝑤(𝑥, 𝑦 ,𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)] = 𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑_𝐴𝑟𝑟𝑎𝑦270 [𝑟𝑜𝑤(𝑦,−𝑥 , 𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)] . 𝑺𝑶𝑹𝑻_𝟏_𝟐()   

5      𝒇𝒐𝒓 𝑖 𝒊𝒏 [1,2,3,4]   

6           𝑥𝑖 [], 𝑦𝑖[],𝐷𝑖[],𝑊𝑖 [] = 𝑅_𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑𝑖[𝑟𝑜𝑤(𝑥, 𝑦 ,𝐷𝑒𝑝𝑡ℎ,𝑁𝐶𝐶)]. 𝑪𝑶𝑳[1: 4]  

7           𝑄𝑖 = 𝑴𝑨𝑿(𝑊𝑖 . 𝑳𝒐𝒘𝑭𝒆𝒏𝒄𝒆 (),0.001)  

8      𝑁 = 𝑳𝑬𝑵(𝑥1[]); 𝑥𝑙𝑖𝑠𝑡 [𝑁]; 𝑦𝑙𝑖𝑠𝑡 [𝑁];𝐷𝑒𝑝𝑡ℎ𝑙𝑖𝑠𝑡 [𝑁]; 𝐶𝑙𝑖𝑠𝑡 [𝑁]  

9      𝒇𝒐𝒓 𝑖 𝒊𝒏 [1,… ,𝑁]   

10        𝑥𝑙𝑖𝑠𝑡 .𝑨𝑷𝑷𝑬𝑵𝑫(𝑥1[𝑖]); 𝑦𝑙𝑖𝑠𝑡 . 𝑨𝑷𝑷𝑬𝑵𝑫(𝑦1[𝑖]);𝐷𝑒𝑝𝑡ℎ𝑙𝑖𝑠𝑡 .𝑨𝑷𝑷𝑬𝑵𝑫 (𝑴𝑬𝑫𝑰𝑨𝑵(𝑫𝒊|𝑊𝑖≥𝑄𝑖
[ ])) ; 𝐶𝑙𝑖𝑠𝑡 . 𝑨𝑷𝑷𝑬𝑵𝑫(1𝑊1≥𝑄1

2𝑊2≥𝑄2
3𝑊3≥𝑄3

4𝑊4≥𝑄4
)  

11        𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 _𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑_𝐴𝑟𝑟𝑎𝑦[𝑟𝑜𝑤(𝑥, 𝑦,𝐷𝑒𝑝𝑡ℎ, 𝐶)].𝑨𝑷𝑷𝑬𝑵𝑫( 𝑟𝑜𝑤(𝑥𝑙𝑖𝑠𝑡 [𝑖], 𝑦𝑙𝑖𝑠𝑡 [𝑖],𝐷𝑒𝑝𝑡ℎ𝑙𝑖𝑠𝑡 [𝑖], 𝐶𝑙𝑖𝑠𝑡 [𝑖]))  

12        𝑋 ′ = 𝑥𝑙𝑖𝑠𝑡 [𝑖] × 𝐺𝑆𝐷 ;  𝑌′ = −𝑦𝑙𝑖𝑠𝑡 [𝑖] × 𝐺𝑆𝐷;  𝐸𝑙𝑒 . = −𝐷𝑒𝑝𝑡ℎ𝑙𝑖𝑠𝑡 [𝑖];  𝑝(𝑢, 𝑣) = 𝑰𝑴𝟐𝑷𝑿(𝑥, 𝑦)  

13        𝑃𝑜𝑖𝑛𝑡_𝐶𝑙𝑜𝑢𝑑 [𝑃(𝑋 ′ , 𝑌′ , 𝐸𝑙𝑒. )].𝑨𝑷𝑷𝑬𝑵𝑫(𝑃(𝑋’, 𝑌’,𝐸𝑙𝑒 . ))  

14        𝐸𝑙𝑒_𝑚𝑎𝑝(𝑢 − 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 /2: 𝑢 + 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 /2, 𝑣 − 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 /2: 𝑣 + 𝐺𝑟𝑖𝑑𝑠𝑖𝑧𝑒 /2) = 𝑬𝑳𝑬𝟐𝑮𝑹𝑨𝒀 (𝐸𝑙𝑒. )  

15  𝑂𝑟𝑡ℎ𝑜_𝑖𝑚𝑎𝑔𝑒(𝑢, 𝑣) = 𝑪𝑼𝑻(𝐼𝑚𝑔𝐻/2(𝑢, 𝑣),𝑀𝑎𝑟𝑔𝑖𝑛);  𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 _𝑀𝑎𝑝(𝑢, 𝑣) = 𝑪𝑼𝑻(𝐸𝑙𝑒_𝑀𝑎𝑝(𝑢, 𝑣),𝑀𝑎𝑟𝑔𝑖𝑛)  

16  𝒓𝒆𝒕𝒖𝒓𝒏    𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 _𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑_𝐴𝑟𝑟𝑎𝑦[𝑟𝑜𝑤(𝑥, 𝑦,𝐷𝑒𝑝𝑡ℎ, 𝐶)], 𝑃𝑜𝑖𝑛𝑡_𝐶𝑙𝑜𝑢𝑑 [𝑃(𝑋 ′ ,𝑌 ′ ,𝐸𝑙𝑒 . )], 𝑂𝑟𝑡ℎ𝑜_𝑖𝑚𝑎𝑔𝑒(𝑢, 𝑣), 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 _𝑀𝑎𝑝(𝑢, 𝑣)  
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To make this algorithm robust, a low-high ortho-image pair is proposed to rotate 90°, 180° and 270° in a 

counterclockwise fashion and the pixel grid and elevation-map algorithm is repeated to generate four 

𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑𝑖 results starting from each corner of the ortho-image pair. In addition, the four results are 

transformed back to the original coordinate. In each 𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑𝑖, if a selected pixel has 𝑁𝐶𝐶 value 𝑊𝑖[𝑢, 𝑣] 

larger than 0.001 and 𝑊𝑖 . 𝐿𝑜𝑤𝑒𝑟 𝐹𝑒𝑛𝑐𝑒𝑖  (the lower fence of 𝑁𝐶𝐶 values of all selected pixels in 𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑𝑖, any 

𝑁𝐶𝐶 value less than the lower fence is considered as an outlier), it is considered as a strongly matched pixel 

pair, otherwise it is a weakly matched pixel pair. Combining the four 𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑𝑖=1,2,3,4 matching results, each 

selected pixel/point has 16 matching quality conditions that are listed in Table 8. For example, the 2nd 

condition means a selected pixel has strongly matched results in the original, 90° rotation, and 180° rotation 

ortho-image pairs and weakly matched result for 270°. It is then assigned “123” for its matching quality 

label, and the median value of [ 𝐷1 , 𝐷2 , 𝐷3] for its enhanced 𝐷𝑒𝑝𝑡ℎ. 

Table 8 Matching Quality Mark and Enhanced Depth 

Matching Quality 
Compare with 𝑄𝑖 = 𝑀𝐴𝑋(𝑊𝑖 . 𝐿𝑜𝑤𝑒𝑟 𝐹𝑒𝑛𝑐𝑒, 0.001) Matching Quality Label 𝐶𝑙𝑖𝑠𝑡  

1𝑊1≥𝑄12𝑊2≥𝑄23𝑊3≥𝑄34𝑊4≥𝑄4  

Enhanced Depth 𝐷𝑒𝑝𝑡ℎ𝑙𝑖𝑠𝑡  

𝑀𝐸𝐷𝐼𝐴𝑁(𝐷𝑖|𝑊𝑖≥𝑄𝑖
[ ]) W1 W2 W3 W4 

Strongest 1 ≥ ≥ ≥ ≥ 1234 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷1, 𝐷2, 𝐷3, 𝐷4) 

strong 

┌ 2 ≥ ≥ ≥ < 123 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷1, 𝐷2, 𝐷3) 

├ 3 ≥ ≥ < ≥ 124 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷1, 𝐷2, 𝐷4) 

├ 4 ≥ < ≥ ≥ 134 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷1, 𝐷3, 𝐷4) 

└ 5 < ≥ ≥ ≥ 234 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷2, 𝐷3, 𝐷4) 

weak 

┌ 6 ≥ ≥ < < 12 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷1, 𝐷2) 

├ 7 ≥ < ≥ < 13 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷1, 𝐷3) 

├ 8 ≥ < < ≥ 14 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷1, 𝐷4) 

├ 9 < ≥ ≥ < 23 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷2, 𝐷3) 

├ 10 < ≥ < ≥ 24 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷2, 𝐷4) 

└ 11 < < ≥ ≥ 34 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷3, 𝐷4) 

weaker 

┌ 12 ≥ < < < 1 𝐷1 

├ 13 < ≥ < < 2 𝐷2 

├ 14 < < ≥ < 3 𝐷3 

└ 15 < < < ≥ 4 𝐷4 

Weakest 16 < < < < 0 𝑀𝐸𝐷𝐼𝐴𝑁( 𝐷1, 𝐷2, 𝐷3, 𝐷4) 

*𝑊𝑖  is the 𝑁𝐶𝐶 values of all selected pixels in 𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑𝑖 ; 𝑊𝑖 . 𝐿𝑜𝑤𝑒𝑟 𝐹𝑒𝑛𝑐𝑒𝑖  = Q1-1.5×(Q3-Q1) , the lower fence of 𝑁𝐶𝐶 values of the selected 

pixels in 𝑃𝑖𝑥𝑒𝑙_𝐺𝑟𝑖𝑑𝑖 , any 𝑁𝐶𝐶  value less than the lower fence is considered as an outlier; 1𝑊1≥𝑄1means the 𝑊1[𝑢, 𝑣] is a strongly matched 

result in the original ortho-image pair, “1” will be assign to assemble the matching quality label 𝐶1[𝑢, 𝑣], similarly, “2” is for 90° 

rotation, “3” for 180° rotation and “4” for 270° rotation of the ortho-image pair; 𝐷1|𝑊1≥𝑄1[𝑢, 𝑣] means pixel 𝑝(𝑢, 𝑣) is strongly matched 

in the original ortho-image pair, if not, 𝐷1|𝑊1<𝑄1[𝑢, 𝑣] will not be used to enhance the 𝐷𝑒𝑝𝑡ℎ[𝑢, 𝑣]. 

 

In Table 8, the “weakest” means four-rotation matching results of a pixel are all weakly matched. 

Another kind of weak matching is on the central of the ortho-image pair. When the reference point (𝑥, 𝑦) is 

close to center (0,0), the target point (𝑥’, 𝑦’) is close to (0,0) and becomes insensitive to 𝐷𝑒𝑝𝑡ℎ variation (see 
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Eq. 9-2-1, Eq. 9-2-2). This leads to the pixel matching and virtual elevation algorithm to generate the same 

𝑁𝐶𝐶 value from different 𝐷𝑒𝑝𝑡ℎ values. Fortunately, the center region is usually a flat plane for drone 

takeoff; its elevation can be easily confined to its neighbors’ elevations. Therefore, the 𝐷𝑒𝑝𝑡ℎ of a weakest 

pixel can be inherited from an adjacent pixel (𝐶≥1) that has the closest texture feature. The updated pixel 

will be assigned a new matching label 𝐶=5 to participate in enhancing the remaining pixels. 

4.4 Pixel Grid Matching and Elevation Determination Experiment Design 

4.4.1 Experiment Dataset 

4.4.1.1 Experiment Site 

The developed algorithms were programmed in Python 3.6.8 and verified on the construction site 

shown in Figure 35. This beach site includes a stairway, a boardwalk with rest area, several garbage cans 

and vegetation. The elevation differentials between the selected points were measured for evaluating the 

developed method. The height of the bottom stair (above the ground) is 22.86 cm (9 inches) and the height 

of other stairs is 19.05 cm (7.5 inches). 
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A Top of the garbage can A - B= 81.28 cm (32 inch) 

B Top of the path C-B=19.05×4+22.86=99.06 cm 

C Top of the boardwalk - 

D Top of the rest area on the stairway D-C=19.05×19= 361.95 cm 

E Top of the ground surface next to the rest area G -E= 106.68 cm (42 inches) 

F Top of the umbrella F-G=320.04 cm (126 inches) 

G Drone takeoff point - 
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Figure 35 Elevation determination experiment site 

 

4.4.1.2 Low-high Ortho-image Pairs 

During this research, a DJI Phantom 4 Pro V2.0 (focal length=8.8 mm, 𝑆𝑒𝑛𝑠𝑜𝑟ℎ𝑒𝑖𝑔ℎ𝑡=8.8 mm) took off at 

point G and flew to point C, and captured ortho-images at five selected camera stations. At stations CA and 

CI, the drone captured the ortho-image series at 10m, 20m and 40 m of heights, which have flat central 
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regions. At stations CG and CJ ortho-images at 10m and 20m of heights were captured, which have 

concavo-convex central regions. At station CH ortho-images at 20m and 40m of heights were captured, 

which are used to stitch with other ortho-images and experimental results. Thus, four 10-20 ortho-image 

pairs and three 20-40 ortho-image pairs were assembled. Additionally, three pre-processing steps were 

implemented to generate low-high ortho-image pairs shown in Figure 36: a) shrink original images 

(4864×3648 pixels) to half resolution; b) cut images to square shape (1824×1824 pixels); and c) align high 

images to low images by slight translation and rotation.  

 Camera Station CA Camera Station CG Camera Station CH Camera Station CI Camera Station CJ 

1
0

m
 

  

 

  

2
0

m
 

     

4
0

m
 

 

 

  

 

Figure 36 Ortho-image pairs 

 

4.4.2 Pixel Grid Matching Algorithm Configuration 

The experimental parameters configurations for the developed method are explained in Table 9. 

The experimental elevation range was first set as [−𝐻/4, 𝐻/4], then, each pixel in an elevation-map used a 

grayscale value [0,255] to represent its elevation data. There are 200 major virtual planes and 1000 minor 

virtual planes in the range of [−𝐻/4, 𝐻/4]. The pixel matching and virtual elevation algorithm searches all 

major planes. If two adjacent major planes return the same matching value, then the algorithm adjusts the 

𝐷𝑒𝑝𝑡ℎ𝑠𝑡𝑒𝑝  to 𝐷𝑒𝑝𝑡ℎ𝑠𝑡𝑒𝑝/5 and searches the five minor planes between those two major planes to find the best 
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matching result. Additionally, the 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 for 20-40 ortho-image pairs is 3/4 of the 10-20 ortho-image 

pairs, and they have different pixel grid numbers.  

After running the developed Python program, the output includes a matched pixel grid with 

matching quality labels(see Figure 37), an ortho-image and elevation-map pair(see Figure 38 and Figure 

39), and a point cloud(see Figure 48). 

Table 9 Pixel Grid Matching Algorithm Parameters Configuration 

Parameters 
Value (H/2-H) 

Comments 
10-20 20-40 

Ortho-image Size 1824×1824 pixels - 

Grid Size 32 pixels 24 pixels Pixel Grid formation, see Figure 32 

Initial Patch Size 
𝑅 =19 pixels 

𝑊𝑖𝑛𝑑𝑜𝑤 𝑆𝑖𝑧𝑒 = 39×39 

𝑅 × 𝑅𝑎𝑑𝑗.𝑟𝑎𝑡𝑖𝑜∗ is self-adapting, see Figure 31 

𝑊𝑖𝑛𝑑𝑜𝑤 = (2𝑅 + 1) × (2𝑅 + 1), see Figure 29 

Maximum Patch Size 𝑅 × 𝑅𝑎𝑑𝑗.𝑟𝑎𝑡𝑖𝑜∗ = 76 pixels 𝑅𝑎𝑑𝑗.𝑟𝑎𝑡𝑖𝑜∗ ∈ [1,4] , see Figure 31 

Margin Size 128 pixels 96 pixels 4 ×  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒, 𝑅) , see Figure 32 

Expected Output Size 1568×1568 pixels 1632×1632 pixels 𝑂𝑟𝑡ℎ𝑜 − 𝑖𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 −  2 × 𝑀𝑎𝑟𝑔𝑖𝑛 𝑆𝑖𝑧𝑒 

Pixel Grid Number 2500 4761 (𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑧𝑒/𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒 + 1)2 

Ground Sample Distance 0.54 cm/pixel 1.08 cm/pixel Eq. 1 

Horizontal Space Resolution 8.47×8.47 m2 17.6×17.6 m2 𝐺𝑆𝐷 ×  𝑂𝑢𝑡𝑝𝑢𝑡 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 

Elevation Range [-5 m,5 m] [-10m, 10m] [−𝐻/4, 𝐻/4] 

Virtual Plane Number 200 Virtual Plane formation, see Figure 30 

Major Depth Step 0.05 m 0.1 m 𝐷𝑒𝑝𝑡ℎ𝑆𝑡𝑒𝑝 =  𝐻/2 / 200, see Figure 31 

Minor Depth Step 0.01 m 0.02 m 𝐷𝑒𝑝𝑡ℎ𝑆𝑡𝑒𝑝  /5 

Elevation-map 𝑔𝑟𝑎𝑦𝑢,𝑣 = 255 ×
𝐸𝑙𝑒.𝑢,𝑣+ 𝐻/4

𝐻/2
 

An 8bit Grayscale Image, see Figure 32 

𝐸𝑙𝑒.𝑢,𝑣 = 𝐻/2 × 𝑔𝑟𝑎𝑦𝑢,𝑣/255 − 𝐻/4 

Distance to Neighbor Pixels 𝑠 =  𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒/2 𝑠 ∈ [0, 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒], see Figure 33 

Image Center Region 𝑅𝑎𝑑𝑖𝑢𝑠 = 192 pixels 
Pixels are confined to matching between virtual planes 

𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 − 𝐷𝑒𝑝𝑡ℎ𝑆𝑡𝑒𝑝  and 𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 + 𝐷𝑒𝑝𝑡ℎ𝑆𝑡𝑒𝑝  

Strong-matching Threshold 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (𝐿𝑜𝑤𝑒𝑟 𝐹𝑒𝑛𝑐𝑒𝑖 , 0.001) see Table 8 and Figure 34 

Matched Pixel Label/Mark 
Label 0 as Red Dot; Label 1,2,3,4 as Pink Dot; Label 12,13,14,23,24,34 as Blue Dot ; Label 

123,124,134,234 as Cyan Dot; Label 1234 as Green Dot; See Table 8 

 

4.5 Pixel Grid Matching and Elevation Determination Evaluation  

4.5.1 Pixel Grid Matching Results and Analysis 

4.5.1.1 Pixel Grid Matching Results 

The pixel grid matching results are listed in Figure 37. These experimental results show that the 

developed four-scaling patch feature descriptor and pixel grid matching algorithm can generate the dense 

pixel grids from the low-high ortho-image pairs, where strongly matched pixel pairs are evenly distributed 

throughout each low-high ortho-image pair, even in the poorly textured beach regions and dense vegetation 

regions.  
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10-20 CA Pixel Grid (77 Red Dots) 10-20 CA NCC value 20-40 CA Pixel Grid (31 Red Dots) 20-40 CA NCC value 

    
10-20 CG Pixel Grid (0 Red Dots) 10-20 CG NCC value 20-40 CH Pixel Grid (14 Red Dots) 20-40 CH NCC value 

    
10-20 CI Pixel Grid (0 Red Dots) 10-20 CI NCC value 20-40 CI Pixel Grid (20 Red Dots) 20-40 CI NCC value 

  

 

 

10-20 CJ Pixel Grid (17 Red Dots) 10-20 CJ NCC value   

 

 

 

 

10-20 CI by SIFT method  20-40 CA by SIFT method  

*In boxplots, “0” is the original ortho-image pair, “90”, “180” and “270” are the rotated ortho-image pairs; in the pixel grid plot, the 
red dots are weakest matched pixels; in SIFT matching, the red dots are unmatched keypoints. 

