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Mustafa Ç. Korkmaz1, Emrah Altun2, Haitham M. Yousof3 & G.G. Hamedani4

1 Department of Measurement and Evaluation, Artvin Çoruh University, Artvin, Turkey
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Correspondence: Mustafa Ç. Korkmaz, Department of Measurement and Evaluation, Artvin Çoruh University, 08000,
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Abstract

In this study, a new flexible family of distributions is proposed with its statistical properties as well as some useful
characterizations. The maximum likelihood method is used to estimate the unknown model parameters by means of two
simulation studies. A new regression model is proposed based on a special member of the proposed family called, the
log odd power Lindley Weibull distribution. Residual analysis is conducted to evaluate the model assumptions. Four
applications to real data sets are given to demonstrate the usefulness of the proposed model.

Keywords: mixture family, power Lindley distribution, regression modeling, Q-Q plot, sensitivity analysis

1. Introduction

As of late, there has been an extraordinary enthusiasm for introducing more flexible distributions through extending the
classical distributions by incorporating additional shape parameters to the baseline model. Many generalized families of
distributions have been proposed and studied over the last two decades for modeling data in many applied areas. So,
several classes of distributions have been constructed by extending common families of continuous distributions. These
generalized distributions give more flexibility via adding one (or more) shape parameters to the baseline model. They
were pioneered by Gupta et al. (1998) who proposed the exponentiated-G (Exp-G) class, which consists of raising the
cumulative distribution function (cdf) to a positive power parameter. Many other classes can be cited such as the T-X
family by Alzaatreh et al. (2013), the Lomax-G by Cordeiro et al. (2014), Burr X generator by Yousof et al. (2016),
the generalized two-sided class of distributions by Korkmaz and Genç (2017), the Burr XII generator by Cordeiro et al.
(2018), among others.

Recently, Ghitany et al. (2013) introduced the power Lindley (PL) distribution with the following cdf and probability
density function (pdf)

FPL (x;α, β) = 1 − [
1+βxα/ (β + 1)

]
e−βxα , x ≥ 0, (1)

and
fPL (x;α, β) = αβ2 (1 + xα) xα−1e−βxα/ (β + 1) , x > 0, (2)

respectively, where α > 0 is a shape parameter and β > 0 is a scale parameter. Using the T- X idea, we define the new

family by taking W
[
G

(
x;ψ

)]
=

G
(
x,ψ

)
1−G

(
x,ψ

) and r(t) = fPL (t;α, β), where G
(
x;ψ

)
is the baseline cdf depending on the vector

parameter ψ. The cdf of the new family is given by

F(x) = F
(
x;α, β,ψ

)
= 1 −

1 + β

β + 1

 G
(
x,ψ

)
1 −G

(
x,ψ

) 
α exp

−β
 G

(
x,ψ

)
1 −G

(
x,ψ

) 
α , x ∈ R. (3)

The pdf corresponding to (3) is given by
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F(x) = f
(
x;α, β,ψ

)
=

αβ2

β + 1

g
(
x,ψ

)
G

(
x,ψ

)α−1[
1 −G

(
x,ψ

)]α+1 (4)

×

1 +
 G

(
x,ψ

)
1 −G

(
x,ψ

) 
α exp

−β
 G

(
x,ψ

)
1 −G

(
x,ψ

) 
α︸                          ︷︷                          ︸

A

, x ∈ R,

where g
(
x;ψ

)
is the baseline pdf and α > 0 and β > 0 are two extra parameters. The hazard rate function (hrf) is given by

h
(
x;α, β, ψ

)
=

αβ2g
(
x;ψ

)
G

(
x;ψ

)α−1

(β + 1)
[
1 −G

(
x;ψ

)]α+1
(
1 + β

β+1

[
G
(
x;ψ

)
1−G

(
x;ψ

) ]α)
(
1 +

[
G
(
x;ψ

)
1−G

(
x;ψ

) ]α) , x ∈ R. (5)

We call this new family the odd power Lindley-G family and denote it by OPL − G(α, β, ψ). For α = 1, the OPL − G
family is reduced to the OL −G family which was introduced by Silva et al. (2017).

Let T be a PL random variable in (1) and (2). The OPL-G random variable having cdf (3) can be derived as follows

P (X ≤ x) = Pr
{
T ≤ G

(
x;ψ

)
/
[
1 −G

(
x;ψ

)]}
.

Hence, the random variable X = G−1
[
T/ (T + 1) ;ψ

]
has the OPL-G distribution, where G−1

(
· ;ψ

)
is the inverse of the

baseline cdf.

We can also motivate the OPL-G family with the mixture family structure as follows. Let F1

(
x;α, β, ψ

)
be the cdf of the

odd Weibull-G family (OW-G) (Bourguignon et al., 2014) and F2

(
x;α, β, ψ

)
be the cdf of a generalized gamma-G family

(GG-G). We note that the cdfs of the OW-G and GG-G families are given by

F1

(
x;α, β, ψ

)
= 1 − exp

{
−β

[
G
(
x;ψ

)
1−G

(
x;ψ

) ]α} , x ∈ R,
and

F2

(
x;α, β, ψ

)
= 1 −

(
1 + β

[
G
(
x;ψ

)
1−G

(
x;ψ

) ]α) exp
{
−β

[
G
(
x;ψ

)
1−G

(
x;ψ

) ]α} , x ∈ R,
respectively. Then, the OPL-G family can be expressed as

OPL −G
(
x;α, β, ψ

)
= p

[
OW-G

(
x;α, β, ψ

)]
+ (1 − p)

[
GG-G

(
x;α, β, ψ

)]
, (6)

where p = β/ (β + 1) is the mixing proportion. Hence, we can say that the OPL-G family is a mixture family.

The rest of the paper is organized as follows. Useful expansions for pdf and cdf of OPL-G family are presented in Section
2. Some of its special cases are taken up in Section 3. In Section 4, we derive some of its mathematical properties. Section
5 deals with some characterizations of the new family. Section 6 offers the maximum likelihood estimation method. Two
Monte Carlo simulation studies performed in Section 7. A new log-location regression model as well as residual analysis
are presented in Section 8. Section 9 is devoted to applications to real data sets to illustrate empirically the importance of
the new model. Finally, some conclusions and future work are given in Section 10.

