
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Marketing Faculty Research and Publications Marketing, Department of 

3-2018 

A Simple Procedure to Correct for Attenuation of ANOVA A Simple Procedure to Correct for Attenuation of ANOVA 

Statistics in Decision Sciences Research Statistics in Decision Sciences Research 

Srinivas Durvasula 

Manoj K. Malhotra 

Subhash C. Sharma 

Follow this and additional works at: https://epublications.marquette.edu/market_fac 

 Part of the Marketing Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/343954937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/market_fac
https://epublications.marquette.edu/market
https://epublications.marquette.edu/market_fac?utm_source=epublications.marquette.edu%2Fmarket_fac%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/638?utm_source=epublications.marquette.edu%2Fmarket_fac%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages


Great Lakes Herald 72 March 2018,  Vol 12, Issue No 1

A Simple Procedure to Correct for 
Attenuation of ANOVA Statistics in  

Decision Sciences Research
Srinivas Durvasula 
Marquette University

&

Manoj K. Malhotra 
Case Western Reserve University

&

Subhash Sharma 
University of South Carolina

Abstract : Studies in the field of Decision Sciences that employ multi-item rating 
scales to measure latent constructs have predominantly used ANOVA rather 
than Means and Covariance Structure Analysis (MACS) in order to investigate 
group mean differences.  However, traditional statistics in ANOVA (e.g., t and 
F) attenuate when dealing with imperfect measures, which in turn potentially 
leads to incorrect interpretation of results in the form of accepting the false null 
hypothesis and/or underestimating the true effect size.  To address this issue, we 
describe in this paper a new but simple procedure to disattenuate the ANOVA-
based statistics for measurement error. Using previously published studies, we 
provide an illustration for practically implementing this procedure that has not 
been used in prior literature. A major implication of our work is that scholars in 
decision sciences can now report correct estimates of test statistic and enhanced 
effect size when examining between-group mean differences, thereby leading to 
a richer and more appropriate interpretation of findings in contemporary research. 

Keywords: Comparing Group Means, Attenuation Correction, Measurement 
Error, Disattenuation of Effect Size, Disattenuation of Test Statistics, ANOVA.

1. Introduction : It is a common practice in empirical Decision Sciences (DS) 
research to use multi-item rating scales to measure latent variables. Summing 
responses to individual scale items forms composite scores, and then ANOVA is 
applied on these sum scores to determine whether summed score (i.e., operational 
measure of latent mean) varies across various groups or conditions (Buell & 
Norton 2011; Koufteros et al. 2014, Saeed & Malhotra 2011, Schoenherr ,T et 
al. 2012). Indeed, this approach is also common in related disciplines including 
MIS (de Guinea & Webster, 2013), strategy (Hekman et al. 2017, Martin 2016)), 
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organizational behavior (Kim, Bhave & Glomb 2013), operations management 
(Bendoly, Rosenzweig & Statement 2009), and marketing (Kopalle, Lehman 
& Farley 2010).  Because the multi-item rating scales are often imperfect (i.e., 
reliability < 1.0), the most suitable approach for examining latent mean differences 
across various groups, for various reasons, is to use Structural Equation Modeling 
(SEM) or Means and Covariance Structure Analysis (MACS). Unfortunately, 
SEM is data hungry and more difficult to apply. As such, DS empirical researchers 
have pre-dominantly relied on the simpler ANOVA approach for group mean 
differences.

	 When measures with perfect reliability are used, ANOVA-based statistics 
(i.e., F statistic and effect size f) are not biased. However, when an imperfect 
measure is used to operationalize a latent construct, which is invariably the case 
as the reliability of empirical measures is seldom if ever perfect, ANOVA-based 
statistics are attenuated (or underestimated) due to measurement error. Because of 
such attenuation, erroneous conclusions about group differences may arise. Effect 
size and p-values will tend to be underestimated, increasing the likelihood that the 
null-hypotheses that are false are not rejected (i.e., Type II error occurs), or that the 
effect sizes are incorrectly interpreted. Even in studies where attenuated F-statistic 
yields significant mean difference, uncorrected effect size could significantly 
underestimate the true effect. Such a possibility is not surprising, as other studies 
have shown that imperfect measures attenuate correlations and t-statistics (Bobko, 
Roth, & Bobko, 2001; Durvasula, Sharma, & Carter, 2012; Nunnally & Bernstein, 
1994). 

