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ABSTRACT
INVESTIGATION OF OPTIMIZATION TARGETS FOR

PREDICTIVE SIMULATION OF HUMAN GAIT
WITH MODEL PREDICTIVE CONTROL

Jessica B. Thayer, B.S.

Marquette University, 2020

The design and development of gait-related treatments and devices is inhibited by an
absence of predictive gait models. Understanding of human gait and what motivates walking
patterns is still limited, despite walking being one of the most routine human activities. While a
significant body of literature exists on gait modeling and optimization criteria to achieve
simulated, normal gait, particularly with neuromuscular models, few studies have aimed to apply
optimization targets which approximate metabolic cost to mechanical gait models. Even fewer
have attempted this predictively, with no joint angle data specified a priori. The Sun
model [31], [32] is one such mechanical framework which utilizes MPC to predict the dynamics of
human walking. This thesis expands the Sun model [31], [32] to simulate a full gait cycle (CG) and
investigates the application of new optimization targets within an existing Model Predictive
Control (MPC) framework for predictive gait simulation developed by Sun [31], [32] .

The Sun model [31], [32] was previously limited to a half gait cycle (GC) which assumed
bilateral symmetry and optimized only according to characteristic constraints such as step length
and velocity of the center of mass (COM). In this thesis, the Sun framework and MPC control
scheme were expanded to generate consecutive double support (DS), single support (SS), DS, and
SS period simulations, which constitutes a full GC. The resulting GC simulation was not marked
by GC events toe off (TO) and heel strike (HS), but did achieve continuity over the period which
was not achieved by the Sun model [31], [32] . Additionally, new cost functions were developed
consistent with existing literature which suggests that the Central Nervous System (CNS) uses a
variety of energy-related targets in generating gait. This thesis demonstrates that the application
of optimization targets which approximate metabolic costs is possible with the proposed MPC
framework for a mechanical gait model, but that the performance of resulting simulations should
not be evaluated until a full GC marked by TO and HS is achieved.

While a continuous full GC simulation was achieved, the failure of the model to reliably
meet characteristic constraints, particularly in SS, prevents simulation of a GC marked by TO and
HS. The work in this thesis points primarily to the failure of the optimization routine within the
MPC framework to reliably find a solution that meets constraints as the cause of this problem. If
the optimization problem can be classified, an appropriate solution algorithm could be chosen
which could reliably find a solution for any given set of constraints and initial conditions (IC).
Identifying an appropriate solution algorithm could make the MPC framework proposed a viable
method of gait prediction and simulation.

This investigation provides researchers better understanding of the application of
energy-based optimization in mechanical gait models and the current limitations of gait
prediction and simulation. In addition, direction is given to the future work necessary to establish
MPC as a viable control method for gait simulation.
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CHAPTER 1

INTRODUCTION

Walking is one of the most routine activities that humans do every day, both as a form of

exercise and as a valuable aspect of independence and self-sufficiency. Ambulation in healthy

individuals enables the performance of daily tasks and drastically improves quality of life, and

therefore, if ambulation is impaired, longevity also decreases [14]. Positive effects of walking have

also been seen in diseased populations, as walking has been shown to mediate the effects of

diabetes, cancer, depression, and extend the lifespan of individuals with high blood pressure or

struggling with obesity [14], [10]. While any regular exercise is beneficial to overall physical and

mental health, walking in particular is a great, low-impact form of exercise throughout a person’s

lifetime [15].

Challenges to ambulation can arise due to loss of limb, as approximately 185,000 patients

in the United States alone undergo a lower-limb amputation annually [43]. Of the nearly 2 million

individuals in the US who have lost a limb, the leading cause of amputation is vascular disease

such as diabetes (54%) followed closely by trauma (45%) [9], with numbers projected to increase.

Adding to the already traumatic experience of amputation, the slow, trial-and-error process of

fitting a prosthetic device can produce feelings of frustration and hopelessness in patients

struggling to regain normalcy. Currently, the prosthetic fitting process is heavily reliant on

experimentation, where the mechanical device itself can be modified based on prosthetist

preference, then fabricated and fitted for patient use through an iterative process. On average, it

takes approximately five months and multiple visits to a clinician from the time of amputation

surgery for a patient to be comfortably fitted with a permanent prosthetic device [20].

1.1 Problem Statement

Though learning to walk is a natural part of human development, current understanding

of human gait is limited, inhibiting the application and development of gait-related treatments

and medical devices such as prosthetics and orthotics (P&O). Passive prostheses, without energy

input, have been developed but fail to provide the forces necessary for complete desired mobility,

particularly in the stance phase of gait. Alternatively, active prostheses use an actuator to input

energy into the prosthesis and offer significant advantages over passive devices by providing

power in the toe-off phase of gait to fully restore normal gait. Development of active prostheses,
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however, is limited by gait models that lack predictive capabilities. Speed and efficiency in design

iterations will continue to grow more necessary as lower limb prosthetic design becomes

increasingly complex and the number of amputees grows.

A better understanding of human gait, both normal and pathological, is necessary to

improve the development and fitting of P&O for amputees. Improvement of the design and

development of gait related treatments and devices requires gait models that allow for the

prediction of normal and pathological gait so that experimental gait analyses are not required.

Thus, it is necessary that this prediction is computationally efficient and adaptable, requiring less

time than standard gait testing methods. Primarily, an improved gait model would enable new

gait related devices to be virtually tested on a patient-specific model of normal gait, allowing for

quicker performance prediction, lower cost of development, and reduced risk of injury during

subject testing.

1.2 Specific Aims

Using an existing gait model and control system proposed by Sun [31], [32] , this research

improves the performance criteria used within the optimization framework to better model gait

generation by the central nervous system (CNS).

The three aims of this thesis were as follows:

Aim 1: To expand the Sun model [31], [32] to predict a subject-specific gait cycle (GC).

Using the Sun framework [31], [32] and model predictive control scheme, a full

GC will be generated with subject-specific anthropomorphic parameters. These

subject-specific models will be used to examine the effects of new cost functions,

and will be evaluated using clinical gait analysis tools following subject trials.

Aim 2: To develop cost functions consistent with existing literature to better mimic CNS

control of the body during gait.

Literature suggests that the CNS uses a variety of energy-related targets in

generating gait [3], [7], [40], and this work aims to incorporate cost functions that

minimize measures of metabolic energy expenditure using the original Sun

model targets to most closely predict and simulate normal gait. The first cost

functions explored will aim to minimize mechanical approximations of

metabolic cost or fatigue and the Sun model’s original optimization targets.

These additional measures include external work on the center of mass
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(COM) [7], the summation of the joint torques [40], and muscle fatigue [3].

Aim 3: To evaluate controller performance using clinical gait analysis measures in

prediction of both normal and abnormal human gait.

Resulting optimization schemes will be used to predict both normal and

rigid-ankle pathological gait. Joint angle profiles from this study will be

compared to 3D motion capture kinematic data of subjects walking both

unhindered (normal case) and with a rigid AFO (pathological) to inhibit ankle

flexion. Additionally, the joint angle profiles from these simulations will also be

compared with a normal ambulator database [2] and the Sun model.

The gait simulation framework proposed by the author is an expansion of the Sun

model [31], which is unique in its predictive approach. This investigation will provide researchers

better understanding of the application of energy-based optimization in mechanical gait models

and the current limitations of gait prediction and simulation. In addition, direction is given to the

future work necessary to establish MPC as a viable control method for gait simulation.



4

CHAPTER 2

LITERATURE REVIEW

Gait research can be divided into two categories: gait analysis and gait simulation. Gait

analysis allows for definition and identification of pathological gait as deviant from normal.

Current gait analysis practices allow for three-dimensional motion tracking, which eliminates the

limitations of two-dimensional observational analysis, and have been used to understand factors

that influence normal walking patterns. However, in observing abnormality in gait analysis, it is

difficult to differentiate between the mechanical influence of the body’s physical limitations or the

motivational influence of the CNS that generates human gait.

Alternatively, gait simulation provides insight into the effect of both mechanics and

motivation in human walking. Gait simulations across existing literature vary greatly in

complexity and goal but are differentiable both by gait model and simulation method. Gait

models represent the physical limitations and dynamics of human walking with mathematical

approximations, i.e., the mechanics of human movement. The simulation methods used to

manipulate these gait models also vary, but represent the motivation of human movement.

Evaluation tools for these gait simulations can be derived from kinematic and kinetic gait analysis

to describe simulation accuracy.

Section 2.1 describes pertinent clinical observations of human gait. Sections 2.2 and 2.3

detail the current state of gait analysis and simulation methods, respectively. Finally, Section 2.4.1

discusses the variety of literature pertaining to optimization targets for gait simulation.

2.1 Human Gait

To create a predictive model of human gait, an understanding of normal ambulation is

necessary. Human gait is a cyclic limb pattern to advance the body and consists of two

dynamically distinct phases: stance and swing (Figure 2.1), which describe the motion of each limb

individually. Stance phase is characterized by the foot being in contact with the floor and begins

with initial contact, or heel strike for normal ambulators. Swing phase begins with toe-off and

consists of a free-swinging pendulum to advance the limb. These phases together make up one

gait cycle (GC) in time and one stride (or two steps) in distance. The GC is also characterized by

eight distinct muscle activation events: initial contact, loading response, mid-stance, terminal

stance, pre-swing, initial swing, and terminal swing [28]. Position in the gait cycle can be
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Figure 2.1: Gait cycle phases and events [28].

described by these event markers, time, or percent GC (%GC), shown in Figure 2.1.

Each step is also subdivided into two periods, which are also dynamically distinct: double

limb support (DS), and single limb support (SS). These periods describe the motion of both limbs,

and are the major subdivisions used for the prediction and simulation of gait in this study.

Between these periods, the mechanical energy of the body is exchanged between kinetic and

potential energy during forward translation of the COM during double support, and the upward

shift of the COM as the head-arms-torso (HAT) rocks over the stance leg during single support,

respectively [19], [27]. These periods of energy expenditures become important in understanding

the GC. Minimizing energy expenditure is thought to be a primary target of gait generation, but

the kinetic-potential energy exchange is incomplete and must be captured by an optimization

routine to accurately predict gait.

Sections 2.1.1 and 2.1.2 highlight important characteristics and other relevant clinical

observations of these periods, many of which contribute to or are ways to minimize the energy

expenditure of the GC.

2.1.1 Double Limb Support Period

During DS, the weight of the HAT shifts from the lag limb to the lead limb in preparation

for SS. DS begins with heel strike of the lead foot and weight acceptance onto the lead limb, and

continues until the lag limb pushes off the ground at toe-off (TO). Though less total external work

is required for stiff-legged weight acceptance, normal gait patterns prioritize minimizing ground

contact forces and reducing the vertical translation of the COM by bending the leg at heel
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strike [19], [3].

During this period, external work is needed to shift the COM forward. Cavagna et al.

demonstrated that up to nearly 7 km/hr walking speed, COM displacement during DS is constant

for an individual [8]. Given the limited range of the DS period, studies have proposed that the

muscle action during DS solely establishes an appropriate set of initial conditions for the SS

period [26].

2.1.2 Single Support Period

SS advances the swing leg to complete a step. This forward progression of the leg is

measured as step length and is frequently used as a measure of gait stability [40]. The change in

potential energy as the COM shifts up and over the stance leg is the primary driver of metabolic

cost in this period, though the pendulum action of the swing leg offsets energy expenditure [8].

However, normal ambulators seemingly aim to minimize this expenditure by shortening the

“virtual stance limb,” which is the distance from the COM to the foot’s point of contact with the

ground [19].

SS can very nearly be modeled as an inverted pendulum [8], but the simplified model

does not capture the metabolic cost perfectly [27]. Because there is minimal muscle activation

during SS, the “initial conditions,” or the transition from DS to SS, is significant in the successful

completion of a step [26] [13].

2.2 Gait Analysis

Gait analysis is the act of making biomechanical interpretations of observed or collected

data to understand why a person walks the way they do. A variety of gait parameters have been

adopted as part of clinical gait analysis, including, but not limited to: stride length, step length,

cadence, duration of SS, walking speed, and percent of cycle for specific gait events [6]. In

addition to these temporal parameters, kinematic data can also be used to identify “features” of

gait, where it deviates from normal. A common plot convention used in gait analysis (see Figure

2.2) will be used in this work to highlight features of the simulated gait and make comparisons

with kinematic data from subject testing.

This plot convention highlights the range of normal gait kinematic data in the sagittal,

coronal, and transverse planes (left to right) for the particular database used (shown as green

bands) of each lower limb segment, proximal to distal (top to bottom). The right leg (red lines)
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Figure 2.2: Plot Convention for gait analysis kinematic data [2]. The data presented is an example
of results collected outside of this thesis and includes outliers in the right limb data.

and left leg (blue lines) joint kinematic data acquired through a single or series of walking trials is

superimposed on the normal bands to allow for comparison. The red and blue vertical lines

identify the %GC where toe-off occurs. The angle of the distal segment is defined relative to an

extension of the line along the axis of the proximal segment, beginning at the pelvis and measured

from anatomical neutral. For each joint, flexion (dorsiflexion at the ankle) is assumed positive, and

extension (plantarflexion) is negative.

