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Abstract 
This paper presents an adaptive technique for the estimation of nonuniformity parameters of infrared 

focal-plane arrays that is robust with respect to changes and uncertainties in scene and sensor 

characteristics. The proposed algorithm is based on using a bank of Kalman filters in parallel. Each filter 

independently estimates state variables comprising the gain and the bias matrices of the sensor, 

according to its own dynamical-model parameters, which underly the statistics of the scene and the 

nonuniformity as well as the temporal drift in the nonuniformity. The supervising component of the 
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algorithm then generates the final estimates of the state variables by forming a weighted 

superposition of all the estimates rendered by each Kalman filter. The weights are obtained according 

to the a posteriori -likelihood principle, applied to the family of models by considering the output 

residual errors associated with each filter. These weights are updated iteratively between blocks of 

data, providing the estimator the means to follow the dynamics of the scenes and the sensor. The 

performance of the proposed estimator and its ability to compensate for fixed-pattern noise are tested 

using both real and simulated data. The real data is obtained using two cameras operating in the mid- 

and long-wave infrared regime. 

1. Introduction 
Today's infrared (IR) imaging systems predominantly employ focal-plane-arrays (FPAs) of various 

technologies as their cores. Although FPAs have numerous advantages, such as compactness, 

production cost-effectiveness, and high sensitivity, their discrete spatial structure brings about the 

notorious nonuniformity (NU) noise, also termed fixed-pattern noise (FPN), which affects the quality of 

the acquired imagery significantly from the radiometric and visual perspectives alike. NU noise is the 

pattern observed in the imagery when a spatially uniform input, such as a black-body source, is 

imaged. This noise results from the spatial dissimilarities in the responses of the individual elements of 

the array, which is attributed to dissimilarities in the photodetectors' responsivities as well as pixel-to-

pixel variations in the characteristics of the readout circuitry. Moreover, the level of NU noise varies 

depending on factors like the surrounding temperature, the technology of the photodetector, the 

read-out architecture, etc. Additionally, NU noise varies slowly over time, and depending on the 

technology used, this drift can take from minutes to hours.1 Therefore, a one-time laboratory (or 

factory) calibration of the FPA does not provide an effective solution to the NU problem; NU correction 

(NUC) must be performed repeatedly as drift occurs.  

To date, several techniques have been proposed as suitable solutions to compensate for the NU in IR 

FPAs. The first group of them, known as “calibration methods,"2-5 requires a known, spatially uniform 

reference scene in order to calibrate the responses of the elements of the FPA. Most of these 

techniques require the usage of flat scenes at two or more temperatures from a black body. This 

category of NUC techniques is often very precise and yields radiometrically accurate readouts. 

However, due to the complexity of their setup, which requires the use of a black-body source, electro-

mechanical parts, shutters, and halting the operation of the camera during the period when calibration 

is conducted, they may not be practical in many imaging systems. These include systems that have 

weight/size constraints (e.g., airborne systems, portable systems, etc.) as well as systems that are 

designed to be functional at all time (e.g., surveillance systems). 

The second group of NUC techniques are scene based and they rely on signal processing to remove the 

NU noise. These include motion-based algorithms6-10 and statistical algorithms.1,11-18 Regardless of the 

specific algorithm employed, scene-based techniques require only the sequence of frames that is being 

imaged during the normal operation of the camera, and their performance is limited by the amount of 

information contained in the video sequence such as spatio-temporal diversity of the temperature in 

the scene1,11-18, and the presence of global motion in the sequence6-10. 

 



 

 

 

Of particular relevance to the technique developed in this paper is the algorithm developed by Torres 

and Hayat12, which employs a Gauss-Markov model for the NU parameters as a means to capture the 

drift in the FPN. Their technique utilizes such dynamical model to estimate the gain and bias of each 

detector in the array from a video sequences using a Kalman filter (KF). The KF assumes a known linear 

state-space dynamical model based on the known correlation in the gain and bias from one block of 

video sequence to the other. In practice, however, the parameters of the dynamical system may not be 

known exactly, or they may be known with some uncertainty. Therefore, system identification may be 

necessary to obtain the parameters of the dynamical system. 

In this paper, a multi-model adaptive estimation (MMAE) approach is proposed and tested to estimate 

the gain and bias of each detector that allows for uncertainties in the level of drift in these NU 

parameters. The algorithm adopts a parallel-processing technique based on Kalman filtering, as 

described by Magill et al.19. In particular, a bank of KFs is used to estimate the system states (viz., gain 

and bias), and the output residual errors of each estimate are used as hypotheses to test and assign a 

posteriori conditional probabilities to each model and KF. The algorithm updates these weights (as new 

blocks of video sequence arrive) for each KF and forms a linear composite estimate according to the 

weights. 

This paper is organized as follows. In Section 2 the system model is presented and the multi-model 

estimator is developed. In Section 3, the technique is tested using IR sequences corrupted by simulated 

NU noise. In Section 4, the technique is tested on real IR data using two cameras. The main conclusions 

are presented in Section 5. 

2. Adaptive Multi-Model Estimation of the Gain and Bias 
We begin by reviewing germane aspects of the state-space dynamical model developed by Torres and 

Hayat12, which lays the foundation for the proposed adaptive Kalman-filtering technique. We then 

adopt the dynamical model and the form of the KF to develop the multi-model recursions for the 

adaptive estimation of the gain and bias. 

