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 ABSTRACT  

SURVIVAL-RELATED CLUSTERING OF CANCER PATIENTS BY 

INTEGRATING CLINICAL AND BIOLOGICAL DATASETS 

 Xinming Wei  

Marquette University, 2020 

Subtype-based treatments and drug therapies are essential aspects to be considered 

in cancer patients' clinical trials to provide appropriate personalized therapies. With the 

advancement of the next-generation sequencing technology, several computational models, 

integrating genomic and transcriptomic datasets (i.e., multi-omics) in the prediction of 

subtype-based classification in cancer patients, were emerged. However, integration of the 

prognostic features from the clinical data, related to survival risks with the multi-omics 

datasets in the prediction of different subtypes, is limited and an important research area to 

be explored.  In this study, we proposed a data integration pipeline with the prognostic 

features from the clinical data and multi-omics datasets to predict the survival-risk-based 

subtypes in Kidney Renal Clear Cell Carcinoma (KIRC) patients from The Cancer Genome 

Atlas (TCGA) database. Firstly, we applied an unsupervised clustering algorithm on 

KIRC patients and clustered them into two survival-risk-based subgroups, i.e., subtypes. 

Then, using the clustering-based subtype labels as class labels for cancer patients, we 

trained a supervised classification model to determine the class label of un-labeled 

patients.  

In our clustering step, we applied multivariate Cox Proportional Hazard (Cox-PH) 

model to select the survival-related prognostically significant features (p-value < 0.05) 

from the patients’ multivariate clinical data. Then, we used the Silhouette Coefficient to 

determine the optimal number (k) of the clusters. In our classification step, we integrated 

high dimensional multi-omics datasets with three different data modalities (such as gene 

expression, microRNA expression, and DNA methylation). We utilized a dimension-

reduction approach, followed by a univariate Cox-PH for each reduced data modality with 

patients’ survival status. Then, we selected the survival-related reduced-omics-features in 

our classification model. In this step, we applied a supervised classification method with 

10-fold cross-validation to check our survival-based subtype prediction accuracy. We 

tested multiple machine learning and deep learning algorithms in different steps of the 

pipeline for clustering (K-means, K-modes and, Gaussian mixture model), dimension-

reduction (Denoising Autoencoder and Principal Component Analysis) and classification 
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(Support Vector Machine and Random Forest) purposes. We proposed an optimized model 

with the highest survival-specific-subtype classification accuracy as the final model.  
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CHAPTERS 

I. INTRODUCTION 

A. General Introduction 

Cancer is a complex genetic disease that is the most intractable medical and health 

problem in the world [1]. With the advances in high throughput sequencing technologies, 

nowadays, we could collect much data to study the diagnosis and prognosis of cancer. 

Cancer can be divided into different subtypes according to cell morphology and cell period; 

different subtypes of cancer might have different survival characteristics in addition to 

different molecular expressions. For decades, one of the most popular areas in cancer 

studies has been to explore patterns of molecular data sets to cluster and treat different 

subtypes of specific cancer. There are several studies on clustering cancer patients, 

integrating multi-omics data, specifically, gene expression, DNA methylation, and micro 

RNA (miRNA) expression [2, 3, 24]. However, studies on clustering cancer patients with 

prognostic variables present in the clinical datasets are limited. Therefore, we propose a 

clustering model to apply clinical data that was survival-related to cluster cancer patients, 

followed by a classification approach using multi-omics datasets to determine the cluster 

label of the new cancer patients.  

In our clustering step, we applied a multivariate Cox-PH model to select the 

survival-risk-related prognostically significant clinical features and determined the 

survival-related clusters. We tested multiple clustering algorithms, such as K-means, K-

modes, and Gaussian mixture model (See Chapter I.C). 
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 In our classification step, we integrated the high dimensional multi-omics datasets 

with three different data modalities (such as gene expression, miRNA expression, and DNA 

methylation). We utilized a dimension-reduction approach, followed by a univariate Cox-

PH for each reduced data modality with patients’ survival status.  

To reduce the dimension of the multi-omics datasets, we tested different algorithms, 

such as denoising autoencoder [5], Principal components analysis (PCA), and PCA-surv 

[6] (See Chapter I.C). For the classification purpose, we tested two different machine 

learning methods, such as support vector machine (SVM) and random forest [7] (See 

chapter I.C).  

Among these different algorithms, we selected K-modes for clustering, PCA-surv 

for dimension reduction, and SVM for classification, respectively, that produce an 

optimized model in terms of classification accuracy of our survival- specific subtypes 

prediction.  

We tested our pipeline on Kidney Renal Clear Cell Carcinoma (KIRC) cancer from 

the TCGA database [8]. We integrated KIRC clinical data along with gene expression, 

DNA methylation, and miRNA expression datasets in the pipeline (See Chapter III.B for 

details). The datasets were downloaded using the TCGAbiolinks package in the R 

programming language [9]. 

The purpose of this work was to establish the importance of applying clinical data 

in the prediction of cancer subtypes, along with multi-omics datasets. We also assessed the 

predicted survival-related subtypes under different clinical conditions. Our results 

suggested that cancer stages of the patients play a more prominent role in clustering 

analysis than patients’ age.  
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B. Research Problems 

Research by integrating multi-omics datasets have been increasingly applied in the 

diagnosis and prognosis of cancer [24]. However, integration of the prognostic features 

from the clinical data, related to survival risks with the multi-omics datasets in the 

prediction of different subtypes, is limited and an important research area to be explored.  

Therefore, in this study, we proposed a clustering model applying clinical data that was 

survival-related to cluster cancer patients, followed by a classification approach using 

multi-omics datasets to predict the cluster label of new patients. We utilized Cox-PH to 

find prognostic clinical variables and clustered cancer patients based on these variables. 

After integrating multi-omics datasets, we used multi-omics features to determine the 

cluster label of un-labeled patients.  

C. Definition and Explanation of Key Terminology 

TCGA KIRC data: The Cancer Genome Atlas is a database that provides multiple 

cancers patients’ genomic and clinical data [10, 14]. Large-scale genome sequencing of 

over 10,000 samples in more than 30 types of cancers was performed. The KIRC data is 

one of those datasets to record the data of kidney renal clear cell carcinoma (KIRC) patients.  

Univariate Cox-PH: Univariate analysis using the Cox regression technique is 

applied when there is a single, independent, potentially survival-related variate. The 

variables that are related to survival are selected respectively as independent features.  

Multivariate Cox-PH: Multivariate analysis using the Cox regression technique is 

applied when there are multiple, potentially survival-related covariates [11]. DR Cox 
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proposed it in 1984, and the concept of multivariate Cox-PH was proposed in 1996 [40]. 

This concept can be applied to select survival-related data from multiple variables. 

K-means: The K-means is an iterative clustering algorithm [41]. First, K data points 

are chosen randomly as cluster centers. Each data is divided into clusters around the center 

at the minimum distance. In each iteration, the distance between the sample and the center 

is recalculated, and the sum of distances to the center reaches the minimum at the final 

stage. 

GMM: The Gaussian mixture model (GMM) is a probabilistic model that assumes 

that all the data points are generated from a mixture of Gaussian distributions. In 

probabilistic modeling, the probability distribution over all the discovered clusters is 

inferred for each observation. [42]. 