An evaluation of gait simulated by the improved model will be made consistent with

clinical gait analysis practices. The specific measures to be compared are sagittal plane kinematic

data and step length.
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Figure 2.3: Classification of current human gait research.

A tremendous amount of literature has been published about gait analysis and normal

gait [39] [28]. Only a brief summary has been provided in this thesis to provide important features

relevant to the prediction of gait and observations necessary for evaluation of gait models.

2.3 Gait Simulation

A number of gait simulations exist of varying complexity and can be categorized as

biomechanics gait analysis or biped robotics research. These simulations vary in complexity of the

gait model and type of simulation method. Figure 2.3 shows the divisions of existing gait research.

2.3.1 Gait Models

Gait models across literature vary greatly depending on modeling intent. On one end of

the complexity spectrum these models represent a portion of the gait cycle with a simplistic

mechanical approximation such as the inverted pendulum model. At the other extreme are

high-fidelity neuromuscular models used as objects for computationally intensive optimization

schemes.

Biomechanics Gait Models

Biomechanics gait models are typically neuromuscular models, meaning that muscle

activation is modeled and used as actuation for the rigid body segments and joints. Gait has been
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successfully simulated through such optimization methods. There exists significant evidence of

central pattern generators (CPGs) for human locomotion, and Van der Noot et al. were able to

incorporate CPGs in the control scheme for a neuromuscular model [34]. Alternatively, Anderson

and Pandy developed a 23 degree-of-freedom (DOF) model actuated by fifty-four muscle groups

and optimized a gait cycle muscle excitation pattern according to metabolic cost per unit distance

traveled [4]. Because interest in such biomechanics optimizations have grown, the literature

suggesting novel methods such as simulated parallel annealing [16] and residual elimination

algorithms [29] have been proposed as less computationally intensive alternatives to the

optimization problem.

Currently, processes for optimization of walking pattern parameters for biomechanics gait

models are computationally intense and thus do not respond and adjust in real-time like the

control of the central nervous system (CNS). High-fidelity biomechanics gait models are far too

complex for real-time gait control.

Simplified Gait Models

The simplest models within biped robotics research include the inverted pendulum, the

passive dynamic walker, and the Zero-Moment-Point method [40]. Using a concentrated body

mass at the center of gravity and a planar inverted pendulum as a massless leg with variable

length the inverted pendulum model can be used as a gait model. The passive dynamic walker

model demonstrates that a biped model can walk down a ramp purely driven by gravity as the

legs swing naturally like a pendulum [40]. This model was translated to the horizontal plane as

well. The inverted pendulum and passive dynamic walker models are too simple to adequately

model gait because they lack all lower extremity joints, but these models can still be used to

generate or optimize robotic gait [37]. The zero-moment-point (ZMP) method generates gait by

ensuring the stability of the body by following a pre-defined set of ZMP positions, where the

resultant moments of active forces are zero [40]. Dynamics equations are used only to calculate

these ZMP positions and not the entire trajectory. Variations of ZMP models have been used to

control gait of several different biped robots with varying DOF from 7 to 26 [11], [42]. While

computationally efficient, these simplified methods can manage real-time control, but as stability

is not the primary human criteria for walking, they cannot effectively model the CNS.
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Mechanical Gait Models

The majority of models without musculature can be described as ”mechanical” models,

and are designed to represent the dynamics of the human body during gait with simplified

actuation. Usually these models consist of rigid links connected by revolute joints with a variety

of complexity and ground reaction force models [7], [25], [30]. Mechanical models allow for

evaluation of control schemes and optimization targets without the computational intensity of

dynamic simulation of large DOF neuromuscular systems.

Despite being smaller DOF systems, mechanical gait models can offer relatively high

levels of fidelity. The Sun Model [31], [32], the basis for this thesis, is a mechanical model, as are

most models used with control-based simulation methods (Section 2.3.2).

2.3.2 Simulation Methods

Simulation methods used to manipulate gait models also vary in scope and complexity.

Each simulation method can be used with any of the previously discussed gait models, though

some applications are inherently more practical than others.

Optimization Based Methods

Optimization based methods focus on determining what criteria the CNS uses to generate

gait and aim to optimize a trajectory to meet these criteria [40]. Many biomechanics gait

simulations use optimization methods to identify a muscle activation pattern to achieve gait with

low metabolic cost or muscle fatigue [4], [16]. In biped robotics research, the performance

measures most commonly used are: dynamic effort, mechanical energy, metabolic energy, jerk,

and stability [40]. By combining these objectives, the control of the CNS can be modeled with

large DOF and have been successful in simulating gait. However, these methods are

computationally-intensive and require experimental data, so they are not completely predictive,

but give insight about CNS optimization targets.

Control Based Methods

Control based methods prove better suited to gait simulation and are widely used for

both biomechanics and robotic gait simulations. Traditional PID control is insufficient for this

study as it is reactionary, instead of predictive. However, a control-based method, given the right

controller, can be robust, flexible, and handle environmental disturbances. Literature on
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control-based methods for gait simulation is extensive, and control based gait simulation can be

achieved using a variety of controllers. Katic and Vukobratovic [18] reviewed neural networks,

fuzzy logic, genetic algorithms, and hybrid control algorithms for gait simulation. Several control

based methods are reviewed in this section.

Hybrid Zero Dynamic (HZD) control-based models capture limited features of gait but

allow rapid optimization [40]. Westerverlt et al. [38] used a hybrid-zero-dynamics feedback

control method for planar biped gait, and Azevedo et al. [5] proposed a nonlinear predictive

controller which calculated trajectories by minimizing an objective function. These methods

successfully simulate gait, though not entirely predictively.

Control-based methods are also often used within optimization methods to predict

necessary muscle forces for the optimized trajectories. There are three main categories of

control-based methods:

Tracking Control Methods. Tracking control methods begin with a desired motion

trajectory and calculate the proper torque inputs to follow that motion [40]. These methods,

therefore, are not appropriate for this study, which aims to predict human gait without a priori

joint trajectories.

Optimal Control Methods. A subset of control-based methods is optimal control

methods, where the controller minimizes a cost function to direct the model from initial to final

state [40]. These methods are similar to the optimization methods for gait simulation, where

continuous torque inputs are the unknowns for the duration of the optimization period [40].

However, information about the initial and final states is still required, so the simulation cannot be

entirely predictive.

Predictive Control Methods and Model Predictive Control. Predictive control methods

make up the final sub-division of control-based methods and utilize iterative, finite horizon

optimizations of the motion [40]. Martin and Schmiedeler have incorporated hybrid zero

dynamics control into a predictive model of gait with a modified foot model to allow for the phase

variable calculation required for HZD [22]. Another predictive control method is model predictive

control, or MPC, used in this thesis. MPC is an iterative optimization of the motion that optimizes

for the entire gait cycle, as opposed to optimal control methods, which commonly minimize the

cost function only once. Only initial joint position information is required.
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Figure 2.4: Block diagram of MPC as applied to human gait prediction.

2.3.3 Model Predictive Control for Gait Simulation

A general block diagram for MPC applied to gait can be seen in Figure 2.4. Van der Kooij

et al. [33] were able to achieve repeated gait simulation by using MPC to control a 7-link, 8-DOF

model by optimizing step time, step length, and the velocity of the center of mass at push-off,

with prescribed end-states. Since end positions between phases of gait are specified [12], van der

Kooij’s work is not entirely predictive and could be classified as an optimal control method.

However, this approach presents MPC as a viable control method for gait simulation and was

unique in that most robotic field gait simulation uses dynamic effort and metabolic energy

usage [33].

Minimization of mechanical energy expenditure was the main cost function of a similar

MPC proposal by Ren et al. [30], which used an inverse dynamic formulation rather than a

forward dynamic model. A single cycle was generated for another 7-link model with walking

velocity, cycle period, and double stance phase duration as the predictive control references.

Karimian et al. [17] used model predictive impedance control (MPIC) to control a 3D 5-segment

gait model, which was able to climb and descend stairs. The cost function was energy

consumption, vertical body orientation, and center of mass forward velocity. Each of these

projects have shown MPC as an effective controller representative of the CNS because of its

flexibility. This thesis aims to explore additional combinations of control objectives.

MPC is a good approach for control of a human gait model because of its formulation and

predictive approach. It is a state-space control method that works well with multiple input,

multiple output (MIMO) systems. The simple MPC schematic shown in Figure 2.4 demonstrates
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the predictive aspect of the MPC control scheme. The control input to the gait dynamics model is

optimized according to the error between the target kinematic reference and the predicted

kinematic output to the end of the gait cycle. This control output is then run for a specified time

before the process is repeated.

Though MPC is promising as a control scheme for prediction of human walking patterns

due to it’s predictive capabilities, it is an optimal control method, meaning it is heavily dependent

on successful optimization within the control framework. This iterative optimization can be

challenging with nonlinear, high-DOF systems. A detailed description of MPC is given in Section

3.2.

The Sun Model

The Sun model [31], [32] proposed an improved MPC framework with a seven-link,

nine-DOF human gait plant model, and provides the basis for this thesis. The Sun model [31], [32]

uses a control system that is primarily MPC with secondary classical PID feedback controllers to

mimic the CNS. The MPC method allows for constraints such as joint torque and range of motion

limits to direct simulation of gait without any prior knowledge of gait or joint trajectories. This

MPC method meets all necessary requirements for simulating the CNS—it is robust and flexible,

can respond to disturbances, and though computationally intensive, a solution can be reached

within reasonable time.

The Sun model [31] employs only endpoint MPC, meaning that the control algorithm

compares only the final state to a target. While certain literature confirms this hypothesis and

demonstrates that gait can be mostly described as an inverted pendulum in swing and a

consistent HAT progression in stance [35], other literature suggests that the finer details of gait are

controlled continuously to find the most efficient gait cycle [25].

The framework adopted from the Sun model [31], [32] will be further discussed in

Chapter 3. The Sun model, like all MPC gait simulations, utilizes an optimization routine, as

shown in Figure 2.4.

2.4 Cost Functions and Human Gait Optimization Criteria

The cost function, J, [36] is central to optimization within many gait simulation methods

(including MPC and the Sun Model [31], [32]) and this thesis’s work to improve the controller

objective function, given by,
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J(x(0), u) =
1
2

N−1

∑
k=N0

[x(k)TQx(k) + u(k)T Ru(k)] + x(N)TQ f x(N), (2.1)

where N0 is the current time, N is the final time step, Q is the weighting matrix for predicted

states, R is the weighting matrix from control inputs, and Q f is the weighting matrix for the final

predicted states. Generally, the predicted future outputs (states), x(k) with k as the current time

step, should be as close as possible to the reference from the cost function, J, while control effort,

u(k), is minimized [31], [36]. The first term in this objective function is Stage Cost, the second is

Control Input Cost, and the last is Terminal Cost. By tuning Q, R, and Q f , the importance of these

costs can be adjusted so that certain costs are enforced more strictly than others. The cost function

could consist of only one objective or a combination of varied objectives.

2.4.1 Optimization Targets

Optimization targets describe these individual objectives that make up the cost function,

and may consist of different types of costs (i.e., stage, control input, and terminal). Gait simulation

by control-based methods, described in prior sections, require optimization according to a cost

function, independent of whether the optimization is a tracking problem or a prediction. In gait

simulation, the cost functions usually consist of one or multiple optimization targets which are

approximations of measurable, physical quantities such as metabolic energy expenditure or step

length. Sun hypothesized that the CNS only controls a limited number of gait-descriptive

parameters in between the transitions of stance to swing and swing to stance [31]. Thus, the Sun

optimization targets were dominated by terminal cost, effective at the end of period simulations.

However, many studies have aimed to understand the priorities of the CNS in gait

generation [3], [4], [7], [19], [40]. Generally, it is concluded that the CNS is likely to prioritize

minimizing dynamic effort (the integral of the squares of all joint torques over time), muscle

fatigue, mechanical energy consumption, metabolic energy consumption, or maximizing

stability [40], in addition to achieving a specified step length and constant COM progression.

Dynamic effort and mechanical energy cost dominate performance measures used in

robotic gait simulation, while metabolic cost is primarily used in biomechanical gait analysis,

which uses detailed neuromuscular models. The Sun model optimizes joint angle trajectories to

meet a desired step length during single support stage of gait and target center of mass (COM)

velocity during the double support stage [31]. In reality, human gait is likely governed by a
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combination of performance measures and optimization targets, and thus multi-objective

optimization (MOO) methods may be required.

Metabolic Energy and Mechanical Approximations

Though mechanical approximations may be required because of the model used, a variety

of studies demonstrate that metabolic energy savings is the primary optimization target in normal

gait [25], primarily because muscles cannot be assumed to do work with constant efficiency.

Mechanical work and dynamic effort can in theory predict metabolic energy expenditure when

musculature is not included in a gait model. Burdett et al. [7] demonstrated that estimates of work

done on body segments, an estimate of work done on the COM, or dynamic effort may be valid

alternative optimization targets.