2. Useful Expansions for Density of OPL-G Family

By Expanding the quantity A in power series, the OPL-G pdf in (4) can be expressed as

f (x) =

∞∑
j=0

αβ2+ j

β + 1
(−1) j

j!
G (x)α j+α−1

[1 −G (x)]α j+α+1︸               ︷︷               ︸
B1

g (x)

+

∞∑
j=0

αβ2+ j

β + 1
(−1) j

j!
G (x)α j+2α−1

[1 −G (x)]α j+2α+1︸                ︷︷                ︸
B2

g (x).
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Using the generalized binomial expansion for the quantities B1 and B2 , we can write

f (x) =

∞∑
j.k=0

αβ2+ j

β + 1
(−1) j Γ (α j + α + k + 1)

j!k!Γ (α j + α + 1)
g (x) G (x)α j+α+k−1

+

∞∑
j,k=0

αβ2+ j

β + 1
(−1) j Γ (α j + 2α + k + 1)

j!k!Γ (α j + 2α + 1)
g (x) G (x)α j+2α−1

=

∞∑
j.k=0

a j,k (α j + α + k) g (x) G (x)α j+α+k−1

+

∞∑
j,k=0

b j,k (α j + 2α + k) g (x) G (x)α j+2α+k−1 ,

finally

f (x) =
∞∑

j,k=0

[
a j,kπα( j+1)+k (x)+b j,kπα( j+2)+k (x)

]
, (7)

where

a j,k =
αβ2+ j (−1) j Γ (α j + α + k + 1)

j!k! (β + 1)Γ (α j + α + 1) (α j + α + k)
,

b j,k =
αβ2+ j (−1) j Γ (α j + 2α + k + 1)

j!k! (β + 1)Γ (α j + 2α + 1) (α j + 2α + k)
,

and πδ(x) = δg(x,ψ) G(x,ψ)δ−1 is the pdf of the Exp-G distribution with power parameter δ. The corresponding OPL-G cdf
can be written as

F (x) =
∞∑

j.k=0

[
a j,kΠα( j+1)+k (x)+b j,kΠα( j+2)+k (x)

]
, (8)

where Πδ(x) = G(x,ψ)δ is the cdf of Exp-G with power parameter δ. Equation (7) and (8) reveal that pdf of OPL-G is a
linear combination of Exp-G densities. Thereby, some properties of the proposed family such as moments and generating
function can be determined by means of Exp-G distribution. The properties of Exp-G distributions have been studied
by many authors in recent years, see Shirke and Kakade (2006) for exponentiated log-normal and Nadarajah and Gupta
(2007) for exponentiated gamma distributions, among others.

3. Some Members of the OPL-G Family

The OPL-G family can produce great flexible models by using any baseline models. Here, we present three special cases
of this family since they extend some widely-known distributions. We give pdf and cdf of the new distributions. The hrfs
of these distributions can be obtained from Equation (5).

3.1 The OPL-Normal (OPL-N) Distribution

The normal distribution, symmetrical unimodal pdf shaped and increasing hrf shaped, is well-known in statistics and other
areas. So, the OPL-N distribution is defined from (3) and (4) by taking G(x) and g(x) to be the cdf and pdf of the normal
distribution. Its pdf and cdf are given by

fOPL−N (x;Θ) =
αβ2ϕ

(
x−µ
σ

)
[Φ

(
x−µ
σ

)
]α−1

(β + 1)
[
1 − Φ

(
x−µ
σ

)]α+1

1 +  Φ
( x−µ
σ

)
1−Φ

( x−µ
σ

)
α

× exp

 −β
 Φ

( x−µ
σ

)
1−Φ

( x−µ
σ

)
α

 , x ∈ R,
and

FOPL−N (x;Θ) = 1 −
1 + β

β + 1

 Φ
( x−µ
σ

)
1−Φ

( x−µ
σ

)
α exp

 −β
 Φ

( x−µ
σ

)
1−Φ

( x−µ
σ

)
α

 , x ∈ R,
respectively, where Θ = (α, β, µ, σ)T is the parameter vector, µ ∈ R, α, β, σ > 0, ϕ (·) and Φ (·) are pdf and cdf of the
standard normal distribution respectively. We denote it by OPL − N (Θ). For α = 1, the OL-normal (OLN) distribution is
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obtained. Plots of the OPL-N density and hazard functions for selected parameter values are displayed in Figure 1. From
this Figure, we see that we obtain bi-modal shaped, firstly uni-modal shaped and then increasing shaped, left skewed and
right skewed distributions. Also, the plots indicate that the hrf of the OPL-N distribution is increasing and then bathtube
shaped.
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Figure 1. The pdf and hrf of the OPL-N distribution for selected parameter values

3.2 The OPL-Weibull (OPL-W) Distribution

The Weibull cdf with the shape γ > 0 and the scale parameters θ > 0 is G (x; θ, γ) = 1 − exp ( − (θx)γ) (for x > 0). The
pdf and cdf of a random variable X with OPL-W distribution, say X ∼ OPL −W (Θ) are, respectively, given by

fOPL−W (x;Θ) =
αγθγβ2xγ−1

(
1 − e−(θx)γ

)α−1

(β + 1) e−α(θx)γ

[
1 +

(
e(θx)γ − 1

)α]
exp

{
−β

(
e(θx)γ − 1

)α}
, x > 0,

and

FOPL−W (x;Θ) = 1 −
[
1 +

β

β + 1

(
e(θx)γ − 1

)α]
exp

{
−β

(
e(θx)γ − 1

)α}
, x ≥ 0

where Θ = (α, β, θ, γ)T is the parameter vector and α, β, θ, γ > 0. For α = 1, the OL-Weibull (OLW) distribution (Silva
et al., 2017) is obtained. Plots of the OPL-W density and hazard functions for selected parameter values are displayed
in Figure 2. From this Figure, we can say that the OPL-W distribution has very flexible pdf shapes such as uni-modal,
decreasing, U-shaped,firstly U-shaped and then decreasing shaped. Also, its hrf can be increasing, decreasing and bathtube
shaped.
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Figure 2. The pdf and hrf of the OPL-W distribution for selected parameter values

3.3 The OPL-Gamma (OPL-Ga) Distribution

Consider the gamma distribution with the shape parameter γ > 0 and the scale parameter θ > 0, where the pdf and cdf (for
x > 0) are given by G (x; λ, θ) = γ (λ, θx)Γ−1 (λ), where γ (λ, θx) =

∫ θx
0 tλ−1e−tdt is the upper incomplete gamma function

and Γ (·) is complete gamma function. The pdf and cdf of OPL-Ga are given by

fOPL−Ga (x;Θ) =
αβ2θλxλ−1e−θx

[
γ (λ, θx)Γ−1 (λ)

]α−1

(β + 1)Γ (λ)
[
1 − γ (λ, θx)Γ−1 (λ)

]α+1

[
1 +

(
γ(λ,θx)

Γ(λ)−γ(λ,θx)

)α]
× exp

{
−β

(
γ(λ,θx)

Γ(λ)−γ(λ,θx)

)α}
and

FOPL−Ga (x;Θ) = 1 −
[
1 +

β

β + 1

(
γ(λ,θx)

Γ(λ)−γ(λ,θx)

)α]
exp

{
−β

(
γ(λ,θx)

Γ(λ)−γ(λ,θx)