	 How should then DS empirical researchers working with imperfect measures 
proceed when their research objective is to compare latent means across conditions/
groups for hypothesis testing, for incidental insights, or for manipulation checking 
within experimental studies? The data-hungry SEM approach, while correct, 
imposes a burden on data collection that may not be possible to overcome 
given the difficulty associated with collecting primary data from managers.  In 
this context, previous studies (Forza 2002, Verma and Goodale 1995) have also 
highlighted the problem of prevalence of low sample sizes in our field, which is 
especially true when using multi-item survey instruments (Malhotra and Grover 
1998). In addition, SEM is difficult to apply when multiple independent variables 
are involved. As an alternative, our paper demonstrates a simple procedure that 
disattenuates ANOVA-based F-statistic and effect size. By applying this procedure, 
DS empirical researchers that use imperfect measures of latent variables and face 
sample size constraints can avoid the data-hungry SEM approach, and continue 
to follow the traditional ANOVA approach to accurately report the true effect size 
and statistical significance of group mean differences. 
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With respect to the layout of this paper, we first show how to disattenuate the 
F statistic and the associated effect size, f, when using ANOVA. Next, using 
data from OM studies published in the public domain, we show the applicability 
of the proposed disattenuation procedure and discuss the results. We conclude 
by providing a guideline for future DS researchers on the appropriate use of 
disattenuated ANOVA when testing for group differences. 

2. Anova F Statistic and Effect Size: The Need for Disattenuation

In this section, we develop the disattenuation procedure. In ANOVA, when a 
p-item scale is used as a measure of the latent variable, the composite score or 
average of the responses to individual scale items (AOS) is often used as the 
dependent variable. In such a scenario, and when the measurement scale is less 
than perfect (reliability < 1), we show that the mean of AOS (i.e., μ (AOS)) will 
be unaffected; it will remain as an unbiased estimate of population mean (κ). But 
given the measurement error, VAR (AOS) will not be an unbiased estimate of true 
score variance (φ). This finding is important for determining how to disattenuate 
the ANOVA statistics.

2.1 Expectation and Variance of the Mean of Multi-Item Scale

For a p-item scale, let      be the response of the ith subject for the pth item. The 
relationship between         and the latent score can be represented as:

where λ represents the loading, ξ is the latent construct and ε is measurement error.

	 AOS, the average of summed score across P scale items, then becomes: 

In forming the AOS, researchers generally assign equal weight to all items (i.e., 
assume all λ to be equal to one). Under this assumption,

The mean of AOS, μAOS then becomes:

ipx
ipx

Xo, = A,.;, + c,,. 
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Since error terms are assumed to be independent, 

Hence, ; where κ is the mean of the latent construct.  
The implication of this finding is that the mean of sum scores,μAOS , is an unbiased 
estimate of the true mean score κ.  Next, the variance of AOS, V(AOS), can be 
expressed as:

as the errors are assumed to be uncorrelated. In the above equation φ and E are, 
respectively, the variance of the latent construct (i.e., true score variance) and the 
variances of the error terms (i.e., error variance). It is hence clear that the variance 
of AOS, which is often referred to as observed score variance, is a function of true 
score variance (φ) and error variance (E) (i.e., V(AOS) = (φ+E)). In sum, unlike 
the mean of observed summed scores, the variance of the observed summed scores 
is affected by imperfect measures.

2.2 V(AOS) and Reliability of Multi-Item Scale (α)

Since the scale reliability α is a function of true score variance and error 

variance,     or  . By rearranging the terms, we obtain 
. It means the variance of observed sum scores is a ratio of true 

score variance to scale reliability.