Effort and Fatigue

Energy-related optimization targets such as mechanical and metabolic energy

approximations, discussed above, can be organized into effort and fatigue categories as proposed

by Ackermann and Van den Bogert [3], who examined functions of weighted muscle activation

patterns during optimization of gait cycle joint trajectories. Optimization targets that minimize

muscle activation, weighted evenly or by volume, can be considered effort optimization targets.

These functions result in reasonable gait characterized by straight-knee weight acceptance

patterns [3]. A similar straight-legged weight acceptance pattern was oberved by Martin and

Schmiedeler who predicted simplified patient-specific gait patterns by minimizing dynamic

effort [22]. Fatigue optimization targets on the other hand minimize higher powers of muscle

activation, penalizing over-exertion of individual muscle groups. These optimization targets

achieve a bent-knee weight acceptance phase [3], which is consistent with normal human gait.

This difference points to endurance or fatigue-avoidance as a viable optimization target in the

prediction of human gait.

This thesis considers the use of mechanical approximation of metabolic cost and

endurance measures for optimization in the prediction of human gait. The application of these

optimization targets to the model framework is discussed in Section A.1.
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CHAPTER 3

SIMULATION FRAMEWORK

The gait simulation framework used in this thesis is an expansion of the Sun model [31].

The Sun model consists of a seven-link, nine-DOF, forward dynamic human gait model as the

plant, and a control system that is primarily Model Predictive Control (MPC) with secondary

classical feedback control (PID), which together mimic the CNS [31]. This control method allows

for constraints such as joint torque limits, range of motion limits, etc., to direct the simulation of

gait without any prior knowledge of gait or joint trajectories. The gait simulation framework

includes two plant models, two internal models, an objective function for each period (SS and DS)

of gait, and a common optimization framework for both phases.

This chapter is dedicated to explaining each of these components within the framework

(i.e., plant models, internal models, etc.) and the work adopted from the Sun model [31] in order

to clearly delineate the new work completed and the limits of the framework. Sections 3.1 - 3.2

describe the MPC system created in the Sun model as applied in this thesis, which provides the

framework for this thesis’s objectives. Finally, Section A.1 details the optimization criteria used by

Sun and the means by which these optimization criteria can be changed in addition to the

modifications to the simulation framework made in this thesis.

3.1 The Plant Model

A seven-link, nine-DOF model of a human was developed [31], [32] and validated by

open loop simulation with published joint torque data [39], shown in Figure 3.1. Movement is

constrained to the sagittal plane, and the seven segments are the foot, shank, and thigh for each

leg and a rigid mass representative of the head, arms, and torso (HAT). The model does not

include a pelvis segment, which is instead modeled by an axis. Joint angles are measured as the

position of the distal segment relative to an axis that extends from the proximal segment, relative

to anatomical neutral. Hip angles are measured from an axis extending from the bottom of the

HAT, which can result in a 5-degree extension shift because of the pelvis’s average 5-degree

anterior tilt during normal gait.

Each joint is an actuated, revolute joint with both passive and active actuation elements.

Passive joint actuation consists of an internal passive rotational spring, K, and damper, B, used to

model the limits and viscous damping, with spring and damping coefficients increasing
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Figure 3.1: Human gait plant model.

exponentially as the joint moves outside a normal range of motion, with a mechanical stop at the

absolute limits. Though there is no anatomy analogous to this internal spring, the springs

function as passive feedback systems and stabilize the dynamics of gait, which is otherwise an

inherently unstable process. An additional ”hard stop” prevents the joints from over-extension,

but is only activated when the joint position exceeds the joint limits. These internal mechanical

parameters from the Sun model were optimized for each individual subject, which limits the

generality of the model. For this thesis, internal mechanical parameters were not re-optimized for

each subject, which does not affect the fidelity of the plant model.

Internal torques, τ, are also applied directly at the joint and represent the muscle activity

surrounding the joint, and these internal torques, combined with the torques from the internal

spring and damper cause the relative movement between the joints. The internal torques are

controlled by PID or MPC as detailed throughout the rest of this chapter. When controlled by

MPC, the internal torques consist of a two active components: a polynomial fit of a baseline
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torque trajectory paired with an MPC control trajectory parameterized by a Laguerre function

formulation. The MPC control trajectory and Laguerre function formulation are discussed in

greater detail in Section A.1 and Appendix A. The baseline torque trajectory, or base polynomial,

is fitted to Winter’s published data [39] or subject-specific kinetic data from gait testing. The latter

is not preferable, as it reduces the generality and predictiveness of the model by requiring gait

analysis protocols of subjects, but can be used if an acceptable solution cannot be reached with

Winter’s data. Thus, there are five components of MPC joint actuation: linear passive springs and

dampers, non-linear springs and dampers for joint limits, a mechanical hard stop, a baseline

torque polynomial trajectory, and a Laguerre function formulation of the MPC control trajectory.

Ground reaction forces are modeled as a vertical and horizontal spring-damper pair at

both the toe and heel, which act conditionally when the foot is in contact with the ground. These

pairs model the stiffness, shock absorption, and energy dissipation between the foot and the

ground.

Anthropometric parameters consist of segment lengths, masses, moments of inertia, and

positions of the segments’ COMs. These anthropometric parameter values can be measured

during human subject testing or calculated using equations from Winter [39]. The

parameterization of the models used in this simulation framework is discussed in Section 3.4.

Separate plants exist for both the SS and DS periods of gait because each phase is

dynamically distinct. Note that the kinematic and kinetic parameters remain constant between the

periods, but SS is an open kinematic chain, and DS is a closed kinematic chain. Simscape

Multibody was used to create gait plant models which can be controlled by MATLAB (Figures 3.2,

3.3). This Simscape model is a graphical representation of the virtual human model and

reproduces natural motion which can be used in prediction of gait.

3.2 The Control Framework

MPC (introduced in Section 2.3.2) was implemented in the Sun model to simulate the

control of the CNS in walking [31], [32]. The MPC control scheme is shown in Figure 3.4 and is

applied to the Sun Model and this thesis as follows:

1. Given model anthropometry at a sampling instant, k, the current states of the plant are xk.

The future control trajectory is denoted ∆uk, ∆uk+1, . . . , ∆uk+NC–1, where NC is the control

horizon which dictates the number of instances of future control input [36].
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Figure 3.2: Simscape Multibody graphical representation of the plant model.

2. With the current states and future control trajectory, the future state variables for NP number

of samples are predicted using an internal model, where NP is the prediction horizon. This

prediction horizon is the length of the period of gait being predicted and thus, the length of

the optimization window. The internal model is a simplified version of the plant and a

state-space representation of the forward dynamics of human gait. Because of the discrete,

state-space representation, the future predicted states can be written as a function of variable

future control inputs. This process is shown as the “Prediction” block in Figure 3.4.

3. For given gait descriptors (i.e., step length, COM velocity, or approximate metabolic cost) as

a reference set-point signal, the future control inputs are optimized to minimize the error

between the internal model states and the set-point signal. This process is essentially the

minimization of a cost function subject to constraints, using a gradient quadratic

programming solution method in this framework. This process is the “Optimization” block

in Figure 3.4.

4. After completing the optimization, the first time step, or control window, of the optimized

control input are applied to the plant model, and the prediction-optimization process

repeats until the end of the prediction horizon is reached. This simulation is shown as the

“Plant” block in Figure 3.4.



20

Figure 3.3: Simscape Multibody simulation of the plant model.

Figure 3.4: Overall simulation framework for prediction of one of four periods within the GC.
This process repeats for DS, SS, DS, and SS period simulations.

This method is called ”receding horizon control” because the prediction and control horizons

shrink with each iteration. This MPC framework is applied to each period of gait in succession.

The GC simulation developed in this thesis is marked left heel strike (LHS) to left heel strike and

consists of two consecutive DS and SS simulation pairs.
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Figure 3.5: Simplified internal models for prediction.

Table 3.1: Joint control for SS and DS periods.

Period Controller Joint Angle
SS MPC stance ankle, swing ankle, swing knee, swing hip

PID stance knee, stance hip
DS MPC stance ankle, stance knee, swing ankle, swing knee

PID stance hip, swing hip

3.2.1 The Internal Models

Simplified models are used to reduce the computational intensity of the optimization.

Shown in Figure 3.5, internal models for SS and DS were created and are used for prediction

within the MPC algorithm (shown as ”Prediction” block in Figure 3.4).

Both SS and DS internal models are used to optimize joint moments of four joints, and the

remaining two are controlled by auxiliary PID controllers to reduce the computational load (Table

3.1). These moments are then saved to be applied to the full plant model. Joint actuators in the

internal models are the same five-component joint moments as the plant. No changes were made

to the Sun internal models for this thesis.

3.2.2 The Prediction and Control Horizons

MPC uses the simplified internal models to control joint angle trajectories of the plant by

optimizing joint moments to a cost function. The trajectories from the internal models are

predicted only in terms of the current state information and future control movement. The joint

moments (i.e., control inputs) are calculated for the length of the control horizon, with states



22

determined by the current plant information and the predicted trajectories. These control inputs

are then applied to the plant for one time-step, or the length of the control window. The same

prediction and optimization are repeated for the next time-step, but then for shorter horizons. The

process is repeated until the system reaches the final state. In this way, the trajectories of the

system are predicted and optimized for a prescribed time period.

The Sun Model uses equal prediction and control horizons that recede as the optimization

nears the end of the gait period.

3.3 Model Optimization Criteria and Constraints

The rest of this chapter details optimization criteria and the form of the cost function,

J(p), where p is an array of the control inputs for each MPC-controlled joint, for the simulation

framework. The simulation framework proposed utilizes both optimization targets and constraints

to predict walking patterns. Optimization targets are components of the cost function which the

framework aims to minimize in its prediction of control inputs. The optimization constraints may

be physical constraints such as joint limits, or characteristic constraints, which could dictate the end

state of a simulation period.

The information about optimization targets is contained in an objective function for each

phase (Section 2.4). MPC requires finding of an optimal control input solution which meets target

gait descriptors, such as step length or walking speed, repeatedly. The optimization scheme by

which this solution is found is flexible. This simulation framework uses a nonlinear programming

solver within MATLAB to find the minimum of a constrained, nonlinear, multivariable function:

Minimize: J(p)

Subject to: Cleq(p) ≤ 0

Ceq(p) = 0

where p, a 4 by 6 matrix of 6 Laguerre coefficients of the control input for each of the 4

MPC-controlled joints, is the design variable and Cleq and Ceq are nonlinear inequality and

equality constraints, respectively. Laguerre functions are a set of orthonormal basis functions, and

are used to parameterize the control inputs which allows for smooth moment function profiles

and prevents discontinuities [31]. The process of control input parameterization for Discrete MPC

(DMPC) is described in greater detail in Appendix A, but the full derivation is outside of the

scope of this thesis. What is necessary to note here, however, is that the optimization problem at
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each time step (approximately twenty iterations in DS and 40 in SS), is 24-DOF (four MPC joints

with six Laguerre function coefficients each) and nonlinear.

This thesis proposes many changes from the Sun Model [31], [32] optimization targets and

model constraints as described in the following sections, primarily affecting the ”Optimization”

process of Figure 3.4, which consists of the design optimization problem discussed.

3.3.1 Sun Model Targets and Constraints

The Sun model optimizes joint angle trajectories to meet a desired step length during SS

period of gait and target center of mass (COM) velocity at toe-off during the DS period [31], [32].

Additionally, the Sun model employs only endpoint MPC, meaning that the control algorithm

compares only the final state to a target: terminal cost dominates the objective function [31]. The

Sun model deviates from expectations of CNS behavior in two ways; the model optimizes only

according to the final states of the system and only to meet a target step length for SS and COM

velocity for DS.

In SS the Sun model optimization target is step length. The swing heel is constrained to

contact the ground at the end of the prediction horizon, heel strike (HS), and cannot contact the

ground before then. [31]. During DS period the optimization target is the sagittal forward velocity

of the pelvis at toe-off (TO). The feet, subject to ground reaction forces (GRF), are unable to pass

through the ground [31]. The end of each period is determined by the prescribed length of each

finite prediction horizon.

3.3.2 End-Point Targets and Constraints

New constraints were implemented to the plant model simulation in this thesis to

improve the prediction of the simulation framework between periods of gait. The end-point

targets of the Sun model [31] are retained. This thesis proposes prediction and control horizons

that extend beyond the length of the period but recede until a condition is met within the plant

simulation. This method allows greater prediction capability than prior work by Sun [31] and van

der Kooij et al. [33] as the time for the period is not pre-determined by the use of a final

optimization state.
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Double Support End-Point Targets and Constraints

DS employs a velocity end-point optimization target. The Sun model first proposed an

end point-velocity target, but only in the forward sagittal direction [31]. This thesis uses a target

velocity of the pelvis in both the forward and upward direction in the sagittal plane. The forward

velocity matches the self-selected walking speed of the subject, and the upward velocity used was

published by Winter [39]. The upward velocity of the pelvis at TO is generated by joint velocities

that are crucial as initial conditions to SS period, as shown by Mena et al. [24] and Mochon and

McMahon [26]. A DS prediction horizon was applied that exceeds 12% of the average gait cycle

period [28] for each subject. The plant simulation and the period is constrained to end when there

exists no GRF on the lag toe.