A. State-Space Model 
The detector's response is usually modeled as a first-order relationship between the input irradiance 

and the detector's output. For the (𝑖;  𝑗)th detector in the FPA, the 𝑛-th time-sample of the input 

irradiance, 𝑇𝑖𝑗(𝑛), is related to its corresponding output value 𝑌𝑖𝑗(𝑛) through the equation11,20 

𝑌𝑖𝑗  (𝑛)  =  𝐴𝑖𝑗𝑇𝑖𝑗(𝑛)  +  𝐵𝑖𝑗  +  𝑉𝑖𝑗  (𝑛); (1) 

where 𝐴𝑖𝑗 is the gain of the (𝑖;  𝑗)th pixel and 𝐵𝑖𝑗 is its bias. The term 𝑉  𝑖𝑗 is the additive readout 

(temporal) noise associated to the (𝑖;  𝑗)th detector. The main assumption in (1) is that no drift occurs 

in the gain and the bias within the time window used to collect the data. To simplify the notation, we 



will drop the pixel superscripts 𝑖𝑗 with the understanding that all operations are performed on a pixel-

by-pixel basis. 

Torres and Hayat12 extended the model in (1) to consider drift in the gain and bias. To do so, they 

employed a Gauss-Markov state-space dynamical model to characterize the drift in the gain and the 

bias. In particular, they considered disjoint blocks of frames and assumed that drift in the gain and bias 

occurs only between blocks. Mathematically, this model is given by12 

𝐗𝑘  =  𝚽𝐗𝑘−1  + 𝐖𝑘; (2) 

where, 𝐗𝑘 is the two-dimensional state vector comprising the gain 𝐴𝑘 and the bias 𝐵𝑘 at the 𝑘th block. 

The square diagonal matrix 𝚽 relates the transition between the states from one block to the next. The 

diagonal elements of 𝚽 are the parameters 𝛼 and 𝛽 that represent, respectively, the amount of drift in 

the gain and bias. The vector 𝐖𝑘  is the driving noise vector of the Gauss-Markov model. The details on 

the selection the mean and variance of 𝑊𝑘
(1)

 and 𝑊𝑘
(2)

, the components of 𝐖𝑘, are discussed 

elsewhere12. 

To complete the state-space dynamical model, we define the output vector, 𝐘𝑘, consisting of the 

readouts over each block of frames. This will constitute the observation equation for the state-space 

dynamical model, which is done by writing a vector form of (1) for each block of frames (and for each 

detector) in conjunction with the block-dependent biases and gains. More precisely, 

𝐘𝑘  =  𝐇𝑘𝐗𝑘  + 𝐕𝑘; (3) 

where 𝐇𝑘  =  [𝐓𝑘  𝟏] is the observation matrix, 𝐓𝑘  is a column vector of length ℓ𝑘 (ℓ𝑘 is the number of 

frames in the 𝑘th block) of the irradiance values in the 𝑘th block, and 1 is the all-ones vector of length 

ℓ𝑘. The term 𝐘𝑘 is the vector of independent, additive temporal noise elements in the 𝑘th block. 

It is further assumed that the input irradiance values 𝐓𝑘  in the 𝑘th block of frames is an independent 

sequence of uniformly-distributed random variables in the range [𝑇𝑚𝑖𝑛;  𝑇𝑚𝑎𝑥]. In particular, the range 

is common to all the detectors in each block of frames12. This is essentially one manifestation of the 

constant-statistics assumption proposed by Narendra11, which provides the statistical references 

according to which the gains and the biases are calibrated. In practice, this assumption is met when the 

block of frames exhibits sufficient irradiance diversity in the spatial domain. This can occur, for 

example, through motion in the camera whereby detectors are allowed to sense similar sets of 

irradiance values over the entire block of frames. 

Using the above state-space dynamical model, a KF was developed to estimate the gain and bias12, 

which is described by the following iterations: 

𝐏𝑘
−  =  𝚽𝐏𝑘−1𝚽𝑇  +  𝐐, (4) 

𝐂𝑘  =  𝐇̅𝐏𝑘
− 𝐇̅𝑇 +  𝐑 + 𝜎𝑇

2(𝜎𝐴0

2  +  𝐴̅0)𝐈𝑙𝑘,𝑙𝑘 , (5) 

𝐊𝑘  =  𝐏𝑘
− 𝐇̅𝑇𝐂𝑘

−1 (6) 

𝐏𝑘  = (𝐈2,2  −  𝐊𝑘𝐇̅)𝐏𝑘
− , (7) 

𝐗̂𝑘
−  =  𝚽𝐗̂𝑘−1  + 𝐌, (8) 



𝐗̂𝑘  =  𝐗̂𝑘
−  +  𝐊𝑘(𝐘𝑘  −  𝐇̅𝐗̂𝑘

−), (9) 

with the initial conditions 

𝐗̂0  =  E[𝐗0] = (
𝐴̅0

𝐵̅0

) , 𝐏0 = [
𝜎𝐴0

2 0

0 𝜎𝐵0

2 ]. (10) 

In the above, 𝐗̂𝑘
− and 𝐗̂𝑘 are respectively the a priori and the current-state estimates. The terms 𝐏𝑘

− 

and 𝐏𝑘 are the a priori and the current error covariance matrices, respectively; 𝐊𝑘 is the Kalman gain 

matrix, and 𝐂𝑘 is the covariance matrix of the a priori output error residuals 𝐫𝑘  ≜  𝐘𝑘  −  𝐘̂𝑘
−, where 

𝐘̂𝑘
− ≜ 𝐇𝑘𝐗̂𝑘

−. The matrix 𝐑 is the covariance matrix of the additive noise, 𝐇̅ is the mean of the matrix 

𝐇𝑘,  𝜎𝑇
2 is the common variance of the input irradiance, and 𝐀̅0 (𝐁̅0) and 𝜎𝐴0

2  (𝜎𝐵0

2 ) are the mean and 

variance of the initial gain (bias), respectively, and finally, the matrix 𝐐 is the covariance matrix of the 

driving noise vector. We use the notation 𝐈𝑗,𝑗 to represent the 𝑗 ×  𝑗 identity matrix. 