When scale reliability (α) is one, V (AOS) = φ. V (AOS) is then an unbiased 
estimate of true score variance. For measures with perfect reliability, test statistics 
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in ANOVA do not require any correction or disattenuation. But, when the measure 
is imperfect (i.e., reliability is less than one), V(AOS) will be larger than true score 
variance. Since V(AOS) appears in the denominator of ANOVA statistics, larger 
values of V(AOS) attenuate the test statistics. So to correct for this attenuation, 
V(AOS) must be multiplied by scale reliability α. The correction will ensure that 
ANOVA based statistics use an estimate of true score variance (φ) instead (i.e., 

 replaces V(AOS)). We apply this finding when disattenuating the 
F-statistic and the associated effect size, f, in ANOVA.

2.3 Disattenuation of F-Statistic 

Suppose we have G groups, where AOSig is the sum score for subject i in group 
g,    is the mean of sum scores in group g,  is the grand mean, κg is the 
latent mean of group g, κ is the grand mean of latent scores, ng is the sample size 
for group g, and αg is the reliability of the scale in group g. If MSB is the between-
group mean square and MSWdisatt is the disattenuated within-group mean square, 
then 

Since the expected value of latent mean is not affected by measurement error, 
when latent means are replaced by their sample estimates, we obtain:

                                    (1)

where  is the sample estimate of latent mean for group g based on the 
analysis of sum scores, and  is the sample estimate of the grand or overall 
mean. Notice that in the above equation, the numerator is the between-group sum 
of squares (SSB) and the denominator is the degrees of freedom.

The within-group sum of squares is computed as:

Replacing κg , the latent mean for group g, with the sample mean , we get

                                    (2)

Since the variance of AOS is affected by measurement error, and as the 

</>=ax V(AOS) 

AOS~ AOS 

LG 2 
n (K - K) 

MSB= g = I g g 

G- 1 

LG 11 , (AOS.ll - AOS)2 MSB - __ i{ •_I _____ _ 

G - 1 

AOS.r 

AOS 

SSW ;;; ~ ".: (AOS - K )? 
.!,; Lor,-] 'E" • . 

AOSg 



Great Lakes Herald 77 March 2018,  Vol 12, Issue No 1

true variance is equal to the sample variance multiplied by scale reliability 
(i.e.,  ), the disattenuated sample estimate of within-group sum of 
squares for group g is given by

where αg is the reliability of group g. Across G groups, the disattenuated pooled 
within-group sum of squares is then computed as:

             (3)

The pooled within-group disattenuated mean square of experimental error (i.e., 
disattenuated pooled within-group variance, MSW,disatt) is then obtained as follows.

Let V(AOSg ) be the within-group variance of group g, then MSWdisatt can be 
expressed as:

MSWdisatt =                 (4)

The disattenuated F-statistic, corrected for attenuation or measurement error, is 
then computed as follows:

            (5)

where αg is the scale reliability of group g.

When the scale reliability is 1.0 for all G groups, Fdisatt in equation (1) would 
become the F-statistic as reported in an ANOVA. In contrast, for any group g, 
if the measurement error reduces scale reliability to a value that is less than 1.0, 
then the denominator of equation (1) (i.e., within-group mean square) becomes 
smaller, and correspondingly, the F-statistic becomes larger. In that scenario, Fdisatt 
would serve as the disattenuated (or corrected) version of the F-statistic – one that 
accounts for measurement error.

¢= axV(AOS) 
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The disattenuated F-statistic reveals what the true magnitude of the test statistic is 
for latent mean differences for error-free measures. Because statistical packages 
(e.g., SAS and SPSS) do not take into account scale reliability and measurement 
error when computing the F-statistic, it must be disattenuated prior to testing the 
significance of latent mean differences. The extent of this disattenuation depends, 
of course, on the size of the measurement error as reflected in the measure of scale 
reliability, such as coefficient alpha.