Figure 37 Ortho-image pair matching results 

 

4.5.1.2 Pixel Grid Matching Evaluation 

The developed patch feature descriptors have a self-adapting mechanism (𝑅 × 𝑅𝑎𝑑𝑗.𝑟𝑎𝑡𝑖𝑜∗, line 14 

see Figure 31), which uses a large 𝑃𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒 to improve the matching results in poorly textured regions such 

as the area with a red umbrella. Furthermore, the shaded regions of the umbrella on the rest area, and most 

shaded regions of the tall tree on the rest area and the beach are well matched, which overcame the impact 
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of environment brightness changes. However, the SIFT method only matched 432 sparse keypoints shown 

in Figure 37 due to low contrast.  

The NCC value distributions for each rotation of each ortho-image pair are different (see Figure 

37) because their different starting corners result in different 𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠  for the remaining selected pixels 

(line 5 in Figure 33). In these results, the number of outliers on the boxplots has a positive correlation with 

the number of weakest pixels, such as the 10-20 CA, which has the largest number of weakest pixels (77 of 

2500). In addition, Table 10 shows the strongly matched ratio is [92.52%, 98.64%], while the weakest 

matching ratio is only [0.00%, 3.08%] in the experimental results. Therefore, the developed pixel grid 

enhancement algorithm that repeats matching from four starting corners of the squared ortho-image (line 3 

in Figure 34) can enhance the pixel matching results. 

Table 10 Pixel Grid Matching Quality 

Matching Quality Label 
10-20CA 10-20CG 10-20CI 10-20CJ 20-40CA 20-40CH 20-40CI 

Count % Count % Count % Count % Count % Count % Count % 

Strongest/Green 1234 1960 78.4 2037 81.48 2141 85.64 2254 90.16 3855 80.97 4288 90.07 4108 86.28 

Strong/Cyan 

234 287 11.48 124 4.96 156 6.24 11 0.44 240 5.04 277 5.82 6 0.13 

134 13 0.52 28 1.12 147 5.88 87 3.48 93 1.95 51 1.07 57 1.2 

124 54 2.16 74 2.96 8 0.32 67 2.68 87 1.83 52 1.09 130 2.73 

123 49 1.96 186 7.44 14 0.56 6 0.24 130 2.73 14 0.29 216 4.54 

Weak/Blue 

34 2 0.08 3 0.12 28 1.12 1 0.04 67 1.41 1 0.02 29 0.61 

24 1 0.04 2 0.08 1 0.04 9 0.36 1 0.02 1 0.02 1 0.02 

23 1 0.04 16 0.64 - - 4 0.16 1 0.02 1 0.02 7 0.15 

14 7 0.28 8 0.32 - - 14 0.56 33 0.69 21 0.44 49 1.03 

13 4 0.16 2 0.08 - - 1 0.04 10 0.21 2 0.04 10 0.21 

12 14 0.56 14 0.56 - - 1 0.04 62 1.3 13 0.27 5 0.11 

Weaker/Pink 

4 7 0.28 1 0.04 - - 5 0.2 - - 10 0.21 111 2.33 

3 5 0.2 2 0.08 5 0.2 20 0.8 - - 2 0.04 5 0.11 

2 - - 2 0.08 - - 3 0.12 - - 3 0.06 1 0.02 

1 19 0.76 1 0.04 - - - - 151 3.17 11 0.23 6 0.13 

Weakest/Red 0 77 3.08 - - - - 17 0.68 31 0.65 14 0.29 20 0.42 

 N= 2500  2500  2500  2500  4761  4761  4761  

Strongly Matched= 2363 94.52 2449 97.96 2466 98.64 2425 97.00 4405 92.52 4682 98.34 4517 94.88 

SIFT matched 216  473  432  325  569  1324  1002  

 

4.5.1.3 Pixel Grid Matching Discussion 

The weakest matched pixel pairs, marked as red dots, primarily occurred on the regions of singular 

trees, because their heights are suddenly different from their surroundings in a very small region compared 

to the umbrella in 10-20 CG, which is strongly matched. What’s more, plants have limited impact on 

elevation determination; further work should consider removing plants and restoring the ground surface 
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under them. Other weakest matched pixel pairs occur on the ground next to the upper-right corner of the 

rest area in 10-20 CA, because the rest area and the beach have the low contrast texture caused by the shade 

of the nearby tall tree. However, the 10-20 CA elevation results in Figure 37 show that their elevations 

were determined well by the developed method because the incorrect elevations were replaced by the 

strongly matched neighbors’ elevations. 

4.5.2 Elevation Determination Results and Analysis 

4.5.2.1 Elevation Determination Results 

The elevation date (converted from the grayscale elevation-map) results are shown in Figure 38 

and Figure 39, which were aligned to the ortho-image center as the elevation origin.  

  

 

 
10-20 CA Elevation and X/Y-Profile 20-40 CA Elevation and X/Y-Profile Overlap of Station CA 

  

 

 
10-20 CI Elevation and X/Y-Profile 20-40 CI Elevation and X/Y-Profile Overlap of Station CI 

* ortho-image shown in RGB color; the blue line is the x-profile, unit : m; red line is the y-profile, 

unit : m; elevation data shown in jet colormap, unit : m; 10-20 CA, 20-40 CA, 10-20CI and 20-40 CI 

were aligned to image center as ± 0.00. 

*red line 10-20, unit: m; green 
line 20-40, unit: m. 

Figure 38 Elevation results 1 
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The experimental results show that the developed method is valid in flat central regions such as 

CA station and CI station shown in Figure 38, and also works perfectly in the concavo-convex central 

regions (see Figure 39). Furthermore, the developed method can handle steep and near vertical topography 

such as the vertical side of the garbage can in CJ station, the edge of the rest area in CA station, the 

umbrella in CA and CG stations, and the stairways in CI station. This is better than traditional drone 

photogrammetry using ortho-image. 

   
10-20 CG Elevation and X/Y-Profile 20-40 CH Elevation and X/Y-Profile 10-20 CJ Elevation and X/Y-Profile 

*ortho-image shown in RGB color; the blue line is the x-profile, unit : m; red line is the y-profile, unit : m; elevation data shown in jet 

colormap, unit : m; 10-20 CG was aligned to a point on the rest area; 20-40CH and 10-20 CJ were aligned to image center as ± 0.00. 

Figure 39 Elevation results 2 

 

4.5.2.2 Elevation Determination Evaluation 

The overlapped X/Y-Profile of 10-20 pairs and 20-40 pairs at stations CI and CA are matched at 

most parts in Figure 38. As the 20-40 pairs’ GSD and 𝐷𝑒𝑝𝑡ℎ𝑠𝑡𝑒𝑝 are twice that of the 10-20 pairs’ (see Table 

9), it is reasonable to have more detailed elevation variations such as edges, salient pole and concave pole 

in the lower altitude ortho-image pairs. Furthermore, for the common objects in different low-high ortho-

image pairs, the developed method generated quite accurate elevation results.  

The measured elevation differentials between the selected points are compared with the true 

elevation differentials in Table 11. The measurement differences are [-4.36, 4.86] cm for the 10-20 ortho-

image pairs, and [-2.39, 2.76] cm for the 20-40 ortho-image pairs, which are satisfied with 5.00 cm error 

standard (Takahashi et al. 2017). Therefore, the developed method is robust at different camera stations 

with different altitudes. 
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Table 11 Elevation Measurement 

Point Elevation-map 
Elevation Coordinate 

(m) 

Measured Differential 

(cm) 

True Differential 

(cm) 

Elevation 

Differential (cm) 

Elevation Error 

(cm) 

A 
10-20 CJ A(0.8039)-B(0.00) 80.39  81.28 -0.89 0.89 

10-20 CI C(0.00)-A(-0.1765) 17.65 17.78 -0.13 0.13 

B 
10-20 CI C(0.00)-B(-1.0392) 103.92  

99.06 
4.86 4.86 

20-40 CI C(0.00)-B(-0.9804) 98.04  -1.02 1.02 

D 20-40 CI D(3.6471)-C(0.00) 364.71  361.95 2.76 2.76 

E 
10-20 CA G(0.00)-E(-1.0784) 107.84 

106.68 
1.16 1.16 

20-40 CA G(0.00)-E(-1.0588) 105.88  -0.8 0.8 

F 
10-20 CG F(3.1568)-G(0.00) 315.68 

320.04 
-4.36 4.36 

20-40 CA F(3.1765)-G(0.00) 317.65 -2.39 2.39 

 

4.5.2.3 Elevation Determination Discussion 

The disassembled discrete virtual elevation plane result for the selected points are compared in 

Table 12. Based on the virtual plane model (see Figure 30) and the pixel matching and virtual elevation 

algorithm (see Figure 31), the matched result should fall within a three-virtual-plane-range, within the 

interval [−𝐷𝑒𝑝𝑡ℎ_𝑆𝑡𝑒𝑝, 𝐷𝑒𝑝𝑡ℎ_𝑆𝑡𝑒𝑝 ]. In this chapter, the experimental site was broken into 200 major virtual 

planes in the range of [-5,5] m for 10-20 ortho-image pairs and [-10,10] m for 20-40 ortho-image pairs. The 

designed interval between two major virtual planes are 5.00 cm and 10.00 cm for 10-20 and 20-40 ortho-

image pairs respectively. 3 of 9 experimental results fell into the lower interval [−𝐷𝑒𝑝𝑡ℎ_𝑆𝑡𝑒𝑝, 0], and 6 of 9 

fell into the upper interval [0,𝐷𝑒𝑝𝑡ℎ_𝑆𝑡𝑒𝑝]; they are all matched within the expected discrete virtual planes 

based on the true elevation data. In other words, the developed virtual elevation algorithms are sensitive to 

major plane changes. Therefore, the matched pixel grids from the low-high ortho-image pairs contain the 

correct elevation data. 

Table 12 Virtual Elevation Evaluation 

Point 
Elevation-

map 

Depth 

Step 

(cm) 

Experimental Results 
Discrete Virtual Plane Based on Ture 

Elevation 
Comparison 

Elevation Coordinate 

(m) 
Ele. /Step 

Elevation Coordinate 

(m) 
Ele. /Step 

Lower 

Plane 

Virtual 

Plane 

Upper 

Plane 

Fall in lower interval 

(<plane) 

Fall in upper interval 

(>plane) 

A 
10-20 CJ 5 0.8039 16.078 0.8128 16.26 15 16 17  Yes 

10-20 CI 5 -0.1765 -3.53 -0.1778 -3.56 -5 -4 -3  Yes 

B 
10-20 CI 5 -1.0392 -20.784 -0.9906 -19.81 -21 -20 -19 Yes  

20-40 CI 10 -0.9804 -9.804 -0.9906 -9.91 -11 -10 -9  Yes 

D 20-40 CI 10 3.6471 36.471 3.6195 36.20 35 36 37  Yes 

E 
10-20 CA 5 -1.0784 -21.568 -1.0668 -21.34 -23 -22 -21  Yes 

20-40 CA 10 -1.0588 -10.588 -1.0668 -10.67 -12 -11 -10  Yes 

F 
10-20 CG 5 3.1568 63.136 3.2004 64.01 63 64 65 Yes  

20-40 CA 10 3.1765 31.765 3.2004 32.00 31 32 33 Yes  
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 ORTHO-IMAGE AND ELEVATION-MAP DATASET DESIGN AND ACQUISITION 

USING DRONE 

5.1 Introduction 

Image and deep learning based methods have been applied to determine the relative depth 

information for each pixel of an image of indoor scenes (Eigen et al 2014; Liu et al. 2015; Laina et al. 

2016), outdoor scenes (Chen et al. 2016; Li and Snavely 2018) and scenes from automatic driving 

applications (Garg et al. 2016). The main challenge of training a deep learning model is acquiring the 

suitable dataset. In the application of determining construction site elevation, the elevation data can be 

acquired by either contact or non-contact methods discussed in the literature review, but the challenge is 

linking the ortho-image’s pixels with the elevation value in this same coordinate.  

The developed low-high ortho-image pair-based elevation determination method in Chapter 4 

provides the possible approach that stores the elevation value in an equal size 8-bit grayscale image, 

referred to as an elevation-map, which uses 0 as the elevation lower boundary and 255 as the elevation 

upper boundary. In Figure 40, the elevation-map is represented in viridis colormap for better visualization, 

and the X/Y-profiles show the elevation changes at the selected point (elevation unit: m). Acquiring 

elevation data for each pixel of the ortho-image is unreasonable. To save time, Chapter 4 also provides the 

grid pixel formation to simplify and share the same grayscale value / elevation value for a patch, such as a 

32×32-pixel patch. For example, the 1st selected 𝑝𝑖𝑥𝑒𝑙 (16,16) shares its grayscale value / elevation value 

with the patch 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑝[0: 31,0: 31]. Therefore, this chapter summarized the findings in using the 

developed method to setup the high-resolution ortho-images and elevation-maps dataset.  

 

Figure 40 Ortho-image, elevation-map and X/Y-profiles (w/o alignment) 
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5.2 Ortho-image and Elevation-map Dataset Design 

5.2.1 Ortho-Image Formation 

The developed method in Chapter 4 will capture an H-H/2 ortho-image pair at two flight altitude 

positions. Such can be done, for example, as the low-height ortho-images have Image Size=3648×4864-

pixel, GSD=0.27 cm/pixel, Site Size=9.85×13.13 m2 with H/2=10 m; and the high-height ortho-images 

GSD=0.54 cm/pixel, Space Size=19.70×26.26 m2 with H=20 m.  

After the processes of the developed elevation determination method in Chapter 4, the expected 

output ortho-image is transformed (see Table 13) from the low-height ortho-image with the Image 

Size=1568×1568-pixel, GSD=0.54 cm/pixel, Site Size=8.47×8.47 m2, which is referred to as high-resolution 

24-bit RGB ortho-image in this research project.  

Table 13 Image Processing Parameters with 10 m Altitude 

Processing Step Image Size GSD Site Size 

Original 3648×4864-pixel 0.27 cm/pixel 9.85 x 13.13 m2 

Cutting to square shape 3648×3648-pixel 0.27 cm/pixel 9.85 x 9.85 m2 

Scaling, 0.5 1824×1824-pixel 0.54 cm/pixel 9.85 x 9.85 m2 

Removing margin, 128 pixels 1568×1568-pixel 0.54 cm/pixel 8.47 x 8.47 m2 

 

5.2.2 Elevation-Map Formation 

Same as the high-resolution ortho-image, the high-resolution 8-bit grayscale elevation-map also 

has the Image Size=1568×1568-pixel, GSD=0.54 cm/pixel, Site Size=8.47×8.47 m2 with H/2=10 m. After 

the processes of the proposed elevation determination method, each pixel of the generated elevation-map 

has the grayscale value ranges from 0 to 255 to represent the elevation value from [−𝐻/4, 𝐻/4], which is [-5, 

5] m, and the transformation equation is Eq. 10, as the H/2 is set as 10 m.  

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛@(𝑢, 𝑣) = 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑝[𝑢,𝑣] ×
𝐻/2

255
−
𝐻

4
= 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑝[𝑢,𝑣] ×

10𝑚

255
− 5𝑚 Eq. 10 

 

In addition, pixel grid formation is set as 32×32-pixel patch sharing the same grayscale value / 

elevation value. For example, the 1st selected 𝑝𝑖𝑥𝑒𝑙 (16,16) shares its grayscale value / elevation value with 

the patch 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑝[0: 31,0: 31]. Furthermore, the elevation-map will be aligned to the ortho-image center 

as the elevation origin.  
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5.3 Ortho-image and Elevation-map Acquisition Configuration 

5.3.1 Drone Flight Path Design 

5.3.1.1 Drone Fight Height 

The developed method in Chapter 4 has an adjustable measuring space range, which depends on 

the drone flight altitude and camera parameters. Raising the drone’s altitude will increase the ortho-image 

pair’s coverage, which is better for getting the overall construction site topography. On the other hand, to 

get detailed structures’ shapes, it is better to use a lower altitude ortho-image pair, which use more pixels to 

represent the small objects. The author recommends using a DJI Phantom 4 Pro V2.0 , which can give an 

8.47×8.47 m2 coverage in 10-20 ortho-image pair and 17.6×17.6 m2 coverage in 20-40 ortho-image pair 

5.3.1.2 Drone Fight Path 

Where the construction site is larger than a single image frame, such as roadway projects, a series 

of ortho-image pairs can be captured through a serpentine style path (see Figure 41).  

Move Up Forward DownCamera Station
 

Figure 41 Serpentine style drone path for roadway construction project 

 

In detail, the drone is planned to takeoff and reach the desired altitudes 𝐻/2 and 𝐻 to capture the 

low-high ortho-image pair at the takeoff station. After the drone finishes the high ortho-image capture at 

altitude 𝐻, it moves forward to the next station where the distance between two stations should make the 

adjacent low ortho-images have enough overlap for image stitching. The drone takes high ortho-image at 

altitude 𝐻 at the 2nd location first, then it moves downward to capture the second low ortho-image at the 2nd 

location after it reached to the desired altitude 𝐻/2. After that, the drone will continue movies forward and 
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repeat the previous steps until it  acquires enough low-high ortho-image pairs to cover the entire 

construction site. This designed path will guarantee that each low-high ortho-image pair has the same 

center. Furthermore, it is convenient to add and modify some ortho-image pairs beyond the acquisitions 

with the designed flight path. 

