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Abstract 
Stormwater detentions basins are designed to capture stormwater to reduce and delay peak flows and 

to improve water quality. A novel technology proposed to improve basin performance is real-time, 

active control of the basin outflow, in so-called “smart” stormwater systems. Existing studies 

https://doi.org/10.1016/j.jhydrol.2019.03.012
http://epublications.marquette.edu/


demonstrate the performance of active controls that respond in real-time to basin water level, 

detention time, and rainfall forecast for one or a small number of rainfall events. We hypothesize that 

the performance of these active controls can be improved by incorporating real-time water quality 

data into the control algorithm. In addition, we hypothesize that active control performance depends 

on hydrologic variability, specifically the frequency and intensity of runoff inputs. In this paper, we test 

these hypotheses using a numerical modeling framework for systems-level reliability analysis of active 

and passive stormwater basin outflow control using a Monte Carlo method. The analysis is performed 

using the urban hydrology model EPA-SWMM driven by stochastic rainfall time-series generated from 

the Modified Bartlett-Lewis Rectangular Pulses Model. Water quality-informed real-time active control 

algorithms are developed, tested, and shown to display an improvement over traditional, passive (no 

control) systems and other storage-based active controls for water and pollutant capture. Seasonal and 

duration curve analysis showed that water level- and water quality- informed control performance 

varied for different storm return periods and this variability could partly be attributed to the fraction of 

time the valve is closed. In addition, control performance was sensitive to rainfall variability, generally 

decreasing as storms become less frequent and more intense. Therefore, control system performance 

may depend on seasonal and longer time-scale variability in climate and rainfall-runoff processes. We 

anticipate this study to be a starting point to incorporate theories of reliability to assess detention 

basin and conveyance network performance under more complex real-time control algorithms and 

failure modes.  

Keywords 
Stormwater management, Urban runoff, Real-time control, Water quality 

1. Introduction 
Urbanization and climate change are creating new challenges to stormwater management and the 

protection of urban stream ecosystems. Urbanization results in flashier hydrographs, increased threat 

of flooding, and higher pollutant concentrations in stormwater runoff (Leopold, 1968) – all 

characteristics of the “urban stream syndrome” (Meyer et al., 2005, Walsh et al., 2005) At the same 

time, recent and forthcoming changes in rainfall frequency and intensity (Alexander et al., 2006, Kunkel 

et al., 2013) are also anticipated to impact stormwater runoff and water quality (Miller and Hutchins, 

2017). In the Midwest United States, for example, urban stormwater system adaptation to increased 

frequency and intensity of severe rainfall is anticipated to cost more than $500 million per year (Angel. 

et al., 2018). Current stormwater management practices, such as detention/retention basins, are 

poorly equipped to adapt to these consequences of continuously changing climate and land use 

(Mullapudi et al., 2017). Therefore, novel stormwater management strategies are needed to improve 

the resilience and adaptability of urban stormwater infrastructure. 

One strategy to adapt stormwater infrastructure to changing rainfall-runoff conditions, is real-time, 

active control of stormwater detention basin outflows. Active control based on system flow and water 

level monitoring has been shown to reduce wet weather pollutant discharge at the scale of individual 

stormwater facilities (Jacopin et al., 2001) and collection systems (Colas et al., 2004, Pleau et al., 2005, 

Wong and Kerkez, 2018). Further, active controls based on monitoring of rainfall forecast, water level, 

outflow, and/or detention time have been shown to improve pollutant removal efficiency 40–90% and 



to reduce outflows (Gaborit et al., 2013, Muschalla et al., 2014, Gaborit et al., 2016). In addition to 

improving the performance of stormwater ponds with passive outflow control, active controls can be 

employed to reduce the engineered watershed storage volume by up to 50% (Wong and Kerkez, 2018). 

While these studies provide strong evidence for the water quantity and quality benefits of active 

outflow control for a small number of storms, active control performance has yet to be analyzed for 

the full range of rainfall variability over the lifetime of stormwater infrastructure (e.g., 10–30 years). 