K-modes: The K-modes algorithm is an extension of the K-means algorithm. It is a 

multi-iteration clustering algorithm. It is widely used when applying categorical data in 

clustering, which is not available in K-means [43]. For example, in our case, genders, races, 

cancer stages in the clinical data, are such categorical variables that are not available in K-

means to compute the distance. K-modes uses dissimilarity measure as the distance 

measure for clustering. First, K samples were chosen randomly as cluster centers, and each 

sample was divided into clusters around the center at the minimum number of mismatched 

features.  The fewer the mismatched features between the sample and the cluster center 

indicates the smaller the distance between them. Through multiple iterations, the total 

number of mismatched values between the sample and the cluster center is minimized to 

determine which cluster the samples belong to. 
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Rank normalization: Rank normalization is a pre-processing method on data for 

quantile normalization. It is based on the premise of not losing parameter information and 

avoiding the impact of specific extreme values on the entire data. The normalization 

replaced each observation with a ranking in the matrix, divided by the total number of 

features [12, 13]. We applied the rank normalization on the gene expression, DNA 

methylation, and miRNA expression data matrices downloaded from TGCA. 

Denoising autoencoder: The denoising autoencoder can reduce the noise in the 

original data by reconstructing the input data. The function of the denoising autoencoder 

is to learn from the original data with the superimposed noise. The features it learns can be 

decoded to the output almost the same as the original input data. The obtained feature from 

the hidden nodes is robust by reducing the noise in the data from extreme values and 

learning the same feature value. 

PCA: Principal Component Analysis (PCA) is a statistical method to reduce the 

dimension of data that contains sufficient information. By transforming data that may have 

a linear correlation into linearly uncorrelated components, all the components selected 

according to the proportion of variance are called principal components. A few principal 

components reveal the internal structure among multiple variables with a threshold of with 

the Proportion of Variance. By performing this step, a few principal components are 

derived from the original variables. They retain as much information as possible from the 

original variables and are not linearly correlated. 

PCA-surv: The components obtained by principal component analysis are utilized 

in survival analysis. By using Cox-PH, components related to survival were selected as 

new features. 
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SVM: Support Vector Machine (SVM) is a widely used classification model. It 

divides the feature values in space by the maximum distance; its decision method uses 

maximum-margin hyperplane to maximize the distance between the features. SVM can be 

used for nonlinear classification by kernel method, one of the conventional kernel-learning 

methods [7, 14]. 

RF: Random Forest (RF) is a classification model based on the decision tree. 

Essentially, the random forest is an integrated learning model that uses decision trees for 

multiple iterations. Through multiple decision combinations to solve the prediction 

problem brought by every single decision tree, the model can generate multiple classifiers, 

each of which can independently predict and learn. 

D. Context of Research Study within the Greater Discipline 

The future challenge of bioinformatics is to comprehensively understand the 

systematic role of molecular information, which can be achieved by studying multi-omics 

data simultaneously. Integrating multiple types of data of cancer patients into deep-learning 

algorithms and other analysis algorithms may resolve our current knowledge gap in 

molecular mechanisms, the interaction between genes and the environment, and the vertical 

effects of cancer development [15, 16]. Multi-omics data integration methods can improve 

the understanding of genetic diseases and cancer and may lead to new strategies for early 

diagnosis, prognosis, and treatment of human diseases. At present, there are many studies 

on multi-omics, and as well as comprehensive methods and frameworks in integrative 

analyses [18, 19, 20]. Moreover, Sun and Hu summarized the analysis methods of high-

throughput multi-omics data. They provided an updated, comprehensive method and 
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framework to integrate genome, epigenome, transcriptome, proteome, and metabolome 

data into the emerging field of multi-omics research in human diseases [37]. These findings 

reveal the diversity of biological systems and can identify biomarkers and gene loci to a 

certain extent. The expressions of multi-omics data are similar, and it is possible to discover 

similarities by integrating features through deep-learning algorithms. High-throughput 

experimental methods can provide various datasets to study multi-omics data 

simultaneously. 

II. HYPOTHESIS (THEORY) 

A. Brief Overview of Theoretical Foundations Utilized in the Study 

Diseases are expressed differently at different stages and in different populations 

[21]. In survival analysis, the samples by integrating prognostic clinical data of different 

populations may have patterns in different clusters. For example, different age ranges, 

different stages of the disease, different races, different expression levels of physical 

indicators are factors that affect prognostic characteristics. Therefore, clinical data related 

to survival were selected through Cox-PH analysis, and these variables were used for 

clustering samples into different survival clusters with survival differences. 

On the other hand, multi-omics data, such as gene expression data, DNA 

methylation data, microRNA expression data also have similar survival-related 

characteristics. In previous studies, Hao et al. proved that patients could be clustered by 

integrating multi-omics data by conducting different dimensionality reduction processing 

and extracting corresponding features [22]. 
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We integrated the multi-omics data into low-dimensional, representative, new 

features related to survival, classifying them according to the previous clustering, and 

verifying the reliability of clustering based on prognostic clinical data. Since many 

previous and future studies cluster based on multi-omics data, there is evidence to verify 

clustering results by multi-omics data [23]. 

Although it is not always possible to achieve complete agreement by comparing the 

two types of data, we expect to find correlations between prognostic clinical data and multi-

omics data, such as gene expression, through this verification process. Through further 

exploration and improvement of the algorithm, it will better handle the clustering, 

diagnosis, treatment, and prognosis of cancer patients and provide a more comprehensive 

understanding of the analysis of cancer. 

B. Literature Reviewed, Discussed and Applied 

Overview of cancer 

Many cancers (i.e., BRCA, KIRC, AML, etc.) can be divided into several subtypes 

based on characteristics of the development stage and cancer cell morphology. Therefore, 

different cancer subtypes may have different levels of gene expression or survival patterns. 

In a recent study, Rappoport et al. have given a comprehensive comparison among different 

methods (i.e., iCluster, SNF, rMKL-LPP, K-means) to cluster cancer patients [24]. 

Similarly, we can cluster cancers into subtypes based on different survival characteristics 

and look for associations between specific groups and different subtypes. 

Integrating prognostic clinical data 
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As early as 1976, Solberg et al. began to explore the use of cancer clinical trial data 

to perform cluster analyses on patients [26]. They found that the clustering results based 

on the results of clinical trials had a steady correspondence with the results of the biopsy. 

Studies have also shown that gene expression analysis can be used to predict the clinical 

outcome of cancer [27], which indicates that the clustering features of genomics are related 

to clinical data and prognostic signatures. In the research of other diseases, cluster analysis 

of clinical data is also used to identify the subgroup of fibromyalgia [28]. However, we 

proposed a pipeline based on Poirion et al. in 2018 while not widely discussed to cluster 

patients related to survival analysis, especially the clustering results derived from clinical 

data related to survival. 

Survival analysis 

The predictive model of survival time is a standard tool for cancer prognosis 

survival analysis [29], while the Cox-PH model is the most commonly used survival 

prediction model for cancer-survival prediction [4]. The survival risk and actual survival 

time of each patient can be determined through different performance indicators and 

clustering different indicators can find the consistency of the survival risk and survival time. 