The above KF was designed under the assumption that the system parameters are known. These 

parameters include the gain and bias drift parameters, 𝛼 and 𝛽, the common range of input irradiance 

(i.e., 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥), and the means and variances of the initial gain and bias. However, in practice, 

these parameters may not be known a priori, or they may be know up to some uncertainty (i.e., they 

may be known probabilistically). In the following section, we derive a technique for the adaptive 

estimation of the gain and bias that is robust with respect to uncertainties associated to the system 

parameters, which we represent by the vector 𝜃 ≜ (𝛼, 𝛽, 𝑇min, 𝑇max, 𝐴̅0, 𝜎𝐴0

2  , 𝐵̅0,  𝜎𝐵0

2 ). This extension 

is the main contribution of this paper. 

B. The Multiple Model Adaptive Estimator 
We now introduce the random version, 𝚽, of the system-parameter vector 𝜃 described above. We will 

assume that 𝚽 assumes its values from a finite set Ω =  {𝜃1, … , 𝜃𝑁}, with true a priori probabilities 

𝑝𝜃𝑞
≜ P{𝚽 =  𝜃𝑞}, 𝑞 =  1; … ; 𝑁, which are unknown to the user. Throughout, we suppose that we 

have at our disposal 𝑁 KFs, one for each possible realization of £. In what follows, we develop a 

recursion to estimate these priors from the data. 

According to Magill et al.19, to develop the MMAE estimator at the 𝑘th block it is required that we first 

find the form of the minimum-mean-square-error estimator of the state 𝐗𝑘 based on both the 

measurements 𝐘1; … ; 𝐘𝑘 and the set Ω. Clearly, this estimator is given by the conditional expectation 

𝑿̂̂𝑘  =  E[𝐗𝑘|𝐘1, … , 𝐘𝑘]. If we use the smoothing property of conditional expectations, we obtain  

𝑿̂̂𝑘

=  E[E[𝐗𝑘|𝐘1, … , 𝐘𝑘; 𝚯]|𝐘1, … , 𝐘𝑘]

=  E[𝐗̂𝑘(𝚯)|𝐘1, … , 𝐘𝑘]

= ∑ 𝐗̂𝑘(𝜃𝑞)P{𝚯 =  𝜃𝑞|𝐘1  =  𝑦1, … , 𝐘𝑘  =  𝑦𝑘}𝑁
𝑞=1

 ,(11) 

where 𝐗𝑘(𝜃𝑞)  ≜ E[𝐗𝑘|𝐘1; … ; 𝐘𝑘; 𝚯 =  𝜃𝑞] is the estimate of 𝐗𝑘 generated by the KF according to the 

𝑞th model and 𝑝̂𝜃𝑞|𝑦𝑘
≜ P{𝚯 =  𝜃𝑞|𝐘1  =  𝑦1, … , 𝐘𝑘  =  𝑦𝑘} is the a posteriori probability that the 𝑞th 

model is the true model given that we observe data up to time 𝑘. Note that 𝐗̂𝑘(𝜃𝑞) in (11) is calculated 

precisely from the KF described in Section 2A with 𝜃𝑞 taken as the vector comprising the model 



parameters. It can be seen from (11) that the estimate 𝑿̂̂𝑘 is a weighted sum of 𝑁 individual and 

independently calculated estimates for each model. 

We now described how to compute 𝑝̂𝜃𝑞|𝑦𝑘
 iteratively. (In what follows, we will use the following 

notation: If 𝐔 ≜ (𝑈1, … , 𝑈𝑘) is a continuous random vector and 𝐷 is a discrete random variable, then 

by the joint probability density function of 𝐔 and 𝐷, 𝑓𝑈1,…,𝑈𝑘,𝐷(𝑢1, … , 𝑢𝑘 , 𝑑), we mean 

lim‖(𝛿1,…,𝛿𝑘)→0‖ P{𝑢1  ≤  𝑈1  <  𝑢1  +  𝛿1, … , 𝑢𝑘  ≤  𝑈𝑘  < 𝑢𝑘  +  𝛿𝑘, 𝐷 =  𝑑}. ) Following the 

procedure given by Magill et al.19, we utilize Bayes' rule and the law of total probability to obtain 

𝑝̂𝜃𝑞|𝑦𝑘
 

=
𝑓Θ,𝐘1,…,𝐘𝑘(𝜃𝑞; 𝑦1,…,𝑦𝑘)

𝑓𝐘1,…,𝐘𝑘
(𝑦1,…,𝑦𝑘)

=
𝑓𝐘𝑘|𝐘1,…,𝐘𝑘−1,𝚯(𝑦𝑘|𝑦1, … , 𝑦𝑘−1, 𝜃𝑞)𝑝𝜃𝑞|𝑦𝑘−1

 𝑓𝐘1,…,𝐘𝑘−1
(𝑦1,…,𝑦𝑘−1)