5.3.1.3 Ortho-image Pair Capturing 

It is important to avoid the drone’s shift and rotation as much as possible during the vertical 

moving and capturing of the low-high ortho-image pair at each station. In this research project, the pre-

processing steps of image rotation and image translation are based on the SIFT keypoints. The high ortho-

images are rotated in the range of [-2.862, 0.321] degrees, which have the minimum absolute rotation in 10-20 

CA with 0.260 degrees, and the maximum absolute rotation in 10-20 CG with -2.862 degrees. The high 

ortho-images translated in the range of [-3.99, 13.02] pixels in x-direction and [-22.57, 13.16 ] pixels in y-

direction, which have the minimum absolute translation in 20-40 CI with x/y-direction translation [1.83,1.30] 

pixels, and the maximum absolute translation in 10-20 CA with [13.02, 13.16] pixels and 10-20 CG with [-1.85, 

-22.57] pixels.  

Table 14 shows the correlations between the absolute rotation degree and translation distance with 

the number of weakest pixels in Table 10. Based on the correlation results, the X-direction translation (in 

image width) has a significant positive correlation with the pixel matching quality. The Y-direction 

translation (in image height) and the rotation have no significant correlation with the matching quality. The 

maximum X-direction translation occurred in 10-20 CA, which has the largest number of weakest pixels. 

Therefore, minimizing the image width direction shift is most important in acquiring the best low-high 

ortho-image pair at each camera station. 

Table 14 Pairwise Pearson Correlations 

Sample 1 Sample 2 Correlation 95% CI for ρ P-Value 

Num. of Weakest Matching X-translation Distance 0.764 (0.026, 0.963) 0.046 

Num. of Weakest Matching Y-translation Distance -0.062 (-0.779, 0.725) 0.895 

Num. of Weakest Matching Absolute Rotation Degree -0.498 (-0.910, 0.409) 0.256 

Num. of Weakest Matching Translation Distance √𝑋2 + 𝑌2 0.144 (-0.683, 0.809) 0.759 

Num. of Weakest Matching Rotation × X -0.142 (-0.808, 0.684) 0.762 

Num. of Weakest Matching Rotation × Y -0.395 (-0.885, 0.510) 0.381 

Num. of Weakest Matching Rotation × Distance -0.391 (-0.884, 0.513) 0.386 
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5.3.2 Pixel Grid Matching and Elevation Determination 

5.3.2.1 Pixel Grid Configuration 

The algorithm parameters configuration in Table 9 should be adapted for the elevation 

determination on a construction site. The proposed pixel grid formation simplifies the ortho-image pairs’ 

matching. Reducing 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 can generate more detailed results while also raising the computing time. But 

the additional computing cost in matching all pixels (𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 =1) gives no additional benefits from the extra 

dense pixel grid.  

To save time and avoid wasting computing resources, it is better to add an early stop function to 

the pixel matching and virtual elevation algorithm (Figure 31). If 𝑁𝐶𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + < 𝛼 𝑁𝐶𝐶𝑚𝑎𝑥  then stop matching 

𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +. If 𝑁𝐶𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡− < 𝛼 𝑁𝐶𝐶𝑚𝑎𝑥 .then stop matching 𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡−. The author recommends using 𝛼 = 

0.7, which balances the computing time and accuracy. The matching time is also impacted by the site 

shape. A relatively flat site takes less time than one with a lot of elevation changes. The tested matchings of 

11449-pixel grid (𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 =16) in 20-40 ortho-image pairs take slightly longer than 12 minutes, with the 

experimental computer configuration of Python 3.6.8, Intel® Xeon® Gold 5122 CPU@3.6 GHz. The computing time 

for 2500-pixel grid (𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 =32) in 10-20 ortho-image pairs and 4761-pixel grid (𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 =24) in 20-40 

ortho-image pairs are around 2 to 5 minutes, which are the recommended pixel grid configuration. 

5.3.2.2 Elevation Determination Configuration 

The configuration of 200 major planes and 1000 minor planes balanced the accuracy and 

computing time. Table 12 shows 3 of 9 experimental results fell into the lower interval [−𝐷𝑒𝑝𝑡ℎ_𝑆𝑡𝑒𝑝, 0], and 

6 of 9 fell into the upper interval [0,𝐷𝑒𝑝𝑡ℎ_𝑆𝑡𝑒𝑝]; they are all matched within the expected discrete virtual 

planes based on the true elevation data. The 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤  (line 14 in Figure 31) was set as 0.4 in this 

research. The author recommended range is [0.3,0.7]. Raising it can improve the matching accuracy in poorly 

textured ortho-image pairs but can result in errors as well. The noise points in 10-20 CA (see Figure 38) 

were matched on the wrong virtual planes. Additionally, the distance 𝑠 (in lines 7,8,9, and 10 in Figure 33) 

was set as 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒/2 to balance the smoothing of the elevation-map and retaining detailed of elevation 

changes. 
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Additionally, as the drone’s shift and rotation are unable to be totally eliminated, the image center 

region, in Table 9, is an important parameter. Pixels in this region are limited to matching within the upper 

and lower adjacent virtual planes [𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 − 𝐷𝑒𝑝𝑡ℎ𝑆𝑡𝑒𝑝 , 𝐷𝑒𝑝𝑡ℎ𝑔𝑢𝑒𝑠𝑠 + 𝐷𝑒𝑝𝑡ℎ𝑆𝑡𝑒𝑝 ]. This setting can help avoid incorrect 

elevation results in the center region pixels and make their elevation results close to their surroundings. 

Otherwise, due to the reason discussed in section 4.3.3.3, incorrect matching will happen there. In addition, 

this research also applied this setting for pixels on y-axis (𝑥 ≤ 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒). With the repeated matching in pixel 

grid and elevation-map enhancement algorithm (line 3 in Figure 34), the noise points on both the X-axis and 

Y-axis are reduced. The author recommends using a circular center region with radius=192 pixels, shown as 

the red regions in Figure 26. 

5.4 Ortho-image and Elevation-map Dataset Setup 

5.4.1 Construction Site 

The high-resolution ortho-images and elevation-maps datasets are set up to train and test the 

proposed deep learning-based method in this research. The selected construction site is a lake beach 

(Atwater Park, Shorewood, WI, USA), which includes a stairway, boardwalk with rest area, several 

garbage cans and vegetations (see Figure 35, Figure 42,Figure 56, Figure 80). The ortho-images were 

captured in this site from March 2019 to September 2019. Thus, different vegetation growing situations 

occurred in the dataset. 

    
Site Location Rest Area Ditch Boardwalk 

Figure 42 Ortho-image and elevation-map acquiring site 
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5.4.2 Ortho-image and Elevation-map Dataset on Different Seasons  

In Figure 43, Figure 44, Figure 45, the 1st and 2nd column ortho-images were taken in Atwater 

Park (Shorewood, WI, USA) during different seasons. In detail, a) Data A and B were taken on 3/24/2019, 

when the vegetation had not recovered yet; b) Data C and D were taken on 6/5/2019, when the vegetation 

was growing; c) Data AC, AO, CA were taken on September 2019, when the vegetation was fully grown; 

and d) Data B, D, AC and AO have the same wooden platform, which is different to Data CA. The 3rd 

column high-resolution 24-bit RGB ortho-image has the Image Size=1568×1568-pixel, GSD=0.54 

cm/pixel, Site Size=8.47×8.47 m2 with H/2=10 m. The 4th column high-resolution 8-bit grayscale elevation-

map also has the Image Size=1568×1568-pixel, GSD=0.54 cm/pixel, Site Size=8.47×8.47 m2. After the 

processes of the developed elevation determination method, each pixel of the generated elevation-map has 

the grayscale value ranges from 0 to 255 to represent the elevation value from [−5 𝑚, 5 𝑚]. 

5.4.2.1 Spring Season 
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Figure 43 Spring season dataset 
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5.4.2.2 Summer Season 

 Image at altitude 20 m Image at altitude 10 m Ortho-image Elevation-map 
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Figure 44 Summer season dataset 

 

5.4.2.3 Fall Season 
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Figure 45 Fall season dataset 
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5.4.3 Ortho-image and Elevation-map Dataset on Detailed Objects 

In Figure 46, the 1st and 2nd column ortho-images were taken in Atwater Park (Shorewood, WI, 

USA). In detail, data CG detail the umbrella, CI detail stairways and CJ detail garbage cans. 
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Figure 46 Detailed objects dataset 

 

5.4.4 Ortho-image and Elevation-map Dataset on 20-40 m 

In Figure 47, the 1st and 2nd column ortho-images were taken in Atwater Park (Shorewood, WI, 

USA). The 3rd column high-resolution 24-bit RGB ortho-image has the Image Size=1632×1632-pixel, 

GSD=1.08 cm/pixel, Site Size=17.6×17.6  m2 with H/2=20 m. The 4th column high-resolution 8-bit 

grayscale elevation-map also has the Image Size=1632×1632-pixel, GSD=1.08 cm/pixel, Site 

Size=17.6×17.6 m2. After the processes of the developed elevation determination method, each pixel of the 

generated elevation-map has the grayscale value ranges from 0 to 255 to represent the elevation value from 

[−10 𝑚, 10 𝑚].  
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 Image at altitude 40 m Image at altitude 20 m Ortho-image Elevation-map 
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Figure 47 20-40m dataset 

 

5.5 Ortho-image and Elevation-map Stitching and Discussion 

5.5.1 Stitching Results 

As elevation data are saved in the grayscale elevation-map format (see Figure 40), it is convenient 

to stitch adjacent elevation-maps into a larger elevation-map by simply selecting two corresponding points 

in their associated ortho-images as the boundary and aligning the elevation data at the selected boundary. 

Figure 48 shows the results of up-down stitching and left-right stitching. Although the 10-20 CJ and 10-20 

CI ortho-images have different exposure values, the combined elevation-maps are smooth at their junctions. 

The accuracy of the developed method was not impacted by the brightness of the environments.  
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10-20 CJ(top), CI (bottom) 20-40 CI(left),CH (mid), and CA(right) 

 

 

10-20 CJ-CI Point Cloud 20-40 CI-CH-CA Point Cloud 
*elevation, unit: m; each point is corresponded to a pixel in the ortho-image (R,G,B) and elevation-map (Z). 

Figure 48 Elevation-map stitching results 

 

5.5.2 Stitching Evaluation 

In Figure 48 , point clouds were converted using each pixel of the stitched elevation-maps by Eq. 

9. The overall shape of the experiment site was well reconstructed. The small objects, such as the single 

tree on 20-40 CH, were also well reconstructed. The side points of vertical surfaces are missed because the 

developed method only used top-view ortho-images, and the missed side points have no impact on 

determining the elevations of a construction site. When the drone flew at 10 m, some small objects’ side 

surfaces were recorded in the ortho-image, such as the garbage can in ortho-image 10 CI, because the 

reflected rays converged through the camera lens instead of passing parallel into the lens. Enlarging the 

altitude or flying the drone over these objects can eliminate this kind of effect, and the horizontal position 

of a point on the vertical side surfaces can be corrected by Eq. 7 if necessary. What’s more, these small and 

easily removeable objects have limited impacts on elevation determination. 

5.5.3 Stitching Discussion 

There are noticeable elevation errors on the edge of the red umbrella on 20-40 CA, where the pixel 

pairs were weakly matched as pink and blue dots in Figure 37. This is different to the single tree, as its 
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pixel pairs were all strongest matched as green dots (see Figure 37). The state-of-the-art SIFT method is 

invalid there, as no keypoint was matched in Figure 37. However, there are several approaches that can be 

used to fix this issue:  

1. Lower down the drone flight altitude to 10-20 m for capturing more detail, such as 10-20 CG 

in Figure 37.  

2. Decrease 𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒 for dense matching more pixel pairs and smoothing vertical changes, which 

is the same as low altitude for using more pixels to represent an object. 

3. Remove weakly matched pixels, then use the PMVS method for dense reconstruction 

(Furukawa and Ponce 2010).  

4. Fix it with additional processes, such as using a convolutional neural network first to 

distinguish the umbrella surface from other surfaces, then assign the correct elevation values 

to each of them. This will be discussed at sections 6.4.2.2 and 6.5.4.  
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 ORTHO-IMAGE AND DEEP LEARNING-BASED ELEVATION ESTIMATION 

ALGORITHM DESIGN AND TESTING 

6.1 Introduction 

Chapter 4 presents a two-frame-image-based 3D-reconstruction method, which can automatically 

generate the output as an ortho-image and elevation-map pair. In the case of automatic driving, the 

forward-facing view has the camera’s principal ray perpendicular to the objects in front of the car. So, the 

images captured in front of automatic driving cars and above construction site surfaces have the common 

characteristic in that the objects in the same depth level / elevation level have common texture features in 

the forward-facing view / ortho-image. Therefore, capturing an ortho-image over a construction site by 

drone, then using this image to estimate the site elevations, is a feasible approach, which will reduce drone 

flying time and avoid hazards of drone crashes in the construction site. 

In this chapter, a deep learning based-method, convolutional encoder-decoder network model, is 

proposed to estimate elevations from the ortho-images of a construction site, which links each pixel of the 

ortho-image with the same coordinate pixel of an elevation-map (see Figure 49). This chapter also 

evaluates the effectiveness of the single-image-frame-based 3D-reonstruction method, which requires much 

fewer images in estimating elevation than the developed low-high ortho-image pair method in Chapter 4. 

To explain how to estimate site elevations from a single-frame drone-based ortho-image, the rest of this 

chapter presents the dataset acquisition, model designs, training and testing, field experiments and result 

discussions. 

Input: Ortho-image Output: Elevation-mapTrained Deep Learning Model

Disassemble Assemble 

Input patches Output patches

Pixel-to-Pixel
Pixel Elevation

 

Figure 49 Workflows of the single ortho-image based method 
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6.2 Elevation Estimation Dataset Creation 

6.2.1 Patch Size and Number 

Considering the computing capacity of the workstation system, in Figure 50 the 1st to 5th columns 

list the possible model input and output small-patch examples of 32×32-pixel, 64×64-pixel, 128×128-pixel, 

256×256-pixel, and 512×512-pixel, which are cropped from [0:31,0:31], [0:63,0:63], [0:127,0:127], [0:255,0:255], 

and [0:511,0:511] of the high-resolution 1536×1536-pxiel ortho-image and elevation-map (the 6th column) 

respectively. For the elevation-map small-patches, each larger patch contains four times more elevation 

values than the smaller patch. For example, the 64×64-pixel small-patch contains elevation values from 

𝑝𝑖𝑥𝑒𝑙 (16,16),  𝑝𝑖𝑥𝑒𝑙 (16,48), 𝑝𝑖𝑥𝑒𝑙 (48,16) and 𝑝𝑖𝑥𝑒𝑙 (48,48), while the 32×32-pixel patch only contains the 

elevation value from 𝑝𝑖𝑥𝑒𝑙(16,16). Thus, a smaller patch size is better for the deep learning model to learn 

the local features from the input and output dataset. On the other hand, a larger patch size is better for 

learning the global features from the input and output dataset. 

 

Figure 50 Example of input dataset and output dataset 

 

In addition, when creating these overlapping 32×32-pixel, 64×64-pixel, 128×128-pixel, 256×256-

pixel, and 512×512-pixel patches, the stride is set as 16, 32, 64 or 96 pixels for moving these square boxes 

on the ortho-image and elevation-map (larger strides are used to avoid workstation system memory 

shortages) and the number of patches can be determined by Eq. 11, where “⌊ ⌋” is the floor function. 

Moreover, in order to make the deep learning model robust in different image orientations, the ortho-image 

and elevation-map are planned to rotate 90, 180 and 270 degrees to increase the dataset by four times. 

Table 15 lists the detailed parameters in creating the small-patch datasets from a high-resolution ortho-

image and elevation-map pair with size 1536×1536-pixel. 
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𝑁𝑢𝑚. 𝑜𝑓 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = ⌊
𝐼𝑚𝑎𝑔𝑒 𝐻𝑒𝑖𝑔ℎ𝑡 –  𝑃𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒

𝑆𝑡𝑟𝑖𝑑𝑒
+ 1⌋ × ⌊

𝐼𝑚𝑎𝑔𝑒 𝑊𝑖𝑑𝑡ℎ − 𝑃𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒

𝑆𝑡𝑟𝑖𝑑𝑒
+ 1⌋ × 4 Eq. 11 

 

Table 15 Dataset Parameters 

Patch Sizes Strides Rows Columns Num. Num. after 4-rotation 

32x32 16 95 95 9025 36100 

64x64 32 47 47 2209 8836 

128x128 32 45 45 2025 8100 

256x256 64 21 21 441 1764 

512x512 96 11 11 121 484 

 

6.2.2 Dataset shape 

An ortho-image acquired by the drone has RGB 3-channel. Considering that the color textures are 

important in distinguishing different objects on the construction site, the texture information is kept rather 

than using a grayscale image. Therefore,  using a high-resolution ortho-image can produce the model 

training datasets with 𝑠ℎ𝑎𝑝𝑒 (36100,32,32,3), 𝑠ℎ𝑎𝑝𝑒 (8836,64,64,3), 𝑠ℎ𝑎𝑝𝑒 (8100,128,128,3), 𝑠ℎ𝑎𝑝𝑒 (1764,256,256,3), 

or 𝑠ℎ𝑎𝑝𝑒 (484,512,512,3), where the first number is the quantity of the small-patches. 

The elevation-map generated from the low-high ortho-image pair-based method only has one 

channel. Disassembling a high-resolution elevation-map can produce the small-patch datasets with 

𝑠ℎ𝑎𝑝𝑒 (36100,32,32,1), 𝑠ℎ𝑎𝑝𝑒 (8836,64,64,1), 𝑠ℎ𝑎𝑝𝑒 (8100,128,128,1), 𝑠ℎ𝑎𝑝𝑒 (1764,256,256,1), or 𝑠ℎ𝑎𝑝𝑒 (484,512,512,1). 

6.3 Elevation Estimation Algorithm Design 

6.3.1 Elevation Estimation Deep Learning Model Architecture 

6.3.1.1 Convolutional Encoder-decoder Architecture Design 

In this research project, the proposed deep learning model is a convolutional encoder-decoder 

network model (see Figure 51), which has an equal number of max pooling layers and up sampling layers. 

This type of model is referred to as an “hourglass-like” model, which has been widely used in image 

segmentation, such as SegNet (Badrinarayanan et al. 2017). Another “hourglass-like” model uses 

deconvolution network in the decoder, such as DeconvNet (Noh et al. 2015), where each deconvolution 

(also known as transposed convolution) layer is the opposite operation of normal convolution (Chollet 



79 

 

2015). During this research project, the convolutional decoder and deconvolutional decoder were compared 

and their generated results do not have any significant difference. What’s more, the proposed model is 

different from SegNet, in which the up sampling layer is the first layer in the decoder, but the proposed 

model uses a convolution layer first (see Figure 51). 

