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Abstract: The paper discusses the generalization of constrained Bayesian method (CBM) for arbitrary loss functions and its 

application for testing the directional hypotheses. The problem is stated in terms of false and true discovery rates. One more criterion of 

estimation of directional hypotheses tests quality, the Type III errors rate, is considered. The ratio among discovery rates and the Type 

III errors rate in CBM is considered. The advantage of CBM in comparison with Bayes and frequentist methods is theoretically proved 

and demonstrated by an example. 
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1. Introduction

 

Statistical hypothesis testing is one of the basic problems of the mathematical statistics theory and practice. Many 

different types of hypotheses have been considered in the literature. However directional hypotheses are 

comparatively new in comparison to traditional hypotheses. For parametrical models, this problem can be stated as 

H0: θ = θ0 vs. H－: θ < θ0 or H+: θ > θ0, where θ is the parameter of the model, θ0 is known (see, for example, Ref. [1]). 

The consideration of directional hypotheses started in the 50-ies of the last century. The earliest works 

considering this problem were by Lehmann [2-4] and Bahadur [5]. Interest in this problem has not decreased since 

(see, for example, Kaiser [6]; Leventhal & Huynh [7]; Finner [8]; Jones & Tukey [9] and Shaffer [10]; Bansal & 

Sheng [1]). For solving this problem, authors used traditional methods based on p-values, frequentist or Bayesian 

approaches and their modifications. A compact but exhaustive review of these works is given in Bansal & Sheng 

[1] where Bayesian decision theoretical methodology for testing the directional hypotheses was developed and 

compared with the frequentist method. In the same work, the decision theoretic methodology was used for testing 

multiple directional hypotheses. The cases of multiple experiments for directional hypotheses were also 

considered in Ref. [11, 12]. The choice of a loss function related to the Kullback-Leibler divergence in a general 

Bayesian framework for testing the directional hypotheses is considered in Ref. [13]. 

A new approach to the statistical hypotheses testing, called constrained Bayesian method (CBM), was 

developed by Kachiashvili et al. [14, 15], Kachiashvili & Mueed [16]. This method differs from the traditional 

Bayesian approach with a risk function split into two parts, reflecting risks for incorrect rejection and incorrect 

acceptance of hypotheses and stating the risk minimization problem as a constrained optimization problem when 

one of the risk components is restricted and the another one is minimized [15, 17]. Application of this method to 

different types of hypotheses (two and many simple, composite and multiple hypotheses) with parallel and 
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sequential experiments showed the advantage and uniqueness of the method in comparison with  existing ones 

[18-21]. The uniqueness of the method consists in the emergence of the regions of impossibility of making a 

simple or any decision alongside with the regions of acceptance of tested hypotheses (like the sequential analysis 

method), which allows us based on this approach to develop both parallel and sequential method without any 

additional efforts. The advantage of the method is the optimality of made decisions with guaranteed reliability and 

minimality of necessary observations for given reliability (see, for example, Kachiashvili [18, 19]; Kachiashvili 

[20]; Kachiashvili [21]). CBM uses not only loss functions and priori probabilities for making decisions as the 

classical Bayesian rule does, but also a significance level as the frequentist method does. The combination of 

these opportunities improves the quality of made decisions in CBM in comparison with other methods. Taking 

into account the fact that CBM gives better results than other known methods for testing the traditional hypotheses, 

it is expected that it will give similar better results for testing the directional hypotheses as it, in addition to the 

classical Bayesian method, uses significance levels in appropriate restrictions. 

In Section 2 the generalization of CBM for arbitrary loss functions is given. Application of CBM to the 

directional hypotheses and the investigation of the obtained decision rule are presented in Section 3. CBM for the 

normally distributed directional hypotheses is considered in Section 4. Computation results of a concrete example 

are given in Section 5. Some specific facts which take place in CBM are described in Section 6. Short conclusions 

are made in Section 7. 

2. CBM for the General Loss Function 

In the above mentioned works, CBM was introduced and investigated for the “0-1” loss function (see, for 

example, Kachiashvili [17]; Kachiashvili et al. [15]). Let us now consider the general case. Let the sample x
T
 = 

(x1, ..., xn) be generated from p(x; θ) and the problem of interest is to test Hi: θi ∈ Θi, i = 1, 2, ..., S, where Θi ⊂ R
m
, i 

= 1, 2, ..., S, are disjoint subsets with ⋃Θi = R
m
. The number of tested hypotheses is S. Let the prior on θ be denoted 

by   𝜋𝑠
𝑖=1 (θ｜Hi)p(Hi) where for i = 1, 2, ..., S, p(Hi) is a priori probability of hypothesis Hi and π(θ｜Hi) is a prior 

density with support Θi; p(x｜Hi) denotes the marginal density of x given Hi, i.e., p(x｜Hi) = ∫Θi p(x｜θ) π(θ｜Hi)dθ 

and D = {c} is the set of solutions, where d = {d1, …, ds}, it being so that 

1, ,

0, ;

i

i

if hypothesis H is accepted
d

otherwise




 



 

δ(x) = {δ1(x), δ2(x), …, δs(x)} is the decision function that associates each observation vector x with a certain 

decision 

𝑥 
𝛿(𝑥)
    d ∈ D 

(notation: depending upon the choice of x, there is a possibility that δj(x) = 1 for more than one j or δj(x) = 0 for
 
all 

j = 1, ..., S). 