Single Support End-Point Targets and Constraints

SS retains a step length end-point optimization target, consistent with the Sun model [31],

but adds a constraint that prevents the toe from passing through the ground. The SS prediction

horizon also exceeds 38% of the average gait cycle period [28] for each subject. The period ends

when heel strike of the swing foot occurs within the control window.

3.3.3 New Optimization Targets

The Sun Model does not accurately predict the transitions between periods of the GC and

thus, can only predict one half of a GC. Therefore, gait analysis of the Sun Model requires the

assumption that gait is symmetric [31], [32], limiting the usefulness of the prediction. This thesis

uses much of the existing control framework developed by Sun but proposes new optimization

criteria and model constraints to flexibly predict a complete GC without a symmetric gait

assumption. As discussed in Section 2.4, the literature provides support for optimization criteria

related to metabolic cost. Additionally, it is believed that CNS control is continuous, optimizing

the majority of the cycle, rather than only end targets between periods. The following sections

describe the application of new optimization targets and model constraints within the control

framework.

COM Energy Optimization Criterion

Because the plant model is a kinematic and kinetic model rather than neuromuscular, a

mechanical energy cost measure should be used rather than a calculation of metabolic cost [7].
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This calculation can be done in one of two ways: minimizing the work done on the body’s center

of mass or minimizing the work done on the body segments. Burdett et al. demonstrated that

though the work done on the COM is a less accurate predictor of mechanical work, it is more

highly correlated with metabolic cost [7]. Thus, minimization of COM energy is the optimization

target that aims to reduce metabolic cost and can be calculated as

ECOM = mghCOM +
1
2

mV2
COM , (3.1)

and

Ẇ = ∑ ∆ECOM , (3.2)

where ECOM is the potential and kinetic energy of the body’s COM, m is body mass, hCOM and

VCOM refer to the height and velocity of the body’s COM, and Ẇ is the work done to the COM,

calculated at each time step of the prediction horizon.

Dynamic Effort Optimization Criterion

Dynamic effort is defined as the sum of all joint torques over time, classified as an

”effort-like” optimization criterion [3], and can be calculated using

M = ∑ τ2
i , (3.3)

where M is the dynamic effort and τi is the torque at each joint, excluding passive elements. Note,

the calculation of these moments is independent of the ordinary differential equation solver’s

adaptive step size, ensuring that the same number of points are used in each optimization.

3.3.4 Weighted Sum Multi-Objective Optimization

Incorporation of multiple optimization criterion into the same cost function requires

MOO methods for the model to achieve multiple end-point targets simultaneously. These control

objectives can also be weighted within the objective function to achieve normal gait. A variety of

MOO methods were considered as published by Marler and Arora [21] and a weighted sum

approach was chosen for its simplicity with the gradient-based solution method used in the Sun

Model [31], [32]. Since the goal is to minimize the objective function, each optimization target can

simply be summed together with appropriate weighting coefficients, determined experimentally
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Table 3.2: Description of subject data used.

Subject 1 Subject 2 Subject 4
Collected by Author Author Sun [31], [32]
Collected at OREC Gait Lab [2] OREC Gait Lab [2] MCW CMA [1]

Motion Capture System Qualisys Qualisys Vicon
Data Processing Visual3D Visual3D Unknown
Kinematic Data Yes Yes Yes

Kinetic Data Invalid* Yes Unknown

*Force plate data was not collected.

in future work. This concept was demonstrated successfully by Karimian et al. within an MPIC

simulation framework [17].

3.4 Model Anthropometry and Simulation Evaluation

Kinematic and kinetic gait data of three normal ambulators (Table 3.2) are used to

evaluate model performance in this thesis. Subject anthropometric data is also used to

parameterize the models within the simulation framework. For new subject models generated in

this thesis (Subjects 1 and 2), all model sizing parameters were directly measured and segment

masses, moments of inertia, and location of COMs were calculated using Winter’s equations and

data [39]. For Subject 4 [31], segment lengths were directly measured, but other sizing parameters

which do not affect the equations of motion were estimated, while segment masses, moments of

inertia, and COM locations were calculated with Winter’s data [39].

Subject 4 refers to the Sun Model, used as a baseline in this thesis, which is parameterized

according an 86.8-kilogram body mass and 1.90-meter height [31]. Model anthropometry was

inherited in the Sun plant and internal models. Limited motion capture data from Subject 4

analysis is available. Motion capture data was collected in the Medical College of Wisconsin

(MCW) Center for Motion Analysis (CMA) with a Vicon motion capture system. Data processing

methods are unknown, and only kinematic data is available for this thesis.

Subjects 1 (85.7-kilogram mass, 1.83-meter height) and 2 (78.0-kilogram mass, 1.78-meter

height) refer to subject gait studies conducted by the author in the OREC Gait Lab [2]. 3D Motion

Capture Gait Analysis protocols were conducted for this thesis with IRB approval. Data acquired

during these sessions includes: bilateral anthropomorphic measurements, lower limb kinematics,

and kinetic data.
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Table 3.3: Description of anthropometric measurements.

Measurement Landmark Description of Measurement
Inter ASIS Distance distance from left and right anterior superior iliac spine (ASIS)

Leg Length distance from ASIS to lateral malleoli
Thigh Length distance from greater trochanter to lateral femoral epicondyle

Knee Diameter distance from medial to lateral femoral epicondyle
Ankle Diameter distance from medial to lateral malleoli

Thigh Proximal Circumference circumference just distal to ischial tuberosity
Thigh Distal Circumference circumference just proximal to the patella

Foot Length* distance from calcaneal tuberosity to distal end of hallux
Foot Width* distance from first metatarsal head to fifth metatarsal head
Foot Rocker* distance from calcaneal tuberosity to first metatarsal head

*Measurement made on AFO instead of subject

The motion capture and data processing protocol for Subjects 1 and 2 is presented in

detail in the following sections. Motion capture data was recorded of subjects walking both

unhindered (normal case) and with a rigid AFO (pathological) to inhibit ankle flexion. Data for

Subject 4 was collected and processed by Sun, and is presented in his dissertation [31]. The data

collected is used in evaluation of the simulations developed in this thesis.

3.4.1 Anthropomorphic Measurements

For each GC simulation, the plant and internal models are parameterized according to

subject anthropometry, using both subject measurements and approximations as a percentage of

subject height or bodymass from Winter’s published data [39]. The anthropometric measurements

taken of each subject during the gait testing session, height, weight, orthosis mass, bilateral length

and circumference, are summarized in Table 3.3.

Model parameters adjusted for each subject include limb lengths, radii, masses, and

inertias, and are listed in Appendix B with their conversion from subject measurements.

Anthropomorphic data for each subject is presented in Appendix B.

3.4.2 Motion Capture Protocol

Fifteen reflective markers were placed bilaterally according to a Modified Helen Hayes

marker model (Figure 3.6) on Subjects 1 and 2. The lateral malleolus and heel (calcaneal

tuberosity) markers were placed over the AFO on the right leg for pathologic gait trials. Motion

capture was collected for overground walking trials for the normal and AFO (pathologic) case. All

trials were collected at self-selected walking speed.
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Figure 3.6: Modified Helen Hayes marker model used for 3D Motion Capture [2].

Kinematic data was collected at 120 Hz using a 10-camera Qualisys motion capture

system, and kinetic data were captured at 1200 Hz with an AMTI force plate embedded in the

level walkway.

The Qualisys motion capture system was calibrated and a static trial was collected with

the subject standing centered on the force plate. Knee-alignment devices (KADs) were used at the

knee in place of the knee marker during static trials (Figure 3.7). The KADs were replaced with

knee markers and the subject walked at self-selected speed over the walkway and force plate.

Trials were repeated until six clean heel-strikes, shown in Figure 3.7, had been measured at the

force plate, three with each leg. The subjects then donned a rigid AFO fit for their right leg,

markers were reattached to the outside of the AFO at the lateral malleoli and calcaneal

tuberosities, and the subject was given up to ten minutes to acclimate to the new condition. Static

trials with KADs and six dynamic trials with clean HS were captured with the AFO condition.

3.4.3 Motion Capture Data Processing

Kinematic and kinetic data processing of 3D motion capture data requires conversion of

marker data from 2D to 3D, application of subject-specific kinematic models, HS and TO event

detection, computation of joint forces and moments from ground reaction data (force plate), and

averaging of gait cycles. Because the simulation proposed in this thesis is constrained to the

sagittal plane, kinematic and kinetic joint motion and moments used in evaluation of the model

are limited to sagittal plane data.
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Figure 3.7: Placement of markers during static and dynamic trials.

Using a custom data processing pipeline for the Qualisys Motion Capture system from

the OREC Gait Lab [2], 2D marker motion data from each camera was converted to 3D, GC events

were automatically detected and joint forces and moments calculated using force plate data, and a

full gait report (kinematics and kinetics plots) was generated for Subjects 1 and 2. The gait report

output is a standard clinicial format (data presented for sagittal, coronal, and transverse planes)

with all measured GCs reported from 0 to 100% of the GC. Full gait reports for Subjects 1 and 2 are

presented in Appendix B. A full gait report is unavailable for Subject 4, but sagittal joint angle

trajectories are presented in B and are used in evaluation of Subject 4 specific simulations.

For this thesis, subject-specific GC or period simulations are compared to the measured

sagittal plane data. Thus, sagittal plane trajectories were imported to MATLAB, averaged, and

plotted against simulation results.

3.5 Simulation Evaluation

Data collected according to the procedures described above is used as a baseline from

which to evaluate simulation performance. This evaluation is made in this thesis consistent with
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observational methods used in clinical gait analysis.

Though it is possible to use an root-mean-square error measure of the difference between

simulated and measured trajectories, observational analysis remains the best method of

evaluation for gait data because it allows the clinician to identify gait abnormalities that present as

magnitude shifts, temporal shifts, and/or change in dynamic range. With this

“impairment-focused interpretation” [6] of gait analysis, the assumed intent is to identify factors

that limit walking ability, rather than just quantifying the amount of difference. In the case of this

thesis, observational clinical analysis seeks factors that limit the capacity of the model and

simulation framework to predict normal walking patterns.

If only an RMSE value is used, information is lost about specific “impairments” and their

relation to other features of the gait pattern. This interconnectedness of gait features is common

because of the relative angle standards of data presentation. Additionally, an RMSE value may

actually provide information contrary to what would be derived from observational analysis,

with magnitude or temporal shifts. For this reason, simulation data generated in this thesis was

evaluated clinically with measured gait data as a reference.

3.6 Summary

The gait simulation framework used in this thesis is an expansion of the Sun

model [31], [32]: a seven-link, nine-DOF, forward dynamic human gait model with a control

system that is primarily Model Predictive Control (MPC) with secondary classical feedback

control (PID). This control method allows for constraints such as joint torque limits, range of

motion limits, etc., to direct the simulation of gait without any prior knowledge of gait or joint

trajectories. The gait simulation framework includes two plant models, two internal models, an

objective function for each period (SS and DS) of gait, and a common optimization framework for

both phases.

MPC uses the simplified internal models to control joint angle trajectories of the plant by

optimizing joint moments to a cost function which includes both optimization targets and

constraints to predict walking patterns. Optimization targets are components of the cost function

which the framework aims to minimize in its prediction of control inputs. The optimization

constraints may be physical constraints such as joint limits, or characteristic constraints, which

could dictate the end state of a simulation period.
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New constraints were implemented to the plant model simulation in this thesis to

improve the prediction of the simulation framework between periods of gait. This thesis uses a

target velocity of the pelvis in both the forward and upward direction in the sagittal plane in DS,

and constrains the toe to not pass through the ground in SS, in addition to the HS characteristic

constraint in SS employed by Sun [31], [32]. New optimization targets, work on the COM and

dynamic effort, were applied.

Kinematic and kinetic gait data of three normal ambulators are used to evaluate model

performance in this thesis, and subject anthropometric data is also used to parameterize the

models within the simulation framework. Anthropometric measurements were taken and motion

capture data was recorded of Subjects 1 and 2 walking both unhindered (normal case) and with a

rigid AFO (pathological) to inhibit ankle flexion. Motion capture data and anthropometric

measurements of Subject 4 are adopted from Sun [31], [32].



32

CHAPTER 4

RESULTS

With the simulation framework proposed, prediction of a subject-specific GC consists of

four consecutive period simulations, DS, SS, DS, and SS. To simulate a GC the initial conditions

(IC) for the first DS simulation are taken from the Sun Model [31] or subject data, but each of the

periods should use the end states of the prior period as an IC set. This pattern mandates that the

transition between simulation periods are marked by TO and HS events if the simulations obey

period constraints, as they are in a normal gait cycle. Additionally, simulation of a full GC

requires that the final states of one period are suitable IC for the next.