In order to better understand the boundary conditions for reliability, we constructed 
the chart shown in Figure 1. It shows the degree to which the test statistic F 
requires correction (or disattenuation) for varying levels of reliability. The figure 
underscores our argument that while the statistical significance of the F-statistic 
is known to be a function of sample size, size of group mean differences, and 
within-group variance in responses; the scale reliability also needs to be taken into 
account in order to assess the true significance of latent mean differences.

Figure 1: Relationship between Percentage Disattenuation and Reliability
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Note:

(1)	 Figure 1 shows the degree to which test statistics need to be disattenuated for  
	 various levels of reliability.

(2)	 It is assumed that the measure reliability is assumed to be the same for all  
	 groups across all values of reliability.

(3)	 Equations 5 and 8 show how to compute the disattenuated statistics when  
	 measure reliability varies across groups.

The correction factor for attenuation is consequently a function of how reliability 
is measured. Two of the most popular ways of measuring reliability are coefficient 
alpha and composite reliability. Between them, it is often mentioned in the literature 
that coefficient alpha represents a lower bound for scale reliability (Guttman, 1945). 
If that were to be true, then the correction factor will be higher when coefficient 
alpha is used in place of composite reliability. However, Peterson and Kim (2013) 
performed an analysis of 2524 pairs of coefficient alpha and composite reliability 
– values they derived from empirical investigations. They concluded that the 
difference between the two reliability estimates is inconsequential (average 
composite reliability was .86 versus the corresponding average coefficient alpha 
of .84). Estimating composite reliability requires application of SEM, while 
coefficient alpha can be estimated in an ANOVA setting. As most studies use 
ANOVA, we can infer from the Peterson and Kim (2013) study that one could use 
coefficient alpha instead to correct the relevant statistics for attenuation.

2.4 Disattenuation of Effect Size (f)

Cohen (1988) defined the effect size (f) in ANOVA as the standardized value 
of the standard deviation of mean differences. If σm is the standard deviation of 
population means and σ is the pooled standard deviation of AOS across g groups, 
then the standardized effect size can be expressed as:

where 

If σ g is the standard deviation of sum scores in the gth group, then the pooled 
standard deviation can be computed as:
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By replacing the population parameters by their corresponding sample estimates, 
we obtain the effect size estimate for the sample as: 

           =              (6)

Once again, it must be noted that the numerator, which represents the standard 
deviation of mean differences, is unaffected by measurement error. The denominator, 
which represents standard deviation of sum score means, is, however, affected by 
measurement error. Hence, the correction applies to the denominator of the effect 
size formula. Based on the previous discussion about disattenuating within-group 
sum of squares, the disattenuated pooled within-group standard deviation can be 
expressed as:

                                              (7)

where αg is the scale reliability in group g and V(AOSg) is the standard deviation 
of AOS within group g.

The disattenuated effect size fdisatt can then be obtained by dividing sm by sdisatt as 
follows:

In equation (8), fdisatt reflects what the true effect size would be, if we were to employ 

f 
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measures uncontaminated by measurement error. In addition, if the construct is 
measured with perfect reliability (i.e., αg=1), fdisatt will become the standardized 
effect size estimate f. Figure 1 shows boundary conditions that capture the 
relationship between reliability and effect size f. The extent of disattenuation for f 
can be as high as 29.1% when reliability is .6 – a value that is close to the reliability 
of measures that some authors reported in previous studies – and approaches 0% 
when scale reliability is close to 1.

Here we have described how to obtain the disattenuated F-statistic and the 
associated effect size f. In subsequent sections, we apply the attenuated and 
disattenuated F-statistics and effect-size estimates to two datasets from the extant 
OM literature to demonstrate the degree of attenuation in mean difference tests 
and its consequences.