We clustered the patients to determine their survival risk subtypes according to their 

survival status and time.  

Research has shown that in the field of deep learning, identifying complex multi-

omics data interactions related to patient survival time and risk at the molecular level is 

important. It is not only for the development of new diagnostic and therapeutic methods 

but also for accurate survival predictions [31]. Hao et al. developed a new path-based sparse 

deep neural network (PASNet) for cancer survival analysis. Besides, integrating survival-
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related clinical data from cancer samples is expected to improve cancer survival prediction 

and diagnosis. Specifically, the integration of multi-omics data and clinical data can be 

used for survival prediction and diagnosis in cancer research. It also provides an in-depth 

understanding of cancer and multi-omics data by comparing the performance of the current 

state-of-the-art model with TCGA cancer data and statistically evaluating the outstanding 

performance. There is also relevant biological literature that supports the biological 

interpretation of the PASNet. 

Furthermore, the integration of multi-omics data in another study by Hao et al. have 

demonstrated an understanding of the complex mechanisms of human genetic diseases and 

cancer and provides excellent help for precise medication and treatment [22]. In this study, 

they proposed a deep neural network based on genes and pathways for multi-omics data 

integration (MiNet) to predict cancer-survival outcomes. The study integrates multi-omics 

regulation(i.e., genomics, epigenomics, and transcriptomics) in a neural network based on 

genes and pathways. This provides a specific classification model for 10-fold cross-

validation in the survival-related analysis. 

A recent study [32] described the challenges of deep learning in cancer survival 

analysis, such as dealing with different types of multi-omics data and hugely different 

sample sizes. Improving the deep-learning model will integrate multiple types of data, 

predict the survival results and survival time of samples, and maximize the correlation 

among multi-omics data, clinical data, and survival analysis. This research can provide a 

better perspective on cancer drug treatment and survival analysis [25]. 

Integrating multi-omics data 
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Human diseases and cancer involve the influence of multi-omics interaction and 

expression and are affected by environmental factors, as well. Many studies have focused 

on multi-omics research [37]. At the molecular level (i.e., genetics, epigenetics, and 

transcriptomics), recent technological advances have allowed integrated analysis of the 

human genome, epigenome, and metabolome at the population level. Complex and 

dynamic molecular networks are involved in human diseases. High-throughput technology 

enables omics research to allow us to obtain evidence of disease diagnosis in different 

omics data. However, single omics research can only provide a limited understanding of 

the molecular mechanisms of cancers. 

In recent years, the diagnosis of cancer has not only been limited to a single omic 

study, while the diagnosis of a single omic can only provide limited information of the 

disease. Multi-omics research has gradually been applied to the diagnosis and treatment of 

cancer. However, multi-omics research applied to prognosis work is still minimal. In a 

recent study [30], somatic mutations, DNA copy number, DNA methylation, gene 

expression, and miRNA expression were used in prognostic studies of multi-omics features. 

Zhu et al. found that mRNA and miRNA expression profiles are the best in prognosis and 

diagnosis, followed by DNA methylation. They also stated that kernel machine-learning 

methods always outperform prognostic signatures. In another study [33], although nothing 

was summarized about disease clustering and prediction, a framework for the biological 

and functional roles of multi-omics was built. In addition to genomics, transcriptomics, 

epigenomics, proteomics, and metabolomics data have also been discussed. However, 

multi-omics research can broaden the complexity of cancer research and improve the 

accuracy of cancer diagnosis and prognosis.  
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The complexity of tumor genes has proven to be an enormous challenge to the 

diagnosis and prognosis of cancer. Single omics cannot provide a complete and 

comprehensive evaluation basis. As the most commonly used genomic and transcriptomics 

study in prognosis, tens of thousands of genetic variations, including SNPs and DNA 

copies, are linked to various human diseases through GWAS [34]. In genomic and 

transcriptomics studies, next-generation sequencing technology [36], including RNA-seq 

[35] methods, is the most commonly used means of providing genetic variation. In the 

evaluation of cancer prognosis, the epigenetic group, which refers to heritable molecular 

modification and mainly includes DNA methylation, is also a critical evaluation 

characteristic [3]. 

As far as GWAS is concerned, although tens of thousands of SNPs have been 

identified for disease diagnosis and identification, the functional meaning and mechanism 

of related loci are still unclear. Besides, mutations in the genome alone cannot predict 

disease risk throughout the disease cycle [38]. Based on the success of single-omics 

discovery research, a multi-omics approach integrates data obtained from different omics 

to understand their interactions and impact on the disease process. Sun et al, summarized 

the main omics methods available in population studies and reviews the deep-learning 

methods that integrate multi-omics layers, which provide a better perspective for gene 

discovery and functional analysis of human diseases. 

In another study, Zhang et al. clustered patients with high-risk neuroblastoma 

according to clinical information and prognostic results [39]. However, there is still a lack 

of survival risk analysis for high-risk neuroblastoma. To make up for the gap in survival-

risk analysis, they used a deep-learning algorithm, autoencoder, to compare with PCA to 
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understand clustering based on multi-omics data integration. They used the K-means 

clustering method to identify two with distinct survival subtypes of risk differences. The 

results showed that with the methods and datasets they examined, classification based on 

autoencoders was superior. Zhang et al. also verified the feature selection of autoencoder 

for high-risk neuroblastoma through two independent data sets, which helped to control 

survival risk better and proved that deep-learning-based algorithms are very useful in 

multi-omics integration. 

C. Hypotheses and Justifications Tied to Prior Sections or Statements 

By studying the previous research results, we understand that the integration of 

multi-omics research plays an important role in the clustering of cancer patients. We expect 

the integration of multi-omics data to verify the characteristics of survival analysis in 

clinical data. We hypothesize that there are similar survival characteristics in clinical data 

and multi-omics data. We selected variables closely related to survival through Cox-PH, 

clustered the cancer samples into different survival risks subtypes, and then used the 

integrated multi-omics data in the classification model to verify our clustering results. We 

tested multiple machine learning and deep learning algorithms in different steps of the 

pipeline for clustering, dimension-reduction, and classification purposes and proposed an 

optimized model with the highest survival-specific-subtype classification accuracy as the 

final model. 

D. Theoretical Assumptions and Limitations 

Based on previous studies and known theories, we assumed that the clinical data of 

cancer patients would show specific characteristics related to survival and particular 
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clustering phenomenon in different ages, disease stages, and other clinical data. The 

survival-related clustering is somewhat similar in the integration of multi-omics data, such 

as gene expression, DNA methylation, and microRNA expression. 

It is very promising to obtain high compliance results by using multi-omics data to 

verify the clustering results based on clinical data. Meanwhile, the results may not be high 

consistency between clinical and biological datasets. The processing of multi-omics data 

may have more aspects to improve. Therefore, based on the existing processing methods 

and algorithms, the results verified by two kinds of data could be improved in advance. 

III. METHODS 

A. Introduction and General Description, Study Methods, and Study Design 

In this project, we clustered cancer patients by integrating survival-related clinical 

data to predict survival-specific clusters. The multivariate Cox-PH algorithm was used to 

select variables significant to survival, meaning p-values are less than 0.05. By applying 

those variables, multiple clusters can be predicted by various clustering methods, such as 

K-means, K-modes, and GMM. Thus, we can cluster patients into different groups based 

on their survival characteristics. Classification is done by integrating multi-omics datasets, 

such as gene expression, DNA methylation, and microRNA expression. 