Γj is the region of acceptance of hypothesis Hj, i.e. Γj = {x : δj(x) = 1}. It is obvious that δ(x) is completely 

determined by the Γj regions, i.e. δ(x) = {Γ1, Γ2, …, Γs}. Let L1(Hi, δj(x) = 1) and L2(Hi, δj(x) = 0) be the losses of 

incorrectly accepted and incorrectly rejected hypotheses. Then one of possible formulations of CBM can be as 

follows: to minimize the averaged loss of incorrectly accepted hypotheses 
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subject to the averaged loss of incorrectly rejected hypotheses 
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    
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where r1 is some real number determining the level  of the averaged loss of incorrectly rejected hypotheses. 

The kinds of functions in Eqs. (1) and (2) could be chosen differently depending on what type of restrictions is 

desired proceeding from the aim of the practical problem that must be solved [15, 17]. One of possible statements 

in Eqs. (1) and (2) minimizes the averaged risk caused by incorrectly accepted hypotheses with restriction of the 

averaged risk caused by incorrectly rejected hypotheses. 

By solving problem in Eqs. (1) and (2), we have  [15, 22] 
 

  


S

i iiji

S

i iijij HxpHpxHLHxpHpxHLx
1 21 1 )|()()0)(,()|()()1)(,(:   

j = 1, …, S                                      (3) 
 

where Lagrange multiplier λ(λ > 0) is defined so that in Eq. (2) the equality takes place. 

Remark. When the losses are the following 














,1

,0

)1)(,(1
jiat

jiat

xHL ji  ,  














,1

,0

)0)(,(2
jiat

jiat

xHL ji           (4) 

hypotheses acceptance regions in Eq. (3) coincide with the suitable regions of the appropriate task of CBM at loss 

“0-1” (see Task 1 in Kachiashvili et al. [15]). 

Let us suppose that the losses are the same within the acceptance and rejection regions and introduce 

denotations L1(Hi, Hj) and L2(Hi, Hj) for incorrect acceptance of Hi when Hi is true and incorrect rejection of Hj in 

favour of Hi. Then decision making regions in Eq. (3) take the form 

 ;)|(),()()|(),()(:
1 21 1  


S

i ikii

S

i ijiij HxpHHLHpHxpHHLHpx   

  ;,...,1,,...,1,1,...,1: SjSjjkk                          (5
1
) 

that is the same as 

 ;)|(),()|(),(:
1 21 1  


S

i iki

S

i ijij xHpHHLxHpHHLx   

  ;,...,1,,...,1,1,...,1: SjSjjkk                          (5
2
) 

 

From Eq. (2) it is clear that the following condition must be fulfilled 

   


S

i

S

j R
ijii n

dxHxpxHLHpr
1 1 21 )|()0)(,()( 

                    
(6

1
) 



Constrained Bayesian Method for Testing the Directional Hypotheses 

 

99 

i.e. for losses L1(Hi, Hj) and L2(Hi, Hj), 

  


S

i

S

j jii HHLHpr
1 1 21 ),()( .                            (6

2
) 

Using the same denotations and introducing the general loss function L(Hi, δ(x)) which determines the value of 

loss in the case when the sample has the probability distribution corresponding to hypothesis Hi, but, because of 

random errors, decision δ(x) is made, the Bayesian statement of S hypotheses testing is [23-25]. 

 
  


S

i R
iii

x

B

n
dxHxpxHLHpr

1)(
)|())(,()(min 


 .                    (7) 

In the general case, loss function L(Hi, δ(x)) consists of two components: 

1 21 1
( , ( )) ( , ( ) 1) ( , ( ) 0),

S S

i i j i jj j
L H x L H x L H x  

 
    

               
(8) 

i.e. loss function L(Hi, δ(x)) is the total loss of incorrectly accepted and incorrectly rejected hypotheses. 

Taking into account Eq. (8), the solution of the problem Eq. (7) can be written down in the following (form 

Refs. [23, 25]: 

  


S

i iiji

S

i iijij HxpHpxHLHxpHpxHLx
1 21 1 )|()()0)(,()|()()1)(,(:  , 

,,...,1 Sj 
                                       

(9) 

and, for losses ),(1 ji HHL  and ),(2 ji HHL , we have 

 ;)|(),()|(),(:
1 21 1  


S

i iki

S

i ijij xHpHHLxHpHHLx    

  SjSjjkk ,...,1,,...,1,1,...,1:  .                        (10) 

It is obvious that the difference between Eqs. (3) and (9), that is between Eqs. (5) and (10), consists in the 

Lagrange multiplier λ which cardinally changes the properties of decision-making regions. 

Let us define the summary risk (SR) of making the incorrect decision at hypotheses testing as the weighed sum 

of probabilities of making incorrect decisions, i.e. 

    


S

i

S

ijj iijiS
j

dxHxpHpHHLr
1 ,1

)|()(),()( .                  (11) 

It is clear that, for given losses and probabilities, SR depends on the regions of making decisions. Let us denote 

by Γ
CBM

 and Γ
B
 the hypotheses acceptance regions in CBM and Bayes rule, respectively. Then SR for CBM and 

Bayes rules are rs(Γ
CBM

) and
 
rs(Γ

B
), respectively.  

Theorem 1. For given losses and probabilities, SR of making incorrect decision in CBM is convex function of λ 

with maximum at λ = 1. At increasing or decreasing λ, SR decreases, and in the limit, i.e. at λ  ∞ or λ  0, SR 

tends to zero. 

Corollary 1. At the same conditions SR of making the incorrect decision in CBM is less or equal to SR of the 

Bayesian decision rule, i.e.
 
rs(Γ

CBM
) ≤ rs(Γ

B
). 