 

Figure 51 Proposed encoder-decoder model with 128×128-pixel patch 

 

In the encoder block, the five convolution layers learn the model input ortho-image patch as 

feature-maps; each convolution layer contains a 2D convolution operation with zero-padding (see Figure 

52), and the layer output has the same size as the layer input (Chollet 2015). In detail, Figure 52 shows an 

example of a zero-padded convolution operation. The original input is 5×5 in size, which has been padded 

to 7×7; the 3×3 kernel convolution has a 5×5 output, which has the same size as the original input. If the 

original input is not padded with zero, the convolution output is the filled 3×3 region only. Additionally, 

each max pooling layer next to the convolution layer is a max pooling operation (see Figure 53), which 

reduces the layer input (convolution layer output) to half size as the layer output. For example, Figure 53 

shows an example of how max pooling (2×2 filter and strides =2) 

 

Figure 52 Example of convolution operation with zero-padding 

kernel_size=3x3 0 0 0 0 0 0 0

strides = 1 0 1 1 1 0 0 0 2 2 3 1 1

x1 x0 x1 0 0 1 1 1 0 0 1 4 3 4 1

x0 x1 x0 0 0 0 1 1 1 0 2 2 5 3 3

x1 x0 x1 0 0 1 1 1 0 0 1 3 3 4 1

3x3 0 0 1 1 0 0 0 1 2 3 1 1

0 0 0 0 0 0 0 7x7 5x5

Convolution w/ Zero-padding

x1 x0 x1

x0 x1 x0

x1 x0 x1
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Figure 53 Examples of max pooling and up sampling operations 

 

In the decoder block, the five convolution layers interpret the feature-maps to model an elevation-

map output; each convolution layer contains a 2D convolution operation with zero-padding as well; the up 

sampling layers are the reverse operations of max pooling operations, which enlarge the layer input to its 

double size as the layer output. Figure 53 shows an example of how up sampling work in the model.  

6.3.1.2 Convolutional Encoder-decoder Model Layers Setup 

To make this encoder-decoder model able to interpret an ortho-image patch and predict an 

equivalent size elevation-map patch, the intersection part of the encoder-decoder is proposed as a 512-

channel feature-map, which is generated from the “max_pooling2d_5” layer (see Table 16). For example, 

the encoder generates a 4×4×512 feature-map for the 128×128×3 input (see Figure 51). This intermedia 

feature-map is required by the model output. Based on the dataset creation, each elevation-map shares a 

common integer from 0 to 255 (8-bit grayscale value) in every 32×32 patch, thus a 256-channel feature-

map with size 4×4 is required for the decoder to generate the 128×128×1 output. That can be explained as 

each channel is the probability of the integer from 0 to 255. As a 128×128 elevation-map patch contains 16 

(4×4) elevation values, thus at least a 4×4×256 feature-map is required for the decoder. The proposed 

“conv2d_5” layer uses 512 filters (see Table 16), which doubled the required channel number. The 512-

channel feature-map can be understood as each channel is the probability of the element in list [0.0, 0.5, 

1.0, …, 245.5, 255.0]. What’s more, in this research project, adding the interaction feature-map to 1024-channel 

had no difference from the 512-channel. In addition, 5 max-pooling-layer is the maximum number for the 

encoder because the smallest model input 32×32-pixel patch is transformed to 1×1-pixel feature-map after 

5 max pooling operations.  

 

pool_size =2x2, strides = 2

12 20 30 0 20 20 30 30

8 12 2 0 20 30 20 20 30 30

34 70 37 4 112 37 112 112 37 37

112 100 25 12 4x4 2x2 112 112 37 37 4x4

Max Pooling Up Sampling
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Table 16 Model Layers Parameters 

Model Architecture for 32×32,64×64,128×128,256×256 and 512×512-pixel Patch Output Shapes for Each Patch 
Blocks Layers (Type and kernel size) Strides Padding Activation

s 

Filters 

/Channels 

Parameters 

 Number  

32 64 128 256 512 
Channels 

Rows/Columns 

Input  input_1 (Input Layer) - - - 3 0 32 64 128 256 512 3 
Encoder conv2d_1 (Conv2D 3x3) 1 same ReLU 64 1792 32 64 128 256 512 64 

max_pooling2d_1 (Max Pooling 2x2) 2 same - - 0 16 32 64 128 256 64 

conv2d_2 (Conv2D 3x3) 1 same ReLU 128 73856 16 32 64 128 256 128 
max_pooling2d_2 (Max Pooling 2x2) 2 same - - 0 8 16 32 64 128 128 

conv2d_3 (Conv2D 3x3) 1 same ReLU 256 295168 8 16 32 64 128 256 

max_pooling2d_3 (Max Pooling 2x2) 2 same - - 0 4 8 16 32 64 256 
conv2d_4 (Conv2D 3x3) 1 same ReLU 512 1180160 4 8 16 32 64 512 

max_pooling2d_4 (Max Pooling 2x2) 2 same - - 0 2 4 8 16 32 512 

conv2d_5 (Conv2D 3x3) 1 same ReLU 512 2359808 2 4 8 16 32 512 
max_pooling2d_5 (Max Pooling 2x2) 2 same - - 0 1 2 4 8 16 512 

Decode

r 

conv2d_6 (Conv2D 3x3) 1 same ReLU 512 2359808 1 2 4 8 16 512 

up_sampling2d_1 (Up Sampling 2x2) 1 - - - 0 2 4 8 16 32 512 

conv2d_7 (Conv2D 3x3) 1 same ReLU 512 2359808 2 4 8 16 32 512 

up_sampling2d_2 (Up Sampling 2x2) 1 - - - 0 4 8 16 32 64 512 

conv2d_8 (Conv2D 3x3) 1 same ReLU 256 1179904 4 8 16 32 64 256 
up_sampling2d_3 (Up Sampling 2x2) 1 - - - 0 8 16 32 64 128 256 

conv2d_9 (Conv2D 3x3) 1 same ReLU 128 295040 8 16 32 64 128 128 

up_sampling2d_4 (Up Sampling 2x2) 1 - - - 0 16 32 64 128 256 128 
conv2d_10 (Conv2D 3x3) 1 same ReLU 64 73792 16 32 64 128 256 64 

up_sampling2d_5 (Up Sampling 2x2) 1 - - - 0 32 64 128 256 512 64 

Output conv2d_11 (Conv2D 3x3) 1 same Sigmoid 1 577 32 64 128 256 512 1 

 Total parameters: 10,179,713 

Trainable parameters: 10,179,713 

Non-trainable parameters: 0 

Layer output shape 

(Rows, Columns, Channels)  

 

Furthermore, each convolutional layer also includes an activation function, which performs the 

non-linear transformation of the features generated from the convolution operation (Dettmers 2015). In the 

proposed model, the input and output datasets, 24-bit RGB ortho-image and 8-bit grayscale elevation-map 

pairs with value range [0,255] are normalized to the range [0,1] by dividing them by 255. Thus, the 

activation function should progressively change from 0 to 1 with no discontinuity for generating the output. 

The Rectified Linear Unit activation function (ReLU), 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥), is a very popular choice for use in 

hidden layers; it is faster than many activation functions, such as Sigmoid. The ReLU function does not 

always output a non-zero, so it results in less neurons being utilized and less dependence between features 

(Nair and Hinton 2010). In addition, the Sigmoid activation function (also known as Logistic), 𝑓(𝑥) = 1/(1 +

𝑒𝑥𝑝(−𝑥) ) is used in the output layer to generate the continuous values for the elevation-map, instead of 

using SoftMax function to classify the objects in SegNet (Badrinarayanan et al. 2017). The detailed model 

layers and each layer output shape for each patch size trial are shown in Table 16, where the type of layers 

are described in the Keras 2.3 style (Chollet 2015). 
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6.3.1.3 Convolutional Encoder-decoder Compiling Configuration 

This research project uses the “Sequential model API” in Keras to set up the convolutional 

encoder-decoder network model. When compiling the model, it uses “rmsprop” as the optimizer, and 

“mean_squared_error” as the loss function(Chollet 2015); “validation_split” is set to 0.05, which means 

that 95% of the datasets is used for training the model and 5% of the dataset is used for validation. In this 

research project, the efficiency of “early stopping” compared to non-stopping has been evaluated. The 

“early stopping” technique stopped model training when the monitored quantity had stopped improving 

(Chollet 2015), such as the training loss or validation loss had not decreased for 10 epochs. This research 

project uses “EarlyStopping(monitor='val_loss', patience=10)”.  

What’s more, this research project uses the “same” padding for max pooling layers. As the model 

input sizes are 32, 64, 128, 256 and 512, which can be divided by 32 (25), the padding setting in max 

pooling should have no impact on the result because in each max pooling layer, the layer input size is 

halved, while the layer output size is still an integer which can be divided by 2. However, the model results 

varied on this setting. Using “same” padding generated a better result than “valid” padding. 

6.3.2 Ortho-image Disassembling and Elevation-map Assembling Algorithm 

The input layer and output layer of the proposed model (see Figure 51) indicate that the trained 

model predicts an elevation-map patch from an input ortho-image patch. A model prediction example is 

shown in Figure 54, while the edged area of each prediction patch is different from the center area. This is 

because the zero-padding is used in convolution operations. The normal convolution operation shrinks the 

input image size down to the filled center region in Figure 52. In this research project, the added padding 

operation enlarges the image size with “0” before the convolution operation (see Figure 52). Then, the 

zero-padding convolution ensures that the output maintains the same size as the input. However, the added 

“0” produces unwanted features in the edge of the prediction patches. The side-by-side assembly of 

predictions in Figure 54 shows the unexpected gridlines. 
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Figure 54 Prediction of side-by-side assembly 

 

Figure 55 shows the workflow of the ortho-image disassembling and elevation-map assembling 

algorithm, which generates the elevation-map without unexpected “gridlines”. This algorithm needs to 

disassemble the ortho-image into several overlapping patches. The required number of patches is 

determined by Eq. 12. When assembling the elevation-map, only selected parts of each patch will be used. 

Compared with the side-by-side approach, the proposed overlapping algorithm replaces the patch edges 

with other predictions’ center regions. Additionally, the assembly of the elevation-map has the same GSD 

as the ortho-image. Then, the 3D geometry data can be reconstructed by Eq. 13. 
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Figure 55 Workflow of the ortho-image disassembling and elevation-map assembling algorithm 
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𝑁𝑢𝑚. 𝑜𝑓 𝑆𝑚𝑎𝑙𝑙_𝑃𝑎𝑡𝑐ℎ𝑒𝑠 = (2 ×
𝐼𝑚𝑎𝑔𝑒 𝐻𝑒𝑖𝑔ℎ𝑡

𝑃𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒
− 1) × (2 ×

𝐼𝑚𝑎𝑔𝑒 𝑊𝑖𝑑𝑡ℎ

𝑃𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒
− 1) 

Eq. 12 

 

[
𝑋
𝑌
𝑍
] = [

𝑥 ∙ 𝐺𝑆𝐷
−𝑦 ∙ 𝐺𝑆𝐷
𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 

] =

[
 
 
 
 
 (𝑢 −

𝐼𝑚𝑎𝑔𝑒 𝑊𝑖𝑑𝑡ℎ

2
) ∙ 𝐺𝑆𝐷

−(𝑣 −
𝐼𝑚𝑎𝑔𝑒 𝐻𝑒𝑖𝑔ℎ𝑡

2
) ∙ 𝐺𝑆𝐷

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑝[𝑢,𝑣] ×
𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒

255
+ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦]

 
 
 
 
 

 
Eq. 13 

 

  

6.4 Elevation Estimation Experiment 

6.4.1 Experiment Dataset 

6.4.1.1 Experiment Site 

In this research project, the experiment datasets, the ortho-image and elevation-map pairs are 

selected from Chapter 5. In addition, the edges of the ortho-images and elevation-maps are removed to 

make their width (1,536-pixel) and height (1,536-pixel) which are exactly divisible by 32, 64, 128, 256 and 

512. This is because the various patch size configurations will be compared. Figure 56 shows the spatial 

relation among these selected datasets. 

A,C

B,D,

AC,AOCA,CG

CI

Vegetation block

Shrub block Shrub block

Tree

Tree

Tree
Tree

Vegetation block

 

Figure 56 Elevation estimation experiment site condition 

 

6.4.1.2 Ortho-images and Elevation-maps 

Figure 57 lists the model training and validation datasets. The ortho-images were taken in Atwater 

Park (Shorewood, WI, USA) during different seasons. Data A and B were taken on 3/24/2019, when the 

vegetation had not recovered yet. Data C and D were taken on 6/5/2019, when the vegetation was growing. 
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Additional data AC, CA, CG and CI were taken on September 2019, when the vegetation was fully grown. 

Data AC is the same wooden platform as B and D; data CA is another wooden platform on this site; data 

CG and CI detail the umbrella and stairways. In addition, Figure 58 includes an additional ortho-image and 

elevation-map pair which is proposed to be used for quantitatively evaluating the trained model. 

Furthermore, the elevation-maps were aligned by picking a point on the wooden platform / path and setting 

its elevation as ±0.00. 
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Figure 57 Model training and validation datasets 
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Figure 58 Model testing dataset 

 

6.4.2 Elevation Estimation Deep Learning Model Training and Validation 

6.4.2.1 Model Training Configuration 

The model training parameters including batch sizes, epochs and dataset numbers are listed in 

Table 17. The “100 epochs” and “early stopping” were shared for the five different patch size trials. Eight 

ortho-image and elevation-map pairs (see Figure 57) and their 4-rotations were used to train the model. 

Thus, the total number of datasets is eight times the number listed in the last column of Table 15. The 

dataset numbers varied for the five different patch size trials, because the system memory limitation 

resulted in different strides being used for creating datasets. What’s more, in this research project, when 

training the model, the “batch size=32” was used in 512×512-pixel patch trial and “batch size=128” was 

used in the other trials. This is because of the single GPU’s memory limitation (11GB or 10.24GiB); an 

additional 3.38 GiB memory and 2.29 GiB memory are needed for each GPU with batch size 128 and 64 

respectively. Fortunately, the small batch size in 512×512-pixel patch trial only results into more model 

training times in each epoch. 

Table 17 Model Training Parameters and Results 

Patch Size Trials  Training Epoch Trials 

Patch Sizes 
Datasets (Validation Split = 0.05) 

Batch Sizes 
EarlyStopping(monitor='val_loss', patience=10), Epochs=100 

Total Num. Training Validation w/ Early Stop w/o Early Stop 

32x32 288800 274360 14440 128 29 100 

64x64 70688 67153 3535 128 27 100 

128x128 64800 61560 3240 128 18 100 

256x256 14112 13406 706 128 35 100 

512x512 3872 3678 194 32 32 100 
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6.4.2.2 Training and Validation with Early Stopping 

The loss results of model training for each trial and the loss results of model validation (also 

known as model testing) for each trial in Figure 59. The five different patch size trials were stopped at 

different epochs (see Table 17). The 128×128-pixel patch trial stopped at 18th epoch is the earliest trial, and 

the 256×256 patch stopped at 35th epoch. 256×256-pixel patch took the most epochs for the validation loss 

to reach stable for 10 epochs.  

  

Figure 59 Loss of model training and validation (w/ early stopping) 

 

Furthermore, the validation results of each patch size are shown in Figure 60, where the “ground 

truths” are the elevation-map patches used in training the model, the predictions are the model outputs 

generated from the trained model with the corresponding inputs. The “ground truths” and model predictions 

are shown in the same viridis colormap range, the more similar the color the more accurate the predictions. 

In visual, the model predictions are not a constant color (grayscale value) for a 32×32-pixel patch as the 

elevation-map patches. The developed model decodes the elevation values for each pixel of the input patch 

instead of a single elevation value for the whole patch. The model output results show that the trained 

model can distinguish different objects, such as the wooden paths that are distinguished from the ground in 

the 256×256 and 512×512 trials. The trained model also shows the ability to correct elevation value errors 

that occur in the wooden path of 256×256 and 512×512 trials. In detail, the wooden paths of 256×256 and 

512×512 in the “ground truth” have incorrect elevation values, while the predictions for the wooden paths 

show corrected elevations. 
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Ortho-image 

Patches 

     

 

Elevation-
map Patches 

(Ground 

Truth) 

 

Model 

Output 

Patches 
(Predictions) 

Patch size 32×32 64×64 128×128 256×256 512×512  

Figure 60 Data A: ground truth patches and model prediction patches (w/ early stopping) 

 

For the five “early stopping” different patch size trials, the minimum model training loss occurred 

on 128×128-pixel patch trial at its 18th epoch (see Figure 59). The 128×128-pixel patch also has the smaller 

model validation loss, while the minimum model validation loss occurred on 64×64-pixel patch trial at its 

27th epoch. The Data A predictions in Figure 60 indicates that the 128×128-pixel patch trial has better 

performance than other patch sizes in the “early stopping” trials, and the overlapping assembled predictions 

in Figure 61 confirms that the 128×128-pixel patch has the best performance in the “early stopping” trial 

for Data CI as well. That may be because the 128×128-pixel patch balances the local features of each 

32×32 patch and contains global features to connect each single 32×32 patch as well. The detailed 

comparisons of the different patch sizes will be stated in the discussion section. 

    
32×32 64×64 256×256 512×512 

    
Ortho-image Elevation-map 128×128  

Figure 61 Data CI: overlapping assembly of model predictions (w/ early stopping) 
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6.4.2.3 Training and Validation with 100-epcoh 

Another model training was conducted without “early stopping”, the 18 to 100 epochs model 

training loss and validation loss of the five different patch size trials are shown in Figure 62. The 128×128-

pixel patch has the minimum model training loss of 8.74E-06 at 100 epochs, which is smaller than 1.82E-

04 at the “early stopping” trial. The 64×64-pixel patch and 256×256-pixel patch trials have a more stable 

decreasing trend and smaller values for training loss compared to the extreme size patches 32×32 and 

512×512. Therefore, using the 128×128-pixel patch for the developed convolutional encoder-decoder 

network model has the best model training and validation performance, followed by the 64×64-pixel patch 

and 256×256-pixel patch.  

  

Figure 62 Loss of model training and validation (18~100 epochs) 

 

6.4.3 Elevation Estimation Testing 

The testing data AO in Figure 58 is different from the training data AC in Figure 57; they were 

captured on the same day but in different fight paths and sequences; the drone landed after captured the AC 

low-high ortho-image pair and took off again to capture AO pair; for the AC pair, the 10 m ortho-image 

was captured first followed by the 20 m ortho-image; but for the AO pairs, the 20m ortho-image was 

captured first followed by the 10 m ortho-image. 

Figure 63 contains the model predictions for data AO . Visually, the 128×128-pixel patch has the 

best result in the “early stopping” trial and the 64×64-pixel patch is better than others, while the patches 

128×128 and 256×256 are better than others in the 100 epochs trials. The 100 epochs results are more 
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detailed than the “early stopping” ones. These 2D predictions can be easily converted to 3D point clouds by 

Eq. 13 with the selected 2,304 (48×48) points (strides=32 pixels in column and row directions). 