Gene expression, DNA methylation, and miRNA expression data are enormous 

datasets. They contain a large amount of information. Moreover, studying on such datasets 

is very meaningful and promising to obtain useful information for diagnosis. However, 

analyzing such a large amount of data requires much time and large calculation memory. 

Through dimensionality reduction of the data sets, we can reduce the required storage space, 
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speed up the calculation (such as in machine learning algorithms), remove redundant 

features, and avoid overfitting. Lower dimensions require less calculations. Lower 

dimensions data can be applied to the algorithms that are not suitable for high dimensions 

data. There are many alternative methods available to reduce the dimension of the multi-

omics data. For example, denoising autoencoder (DAE) is a neural network that can apply 

multiple layers and multi-omics datasets as original parameter settings. Moreover, PCA is 

also an alternative method for dimension reduction. By using these algorithms, we could 

reduce the dimensions of the massive amounts of data in mRNA, methylation, and miRNA 

datasets from TCGA. For DAE, by using an autoencoder, we built a network with 100 

hidden nodes (h = 100) to limit every single omic data to 100 new features. To use the PCA 

method for dimension reduction, components with Proportion of Variance greater than 0.01 

were selected. On the other hand, an alternative option was to select components from the 

PCA method as new features that were survival-related, while p-values were less than 0.01 

by using the Cox-PH analysis, which means there is a probability of 0.01 that the features 

are not related to survival. 

For each omic, we built an individual model to select new features related to 

survival. For this step, individual Cox-PH was used to select those features related to 

survival from new matrices produced by dimension-reduction methods. The patients were 

then classified with these features by the clusters inferred to clinical survival-related 

variables. K-fold cross-validation was utilized for classification by using SVM with linear 

kernels and RF; and thus, to build a supervised classification model to verify whether there 

were common patterns with clinical data. Accuracy, specificity, and sensitivity were used 
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to evaluate the results. A confusion matrix was used to combine these parameters to have 

a comprehensive view of the results. 

B. Datasets 

We obtained the three omics datasets and a clinical dataset, including mRNA, 

miRNA, and DNA methylation, and clinical data of TCGA KIRC by using the 

TCGAbiolinks package in the R programming tool. In this project, 534 samples in clinical 

data were also obtained from TGCA for clustering. 317 samples of KIRC were obtained 

from TCGA for integrating and pre-processing. For mRNA expression data, we used 

Fragments Per Kilobase of transcript per Million mapped reads (FPKM) produced by high-

throughput sequencing data (HT-seq) platform. For DNA methylation, the average 

methylation value of all the CpG sites was calculated from the Illumina Human 

Methylation 450K platform. For miRNA expression sequencing data, we used reads per 

million (RPM) normalized quantification values from British Columbia Genome Sciences 

Centre (BCGSC) miRNA profiling of the miRNA expression quantification dataset. For 

clinical data, we used clinical supplement data from TCGA KIRC projects. In 317 samples 

in multi-omics data and 534 samples in clinical data, we finally selected the overlapped 

samples, which contained 315 samples, with all types of data, including multi-omics data 

and clinical data. 

C. Samples in TCGA Project 

The TCGA project was launched in the United States in 2005 and aimed to apply 

genomic analysis techniques to study genomic changes in cancer. Large-scale genome 

sequencing of over 10,000 samples in more than 30 types of cancers was performed. It is 
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especially valuable that these samples have very detailed prognostic follow-up information 

[10]. 

TCGA contains the following data: 1) Clinical sample information: Biospecimen, 

Clinical; and 2) Sequencing data: The five methods of RNA-Seq, WXS, miRNA-Seq, 

Genotyping Array, and Methylation Array are mainly used to analyze samples. 

RNA-Seq data in TCGA is transcriptome sequencing. The transcriptome data on 

TCGA uses full transcriptome sequencing, which contains various non-coding RNAs, so 

the generally downloaded RNA-Seq data contains lncRNA, mRNA, pseudogenes, etc. 

RNA-Seq quantitative expression data is currently available for public download in three 

forms: HT-Seq-FPKM, HT-Seq-UQ-FPKM, HT-Seq-Counts, where FPKM is used to 

measure the abundance of transcript expression, counts is counted on a gene in the reads 

sequenced, and UQ-FPKM is standardized FPKM by the upper quartile. 

miRNA is a type of non-coding single-stranded RNA molecule that is 

approximately 22 nucleotides (nt) in length and is encoded by an endogenous gene. It is a 

significant type of non-coding small RNA in biology, and the regulation of organisms; 

about one-third of genes in humans are regulated by miRNA [44]. TCGA provided 

miRNA-Seq sequencing data results, using a database of miRBase v21. There are two main 

types of data currently available for public download: miRNA Expression Quantification 

and Isoform Expression Quantification, where the Isoform Expression Quantification data 

contains mature miRNA. TCGA provides quantitative data in Counts and FPKM formats. 

In miRNA, pre-miRNA is a precursor miRNA, about 70–90 bases in length; pre-

miRNA is digested by Dicer enzyme and becomes mature miRNA about 20–24 nt long. 

miRNA is generally mature miRNA, about 20–24 nt in length, developed from various 
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precursor miRNAs. The relationship between miRNA and target genes is, generally, 

miRNA regulates target genes and reduces the expression of the target genes. 

DNA methylation is a reversible and inheritable process that can lead to changes in 

chromatin structure, DNA conformation, DNA stability, and the way DNA interacts with 

proteins to control gene expression. TCGA provides methylation chip data. There are two 

main types of DNA methylation: 450K and 27K. Generally, 450K is the most used. The 

methylation is mainly located on CpG sites. The methylation will regulate the expression 

of the genes.  

CpG site is a site on the DNA sequence with a base of C or G. Methylated cytosines 

are primarily found at CpG sites. As for gene-promoter region. At present, there is no 

unified expression of the gene-promoter region. Generally, we think that the transcription 

starts site (TSS) of a gene is between 2 kb upstream and 500 bp downstream. CpG islands 

are generally considered that the regions where CpG sites are significant. The overall 

methylation level of CpG island regions is often low and frequently appears in the promoter 

region and exon region of genes. The relationship between methylation and genes is that 

hypermethylation in the promoter of a gene will downregulate the expression of its 

downstream genes, which is mostly negatively correlated. 

TCGA provides a wealth of clinical follow-up information, including medication, relapse, 

age, survival, etc., which contains more than 100 variables. Commonly used clinical 

information includes: 1) age; 2) gender; 3) stages; 4) time of relapse; 5) overall survival, 6) 

race; and 7) ethnicity. 
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TCGA has a separate ID, also called barcode, for each patient, such as TCGA-02-

0001. This ID is universal in the TCGA database. According to this ID, we can find the 

same patient in different types of data, including clinical follow-up information. 