3. Application of the Disattenuation Procedure in Mean Difference Tests in 
Decision Sciences

We use two anonymous examples, both drawn from the public domain, to 
illustrate the proposed disattenuation procedure. The first example will show the 
impact of disattenuation on the outcome of the overall statistical test and effect 
size when the overall F statistic is not significant prior to disattenuation. The 
second example will then describe the impact of disattenuation on the outcome 
of pairwise mean comparisons. The purpose of using the second example is to 
illustrate what additional insights can be drawn via disattenuation, even when the 
overall attenuated F-statistic reveals significant mean differences to begin with.  
As such, the second example will answer the question as to why it is imperative 
to disattenuate ANOVA statistics even if the F-statistic was significant prior to 
disattenuation. 

Example 1. Comparing Manufacturing Flexibility Across Firms in Different 
SIC Groups

Suppose we investigate whether manufacturing flexibility varies across firms that 
are classified into three different SIC industry groups. For illustration purposes, 
we focus on four of the flexibility measures that the authors of the original study 
proposed in a top-tier journal – coded as LFU, NPFRN, NPFM, and MDFRH 
– and compare their means across firms that are classified into 3 SIC industry 
groups. All measures are based on multi-item, 7-point rating scales; the number of 
scale items is 6 for LFU, 5 each for NPFRN and NPFM, and 4 for MDFRH. All 
four measures have acceptable reliability levels, with reported coefficient alphas 
above .7. Reliabilities, sample sizes, and results of ANOVA are all presented in 
Table 1. Computations of disattenuated statistics of ANOVA results are illustrated 
for the MDFRH measure in Appendix A.
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It is worth noting that for highly reliable scales, the degree of attenuation will be 
small. For such scales, the outcome of the statistical test (i.e., statistical significance) 
is unlikely to change if the p-value associated with the F-test is also high (e.g., 
p=0.16 for LFU). For the LFU measure, the F-statistic disattenuates by only about 
6.03% and the p-value of disattenuated F decreased only marginally to 0.14. 
Parenthetically, if the reliability of the LFU measure were to be .7 – a value that is 
close to the lower end of the acceptance for scale reliability, then the attenuation 
of the F-statistic would have been as high as 42.86% and the disattenuated 
p-value would have been closer to 0.07. For measures whose reliability crosses 
the minimum threshold for acceptance, the relationship between reliability and 
the percent to which F disattenuates is already shown in Figure 1 as discussed 
previously. So, for the LFU measure, given its high reliability across the 3 SIC 
groups, the mean difference remained insignificant with or without disattenuation. 

But, even when a measure has high reliability, disattenuation could still change the 
outcome of the statistical test. In Table 1, results associated with NPFRN serve as 
an exemplar of this scenario, where disattenuation changes p-value from 0.06 to 
0.04, making the mean difference significant, when that was not the case prior to 
disattenuation procedure being applied. Next, when measures exhibit moderate to 
high reliabilities (.76 to .85), the outcomes of statistical tests are likely to change 
when the test statistics are disattenuated, as illustrated by the analysis of NPFU 
and MFRH measures. 

Overall, across the four scales, the F-statistic attenuation ranged from 6.03% 
to 25.64% and the effect size attenuation ranged from about 3% to as high as 
12.09%. This analysis clearly illustrates why the test statistic and effect size need 
to be disattenuated to account for imperfect measurement scales. So, Example 
1 demonstrates that disattenuation is more likely to change the outcome when 
scale reliabilities are closer to the acceptance threshold (.7 or above). When scale 
reliabilities are high, then the outcome is likely to change only if the p-value of the 
attenuated F statistic is closer to the acceptance level. Even when disattenuation is 
unlikely to change statistical outcome for highly reliable measures, the effect size 
will still increase. This was indeed the case for LFU when effect size increased by 
about 3% after disattenuation was applied. 
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Table 1: Impact of SIC Industry Groups on the Dependent Variables – ANOVA Results