)α}
,

respectively, where Θ = (α, β, θ, λ)T is the parameter vector and α, β, θ, λ > 0. We denote it by OPL −Ga (Θ). For α = 1,
the OL-gamma (OLGa) distribution is obtained. Plots of the OPL-Ga density and hazard functions for selected parameter
values are displayed in Figure 3. From this Figure, we observe decreasing, uni-modal shaped, U-shaped and firstly U-
shaped and then decreasing shaped distributions. Also, the plots point out that the OPL-Ga distribution has decreasing,
increasing, bathtube shaped.
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Figure 3. The pdf and hrf of the OPL-Ga distribution for selected parameter values

4. Mathematical Properties

4.1 Moments, Incomplete Moments and Generating Function

The rthordinary moment of X is given by µ′r = E(Xr) =
∫ ∞
−∞ xr f (x) dx. Then we obtain

µ′r =
∞∑

j,k=0

[
a j,kYr

α( j+1)+k+b j,kYr
α( j+2)+k

]
. (9)

Henceforth, Yδ denotes the Exp-G model with power parameter δ. For δ > 0, we have E
(
Yr
δ

)
= δ

∫ ∞
−∞ xr g

(
x;ψ

)
G

(
x;ψ

)δ−1
dx,

which can be computed numerically in terms of the baseline quantile function (qf) QG

(
u;ψ

)
= G−1

(
u;ψ

)
as E

(
Yn
δ

)
=

δ
∫ 1

0 QG

(
u;ψ

)n
uδ−1du. Setting r = 1 in (9), we have the mean of X. The last integration can be computed numerically

for most parent distributions. The skewness and kurtosis measures can be calculated from the ordinary moments using
well-known relationships. The nthcentral moment of X, say Mn, is

Mn = E(X − µ)n =

n∑
h=0

(−1)h
(
n
h

)
(µ′1)n µ′n−h.

The rthincomplete moment, say Ir (t), of X can be expressed from (6) as

Ir (t) =
∫ t

−∞
xr f (x) dx =

∞∑
j,k=0

{∫ t

−∞

[
a j,k xrπα( j+1)+k (x)+b j,k xrπα( j+2)+k (x)

]
dx

}
. (10)

The mean deviations about the mean [Υ1 = E(|X − µ′1|)] and about the median [Υ2 = E (|X − M|)] of X are given by
Υ1 = 2µ

′

1F(µ′1)− 2I1(µ′1) and Υ2 = µ
′
1 − 2I1 (M), respectively, where µ′1 = E (X), M = Median(X) = Q(0.5) is the median,

F(µ′1) is easily calculated from (3) and I1 (t) is the first incomplete moment given by (10) with r = 1. A general equation
for I1 (t) can be derived from (10) as

I1 (t) =
∞∑

j,k=0

[
a j,k Jα( j+1)+k (x) + b j,k Jα( j+2)+k (x)

]
,

where Jδ (x) =
∫ t
−∞ x πδ (x) dx is the first incomplete moment of the Exp-G model. The moment generating function (mgf)

MX (t) = E
(
et X

)
of X can be derived using equation (9) as

MX (t) =
∞∑

j,k=0

[
a j,k Mα( j+1)+k (t)+b j,k Mα( j+2)+k (t)

]
,

where Mδ (t) is the mgf of Yδ. Hence, MX (t) can be determined from the Exp-G generating function.
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4.2 Quantile Function (qf) and Random Number Generation

The OPL-G family can easily be simulated by inverting (3) as follows: if U ∼ U(0, 1), then the random variable XU can
be obtained from the baseline qf, say QG(u) = G−1(u). In fact, the random variable

XU = G−1


(
− 1
β
− W−1((β+1)(U−1)e−β−1)

β
− 1

)1/α

1 +
(
− 1
β
− W−1((β+1)(U−1)e−β−1)

β
− 1

)1/α


has cdf (3), where G−1 (·) is the inverse of the baseline cdf and W−1 (·) denotes the negative branch of the Lambert W
function. XU can be used as a random number generator for OPL-G distribution. Also, we can obtain random number
from OPL-G by using mixture structure in (6). We can give this procedure with the following an algorithm.

Algorithm(Mixture Form)

1. Generate U ∼ Uni f orm(0, 1);

2. Generate Y ∼ OW −G(α, β, ψ);

3. Generate Z ∼ GG −G(α, β, ψ);

4. if U ≤ β
β+1 , then X = Y otherwise, set X = Z.

By using packet programme, the random variates from the OLP-G distribution can be generated by the transformation
method. For example, we first generate a random variate Y from the PL distribution by using the rplindley function in the
LindleyR package in R program, then set X = G−1

(
Y

Y+1

)
.

5. Characterizations

This section deals with various characterizations of OPL-G distribution. These characterizations are presented in two
directions: (i) based on a simple relationship between two truncated moments and (ii) in terms of the hazard function. It
should be pointed out that due to the nature of the OPL-G distribution our characterizations may be the only possible ones
for this distribution.

We present our characterizations (i) and (ii) in two subsections.

5.1 Characterizations Based on Truncated Moments

We employ a theorem due to Glänzel (1987), see Theorem 1 of Appendix A .The result, however, holds also when the
interval H is not closed since the condition of Theorem 1 is on the interior of H. We like to mention that this kind of
characterization based on a truncated moment is stable in the sense of weak convergence (see, Glänzel 1990).

Proposition 5.1. Let X : Ω → R be a continuous random variable and let q1 (x) =
(
1 +

[
G(x,ψ)

1−G(x,ψ)

]α)−1
and q2 (x) =

q1 (x) exp
{
−β

[
G(x,ψ)

1−G(x,ψ)

]α}
for x ∈ R. The random variable X belongs to the family (4) if and only if the function η defined

in Theorem1 has the form

η (x) =
1
2

exp

−β
 G(x, ψ)

1 −G(x, ψ)

α
 , x ∈ R.

Proof. Let X be a random variable with pdf (4), then

(1 − F (x)) E
[
q1 (X) | X ≥ x

]
=

β

β + 1
exp

−β
 G(x, ψ)

1 −G(x, ψ)

α


and

(1 − F (x)) E
[
q2 (X) | X ≥ x

]
=

β

2 (β + 1)
exp

−2β

 G(x, ψ)

1 −G(x, ψ)

α
 .
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Further,

η (x) q1 (x) − q2 (x) = −q1 (x)
2

exp

−β
 G(x, ψ)

1 −G(x, ψ)

α
 < 0 f or x ∈ R.

Conversely, if η is given as above, then

s′ (x) =
η′ (x) q1 (x)

η (x) q1 (x) − q2 (x)
=
αβg

(
x, ψ

)
G

(
x, ψ

)α−1[
1 −G

(
x, ψ

)]α+1 , x ∈ R,

and hence

s (x) = β

 G(x, ψ)

1 −G(x, ψ)

α , x ∈ R.