Different sampling sites of patients have different codes; for example, 01 indicates 

cancer tissue, 10 indicates adjacent tissue, 01 to 09 generally indicates tumor site, and 10 

and above indicates normal control. Portion means different components of the same 

organization. Analyte represents the type of molecule analyzed; D represents DNA. The 

Center represents the detection center. 

D. Algorithms and Methodology 

Identification of the survival subtypes 

We used Cox-PH regression to select survival-related variables through the 

multivariate method. In the survival analysis, the Cox proportional hazard model was used 

to select survival-related variables with a p-value that is less than 0.05 [4]. The optimal 

cluster number k is estimated by calculating the Silhouette score and the plot. And we 

clustered the obtained samples applying different clustering methods, such as K-means, K-

modes, and GMM (Figure 1). We used the survival package in R [46] to analyze the 

survival difference among different survival risk subtypes in the TCGA KIRC dataset. We 

use a “survdiff” function that calculates the difference in survival between the two subtypes 

and plots a Kaplan-Meier curve with a log-rank p-value.  
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Figure 1. Clustering samples by using three clustering methods. 

Regarding the K-means clustering algorithm with multiple iterations, the data is 

first randomly defined as K-centers, where K is the number of subtypes determined by 

silhouette score. The basic K-means algorithm flow is as follows; for the samples of the 

KIRC data, the sum of the squared error (SSE) is used as the objective function of 

clustering, so the clustering results can also be measured among sample with different 

variables. 

𝑆𝑆𝐸 = ∑ ∑ 𝑑𝑖𝑠𝑡(𝑥, 𝑐𝑖

𝑥∈𝐶𝑖

𝑘

𝑖=1

) 
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This represents the sum of center ci distances from sample x to cluster Ci; the 

clustering result should cause SSE to reach the minimum value. 

The Gaussian mixture model is a probabilistic clustering method that assumes that 

all data samples x are generated by a mixture of k multivariate Gaussian distributions. 

𝑝(𝑥) = ∑ 𝛼𝑖

𝑘

𝑖=1

∙ 𝑝(𝑥|𝜇𝑖, ∑𝑖) 

where 𝑝(𝑥|𝜇𝑖, ∑𝑖) is the probability density function of the n-dimensional random vector 

x following the Gaussian distribution. 

𝑝(𝑥) =
1

(2𝜋)
𝑛
2|∑|

1
2

𝑒−
1
2

(𝑥−𝜇)𝑇Σ−1(𝑥−𝜇)
 

For discrete attribute data sets, calculating the cluster mean and the Euclidean 

distance between points becomes inappropriate. As an extension of K-means, K-modes is 

suitable for categorical attribute datasets. 

Suppose there are n samples, m attributes are all discrete, and the number of clusters 

is k, which are randomly determined k clustering centers; and Ci is a vector of length m. 

When comparing the distance between each sample and k centers, this distance is the 

number of mismatched attribute values. All samples are divided into clusters that minimize 

the sum of all distances; after each sample is clustered, the clustering center is also re-

determined and iterates in turn until each sample is clustered into k modes. Repeat the 

above steps until the total distance no longer decreases and the final clustering result is 

returned. 
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Normalization procedure 

We first applied rank normalization to each omics data. For a given omic, we 

defined the input matrix 𝑀 =  (𝑣1, . . . , 𝑣𝑚)  as a list of m sample vectors v, having n 

features in each matrix. For a given sample vector 𝑣 =  (𝑥1, . . . , 𝑥𝑛), the function rank(xi) 

represents the ranking of each feature xi in v (n represents the feature x as the highest value, 

and 1 represents the feature x as the lowest value). vrank is defined by: 

𝑣𝑟𝑎𝑛𝑘 = (𝑟𝑎𝑛𝑘(𝑥1), … , 𝑟𝑎𝑛𝑘(𝑥𝑛)) ∙
1

𝑛
 

We then normalized 𝑀𝑟𝑎𝑛𝑘 = (𝑣𝑟𝑎𝑛𝑘1, . . . , 𝑣𝑟𝑎𝑛𝑘𝑚) by computing the Pearson 

correlation coefficient between each pair of samples. 

𝑀𝑐𝑜𝑟𝑟(𝑖, 𝑗) = 𝑑𝑝𝑒𝑎𝑟𝑠𝑜𝑛(𝑣𝑟𝑎𝑛𝑘 𝑖, 𝑣𝑟𝑎𝑛𝑘 𝑗) 

Thus, 𝑀𝑐𝑜𝑟𝑟 = {𝑀𝑐𝑜𝑟𝑟(𝑖, 𝑗) | 𝑖, 𝑗 ∈  𝑚} is an m×m matrix. Finally, for each sample 

vector of 𝑀𝑐𝑜𝑟𝑟 = (𝑚1, . . . , 𝑚𝑚), we again applied the rank normalization to the Pearson 

correlation coefficient matrix, where corr is the Pearson correlation coefficient between 

samples: 

𝑚𝑟𝑎𝑛𝑘 = (𝑟𝑎𝑛𝑘(𝑐𝑜𝑟𝑟1), … , 𝑟𝑎𝑛𝑘(𝑐𝑜𝑟𝑟𝑛)) ∙
1

𝑛
 

𝑀𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = (𝑚𝑟𝑎𝑛𝑘 1, . . . , 𝑚𝑟𝑎𝑛𝑘 𝑚) 

New features selection 
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We selected the common samples from every single omics data, that is each sample 

has all types of data utilized in clustering and classification. Then, each omic data was used 

as a separate matrix for rank normalization. Then we computed the Pearson correlation 

coefficient between every pair of samples. Rank normalization was applied again to the 

Pearson correlation matrix. Thus, three input matrices were obtained. These three matrices 

were input into the trained denoising autoencoder and PCA model to obtain new features 

[17]. Through the R language survival package for univariate function for these features, 

the features related to survival were selected. Finally, we selected individual features 

related to survival, stacked them into a single matrix, and inputted the features in the 

classifier (Figure 2). 

 

Figure 2. New features selection and classification with multi-omics data. 
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Denoising autoencoder construction 

For each input matrix 𝑀𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑂𝑀𝐼𝐶 , we constructed a denoising autoencoder with 

one hidden layer. A denoising autoencoder can be defined as a function 𝑓(𝑣) = 𝑣′, where 

v is an input vector of size m, and 𝑠𝑖𝑧𝑒(𝑣′)  = 𝑠𝑖𝑧𝑒(𝑣)  = 𝑚. f is a function that encodes 

and reconstructs m features by encoding m features into h hidden nodes and decoding to 

restore h nodes to m features. This is done by encoding and decoding, so we define f by: 

𝑓(𝑣)  = 𝜎(𝑊′ ∙ 𝜎(𝑊 ∙ 𝑣 + 𝑏)  + 𝑏′) 

Transpose the decoded weight matrix W' into the encoded weight matrix transpose: 

𝑊′ =  𝑊𝑇, which is referred to as “tied weights.” By optimizing the parameters of the 

model, the average reconstruction error of the network is minimized. b and b' are two biases 

vectors of sizes h and m, respectively. 𝜎 is a nonlinear activation function, such as the 

sigmoid or tanh functions. The autoencoder uses the adam optimization algorithm to 

iteratively find the best W, W', b, and b' minimize a loss function loss (v, v'). Adam uses 

Momentum and Adaptive Learning Rates to converge faster. n is each training iteration, 

and a specific percentage of the weight matrix coefficients is randomly set to 0 (decreasing) 

to train the denoising autoencoder to reduce overfitting. We define 𝑍𝑂𝑀𝐼𝐶 as the transformed 

version of the 𝑀𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑂𝑀𝐼𝐶  matrix. After training the autoencoder, the transformation Z of 

v is given by 𝑓(𝑣)  = 𝜎(𝑊 ∙ 𝑣 + 𝑏). 