       

Ortho-image 
Early Stopping: 

32×32 
64×64 128×128 256×256 512×512  

       
Elevation-map 100 Epochs: 32×32 64×64 128×128 256×256 512×512  

Figure 63 Data AO: predictions with different patch size and different epochs 

 

Figure 64 overlaps the 128×128 and 256×256 prediction point clouds (one pixel is one point) with 

the “ground truth”, which is converted from the elevation-map and plotted with RGB cubes. The model 

predictions have the similar shape as the “ground truth” and are more accurate than the “ground truth” for 

the wooden platform surface and its edges.  

   

   

   
Early Stopping: 128×128 100 Epochs: 128×128 100 Epochs: 256×256 

* RGB Cubes are Elevation-map, Yellow Points are 128×128 patch results, Purple Points are 256×256 patch results 

Figure 64 Data AO: point cloud comparison between predictions and ground truth 
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6.5 Elevation Estimation Discussions 

6.5.1 Patch Size Comparison and Discussion 

As the model training and testing results show, the 128×128-pixel patch and the 64×64-pixel patch 

are better than the other patch sizes in the “early stopping” trials. Figure 65 shows the overlapping 

assembly of model predictions with the “ground truth” elevation-map of the eight model training datasets 

between these two patch sizes. In addition, several interesting points were selected to show their X/Y-

profiles elevation (unit: m) changes.  

Each data in Figure 65 has ground surface, large objects or structures, and small objects. For the 

ground surface 3D-reconstruction, the 128×128-pixel patch has the best performance, as seen with the 

selected points in data A, the Y-profiles of data C, D and AC. What’s more, the tiny and sparse grass on the 

ground shows no impact to the 3D-reconstruction of the ground surface shape, such as the X-profiles of 

data B and D (see Figure 65). The trained model with 128×128-pixel patch correctly identifies that these 

regions are ground surface and not vegetation. For large object 3D-reconstruction, the 128×128-pixel patch 

also has the best performance, seen in the Y-profile of the umbrella in data CG, the Y-profile of the 

stairways in data CI, and the wooden platforms and wooden paths in all of the training datasets. For small 

objects, both the 128×128-pixel and 64×64-pixel patches have good performance in the 3D-reconstruction 

of small objects’ shapes, such as the X/Y-profiles of the garbage can in data B and D.  

In general, the 128×128-pixel patch has a better performance with the “early stopping” setting at 

the 18th epoch than the 64×64-pixel patch trial with 27 epochs. However, training the developed model with 

the smallest 32×32-pixel patch has given a potential function to correct the elevation errors in the “ground 

truth”, such as the wooden path edge in the center region of data A, the wooden platform corner in data B, 

and the gap between the platform and the garbage can in data B (see Figure 66). However, the large patch 

size 256×256 and 512×512 trials retained these errors. Therefore, the median size 128×128-pixel patch is 

the best option for balancing the local features and global features, each elevation value in the 32×32-pixel 

patch and the connections between 32×32-pixel patches. 
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Data A, 64×64 and 128×128 Data B, 64×64 and 128×128 

  
Data C, 64×64 and 128×128 Data D, 64×64 and 128×128 

  
Data AC, 64x64 and 128x128 Data CA, 64x64 and 128x128 

  
Data CG, 64x64 and 128x128 Data CI, 64x64 and 128x128 

Figure 65 Patch size comparison Ⅰ: predictions for each training dataset 
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Data A, 32×32, 256×256 and 512×512 Data B, 32×32, 256×256 and 512×512 

Figure 66 Patch size comparison Ⅱ: additional predictions for data A and B 

 

6.5.2 Texture Comparison and Discussion 

Aside from the ground surfaces, the vegetation surfaces and wooden surfaces are the two major 

textures in the experiment site (see Figure 56). The vegetation surfaces were captured during different 

seasons; the vegetation blocks show different colors in data A, B, C, D, AC and CG (see Figure 65). In 

Figure 65, the selected point in data AC is on the ground surface. The neighboring vegetation blocks were 

3D-reconstructed well in the X-profile of data AC (128×128-pixel patch), in which the real vegetation 

blocks’ surface heights ranged from 0.6 m to 0.90 m on September 05th, 2019. The X-profiles of data A and 

B also crossed the withered vegetation blocks, in which the 128×128-pixel patch results are matched with 

the “ground truth”. In additional, the data CG and CI contain denser foliage in the shrub blocks, which are 

different from the vegetation blocks. The Y-profile of data CG and X-profile of data CI are matched with 

the “ground truth”. The wooden surfaces and ground surfaces were captured in different brightness 

environments and their colors varied in Figure 65. When creating the experiment datasets, all wooden 

surfaces (except the stairways) were set as elevation = ±0.00 m. They were all 3D-reconstructed well in the 

model predictions. Furthermore, the Y-profile of data CI shows the 3D-reconstructed stairways are matched 

with the “ground truth”, and the selected point in data CA has the correct elevation differential to the 

wooden platform as well. Thus, the developed model that trained with 3-channel RGB ortho-images is 

robust in complex textured regions for the “early stopping” 128×128-pixel patch trial.  

In addition, there are three kinds of poorly textured region in the experiment dataset, including 

shaded spots, shaded strips and shaded blocks. For small spots of shade, such as the garbage can’s shade in 
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data D (see Figure 65), the 128×128-pixel patch generated the correct predictions. For large shade blocks, 

such as the tree’s shade and umbrella’s shade on the wooden platform in data CA and CG respectively (see 

Figure 65), the 128×128-pixel patch has the correct predictions. The “early stopping” 128×128-pixel patch 

trial has inconsistent performance for the shaded strips. The selected point in data AC is on the shade of the 

vegetation block. The ground surface was identified as vegetation in the 64×64-pixel patch trial, but was 

correctly identified using the 128×128-pixel patch. However, the 64×64-pixel patch trials are more aligned 

with the “ground truth” than the 128×128-pixel patch trials, such as the Y-profiles of the shaded ground 

surface close to the wooden platform in data CA and the shaded area next to the bottom stairs in data 

CI(see Figure 65). Fortunately, adding model training epochs can improving the prediction accuracy (see 

Figure 67), which will be discussed in the next section. Therefore, using the 128×128×3 RGB ortho-image 

input patch and 128×128×1 grayscale elevation-map pair datasets to train the developed convolutional 

encoder-decoder network model has a good performance both in complex textured and poorly textured 

regions.  

  
Data CA, 128×128 Early Stopping vs 100 Epochs  Data CI, 128×128 Early Stopping vs 100 Epochs 

Figure 67 Epochs comparison Ⅰ: predictions for early stopping vs 100 epochs 

 

6.5.3 Epoch Comparison and Discussion 

The validations of data CA and CI (see Figure 67) indicated that it is worth continuing to train the 

model after the “early stopping” point to improve the performance of the 128×128-pixel patch. This is due 

to the model not training well enough at the 18th epoch, though it still has the potential to narrow down the 

variations of the validation loss (see Figure 68). In addition, the comparison of testing results (see Figure 

63) shows that the 128×128-pixel and 256×256-pixel are better and smoother than other patch sizes in the 
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100 epochs trials, and the comparison of the two 100 epochs validation loss curves in Figure 68 confirmed 

that the 128×128-pixel patch is more stable and can reach a stable trend earlier than the 256×256-pixel 

patch. Thus, the well-trained 128×128-pixel patch has both the best model training and prediction 

performance for the developed convolutional encoder-decoder network model.  

  

Figure 68 Epochs comparison Ⅱ: training and validation loss (128×128-pixel vs 256×256-pixel) 

 

Furthermore, the quantitative evaluation of the model validation accuracy and testing accuracy 

were conducted by measuring the point cloud (see Figure 64). In detail, for each validation result of 

128×128-pixel patch “early stopping” trial and 128×128-pixel patch 100 epochs trial, 2,304 (48×48) points 

(the centers of each 32×32-pixel patch) are selected from the corresponding ortho-images, elevation-maps 

and overlapping assembled model predictions (1536×1536-pixel). Then the 3D point clouds were generated 

by Eq. 13 with the selected 2,304 points. For each model training and validation data from A to CI, the 

variable “ELE-DIFF-EARLY” was created as the elevation differential between “ground truth” and 

128×128-pixel patch “early stopping”, and variable “ELE-DIFF-100” was created as the elevation 

differential between “ground truth” and 128×128-pixel patch 100 epochs. Both variables have 18,432 

(2,304×8) samples. For the testing data AO, the same variables were created and named as “AO-DIFF-

EARLY” and “AO-DIFF-100” with 2,304 samples.  

The descriptive statistics for the four variables are listed in Table 18. For the model training and 

validation results, the 99% Confidence Interval (CI) of elevation differential is reduced from (1.6, 2.1) cm 

to (0.6, 0.8) cm by adding the model training epochs. In addition, the trained model has a good result in 

predicting the elevations for the testing data AO, the elevation differential has a 99% CI (2.14, 4.08) cm. 

Therefore, the model training epochs have a positive effect in improving the model accuracy; after 100 

epochs the developed model is a well-trained model. 
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Table 18 Elevation Differential Results 

Sample N Mean (unit: m) StDev SE Mean 99% CI for μ Minimum Q1 Median Q3 Maximum 

ELE-DIFF-EARLY 18432 0.018495 0.133267 0.000982 (0.015966, 0.021024) -2.31373 -0.03922 0 0.07843 1.84314 

ELE-DIFF-100 18432 0.0073 0.058502 0.000431 (0.006190, 0.008410) -1.05882 0 0 0.03922 0.94118 

AO-DIFF-EARLY 2304 0.0424 0.17635 0.00367 (0.03293, 0.05187) -1.17647 -0.03922 0.03922 0.11765 1.01961 

AO-DIFF-100 2304 0.03111 0.18096 0.00377 (0.02140, 0.04083) -1.05882 -0.03922 0 0.07843 1.21569 

 

6.5.4 Accuracy Evaluation and Discussion 

Figure 69 shows the distributions of the elevation differential between the “ground truth”, model 

validation results and model testing results. The histogram of “ELE-DIFF-100-CM” shows that 94% of 

points from the model training datasets have an elevation error less than 10 cm in the “well-trained” model 

(100 epochs). The two histograms “AO-DIFF-100-CM” and “AO-DIFF-EARLY-CM” of the testing data 

AO show that the “well-trained” model has a significant improvement over the “early stopping” model. 

The “well-trained” model prediction accuracy is 52.43% compared to the 47.05 % on the “early stopping” 

model, in which an accurate elevation measurement is defined as measurement error is equal to or less than 

5.0 cm (Takahashi et al. 2017). The worst predictions (error > 25 cm or error < -25 cm) account for 9.64% 

and 12.37% in the “well-trained” model and “early stopping” model respectively.  

 

Figure 69 Distribution of elevation differential 
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In addition, the prediction contour-maps are show in Figure 70, and the elevation differentials 

were mapped as well. Most of the worst predictions of the “well-trained” model are on the edges of the 

wooden platform and garbage cans. This is because the “ground truths” on these locations are incorrect, the 

model predictions have corrected them. Excluding these errors, the model prediction accuracy will raise up. 

Thus, the “well-trained” model at least has a 52.43% accuracy in estimation the construction site 

elevations. 

   
Elevation Data w/ Contour-line 128×128-pixel, Early Stopping 128×128-pixel, 100 Epochs 

   
Ortho-image, 

Data AO, 10 m 
Elevation Differential,  

128×128-pixel, Early Stopping 
Elevation Differential,  

128×128-pixel, 100 Epochs 

Figure 70 Spatial distribution of elevation differential 

 

6.5.5 Prediction Evaluation and Discussion 

Figure 71 shows two 20m ortho-images which have the same GSD=0.54 cm/pixel as the model 

training dataset. The blue garbage can (17.65 cm lower than the wooden platform) is the new object not 

used in training the developed model and the original images were cut to 3584×4864-pixel without image 

resize. The Y-profile at the blue garbage can is -13.7 cm, which is close to the true value with the error 3.95 

cm <5.0 cm. The Y-profile on the top of the umbrella is 3.196 m, which is accurately matched with its true 

value 3.20 m. Thus, training the developed model with the ortho-images captured at height 10 m can be 
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used in 3D-reconstruction of ortho-images at height 20 m, the trained model is also able to generate the 

accurate elevations for the ortho-images at 20m as well. However, its performance worsens for the ortho-

images at 40 m and above. 

 

 

Data CJ, 20 m, 128×128-pixel, 100 Epochs, Prediction Elevation Data Data CJ, Mesh Model 

 

 

Data AN, 20 m, 128×128-pixel, 100 Epochs, Prediction Elevation 

Data 

Data AN, Mesh Model 

Figure 71 Elevation Predictions of data CJ and data AN 

 

Furthermore, the top view of the experiment site in Figure 56 was captured at fight height 100 m. 

The elevation prediction results of the “well-trained” models with 128×128-pixel and 32×32-pixel patches 

are shown in Figure 72. The 32×32-pixel patch results show the ground surfaces, wooden surfaces, and 

shrub blocks are well reconstructed, but the vegetation blocks are assigned with incorrect elevations. The 

bad prediction of the 128×128-pixel patch occurs around (500, 2000), where the shaded wooden path was 

not included in the model training datasets. Thus, to make the model satisfied with complex construction 

site situations, a comprehensive dataset (ortho-image and elevation-map pairs) is required. This dataset 

should include different textures of the construction site, because the top layer materials of the construction 

sites are not limited to vegetation, water, snow, sand, rock, soil, concrete, asphalt, buildings and structures. 
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For training a precise deep learning model, the number of datasets should be large enough to cover the 

various construction site surfaces. 
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Figure 72 Elevation Predictions of the experiment site 
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 ORTHO-IMAGE AND DEEP LEARNING-BASED VEGETATION IDENTIFYING AND 

REMOVING ALGORITHM DESIGN AND TESTING 

7.1 Introduction 

The performance of the image-based elevation determination methods in Chapter 4 and Chapter 6 

are affected by the plants and other ground covers on the construction site when determing the ground 

elevations. This is because the light rays are reflected on the surface of vegetation instead of the “real” 

ground surface. Therefore, to improve the effectiveness of the image-based surveying methods, 

automatically detecting and removing the vegetation and other obstacles from their raw surveying results 

and determining the “real” ground elevations, are necessary and important for construction professionals 

who heavily depend on elevation data in earthwork operations and facility layout. 

In this chapter, a convolutional neural network (CNN) model is designed to classify the small 

sized image patch into vegetation categories or other object categories using a drone-based high-resolution 

construction site ortho-image (see Figure 73). Then, a vegetation removing algorithm is used to determine 

the ground elevations covered by vegetation from the elevation-map. Experiments are conducted to 

evaluate the effectiveness of the proposed method with high-resolution ortho-image and label-image pair 

datasets. The label-image is marked at each pixel with an 8-bit grayscale value [0,255] to represent up to 

256 objects’ categories. To explain how to determine the “real” ground elevation covered by vegetation 

from a drone-based high-resolution ortho-image and elevation-map pair, the rest of this chapter presents the 

research results of dataset acquisition and creation, model architecture designs, model training and testing, 

field experiments and result discussions. 

Input: 

Ortho-image

Output: 

Label-image

Construction Site

Ortho-image

f

H

Drone

CNN-based Image 
Classification

w/ Disassembling 
and Assembling 

Algorithm

Vegetation 
Removing 
Algorithm 

Input: 
Elevation-map
w/ vegetation

Output: 
Elevation-map 
w/o vegetation

3D Construction Site

Model w/o Vegetation

 

Figure 73 Workflows of vegetation identifying and removing method 
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7.2 Vegetation Identifying Dataset Creation 

7.2.1 High-resolution Label-image Creation  

Figure 74 shows the graphical user interface of the “Label-App” which is designed for labeling an 

ortho-image with 8-bit values [0, 255] and programmed using Python 3.6.8 and matplotlib 3.1.1 library. 

The computer mouse is used to select vertexes on the ortho-image for identifying each object. The 

keyboard is used to create a new class-label or select a predefined class-label such as “240-shade” in the 

left side of the label-image. The label-image is shown in “terrain” colormap for better visualization. Same 

as the ortho-image, the label-image also has the high-resolution 1568×1568-pixel, which is saved in two 

file-formats including a 1,568×1,568-pixel grayscale image file for visualization and a 1,568-row and 

1,568-column spread sheet file for training the deep learning model. Saving as spread sheet file is necessary 

because the interpolation value appears on the edges of different objects in the image file.  

 

Figure 74 Example of ortho-image and label-image  

 

Figure 75 shows a high-resolution ortho-image, a label-image and an elevation-map pair, all of 

which will be used as the testing dataset in this research project. The point cloud is generated using the 

selected central points of each 32×32-pixel patch of the ortho-image (textures) and elevation-map 

(elevation values). The high-resolution images used in this research project are 1,536×1,536-pixel, which 

are generated by removing 16 pixels on each margin of the 1,568×1,568-pixel images. This process allows 

each high-resolution image to be cropped into divisible integer numbers of 8×8-pixel, 16×16-pixel, 32×32-

pixel or 64×64-pixel small-patch. 
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Ortho-image Label-image Elevation-map Point cloud 

1,536 × 1,536-Pixel 1,536 × 1,536-Pixel 1,536 × 1,536-Pixel 2,304-Point 

A
O

: 
9
/5

/2
0
1

9
 

    

 
Front 

 
Right 

Figure 75 Testing dataset of ortho-image, label-image and elevation-map pair  

 

7.2.2 Small-patch Dataset Creation 

7.2.2.1 Patch size and number 

A high-resolution 1,536×1,536-pixel is 6 times larger than a low-resolution 256×256-pixel. As a 

result, the high-resolution images cannot be directly used in training a deep learning model. The author 

proposed to disassemble the high-resolution ortho-image and label-image pair into multiple overlapping 

patch pairs with size 8×8-pixel, 16×16-pixel, 32×32-pixel or 64×64-pixel. Figure 76 shows the example of 

these four different small sized patch pairs of ortho-images and label-images. 