Now, according to Theorem 1, X has density (4) .

Corollary 5.1. Let X : Ω→ R be a continuous random variable and let q1 be as in Proposition 5.1. Then, X has pdf (4)
if and only if there exist functions q2 and η defined in Theorem 1 satisfying the differential equation

η′ (x) q1 (x)
η (x) q1 (x) − q (x)

=
αβg

(
x, ψ

)
G

(
x, ψ

)α−1[
1 −G

(
x, ψ

)]α+1 , x ∈ R.

The general solution of the differential equation in Corollary 5.1 is

η (x) = exp
{
β
[

G(x,ψ)
1−G(x,ψ)

]α}
×

[
−

∫ αβg
(
x,ψ

)
G
(
x,ψ

)α−1[
1−G

(
x,ψ

)]α+1 exp
{
−β

[
G(x,ψ)

1−G(x,ψ)

]α}
(q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant. Note that a set of functions satisfying the above differential equation is given in Proposition 5.1
with D = 0. Clearly, there exist other triplet of functions (q1, q2, η) satisfying the conditions of Theorem 1.

5.2 Characterization Based on Hazard Function

It is known that the hazard function, hF , of a twice differentiable distribution function, F, satisfies the first order differential
equation

f ′(x)
f (x)

=
h′F(x)
hF(x)

− hF(x).

For many univariate continuous distributions, this is the only characterization available in terms of the hazard function.
The following characterization establish a non-trivial characterization of OPL-G distribution, for α = 1, in terms of the
hazard function, which is not of the above trivial form.

Proposition 5.2. Let X : Ω → R be a continuous random variable. For α = 1,the pdf of X is (4) if and only if its
hazard function hF (x) satisfies the differential equation

h′F (x) −
g′

(
x, ψ

)
g
(
x, ψ

) hF (x) = β2g
(
x, ψ

) d
dx


[
β + 1 −G

(
x, ψ

)]−1[
1 −G

(
x, ψ

)]2

 , x ∈ R,

with the initial condition limx→−∞ hF (x) = β2

β+1 limx→−∞ g
(
x, ψ

)
.

Proof. If X has pdf (4), then clearly the above differential equation holds. Now, if the differential equation holds, then
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d
dx

{
g
(
x, ψ

)−1
hF (x)

}
= β2 d

dx


[
β + 1 −G

(
x, ψ

)]−1[
1 −G

(
x, ψ

)]2

 ,
or

hF (x) = β2g
(
x, ψ

) 
[
β + 1 −G

(
x, ψ

)]−1[
1 −G

(
x, ψ

)]2

 ,
which is the hazard function of the OPL-G distribution for α = 1.

Remark 5.1. It is easy to see that

d
dx


[
β + 1 −G

(
x, ψ

)]−1[
1 −G

(
x, ψ

)]2


= g

(
x, ψ

) 
[
β + 1 −G

(
x, ψ

)]−2[
1 −G

(
x, ψ

)]2


3 +

2β

1 −G
(
x, ψ

)
 .

6. Estimation and Inference

Here, we consider estimation of the unknown parameters of the OPL-G distribution by the maximum likelihood method.
Let x1, . . . , xn be a random sample from the OPL-G distribution with a (q + 2) × 1 parameter vector Ψ =(α, β, ψ)ᵀ, where
ψ is a q × 1 baseline parameter vector. The log-likelihood function for Ψ is given by

ℓ(Ψ) = n logα − 2n log β − n log (β + 1) +
n∑

i=1

log g
(
xi;ψ

)
+ (α − 1)

n∑
i=1

log G(xi;ψ)

− (α + 1)
n∑

i=1

log
[
1 −G

(
xi;ψ

)]
+

n∑
i=1

log
(
1 + ηαi

)
− β

n∑
i=1

ηαi ,

where ηi = G
(
xi;ψ

)
/
[
1 −G

(
xi;ψ

)]
. The components of the score vector, U (Ψ) = ∂ℓ

∂Ψ
=

(
∂ℓ
∂α
, ∂ℓ
∂β
, ∂ℓ
∂ψ

)ᵀ
, are given as

∂ℓ

∂α
=

n
α
+

n∑
i=1

log G(xi;ψ) −
n∑

i=1

log
[
1 −G

(
xi;ψ

)]
+

n∑
i=1

ηαi log (ηi)
1 + ηαi

− β
n∑

i=1

ηαi log (ηi) ,

∂ℓ

∂β
= −2n

β
− n
β + 1

−
n∑

i=1

ηαi ,

and (for r = 1, ..., q)

∂ℓ

∂ψ
r

=

n∑
i=1

∂g(xi;ψ)/∂ψ
r

g
(
xi;ψ

) + (α − 1)
n∑

i=1

[
∂G(xi;ψ)/∂ψ

r

]
+ (α + 1)

n∑
i=1

∂G(xi;ψ)/∂ψ
r

1 −G
(
xi;ψ

) +α n∑
i=1

ζiη
α−1
i

1 + ηαi
− αβ

n∑
i=1

ζiη
α−1
i ,

where
ζi =

[
∂G(xi;ψ)/∂ψ

r

] [
1 −G

(
xi;ψ

)]−2
.

Setting the nonlinear system of equations Uα = Uβ = Uψ
r
= 0 (for r = 1, . . . , q) and solving them simultaneously yields

the MLEs Ψ̂ = (α̂, β̂, ψ̂
ᵀ

)ᵀ. To solve these equations, it is more convenient to use nonlinear optimization methods such
as the quasi-Newton algorithm to numerically maximize ℓ(Ψ). For interval estimation of the parameters, we can evaluate
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numerically the elements of the (q + 2) × (q + 2) observed information matrix J(Ψ) = {− ∂2ℓ
∂θr θs
}. Under standard regularity

conditions when n → ∞, the distribution of Ψ̂ can be approximated by a multivariate normal Np(0, J(Ψ̂)−1) distribution
to construct approximate confidence intervals for the parameters. Here, J(Ψ̂) is the total observed information matrix
evaluated at Ψ̂. The method of the re-sampling bootstrap can be used for correcting the biases of the MLEs of the model
parameters. Good interval estimates may also be obtained using the bootstrap percentile method.

We can compute the maximum values of the unrestricted and restricted log-likelihoods to obtain likelihood ratio (LR)
statistics for testing sub-model of the OPL-G distribution. Hypothesis tests of the type H0 : ω = ω0 versus H1 : ω , ω0,
where ω is a vector formed with some components ofΨ and ω0 is a specified vector, can be performed using LR statistics.
For example, the test of H0 : α = 1 versus H1 : H0 is not true is equivalent to comparing the OPL-G and PL-G
distributions and the LR statistic is given by w = 2{ℓ(α̂, β̂, ψ̂) − ℓ(1, β, ψ̃)}, where α̂, β̂ and ψ̂ are the MLEs under H and ψ̃
is the estimate under H0.