We used the ruta package and the Keras framework to build denoising 

autoencoders. For each DAE, we used h = 100 (hidden nodes), the tanh as activation 

function, the binary-crossentropy as loss function, sigmoid as output function, and the 
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adam optimizer minimize the loss. Finally, we trained the autoencoders with 50 epochs 

and a 50% dropout rate (Figure 3). We used the hidden nodes as new features from the 

denoising autoencoder. 

 

Figure 3. The network structure of the one hidden layer autoencoder. 

To use the PCA method for dimension reduction, we selected the components with 

Proportion of Variance (PoV) greater than 0.01. PoV means a part of variance as a whole. 

This means that we use fewer components to represent 99% of the overall variance. On the 

other hand, an alternative option is to select components from the PCA method as new 
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features that are survival-related while p-values are less than 0.01 by using Cox-PH 

analysis. For each omic, we built an individual model to select new features related to 

survival. At this time, individual Cox-PH was used to select those features related to 

survival from new matrices that were produced by dimension-reduction methods. 

Identification of features related to survival 

We selected the feature matrices obtained from the autoencoder: 𝑍𝑚𝑅𝑁𝐴, 𝑍𝑚𝑖𝑅𝑁𝐴, 

and 𝑍𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 were the features related to survival. For each feature of these matrices, we 

use a univariate Cox-PH model to select those with a log-rank p-value < 0.01. We stacked 

the new features selected from each omics to get a new feature matrix, Zcom. We used the 

univariate Cox-PH functions of the survival package in R to select features and compute 

the p-values. 

Classifiers construction 

For each normalized matrix—𝑀𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑚𝑅𝑁𝐴 , 𝑀𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝑚𝑖𝑅𝑁𝐴 , and 𝑀𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛

—we 

applied the new feature matrix Zcom to the classification. We also stacked all the features 

related to survival to construct a “multi-omics” SVM/RF model. Each model was built 

using SVM/RF through 10-fold cross-validation. By predicting the survival risk subtype 

of each sample, the accuracy of the clustering results was obtained. 

E. Assumptions with Implied Limitations 

Based on previous studies and known theories, we assumed that the clinical data of 

cancer patients would show specific characteristics related to survival and certain 

clustering patterns in different ages, disease stages, and other clinical data. This survival-
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related clustering patterns may have a similar expression in multi-omics data, such as gene 

expression, DNA methylation, and microRNA expression. 

Using multi-omics data to verify the clustering results based on clinical data is very 

promising to be able to obtain similar survival-related patterns between two types of 

datasets. At the same time, the results may not show a perfect consistency between them, 

as the selection of clinical data and the processing of multi-omics data may have further 

need to improve. Therefore, based on existing processing methods and algorithms, results 

verified by two kinds of data could be improved in advance. 

IV. RESULTS 

A. Brief Overview of Results 

Our project obtained training and testing results related to the survival analysis by 

clustering 534 samples in clinical data and classifying 317 multi-omics samples. The 

samples were from the TCGA KIRC project: Three omics datasets and clinical dataset, 

including mRNA, miRNA, DNA methylation, and clinical data of TCGA KIRC, were 

downloaded using the TCGAbiolinks package in R programming tool. We applied a 

multivariate Cox-PH method to select survival-related clinical variables, and age and stage 

were selected as the features in the survival analysis. Using the Silhouette Coefficient (top 

Silhouette score: 0.53 for k = 2), we determined that the optimal solution for the number 

of clusters k related to survival was 2. By applying these variables, two clusters were 

predicted by various clustering methods, such as K-means, K-modes, GMM, to indicate 

different survival risks. K-fold cross-validation was used to evaluate the classification by 

using SVM with linear kernels and RF; thus, to build a supervised classification model to 
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verify whether there are common patterns with clinical data. In the classification, we 

observed the best results when we labeled samples using the K-modes clustering results, 

classified samples with the features obtained from the principal components selected by 

the univariate Cox-PH method. We performed a classification algorithm using RF 

validation in 10-fold cross-validation (Accuracy = 0.7503) while also with high sensitivity 

and specificity. The classification result with p-value < 2e - 16 also proved that the result 

had high reliability. 

We further discussed which samples were misclassified among different omics 

features. To summarize, while 161 samples were clustered in cluster 1, and 154 samples 

were clustered in cluster 2 using the K-modes clustering method. Furthermore, 21 samples 

were misclassified in Cluster 1, and 26 samples were misclassified in Cluster 2. We 

compared the feature heat maps of multi-omics and labeled the misclassified samples. We 

found that in the features heatmaps of mRNA and methylation, there were partial sub-

clustering behaviors of the misclassified samples. In the features heatmaps of miRNA, the 

sample distribution was more scattered. 

B. Findings (Results) of the Clustering and Classification 

We first downloaded the clinical data of KIRC patients from the TCGAbiolinks 

package. We selected clinical variables that are significantly related to survival through 

multivariate Cox-PH (Table 1), age and stage. By using the Silhouette Coefficient (top 

Silhouette score: 0.53 for k = 2), we determined that the optimal solution for the number 

of clusters k related to survival was 2, indicating that among all KIRC patients, two 

subtypes related to survival were determined (Figure 4). 
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Table 1. Log-rank p-value of multivariate Cox-PH for the TCGA KIRC patients’ clinical 

data to select significantly related to survival analysis for clustering. By this method, age 

(p-value = 7.37e - 05) and stage (p-value = 5.18e - 15) were selected as the variables to 

cluster the cancer samples. 

 Coefficient z p-value  

Gender 0.04900 0.228 0.819  

Age 0.04176 3.964 7.37e - 05 *** 

Stage 0.71874 7.823 5.18e - 15 *** 

Race -0.05056 -0.191 -0.191  

Ethnicity 0.51587 1.394 0.163  

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Figure 4. Silhouette score plot for the TCGA KIRC patients with clinical data that are 

significantly related to survival analysis. 
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Fewer dimensions mean less calculations, and fewer dimensions can allow the use 

of algorithms that are not suitable for large dimensions. So, we use DAE, PCA, and 

survival-related principal components. For DAE, we built a network with 100 hidden nodes 

(h = 100) to limit each omic data to 100 new features. Then survival-related features were 

computed. There were 52 survival-related features in DNA methylation, 25 survival-

related features in mRNA, and 21 survival-related features in miRNA. To use the PCA 

method for dimension reduction, components with Proportion of Variance greater than 0.01 

were selected. There were 13 components selected in miRNA, and 11 components were 

selected in mRNA and methylation separately. On the other hand, an alternative option is 

to select components from the PCA method as new features that are survival-related while 

p-values are less than 0.01 by using Cox-PH analysis. Here, there were 13 components in 

miRNA and mRNA of each omic were selected that were survival related. And there were 

11 components selected to be significantly related to survival in DNA methylation (Figure 

5). For each omic, we built an individual model to select new features related to survival. 