Dependent Variables
LFU NPFRN NPFU MDFRH

N for each SIC group 45, 39. 57 47, 37, 57 47, 35, 56 47 37, 57
Number of Scale Items 6 5 5 4
MSB (mean square 
between) 2.75 6.42 2.73 3.14

MSE (mean square error) 1.49 2.29 1.21 1.05
Sm (std dev means) 0.20 0.30 0.20 0.21
S (pooled within grp std 
dev) 1.21 1.51 1.10 1.03

Fatt 1.85 2.81 2.26 2.98
Fatt,prob 0.16 0.06 0.11 0.054

Reliability for each group 0.97, 0.95, 
0.91

0.90, 0.84, 
0.93

0.86, 0.76, 
0.85

0.77,0.79, 
0.82

Fdisatt 1.97 3.10 2.70 3.74
Fdisatt,prob 0.14 0.04 0.07 0.03
Does disattenuation change 
outcome of statistical test? No Yes, at .05 

level
Yes, at .10 

level
Yes, at .05 

level
% Disatt F Statistic 6.03% 10.58% 19.57% 25.64%
fatt (attenuated effect size) 0.16 0.20 0.18 0.20
fdisatt 0.17 0.21 0.20 0.23
% Disatt Effect Size 2.98% 5.17% 9.35% 12.09%

Example 2: Adoption of Lean Supply Chain Strategy Across Six Different 
Company Types

In this example, we use data from a different anonymous study that also appeared 
in a top-tier journal in the field of Decision Sciences. Here too our focus is to 
bring out the value of the new methodology that we are proposing in this paper, 
rather than on confirming or rejecting the results obtained in the original study. 
For illustration purposes, we focus only on the six-item measure of the dependent 
variable (adoption of lean supply chain strategy) and whether it is affected by type 
of ownership of the company. Data were originally collected on the dependent 
measure from companies that are categorized into six different groups based on type 
of ownership. For our purposes, the numbers 1 to 6 identifies those six company 
groups. Attenuated ANOVA results indicate that the mean rating on the dependent 
variable is significantly different across the six company types (F(5,598)=4.08, 
p<.01). So, disattenuation would not change the overall outcome   of the results 
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in this case. However, we still apply the disattenuation procedure to explore what 
other insights could be derived when performing pairwise mean comparisons – 
which is a logical next step whenever the overall F statistic is significant. 

	 The results of pairwise mean comparisons, based on Tukey’s Studentized range 
tests, are presented in Table 2. Since the Studentized range statistic (Qatt) is similar 
to the t-statistic, it too is affected by scale reliability. Qdisatt is the disattenuated 
version of Qatt. Values of Qdisatt are also provided in Table 2 along with the effect 
size estimates relevant for pairwise comparisons (Cohen’s datt and ddisatt). For 
illustration purposes, we selected two groups of firms which exhibited significant 
mean differences (with respect to adoption of lean supplier chain strategy) prior 
to disattenuation and three other groups of firms whose means did not differ 
significantly at first. Without disattenuation, only the mean of group 2 firms is 
significantly different from the mean of group 4 firms. But, if we were to apply the 
disattenuated Studentized range statistic (Qdisatt), we would find other significant 
mean differences -- between groups 1 versus 4 (p=0.02), and 2 versus 3 (p=0.02). 
The mean difference between group 4 and group 6 approaches significance, but 
the p-value (.054) is still above .05. The effect size estimates for these group mean 
differences are not small, ranging from .44 to .47 based on disattenuated Cohen’s 
d statistic. Such significant pairwise mean differences and the fairly moderate 
effect sizes associated with those mean differences could be easily overlooked if 
DS researchers were to ignore disattenuation in those cases where the attenuated 
F-statistic initially reveals significant mean differences. 
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Table 2: Adoption of Lean Supply Chain Strategy Across Company Types: Results of Selected 
Pairwise Mean Comparisons

Statistic
Company Type

(2) Versus (4) (1) Versus (4) (4) Versus (6) (2) Versus (3)
Mean dif 0.56* 0.34** 0.31 0.35**
Qatt 6.42 3.90 3.55 4.01