4.1 Baseline GC Simulation

To create a baseline GC simulation (DS, SS, DS, and SS) representative of the Sun cost

functions [31], [32], subject-specific models were created for Sun Subject 4, and the Sun

optimization targets (step length and COM velocity at TO) were used in the cost function [31].

New constraints (those proposed in Section 3.3.3) were applied to the simulation framework

which specified that the final states of one period must be the initial states of the following period.

Additionally, each period was constrained to end upon HS or TO for SS or DS, respectively, if the

event occurred prior to the prescribed length of the prediction horizon. This additional constraint

increases the predictive capability of the Sun framework [31], [32] since it allows GC events to

dictate the length of the period.

Joint angle trajectories of this baseline continuous simulation compared to Sun model

results [31] and Subject 4 measured joint trajectories are shown in Figure 4.1. Consistent with gait

analysis conventions, the trajectories are shown from HS to HS of one limb from 0 to 100% GC.

Vertical lines denote TO for each trajectory. For the simulated data, the start of the second SS

phase is marked with a vertical line where TO should occur.

Initially, the Sun model appears to be a better approximation of the subject data than the

baseline simulation proposed. However, large jump discontinuities occur at the transitions

between DS and SS because the full GC was assembled from pieces of the simulated half GC.

These discontinuities illustrate the need for continuous transitions from period to period and that

simulation of a half GC is insufficient for the evaluation of optimization targets and controller

performance. Though achieving continuity over four periods is an improvement upon the Sun
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Figure 4.1: Subject 4 simulated and measured sagittal plane joint angle trajectories over the GC.

model, which originally only simulated a half GC over SS to DS [31], the simulated trajectory

diverges from the Subject data early in the stance phase, where the first transition from DS to SS

occurs.
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The resulting gait pattern from the baseline GC simulation, which illustrates the

kinematics of the model resulting from joint angle trajectories in Figure 4.1 over the first DS and

SS periods, is shown in Figure 4.2. This pattern clearly illustrates the failure of the simulation to

achieve HS of the swing leg during mid-stance because no HS occurs. Thus, by the second DS

phase, the simulation is too divergent from subject data for the controller and optimization to

recover. Because of the missed HS and the necessary continuity of the GC, the rest of the

simulated trajectory does not have any physical significance.
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Figure 4.2: Subject 4 simulated walking pattern over DS and SS period.

Therefore, applying the new constraints (Section 3.3.3) to the Sun model did not result in

a full GC marked by TO and HS. This limitation is seen primarily in the transition from DS to SS,

as no simulations successfully completed the target step length in the first two periods because

the heel did not contact the ground. Thus, the simulated GC was not marked by TO and HS, but

the new constraints did allow the simulation framework to generate a C0 continuous simulation

of all four periods consecutively, which was not achieved with the Sun model [31], [32]. Without

successful, repeatable simulation of SS period, a full GC simulation is infeasible.
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Table 4.1: Kinematic Conditions for IC Study.

Trial Step Length Pelvis x (m) Pelvis y (m) Pelvis Forward Velocity (m/s)
1 0.7345 -0.13616 1.0699 1.3854
2 0.7345 -0.42001 0.94032 1.3854
3 0.7345 -0.41074 0.97891 1.3854
4 0.7345 -0.37112 0.95663 1.3854
5 0.7345 -0.34705 0.94385 1.3854
6 0.7345 -0.28047 0.95938 1.3854
7 0.7345 -0.31293 0.98134 1.3854
8 0.7345 -0.34632 1.0152 1.3854
9 0.7345 -0.27879 1.0461 1.3854
10 0.7345 -0.25003 1.0223 1.3854
11 0.7345 -0.22071 1.0062 1.3854
12 0.7345 -0.16941 1.0352 1.3854
13 0.7345 -0.18462 1.0808 1.3854
14 0.7345 -0.17836 1.0612 1.3854
15 0.7345 -0.16389 1.0417 1.3854
16 0.7345 -0.15901 1.0819 1.3854
17 0.7345 -0.18873 1.0486 1.3854
18 0.7345 -0.36360 0.97193 1.3854
19 0.7345 -0.23249 1.0283 1.3854
20 0.7345 -0.4541 0.95468 1.3854

Three potential barriers to a successful simulation of the first SS period were identified:

initial conditions, unexpected joint actuation behavior, or insufficient solution-finding methods.

Because it is difficult to separate the effect of the optimization from the rest of the simulation

framework, experiments were run to examine the barriers to the framework which can be

isolated. The following two sections describe these experiments conducted to better understand

the limitations of the SS period simulation, which examine the sensitivity of the model to initial

conditions and joint actuation.

4.1.1 SS Initial Condition Study

As illustrated in the prior section, to achieve a full GC, SS period must start from TO, or

the final states of DS, and advance the simulation through HS. Simulating this period transition,

however, requires the IC of SS drastically different than the Sun model, which began SS with the

swing foot raised above the ground to utilize gravity to advance the swing leg [31]. Because

literature has shown that simulated SS periods are highly dependent on initial

conditions [26], [19], in order to identify a region of IC which allows for successful completion of

SS period a series of SS simulations were run with IC sets which met the pelvic position (relative

to stance heel) and forward sagittal velocity kinematic conditions listed in Table 4.1.
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Figure 4.3: Region of possible pelvic axis positions given subject anthropometry and prescribed
step length.

The IC sets (the sets of joint positions and velocities for each simulation) were derived

from an inverse kinematic analysis to identify the region of possible pelvic positions for a subject

given a specific step length and pelvic velocity (Figure 4.3). This was achieved by using fixed foot

positions and sweeping through the range of motion (ROM) at the ankle and knee joints for each

leg. With this method each leg has a region of possible locations for the pelvis, since the pelvis of

the gait model is an axis, rather than a rigid body. The region of possible pelvic positions, where

the red (swing leg hip) and blue (stance leg hip) markers overlap was discretized, and for a

specified step length at TO it is relatively small. The IC sets chosen for this study were generated

by inverse kinematics from 20 pelvic axis positions which spanned the allowable space.

Simulations with all IC cases resulted in either a premature HS or a tripping motion: no

simulations achieved the target step length. Figure 4.4 shows one simulation which exhibits

premature HS, meaning that HS occurred in mid-swing before the swing leg advanced past the

stance leg. Additionally, some solutions resulted in unstable gait, resembling a tripping motion

shown in Figure 4.5, where the stance leg was unable to support the forward motion of the HAT.

Resulting simulations did not end in a suitable pose for DS to begin because none met the target

step length.

No simulation met the optimization targets or model constraints, despite testing 20 IC

sets which spanned the discretized space. Assuming some continuity within the region of



37

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

x (m)

0

0.2

0.4

0.6

0.8

1

1.2

y
 (

m
)

SS Simulation - Subject 04: SS and DS Simulation

Figure 4.4: Subject 4 simulated gait over SS period resulting in premature HS.

allowable pelvic positions, it is likely that no IC set from the space would have resulted in

successful simulation. Regardless of the IC set applied, the simulation framework finds basically

one of two solution types, shown in Figures 4.4 and 4.5. Because no simulation was successful, or

even varied from other solutions as a result of a different IC set, the failure to successfully

simulate SS in this experiment is not likely due to an inappropriate choice of IC. As discussed in

Section 2.2, literature has shown that SS is heavily dependent on the set of IC applied [19], [26].

Because this IC set dependence was not observed in the simulation, and a successful SS period

simulation could not be achieved with any IC set, it is likely that a different component of the

simulation framework is the barrier. However, it should be noted that, although IC set choice may

not be the cause of failure in this thesis, IC set choice will likely have significant effect on the

solution when the optimization framework is corrected.

4.1.2 SS Torque Actuation Study

The SS IC study described in Section 4.1.1 demonstrated that the failure of the model to

meet period constraints in SS is most likely not dependent on IC. In fact, solutions with varying IC

sets often resulted in highly similar solutions, pointing instead to unexpected joint actuation
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Figure 4.5: Subject 4 simulated gait over SS period resulting in tripping.

behavior or insufficient solution-finding methods.

To better understand the failure of the model to meet constraints in SS and the effect of

joint actuation on the model, several simulations were run to illustrate model sensitivity to each of

the five joint torque sources. As detailed in Section 3.1, several passive and active torque sources

are used within each joint, but only the Laguerre function formulation is directly controlled by the

MPC scheme. A set of SS simulations were run which separate the effects of the torques by

removing different layers of torque sources. This set of simulations consist of the majority of

torque combinations that would likely interact when acting upon the joints.

Sagittal plane joint angle trajectories for SS period with the following joint actuation cases

are shown in Figure 4.6:

1. no joint actuation (Joint Actuation Off),

2. passive internal spring and damping torque only (Passive Actuation Only),

3. passive spring and damping torque, joint limit torques, and hard stop torque only (MPC

Actuation Off),

4. passive, joint limit, and hard stop torques with subject specific base torque polynomials

(Laguerre Off),
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5. passive, joint limit, and hard stop torques with Laguerre function control action (Base

Polynomials Off),

6. joint limit and hard stop torques with base torque polynomials and Laguerre function

control action (Passive Actuation Off),

7. and passive and hard stop torques with base torque polynomials and Laguerre function

control action (Joint Limit Actuation Off).

Each simulation was run for SS period with a step length target as both a model constraint

and optimization target to eliminate the possibility of conflicting goals within the optimization

routine. This combination ensured that the only goal of the simulation was to achieve HS at the

specified step length. Each simulation was run from an IC set consisting of the final states from a

Subject 2 DS simulation as would happen in simulation of a full GC, which began from Subject 2

gait data. The gait model used was parameterized by Subject 2’s anthropometry (Appendix B),

which allowed for a polynomial fit of subject-specific torque data to be used as the initial guess

within the MPC control action formulation using subject-specific torque data, rather than

generalized data from Winter [39] which is required for Subjects 1 and 4 in the absence of

subject-specific torque data. Because this torque data is taken directly from analysis of subject gait,

it is the best available starting point for the optimization routine.

For SS period, stance ankle, swing ankle, swing knee, and swing hip are MPC controlled,

so changes in joint actuation are only applied within these four joints. Two joints are of particular

importance during SS period: stance ankle, which provides the base of the inverted pendulum

motion as the COM shifts over the stance leg, and swing hip, which drives the swing leg forward

and provides braking when approaching HS.

Figure 4.6 demonstrates that the two most dominant components of model joint torques

are the passive spring and damper moments and the base torque polynomials because the

simulations actuated by only these components comprise the two solution types. This

dependence is observed in that simulations which include one or both of these torques yield

solutions nearly identical to simulations that only include those torques, i.e., MPC Actuation Off is

the same as the simulation with Base Polynomials Off.

Joint limit actuation, however, (both nonlinear regions of joint spring and damping and

the mechanical ”hard stop” within the joint) functions as expected, preventing the model from

exceeding the joint limits. This behavior is observed in Figure 4.6 by comparison of the

un-actuated case with simulations employing passive actuation where the slope of position curves
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Figure 4.6: Subject 2 simulated sagittal plane joint angle trajectories for SS period with varying
joint actuation cases.

change drastically around normal joint ranges of motion, particularly in the stance hip and ankle.

In most simulation cases these moments do not affect the solution.

Of greatest concern however, is the simulation framework’s insensitivity to “active” joint

actuation, or the actuation dictated by the controller. Whether the Laguerre function formulation,

which makes up the control action, is included or not, the resulting joint angle trajectories are the

same (All Actuation and Laguerre Off trajectories lie on top of each other). Though this

insensitivity could be caused by the Laguerre coefficient initial guess, increasing the coefficient

initial guess by two orders of magnitude yields nearly identical solutions (Figure 4.7). Thus, it can
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be concluded that the MPC control action currently has negligible effect on the SS period

simulation because the optimization cannot find a solution which meets the model constraints.

In addition, the simulation framework finds alarmingly similar solutions within this

study for such varied actuation cases. The solution space for the SS optimization is

24-dimensional at each time step of the prediction horizon. With such a high-DOF solution-space,

the primary problem with the findings of this set of simulations is that the simulation, when the

model is actuated, finds one of two solutions (neither of which meet model constraints during SS).

The optimization results also do not change throughout iterations of MPC control. With the only

constraint being that the heel should clear the ground during until HS, it is highly improbable that

the optimization is over-constrained. It is therefore more likely that the optimization algorithm is

not an appropriate choice for the class of optimization problem presented in SS.

The optimization routine used, fmincon, uses MATLAB’s Interior Point algorithm [23].

The algorithm is a nonlinear gradient solution method, but finding a solution to the optimization

problem is more difficult with inequality constraints (the constraints used in Sun’s work [31] and

this thesis) than equality constraints and is not appropriate for non-convex optimization

problems. Without a way means to visualize such a large-DOF solution space, it is difficult to

ensure convexity and smoothness. Further experimentation will be necessary to properly classify

the optimization problem. If the optimization problem can be classified, an appropriate solution

algorithm could be chosen which could reliably find a solution for any given set of constraints and

IC, which would then allow the simulation framework to reliably meet model constraints for SS.

Classifying the optimization problem and identifying an appropriate solution algorithm is outside

the scope of this thesis, but could reinstate the MPC framework proposed by Sun [31] as a viable

method of gait prediction and simulation.