A major challenge to stormwater management is to make effective predictions under large uncertainty 

driven by variability in hydrologic processes. While stormwater management infrastructure, like 

stormwater ponds, are typically designed to manage volume and peak flow for a small number of 

design storms, they operate under a wide range of inflow conditions determined by the timing and 

frequency of rainfall-runoff events. Stormwater infrastructure performance can be evaluated for a 

large number of inflow conditions using models that combine a stochastic description of the rainfall 

variability with the watershed water and pollutant mass balance equations (Chen and Adams, 2006, 

Daly et al., 2012, Parolari et al., 2018, Wang and Guo, 2019). These stochastic-dynamic modeling 

approaches provide an estimate of the flow and load duration curves, which can be useful for 

understanding stormwater infrastructure performance for average and extreme events. This approach 

was previously applied to a stormwater control pond with a water level-driven on/off control (Parolari 

et al., 2018). Active outflow control increased the probability of high outflows and decreased the 

probability of low outflows, demonstrating that the performance of active control depends on rainfall 

return period. For this simple control, it was shown that real-time control rules can be adjusted over 

time to adapt stormwater pond performance to changes in climate and land use that alter watershed 

rainfall-runoff dynamics (Parolari et al., 2018). Therefore, the influence of rainfall variability on active 

control performance is an important consideration in the analysis and design of stormwater 

infrastructure with active control. 

While water level provides a direct observation of the current basin storage and rainfall forecasts can 

anticipate the need for increased storage, the detention time following a runoff event only provides an 

indirect measurement of water quality. Therefore, the performance of actively controlled stormwater 

infrastructure may be improved by incorporating water quality measurements into control strategies. 

Recent advances in water quality monitoring technology (Rode et al., 2016) have made it possible to 

measure stormwater runoff water quality in real time. In addition, water quality-informed real-time 

control has been used for treatment process control in wastewater treatment plants. Real-time 

controls based on turbidity were shown to reduce pollutant loads to receiving waters by 10–40% 

(Lacour et al., 2011, Lacour and Schütze, 2011, Hoppe et al., 2011, Tik et al., 2015). However, water 

quality-informed real-time controls have yet to be analyzed or developed for stormwater applications, 

which are subject to relatively large perturbations due to hydrologic variability. 

In this paper, we address the two research gaps addressed above by evaluating novel real-time 

controls of stormwater detention ponds informed by water quality measurements using a stochastic 

Monte Carlo method. Building on previous control algorithms based on water storage or flux data, we 

develop control rules that utilize continuous water quality measurements. The control algorithms are 

implemented in the EPA-SWMM model developed for an urban watershed that drains to an actively 



controlled detention pond in Milwaukee, Wisconsin. The system reliability with respect to water 

quantity and quality criteria is compared across a range of control strategies and hydrologic variability. 

2. Methods 

2.1. Catchment system model 
An urbanized catchment that discharges into a stormwater detention pond can be conceptualized as a 

four-dimensional dynamical system that accounts for the coupling between the catchment water 

balance, catchment pollutant storage, pond water storage, and pond pollutant concentration. Mass 

balance equations for each of these components are defined below and the system is illustrated in Fig. 

1. 

 
Fig. 1. Catchment system conceptual model with traditional and proposed real-time active system controls. The 
system state variables are soil moisture, 𝑠, detention pond water level, ℎ, catchment pollutant mass, 𝑚, and 
detention pond pollutant concentration, 𝐶. The hydrologic fluxes are: precipitation, 𝑅, evapotranspiration, 𝐸𝑇, 
infiltration, 𝐿, catchment runoff, 𝑄𝑟𝑜, pond discharge, 𝑄𝑜𝑢𝑡, pond emergency overflow, , and pond seepage to 
groundwater, 𝐺. The pollutant fluxes are: catchment buildup, 𝐵, catchment washoff, 𝑊, detention pond 
settling, 𝑆𝑑, and detention pond outflow, 𝑄𝑜𝑢𝑡𝐶. Traditional detention pond outflow control is implemented 
through a feedback between h and 𝑄𝑜𝑢𝑡, whereas this paper evaluates a control feedback between 𝐶 and 𝑄𝑜𝑢𝑡. 
 

The catchment water balance can be written as 

(1) 
𝑑𝑠(𝑡)

𝑑𝑡
= 𝑅(𝑡) − 𝐸𝑇[𝑠(𝑡)] − 𝐿[𝑠(𝑡)] − 𝑄𝑟𝑜[𝑠(𝑡)] 

where 𝑠 is the depression storage, 𝑅 is rainfall, 𝐸𝑇 is evapotranspiration, 𝐿 is infiltration, and 𝑄𝑟𝑜 is 

catchment runoff. Similarly, a water balance equation for the pond can be written as, 

(2) 
𝑑ℎ(𝑡)

𝑑𝑡
= 𝑄𝑟𝑜

[𝑠(𝑡)] − 𝑄𝑜𝑢𝑡
[ℎ(𝑡); 𝑡] − 𝑄𝑜

[ℎ(𝑡)] − 𝐺[ℎ(𝑡)] 

which is driven by the catchment rainfall-runoff process through 𝑄𝑟𝑜. In Eq. (2), ℎ is the pond water 

level, 𝑄𝑜𝑢𝑡[ℎ(𝑡); 𝑡] is the state and time dependent pond outflow, 𝑄𝑜 is the emergency overflow, 

and 𝐺 is seepage to groundwater. 