The justice of this corollary is obvious from theorem 1. 

Providing proving consideration, similar to theorem 1, it is not difficult to be convinced that SR of making the 

incorrect decision in CBM is less or equal to SR of the frequentist decision rule, i.e.
 
rs(Γ

CBM
) ≤ rs(Γ

f
), where rs(Γ

f
) 

is SR for the frequentist method. 

3. Consideration of Directional Hypotheses 
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Let us consider the directional hypotheses H0: θ = θ0 vs. H－: θ < θ0, or H+: θ > θ0. For testing these hypotheses, 

the loss functions that do not depend on x are used in Ref. [1]. Let us denote: Γ0, Γ－ and Γ+ are the regions of 

acceptance of the appropriate hypotheses. 

In the considered case, decision-making region Eq. (5) becomes: the hypothesis H－ acceptance region 

   )|(),()|(),()|(),(: 10011 xHpHHLxHpHHLxHpHHLx  

( 0k )  )|(),()|(),()|(),( 02000202 xHpHHLxHpHHLxHpHHL     

  )|(),()|(),()|(),(& 10011 xHpHHLxHpHHLxHpHHL  

( k )  )|(),()|(),()|(),( 20022 xHpHHLxHpHHLxHpHHL             (12) 

similarly, for Γ0, we have 

   )|(),()|(),()|(),(: 010001010 xHpHHLxHpHHLxHpHHLx  

( k )  )|(),()|(),()|(),( 20022 xHpHHLxHpHHLxHpHHL     

  )|(),()|(),()|(),(& 01000101 xHpHHLxHpHHLxHpHHL  

( k )  )|(),()|(),()|(),( 20022 xHpHHLxHpHHLxHpHHL             (13) 

and, for Γ+, we have 

   )|(),()|(),()|(),(: 10011 xHpHHLxHpHHLxHpHHLx  

( 0k )  )|(),()|(),()|(),( 02000202 xHpHHLxHpHHLxHpHHL     

  )|(),()|(),()|(),(& 10011 xHpHHLxHpHHLxHpHHL  

( k )  )|(),()|(),()|(),( 20022 xHpHHLxHpHHLxHpHHL             (14) 

The following “0-K” loss function was used in Ref. [1]. 

0),(),(),(),(),(),( 2002210011   HHLHHLHHLHHLHHLHHL  

00101 ),(),( KHHLHHL   , 00202 ),(),( KHHLHHL    

1110101 ),(),(),(),( KHHLHHLHHLHHL   , 

                   1020222 ),(),(),(),( KHHLHHLHHLHHL              (15) 

Inputting these losses into decision-making regions Eqs. (12)-(14), we have: for Γ－ 

( 0k )     )|()|()|()|(: 001 xHpxHpKxHpxHpKx     



Constrained Bayesian Method for Testing the Directional Hypotheses 

 

101 

 ( k )     )|()|()|()|(& 0101 xHpxHpKxHpxHpK                        (16) 
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similarly, for Γ0, we have 
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and, finally 
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for Γ+, we obtain 
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Analyzing regions Eqs. (17), (20) and (22), we conclude that generally, for arbitrary λ > 0, in contradistinction 
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to the classical cases, the following conditions take place: Γi ⋂ Γj ≠ ∅, i ≠ j, i, j ∈ (－, 0, ＋) and Γ－ ⋃ Γ0 ⋃ Γ+ ≠ 

R
n
, i.e. in general, hypotheses acceptance regions intersect and the union of these regions does not coincide with 

the observation space. If more than one of conditions Eqs. (17), (20) and (22) or none of these conditions are 

fulfilled, then it is impossible to make a simple decision. In the first case more than one of the hypotheses are 

suspected to be true and, in the second case, it is impossible to make a  

single decision. In such cases it is necessary to obtain one more observation and, on the basis of increased sample, 

to make a decision using condition Eqs. (17), (20) and (22) or to change r1 in condition Eq. (2) upon fulfilling 

only one of conditions Eqs. (17), (20) and (22). When λ = 1, decision rules Eqs. (17), (20) and (22) completely 

coincide with the Bayesian decision rule given in Ref. [1]. 

In the case of loss functions in Eq. (15), condition Eq. (2) takes the form  


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Hence it is clear that the following condition must always be satisfied 

11001 )()()( rKHpKHpKHp  
. 

Let us choose r1 
as follows  

   100011 )()()( KHpKHpKHpr , 

Where 0 ≤ a－ ≤ 1, 0 ≤ α0 ≤ 1 and 0 ≤ α+ ≤ 1. Then, in the right side of (23), we have 

                 
)1()()1()()1()( 10001    KHpKHpKHp .           (24) 

Let us consider the following losses 
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(25) 

It is clear that the “0-1” loss function is a private case of the step-wise loss (25). 