4.2 Optimization Targets in DS

In contrast to challenges demonstrated in the simulation of SS that prohibit the simulation

of a full GC, the proposed MPC framework does seemingly affect the solution more significantly

in DS. Regardless the underlying cause of optimization success, simulations of DS allowed

application of cost functions which employ the new optimization targets proposed in this thesis

(Section 3.3.3).

DS simulations for models parameterized to Subject 4 [31] are shown in Figure 4.8, with

the Sun optimization target (COM velocity at TO), change in COM Energy (work done to the
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Figure 4.7: Subject 2 simulated sagittal plane joint angle trajectories for SS period with varying
Laguerre Coefficient initial guesses.

COM), or dynamic effort in the cost function. Each optimization target within the cost functions is

described in greater detail in Section 3.3.3. Note that ICs used in these simulations were chosen

consistent with the Sun model’s simulation of Subject 4 gait, so that a direct comparison can be

made. As shown in Figure 4.8, variation of optimization targets within the cost function does have

significant effect on the solution for DS. Not only does this variation of solutions confirm that the

Laguerre function MPC control trajectory is not insignificant during the DS simulation, but

demonstrates that the MPC framework can be successful when models are constrained to end

upon GC marker. Two constraint cases are shown for each cost function, each a method to identify

the TO event:
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1. DS ends upon TO when GRF on the lag toe are less than or equal to zero, i.e., the ground

reaction forces are holding the lag foot to the ground,

2. or DS ends upon TO when GRF on the lag toe are less than or equal to zero and the lead toe

has made contact with the floor, i.e., the lead foot is flat.

The difference in simulation period length between constraint cases given a particular cost

function points to the importance of appropriate characteristic constraint selection (defined in

Section A.1). Because the simulations with constraints on both the lag toe and lead foot generated

a period length more consistent with that of the normal ambulator data, the latter constraint

condition was used for the rest of the DS simulations.

Of the simulations presented in Figure 4.8, the new cost functions proposed better

approximate subject normal data for most joints. Of particular importance in DS is the lag ankle

angle trajectory, where plantarflexion of the foot drives the lag leg to TO and into swing in the

following period. The simulated trajectories from both dynamic effort and COM energy cost

functions both approximate the stance ankle angle trajectory better than the Sun cost function.

The simulations do diverge from normal ambulator data in both lag and lead hip angles, though

in DS both hip angles are controlled by PID, and should not be considered in evaluation of MPC

performance. Additionally, at TO lag knee flexion is better approximated by both COM energy

and dynamic effort cost functions. Knee flexion and velocity at TO have been identified as IC that

have significant influence on SS [19], [26]. Because SS is highly IC dependent, the best cost

function for DS may be the one which achieves the most appropriate IC set for the following SS

period, and thus should be considered in the evaluation of proposed optimization targets.

DS was also simulated for Subjects 1 and 2 with characteristic constraints applied to the

lead and lag toe, i.e., TO occurs when the lead toe has made contact with the ground and when

the lag toe leaves the ground, consistent with normal walking patterns observed [6]. As

demonstrated in Figure 4.8, this constraint case also often leads to a longer simulation, which is

closer to the period time measured in subject gait studies. An additional challenge was

encountered in generating DS simulations for Subjects 1 and 2 because subject-specific joint angles

(measured in subject gait analysis) at the beginning of the period did not meet kinematic

requirements. For both subject models, subject-specific joint angles resulted in a model pose in

which the lead foot was below the ground. Thus, DS IC sets for Subjects 1 and 2 were developed

with modification from the Sun model DS IC for Subject 4. The IC sets were found by iterative

adjustment of the lag ankle, because the lag foot is constrained to the ground as a planar joint in
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Figure 4.8: Subject 4 simulated sagittal plane joint angle trajectories for DS period with varying
optimization targets.

the model framework. This adjustment and simulation was completed approximately 15 times for

each model to identify a pose in which the GRF on the lead foot allowed successful optimization.

After identifying an appropriate IC set for each subject, DS was simulated for each subject

with Sun, COM energy, and dynamic effort optimization targets. Resulting joint angle trajectories

and subject measured gait data are shown in Figures 4.9 (Subject 1) and 4.10 (Subject 2). For most

joints, simulated data diverges from measured subject joint trajectories in simulations for both
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Figure 4.9: Subject 1 simulated sagittal plane joint angle trajectories for DS period with varying
optimization targets.

subjects (1 and 2). However, consistent with simulated data for Subject 4, different cost functions

result in varied solutions. This finding gives promise to the new optimization targets proposed in

this work: work done on the COM and dynamic effort.

Simulated joint angle trajectories presented in Figures 4.8, 4.9, and 4.10, however, do not

give significant information about the quality of simulation resulting from the application of new

optimization targets. It is unreasonable to draw conclusions about simulation performance from
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Figure 4.10: Subject 2 simulated sagittal plane joint angle trajectories for DS period with varying
optimization targets.

such small window of the GC because it has been shown that the transitions between periods are

extremely important in the simulation of human gait. Additionally, the required “manufacture” of

IC sets, given that subject data did not provide IC sets compatible with the model GRF, again

points to necessary model refinements before a complete evaluation of optimization targets can be

made.

Though it is clear that there are challenges in the DS simulation framework to address, the

current framework does demonstrate better control and predictive capability for DS than SS when
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the given IC do not conflict with GRF. Future work is required to fully understand this dramatic

difference, but it is likely that the optimization problem encountered in DS is of a different class

than the SS optimization problem, which could be a result of the dynamic differences between an

closed (DS) and open (SS) kinematic chain as discussed in Section 3.1. This exploration is outside

the scope of this thesis, but the work presented here clearly demonstrates the dependence of MPC

on successful optimization. Though in its current state, the simulation framework is not adequate

for GC simulation, the successful application of new optimization targets within the framework in

this thesis is promising for future success with the proposed framework, given appropriate

optimization solution-finding methods are used.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis investigated the application of new optimization targets within an existing

MPC framework [31], [32] to predictively simulate human walking patterns. Walking is one of the

most routine human activities, but understanding of it is limited, and thus the application and

development of gait-related treatments and devices is inhibited. In particular, development of

active devices is limited especially by gait models lacking predictive capabilities. While a

significant body of literature exists on gait modeling and optimization criteria to achieve

simulated, normal gait, particularly with neuromuscular models, few studies have aimed to apply

optimization targets which approximate metabolic cost to mechanical gait models. Even fewer

have attempted this predictively, with no joint angle data specified a priori. The Sun

model [31], [32] is one such mechanical framework which utilizes MPC to predict the dynamics of

human walking. However, this simulation framework is limited to a half GC (assuming

symmetry) and optimized only according to characteristic constraints.

In this thesis, the Sun framework and MPC control scheme [31], [32] were expanded to

generate consecutive DS, SS, DS, and SS periods simulations. This GC simulation was not marked

by TO and HS, but was C0 continuous, which was not achieved by the Sun model [31], [32]. New

cost functions were developed with energy-related optimization targets, dynamic effort and work

done to the COM, which have been proposed as valid approximations of metabolic cost when

musculature is not modeled [25], [7]. Though the inability of the model framework to generate a

SS simulation that begins at TO prevented the application of new cost functions to simulation of a

full GC, these optimization targets were successfully applied within the model framework for DS.

It is important to note that the ability of optimization targets to generate normal walking patterns

cannot be fully evaluated until a full GC can be generated. However, subject-specific joint

trajectories from all simulations were compared with measured subject gait data, and initial

observations about optimization target performance were made, consistent with clinical gait

analysis methods.

This thesis has demonstrated that the MPC-based simulation framework, developed by

Sun [31], [32] and expanded in this work, is not sufficient for the prediction of subject-specific gait

in its current form. After failing to simulate a full GC by constraining the simulation to achieve

consecutive DS, SS, DS, and SS periods, separate investigations of the effects of IC and joint
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actuation during SS were conducted. Because no IC set resulted in successful simulation of SS, the

failure of SS is likely not due to IC dependence. In addition, the joint actuation study

demonstrated that resulting simulations during SS showed little to no MPC control action. This is

likely due to limitations of the solution-finding methods used in the MPC framework. However,

MPC could still be a viable method of gait prediction with alternative solution-finding methods,

and the proposed framework with modifications to the optimization routine would be the most

predictive gait simulation in the literature.

The framework proposed here is unique in that the final states and time of each period

simulation are not constrained. Though many gait models recently developed claim to be

predictive, nearly all specify joint positions at some point within the trajectory outside of the IC

set. The gait model expanded in this work would fill a much-needed gap in gait modeling and

simulation research because of its predictive nature. With the successful application of

energy-related optimization targets in this thesis, the simulation framework proposed also unifies

two major subdivisions of gait research: neuromuscular models which have identified measures

that align with the goals of the CNS but are computationally expensive and mechanical models

which capture the dynamics of gait but often lack control schemes which adequately model the

delicate and predictive control of the CNS.

The application of energy-related optimization targets within MPC is a significant

contribution to the simulation framework proposed by Sun [31], [32]. However, controller

performance subject to new optimization targets, work done to the COM and dynamic effort,

cannot be evaluated until a full GC simulation is achieved. Though this work does demonstrate

that new optimization targets can be applied within the existing MPC simulation framework,

more importantly this thesis identifies several limitations of the framework. The failure of the

model to reliably meet characteristic constraints (which describe a GC marked by TO and HS),

particularly in SS, prevents simulation of a full GC. The work in this thesis points primarily to the

failure of the optimization routine within the MPC framework to reliably find a solution that

meets constraints as the cause of this problem. If the optimization problem can be classified, an

appropriate solution algorithm could be chosen which could reliably find a solution for any given

set of constraints and IC. Identifying an appropriate solution algorithm could make the MPC

framework proposed a viable method of gait prediction and simulation.
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5.1 Future Work

MPC, by design, is an optimization-based predictive control method. Thus, controller

performance can be limited by optimization performance. Dynamic models of human gait across

literature, including the plant and internal models proposed by Sun, are large-DOF, non-linear

dynamic systems which requires a optimization algorithm to navigate a complex solution space.

Primarily, future work must characterize the optimization within the MPC framework to find an

appropriate solution method.

To make the MPC framework a viable predictive simulation of human gait, a different

solution method must be chosen. However, although the solution-finding method in SS is likely

the most significant barrier to simulation of a full GC, this thesis identified several other areas for

future work. With some characterization of the solution space, it is also possible that some other

improvements to the model may improve the optimization performance of the framework.

Characteristic constraints may also need to be redefined in order to achieve repeatable

transitions between period simulations. The difference between plant and internal model pairs for

DS and SS periods, though seemingly necessary because of the dynamic differences between

periods, does place significant emphasis on the transition between periods. Moving forward, it is

possible that a ”gain scheduling” approach be necessary, in which optimization targets change

over the prediction horizon. This method could alleviate problems with period transitions by

changing the target of the optimization routine to appropriate IC for the next period.

There are also a variety of ways in which the gait model could be improved, that may

increase the frequency of finding an appropriate solution. In particular, the GRF and ankle-foot

kinematic model should be redefined. The Sun model uses a combination of springs and dampers

to model ground contact, but the value of these springs and dampers is not consistent between

periods.

Additionally, the rigid, triangular shape of the foot may result in joint motion and torques

that differ from that of normal ambulators. In normal walking ankle kinematics are of high

importance, and the flexion of the foot may prove important. The dynamics of the foot have been

modeled in a variety of ways across existing gait simulation literature, but the rounded ankle-foot

model proposed by Ren [30] generated significantly improved ankle kinematics over the GC.

Improvement of the fidelity of the foot and GRF model could actually improve the performance of

the optimization by reducing the complexity of the solution space.
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The simulation framework also remains reliant on base polynomial torque trajectories.

These base polynomials, with passive spring and damping coefficients, should be optimized for a

wider range of subjects so that the optimization initial guess is improved. With better control

achieved through improving the optimization routine, an improved initial guess still improves the

framework by reducing the time dedicated to optimization. Passive elements, like GRF models,

should also be consistent across DS and SS models, since they are modeling dynamic elements of

the same joints in each period.

Aside from improvements to the gait cycle, characteristic constraints of the simulation

framework could be unified between periods by an empirical relationship between walking speed

and step length. It has been shown that there is an optimal step-length for a given speed [41], so

step length target could be calculated from self-selected walking speed. Thus, desired velocity

would be the input for both objective functions.

Despite significant areas for future work, the significance of the simulation framework

should not be overlooked. With the correction of SS period optimization, the MPC simulation

framework proposed in this thesis is more predictive than any existing gait model in literature.

MPC, though limited in its current application within this framework, remains a good candidate

for the prediction and simulation of human gait. Further development of a predictive gait model

would benefit a variety of fields. Trial and error processes currently in practice in the

development of gait related treatments and devices could be eliminated with better

understanding of normal gait and better tools to predict it.
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APPENDIX A

USE OF LAGUERRE FUNCTIONS IN DISCRETE MODEL PREDICTIVE CONTROL

A.1 Laguerre Functions

This Appendix describes the derivation and development of both continuous and discrete

Laguerre functions. As described in Section , Laguerre functions are a set of orthonormal basis

functions used to parameterize the control inputs of the MPC framework proposed in this thesis.