We can compute the maximum values of the unrestricted and restricted log-likelihoods to obtain likelihood ratio (LR)
statistics for testing some sub-models of the OPL-G distribution.

7. Log-OPL-W Regression Model

Let X be a random variable having the OPL-W density function with four parameters α > 0, β > 0, θ > 0 and γ > 0, given
in Section 3. The density function of Y = log(X), replacing γ = 1/σ and θ = exp (−µ), is given by (for y ∈ ℜ)

f (y) = αβ2

σ(β+1)
exp[( y−µ

σ )−exp( y−µ
σ )]{1−exp[ − exp( y−µ

σ )]}α−1

[2−exp[ − exp( y−µ
σ )]]α+1

×
(
1 +

[ {1−exp[ − exp( y−µ
σ )]}

2−exp[ − exp( y−µ
σ )]

]α)
exp

{
−β

[ {1−exp[ − exp( y−µ
σ )]}

2−exp[ − exp( y−µ
σ )]

]α} , (11)

where µ ∈ ℜ is the location parameter, σ > 0 is the scale parameter and α > 0, β > 0 are the shape parameters. LOPLW
distribution is denoted as Y ∼ LOPLW(α, β, σ, µ). Figure 5 displays density plots of LOPLW distribution for some
parameter values. As seen from Figure 4, LOPLW distribution can be very flexible for modeling left skewed data.
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Figure 4. Plots of the LOPLW density for selected parameter values

The corresponding survival function is

S (y) =

1 + β

β + 1


{
1 − exp

[
− exp

(
y−µ
σ

)]}
2 − exp

[
− exp

(
y−µ
σ

)] 
α exp

−β

{
1 − exp

[
− exp

(
y−µ
σ

)]}
2 − exp

[
− exp

(
y−µ
σ

)] 
α . (12)

The standardized random variable Z = (Y − µ)/σ has density function

f (z) = αβ2

(β+1)
exp[z−exp(z)]{1−exp[− exp(z)]}α−1

[2−exp[− exp(z)]]α+1

(
1 +

[ {1−exp[− exp(z)]}
2−exp[− exp(z)]

]α)
× exp

{
−β

[ {1−exp[− exp(z)]}
2−exp[− exp(z)]

]α}
.

(13)
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Based on the LOPLW density, given in (11), the log-linear location-scale regression model is proposed by linking the
response variable yi and the explanatory variable vector v⊤i =

(
vi1, ..., vip

)
by

yi = v⊤i β + σzi, i = 1, . . . , n, (14)

where the random error zi has density function (13), βββ = (β1, . . . , βp)⊤, σ > 0, α > 0 and β > 0 are unknown parameters.
The parameter µi = vvv⊤i βββ is the location of yi. The location parameter vector µ = (µ1, . . . , µn)⊤ is represented by a linear
model µ = Vβ, where V = (v1, . . . , vn)⊤ is a known model matrix.

Let (y1, v1), . . . , (yn, vn) be a sample of n independent observations, where each random response is defined by yi =

min{log(xi), log(ci)}. Let F and C be the sets of individuals for which yi is the log-lifetime or log-censoring, respectively.
The log-likelihood function for the vector of parameters τττ = (α, β, σ,β⊤)⊤ from model (14) has the form l(τττ) =

∑
i∈F

li(τ) +∑
i∈C

l(c)
i (τ), where li(τττ) = log[ f (yi)], l(c)

i (τττ) = log[S (yi)], f (yi) is the density (11) and S (yi) is the survival function (12) of

Yi. Then, the total log-likelihood function for τττ is given by

ℓ (τττ) = r log
(

αβ2

σ(β+1)

)
+

∑
i∈F

(zi − ui) + (α − 1)
∑
i∈F

log
{
1 − exp [−ui]

}
− (α + 1)

∑
i∈F

log
{
2 − exp [−ui]

}
+

∑
i∈F

log
(
1 +

[ {1−exp[−ui]}
2−exp[−ui]

]α)
− β ∑

i∈F

[ {1−exp[−ui]}
2−exp[−ui]

]α
+

∑
i∈C

log
(
1 + β

β+1

[ {1−exp[−ui]}
2−exp[−ui]

]α)
− β ∑

i∈C

[ {1−exp[−ui]}
2−exp[−ui]

]α
,

(15)

where ui = exp(zi), zi = (yi − v⊤i β)/σ and r is the number of uncensored observations and c is the number of censored
observations. The MLE τ̂ττ of the vector of unknown parameters can be evaluated by maximizing the log-likelihood (15).
The optim fuction of R software is used to minimize the negative log-likelihood function, given in (15). The asymptotic
distribution of (̂τττ− τττ) is multivariate normal Np+2(0,K(τττ)−1), where K(τττ) is the expected information matrix. The asymp-
totic covariance matrix K(τττ)−1 of τ̂ττ can be approximated by the inverse of the (p+2)× (p+2) observed information matrix
−Ł̈(τττ), whose elements can be evaluated numerically. The approximate multivariate normal distribution Np+2(0,−Ł̈(τττ)−1)
for τ̂ττ can be used to construct approximate confidence intervals for the parameters of τττ.

8. Simulation Studies

In this Section, we perform two simulation studies by using the OPL-W and OPL-N distributions to illustrate the per-
formance of MLEs for the parameters of these distribution. The random numbers generation is obtained with rplindley
function in the LindleyR package in R program. This method is given by qf subsection. MLEs results were obtained using
optim-CG routine in the R programme.

In the first simulation study, we obtain the graphical results and generate N = 1000 samples of size n = 20, 30, . . . , 1000
from OPL-W distribution with true parameters values α = 0.5, β = 10, θ = 1 and γ = 2. In this simulation study, we
calculate the empirical mean, standard deviations (sd), bias and mean square error (MSE) of the MLEs. The bias and
MSE are calculated by B̂iash =

1
1000

∑1000
i=1

(
ĥi − h

)
and M̂S Eh =

1
1000

∑1000
i=1

(
ĥi − h

)2
, respectively for h = α, β, θ, γ. We

give results of this simulation study in Figure 5.

In the second simulation study, we generate 1, 000 samples of sizes 20,50 and 100 from selected OPL-N distributions.
For this simulation study, we obtain the empirical means and sd’s of the parameters.The results of this simulation study
are reported in Table 1.