 

Patch size 8×8-pixel 16×16-pixel 32×32-pixel 64×64-pixel 

Ortho-image patch 

    

Label-image patch 

Class-label/ value Vegetation /130 Vegetation /130 Vegetation /130 Sand /80 

Figure 76 Examples of ortho-image and label-image patches 

 

In addition, when cropping these small-patches, the strides are set as 4, 8, 16 and 32-pixel 

respectively. Moreover, in order to make the proposed deep learning model more robust in different image 

orientations, the high-resolution ortho-images and label-images are planned to rotate 90, 180 and 270 

degrees to increase datasets by four times. Table 19 listed the number of small-patch datasets from a 

1,536×1,536-pixel ortho-image and label-image pair. 
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Table 19 Dataset Parameters 

Patch Sizes Strides Rows Columns Num. Num. after 4-rotation 

8×8 4 383 383 146,689 586,756 

16×16 8 191 191 36,481 145,924 

32×32 16 95 95 9,025 36,100 

64×64 32 47 47 2,209 8,836 

 

7.2.2.2 Dataset shape 

An ortho-image acquired by the drone has RGB 3-channel. Considering that the color textures are 

important in distinguishing different objects on a construction site, the proposed deep learning model uses 

the color ortho-image patches as model input data. Therefore, using a high-resolution ortho-image can 

produce the model training datasets with 𝑠ℎ𝑎𝑝𝑒 (586756,8,8,3), 𝑠ℎ𝑎𝑝𝑒 (145924,16,16,3), 𝑠ℎ𝑎𝑝𝑒 (36100,32,32,3), or 

𝑠ℎ𝑎𝑝𝑒 (8836,64,64,3), where the first number is the quantity of the small-patches. 

A label-image generated from the “Label-App” only has one channel. Disassembling a high-

resolution label-image can produce the small-patch datasets with 𝑠ℎ𝑎𝑝𝑒 (586756,8,8,1), 𝑠ℎ𝑎𝑝𝑒 (145924,16,16,1), 

𝑠ℎ𝑎𝑝𝑒 (36100,32,32,1), or 𝑠ℎ𝑎𝑝𝑒 (8836,64,64,1). Thus, the maximum frequency class-label /value in each small-

patch is determined and set as the class-label/value for each label-image patch. For example, in Figure 76 

the “green” region is bigger than the “yellow” region of the 64×64-pixel label-image patch, thus, the class-

label “sand” /value “80” is assigned for that small-patch. By doing that, the small-patch datasets are 

transformed into class vector (integers), such as [130, 95, … , 130] with 𝑠ℎ𝑎𝑝𝑒 (586756,1), 𝑠ℎ𝑎𝑝𝑒 (145924,1), 

𝑠ℎ𝑎𝑝𝑒 (36100,1), or 𝑠ℎ𝑎𝑝𝑒 (8836,1). Additionally, the class vector needs to be converted to binary class matrix 

with 𝑠ℎ𝑎𝑝𝑒 (586756,256,1), 𝑠ℎ𝑎𝑝𝑒 (145924,256,1), 𝑠ℎ𝑎𝑝𝑒 (36100,256,1), or 𝑠ℎ𝑎𝑝𝑒 (8836,256,1) as the model training 

datasets (Chollet 2015). For example, a integer “130” is converted to a binary class vector 

[0.00 , 0.02 , … , 1.0130 , … , 0.0255] with 𝑠ℎ𝑎𝑝𝑒 (256, 1), and a class vector is converted to a binary class matrix with 

𝑠ℎ𝑎𝑝𝑒 (𝑁𝑢𝑚. 𝑜𝑓 𝑆𝑚𝑎𝑙𝑙_𝑃𝑎𝑡𝑐ℎ𝑒𝑠, 256,1). 
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7.3 Vegetation Identifying and Removing Algorithm Design 

7.3.1 Vegetation Identifying Deep Learning Model Architecture 

7.3.1.1 Convolution Neural Network Architecture Design 

The CNN-based image classification model architecture is presented in Figure 77, which includes 

a feature learning block and a classification block. In the feature learning block, three convolution layers 

learn the ortho-image patches (model input) as feature-maps (layer outputs). Three max pooling layers 

reduce feature-maps’ (layer inputs) size to its half-size as their layer outputs without losing important 

features. For example, the 8×8-pixel, 16×16-pixel, 32×32-pixel and 64×64-pixel patches are resized down 

to 1×1-pixel, 2×2-pixel, 4×4-pixel and 8×8-pixel patches respectively after the 3rd max pooling layer.  
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Figure 77 CNN-based image classification model with 32×32-pixel patch 

 

In the classification block, the flatten layer transforms the feature-map (layer input) into a feature-

vector (layer output), which can be used in the classification block. Three fully connected layers ( also 

known as dense layers) transform feature-vectors (layer inputs) to a binary class vector as a model 

prediction output for each input ortho-image patch. 
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7.3.1.2 Convolutional Neural Network Model Layers Setup 

The detailed model layers for the four different patch sizes are shown in Table 20, where the type 

of layers is described in the Keras 2.3 style (Chollet 2015). After each convolutional layer and dense layer, 

there is an activation function (layer) which performs the non-linear transformation of the input features 

from the previous convolutional layers or dense layers (Dettmers 2015). As the model input datasets 

normalize from value range [0,255] to [0.0,1.0] by dividing them by 255, the activation function should 

progressively change from 0.0 to 1.0 with no discontinuity. Therefore, the Rectified Linear Unit activation 

function (ReLU), 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥), is used in hidden layers. Because the ReLU function does not always 

output a non-zero value, which results in less neurons being utilized and less dependence between features 

(Nair and Hinton 2010), it is faster than the Sigmoid activation functions. In addition, the SoftMax 

activation function is used in the 3rd dense layer to calculate the probabilities of the 256 class-labels in the 

binary class matrix/vector. Finally, the dropout layers randomly set half of the input units to “0” at each 

update during training time which helps prevent model overfitting (Chollet 2015). 

Table 20 Model Layer Parameters 

Model Architecture for 8×8, 16×16, 32×32 and 64×64-pixel Patches Output Shapes for Each Patch 

Blocks Layer (Type and filter size) Stride Padding Activation 
Row × Column 

Channels 
8×8 16×16 32×32 64×64 

Input input_1 (Input Layer) - - - 8×8 16×16 32×32 64×64 3 

Feature learning block conv2d_1 (64,Conv2D 3×3) 1 same ReLU 8×8 16×16 32×32 64×64 64 

max_pooling2d_1 (Max Pooling 2×2) 2 - - 4×4 8×8 16×16 32×32 64 

conv2d_2 (128,Conv2D 3×3) 1 same ReLU 4×4 8×8 16×16 32×32 128 

max_pooling2d_2 (Max Pooling 2×2) 2 - - 2×2 4×4 8×8 16×16 128 

conv2d_3 (256,Conv2D 3×3) 1 same ReLU 2×2 4×4 8×8 16×16 256 

max_pooling2d_3 (Max Pooling 2×2) 2 - - 1×1 2×2 4×4 8×8 256 

dropout_1 (Dropout 0.5) - - - 1×1 2×2 4×4 8×8 256 

Classification block flatten_1 (Flatten) - - - 256 1,024 4,096 16,384 - 

dense_1 (Dense) - - ReLU 256 1,024 2,048 4,096 - 

dropout_2 (Dropout 0.5) - - - 256 1,024 2,048 4,096 - 

 dense_2 (Dense) - - ReLU 256 512 1,024 1,024 - 

 dropout_3 (Dropout 0.5) - - - 256 512 1,024 1,024 - 

Output dense_3(Dense) - - SoftMax 256 - 

 

7.3.1.3 Convolutional Neural Network Compiling Configuration 

For compiling the developed CNN-based model, the author use “adam” as the optimizer, and use 

“categorical_crossentropy” as the loss function (Chollet 2015). “Validation_split” is set to 0.05, which 
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means that 95% of small-patch datasets are used for training the model and 5% of small-patch datasets are 

used for model validation. The “early stopping” configuration is set as 

“EarlyStopping(monitor='val_accuracy', patience=5)” which means the model training will be stopped as 

monitored quantity of validation accuracy had stopped improving during the past 5 epochs (Chollet 2015). 

7.3.2 Ortho-image Disassembling and Label-image Assembling Algorithm 

7.3.2.1 Small-patch Label-image Prediction  

In the developed CNN-based image classification model (see Figure 77), for an ortho-image patch 

input, the model prediction output is a binary class vector (“Output_0”), which contains the probability 

values of the 256 unique class-labels. With this model prediction, three post-processes need to be 

conducted to get a high-resolution segmented label-image result.  

First, the “Argmax” function returns the index of the maximum probability value of the binary 

class vector, this index is the class-label/value prediction (“Output_1”) for the input ortho-image patch. For 

example, the “veg” is the class-label prediction for the input ortho-image patch in Figure 77, because it has 

the maximum frequency/percent 95% among the 256 class-labels.  

Second, the class-label /value prediction is assigned to each pixel of the small-patch as the label-

image patch prediction (“Output_2”) for the corresponding input ortho-image patch.  

Third, the small-patch will be used as a part of the high-resolution label-image prediction result 

(“Output_3”). 

7.3.2.2 Ortho-image Disassembling and Label-image Assembling Algorithm Design 

Figure 77 shows the workflow of the high-resolution ortho-image overlapping disassembling and 

high-resolution label-image assembling algorithm, which makes the proposed CNN-based image 

classification model works with the high-resolution image instead of resizing the original image down to 

the low-resolution.  

This algorithm disassembles the ortho-image into several overlapping small-patches and records 

their locations in their sequence ID. The number of small-patches is determined by Eq. 14. When 

assembling the high-resolution label-image prediction, the small-patches are considered as corner patches, 
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edge patches or regular patches, and only the selected region (marked as filled rectangles) of each patch 

will be used in the high-resolution label-image prediction. For example, 95-row and 95-column overlapping 

small-patches with size 32×32-pixel are produced from a high-resolution 1,536×1,536-pixel ortho-image 

for generating the 32×32-pixel label-image patch predictions; the same number of small-patches are 

required to assemble a high-resolution 1,536×1,536-pixel label-image prediction, and for each regular 

32×32-pixel label-image patch prediction, the used region is only a quarter of the regular patch, which is 

the filled 16×16-pixel patch in Figure 77. In addition, with this developed algorithm, each 16×16-pixel 

ortho-image patch is linked with a 16×16-pixel label-image patch prediction through a class-label 

prediction. Therefore, using this method of CNN-based image classification model and the overlapping 

disassembling and assembling algorithm with 8×8-pixel, 16×16-pixel, 32×32-pixel or 64×64-pixel patches 

(useful region 4×4-pixel, 8×8-pixel, 16×16-pixel or 32×32-pixel in each regular patch) is similar to resizing 

a high-resolution 1,536×1,536-pixel ortho-image down to a 383×383-pixel, 191×191-pixel, 95×95-pixel or 

47×47-pixel low-resolution image for image segmentation. 

𝑁𝑢𝑚. 𝑜𝑓 𝑆𝑚𝑎𝑙𝑙_𝑃𝑎𝑡𝑐ℎ𝑒𝑠 = (2 ×
𝐼𝑚𝑎𝑔𝑒 𝐻𝑒𝑖𝑔ℎ𝑡

𝑃𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒
− 1) × (2 ×

𝐼𝑚𝑎𝑔𝑒 𝑊𝑖𝑑𝑡ℎ

𝑃𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒
− 1) Eq. 14 

  

7.3.3 Vegetation Removing Algorithm Using Label-image 

There are two approaches for removing the vegetations’ height from the raw surveying result 

using the identified vegetation blocks in the label-image. One measures an average height of vegetation 

blocks on the construction site, and then directly subtract this value from the raw elevation values of the 

vegetation blocks. Another searches the neighboring ground blocks on the label-image, then interpolates 

these surroundings’ elevation values as the “real” ground elevation under the vegetations. In this research 

project, the vegetation removing algorithm (see Figure 78) is based on the second approach, because it is 

more convenient for automatically determining the ground elevation without any manual participation, and 

the result will be closer to the “true” ground elevation than the prior option. 

In detail, the 𝑽𝑬𝑮_𝑹𝑬𝑴𝑶𝑽𝑰𝑵𝑮_𝑰𝑵_𝑹𝑶𝑾_𝑻𝑯𝑬𝑵_𝑪𝑶𝑳_𝑻𝑹𝑨𝑽𝑬𝑹𝑺𝑬 algorithm traverse the high-resolution label-

image in the row-column-row-loops (see Figure 79). In each row-loop, the 𝑺𝑬𝑨𝑹𝑪𝑯_𝑽𝑬𝑮_𝑹𝑬𝑷𝑳𝑨𝑪𝑬_𝑮𝑹𝑶𝑼𝑵𝑫 

algorithm uses a size adjustable window, which can be extended in the row direction, to search the 
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minimum number of “ground” class-labels. Similarly, in each column-loop, the adjustable window is 

changed in column direction only. When sufficient “ground” class-labels appear in the search window, the 

𝑺𝑬𝑨𝑹𝑪𝑯_𝑽𝑬𝑮_𝑹𝑬𝑷𝑳𝑨𝑪𝑬_𝑮𝑹𝑶𝑼𝑵𝑫 algorithm replaces the current “vegetation” patch’s elevation value with the 

average elevation from the searched neighboring “grounds.” In addition, the label-image patch is updated 

with the “ground” class-label, and the ortho-image patch is marked with a specific color as well. 

 
𝑺𝑬𝑨𝑹𝑪𝑯_𝑽𝑬𝑮_𝑹𝑬𝑷𝑳𝑨𝑪𝑬_𝑮𝑹𝑶𝑼𝑵𝑫(𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥, 𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥, 𝑒𝑙𝑒_𝑚𝑎𝑝, 𝑙𝑎𝑏𝑒𝑙_𝑖𝑚𝑎𝑔𝑒, 𝑜𝑟𝑡ℎ𝑜_𝑖𝑚𝑔, 𝑠𝑡𝑟𝑖𝑑𝑒, 𝑞𝑠𝑖𝑧𝑒, 𝑖𝑛_𝑟𝑜𝑤𝑏𝑜𝑜𝑙) 

1   𝑰𝒏𝒊𝒕𝒊𝒂𝒍     𝑤𝑖𝑛𝑠𝑖𝑧𝑒_𝑚𝑎𝑥 = 𝑴𝑰𝑵(𝑖𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ, 𝑖𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡), 𝑟𝑎𝑡𝑖𝑜𝑞 = 10, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑖𝑛 = 𝑞𝑠𝑖𝑧𝑒 × 𝑞𝑠𝑖𝑧𝑒 × 𝑟𝑎𝑡𝑖𝑜𝑞 

2    𝒊𝒇 𝑙𝑎𝑏𝑒𝑙_𝑖𝑚𝑎𝑔𝑒[𝑟𝑜𝑤_𝑖𝑛𝑑𝑒𝑥, 𝑐𝑜𝑙_𝑖𝑛𝑑𝑒𝑥] 𝒊𝒏 𝑣𝑒𝑔_𝑙𝑎𝑏𝑒𝑙_𝑙𝑖𝑠𝑡: 

3       𝒇𝒐𝒓 𝑤𝑖𝑛𝑠𝑖𝑧𝑒  𝒊𝒏 𝑟𝑎𝑛𝑔𝑒(0, 𝑤𝑖𝑛𝑠𝑖𝑧𝑒_𝑚𝑎𝑥, 𝑞𝑠𝑖𝑧𝑒)  #search in adjustable window [rowlowb
: rowupb , collowb

: colupb] 

4            𝑟𝑜𝑤𝑙𝑜𝑤𝑏 = 𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥 − 𝑞𝑠𝑖𝑧𝑒 × 𝑟𝑎𝑡𝑖𝑜𝑞 − 𝑤𝑖𝑛𝑠𝑖𝑧𝑒 × (1 − 𝑖𝑛_𝑟𝑜𝑤𝑏𝑜𝑜𝑙)# in Col. −loop, extend the windows in the Col. direction only 

              𝑐𝑜𝑙𝑙𝑜𝑤𝑏 = 𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥 − 𝑞𝑠𝑖𝑧𝑒 × 𝑟𝑎𝑡𝑖𝑜𝑞 −𝑤𝑖𝑛𝑠𝑖𝑧𝑒 × (𝑖𝑛_𝑟𝑜𝑤𝑏𝑜𝑜𝑙)# in Row.−loop, extend the windows in the Row direction only 

              𝑟𝑜𝑤𝑢𝑝𝑏 = 𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥 + 𝑞𝑠𝑖𝑧𝑒 × 𝑟𝑎𝑡𝑖𝑜𝑞 + 𝑤𝑖𝑛𝑠𝑖𝑧𝑒 × (1 − 𝑖𝑛_𝑟𝑜𝑤𝑏𝑜𝑜𝑙) + 1 

              𝑐𝑜𝑙𝑢𝑝𝑏 = 𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥 + 𝑞𝑠𝑖𝑧𝑒 × 𝑟𝑎𝑡𝑖𝑜𝑞 +𝑤𝑖𝑛𝑠𝑖𝑧𝑒 × (𝑖𝑛_𝑟𝑜𝑤𝑏𝑜𝑜𝑙) + 1 

5           𝑙𝑎𝑏𝑒𝑙_𝑖𝑚𝑎𝑔𝑒𝑝𝑎𝑡𝑐ℎ = 𝑙𝑎𝑏𝑒𝑙_𝑖𝑚𝑎𝑔𝑒[𝑟𝑜𝑤𝑙𝑜𝑤𝑏 : 𝑟𝑜𝑤𝑢𝑝𝑏 , 𝑐𝑜𝑙𝑙𝑜𝑤𝑏 : 𝑐𝑜𝑙𝑢𝑝𝑏] 

             𝑒𝑙𝑒_𝑚𝑎𝑝𝑝𝑎𝑡𝑐ℎ          =        𝑒𝑙𝑒_𝑚𝑎𝑝[𝑟𝑜𝑤𝑙𝑜𝑤𝑏 : 𝑟𝑜𝑤𝑢𝑝𝑏 , 𝑐𝑜𝑙𝑙𝑜𝑤𝑏 : 𝑐𝑜𝑙𝑢𝑝𝑏] 

6           𝑔𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑑𝑒𝑥 = (𝑙𝑎𝑏𝑒𝑙_𝑖𝑚𝑎𝑔𝑒𝑝𝑎𝑡𝑐ℎ == 𝑔𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑏𝑒𝑙)#return the indexes of groundlabel in the label_imagepatch 

7           𝒊𝒇 𝑺𝑼𝑴(𝑔𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑑𝑒𝑥) >=  𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑖𝑛#return the num. of all True elements in groundindex 
                 # if the num. of groundlabel in the windows is enough, then remove current vegetation patch [rowindex: rowindex + stride, colindex: colindex + stride] 
8                𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑙𝑒 = 𝑴𝑬𝑨𝑵(𝑒𝑙𝑒_𝑚𝑎𝑝𝑝𝑎𝑡𝑐ℎ[𝑔𝑟𝑜𝑢𝑛𝑑_𝑖𝑛𝑑𝑒𝑥]) 