Within the Discrete MPC (DMPC) framework applied, the goal is to optimize the future

control trajectory, ∆u(k) according to a cost function. However, because of the non-linear, large

DOF internal models, introducing a set of orthonormal basis functions allows a simpler solution

and faster optimization. For simplicity, Laguerre functions as orthonormal basis functions will be

introduced in continuous time, before being applied to the discrete controller.

Given a set of functions, li(t), i = 1, 2, 3, ..., orthonormal and complete over the interval

[0, ∞), an arbitrary function f (t) has a formal expansion analagous to a Fourier Expansion,

f (t) ≈
N

∑
i=1

cili(t) , (A.1)

where ci are coefficients that can be determined optimally [36].

Laguerre Functions 1 are one such set of functions, orthonormal and complete for any

p > 0, and are given:

l1(t) =
√

2pe−pt (A.2)

l2(t) =
√

2p(−2pt + 1)e−pt

...

li(t) =
√

2p
e−pt

(i− 1)!
di−1

dti−1 [t
i−1e−2pt] ,

where p is the scaling factor which determines the exponential decay rate [36] (note that p is

different from the vector, p, used in the main body of this thesis which represents the array of

control inputs).

1Because of the derivative term in the formulation, some texts denote these formulas Laguerre polynomials when i ∈ N

and Laguerre functions when i ∈ R \N. This paper will use Laguerre functions as a general descriptor of the set of
orthonormal and complete functions where i ∈ R.
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A.1.1 Laguerre Functions in MPC

Laguerre functions are particularly useful for use in parameterizing functions within state

space systems because of their simple Laplace transforms, allowing for a systematic method to

generate functions through a state space Laguerre network2.

Two parameters, M and p characterize the Laguerre function approximation in

continuous time. M, the number of Laguerre functions used and therefore the number of

coefficients to be optimized, should be selected based on the order of the expected control

trajectory. The scaling factor, p, is analogous to the control window when applied to MPC, since it

determines the decay rate of the Laguerre functions. A larger p corresponds to a longer control

window, Nc, but is more computationally intensive.

In continuous time for a single-input, single-output (SISO) system, the control vector

which is optimized is given as a function of time, u(t).

Taking the state vector,

L(t) =
[

l1(t) l2(t) ... lM(t)

]T
,

where li is the inverse Laplace transform of the ith filter in the frequency-domain Laguerre

network, and the initial conditions of the state vector to be

L(0) =
√

2p
[

1 1 ... 1

]T
,

then the Laguerre functions satisfy the state space equation [36]:

l̇1

l̇2
...

l̇M


=



−p ... 0

−2p −p . . . 0
...

. . . . . .
...

−2p −2p . . . −p





l1(t)

l2(t)
...

lM(t)


. (A.3)

Thus,

L(t) = eAptL(0) , (A.4)

2Here, a Laguerre Network refers to a series of Laguerre Filters, which are no more than the Laplace transform of the
Laguerre functions defined above. For more information on this process and derivation, see [36]
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where

Ap =



−p ... 0

−2p −p . . . 0
...

. . . . . .
...

−2p −2p . . . −p


.

This final form gives the Laguerre functions of order 1 through M for all t as a function of the

scaling factor, p.

This simple solution can be used to parameterize an arbitrary continuous trajectory

shown in Equation A.1, by using an optimization routine to identify the coefficients that allow for

the closest approximation.

A.1.2 Laguerre Functions in DMPC

By identifying a discrete formulation it is also possible to use Laguerre functions to

parameterize the control trajectory in DMPC, using a derivation similar to that demonstrated in

continuous time.

In discrete time for a single-input, single-output (SISO) system, the control vector which is

optimized is

∆U =

[
∆u(ki) ∆u(ki + 1) . . . ∆u(ki + NC − 1)

]T
.

From this, the control signal at each time, ki, can be separated using the Dirac Delta function, δ, or

pulse operator, which shifts the control action forward [36]:

∆u(ki + i) =
[

δ(i) δ(i− 1) . . . δ(i + NC − 1)

]
.

Approximating this discrete trajectory requires discrete Laguerre network, which can be

achieved by a discretization of a continuous-time Laguerre network. Taking the inverse

z-transform of the discrete Laguerre network gives the discrete expression of the Laguerre

functions, which can be expressed in vector form:

L(k) =
[

l1(k) l2(k) ... lM(k)

]T
,

where li(k) is the i’th discrete laguerre function expression.
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Table A.1: Joint Control for SS and DS Periods.

Period Controller Joint Angle
SS MPC stance ankle, swing ankle,

swing knee, swing hip
PID stance knee, stance hip

DS MPC stance ankle, stance knee,
swing ankle, swing knee

PID stance hip, swing hip

This set of functions satisfies the difference equation [36],

l1(k + 1)

l2(k + 1)

l3(k + 1)

l4(k + 1)

l5(k + 1)

l6(k + 1)


=



a 0 0 0 0 0

β a 0 0 0 0

−aβ β a 0 0 0

a2β −aβ β a 0 0

−a3β a2β −aβ β a 0

a4β −a3β a2β −aβ β a





l1(k)

l2(k)

l3(k)

l4(k)

l5(k)

l6(k)


, (A.5)

where a is the discrete scaling factor, and β = (1− a2), for M = 6. With the initial conditions vector,

L(0) =
√

β

[
1 −a a2 −a3 a4 −a5

]T
,

each Laguerre function is given for all k by the difference equation (Equation A.5) as a function of

the only the scaling factor.

Degree and Scaling Factor Selection

Selection of the degree, M, and scaling factor, a, affect the both the quality and

computational intensity of the Laguerre function approximation. The effect of these parameters on

the approximation is illustrated in Figure A.1, where Laguerre functions are used to parameterize

the impulse response of an arbitrary system. Increasing the degree of the approximation or scaling

factor both increase the computational intensity of the solution, but will achieve better results. For

that reason, in a controller application, each should be selected as the minimum acceptable value.

A.2 Controller Application

Within the gait simulation framework, internal models are used to optimize joint

moments of four joints during each period (Figure 2.4), single support (SS) and double support

(DS), and the remaining two are controlled by auxiliary PID controllers to reduce the
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Figure A.1: Laguerre function approximation of an arbitrary impulse response.

computational load (Table A.1). Laguerre functions (M = 6, a = 0.) are used to parameterize the

control trajectory within each joint controlled by MPC. These moments are then saved to be

applied to the full plant model.

MPC requires finding of an optimal control input solution which meets target gait

descriptors, such as step length or walking speed, repeatedly. The optimization scheme by which

this solution is found is flexible. This simulation framework uses a nonlinear programming solver

within MATLAB to find the minimum of a constrained, nonlinear, multivariable function.

To increase the speed of optimization convergence, the Laguerre function approximation

acts in conjunction with a base polynomial, f (u), where u is the simulation time. These base

polynomials set the initial guess of the optimization to be a curve-fit trajectory of subject-specific

torque data acquired during gait analysis. Figure A.2 shows this formulation within an
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Figure A.2: Laguerre function application within a MPC-controlled joint actuator.

MPC-actuated joint in the model. The lookup tables contain the pre-calculated Laguerre functions

over the prediction horizon, and each Laguerre function value is multiplied by it’s respective

optimized coefficient, before being added to the base polynomial.

Laguerre functions are a useful addition to an MPC system to simplify the extremely

complex solution space. Further development of a predictive gait model would benefit a variety

of fields. Trial and error processes currently in practice in the development of gait related

treatments and devices could be eliminated with better understanding of normal gait and better

tools to predict it.

A.3 MATLAB Code for Discrete Laguerre Function Generation

MATLAB code to generate figure which illustrates the effect of the degree, M, and scaling

factor, a, on both the quality and computational intensity of the Laguerre function approximation

for the impulse response of an arbitrary system.

1 %% Generate Laguerre function Impulse Approximation Example

2 clc, clear all, close all

3 %%

4 numd = [1 -0.1];

5 dend = conv([1 -0.8],[1 -0.9]);

6 H = impz(numd,dend);

7 %% approx a



61

8 a = 0.6;

9 N = 3;

10 %define laguerre functions

11 beta = 1 - a.ˆ2;

12 A l = [a 0 0; beta a 0; -a*beta beta a];

13 L 0 = sqrt(beta)*[1; -a; aˆ2];

14 k end = 69;

15 k = 1:k end+1

16 L(1,:) = L 0;

17 for i = 1:k end

18 L(i+1,:) = A l*L(i,:)';

19 end

20 %find coefficients for approximation

21 c = zeros(1,N);

22 for i = 1:N

23 for ii = 1:k end

24 c(i) = H(ii)*L(ii,i)+c(i);

25 end

26 end

27 %approximate solution

28 H model a = zeros(1,N);

29 for i = 1:N

30 H model a = c(i)*L(:,i) + H model a;

31 end

32 %% approx b

33 clear L

34 a = 0.8;

35 N = 3;

36 %define laguerre functions

37 beta = 1 - a.ˆ2;

38 A l = [a 0 0; beta a 0; -a*beta beta a];

39 L 0 = sqrt(beta)*[1; -a; aˆ2];

40 k end = 69;

41 k = 1:k end+1;

42 L(1,:) = L 0;

43 for i = 1:k end

44 L(i+1,:) = A l*L(i,:)';

45 end

46 %find coefficients for approximation

47 c = zeros(1,N);
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48 for i = 1:N

49 for ii = 1:k end

50 c(i) = H(ii)*L(ii,i)+c(i);

51 end

52 end

53 %approximate solution

54 H model b = zeros(1,N);

55 for i = 1:N

56 H model b = c(i)*L(:,i) + H model b;

57 end

58 %% approx c

59 clear L

60 a = 0.8;

61 N = 4;

62 %define laguerre functions

63 beta = 1 - a.ˆ2;

64 A l = [a 0 0 0; beta a 0 0; -a*beta beta a 0; aˆ2*beta -a*beta beta a];

65 L 0 = sqrt(beta)*[1; -a; aˆ2; -aˆ3];

66 k end = 69;

67 k = 1:k end+1;

68 L(1,:) = L 0;

69 for i = 1:k end

70 L(i+1,:) = A l*L(i,:)';

71 end

72 %find coefficients for approximation

73 c = zeros(1,N);

74 for i = 1:N

75 for ii = 1:k end

76 c(i) = H(ii)*L(ii,i)+c(i);

77 end

78 end

79 %approximate solution

80 H model c = zeros(1,N);

81 for i = 1:N

82 H model c = c(i)*L(:,i) + H model c;

83 end

84 %% plot results

85 figure (1)

86 subplot(311)

87 hold on
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88 plot(H,'k-')

89 plot(k,H model a,'k--')

90 legend('data','model')

91 xlabel('Sampling Instant')

92 ylabel('Impulse Response')

93 title('Approximation with N=3, a=0.6')

94 subplot(312)

95 hold on

96 plot(H,'k-')

97 plot(k,H model b,'k--')

98 legend('data','model')

99 xlabel('Sampling Instant')

100 ylabel('Impulse Response')

101 title('Approximation with N=3, a=0.8')

102 subplot(313)

103 hold on

104 plot(H,'k-')

105 plot(k,H model c,'k--')

106 legend('data','model')

107 xlabel('Sampling Instant')

108 ylabel('Impulse Response')

109 title('Approximation with N=4, a=0.8')

110 % figure(2)

111 % plot(k,L)

112 % legend('1','2','3','4')

A.4 MATLAB Code for Discrete Laguerre Polynomial Development

This MATLAB code generates the Laguerre functions (M = 6, a = 0.) used to

parameterize the control trajectory within each joint controlled by MPC and the base polynomials,

f (u), where u is the simulation time. These base polynomials set the initial guess of the

optimization to be a curve-fit trajectory of subject-specific torque data acquired during gait

analysis.

1 %% Laguerre Polynomial Development

2 %find polyfit constants to give best initial guess from Winter2009 norm data

3 clc, clear all, close all

4 %% Single Support Period
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5 %% generate polynomial fit data for normal ambulator

6 %add winters data

7 filename = 'C:\Users\jess-local\OneDrive - Marquette University\Research\Normal ...

Gait Data\Winters Gait Data.xlsx';

8 trajec.ss(:,1) = xlsread(filename,'M29:M56'); %stance ankle (13 timesteps after ...