For this purpose, univariate Cox-PH was used to select the features that are related to 

survival from new matrices that were produced by dimension-reduction methods. In 

summary, there were 98 survival-related features selected by DAE from multi-omics data. 

There were 35 principal components selected by PCA and 37 survival-related components 

selected by PCA. 
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Figure 5. The number of features selected by different methods, DAE, PCA, and PCA-

surv, separately. 

Table 2. The classification in the 10-fold cross-validation was performed. The samples 

were labeled by K-means clusters with new features obtained by DAE, PCA, and PCA-

surv respectively. The samples were classified using random forest and SVM methods. The 

results were obtained through a confusion matrix of classification. 

 Random forest Support vector machine 

 DAE PCA PCA-surv DAE PCA PCA-surv 

Accuracy 0.5862 0.5397 0.5492 0.6143 0.6243 0.5598 

Sensitivity 0.6986 0.6567 0.6687 0.6238 0.6437 0.5998 

Specificity 0.4595 0.4077 0.4144 0.6036 0.6025 0.5146 

Classification 

p-value 

0.0003 0.29 0.127 1.014e - 

13 

< 2e - 16 0.0052 
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Table 3. The classification in the 10-fold cross-validation was performed. The samples 

were labeled by GMM clusters with new features obtained by DAE, PCA, and PCA-surv 

respectively. The samples were classified using random forest and SVM methods. The 

results were obtained through a confusion matrix of classification. 

 Random forest Support vector machine 

 DAE PCA PCA-surv DAE PCA PCA-surv 

Accuracy 0.627 0.6127 0.6302 0.6074 0.5958 0.636 

Sensitivity 0.8036 0.7577 0.7823 0.7857 0.8486 0.7866 

Specificity 0.3361 0.3739 0.3796 0.3137 0.1793 0.3880 

Classification 

p-value 

0.344 0.8101 0.2461 < 2e - 16 < 2e - 16 0.113 

Table 4. The classification in the 10-fold cross-validation was performed. The samples 

were labeled by K-modes clusters with new features obtained by DAE, PCA, and PCA-

surv respectively. The samples were classified using random forest and SVM methods. The 

results were obtained through a confusion matrix of classification. 

 Random forest Support vector machine 

 DAE PCA PCA-surv DAE PCA PCA-surv 

Accuracy 0.7481 0.7429 0.7503 0.7148 0.7296 0.7254 

Sensitivity 0.7723 0.7785 0.7598 0.8833 0.9049 0.9243 

Specificity 0.7229 0.7256 0.7403 0.1756 0.1689 0.0888 

Classification 

p-value 

< 2e - 16 < 2e - 16 < 2e - 16 0.9999 0.9995 0.9999 

Among these different algorithms(Tables 2–4), we selected K-modes for clustering, 

PCA-surv for dimension reduction, and SVM for classification, respectively in 10-fold 
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cross-validation, that produce an optimized model in terms of classification accuracy 

(Accuracy = 0.7503) of our survival- specific subtypes prediction. The result of p-value < 

2e - 16 also proves that the result had high reliability. 

We compared the performance of the two patient clusters in the survival patterns 

because the results obtained by K-modes clustering in multi-omics classification performed 

best. We observed that the Kaplan-Meier plot that the two groups of patients have 

significant differences in survival analysis (p-value < 0.0001), which shows that our 

clustering can divide KIRC patients into high survival risk and low survival risk subtypes 

(Figure 6). 

  Figure 6. Survival profile with Kaplan-Meier plot of two subtypes for the TCGA KIRC 

patients. 
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Figure 7. According to the results of K-modes clustering, the samples of different groups 

are distributed at different stages.  

By comparing the distribution of the two groups of patients in different clinical data, 

we found that Cluster 1, which indicated the high survival risk subtype, were more 

distributed in stages 2–4. In Cluster 2, almost all the samples were distributed in the first 

stage, which indicated low survival-risk subtypes (Figure 7). We then discussed the role 

that stages played in clustering alone. We divided Stage 1 into an early stage, and we 

divided Stages 2–4 into an advanced stage. We used this as evidence for classification to 

cross-validate the survival-related features obtained by applying multi-omics data. The 

results obtained were very close to the best results obtained before (Table 5). We thought 

that stages played a more prominent role in sample clustering than age. 
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Table 5. The classification of samples labeled by K-modes clusters in the 10-fold cross-

validation, and the new features obtained by PCA-surv were classified in cross-validation. 

The results were validated using the RF method. The results were obtained through a 

confusion matrix. 

 Random forest 

 PCA-surv 

Accuracy 0.7545 

Sensitivity 0.7419 

Specificity 0.7667 

Classification 

p-value 

< 2e - 16 

We then further explored the misclassification of samples in each cluster. We got 

the following results:  

In Cluster 1,  

• 1 sample in Stage 1 was misclassified,  

• 7 samples in Stage 2 were misclassified,  

• 8 samples in Stage 3 were misclassified,  

• 5 samples in Stage 4 were misclassified.  

In Cluster 2,  

• 25 samples in Stage 1 were misclassified,  

• 1 sample in Stage 4 was misclassified.  

To summarize, 21 samples were misclassified in Cluster 1, and 26 samples were 

misclassified in Cluster 2. 
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Finally, we compared the features heatmaps of multi-omics and labeled the 

misclassified samples. We can find that in the features heatmaps of mRNA and DNA 

methylation (Figures 8 and 9), there were partial sub-clustering behaviors of the 

misclassified samples. In the features heatmaps of miRNA (Figure 10), the sample 

distribution was more scattered. 
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Figure 8. The heatmaps of mRNA features with samples that were misclassified in each 

cluster. a) The heatmap of Cluster 1 with mRNA features obtained by the PCA-surv method, 

and b) the heatmap of cluster 2 with mRNA features obtained by the PCA-surv method. 1-

5) The sample index for each misclassified sample in the sub-cluster. 
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Figure 9. The heatmaps of DNA methylation features with samples that were misclassified 

in each cluster. a) The heatmap of Cluster 1 with methylation features obtained by the PCA-

surv method, and b) the heatmap of Cluster 2 with methylation features obtained by the 

PCA-surv method. 1-5) The sample index for each misclassified sample in the sub-cluster. 
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Figure 10. The heatmaps of miRNA features with samples that were misclassified in each 

cluster. a) The heatmap of Cluster 1 with miRNA features obtained by the PCA-surv 

method, and b) the heatmap of Cluster 2 with miRNA features obtained by the PCA-surv 

method. 

V. CONCLUSION AND DISCUSSION 

A. Brief Summary of the Research 

We tested our pipeline on Kidney Renal Clear Cell Carcinoma (KIRC) cancer from 

the TCGA database. We integrated KIRC clinical data along with gene expression, DNA 

miRNA features 
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methylation and miRNA expression datasets in the pipeline. The data for analysis was 

downloaded using TCGAbiolinks package in the R programming language. 

In this project, 534 samples of clinical data and 317 samples of KIRC were obtained 

from TCGA for integrating and pre-processing. A total of 315 samples with all types of 

data were clustered into 2 clusters using K-means, GMM, and K-modes clustering methods. 