𝑓𝐘𝑘|𝐘1,…,𝐘𝑘−1
(𝑦𝑘|𝑦1, … , 𝑦𝑘−1)𝑓𝐘1,…,𝐘𝑘−1

(𝑦1,…,𝑦𝑘−1)

=
𝑓𝐘𝑘|𝐘1,…,𝐘𝑘−1,𝚯(𝑦𝑘|𝑦1, … , 𝑦𝑘−1𝜃𝑞)

𝑓𝐘𝑘|𝐘1,…,𝐘𝑘−1
(𝐘𝑘|𝑦1, … , 𝑦𝑘−1)

𝑝̂𝜃𝑞|𝑦𝑘−1

=
𝑓𝐘𝑘|𝐘1,…,𝐘𝑘−1,𝚯(𝑦𝑘|𝑦1, … , 𝑦𝑘−1𝜃𝑞)

∑ 𝑓𝐘𝑘|𝐘1,…,𝐘𝑘−1,𝚯(𝑦𝑘|𝑦1, … , 𝑦𝑘−1𝜃𝑑)𝑝𝜃𝑑|𝑦𝑘−1
𝑁
𝑑=1

𝑝̂𝜃𝑞|𝑦𝑘−1

  (12) 

Equation (12) shows that the recursions are function of the conditional density function 

𝑓𝐘𝑘|𝐘1,…,𝐘𝑘−1,𝚯(𝑦𝑘|𝑦1, … , 𝑦𝑘−1, 𝜃𝑞). In this paper, we use the equiprobable initial condition 𝑝̂𝜃𝑞|𝑦0≡1 𝑁⁄ . 

The convergence of the above recursion is established in Section 2 C.  

The conditional density function 𝑓𝐘𝑘|𝐘1,…,𝐘𝑘−1,𝚯(𝑦𝑘|𝑦1, … , 𝑦𝑘−1, 𝜃𝑞) can be easily found19. From (3), it 

can be seen that 𝑦𝑘 𝜃𝑞 is the sum of two Gaussian random variables; therefore, 𝑦𝑘 𝜃𝑞 is also Gaussian. 

Furthermore, the first- and second-order statistics can be computed in terms of the system's 

parameters of each model and standard formulas for the moments for linear transformations of 

Gaussian random vectors. In particular, the conditional mean of the vector 𝑦𝑘 𝜃𝑞 given 𝐘1, … , 𝐘𝑘−1 and 

𝚽 =  𝜃𝑞 is19 E[𝐘𝑘|𝐘1, … , 𝐘𝑘−1𝜃𝑞] ≡ 𝐘̂𝑘
− (𝜃𝑞) =  𝐇̅(𝜃𝑞)𝚽(𝜃𝑞)𝐗̂𝑘−1(𝜃𝑞), which is the a priori estimate 

of 𝐘̂𝑘 based on the 𝑞th model. In addition, the conditional covariance matrix of 𝐘𝑘𝜃𝑞 is given by19 

E[(𝐘𝑘(𝜃𝑞) −  𝐘̂𝑘(𝜃𝑞)
−

)(𝐘𝑘(𝜃𝑞) −  𝐘̂𝑘(𝜃𝑞)
−

)𝑇] =  𝐂𝑘(𝜃𝑞). Thus, 

𝑓𝐘𝑘|𝐘1,…,𝐘𝑘−1,𝚯(𝑦𝑘|𝑦1, … , 𝑦𝑘−1, 𝜃𝑞)  =
exp(−

1

2
 (𝑦𝑘− 𝐘̂𝑘

− (𝜃𝑞))
𝑇

𝐂𝑘(𝜃𝑞)
−1

(𝑦𝑘−𝐘̂𝑘
− (𝜃𝑞)))

√2𝜋|𝐂𝑘(𝜃𝑞)|
  (13) 

In summary, the MMAE method consist of a bank of 𝑁 independent KFs running in parallel, where each 

filter corresponds to one of the 𝑁 candidate models. At each 𝑘th block, the bank produces 𝑁 different 

estimates, 𝐘̂𝑘(𝜃𝑞), 𝑞 =  1, … , 𝑁, of the state vector. Each filter also computes its version of the a 

posteriori probability density function of the data given by (13). The centralized part of the algorithm 

computes the a posteriori conditional probabilities using the iteration (12) and the initial condition 

𝑝̂𝜃𝑞|𝑦0
 1 ≡ 𝑁. Finally, the estimate of the state at the 𝑘th block is calculated using (11). One of the 

attractive features of the MMAE is that all the quantities required by equations (12) and (13) are 

already computed by the normal execution of the KFs independently of the conditional probabilities. 



C. Convergence 
It has been shown that if the output residual error for each model, 𝐫𝑘(𝜃𝑞) ≜ 𝐘𝑘 −  𝐘̂𝑘(𝜃𝑞), is 

asymptotically wide-sense stationarity (WSS), then two key convergence properties hold21,22. 

First, if 𝑝𝜃𝑞
 =  𝛿𝜃𝑞,𝜃∗ , for some 𝜃∗ ∈ Ω  (here 𝛿𝑚,𝑛 is the Kronecker Dirac), then 𝑝̂𝜃𝑞|𝑦𝑘

→ 1 as 𝑘 → ∞, 

or equivalently, 𝑝̂𝜃𝑞|𝑦𝑘
→ 𝑝𝜃𝑞

, which means that the correct model is eventually selected as the 

iteration described by (12) evolve. The second property states that if 𝜃∗ ∉ Ω, then 𝑝̂𝜃𝑞|𝑦𝑘
→ 𝑝𝜃𝑞

, as 

𝑘 → ∞, for some probability mass function 𝑝𝜃𝑞
 with the property that if 𝜃̃  =  argmax𝑞=1,…,𝑁 𝑝̃𝜃𝑞

 , then 

|𝜃̃ −  𝜃∗| ≤ |𝜃̃ − 𝜃𝑞|, for all 𝜃𝑞  ≠  𝜃̃. This implies that the candidate model that is “closest” to the true 

model receives the highest weight in the composite estimate. 