From Figure 5 and Table 1, we observe that when the sample size increases, the empirical means approach the true
parameter value for both distributions. For the same case, the standard deviations, biases and MSEs decrease in all the
cases. The above results are as expected.
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Figure 5. Simulation results of the special OPL-W distribution

Table 1. Empirical means and standard deviations (in parentheses) for the special OPL-N distributions

Parameters n = 20 n = 50 n = 100
α, β, µ, σ α̂ β̂ µ̂ σ̂ α̂ β̂ µ̂ σ̂ α̂ β̂ µ̂ σ̂

1,5,0,1 1.3281 4.8099 -0.0861 1.1638 1.1606 4.9131 -0.0355 1.1049 1.1311 4.9434 -0.0011 1.1002

(0.8949) (0.2851) (0.1737) (0.6879) (0.6665) (0.1495) (0.1259) (0.4826) (0.5544) (0.1147) (0.0904) (0.4434)

0.5,5,0,1 0.8338 4.6636 -0.2680 1.2233 0.6435 4.7598 -0.0974 1.1409 0.5745 4.8830 -0.0492 1.0686

(0.7375) (0.5231) (0.3835) (0.7881) (0.3751) (0.4942) (0.2725) (0.4535) (0.2864) (0.2862) (0.1897) (0.3523)

0.5,5,-1,2 0.7784 4.6867 -1.4902 2.4721 0.6129 4.8485 -1.2292 2.1792 0.5931 4.9133 -1.1668 2.1780

(0.6150) (0.6412) (0.6716) (1.4254) (0.3555) (0.4751) (0.4523) (0.8643) (0.2506) (0.2900) (0.3041) (0.6474)

2,10,1,2 2.0651 9.9460 0.9624 1.8793 1.9587 9.9682 1.0095 1.9271 2.0398 9.9793 1.0094 2.0674

(0.9860) (0.1015) (0.2657) (0.7970) (0.9088) (0.0725) (0.1921) (0.7541) (0.7284) (0.0641) (0.1210) (0.6208)

0.5,5,5,5 0.7379 5.0713 4.0969 5.8290 0.5406 5.2049 4.7107 5.0259 0.5354 4.9965 4.8673 5.1401

(0.5591) (1.0634) (1.1493) (2.6787) (0.1798) (0.6566) (0.5602) (1.0739) (0.1677) (0.3931) (0.3994) (0.9710)

10,3,-5,3 10.0295 3.0020 -5.0111 2.8605 9.9966 2.9923 -5.0042 2.9983 10.0048 3.0262 -4.9996 2.9731

(0.1425) (0.2560) (0.0485) (0.4680) (0.0880) (0.1340) (0.0290) (0.2995) (0.0628) (0.2219) (0.0244) (0.2054)

1,3,0.5,0.5 1.0454 2.7555 0.4449 0.4712 1.0145 2.8821 0.4864 0.4955 0.9811 2.9258 0.4885 0.4833

(0.7997) (0.3340) (0.0871) (0.3249) (0.5744) (0.3081) (0.0698) (0.2415) (0.3642) (0.1839) (0.0358) (0.1549)

0.5,5,-0.5,0.5 0.7696 4.8540 -0.6163 0.6145 0.6007 4.8989 -0.5351 0.5475 0.5761 4.9232 -0.5304 0.5333

(0.6217) (0.2594) (0.1805) (0.3963) (0.3560) (0.3125) (0.1222) (0.2162) (0.2624) (0.2932) (0.1057) (0.1525)

9. Real Data Applications

In this section, we present three applications to real data sets to illustrate the usefulness of the OPL-N, OPL-W and OPL-
Ga distributions. We compare these distribution model with the odd Burr normal (OBN) (Alizadeh et al., 2017), power
normal (PN) (Gupta and Gupta, 2008), OLN, normal (N), Lomax-Weibull (LxW) (Cordeiro et al., 2014), OLW, Weibull
(W), exponentiated generalized gamma (EGGa) (Cordeiro et al., 2011), OLGa, gamma (Ga) and PL models. The pdfs of
the OBN, PN, LxW and EGGa are given by
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fOBN (x;α, β, µ, σ) =
αβϕ

(
x−µ
σ

)
Φ

(
x−µ
σ

)α−1 [
1 − Φ

(
x−µ
σ

)]αβ−1

σ
{
Φ

(
x−µ
σ

)α
+

[
1 − Φ

(
x−µ
σ

)a]}β+1 , x, µ ∈ ℜ, α, β, σ > 0,

fPN (x; β, µ, σ) = βσ−1ϕ
(

x−µ
σ

) [
Φ

(
x−µ
σ

)]β−1
, x, µ ∈ ℜ, β, σ > 0,

fLxW (x;α, β, θ, γ) = αβαγθγxγ−1 [
β + (xθ)γ

]−α−1 , x > 0, α, β, θ, γ > 0

and

fEGGa (x;α, β, θ, λ) = αλθ (θx)λ−1 Γ−1 (β)
[
γ
(
β, (θx)λ

)
Γ−1 (β)

]α−1
e−(θx)λ , x > 0, α, β, θ, λ > 0,

respectively.

To determine the best model, we also computed the estimated log-likelihood values ℓ̂, Akaike Information Criteria (AIC),
corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan Quinn information crite-
rion (HQIC), Kolmogorov-Smirnov (K-S), Cramer von Mises (W∗) and Anderson-Darling (A∗) goodness of-fit statistics
for all distribution models. We note that the statistics W∗ and A∗ are described in detail in Chen and Balakrishnan (1995).
In general, it can be chosen as the best model which has the smaller the values of the AIC, CAIC, BIC, HQIC, K-S, W∗

and A∗ statistics and the larger the values of ℓ̂ and p-values. All computations are performed by the maxLike routine in
the R programme. The details are the followings.

9.1 Data Modelling for Three Sub-models

The first real data set is breaking strengths of 100 yarn given by Duncan (1974). The data are: 66, 117, 132, 111, 107, 85,
89, 79, 91, 97, 138, 103, 111, 86, 78, 96, 93, 101, 102, 110, 95, 96, 88, 122, 115, 92, 137, 91, 84, 96, 97, 100, 105, 104,
137, 80, 104, 104, 106, 84, 92, 86, 104, 132, 94, 99, 102, 101, 104, 107, 99, 85, 95, 89, 102, 100, 98, 97, 104, 114, 111,
98, 99, 102, 91, 95, 111, 104, 97, 98, 102, 109, 88, 91, 103, 94, 105, 103, 96, 100, 101, 98, 97, 97, 101, 102, 98, 94, 100,
98, 99, 92, 102, 87, 99, 62, 92, 100, 96, 98. This data also analyzed by Tahir et al. (2017).

The second data, studied by Meeker and Escobar (1998, p. 383), gives the times of failure and running times for a sample
of devices from a field-tracking study of a larger system. The data are: 275, 13, 147, 23, 181, 30, 65, 10, 300, 173, 106,
300, 300, 212, 300, 300, 300, 2, 261, 293, 88, 247, 28, 143, 300, 23, 300, 80, 245, 266. This data also analyzed by
Cordeiro et al. (2010) and Alexander et al. (2012).