For loss functions Eq. (25), Eq. (1) takes the form 
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 0

)|(),()|(),()( 011 dxHxpHHLdxHxpHHLHp ,          (26) 

and condition Eq. (2) transforms in the following form 


 



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0
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1200202 ),()(),()(),()( rHHLHpHHLHpHHLHp  
.           (27) 

Stated problem Eq. (26), Eq. (27) can be written as 

 
 )|()(),()|()(),(min 10001
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
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         + )|()(),()|()(),( 00011   xHPxPHHLxHPxPHHL ,    (28) 

at 

)|()(),()|()(),( 0000022   xHpxpHHLxHpxpHHL

)|()(),(2   xHpHxpHHL  

1200202 ),()(),()(),()( rHHLHpHHLHpHHLHp  
           (29) 

At the “0-1” loss function, Eqs. (28) and (29) take the form 

 
 )|()()|()(min 00

,, 0



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+ )|()()|()( 00   xHPxPxHPxP                  (30) 

at 

1000 1)|()()|()()|()( rxHpHxpxHpxpxHpxp  
     (31) 

Let us rewrite Eqs. (30) and (31) in the following forms 

 
  )|()|()(min 0
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+  )|()|()( 000 HxPHxPHP    

+  )|()|()( 0   HxPHxPHP                        (32) 

and 

1000 1)()|()()|()()|( rHpHHxpHpHxpHpHxp  
.         (33) 

The results of Eqs. (32) and (33) can be stated in terms of positive false discovery rates (pFDR) for testing 

multiple hypotheses [26]. Let us call false discovery rates of the appropriate hypotheses the following 

)|()|()( 0   HxPHxPpFDR , 

)|()|()( 0   HxPHxPpFDR ,                     (34) 
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)|()|()( 0000 HxPHxPpFDR    

and true discovery rates of the appropriate hypotheses the following 

)|()(   HxpTDR , )|()( 0000 HxpTDR  , )|()(   HxpTDR      (35) 

Then Eqs. (32) and (33) will be written as follows 
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1000 1)()()()()()( rTDRHpTDRHpTDRHp  
              (37) 

For comparing the decision rules, let us consider a hierarchical structure of the prior on θ similarly to Ref. [1]. 

Let us introduce the first stage prior p－ = p(H－), p0 = p(H0), p+ = p(H+), with p－ + p0 + p+ = 1, and the second stage 

prior on θ as π－(θ) = π(θ｜H－), π0(θ) = π(θ｜H0) and π+(θ) = π(θ｜H+), where, π0(θ) = I(θ = θ0) π－(·) and π+(·)
 
are 

the densities with supports in (-∞, 0) and (0, +∞), respectively. Then the prior on θ can be written as 

)0()()()0()()( 00    IpIpIp .             (38) 

For a fixed prior π, the decision rule can be compared by comparing the points in the space 

 *

00 :)(),(,)()( DpFDRpFDRpFDRS    , 

where D* is the class of randomized decision rules. Let us consider a subclass of decision rules D ∈ D* such that 

pFDR0(Γ0) is constant for all δ ∈ D. Let us consider two different sets of priors: p = {p(H－), p(H0), p(H+)} and P’ 

= {p’(H－), p(H0), p’(H+)} and suppose that the following relations take place p(H－) > p’(H－) and thus p(H+) < 

p’(H+). Then the following fact can be proved. 

Theorem 2. If δCBM and δ’CBM denote CBM rules within the class D under the priors p
 
and

 
p’, respectively, then 

)()( 


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

, )()( 


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and 
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
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

, )()( 



  CBMCBM TDRTDR


. 

The proof of this theorem is similar to the proof of theorem 1 of Ref. [1], therefore its shortened version for 

only the false discovery rate, adapted to the considered case, is given in Appendix. The validity of this theorem is 

clearly demonstrated by the computation results shown in Figs. 1 and 4. 

Corollary 1. If δCBM and δ’CBM denote CBM rules under the priors p
 
and p’, respectively, then  

)|()|( 00   HxPHxP
CBMCBM   

and )|()|( 00   HxPHxP
CBMCBM  ,
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and 

 
 

)(
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nCBM R
dxHxpHxP


 . 
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The proof of the corollary directly follows from the proof of Theorem 2 (see Fig. 1). 

When testing the directional hypotheses, some authors (see, for example Shaffer [10] and Jones & Tukey [9]) offer to 

use the Type III errors rate which is defined as 

)|()|( 00 HxPHxPrateerrorIIIType   .               (39) 

Somewhat different definition of this term is offered in Ref. [6]. In particular, the type III errors involve 

inferring incorrectly the direction of the effect. For example, when the population value of the tested parameter is 

actually more than the null value, getting a sample value that is so much below the null value that you reject the 

null and conclude that the population value is also below the null value. In the considered case this means: 

)|()|(   HxPHxPrateerrorIIIType .             (40) 

Let us denote Type III error rate in Eq. (39) as 𝐸𝑅𝑅𝐼𝐼𝐼
𝑇

 
and Type III error rate in Eq. (40) as 𝐸𝑅𝑅𝐼𝐼𝐼

𝐾 . 

Theorem 3. For the considered directional hypotheses,  𝐸𝑅𝑅𝐼𝐼𝐼
𝑇 >  𝐸𝑅𝑅𝐼𝐼𝐼

𝐾
 
always takes place and, when 

min
{𝑖, 𝑗 ∈  −, 0, +  𝑖 ≠ 𝑗}

div(Hi, Hj)  ∞, both error rates tend to zero. 

From the comparison of expressions Eq. (34) with Eqs. (39) and (40), it is seen that pFDR0(Γ0) = 𝐸𝑅𝑅𝐼𝐼𝐼
𝑇  and

 
pFDR－(Γ－) + pFDR+(Γ+) > 𝐸𝑅𝑅𝐼𝐼𝐼

𝐾 . 

The ratio between pFDR－(Γ－) + pFDR+(Γ+) and 𝐸𝑅𝑅𝐼𝐼𝐼
𝑇 + 𝐸𝑅𝑅𝐼𝐼𝐼

𝐾  can be arbitrary in general. 