Indeed, a straightforward (but tedious) calculation shows that the expected value of the sequence 

𝐫𝑘(𝜃𝑞) is zero. Moreover, by utilizing the fact the elements of the sequence 𝐇𝑘 are mutually 

independent, the autocorrelation function of the sequence can be calculated as  

E [𝐫𝑘(𝜃𝑞)𝐫𝑘+𝑛(𝜃𝑞)
𝑇

 ] =  (𝐇̅(𝜃𝑞)𝚽(𝜃𝑞)𝐏𝑛−1(𝜃𝑞)𝚽𝑇 (𝜃𝑞) +  𝐐(𝜃𝑞) + 𝐌(𝜃𝑞)𝐌𝑇 (𝜃𝑞)) 𝐇̅𝑇(𝜃𝑞), (14) 

which is independent of 𝑘. Hence, the residual errors of filter are actually WSS (which of course implies 

asymptotic WSS) and the convergence of the proposed algorithm is established22. 

3. Application to Image Sequences with Simulated Nonuniformity Noise 
The MMAE algorithm was tested using blocks of clean IR image sequences corrupted by simulated NU 

noise exhibiting drift in the gain and bias. For the purpose of this study, the noiseless IR imagery was 

obtained by applying a two-point calibration to real IR imagery. Specifically, we employed three and 

four blocks of IR data, each of them formed by 500 frames of 128 ×  128 pixels, and every pixel was 

quantized to 16 bits. 

The simulation of imagery with NU noise was done as follows: Initially, i.e., for the first block of frames, 

a random gain and bias were generated independently for each pixel from Gaussian distributions with 

mean values of one and zero, respectively. The level of nonuniformity introduced to the initial block is 

set by varying the variance of the gain and the bias. In addition, we simulated the drift in the gain and 

the bias from block to block by using the Gauss-Markov model described in Section 2A with predefined 

parameters 𝛼 and 𝛽. The temporal noise was simulated using a zero-mean Gaussian random variable, 

which is uncorrelated with both the gain and the bias. Our Monte-Carlo calculations were based one 

100 trials for each set of parameters studied. 

The performance of the MMAE was evaluated by means of the mean-square error (MSE) between the 

true and the estimated values of the gain and the bias. The NUC capability was then examined in terms 

of the root-mean-square error (RMSE) between the original and the corrected imagery. (The NUC is 

performed by subtracting the estimated biases from the corrupted data and dividing the outcome by 

the estimated gains.) We will next study the capability of the MMAE algorithm to adapt to the drift in 

the gain and bias. In addition, we will study the behavior of the MMAE when changes occur in the 

initial condition or the observation matrix as they correspond to a different combinations for the 

discrete random vector 𝚽. 



1. Estimation of the Drift in the Gain and the Bias 
We conducted experiments to test the performance of the MMAE to estimate and track the drift of the 

NU parameters using a bank of five KFs. In our first experiment we simulated a constant and low 

amount of drift in the NU parameters: 𝛼𝑘  = 𝛽𝑘  =  0: 95, 𝑘 = 1, 2, 3. The KFs were designed 

considering that all models had the actual parameters for 𝑇min,  𝑇max, 𝐴̅0, 𝜎𝐴0

2 , 𝐵̅0, 𝜎𝐵0

2  . The different 

values of 𝛼(𝜃𝑞) and 𝛽(𝜃𝑞), for each model, used in the experiments are shown in the first column of 

Table 1. Note that the fourth model is the closest one to the true model. 

The results of the experiment are shown in Table 1. It can be seen that the fourth model achieves the 

greatest probability after the first block. Note, that despite the fact that the parameters vary only 

slightly between models, the MMAE is able to identify the model that is closest to the true model. Also, 

as shown in Table 2, the KF corresponding to the fourth model performs better than the other KFs in 

estimating the NU parameters. A visual inspection of the corrected imagery (see Fig. 1) also shows that 

the levels of residual nonuniformity present in the corrected images shown in Figs. 1(c) and (d), 

obtained by models one and four, respectively, are very low compared to the noisy IR image shown in 

Fig. 1(b). Recall that the estimate of the MMAE algorithm corresponds to the weighted superposition 

of all the estimates rendered by each Kalman filter; therefore, in this case, the corrected image 

archived by the MMAE looks closer to Fig. 1(d) than Fig. 1(e). 

In the second experiment we assign the actual set of parameters (𝛼 = 𝛽 =  0: 95) to the second 

model. Starting with 𝑝̂𝜃𝑞|𝑦0
 =  0: 2, 𝑞 =  1, … ,5, the a posteriori probabilities of model 2 being 

selected are: 𝑝̂𝜃𝑞|𝑦1
 =  0: 2923, 𝑝̂𝜃𝑞|𝑦2

 =  0: 8638, and 𝑝̂𝜃𝑞|𝑦3
 =  0: 9237. This demonstrates that the 

MMAE is not only able to identify the correct model but also converge to it fast. 