The third data set refers to the lifetimes of 50 industrial devices put on life test at time zero given by Aarset (1987). The
data are: 0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0, 11.0, 12.0, 18.0, 18.0, 18.0, 18.0, 18.0, 21.0, 32.0, 36.0, 40.0,
45.0, 45.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 67.0, 67.0, 67.0, 67.0, 72.0, 75.0, 79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0,
85.0, 85.0, 85.0, 85.0, 85.0, 86.0, 86.0. These data are also analyzed by Cordeiro et al. (2017).

The results are reported in Table 2 and 3. These Tables clearly show that the distribution models of the OPL-G family
model have the smallest values of the AIC, CAIC, BIC, HQIC, K-S, W∗ and A∗ statistics and have the largest values of
the ℓ̂ and all p-values among the fitted models. Then, OPL-N, OPL-W and OPL-Ga models could be chosen as the best
models for the three data sets under the above criteria.

The histograms of the all data sets and the plots of the fitted pdfs and cdfs for all models are shown in Figures 6-8. From
these Figures, we see that the OPL-N model fits to first data set as bi-modal shaped. For other data sets, the OPL-W and
OPL-Ga models fit to the histograms of the data sets with a more adequate fitting than other models.

The results of LR statistics are shown in Table 4 for three data sets. We can say that the additional parameter of the all
OPL-G distribution is essential because we reject the null hypotheses of all three LR tests in favour of the OPL-N, OPL-W
and OPL-Ga distributions. Hence, these models provide a better representation of the data sets than the OLN, OLW and
OLGa models based on the LR test at the 5% significance level.
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Figure 6. The fitted pdfs and cdfs for the first data sets
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Figure 7. The fitted pdfs and cdfs for the second data sets
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Figure 8. The fitted pdfs and cdfs for the third data sets
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Table 2. MLEs, standard erros of the estimates (in parentheses), estimated log-likelihood values
(
ℓ̂
)

and, K-S statistics
([·] denotes its p-value)

Data Set Model α̂ β̂ µ̂ σ̂ ℓ̂ K − S
I OPL-N 0.0121 3.9929 124.9099 1.6778 -380.5249 0.0929

(0.0014) (0.4091) (0.0742) (0.0743) [0.3534]

OBN 0.1580 5.1797 124.2684 5.9323 -384.1239 0.1120
(0.0849) (0.9733) (2.7426) (1.8944) [0.1630]

OLN 1 21.7148 155.2424 29.6520 -404.3403 0.2023
(3.5901) (2.7683) (1.6163) [0.0006]

PN − 5.2988 77.4016 18.4740 -391.5384 0.1383
(2.2521) (6.3475) (1.9113) [0.0437]

N − − 99.4300 12.3969 -393.6391 0.1562
(1.2672) (0.8961) [0.0152]

θ̂ γ̂

II OPL-W 0.0656 0.5289 0.0127 2.4919 -177.6348 0.1534
(0.0008) (0.1091) (7e-07) (3e-05) [0.4803]

LxW 71.3342 80.9065 0.0059 1.2688 -184.4178 0.2191
(9.7238) (4.1035) (0.0013) (0.2048) [0.1123]

OLW 1 0.6738 0.0062 0.8592 -179.8946 0.1980
(0.4413) (0.0034) (0.2521) [0.1901]

PL 0.7837 0.0357 − − -185.8193 0.2172
(0.1077) (0.0208) - - [0.1178]

W − − 0.0053 1.2650 -184.3138 0.2194
(0.0008) (0.2045) [0.1112]

θ̂ λ̂

III OPL-Ga 0.0946 0.6416 0.3736 6.9166 -222.3725 0.1288
(0.0104) (0.1002) (0.0090) (0.0059) [0.3773]

EGGa 0.0066 11.3194 0.0130 9.2635 -225.3919 0.2133
(0.0003) (1.3198) (0.0009) (1.7648) [0.0211]

OLGa 1 0.4698 0.0108 0.3795 -230.6980 0.1562
(0.2714) (0.0026) (0.1923) [0.1741]

PL 0.6640 0.1612 − − -242.0873 0.1961
(0.0685) (0.0448) [0.0428]

Ga − − 0.0175 0.7991 -240.1902 0.2022
(0.0040) (0.1379) [0.0335]
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Table 3. Information criteria results, A∗ and W∗ statistics ([·] and {·} denote their p-values)

Data Set Model AIC CAIC BIC HQIC A∗ W∗

I OPL-N 769.0498 769.4708 779.4705 773.2672 0.8802 0.1514
[0.4264] {0.3859}

OBN 776.2479 776.6689 786.6686 780.4653 1.2697 0.2163
[0.2424] {0.2382}

OLN 814.6805 814.9305 822.4960 817.8436 5.2421 0.9078
[0.0022] {0.0039}

PN 789.0767 789.3267 796.8922 792.2398 2.1550 0.3624
[0.0757] {0.0908}

N 791.2783 791.4020 796.4886 793.3870 2.6855 0.4426
[0.0398] {0.0557}

II OPL-W 363.2695 364.8695 368.8743 365.0626 1.4369 0.2046
[0.1923] {0.2593}

LxW 376.8356 378.4356 382.4404 378.6286 2.1105 0.3315
[0.0804] {0.1101}

OLW 365.7893 366.7123 369.9928 367.1340 1.9824 0.2750
[0.0943] {0.1591}

PL 375.6386 376.0830 378.4410 376.5351 2.1183 0.3499
[0.0796] {0.0978}

W 372.6277 373.0721 375.4301 373.5242 2.1098 0.3315
[0.0804] {0.1101}

III OPL-Ga 452.7450 453.6339 460.3931 455.6575 1.2226 0.1613
[0.2589] {0.3577}

EGGa 458.7839 459.6728 466.4320 461.6963 4.0595 0.6168
[0.0082] {0.0199}

OLGa 467.3961 467.9178 473.1321 469.5804 2.3971 0.3402
[0.0563] {0.1043}

PL 488.1747 488.4300 491.9987 489.6309 3.3958 0.5350
[0.0175] {0.0321}

Ga 484.3804 484.6358 488.2045 485.8367 3.2502 0.5566
[0.0206] {0.0282}

Table 4. LR statistics for the data sets

Data Set Model Hypothesis w p-value
I OPL − N vs OLN H0 : α = 1, H1 : H0 false 47.6308 5.1e-12
II OPL −W vs OLW H0 : α = 1, H1 : H0 false 4.5199 0.0335
III OPL −Ga vs OLGa H0 : α = 1, H1 : H0 false 16.6510 4.5e-05

9.2 Regression Modelling: Stanford Heart Transplant Data

Recently, Brito et al. (2017) introduced the Log-Topp-Leone odd log-logistic-Weibull (Log-TLOLL-W) regression model.
Brito et al. (2017) used the Stanford heart transplant data set to prove the usefulness of Log-TLOLL-W regression model.
Here, we use the same data set to demonstrate the flexibility of LOPLW regression model against to Log-TLOLL-W
regression model. These data set is available in p3state.msm package of R software. The sample size is n = 103, the
percentage of censored observations is 27%. The aim of this study is to relate the survival times (t) of patients with the
following explanatory variables: x1- year of acceptance to the program; x2- age of patient (in years); x3- previous surgery
status (1 = yes, 0 = no); x4- transplant indicator (1 = yes, 0 = no); ci - censoring indicator (0 =censoring, 1 =lifetime
observed).