From the above given, it is clear that CBM is a data-dependent test (see Eqs. (30) and (31)) similarly to the 

Fisher’s p－
 
value test, in addition to the fact that it also computes Type I and Type II error probabilities like the 

Neyman-Pearson’s approach (see Eqs. (26) and (27)), and uses a posteriori probabilities like the Bayes test (see 

Eqs. (28) and (29)). 

4. CBM for the Normally Distributed Directional Hypotheses 

For illustration of the fact that the results of CBM are more promoted than the results of Bayes and frequentist 

methods when testing the directional hypotheses, let us consider the example given in Ref. [1] for showing some 

advantage of the Bayes rule in comparison with the frequentist one. 

Let sample X1, X2, …, Xn be derived from N(θ, σ
2
) with known σ

2
, p(x｜H－) and p(x｜H+) be the truncated N(0, 

𝜔0
−1σ

2
) (ω0 known) densities over (－∞, 0) and (0, +∞), respectively. 

Due to the above-mentioned sample, the arithmetic mean is sufficient statistics. For determination of 

hypotheses acceptance regions in Eqs. (17), (20) and (22), the following ratios must be determined: 
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  . 

Taking into account the conditions of the stated problem, after routine computation, we have 
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where Φ(·) is the standard normal distribution function and 0/   nxnu  

Application of these ratios to hypotheses acceptance regions in Eqs. (17), (20) and (22) gives 
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In Eqs. (42)-(44), the Lagrange multiplier λ is determined so that, in condition Eq. (26), the equality was 

provided. 

Finally the decision rule in the considered case is the following: if 𝑥   belongs to only one of the  regions Γ0, Γ

－ 
or Γ+ 

determined by Eqs. (42)-(44), then the appropriate hypothesis is accepted. Otherwise, i.e. if  𝑥  belongs to 

more than one of the considered regions or it does not belong to any of them, a decision is not made. In the first 

case, it is impossible to make a single decision, because more than one hypothesis is suspected to be true and, in 

the second case, it is impossible to make a decision. For making a decision, it is necessary to change the 

restriction level r1 
in Eq. (26) or to add one more observation to the sample. 

4.1 Determination of the Lagrange Multiplier 

As mentioned above, the Lagrange multiplier λ is determined so that the equality was provided in condition Eq. 
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(23). For the solution of Eq. (23), the computation of the following integrals is necessary 
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 xdHxp )|( .                              (45) 

The first integral can be easily computed by the Monte-Carlo method. It is necessary to generate the random 

variables 𝑥  with distribution law p (𝑥  ｜H0) = N(𝑥  ｜0, σ
2
/n) N times and to check the condition 𝑥   ∈ Γ0 (see Eq. 

(42)). Let the condition 𝑥   ∈ Γ0 be fulfilled N1 ≤ N times. Then: 
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 . 

For computation of the second integral of Eq. (45), we have to generate the random variables 𝑥  with 

distribution law p(𝑥 ｜H－) N times and to check the condition 𝑥  ∈ Γ－ 
(see Eq. (43)). Let the condition

 
𝑥  ∈ Γ－ 

be fulfilled N2 ≤ N times. Then: 
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Taking into account the specificity of the considered case, for distribution law p(𝑥 ｜H－), we have: 
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0
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

n

n 
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
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
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











 ,  0,x , 

where N(𝑥 ｜0, σ
2
) is the normal distribution function with mathematical equal to zero and variance equal to σ

2
. 

For getting a sample of 𝑥  with pdf p(𝑥 ｜H－), it is necessary to solve the equation: 

  udyyN
yn

x



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









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













2

1

01

,0|12 


,  0,x , 

where u is the uniformly distributed random variable from the interval [0, 1], i.e. u ~ U[0, 1]. 
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Conditional distribution density of 𝑥  at validity of H+ is 
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xnn
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












 ,   ,0x . 

For getting a sample of 𝑥  with pdf p(𝑥 ｜H+), it is necessary to solve the equation:  

  udyyN
yn

x

















0

2

1

01

,0|2 


,   ,0x , 

where u ~ U[0,1]. 

5. Computation Results 

For the reasons noted in the beginning of Section 4, let us compute a concrete example with the initial data 

from Ref. [1]: priori probabilities p = {p－, p0, p＋} = {0.3975, 0.3975, 0.205} and p’ = {p’－, p’0, p’＋} = {0.205, 

0.3975, 0.3975}; the values of the loss functions K0 = K1 = 1; probabilities in restriction (24)
 
α0 = α－ = α＋ = 0.05; 

coefficient ω0 = 1; variance σ
2
 = 1; sample size n = 100; the probabilities were computed by simulating 10,000 

samples from the appropriate populations. Computation results are given in Table 1. 

By the results of Table 1, the following graphs are constructed: dependences of the probabilities of 

impossibility of acceptance of H0 hypothesis on the arithmetic mean of observation results (Fig. 1), dependences 

of the probability of acceptance of H0 hypothesis on the arithmetic mean of observation results (Fig. 2), 

dependences of the probabilities of acceptance of H－ 
and H+ hypotheses on the arithmetic mean of observation 

results (Figs. 3 and 4) and dependences of the probabilities of rejection of H－ 
and H+ hypotheses on the arithmetic 

mean of observation results (Figs. 5 and 6). From these graphs, the rightness of the above-described theoretical 

results and the advantage of CBM in comparison with the Bayes rule and, accordingly, with the frequentist 

method is obvious. 



 

 

Table 1  The results of testing directional hypotheses using CBM and Bayes rules. 