RHS - 27 timesteps later)

9 trajec.ss(:,2) = xlsread(filename,'M2:M29'); %swing ankle (RTO - RHS)

10 trajec.ss(:,3) = xlsread(filename,'N2:N29'); %swing knee (RTO - RHS)

11 trajec.ss(:,4) = xlsread(filename,'O2:O29'); %swing hip (RTO - RHS)

12 trajec.sstime = xlsread(filename,'C2:C29'); %time (RTO - RHS)

13 %add polyfit data

14 %the polyfits act as a baseline trajectory from which the laguerre function

15 %formulation deviates, they should be a close approximation of winters data

16 x = 0:0.01:(trajec.sstime(end)+0.02);

17 lag.ss.polyfit1 = polyfit(trajec.sstime,trajec.ss(:,1),5);

18 lag.ss.p1 = polyval(lag.ss.polyfit1,x);

19 lag.ss.polyfit2 = polyfit(trajec.sstime,trajec.ss(:,2),8);

20 lag.ss.p2 = polyval(lag.ss.polyfit2,x);

21 lag.ss.polyfit3 = polyfit(trajec.sstime,trajec.ss(:,3),8);

22 lag.ss.p3 = polyval(lag.ss.polyfit3,x);

23 lag.ss.polyfit4 = polyfit(trajec.sstime,trajec.ss(:,4),8);

24 lag.ss.p4 = polyval(lag.ss.polyfit4,x);

25 %plot data and laguerre polyfit constants curve-fits

26 for i = 1:4

27 subplot(str2num(['41' num2str(i)]))

28 hold on

29 p = eval(['lag.ss.p' num2str(i)]);

30 plot(trajec.sstime,trajec.ss(:,i),'.',x,p) %,x,sun.ss.fit(:,i)

31 end

32 %% generate discrete laguerre functions

33 %formulation from Wang2009, utilizing a discrete laguerre network state-space ...

representation

34 a = 0.8;

35 beta = 1 - a.ˆ2;

36 A l = [a 0 0 0 0 0; beta a 0 0 0 0; -a*beta beta a 0 0 0;...

37 aˆ2*beta -a*beta beta a 0 0; -aˆ3*beta aˆ2*beta -a*beta beta a 0;...

38 aˆ4*beta -aˆ3*beta aˆ2*beta -a*beta beta a];

39 L 0 = sqrt(beta)*[1; -a; aˆ2; -aˆ3; aˆ4; -aˆ5];

40 t end = 0.500;

41 dt = 0.005;
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42 t = 0:dt:t end;

43 k end = t end/dt;

44 L(1,:) = L 0;

45 for k = 1:k end

46 L(k+1,:) = A l*L(k,:)';

47 end

48 figure(2)

49 plot(t,L)

50 legend('l 1','l 2','l 3','l 4','l 5','l 6')

51 ylabel('Amplitude')

52 xlabel('Sampling Instant, k')

53 title('Laguerre Functions, M=6, a=0.8')

54 grid on
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APPENDIX B

SUBJECT ANTHROPOMETRIC DATA AND GAIT REPORTS

This appendix contains the measured subject anthropometry and processed motion

capture data collected and used in this thesis. The motion capture protocol used for Subjects 1 and

2 is presented in Section 3.4. Subject 4 motion capture was conducted by Sun [31]. Table B.1

summarizes the collection methods of data presented here.

Table B.1: Description of subject data used.

Subject 1 Subject 2 Subject 4
Collected by Author Author Sun [31]
Collected at OREC Gait Lab [2] OREC Gait Lab [2] MCW CMA [1]

Motion Capture System Qualisys Qualisys Vicon
Data Processing Visual3D Visual3D Unknown
Kinematic Data Yes Yes Yes

Kinetic Data Invalid* Yes Unknown

*Force plate data was not collected.

Anthropometric measurements made for each subject include height, weight, orthosis

mass, and bilateral limb length and circumference, summarized in Table B.2.

Table B.2: Description of anthropometric measurements.

Measurement Landmark Description of Measurement
Inter ASIS Distance distance from left and right anterior superior iliac spine (ASIS)

Leg Length distance from ASIS to lateral malleoli
Thigh Length distance from greater trochanter to lateral femoral epicondyle

Knee Diameter distance from medial to lateral femoral epicondyle
Ankle Diameter distance from medial to lateral malleoli

Thigh Proximal Circumference circumference just distal to ischial tuberosity
Thigh Distal Circumference circumference just proximal to the patella

Foot Length* distance from calcaneal tuberosity to distal end of hallux
Foot Width* distance from first metatarsal head to fifth metatarsal head
Foot Rocker* distance from calcaneal tuberosity to first metatarsal head

*Measurement made on AFO instead of subject

Subject anthropometry is converted to model parameters with the following MATLAB script,

which is shown for Subject 2 parameter generation:
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1 %% Patient Data Model Creation

2 %allows input of subject parameters to generate .mat file

3

4 %% model name and subject id

5 % ***EDIT THESE PARAMETERS ONLY***

6 id = 02;

7 param.name = ['SubjectID ',num2str(id)];

8 param.note = 'Thayer Subject 2, 2019';

9

10 %input anthropometric measurements

11 param.gender = 'female';

12 param.age = '38';

13 param.height = 1.78; % (m)

14 param.weight = 78.02; % (kg)

15 param.orthosisWeight = 1; % (kg)

16 param.legLength = 1.01; %ASIS to lateral malleoli (m)

17 param.thighLength = 0.60; %greater trochanter to lateral femoral epicondyle (m)

18 param.kneeDiam = 0.1165; %knee diameter (m)

19 param.ankleDiam = 0.07; %ankle diameter (m)

20 param.interASIS = 0.32; %ASIS to ASIS (m)

21 param.thighProx = 0.66; %thigh proximal circumference (m)

22 param.thighDist = 0.45; %thigh distal circumference (m)

23 param.malHeight = 0.07; %height of malleolus\ankle joint from ground (m)

24 param.footLength = 0.25; %length of foot, measured from AFO (m)

25 param.rockerLength = 0.185; %length from heel to ball of foot, measured from AFO (m)

26 param.footWidth = 0.10; %width of ball of foot, measured from AFO (m)

27

28 %% create simulation parameters

29 param.var(1) = "bodymass"; param.val(1) = param.weight;

30 param.var(2) = "F C"; param.val(2) = 0.33*param.rockerLength;

31 param.var(3) = "F H"; param.val(3) = param.malHeight;

32 param.var(4) = "F L"; param.val(4) = param.rockerLength;

33 param.var(5) = "F M"; param.val(5) = 0.0145*param.val(1);

34 param.var(6) = "F I"; param.val(6) = param.val(5)*(0.475*param.val(3))ˆ2;

35 param.var(7) = "F W"; param.val(7) = param.footWidth;

36 param.var(8) = "S L"; param.val(8) = param.legLength - param.thighLength;

37 param.var(9) = "S R1"; param.val(9) = param.ankleDiam/2;

38 param.var(10) = "S R2"; param.val(10) = param.thighDist/(2*pi);

39 param.var(11) = "S M"; param.val(11) = 0.0465*param.weight;
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40 param.var(12) = "S I"; param.val(12) = param.val(11)*(0.302*param.val(8))ˆ2;

41 param.var(13) = "T L"; param.val(13) = param.thighLength;

42 param.var(14) = "T R1"; param.val(14) = param.thighDist/(2*pi);

43 param.var(15) = "T R2"; param.val(15) = param.thighProx/(2*pi);

44 param.var(16) = "T M"; param.val(16) = 0.100*param.val(1);

45 param.var(17) = "T I"; param.val(17) = param.val(16)*(0.475*param.val(13))ˆ2;

46 param.var(18) = "HAT L"; param.val(18) = (0.818-0.530)*param.height;

47 param.var(19) = "HAT M"; param.val(19) = 0.678*param.val(1);

48 param.var(20) = "HAT I"; param.val(20) = param.val(19)*(0.496*param.val(18))ˆ2;

49 param.var(21) = "HAT a"; param.val(21) = 0.2;

50 param.var(22) = "HAT b"; param.val(22) = 0.11;

51

52 %% save to .mat file to be opened and applied in main script

53 save(['Param Subject ',num2str(id)],'param');

B.1 Anthropometry

Table B.3: Subject anthropometric measurements.

Measurement Subject 1 Subject 2 Subject 4
Age 26 38 28
Sex Male Female Male

Height 1.83 m 1.78 m 1.91 m
Weight 85.7 kg 78.0 kg 86.2 kg

Inter ASIS Distance 0.30 m 0.32 m 0.26
Leg Length 0.81 m 1.01 m 1.03 m

Thigh Length 0.40 m 0.60 m N/A
Knee Diameter 0.10 m 0.12 m 0.10 m
Ankle Diameter 0.067 m 0.07 m 0.08 m

Thigh Proximal Circumference 0.63 m 0.66 m N/A
Thigh Distal Circumference 0.43 m 0.45 m N/A

Foot Length* 0.27 m 0.25 m N/A
Foot Width* 0.09 m 0.10 m N/A
Foot Rocker* 0.20 m 0.19 m N/A

*Measurement made on AFO instead of subject

B.2 Subject 1 Normal Ambulation Gait Report
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Adult Normal Subjects Information
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Age: Avg-  22 , SD- 1.323
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page 2Marquette University Student 2019

Male: 5  , Female:  3
Left:  7 , Right:   7
Height (m): Avg- 1.73  , SD- 0.075
Weight (kg): Avg- 72.1  , SD-  12.887

Kinetic Parameters

page 2Marquette University Student 2019

Temporal Stride Parameters:
Walking Speed (m/s): Avg-  1.155 , SD- 0.142
Stride Length (m): Avg- 1.295  , SD- 0.098
Cadence (step/min)- Avg- 53.548  , SD- 5.842
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page 2Marquette University Student 2019
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B.3 Subject 1 Rigid-Ankle Ambulation Gait Report
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 Kinematics and Temporal Parameters

Speed  1.14 m/s  0.62 Statures/s
Stride Wid(13)  0.14±0.01m Len(13)  1.38±0.03m
Cycle Time Computed:  1.21 s Actual (13)  1.21±0.02 s

Measure±StdDev (Count) Measure±StdDev (Count)

Stance Time Left :  0.78±0.02 s  (7) Right :  0.72±0.01 s (7)

Swing Time Left :  0.43±0.02 s  (10) Right :  0.49±0.01 s (9)

Cycle Time Left :  1.21±0.02 s  (7) Right :  1.22±0.02 s (6)

Strides / Minute Left : 49.77±0.92 (7) Right : 49.24±0.63 (6)

Dbl Limb Support (20)  0.29±0.05 s
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Adult Normal Subjects Information
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Age: Avg-  22 , SD- 1.323
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Male: 5  , Female:  3
Left:  7 , Right:   7
Height (m): Avg- 1.73  , SD- 0.075
Weight (kg): Avg- 72.1  , SD-  12.887
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Temporal Stride Parameters:
Walking Speed (m/s): Avg-  1.155 , SD- 0.142
Stride Length (m): Avg- 1.295  , SD- 0.098
Cadence (step/min)- Avg- 53.548  , SD- 5.842
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B.4 Subject 2 Normal Ambulation Gait Report
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 Kinematics and Temporal Parameters

Speed  1.25 m/s  0.70 Statures/s
Stride Wid : NO_DATA (0) Len(6)  1.42±0.03m
Cycle Time Computed:  1.14 s Actual (6)  1.14±0.04 s

Measure±StdDev (Count) Measure±StdDev (Count)

Stance Time Left :  0.72±0.03 s  (3) Right :  0.71±0.01 s (3)

Swing Time Left :  0.43±0.02 s  (3) Right :  0.42±0.01 s (3)

Cycle Time Left :  1.15±0.05 s  (3) Right :  1.13±0.01 s (3)

Strides / Minute Left : 52.37±2.44 (3) Right : 53.34±0.40 (3)

Dbl Limb Support (0) NO_DATA
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Adult Normal Subjects Information
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Age: Avg-  22 , SD- 1.323
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Male: 5  , Female:  3
Left:  7 , Right:   7
Height (m): Avg- 1.73  , SD- 0.075
Weight (kg): Avg- 72.1  , SD-  12.887
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Temporal Stride Parameters:
Walking Speed (m/s): Avg-  1.155 , SD- 0.142
Stride Length (m): Avg- 1.295  , SD- 0.098
Cadence (step/min)- Avg- 53.548  , SD- 5.842
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B.5 Subject 2 Rigid-Ankle Ambulation Gait Report
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Speed  1.12 m/s  0.63 Statures/s
Stride Wid : NO_DATA (0) Len(6)  1.33±0.02m
Cycle Time Computed:  1.19 s Actual (6)  1.19±0.02 s

Measure±StdDev (Count) Measure±StdDev (Count)

Stance Time Left :  0.76±0.01 s  (4) Right :  0.73±0.02 s (3)

Swing Time Left :  0.43±0.02 s  (3) Right :  0.45±0.00 s (3)

Cycle Time Left :  1.20±0.01 s  (3) Right :  1.18±0.02 s (3)

Strides / Minute Left : 50.06±0.61 (3) Right : 50.65±0.74 (3)

Dbl Limb Support (0) NO_DATA
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Adult Normal Subjects Information
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Age: Avg-  22 , SD- 1.323
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Male: 5  , Female:  3
Left:  7 , Right:   7
Height (m): Avg- 1.73  , SD- 0.075
Weight (kg): Avg- 72.1  , SD-  12.887
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Temporal Stride Parameters:
Walking Speed (m/s): Avg-  1.155 , SD- 0.142
Stride Length (m): Avg- 1.295  , SD- 0.098
Cadence (step/min)- Avg- 53.548  , SD- 5.842
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