In the third experiment we used 𝛼 =  𝛽 =  0: 95 in the first two blocks and then switched to 𝛼 =

 𝛽 =  0: 80 in the third and fourth blocks. This scenario models the realistic case when the drift is time 

variant (e.g., when the ambient temperature of the sensor changes abruptly); it also demonstrates the 

ability of the MMAE to adapt to changes and track the drift in the gain and bias. In Table 3 we show 

𝑝̂𝜃𝑞|𝑦𝑘
 obtained for each model as a function of the block number. The results show that the MMAE 

selects the correct (i.e., first) model in the second block and then it selects the correct model (second) 

for blocks 3 and 4 in the fourth block. 

2. Exploiting Spatial Dependencies 
Recall that the only parameters in 𝚯 that can vary from detector to detectors are the drift parameters, 

𝛼 and 𝛽; all other parameters, viz., the initial statistics of the gain and bias as well as the irradiance 

range, are assumed uniform spatially. However, from our experience we have seen that the amount of 

drift in the gain and bias is more-or-less similar for all photodetectors. This observation suggests that it 

would be plausible to assume, at least locally, that the drift parameters exhibit a high level of spatial 

dependency. In other words, the probability mass function of the random vector 𝚯 may be assumed 

fixed over a certain “neighborhood”" of detectors. Clearly, this feature can be exploited to enhance the 

computational efficiency of the MMAE by requiring the calculation of the a posteriori probabilities 

𝑝̂𝜃𝑞|𝑦𝑘
 for only a subsample of detectors. 



To do so, the MMAE is first restricted to spatially down-sampled imagery and the probabilities 𝑝̂𝜃𝑞|𝑦𝑘
 

are computed for the reduced subset of detectors. Next, the a posteriori probabilities for the 

remaining detectors are approximated by means of spatial interpolation (we used zeroth-order 

interpolation in our calculations). The gain and bias are then estimated for each detector by using the 

MMAE according to the subsampled/interpolated probabilities. Indeed, Fig. 2 shows that the mean 

(over all pixels and all frames in one block) RMSE is almost independent of the down-sampling factor, 

which justifies our spatial-dependency assumption regarding the drift parameters. The figure also 

shows the significant reduction in computing time, which scales with the down-sampling factor. 

4. Application to Real Infrared Image Sequences 
In this section, the MMAE algorithm is applied to two sets of raw IR data collected using different IR 

cameras. The first set corresponds to five videos of terrestrial mid-wave IR (3 ~ 5 𝜇𝑚) imagery, 

collected using a 128 ×  128 InSb FPA cooled camera (Amber Model AE-4128). The IR videos were 

collected at different hours of the same day (6:30 AM, 8 AM, 9:30 AM, 11 AM and 1 PM), each video 

contained 1000 frames captured at a rate of 30 fps, and each pixel was quantized in 16 bit integers. 

The second set also corresponds to terrestrial data, in the range of 8 ~ 12 𝜇𝑚, and collected using an 

HgCdTe FPA cooled camera (CEDIP Jade Model) that outputs frames of 320 ×  240 pixels, quantized in 

14 bit integers. The data was acquired at 30 fps, and then, subsampled in time by a factor of ten, to 

obtain four subsampled videos with 500 frames per block. Unlike the InSb camera, the range of the 

data acquired by the HgCdTe camera is [5961,8934], which is much smaller than the entire available 

range. Finally, the blocks of frames videos were collected at 2 PM, 2:30 PM, 2:45 PM, and 3:05 PM, all 

taken in the same day. 

A. Uncertainties in the Drift of the Nonuniformity Parameters 
Recall that the key objective of the proposed MMAE technique is to adaptively track the level of drift in 

the gain, which would include identifying the true values of the parameters 𝛼 and 𝛽. To demonstrate 

this capability for the two sets of IR video sequences, the video sequences were sorted in time, and we 

set 𝛼 =  𝛽 to be 0.50, 0.60, 0.70, 0.8, and 0.9 for the models 1 to 5, respectively, and for both sets of 

IR imagery. All the other parameters of the model were set to be the same for the five KFs. 

From 1, the initial conditions 𝐴̅0, 𝐵̅0;  𝜎𝐴0

2 , and 𝜎𝐵0

2  for the gain and the bias must satisfy the relations 

𝑌̅  =  𝐴̅0𝑇̅  +  𝐵̅0, (15) 

𝜎𝑌
2 =  𝜎𝐴0

2 (𝜎𝑇
2 +  𝑇̅2)  +  𝐴̅0

2𝜎𝑇
2 +  𝜎𝐵0

2 , (16) 

where, 𝑌̅ and 𝜎𝑌
2 are respectively the empirical mean and variance of the readout data (across all 

detectors and frames in the first block), and 𝑇̅  =  (𝑇max  + 𝑇min)/2 and 𝜎𝑇
2 = (𝑇max −  𝑇min)2/12 

are respectively the theoretical mean and variance of the irradiance. Clearly, additional assumptions 

need to be made to determine the four initial conditions. Our experience indicates that selecting 𝐴̅0  =

 1 produces corrected images in the same dynamical range of the read-out data. Moreover, a 

reasonable assumption regarding the gain nonuniformity is that 𝜎𝐴0

2 ≈  0: 05𝐴̅0
2. Consequently, in the 

case of the IR data collected with the InSb FPA, for which 𝑇min  =  0 and 𝑇max  =  65535, we obtain 

(after rounding) 𝐵̅0  =  −4000 and 𝜎𝐵0

2  =  3300. 