We used rank normalization to pre-process the multi-omics data and inputted the features 

into dimensional reduction models to select new features that were related to survival. To 

reduce the dimension of the multi-omics datasets, we tested different algorithms such as 

denoising autoencoder, Principal components analysis (PCA) and PCA-surv. For the 

classification purpose, we tested two different machine learning methods, such as, support 

vector machine (SVM) and random forest. Among these different algorithms, we selected 

K-modes, PCA-surv, and SVM for clustering, dimension reduction and classification, 

respectively, that produce an optimized model in terms of classification accuracy of our 

survival-risk-specific subtypes.  

B. Findings (Results) and Implications 

Through Cox-PH, we selected age and stage as two features related to survival. By 

using the Silhouette Coefficient, we determined that the optimal number of clusters of k is 

2. After comparing Kaplan Meier-plot, these two subtypes were significantly different in 

survival analysis (p-value < 0.0001). We define these two subtypes as the high-risk group 

and the low-risk group. 

We compared the autoencoder with the PCA method and performed two different 

treatments on the principal components obtained by the PCA method. For each DAE, we 
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used h = 100 (hidden nodes). Finally, we trained the autoencoders on 50 epochs with a 50% 

dropout rate. We defined 𝑍𝑂𝑀𝐼𝐶 as the transformed version of the 𝑀𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑂𝑀𝐼𝐶  matrix. To 

use the PCA method for dimension reduction, we selected components with Proportion of 

Variance greater than 0.01 and survival-related principal components from the PCA 

method as new features while p-values are less than 0.01 by using Cox-PH analysis. For 

each omic, we built an individual model to select new features related to survival. In this 

step, individual Cox-PH was used to select features that are related to survival from new 

matrices that were produced by dimension-reduction methods. New matrices containing 

98, 35, and 37 features were obtained. 

Through classification, the best accuracy value we obtained for different validation 

methods was 0.7503. This showed that samples with survival-related principal components 

could be more accurately classified in classification. At the same time, RF also performed 

better than SVM in classification. 

We also discussed the results of different risk subtypes under unique clinical data. 

The results showed that stages play a more prominent role in clustering analysis than age. 

In addition, among the misclassified samples, 21 samples were misclassified in Cluster 1, 

and 26 samples were misclassified in Cluster 2. Finally, we compared the features 

heatmaps of multi-omics and labeled the misclassified samples. We found that in the 

features heatmaps of mRNA and methylation, there were partial sub-clustering behaviors 

of the misclassified samples. In the features heatmaps of miRNA, the sample distribution 

was more scattered. 
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C. Research Analysis of Findings 

This was a preliminary exploration of the integration of clinical data and multi-

omics data to find differences in survival risks in KIRC samples. Survival Clustering 

provides a new idea, and on this basis, we can consider more omics data and clinical data. 

Here, we have three omics datasets and one clinical dataset. We clustered two subtypes 

with significant differences in survival risk and applied multi-omics data to indicate risk 

subtypes through cross-validation. We can use different clinical data sets to determine the 

risk subtypes of KIRC patient samples. We need a more complete method to pre-process 

and select clinical data sets to consider more clinical data and prognostic signatures. Finally, 

through DAE and PCA, we performed dimensionality reduction and feature selection on 

multi-omics data, and we used more concise data to represent the characteristics of high-

dimensional data. This can pre-process more omics data into verifiable feature matrices. 

D. Reliability and Validity of Survival-Related Subtypes 

By studying previous research results, we understand that the integration of multi-

omics research plays an important role in the clustering of cancer patients. We expect the 

integration of multi-omics data to verify the characteristics of survival analysis in clinical 

data. We hypothesize that there are similar survival characteristics in clinical data and 

multi-omics data. We can select variables closely related to survival through Cox-PH and 

divide the cancer samples into different survival risks by clustering type. 
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E. Summary of Academic Study 

We proposed a survival-related prognostic integration pipeline. Through Cox-PH 

analysis, we selected the clinical data of KIRC patients as survival-related clustering 

indicators, which gave overall significant p-values. We used the Silhouette Coefficient to 

determine the optimal number k of clusters. We obtained three omics datasets, including 

mRNA, miRNA, and methylation, and clinical data of the TCGA KIRC project from the 

Genomics Data Commons web portal (https://portal.gdc.cancer.gov); the data was 

downloaded by the TGCAbiolinks package in the R programming language. 

Using survival analysis on clinical data, KIRC patients were divided into two 

survival subtypes. We then established a supervised classification model using the DAE 

and the PCA. For each omic, we built an individual model to select new features related to 

survival. At this time, individual Cox-PH was used to select features that are related to 

survival from new matrices that were produced by dimension-reduction methods. These 

features were then classified by the clusters inferred by the clinical survival-related 

variables. K-fold cross-validation was utilized for classification by using SVM with linear 

kernels and RF to build a supervised classification model to verify whether there are 

common patterns with clinical data. Accuracy, specificity, and sensitivity were used to 

evaluate the results. A confusion matrix was used to combine these parameters to gain a 

comprehensive view of the results. 

Overall, we identified two subtypes of survival risk through cluster analysis. These 

two subtypes have significant survival differences. We used the K-modes clustering 

method to cluster KIRC samples into two different subtypes. We then used the DAE, PCA, 
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and PCA-surv methods to perform feature screening with the processed three omics data. 

We obtained matrixes containing 98, 35, and 37 new features, and we used the SVM/RF 

classification model to perform 10-fold cross-validation, the classification results obtained 

by the final RF method had the highest accuracy. Through classification, the best accuracy 

we obtained among different classification methods was 0.7503.  

Among the misclassified samples, 21 samples were misclassified in Cluster 1, and 

26 samples were misclassified in Cluster 2. We found that in the features heatmaps of 

mRNA and methylation, there were partial sub-clustering behaviors of the misclassified 

samples. 

F. Limitations of the Theory or Method of Research 

Although we can attain better verification results through this method, as it relates 

to the selection of clinical data related to survival, the method we used is still relatively 

straightforward, so there may be some data overfitting or some data are not correctly 

selected. We can consider as much clinical data, prognostic signatures, and biochemical 

indicators as possible. More normalization methods to integrate data belonging to different 

ranges into data of similar ranges could be considered, as the selection of data is not 

optimized enough. In addition, as it relates to dimensionality-reduction processing and 

feature selection of multi-omics data, no other methods were considered, resulting in some 

methods that had deviations in the selection of different omics data, so that some data were 

selected for many features while other data had few or no features. Therefore, there are still 

some shortcomings in data processing and algorithm optimization. 
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G. Future Study 

In future research, we will try to use more clinical data, prognostic signatures, and 

biochemical indicators as the basis for clustering. We will use more normalization methods 

to process the data to a better selection to choose more comprehensive and reliable data. 

We hope to consider more data in survival analysis so that survival-related features can be 

more comprehensively applied to survival clustering algorithms. 

In addition, as it relates to data processing of multi-omics, we expect to be able to 

refer to more data-processing methods, learn more deep-learning methods and neural 

network algorithms, and select new features related to survival after dimensional-reduction 

processing. 
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