9                𝑒𝑙𝑒_𝑚𝑎𝑝[𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥: 𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥 + 𝑠𝑡𝑟𝑖𝑑𝑒, 𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥: 𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥 + 𝑠𝑡𝑟𝑖𝑑𝑒] = 𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑙𝑒 
                𝑙𝑎𝑏𝑒𝑙_𝑖𝑚𝑎𝑔𝑒[𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥: 𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥 + 𝑠𝑡𝑟𝑖𝑑𝑒, 𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥: 𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥 + 𝑠𝑡𝑟𝑖𝑑𝑒] = 𝑔𝑟𝑜𝑢𝑛𝑑𝑙𝑎𝑏𝑒𝑙 
                  𝑜𝑟𝑡ℎ𝑜_𝑖𝑚𝑔[𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥: 𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥 + 𝑠𝑡𝑟𝑖𝑑𝑒, 𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥: 𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥 + 𝑠𝑡𝑟𝑖𝑑𝑒] = (255,125,255)# mark the ortho_image 
10             𝒃𝒓𝒆𝒂𝒌    

 

𝑽𝑬𝑮_𝑹𝑬𝑴𝑶𝑽𝑰𝑵𝑮_𝑰𝑵_𝑹𝑶𝑾_𝑻𝑯𝑬𝑵_𝑪𝑶𝑳_𝑻𝑹𝑨𝑽𝑬𝑹𝑺𝑬(𝑒𝑙𝑒_𝑚𝑎𝑝, 𝑙𝑎𝑏𝑒𝑙_𝑖𝑚𝑎𝑔𝑒, 𝑜𝑟𝑡ℎ𝑜_𝑖𝑚𝑔, 𝑞𝑠𝑧𝑖𝑒)  
1   𝑰𝒏𝒊𝒕𝒊𝒂𝒍    𝑟𝑜𝑤, 𝑐𝑜𝑙 = 0,0;  𝑖𝑚𝑎𝑔𝑒𝐻, 𝑖𝑚𝑎𝑔𝑒𝑊 = 𝑒𝑙𝑒_𝑚𝑎𝑝. 𝑠ℎ𝑎𝑝𝑒; 𝐻,𝑊 = 0,0; 𝑖 = 0 ;  𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑞𝑠𝑖𝑧𝑒/4 # traversal stride 

2   𝒘𝒉𝒊𝒍𝒆 𝑖 < 𝑖𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡 + 𝑖𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ# max num. of Row & Col −  loops 

3        𝒘𝒉𝒊𝒍𝒆 𝑐𝑜𝑙 + 𝑊 <= 𝑖𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ: 
4            𝒊𝒇 𝑐𝑜𝑙 +𝑊 < 𝑖𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ#process Row − loop 
5                𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥 = 𝑟𝑜𝑤 + 𝐻;  𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥 = 𝑐𝑜𝑙 + 𝑊 
6                𝑺𝑬𝑨𝑹𝑪𝑯_𝑽𝑬𝑮_𝑹𝑬𝑷𝑳𝑨𝑪𝑬_𝑮𝑹𝑶𝑼𝑵𝑫(𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥, 𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥, 𝑒𝑙𝑒_𝑚𝑎𝑝, 𝑙𝑎𝑏𝑒𝑙_𝑖𝑚𝑎𝑔𝑒, 𝑜𝑟𝑡ℎ𝑜_𝑖𝑚𝑔, 𝑠𝑡𝑟𝑖𝑑𝑒, 𝑞𝑠𝑖𝑧𝑒, 𝑖𝑛_𝑟𝑜𝑤𝑏𝑜𝑜𝑙 = 𝑻𝒓𝒖𝒆)# remove in Row 
7                𝑊 = 𝑊 + 𝑠𝑡𝑟𝑖𝑑𝑒 # move to next element in the Row 
8            𝒆𝒍𝒔𝒆#completed the Row,move to Col − loop 
9                𝑊 = 0;    𝐻 = 𝑠𝑡𝑟𝑖𝑑𝑒 # skip the already processed 1st element in the Row − loop 
10              𝒘𝒉𝒊𝒍𝒆 𝑟𝑜𝑤 + 𝐻 < 𝑖𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡: #process Col − loop 

11                  𝑟𝑜𝑤_𝑖𝑛𝑑𝑒𝑥 = 𝑟𝑜𝑤 + 𝐻;   𝑐𝑜𝑙_𝑖𝑛𝑑𝑒𝑥 = 𝑐𝑜𝑙 +𝑊 
12                  𝑺𝑬𝑨𝑹𝑪𝑯_𝑽𝑬𝑮_𝑹𝑬𝑷𝑳𝑨𝑪𝑬_𝑮𝑹𝑶𝑼𝑵𝑫(𝑟𝑜𝑤𝑖𝑛𝑑𝑒𝑥, 𝑐𝑜𝑙𝑖𝑛𝑑𝑒𝑥, 𝑒𝑙𝑒_𝑚𝑎𝑝, 𝑙𝑎𝑏𝑒𝑙_𝑖𝑚𝑎𝑔𝑒, 𝑜𝑟𝑡ℎ𝑜_𝑖𝑚𝑔, 𝑠𝑡𝑟𝑖𝑑𝑒, 𝑞𝑠𝑖𝑧𝑒, 𝑖𝑛_𝑟𝑜𝑤𝑏𝑜𝑜𝑙 = 𝑭𝒂𝒍𝒔𝒆)# remove in Col. 
13                  𝐻 = 𝐻 + 𝑠𝑡𝑟𝑖𝑑𝑒 # to next element in the Col 
14              𝑟𝑜𝑤 = 𝑟𝑜𝑤 + 𝑠𝑡𝑟𝑖𝑑𝑒 # move to the next row 
15              𝐻 = 0 
16              𝒃𝒓𝒆𝒂𝒌# complete the current col 
17    𝑐𝑜𝑙 = 𝑐𝑜𝑙 + 𝑠𝑡𝑟𝑖𝑑𝑒 # move to the next col 
18    𝑖 = 𝑖 + 1 

Figure 78 Vegetation removing algorithm  
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Figure 79 Row-column-row-loop for traversing a label-image 

 

7.4 Vegetation Identifying Experiments 

7.4.1 Experiment Dataset  

7.4.1.1 Experiment Site 

Figure 80 shows the overall condition of the experimental site, which is located at Atwater Park 

(Shorewood, WI, USA).  

 

 

 

Figure 80 Vegetation identifying experiment site 
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7.4.1.2 Ortho-images and Label-images 

Ten high-resolution ortho-image and label-image pairs are shown in Figure 81.  

 
Ortho-image Label-image  
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Figure 81 Training and validation datasets 
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These ortho-images were captured during different seasons and they contain ten categories of 

different objects and surfaces (see Table 21). For the vegetation blocks, in data A and B, the vegetation had 

not recovered yet; in data C and D, the vegetation was growing; and in data G, O, AD, AL, AM and CG, 

the vegetation was fully grown, and their heights were around 2 feet (60.96 cm ). In addition, the ortho-

image and label-image pair in Figure 75 is used to test the well trained model.  

The small-patch datasets for training and testing the CNN-based image classification model are 

created followed by the rules stated in the dataset creation section. Furthermore, each label-image patch is 

assigned with a class-label. For example, a 32×32-pixel label-image patch has 1,024 elements in total. If 

513 of them have the value “220”, then this patch has the “umbrella” class-label. 

Table 21 Class-label Definitions 

Class-label 8-bit Grayscale value Definitions Gray/Terrain Colormap 

n 255 Other undefined objects 

 

shade 240 Shades on ground 

umbrella 220 Red umbrella surface 

can 180 Garbage cans 

shrub 150 Shrub surface  

veg 130 Vegetation surface 

 withered 110 Withered vegetation surface 

sand 80 Ground surface, includes sand and soil 

wood 30 Wooden surface, includes platform and path  

takeoff 0 Drone takeoff and landing pad 

 

7.4.2 Vegetation Identifying Deep Learning Model Training and Validation 

7.4.2.1 Model Training Configuration 

The model training parameters including dataset numbers, batch sizes, and epochs which are listed 

in Table 22. 

Table 22 Vegetation Identifying Model Training Parameters and Results 

Patch Size Trials  Training Epoch Trials 

Patch Sizes 
Datasets (Validation Split = 0.05) 

Batch Sizes 
EarlyStopping(monitor='val_accuracy', patience=5), Epochs=50 

Total Num. Training Validation w/ Early Stopping w/o Early Stopping 

8 5,867,560 5,574,182 293,378 256 13 50 

16 1,459,240 1,386,278 72,962 256 24 50 

32 361,000 342,950 18,050 256 14 50 

64 88,360 83,942 4,418 256 13 50 
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7.4.2.2 Training and Validation with Early Stopping 

The results of training loss, training accuracy, validation loss and validation accuracy with “early 

stopping” for four different pixel size are shown in Figure 82, which were stopped at different epochs (see 

Table 22). The 64×64-pixel and 8×8-pixel patch trial stopped at the 13th epoch and were the earliest trials, 

and the 32×32-pixel patch stopped at the 14th epoch. The 16×16-pixel patch took the most epochs for the 

validation accuracy to reach stable. 

 

  

  

Figure 82 Training and validation results Ⅰ: loss and accuracy w/ early stopping trials 

 

Furthermore, The validation results are shown in Figure 83, where the “ground truths” are the 

class-labels used in training the model, the predictions are the class-label predictions generated from the 

trained CNN-based image classification model. The smaller patches 8×8-pixel and 16×16-pixel have more 

chance to have incorrect class-label prediction. The larger patches size 32×32-pixel and 64×64-pixel have 

more chance to form complex label-image patches with multiple class-labels in one label-image patch, and 

the class-label predictions are more likely correct. This result matches the training accuracy and validation 

accuracy results in Figure 82, where the 32×32-pixel and 64×64-pixel have the better training accuracy and 
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validation accuracy than the 8×8-pixel and 16×16-pixel. However, it is hard to conclude either 32×32-pixel 

or 64×64-pixel has the best performance based on the “early stopping” loss and accuracy plots.  

 

Ground 

Truths 
Veg/130 Veg/130 Veg/130 Shade/240 Shade/240 Shade/240 Shade/240 Veg/130  

Ortho-

image 

patches 

         

Label-

image 

patches 

Label-

image 

prediction  

patches 

Predictions Veg/130 Sand/80 Veg/130 Sand/80 Shade/240 Shade/240 Shade/240 Veg/130 

 Matched? Yes No Yes No Yes Yes Yes Yes 

Patch size 8×8 16×16 32×32 64×64 

Figure 83 Training and validation results Ⅱ: model predictions of data AM w/ early stopping trials 

 

7.4.2.3 Training and Validation with 50-epoch 

The model training was conducted without “early stopping” as well. The 50-epoch model training 

and validation results of the four different patch sizes are shown in Figure 84. The 64×64-pixel patch has 

the largest model training accuracy of 0.9908 at the 50th epoch, which is better than 0.9540 of the “early 

stopping” trial. However, the 32×32-pixel patch has the best validation accuracy of 0.9304 at the 50th 

epoch, which is better than 0.9288 at the “early stopping” trial and also better than the validation accuracy 

of 0.9219 for the 64×64-pixel patch at the 50th epoch. In addition, the 32×32-pixel patch has the smallest 

validation loss as well. Thus, the author concludes that using the 32×32-pixel patch for the developed 

CNN-based image classification model has the best model training and validation performance, followed 

by the 64×64-pixel patch and 16×16-pixel patch. The smallest 8×8-pixel patch, however, has the worst 

performance. 
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Figure 84 Training and validation results Ⅲ: loss and accuracy of 50-epoch 

 

7.4.2.4 Model Training Discussion  

The extra training epochs after the “early stopping” point have no impact on the smaller 8×8-pixel 

and 16×16-pixel patches based on the training accuracy and training loss in Figure 84, but they have 

positive impacts on the 32×32-pixel and 64×64-pixel patches. However, the validation accuracy and loss 

have nonsignificant improvement as the training epochs increase in the 32×32-pixel and 64×64-pixel patch 

trials.  

The cause of this issue can be explained from the assembled high-resolution model validation 

results in Figure 85. Compared to the “early stopping”, the 50-epoch has incorrect model predictions on the 

wooden platform of data AM and G, but it has better model predictions for the “withered” class-label in 

data A and CG. Thus, the overall model validation accuracy is maintained around 93% for the 32×32-pixel 

patch. 
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Figure 85 Training and validation results Ⅳ: assembly of model predictions  

 

7.4.3 Vegetation Identifying Testing Results 

The trained “early stopping” and 50-epoch models were tested with the high-resolution data AO in 

Figure 75, which was disassembled as the model training datasets as well. For example, the 32×32-pixel 

patch trial was tested with the 9,025 small-patch datasets. The results of model testing loss and testing 

accuracy and the assembled high-resolution label-image predictions are shown in Figure 86. The best 

testing accuracy of 0.9435 is the 32×32-pixel patch with 50-epoch, the second-best testing accuracy of 

0.9433 is the 64×64-pixel patch with 50-epoch, and the third-best testing accuracy of 0.9423 is the 32×32-

pixel patch with “early stopping.” These results were the same as the model validation results, because the 

“wood” class-label was getting worse, while the “withered” class-label was getting better when the training 

epoch was increasing. 
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Ortho-image 
Early stopping: 8×8-

Pixel 
16×16-Pixel 32×32-Pixel 64×64-Pixel  

Testing loss 0.19346813604150517 0.16042206430659645 0.13957535489470885 0.15706435309469088  

Testing accuracy 0.9203450679779053 0.928339421749115 0.9422991871833801 0.9306247234344482  

     
 

Label-image 50-epoch: 8×8-Pixel 16×16-Pixel 32×32-Pixel 64×64-Pixel  

Testing loss 0.2332564329944121 0.18557839866358586 0.15911956205009337 0.29654178409866006  

Testing accuracy 0.912464439868927 0.9285998344421387 0.9435456991195679* 0.9433001279830933  

Figure 86 Vegetation identifying testing results 

 

7.4.4 Vegetation Identifying Evaluation and Discussion 

Visually, in Figure 86 the 32×32-pixel patch with “early stopping” had the best prediction result 

and followed by the 32×32-pixel patch with 50-epoch. The 64×64-pixel patch with the 50-epoch was a 

reasonable result, too, but the 32×32-pixel patch was more accurate in the objects’ boundaries. The number 

of each category of class-labels of the manually crafted label-image and the assembled high-resolution 

label-image prediction result (32×32-pixel patch with “early stopping”) are summarized in Table 23 , where 

93.57% (2,207,641 of 2,359,296 pixels) class-labels were exactly matched between them. This accuracy is 

nonsignificant to the small-patch testing accuracy (94.23%). Thus, the developed overlapping small-patch 

disassembling and assembling algorithm was efficient as the result of directly processes high-resolution 

images. 
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Table 23 Class-label Statistic Summary 

Class-label value 
Label-image 

frequency/percent 

Label-image Prediction 

frequency/percent  

Label-image w/ vegetation removing 

frequency/percent 

n 255 - - - - - - 

shade 240 10,983 0.47% 8,192 0.35% - - 

umbrella 220 - - - - - - 

can 180 70,597 2.99% 73,856 3.13% 73,856 3.13% 

shrub 150 - - 256 0.01% - - 

veg 130 376,330 15.95% 427,456 18.12% - - 

 withered 110 119,551 5.07% 26,624 1.13% - - 

ground 95 - - - - 728,832 30.89% 

sand 80 223,045 9.45% 266,304 11.29% - - 

wood 30 1,540,072 65.28% 1,539,456 65.25% 1,539,456 65.25% 

takeoff 0 18,718 0.79% 17,152 0.73% 17,152 0.73% 

Sum  - 2,359,296 100.00% 2,359,296 100.00% 2,359,296 100.00% 

 

Additionally, the class-label prediction errors (6.43% of unmatched) were mapped in pixel 

coordinate as shown in Figure 87. The majority unmatched class-labels were appeared on the “withered” 

region of the manually crafted label-image. In this research project, the “withered” vegetation class-label is 

defined as a ground surface category between the “sand” and normal “vegetation.” However, it is hard to 

distinguish the “withered” and “sand” in the ortho-image, and most “withered” blocks are “sand” blocks in 

reality in the manually crafted label-images (see Figure 81). In the early stage of this research project, the 

author obtained a 0.9646 validation accuracy and 0.9673 testing accuracy without adding the “withered” 

class-label to these label-image datasets. Thus, most class-label errors can be avoided by considering the 

“withered” and “sand” as the same ground surface class-label. 

     

Ortho-image Vegetation index method Mapped prediction error Label-image  

Figure 87 Vegetation identifying results: vegetation index and mapped prediction error 

 

Furthermore, the vegetation index 𝐸𝑥𝐺 = 2𝐺 − 𝑅 − 𝐵 (Anders et al. 2019) result is shown in Figure 

87, where 15.32 % (361,221 of 2,357,926) pixels had been identified as vegetation. That result is close to 

the 15.95% of “veg” class-label in the manually crafted label-image, but it also contains a large number of 

incorrect results from the yellow and green garbage cans. Thus, the vegetation index method is not suitable 
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for the detailed vegetation detection at a complicatedly textured construction site with other green and 

yellow textured objects.  

Therefore, the author concluded that the developed CNN-based image classification model with 

32×32-pixel ortho-image patch input data had a good accuracy (93%) to identify the objects on the 

construction site using the drone-based high-resolution ortho-image.  

7.5 Vegetation Removing Experiment 

7.5.1 Vegetation Removing Algorithm Configuration 

The 𝑽𝑬𝑮_𝑹𝑬𝑴𝑶𝑽𝑰𝑵𝑮_𝑰𝑵_𝑹𝑶𝑾_𝑻𝑯𝑬𝑵_𝑪𝑶𝑳_𝑻𝑹𝑨𝑽𝑬𝑹𝑺𝑬 algorithm and 𝑺𝑬𝑨𝑹𝑪𝑯_𝑽𝑬𝑮_𝑹𝑬𝑷𝑳𝑨𝑪𝑬_𝑮𝑹𝑶𝑼𝑵𝑫 algorithm in 

Figure 78 were programmed using Python 3.6.8. The vegetation removing experiments were conducted 

with the 32×32-pixel “early stopping” prediction result. The initial search window size is 

(2 𝑞𝑠𝑧𝑖𝑒 × 𝑟𝑎𝑡𝑖𝑜𝑞)  ×  (2 𝑞𝑠𝑧𝑖𝑒 × 𝑟𝑎𝑡𝑖𝑜𝑞)=(2×32×10)×(2×32×10), where 𝑞𝑠𝑖𝑧𝑒 is the patch size of 32-pixel used in 

the CNN-based image classification model, and the 𝑟𝑎𝑡𝑖𝑜𝑞  is set as 10. The max search windows size is 

dependent on 𝑤𝑖𝑛𝑠𝑖𝑧𝑒_𝑚𝑎𝑥  , which is set as half of the image width=768-pixel. The minimum required number 

of “ground” class-label pixels in the search window is set as 𝑞𝑠𝑖𝑧𝑒 × 𝑞𝑠𝑖𝑧𝑒 × 𝑟𝑎𝑡𝑖𝑜𝑞=32×32×10. In addition, the 

label-image traversal 𝑠𝑡𝑟𝑖𝑑𝑒 is set as 𝑞𝑠𝑖𝑧𝑒/4=8-pixel, which means the high-resolution 1,536×1,536-pixel 

label-image is disassembled into 192-row, 192-column and 36,864 patches with a size of 8×8-pixel. 