The regression model fitted to the voltage data set is given by

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + σzi , (16)

respectively, where the random variable yi follows the LOPLW distribution given in (11).
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The results for above regression models are presented in Table 5. The MLEs of the model parameters and their SEs, p
values and −ℓ, AIC and BIC statistics are listed in Table 5. Based on the figures in Table 5, LOPLW model has the lowest
values of the −ℓ, AIC and BIC statistics. Therefore, it is clear that LOPLW regression model outperforms among others
for these data set. According to results of LOPLW regression model, β1 and β2 are statistically significant at 5% level.

Table 5. MLEs of the parameters to Stanford Heart Transplant Data for Log-Weibull, Log-TLOLL-W and LOPLW
regression models with corresponding SEs, p-values and −ℓ, AIC and BIC statistics

Models

Parameters Log-Weibull Log-TLOLL-W LOPLW

Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value

α - - - 2.34 3.546 - 4.713 2.809 -
β - - - 24.029 3.015 - 0.032 0.021 -
σ 1.478 0.133 - 9.68 12.526 - 16.327 8.381 -
β0 1.639 6.835 0.811 -0.645 8.459 0.939 -0.443 3.334 0.894
β1 0.104 0.096 0.279 0.074 0.097 0.448 0.253 0.092 0.006
β2 -0.092 0.02 <0.001 -0.053 0.02 0.009 -0.076 0.018 <0.001
β3 1.126 0.658 0.087 1.676 0.597 0.005 0.191 0.528 0.717
β4 2.544 0.378 <0.001 2.394 0.384 <0.001 0.215 0.373 0.564

−ℓ 171.2405 164.684 161.237

AIC 354.481 345.368 338.474

BIC 370.289 366.445 359.552

Residual Analysis of LOPLW model for Stanford heart transplant data set

Residual analysis is conducted to evaluate the adequacy of the fitted model. For this goal, two type residual are considered:
martingale and modified deviance residuals. The martingale residuals is defined in counting process and takes values
between +1 and−∞. The martingale residuals for LOPLW model is,

rMi =


1 + log

(
1 + β

β+1

[ {1−exp[ −ui]}
2−exp[ −ui]

]α)
exp

{
−β

[ {1−exp[ −ui]}
2−exp[ −ui]

]α}
ifi ∈ F,

log
(
1 + β

β+1

[ {1−exp[ −ui]}
2−exp[ −ui]

]α)
exp

{
−β

[ {1−exp[ −ui]}
2−exp[ −ui]

]α}
ifi ∈ C,

(17)

where ui = exp(zi), zi = (yi − v⊤i β)/σ. The modified deviance residual, proposed by Therneau et al. (1990), is given by

rDi =

{
sign

(
rMi

) { −2
[
rMi + log

(
1 − rMi

)]}1/2, ifi ∈ F
sign

(
rMi

) { −2rMi

}1/2, ifi ∈ C,
(18)

where r̂Mi is the martingale residual.

Figure 9 displays the index plot of the modified deviance residuals and its Q-Q plot against to N(0, 1) quantiles for
Stanford heart transplant data set. Based on Figure 9, we conclude that none of observed values appears as possible
outliers. Therefore, the fitted model is appropriate for these data set.
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Figure 9. (a) Index plot of the modified deviance residual and (b) Q-Q plot for modified deviance residual

10. Conclusions

In this paper, we proposed a new flexible class of distributions and provided a comprehensive treatment its mathematical
properties as well as some useful characterizations. The maximum likelihood method is used to estimate the model
parameters, we assess the performance of the maximum likelihood estimators by means of two simulation studies. Also
we introduce a new regression model based on a special member of the new family called the log odd power Lindley
Weibull distribution. We show that the new log location-scale regression model for lifetime data can be very useful in
analysing real data and provide more realistic fits than other regression models. Index plot of the modified deviance
residual and Q-Q plot for modified deviance residual are presented to illustrate that our new model is more appropriate
to Stanford heart transplant data set than other competitive models like log-Weibull and log-Topp-Leone odd log-logistic-
Weibull model. We hope that the results given in this paper will be useful for practitioners and researchers.

Appendix A

Theorem 1. Let Ω,F ,P be a given probability space and let H = [a, b] be an interval for some d < b a = −∞, b = ∞
might as well be allowed. Let X : Ω → H be a continuous random variable with the distribution function F and let q1
and q2 be two real functions defined on H such that

E
[
q2 (X) | X ≥ x

]
= E

[
q1 (X) | X ≥ x

]
η (x) , x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H) and F is twice continuously differentiable
and strictly monotone function on the set H. Finally, assume that the equation ηq1 = q2 has no real solution in the interior
of H. Then F is uniquely determined by the functions q1, q2 and η , particularly

F (x) =
∫ x

a
C

∣∣∣∣∣ η′ (u)
η (u) q1 (u) − q2 (u)

∣∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = η′ q1
ηq1−q2

and C is the normalization constant, such that∫
H dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated moments is stable in the sense of
weak convergence (see, Glänzel [2]), in particular, let us assume that there is a sequence {Xn} of random variables with
distribution functions {Fn} such that the functions q1n , q2n and ηn (n ∈ N) satisfy the conditions of Theorem 1 and
let q1n → q1 , q2n → q2 for some continuously differentiable real functions q1 and q2 . Let, finally, X be a random
variable with distribution F . Under the condition that q1n (X) and q2n (X) are uniformly integrable and the family {Fn}
is relatively compact, the sequence Xn converges to X in distribution if and only if ηn converges to η , where
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η (x) =
E

[
q2 (X) | X ≥ x

]
E

[
q1 (X) | X ≥ x

] .
This stability theorem makes sure that the convergence of distribution functions is reflected by corresponding convergence
of the functions q1 , q2 and η , respectively. It guarantees, for instance, the ’convergence’ of characterization of the
Wald distribution to that of the Lé vy-Smirnov distribution if α→ ∞.

A further consequence of the stability property of Theorem 1 is the application of this theorem to special tasks in statistical
practice such as the estimation of the parameters of discrete distributions. For such purpose, the functions q1, q2
and, specially, η should be as simple as possible. Since the function triplet is not uniquely determined it is often
possible to choose ξη as a linear function. Therefore, it is worth analyzing some special cases which helps to find
new characterizations reflecting the relationship between individual continuous univariate distributions and appropriate in
other areas of statistics.
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