After running the MMAE algorithm with the above initial conditions, we obtain the following maximum 

a posteriori conditional probabilities (over the five models) at each time: 𝑝̂𝜃5|𝑦1
 =  0: 6168, 𝑝̂𝜃4|𝑦2

 =

 0: 7792, 𝑝̂𝜃4|𝑦3
 =  0: 9933, 𝑝̂𝜃4|𝑦4

 =  0: 9997, and 𝑝̂𝜃4|𝑦5
 =  1, which suggest that the correct model 

is the fourth one (namely, 𝛼 =  𝛽 =  0: 8). The a posteriori conditional probabilities show that the 

amount of drift in the gain and the bias is slow (𝛼 and 𝛽 tend to one), which is in agreement with the 

MMAE estimates obtained for the gain and the bias: 𝐴̂1  =  0: 6143, 𝐴̂2  =  0: 8510, 𝐴̂3  =

 0: 8200, 𝐴̂4  =  0: 8127, and 𝐴̂5  =  0: 8383, 𝐵̂1  =  −9032, 𝐵̂2  =  −3602, 𝐵̂3  =  −2055, 𝐵̂4  =

 −1807, and 𝐵̂5  =  −1443. 

For the set of data corresponding to the HgCdTe camera, the MMAE's initial conditions are given by: 

𝐴̅0  =  1,  𝐵̅0  =  −1200, 𝜎𝐴0

2  =  0: 05,  𝜎𝐵0

2  =  1600, 𝑇min  =  5961, and 𝑇max  =  8934. The 

estimated gain and bias for this set are: 𝐴̂1  =  1: 2771, 𝐴̂2  =  1: 1827,  𝐴̂3  =  1: 1521, and 𝐴̂4  =

 1: 1458; 𝐵̂1  =  −991, 𝐵̂2  =  −2061, 𝐵̂3  =  −2165, and 𝐵̂4  =  −1691. The results obtained for the 

highest a posteriori conditional probabilities are 𝑝̂𝜃5|𝑦1
 =  0: 3598, 𝑝̂𝜃5|𝑦2

 =  0: 3985, 𝑝̂𝜃5|𝑦3
 =

 0: 5501, and 𝑝̂𝜃5|𝑦4
 =  0: 5897, which indicate that the model closest to the correct model is the fifth 

model (namely, 𝛼 =  𝛽 =  0: 9). 

Figure 3(a) shows a sample raw frame, at 𝑘 =  5 for the InSb data. Figures 3(b)-(d) correspond to 

filtered images computed by the first, second, and fourth KF, respectively (the images corresponding to 

the other modes are not shown). The NUC obtained for the IR sequence was somehow satisfactory. 

Further, it can be also seen that the MMAE compensates for the dead pixels that appear in the real 

imagery. However, a small amount of ghosting appears in the corrected images. Figure 4(a) shows a 

raw frame for 𝑘 =  1 taken from the HgCdTe data. Figures 4(b)-(d) are the corresponding filtered 

versions of Fig. 4(a), corrected using the first, the fourth, and the fifth KF estimator, respectively. In this 

example, no ghosting artifacts were observed. 

B. Uncertainties in the Irradiance Range and the Initial Condition of the Gauss-Markov 

Model 
We now study the dependence of the MMAE on the mean initial gain 𝐴̅0 and bias 𝐵̅0 while fixing the 

reaming model parameters. According to previous results, we set 𝛼 =  𝛽 =  0: 8 for all the models in 

the InSb data, and 𝛼 =  𝛽 =  0: 9 for the HgCdTe data. Further, we maintain the same values for 

𝑇min,  𝑇max, 𝜎𝐴0

2 , and 𝜎𝐵0

2  as used in Subsection 4 A. We propose the following candidate values for the 

mean gain 𝐴̅0 for both cameras: 0.6, 0.7, 0.8, 0.9, and 1.0 in models 1 to 5, respectively. According to 

(15), the corresponding candidate values for the mean bias become -43000, -28000, -16000, -7800, and 

0 for the InSb data, and -2409, -1684, -959, -234, and -490 for the HgCdTe data. Next, we executed the 

MMAE and found that the maximum (over all models) a posteriori conditional probabilities obtained at 

each 𝑘th time for the InSb data are: 𝑝̂𝜃3|𝑦1
 =  0: 2218, 𝑝̂𝜃2|𝑦2

 =  0: 3695, 𝑝̂𝜃3|𝑦3
 =  0: 4270, 𝑝̂𝜃3|𝑦4

 =

 0: 4285, 𝑎𝑛𝑑 𝑝̂𝜃3|𝑦5
 =  0: 5331. For the HgCdTe data, the results are: 𝑝̂𝜃4|𝑦1

 =  0: 2214, 𝑝̂𝜃5|𝑦2
 =

 0: 3444, 𝑝̂𝜃5|𝑦3
 =  0: 5332, and 𝑝̂𝜃5|𝑦4

 =  0: 7102. The results indicate that the best choice for the 

gain (bias) for the InSb and HgCdTe cameras are 0.8 (-16000) and 1.0 (-490), respectively. 

Finally, we also performed experiments to determine the best range for the input irradiance while 

keeping all other system parameters fixed. Our results indicate that the MMAE tends to select the 



range that is consistent with data. More precisely, for a fixed mean gain 𝐴̅0 and mean bias 𝐵̅0, the 

selected range [𝑇min, 𝑇max] would contain the data range after the data is shifted by the bias and 

scaled by the mean gain. This conclusion is consistent with the maximum-likelihood estimator of a 

uniformly distributed random variable (the irradiance in this case) from linearly transformed samples 

of it. 