Qatt prob 0.00 0.07 0.12 0.05

Qdisatt 7.22 4.39 4.00 4.51

Qdisatt prob 0.00 0.02 0.05 0.02

Cohen datt 0.66 0.43 0.39 0.42

Cohen ddisatt 0.74 0.49 0.44 0.47

Outcome of 
disattenuation

No change, 
mean 
difference was 
significant 
before 
disattenuation

Mean diff 
became 
significant 
after 
disattenuation

No difference, 
but 
approaches 
significance 
after 
disattenuation

Mean 
difference 
became 
significant 
after 
disattenuation

Notes:

Results are based on Tukey’s Studentized range statistic Q for pairwise mean 
difference tests. Q is computed by using the harmonic mean (nh) of the sample 
sizes for different groups. For the X variable nh is 87.859 and for the Y variable it 
is 57.432. The Q statistic is obtained as Q =             where MSE is the mean square 
error (= 0.668 for X variable analysis and 0.648 for Y variable analysis. It can be 
obtained from standard errors and sample sizes of individual groups as reported in 
the anonymous study.

Qdisatt statistic is computed as  where α is scale reliability 
(=.79)

The various X groups are described in the anonymous study. 

Only mean differences marked by ‘*’ are reported as significant in the anonymous 
study. Mean differences marked by ‘**’ are also significant (p<.05) based on Qdisatt

For pairwise mean differences, Cohen’s d and Cohen’s dd reflect effect size 
estimates (attenuated and disattenuated). Assuming n1 and n2 are sample sizes of 

(X1)-(X2)
√(MSE/n h)

L ' J J 
' 

I ~ ~ 

I J J 
! j J 

I j j 

l l J 

Qdisatt = ✓ a X MSE I nh 
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groups 1 and 2,  Cohen’s ddisatt is computed as:

In sum, the two examples show that when ANOVA studies use attenuated statistics 
instead of disattenuated statistics, researchers may draw incorrect inferences as 
they relate to overall significance or pairwise mean differences. The likelihood of 
drawing incorrect inferences is dependent on measure reliability and its impact on 
attenuation of test statistics. Based on equations (5) (for the F-statistic) and (8) 
(for effect size f), the degree of attenuation is solely a function of scale reliability. 
Neither the sample size nor size of mean differences has any impact.

4. Discussion

Hypothesizing and testing for between-group mean differences of latent constructs 
is critical to theory testing in DS research. But, application of ANOVA in this 
regard leads to attenuation of the F statistic when the measures are imperfect (i.e., 
reliability is less than one). Our study shows how to correct the F-statistic and 
the associated effect size f for this attenuation. For DS researchers, the procedure 
outlined in this paper can be a viable alternative to SEM when they are compelled 
to use ANOVA for a variety of reasons, such as when they are faced with small 
samples, when the latent constructs are measured by a large number of scale items, 
and/or when the maximum likelihood procedure in SEM fails to converge. These 
conditions are often encountered in many practical settings within which DS 
research is conducted. Further, in ANOVA, the disattenuated statistics are easier 
to obtain, as the correction for attenuation applies only to the within-group sum of 
squares. No correction is necessary for the between-group sum of squares, whether 
it is for the main or interaction effects. 

The advantages of using our proposed procedure presented in this study are 
a) once adopted, it would ensure that DS empirical research, moving forward, 
conducts latent mean difference tests correctly when using ANOVA, b) it offers 
authors of existing research an opportunity to ascertain the accuracy of their 
previously-reported results and conclusions, and c) it allows researchers who had 
sound measures (i.e., acceptable reliability), but who did not submit their work 
for review because of the perceived “editorial bias against the null” (Hubbard 
& Armstrong, 1997), to reevaluate their work to see if applying our procedure 
would make a difference to their study findings.  Accurate effect size estimation is 
important, even in cases where the attenuated ANOVA statistics show significant 
mean differences. As such, the suggested procedure is applicable to all researchers 
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in DS who work with imperfect multi-item measures, and whose objective is to 
examine between-group mean differences.