7.5.2 Vegetation Removing Testing Results 

The high-resolution label-image prediction result contains 2,359,296-pixel. It includes 8,192-pixel 

of “shade,” 256-pixel of “shrub,” 427,456-pixel of “veg,” which are considering as vegetation blocks that 

need to be removed and replaced with class-label “ground”/ value “95.” It also contains 266,304-pixel of 

“sand,” 26,624-pixel of “withered,” which are considered as ground blocks and needed to update class-

label to “ground”. 

Table 23 shows the sum number of “shade,” “shrub,” “veg,” “sand” and “withered” in the label-

image prediction is equal to the number of “ground” in the vegetation removed label-image, which 

confirms that the developed algorithm had successfully traversed the high-resolution label-image. In 
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addition, the label-image and ortho-image were successfully updated after removing the vegetation, where 

the new “ground” blocks were marked with pink color in the ortho-image (see Figure 88). 

 

Figure 88 Vegetation removing results Ⅰ: modified label-image and elevation-map 

 

7.5.3 Vegetation Removing Evaluation and Discussion 

Figure 89 shows the updated point cloud, which was generated using the selected central points of 

each 32×32-pixel patch of the vegetation removed ortho-image (textures) and vegetation removed 

elevation-map (elevation values). Among the selected 2,304-point, the vegetation category (“shade,” 

“shrub” and “veg”) has 447-point which accounts for 19.40%; the ground category (“withered” and “sand”) 

has 267-point which accounts for 11.59%. The sample distribution of the selected 2,304-point is similar to 

the population distribution of the 2,359,296-pixel in the high-resolution label-image.  

 

 

Front 

 

Left 

 

Rear 

 
Right 

Figure 89 Vegetation removing results Ⅱ: modified point cloud 
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Figure 90 shows the elevation differential between the original and updated elevations on ground 

and vegetation blocks. The non-ground and non-vegetation points (1,590) were excluded in the histogram. 

The larger elevation changes (≥0.7 m) occur on the edges of the wooden platform and garbage cans, where 

the updated elevations are more accurate than the elevations determined by the image-based method. The 

majority of the elevation changes on the vegetation blocks ranged from 0.1 to 0.6 m, and the maximum 

elevation changes on the vegetation block is 0.6-0.7 m, which is also shown as the peak point of X-profile 

in Figure 88. This result is similar to the measured vegetation height of 0.61 m on the experimental site. 

  

Figure 90 Vegetation removing results Ⅲ: elevation differential statistic summary 

 

There are some negative elevation changes -0.3-0.0 m on the left end of the vegetation histogram, 

which are the top-edge (Y>3.8 and -3.8<X< -2.2) vegetation block in the contour plot. This error appears 

due to this region being conflicted with the requirement of the vegetation block needing to be surrounded 

by ground blocks. Fortunately , this kind of error can be avoided by adding the necessary neighboring 

grounds, such as the central vegetation block in the data AL in Figure 81, or stitching with the other 

adjacent dataset. Because the 𝑺𝑬𝑨𝑹𝑪𝑯_𝑽𝑬𝑮_𝑹𝑬𝑷𝑳𝑨𝑪𝑬_𝑮𝑹𝑶𝑼𝑵𝑫 algorithm can generate the correct ground 

elevations for the vegetation covered regions, the author concluded that the developed methods in this 

paper (see Figure 73) can automatically identify the vegetation and determine the ground elevation covered 

by the vegetations. 
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 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Summary 

This research project utilized drone-based ortho-imaging to advance the image-based 3D-

reconstruction method for determining the construction site elevations with the consideration of the 

affection of static vegetation. Major work and findings are presented in Chapters 4 to 7. A summary is 

provided below. 

Chapter 4 presents an effective, rapid and easily-implementable two-frame-image-based 3D-

reconstruction method for automatically determination of construction site elevations using drone 

technology. The method of input images is different from the traditional drone photogrammetry method 

and the classic stereo-vision method which are 2:1 scale ratio quadcopter drone-based low-high ortho-

image pairs instead of the same scale image pairs. The general procedure of the developed low-high ortho-

image pair-based elevation determination method includes:  

1. Acquiring low-high ortho-image pairs on a construction site using drone ortho-imaging, 

2. Matching pixel grid and determining elevations simultaneously by the low-high ortho-image 

pair pixel grid matching and elevation determination algorithms, and 

3. Modeling and measuring with 2D elevation-map and 3D point cloud. 

Chapter 5 discusses how to use the developed low-high ortho-image pair-based elevations 

determination method to acquire a construction site high-resolution ortho-image and elevation-map dataset 

for training the deep learning-based construction site elevation estimation model. Based on the acquired 

dataset, a single-frame image-based 3D-reconstruction method for construction site elevation estimation 

was developed and presented in Chapter 6, which only needs a drone-based ortho-image as the input. The 

general procedure of the ortho-image and deep learning based-elevation estimation method includes the 

following steps:  

1. Using a drone to acquire construction site ortho-images, 

2. Using overlapping disassembling algorithm to generate the overlapping small-patches and 

their sequence number, 
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3. Using the trained convolutional encoder-decoder network model to predict the elevation-map 

for each small-patch,  

4. Assembling the prediction small-patches with the assigned sequence, and  

5. Converting the elevation-map to elevation data or 3D point cloud. 

Chapter 7 presents a deep learning-based method to identify vegetation objects on a construction 

site using drone-based ortho-image and determine the “real” ground surface elevations from the raw 

surveying results. The general procedure of the vegetation identifying and removing method includes the 

following steps:  

1. Using a drone to acquire construction site ortho-images, 

2. Disassembling the high-resolution ortho-image into overlapping small-patches, 

3. Using the trained CNN-based image classification model to generate the small-patches of 

label-image and assemble them to a high-resolution label-image, 

4. Searching and identifying the vegetation blocks in the high-resolution label-image, 

5. Modifying their elevation values with the surrounding grounds’ elevations in the same 

coordinate elevation-map, and 

6. Converting the modified elevation-map to elevation data or 3D point cloud of the construction 

site. 

8.2 Contributions 

The success of this research project contributes to the advancement of drone ortho-imaging and 

deep learning methods in construction site surveying. First, it advanced the multiple image-based 3D-

surveying techniques with drone ortho-imaging, which is a flexible option for conditions where drones 

need to be kept away from target objects and a real-time as-build model is needed. The developed low-high 

ortho-image pair-based elevation determination method is suitable to create high-resolution ortho-images 

and elevation-maps datasets of construction sites for conducting deep learning-based research, which is 

highly dependent on elevation data. In addition, for the earthwork operations, the generated pixel grid 

results are easy to convert to a 2D site plan for updating the earthwork quantity and a 3D point cloud for 

documenting and visualizing the project progress. 
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Second, it explored single-frame image-based 3D-surveying with drone ortho-imaging, which is a 

convolutional encoder-decoder network model for estimating construction site elevations. The developed 

ortho-image and deep learning-based elevation estimation method can generate the elevation values as an 

elevation-map output using a single ortho-image input. The experiments were conducted to evaluate the 

effectiveness of the convolutional neural networks (CNNs) in the determination of construction site 

elevations. The developed input image disassembling and output image  assembling algorithm provides the 

ideal training of a deep learning model with larger size images instead of shrinking images, which could 

result in losing image detail. The success of this research project makes it possible to generate elevation 

data on a construction site much faster than traditional survey methods, thus, speeding up the on-site 

construction operations.  

Third, it provided and verified a feasible approach of using a CNN to segment a high-resolution 

ortho-image of construction sites. The developed model can be used for automatically identifying and 

locating multiple static object categories from the raw surveying results. In addition, the developed method 

can be extended to remove dynamic objects (i.e. moving objects like trucks, people, etc.) from the high-

resolution ortho-imaging videos. With these advancements, this research project has proved that it is 

possible to use drone technologies to make the image-based construction surveying measurements of 

ground elevations much faster, more accurate and convenient. 

8.3 Conclusions 

Construction surveying plays a crucial role in determining construction sites’ elevations and 

locations, which are important in earthwork operations and critical for making decisions. However, 

accurately and quickly determining elevations of a construction site in real-time is still a challenge for the 

construction industry. This research project utilized the drone ortho-imaging, deep learning, computer 

vision, image processing and image classification methods to simplify and speed up the image-based 3D-

reconstruction techniques in the construction site elevation determination. The major findings of this 

research project are: 

1. By only using two frame ortho-images, the developed low-high ortho-image based elevation 

determination method focuses on 3D-reconstruction of the ground surface and excludes the 
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vertical side surfaces of any attached or sunken objects on a construction site, which makes it 

simpler than traditional drone photogrammetry. This method maximizes the overlap of the 

ortho-image pair, where the entire low ortho-image is contained in the overlap. It only took 2 

to 5 minutes for determining elevations for 2500 points in the 10-20 m trial or 4761 points in 

the 20-40 m trial with Python 3, while using a fast programming language such as C++ this 

time could be reduced. In addition, the generated results, the ortho-image and elevation-map 

pairs, were easily stitched using a very narrow overlapping strip, which is much less than the  

70% overlap ratio in  traditional drone photogrammetry. 

2. For the automatic matching of the 2:1 scale ortho-image pair, the four-scaling reference patch 

feature descriptors for the low ortho-image were designed first to have the same size as the 

target patch feature descriptor for the high ortho-image. Then, the NCC method was used to 

match the pixel grid and return the corresponding 0.5-pixel coordinate from the high ortho-

image for the given pixel from the low ortho-image. The developed pixel grid matching and 

elevation determination algorithms were robust even for poorly textured surfaces and large 

sloped surfaces, and also effective in indirectly lit environments. It can give an accurate pixel 

grid match for the low-high ortho-image pair at least 92% of the time. It can produce an 

accurate elevation result for the strongly matched pixel grid within the acceptable measuring 

error of less than 5.00 cm. 

3. The input image overlapping disassembling and output image assembling algorithm which ran 

in parallel with the deep learning models is developed, which made the workstation system 

more efficient to train a deep learning model with high-resolution images instead of shrinking 

images and losing image details. By disassembling the datasets into multiple small patches, 

the number of datasets was significantly increased as well. With the suitable patch size, such 

as the 128×128-pixel patch, the developed deep learning models balanced the global features 

and local features, and it can even be well-trained earlier than larger patch sizes. The 

experimental results showed that the 128×128-pixel patch trial stopped training the 

convolutional encoder-decoder network model at the 18th epoch, while the 256×256-pixel 
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patch trial stopped at the 35th epoch . In addition, the smaller 32×32-pixel patch contains the 

maximum local features, which was important for changes in edges and corners.  

4. Experiments were conducted to evaluate the effectiveness of the developed convolutional 

encoder-decoder network model for estimating construction site elevations. The results 

showed that the 128×128-pixel patch had the best prediction performance when the elevation 

values were shared in the elevation-map with a 32×32-pixel patch. Adding model training 

epochs had a positive relationship to the model prediction accuracy. The testing results 

showed that the “well-trained” model had a 52.43% accuracy in elevation estimation with a ± 

5.0 cm error and 66.15% accuracy with a ± 10.0 cm error. Compared with the 94% accuracy 

(error ± 10.0 cm) in model training, it still has potential for improving the deep learning 

method for single-image-frame-based 3D-reconstruction of construction sites.  

5. Experimental results showed the developed CNN-based image classification model using the 

32×32-pixel patch had the best performance of 94% accuracy in identifying each main 

object’s class-label from each small-patch ortho-image on the construction site. The testing 

results showed that the developed method, which disassembled the 1,536×1,536-pixel high-

resolution image into 9,025 overlapping small-patches for image classification and assembled 

the label-image small-patch predictions to the 1,536×1,536-pixel high-resolution label-image 

prediction, was as effective as image segmentation algorithms because different object 

categories were marked with different colors in the assembled high-resolution label-image 

predictions with a high accuracy of 93%; and the edges of different objects were well 

determined.  

8.4 Recommendations 

The following recommendations are suggested for implementing the results of this research 

project and for future research on multiple/single ortho-image based 3D-reconsruction for construction site 

elevation determination and excavation operations. First, this research project focused on determining the 

elevation of a construction site, the transformation ability of converting the ortho-image and elevation-map 

results to 3D point cloud had been addressed in this research project, and the textured point cloud was a 
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part of the generated results from the developed method as well. Transforming the point clouds results to 

the earthwork volume quantities can be implemented by using Autodesk Civil 3D to create a TIN 

(Triangulated Irregular Network) mesh model, and estimate the earthwork volume from the mesh model. 

As the selected and matched pixels/points were in the intersection points of the regular grid as the site plan 

formation, the volume can be estimated by the four-point-method (using four corners of each grid cell) or 

three-point-method (using three corners of each triangular cell) when the current elevation and the designed 

elevation of each intersection point are known. Figure 91 a and c show a 25-point 3D mesh model and 2D 

site plan demo (programmed with C++ and OpenGL), where the x/y-axis ranges from 0 to 80 m, and the 

current elevation ranges from 0 to 35 m. In this demo, 32 triangular cells were generated, each of them is a 

small ground area (Area=20×20/2=200 m2) and its volume can be estimated by (𝐸𝑙𝑒1 + 𝐸𝑙𝑒2 + 𝐸𝑙𝑒3) × 𝐴𝑟𝑒𝑎/3, 

where 𝐸𝑙𝑒𝑖 is the elevation for each point. Figure 91 d and e show two earthwork estimation demos, where 

the designed sites are two different flat planes (gray), and the volume estimation results for each triangular 

cell with these two different design planes were calculated and indicated in the 3D surface model. In detail, 

when the design plane is 10 m, part of the selected triangular cell (ID=20) needs to be cut (pink 

surface/yellow edges) and part of it needs to be filled (yellow surface/pink edges), and the total earthwork 

quantity is balanced in this triangular cell, as the volume=0 m3 (see Figure 91 d); when the design plane is 

20 m, the selected triangular cell needs to be filled with 2,000 m3 (see Figure 91 e). Moreover, for 

monitoring and estimating the earthwork quantities at an active excavation site, capturing two low-high 

ortho-image pairs in two different times could be done. Then, the generated ortho-images and elevation-

maps can be used to determine the elevation changes and calculate the volume changes between those two 

time points. The critical process is to align the two ortho-images and elevation-maps to the same 

coordinate. Fortunately, it can be easily handled by the 2D image rotation and translation (see Figure 92). 

The elevation changes for any selected point, can be determined by subtracting the latest elevation-map 

from the previous elevation-map. Figure 92 shows an elevation monitoring demo, where the ortho-images 

and elevation-maps were aligned to the same image center, and the x/y-profiles of the center point were 

overlapped to show the elevation changes. Furthermore, this research project utilized an experimental site 

at the lake beach, which simulated most cases of a real construction site including the larger sloped surface. 
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It is recommended that the developed methods and algorithms need to be evaluated at a real excavation site 

in the future.  

a)  b)  
 

c)  

d)  e)  

 

Figure 91 Volume estimation demo 
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are CG; green curves are CF. 

 

Figure 92 Elevation monitoring demo 
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Second, the image patch-based NCC matching approach can be improved in the developed low-

high ortho-image pair-based elevation determination method. In this research project, the patch-based NCC 

method was used to determine whether the reference pixel/patch in the reference image was strongly 

matched with the candidate pixel/patch in the target image or not. The used reference and target patches 

were grayscale single-channel, while future research could use the RGB 3-channel reference patch and 

target patch to increase redundant features and enhance the matching accuracy. In addition, the developed 

four-scaling reference patch feature descriptors were used to make the reference patch had the same size 

with the target patch, while the developed convolutional encoder-decoder network model could be used to 

generate the predicted target patch for each reference patch by reducing an up-sample layer in the encoder 

block. Then the target patch prediction can be used to compare with the candidate patches of each virtual 

plane in the target image. For a single low-high ortho-image pair, this proposed approach can be used in 

dense pixel grid matching after getting the initial pixel grid matching results. When the training datasets are 

big enough, the well-trained model can be used to generate the target patch prediction for new low-high 

ortho-image pairs.  

Third, the developed drone-based ortho-image and deep learning-based method can be used to 

estimate construction site elevations if the convolutional encoder-decoder network model is well-trained 

with datasets of similarly textured objects at sites. In this ortho-image-based 3D-reconstruction method, the 

model training datasets are the reference information to estimate the construction site elevations. Thus, the 

performance of the developed method relies on the quality and quantity of the model training datasets. The 

quality means more comprehensive texture features and geometry shape features while the quantity helps to 

build the ability to ignore incorrect elevation values in the dataset and noise in the model predictions. In 

this research project, the elevation estimation model training dataset was limited to 10-m drone-based 

ortho-images, which only contain a few objects in a single image frame. In addition, the formation of the 

elevation-map only contains single elevation values in each 32×32-pixel patch. Therefore, adding the sixth 

convolution layer or adding the filters in the fifth convolution layer for the developed CNN encoder model 

has nonsignificant improvement in the model prediction. Future research can assign more elevation values 

to each 32×32-pixel patch by the dense pixel grid matching, and then, the developed model may need 

additional CNN encoder layers and CNN decoder layers to connect the added elevation features. In 
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addition, increasing the drone flight altitude can enlarge an image’s spatial resolution and include more 

objects. Therefore, future research can train the developed model with more datasets at different altitudes 

other than the 10 m ortho-images. Furthermore, to increase the accuracy of the elevation estimation, future 

research would use image classification to assign a class-label for each patch (32×32-pixel). The class-label 

can be used as the additional reference information (feature-map) to increase the accuracy of the elevation 

prediction.  

Fourth, this research project only considered removing the static vegetation blocks from the 

image-based construction site surveying results. The model training datasets only contain the static objects 

on a construction site, such as the static vegetation block and static structures. The CNN-based image 

classification model was developed to identify the predefined static objects using the drone-based still 

ortho-images. The experimental results confirmed that the developed classification model can be applied in 

construction site surveying. However, there are additional works that need to be done until it can be used 

for monitoring earthwork operations on a construction site in real time. The active excavating construction 

site is much more complex than the still construction site. The dynamic objects such as excavators, dozers, 

trucks and workers on the construction site have impacts on accurately determining the site elevations using 

the non-contact surveying methods. For example, a moving dozer may be included in overlapping ortho-

image pairs with different locations, which will lead to the incorrect image pair matching using the 

traditional drone photogrammetry method. If the dozer is stopped during the capture of the ortho-image 

pair, it can still have an impact on the results of construction site surveying because they contain the height 

of construction equipment. Thus, future research is needed to extend the CNN-based image classification 

model training dataset to include all the potential static and dynamic objects at not only a still construction 

site but also an active construction site. 
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