Used method 

Lagrange 

multiplier 

Averaged 

probability on the 

left-side of (23) 

Meth. 

expectation of 

the sample 

Hypotheses acceptance probabilities 

Hypotheses rejection probabilities 

(probabilities of impossibility of acceptance 

of Hypotheses) 

Probability of 

impossibility of 

making a decision 

   x  0H  H  H  0H  H  H   

CBM at p  

CBM at p  
8.7213 

6.5014 

0.9658 

0.9573 
-0.5 

0 

0 

0.9865 

0.9837 

0 

0 

0.9865 (1) 

0.9837 (1) 

0 (0.0135) 

0 (0.0163) 

1 

1 

0.0135 

0.0163 

Bayes at p  

Bayes at p  
1 

1 
 

0.0007 

0.0023 

0.9993 

0.9975 

0 

0 

0.9993 

0.9977 

0.0007 

0.0025 

1 

1 

0 

0 

CBM at  

CBM at  

8.5937 

7.5 

0.9653 

0.9576 
-0.4 

0.0001 

0.0007 

0.8942 

0.853 

0 

0 

0.8942 

(0.9999) 

0.853 

(0.9993) 

0.0001 

(0.1058) 

0.0007 

(0.147) 

1 

1 

0.1057 

 

0.1463 

Bayes at  

Bayes at  

1 

1 
 

0.0154 

0.0338 

0.9834 

0.9643 

0 

0 

0.9846 

0.9662 

0.0166 

0.0357 

1 

1 

0 

0 

CBM at  

CBM at  

8.75 

6.1718 

0.9654 

0.9580 
-0.3 

0.0023 

0.0328 

0.5924 

0.5459 

0 

 

0 

0.5924 

(0.9977) 

0.5459 

(0.9672) 

0.0023 

(0.4076) 

0.0331 

(0.4541) 

1 

 

0.9997 

(1) 

0.4053 

 

0.4213 

Bayes at  

Bayes at  

1 

1 
 

0.1231 

0.1917 

0.8724 

0.7981 

0 

0 

0.8769 

0.8083 

0.1276 

0.2019 

1 

1 

0 

0 

CBM at  

CBM at  

8.75 

7.1875 

0.9652 

0.9580 
-0.2 

0.0353 

0.1613 

0.2148 

0.1771 

0 

 

0 

0.2148 

(0.9647) 

0.1771 

(0.8387) 

0.0368 

(0.7852) 

0.1696 

(0.8229) 

0.9985 

(1) 

0.9917 

(1) 

0.7499 

 

0.6616 

Bayes at  

Bayes at  

1 

1 
 

0.4246 

0.5513 

0.567 

0.4373 

0 

0.0001 

0.5754 

0.4487 

0.433 

0.5627 

1 

0.9999 

0 

0 

CBM at  

CBM at  

8.75 

6.5014 

0.9662 

0.9573 
-0.1 

0.1916 

0.4775 

0.036 

0.0303 

0 

 

0.0002 

0.036 

(0.8084) 

0.0305 

(0.5225) 

0.2187 

(0.964) 

0.541 

(0.9697) 

0.9729 

(1) 

0.9365 

(0.9998) 

0.7724 

 

0.492 

 

Bayes at  

Bayes at  

1 

1 
 

0.7891 

0.874 

0.2043 

0.1182 

0.0009 

0.0025 

0.2109 

0.126 

0.7957 

0.8818 

0.9991 

0.9975 

0 

0 

CBM at  

CBM at  

8.75 

7.0312 

0.9662 

0.9579 
0 

0.3915 

0.534 

0.0022 

0.0017 

0.0016 

 

0.0037 

0.0038 

(0.6085) 

0.0054 

(0.466) 

0.5857 

(0.9978) 

0.8532 

(0.9983) 

0.8058 

(0.9984) 

0.6808 

(0.9963) 

0.6047 

 

0.4606 

 

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p



 

 

Table 1 to be continued 

Bayes at  

Bayes at p  
1 

1 

 

 
 

0.9493 

0.9492 

0.033 

0.0148 

0.0147 

0.0331 

0.0507 

0.0508 

0.967 

0.9852 

0.9853 

0.9669 

0 

0 

CBM at  

CBM at p  
8.75 

6.5429 

0.9652 

0.9574 
0.1 

0.3334 

0.2935 

0 

0.0001 

0.0227 

0.0491 

0.0227 

(0.6666) 

0.0492 

(0.7065) 

0.888 

(1) 

0.983 

(0.9999) 

0.4454 

(0.9773) 

0.3105 

(0.9509) 

0.6439 

0.6573 

Bayes at  

Bayes at  

1 

1 
 

0.8683 

0.7862 

0.0023 

0.0006 

0.1221 

0.2081 

0.1317 

0.2138 

0.9977 

0.9994 

0.8779 

0.7919 

0 

0 

CBM at  

CBM at  

8.75 

6.2402 

0.9662 

0.9574 
0.2 

0.1166 

0.0759 

0 

0 

0.1587 

0.2633 

0.1587 

(0.8834) 

0.2633 

(0.9241) 

0.9874 

(1) 

0.9992 

(1) 

0.1292 

(0.8413) 

0.0767 

(0.7367) 

0.7247 

0.6608 

Bayes at  

Bayes at  

1 

1 
 

0.5595 

0.4247 

0.0001 

0.0001 

0.4296 

0.5666 

0.4405 

0.5753 

0.9999 

0.9999 

0.5704 

0.4334 

0 

0 

CBM at  

CBM at  

8.75 

7.1875 

0.9652 

0.9580 
0.3 

0.0166 

0.005 

0 

0 

0.5095 

0.6214 

0.5095 

(0.9834) 