5. Conclusions 
In this paper we developed a scene-based method for estimating the gain and bias matrices in infrared 

focal-plane arrays that is robust with respect to uncertainties in the sensor-model parameters. These 

include uncertainties in the spatial statistics of the fixed-pattern noise (viz., uncertainties in the 

statistics of the gain and bias) as well as the uncertainties in the drift in the gain and bias. The method 

is based on the multi-model Kalman filter, which consist of a bank of our Kalman filters, one for each 

set of candidate system parameters, in conjunction with a iterative algorithm that adaptively weighs 

each output of the bank of filters and computes an aggregate estimator of the gain and bias. 

Experiments with infrared imagery with simulated fixed-pattern noise demonstrated that the proposed 

method not only is able to select the “best” model from a set of candidate models, but it is also able to 

adapt to changes in the individual detectors' gains and biases as they drift in time. Our results using 

real video sequences using InSb and HgCdTe infrared cameras have shown that the estimated gains 

and biases can be used to perform effective nonuniformity correction to the video sequences over an 

extended spans of time. It should be noted that the success of the proposed methods relies on the 

constant-statistics assumption11, whereby the statistics of the irradiance are assumed to be invariant 

over all detectors in the array. Finally, it was demonstrated that any spatial dependency in the bias and 

gain over a “neighborhood” of detectors can be exploited to save computational resources. 
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Captions 
Table 1. The spatial average of the a posteriori conditional probabilities, 𝑝̂𝜃𝑞|𝑦𝑘

, for each model. In this example 

the true parameter is not a member of the parameter space Ω; however, the fourth model (𝜃4) is closest to the 
true parameter set. 

Model 𝑝̂𝜃𝑞|𝑦1
 𝑝̂𝜃𝑞|𝑦2

 𝑝̂𝜃𝑞|𝑦3
 

𝑞: (𝛼 = 𝛽)    

1: 0.90 0.1999 0.2028 0.1925 

2: 0.92 0.1954 0.2173 0.2390 

3: 0.88 0.2045 0.1857 0.1545 

4: 0.94 0.1910 0.2266 0.2902 

5: 0.86 0.2095 0.1676 0.1238 

 

Table 2. The NUC performance parameters obtained by the MMAE for the experiment corresponding to Table 1. 

Model  MSE𝐴1
  MSE𝐵1

  RMSE1  MSE𝐴2  MSE𝐵2  RMSE2  MSE𝐴3  MSE𝐵3  RMSE1 

(𝛼 = 𝛽)          
1: 0.90  0.0445  0.3692  0.4463  0.0288  0.2018  0.3742  0.0193  0.1481  0.3428 
2: 0.92  0.0443  0.3690  0.4462  0.0286  0.2012  0.3739  0.0192  0.1479  0.3426 

3: 0.88  0.0448  0.3700  0.4466  0.0286  0.2022  0.3744  0.0196  0.1492  0.3431 

4: 0.94  0.0443  0.3690  0.4461  0.0282  0.2004  0.3737  0.0190  0.1477  0.3425 

5: 0.86  0.0441  0.3688  0.4456  0.0293  0.2029  0.3745  0.0197  0.1500  0.3432 

 

Table 3. The spatial average of the a posteriori conditional probabilities, 𝑝̂𝜃𝑞|𝑦𝑘
, for each model when the MMAE 

is tracking the artificial NU added to a sequence of four blocks of data. In the first two blocks, the actual values 
are 𝛼 =  𝛽 =  0: 95, and in the third and four blocks, 𝛼 =  𝛽 =  0: 80. 

Model 𝑝̂𝜃𝑞|𝑦1
 𝑝̂𝜃𝑞|𝑦2

 𝑝̂𝜃𝑞|𝑦3
 𝑝̂𝜃𝑞|𝑦4

 

(𝛼 =  𝛽 )     

1: 0.95  0.1662  0.5963  0.6030  0.4721 

2: 0.80  0.1965  0.3636  0.3647  0.4794 

3: 0.35  0.1796  0.0098  0.0097  0.0100 

4: 0.55  0.2428  0.0203  0.0128  0.0278 

5: 0.40  0.2150  0.0100  0.0097  0.0107 

 

Fig. 2. Computing time required by the MMAE and its corresponding RMSE obtained, vs. the subsampling factor 
used to calculate the a posteriori conditional probabilities. 



 

Fig. 1. Image frame 500 from the third block (𝑘 =  3) a) true image, b) noisy image, c) corresponding corrected 
version of noisy image obtained by the first Kalman filter of the bank, d) corrected version of noisy image 
obtained by the fourth Kalman filter. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 3. a) Sample raw image of the fifth block (𝑘 =  5) taken from the InSb data set, b) corrected version of the 
raw image obtained by the first Kalman filter, c) corrected image obtained by the second Kalman filter, d) 
corrected frame obtained by the fourth Kalman filter. 
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Fig. 4. a) Sample raw image of the first block (𝑘 =  1) taken from the HgCdTe data set, b) corrected version of 
the raw image obtained by the first Kalman filter, c) corrected frame obtained by the fourth Kalman filter, d) 
corrected frame obtained by the fifth Kalman filter. Note that the image in (d), which has the highest a posteriori 
probability, offers a slight advantage in performing NUC. 
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