The proposed disattenuation procedure will change the outcome (statistical 
significance) in some, but not all cases, while increasing effect sizes across the 
board – a key point to consider, given the renewed call in social sciences to only 
use effect size as the basis for interpreting between-group mean differences (Kline, 
2013). Kline (2013) has argued that the effect size is more important than the 
test statistic, and that researchers should discount test statistics altogether because 
decisions based on test statistics may not be correct due to Type I and Type II 
errors, and the best way to advance theory is via replication. As per Hubbard and 
Armstrong (1997) and Kline (2013), our focus in should be on effect size rather 
than on statistical significance per se. This argument is meritorious given that meta-
analysis studies have shown that conclusions based on statistical-significance tests 
have been wrong (Rossi, 1997). 

5. Conclusion

Our disattenuation procedure is not meant to be used as a tool to make insignificant 
results become significant. We do not advocate using poor quality measures 
whose reliabilities are below the values recommended in published research (cf. 
Nunnally, 1978). Rather, if the measures are based on sound theory and possess 
acceptable but imperfect reliabilities (i.e., α<1), then our approach would help 
determine whether the true score mean differences would be significant, and what 
the true effect size would be -- one that can be compared across studies. As studies 
based on measures with imperfect reliability continue to receive journal space, 
our approach will help those studies report the true effect size estimates when 
corrected for reliability. Within this context, future research should examine how 
the disattenuation procedure presented in this paper compares with contemporary 
techniques like HLM when accounting for measurement error.

Overall, the intent of our paper is not to take a position on this debate of whether 
or not statistical tests in Decision Sciences research should be used exclusively 
or in conjunction with effect-size estimates. Our objective, instead, has been to 
demonstrate that ANOVA-based statistics should be disattenuated, and to offer 
the ANOVA framework as a viable alternative to SEM even when the underlying 
measures have imperfect reliability, so long as the F and f statistics are first 
disattenuated. Following this approach will improve the quality of findings in 
future DS research, allow more definitive effects to be identified, and make the 
conclusions more meaningful and valid.
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Appendix A: Computations of Disattenuated Statistics of Anova Results for 
The MDFRH Measure

Industry 
1

Industry 
2

Industry 
3 MSB MSW F(2, 138) F prob

Sample Size 47 37 57 3.14 1.05 3.14 0.05

Mean (  ) 3.25 2.87 3.39

Grand Mean 3.21

Variance
1.16 1.00 01.00

Reliability (g) 0.77 0.79 0.82

Computing Fdisatt

From equation 4 MSWdisattenuated is computed as:

Fdisatt =  =     ; Fdisatt prob = 0.026

Computing effect size fdisatt

From equation 6,  (standard deviation of means) = 

From the equation 7, disattenuated Pooled within-group variance

-
AOSg 

-
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V(AOS\ 

- .SSW f"':""",d'J.Oafl' - z:0 
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..!..i .Ii: I g ..!..i .IH .I: 

MSW_ =[0.77x(47-l)xl.16 +0.79x(37-l)xl.00+0.82x(57-l)xl.00] =0_840 
disatt ( 47 + 37 +57)-3 

MSB 

MSWdisatt 

.,, 

[
3.14] = 3.74 
0.84 

L:=1n/~ -AOS)2 

L:=1ng 

S = 47(3.25-3.21)2 +37(2.87-3.21)2 +57(3.39-3.21)2 =0.21 
m (47 +37 +57) 

Sdisatt = 
L;=1ag xng xV(AOSg) 

Ii;=l ng 
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From equation 8, Disattenuated effect size (fdisatt) =  /  = 0.21/0.92 = 0.23

S disatt = 
0.77 x47xl.16 +0.79x37 xl.00 +0.82x57 xl.00 = 0_92 

(47 +37 +57) 
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