0.6214 

(0.995) 

0.9995 

(1) 

1 

0.0171 

(0.4905) 

0.005 

(0.3786) 

0.4739 

0.3736 

Bayes at  

Bayes at  

1 

1 
 

0.1928 

0.1182 

0 

0 

0.7994 

0.8792 

0.8072 

0.8818 

1 

1 

0.2006 

0.1208 

0 

0 

CBM at  

CBM at  

8.75 

6.1718 

0.9662 

0.9580 
0.4 

0.0005 

0 

0 

0 

0.8426 

0.9126 

0.8426 

(0.9995) 

0.9126 

(1) 

1 

1 

0.0005 

(0.1574) 

0 

(0.0874) 

0.1569 

0.0874 

Bayes at  

Bayes at  

1 

1 
 

0.0311 

0.0164 

0 

0 

0.9668 

0.983 

0.9689 

0.9836 

1 

1 

0.0332 

0.017 

0 

0 

CBM at  

CBM at  

8.75 

7.5 

0.9652 

0.9576 
0.5 

0 

0 

0 

0 

0.9775 

0.9896 

0.9775 

(1) 

0.9896 

(1) 

1 

1 

0 

(0.0225) 

0 

(0.0104) 

0.0225 

0.0104 

Bayes at  

Bayes at  

1 

1 
 

0.0023 

0.0007 

0 

0 

0.9976 

0.9992 

0.9977 

0.9993 

1 

1 

0.0024 

0.0008 

0 

0 

Remark: The probabilities of impossibility of acceptance of hypotheses are given in the brackets of the columns of hypotheses rejection probabilities.

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p
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Fig. 1  Dependences of the probabilities of impossibility of acceptance of H0 hypothesis on the arithmetic mean of 

observation results. Bayes rule; L1-CBM for losses (4); P1 ≡ P(H－) and P2 ≡ P(H+). 

 

 
Fig. 2  Dependences of the probability of acceptance of H0 hypothesis on the arithmetic mean of observation results. 
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Fig. 3  Dependences of the probabilities of acceptance of H－

 
hypothesis on the arithmetic mean of observation results.  

 
 

 
Fig. 4  Dependences of the probabilities of acceptance of H+ hypothesis on the arithmetic mean of observation results. 
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Fig. 5  Dependences of the probabilities of rejection of H－ hypotheses on the arithmetic mean of observation results. 

 

 

Fig. 6  Dependences of the probabilities of rejection of H+ hypotheses on the arithmetic mean of observation results. 
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6. Discussion 

CBM is more sensitive to the change of priori probabilities than the Bayes test because in CBM priori 

probabilities are multiplied by probabilities of significance levels, and hence the change in priori probabilities 

changes the restriction level in Eq. (2) more significantly and, accordingly, changes more significantly the 

decision-making regions. 

From the specificity of the decision rule in CBM, the following relations take place among the  

computed probabilities: 

(1) (prob. of rejec. of H0) = (prob. of rejec. of all hypotheses) + (prob. of rejec. of H0 and H+ and accep. of H－) 

+ (prob. of rejec. of H0 
and H－ 

and accep. of H+); 

(2) (prob. of accep. of H0) + (prob. of accep. of H－) + (prob. of accep. of H+) + (prob. of no making of decision) 

= 1; 

(3) (a) at absence of intersecting regions: (prob. of accep. of H0) + (prob. of rejec. of H0) = 1; 

(b) at intersecting regions: (prob. of accep. of H0) + (prob. of rejec. of H0) + (prob. of suspicion of more than 

one hypotheses to be true) = 1; 

(4) (prob. of rejec. of H－ and H+ and acceptance of H0) = (prob. of x ∈ Γ0) - (prob. of accep. of H0 and H－ and 

rejection of H+) - (prob. of accep. of H0 and H－ and rejec. of H－) - (prob. of accep. of all H0, 
H－ and H+). 

(5) Summary risk Eq. (11) can be computed using the appropriate computation results as follows: 

SR = p(H－) · [(1－(prob. of accep of H1))－(prob. of impos. of H1)] 

  + p(H0) · [(1－(prob. of accep of H0))－(prob. of impos. of H0)] 

  + p(H+) · [(1－(prob. of accep of H+))－(prob. of impos. of H+)]. 

  The dependences of SR on Lagrange multiplier are shown in Fig. 7. They clearly demonstrate the validity of  

theorem 1. 
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Fig. 7  Dependence of the summary risk (SR) on the Lagrange multiplier. 

   The graphs of summary risk (SR) are constructed by computed values of SR, using simulated samples at supposition of the 

validity of the following hypotheses:  

a) 1.0:  xH ; 0:0 xH ; 1.0:  xH ; 

b) 2.0:  xH ; 0:0 xH ; 2.0:  xH ; 

c) 2.0:  xH ; 0:0 xH ; 1.0:  xH . 

 ((6) Type III error rate Eq. (39) can be computed using the computation results by the following ratio: 

𝐸𝑅𝑅𝐼𝐼𝐼
𝑇  = (probab. of accep. of H－｜H0 is true) + (probab. of accep. of H+｜H0 is true) 

and Type III error rate Eq. (40) can be computed using the computation results as follows: 

𝐸𝑅𝑅𝐼𝐼𝐼
𝐾  = (probab. of accep. of H－｜H+ is true) + (probab. of accep. of H+｜H－ is true). 

Appropriate computed results are shown in Fig. 8. They clearly demonstrate the validity of theorem 3. 

 

 

 

 

Fig. 8  Dependences of type III error rates on the Lagrange multiplier. 

The graphs of type III error rates are constructed by computed values of ERRs, using the simulated samples at supposition of the 

validity of the following hypotheses:  

a) 1.0:  xH ; 0:0 xH ; 1.0:  xH ; 

b) 2.0:  xH ; 0:0 xH ; 2.0:  xH ; 
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c) 2.0:  xH ; 0:0 xH ; 1.0:  xH . 

Remark: The values of different Type III error rates differ considerably. Therefore, the character of the change in 

the graphs of 𝐸𝑅𝑅𝐼𝐼𝐼
𝐾  for hypotheses (a) and (b) is not clear from the graph given on the left side of Fig. 8. For 

avoiding this inconvenience, the graphs of type III error rates are grouped depending on their values and presented 

in the two right graphs of Fig. 8 (𝐸𝑅𝑅𝐼𝐼𝐼
𝑇  and 𝐸𝑅𝑅𝐼𝐼𝐼

𝐾 c) on the upper graph and 𝐸𝑅𝑅𝐼𝐼𝐼
𝐾 a) and  𝐸𝑅𝑅𝐼𝐼𝐼

𝐾 b) on the 

lower graph. 

7. Conclusion 

Generalization of CBM for arbitrary loss functions and its application for testing the directional hypotheses is 

offered in the paper. The advantage of CBM in comparison with Bayes and frequentist methods is theoretically 

proved and clearly demonstrated by a concrete computed example. The advantages of the use of CBM for testing 

the directional hypotheses are: (1) alongside with priori probabilities and loss functions, it uses the significance 

levels of hypotheses for sharpening the sensitivity concerning direction; (2) it makes decisions more carefully and 

with given reliability; (3) less values of SR and Type III error rates correspond to it. CBM allows making a 

decision with required reliability if the existing information is sufficient, otherwise it is necessary to increase the 

information or to reduce the required reliability of the made decision. CBM surpasses the Bayes and frequentist 

methods with guaranteed reliability of made decisions. 
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Appendix 

Proof of the Theorem 1. It is known that decision-making regions in the Bayesian rule satisfy conditions nS

i

B

i R
 1

 and 

  B

j

B

i
, i, j = 1, …, S, i ≠ j. It is proved (see, for example, Kachiashvili et al. [14]; Kachiashvili & Mueed [16]) that in all tasks 

of CBM, when λ differs from 1, in observation space Rn , there appear sub-spaces of intersection of hypotheses acceptance regions or 

sub-spaces which do not belong to any region of acceptance of hypotheses. Both kinds of sub-spaces are the more than the more 

differs λ from 1 and, when λ  ∞ or λ  0, their union coincides with observation space Rn, i.e. decision-making regions become 

empty (see hypotheses acceptance regions Eqs. (3) or (5) and (10)). In the first case, hypotheses acceptance regions are reduced by 

the intersection sub-region and, in the second case, hypotheses acceptance regions are reduced by the regions that do not belong to 

any region of acceptance of hypotheses. Thus in both cases (when λ > 1 and when λ < 1) hypotheses acceptance regions are reduced 

in comparison with the case of λ = 1, and in the limits (λ  ∞ or λ  0) hypotheses acceptance regions become empty. Since in 

general in CBM λ ≠ 1, the hypotheses acceptance regions are less than the regions when λ = 1. The hypotheses acceptance regions are 

the more reduced the more is the difference between λ and 1. Since SR of making the incorrect decision (11) is defined on these 

regions, to the reduced regions corresponds the reduced SR and vice versa. This proves the theorem. 

Proof of the Theorem 2. Bayes Risk of a decision rule δ under the prior (38) is given by 

CBMCBMCBM pFDRppFDRppFDRpr


   00 . 

Thus, since δCBM and δ’CBM are the constrained Bayesian rules under π and π’, respectively, 

CBMCBMCBMCBMCBMCBM pFDRppFDRppFDRppFDRppFDRppFDRp
 





  0000
, 

CBMCBMCBMCBMCBMCBM pFDRppFDRppFDRppFDRppFDRppFDRp










  0000
. 

Now, since pFRD0 is constant within the class D, and since δCBM and δ’CBM
 
belong to the class D, 

CBMCBMCBMCBM pFDRppFDRppFDRppFDRp
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



   

CBMCBMCBMCBM pFDRppFDRppFDRppFDRp










   

which implies that 

    0







CBMCBMCBMCBM pFDRpFDRppFDRpFDRp


 

    0







CBMCBMCBMCBM pFDRpFDRppFDRpFDRp


.  (A.1) 

Now, if we will denote  CBMCBM pFDRpFDR
 

   by x and  CBMCBM pFDRpFDR
 

   by y and will consider 

system of Eq. (A.1) relatively x and y,
 
we will easily be convinced in the validity of the theorem. 

Proof of Theorem 3. If we recall the character of considered directional hypotheses and the fact that the increasing divergence 

among hypotheses entails a decrease in the probabilities of errors of the first and the second types at hypotheses testing, and, in the 

limit, when  
min

{𝑖, 𝑗 ∈  −, 0, +  𝑖 ≠ 𝑗}
div(Hi, Hj)  ∞, there takes place α → 0 and β → 0 [27], we will be convinced in the validity of 

the theorem. 
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