The catchment pollutant mass balance can be conceptualized as the difference between buildup and 

washoff processes (Alley, 1981). The catchment pollutant mass balance equation can be written as, 

(3) 
𝑑𝑚(𝑡)

𝑑𝑡
= 𝐵 − 𝑊[𝑄𝑟𝑜

[𝑠(𝑡)], 𝑚(𝑡)] 

where 𝑚(𝑡) is the mobile pollutant mass stored on catchment surfaces, 𝐵 is the constant pollutant 

buildup rate, and 𝑊(𝑄𝑟𝑜[𝑠(𝑡)]) is the pollutant washoff rate. Finally, the mass balance for the 

pollutant mass stored within the pond can be written as, 

(4) 
𝑑[ℎ(𝑡)𝐶(𝑡)]

𝑑𝑡
= 𝑊[𝑄𝑟𝑜

[𝑠(𝑡)], 𝑚(𝑡)] − 𝑄𝑜𝑢𝑡
[ℎ(𝑡); 𝑡]𝐶(𝑡) − 𝑆𝑑[ℎ(𝑡), 𝐶(𝑡)] 

where 𝐶(𝑡) is the pollutant concentration in the pond water and 𝑆𝑑[ℎ(𝑡), 𝐶(𝑡)] is the pollutant 

removal rate. 

2.2. EPA-SWMM 
We used the U.S. EPA Stormwater Management Model (EPA-SWMM) to parameterize the catchment 

system model described in Eqs. (1), (2), (3), (4) (Rossman, 2015, https://www.epa.gov/water-

research/storm-water-management-model-swmm). The model assumptions used in this study are 

summarized here, whereas we refer the reader to the EPA-SWMM model documentation for a detailed 

model description. The catchment water balance is modeled as a nonlinear reservoir with a maximum 

depression storage and modified Green-Ampt infiltration capacity that must be exceeded before runoff 

is initiated. Evapotranspiration is assumed to be negligible relative to the other water fluxes for 

urbanized catchments with a high impervious surface cover. The water balance is forced with hourly 

rainfall (see Section 2.4 below). The pond water balance is modeled according to Eq. (4), with a V-

notch weir (passive) or orifice (active) outflow and groundwater seepage modeled using the Green-

Ampt method. The catchment pollutant buildup, 𝐵, is assumed constant and washoff is parameterized 

using the exponential washoff model, 𝑊 = 𝐾𝑤𝑄𝑟𝑜
𝑁𝑤𝑚, where 𝐾𝑤 and 𝑁𝑤 are calibrated coefficients. 

Total suspended solids (TSS) is assumed as the pollutant of interest. The detention pond is assumed to 

behave as a continuously stirred tank reactor. The removal mechanism for TSS is modeled as first-order 

decay which depends on the settling velocity of the suspended solids. Model input files that document 

all model assumptions and parameters can be obtained at https://github.com/sazzad-

sharior/Reliability_SWMM. 

2.3. Control rules 
This section describes the four control rules evaluated in this study: no control, detention time control, 

on/off control, and TSS control. The no control (baseline) scenario is defined as passive control with the 

valve open permanently. The detention time controller closes the valve to store the storm inflow in the 

pond for a specified detention time, 𝑡𝑑, following an inflow event (Middleton and Barrett, 2008). The 

on/off controller maintains the outflow valve in the closed position until the pond water level reaches 

an upper bound of ℎ𝑐 ,, at which point the pond is fully discharged (Jacopin et al., 2001, Gaborit et al., 

2013, Muschalla et al., 2014, Gaborit et al., 2016, Parolari et al., 2018). These two controls correspond 

to the traditional water level-driven control shown in Fig. 1. For the TSS controller, the valve is closed 

when the TSS concentration of the pond exceeds a threshold value, 𝐶𝑐, and otherwise the valve is 

open. This control corresponds to the proposed water quality-driven control in Fig. 1. The control 



schemes are summarized in Table 1 and example pond water level and pollutant concentration 

trajectories for each are illustrated in Fig. 2. 

Table 1. Control rules implemented in this study. 

Type Description 

Passive Control Valve always open 

Detention Control If an event occurs, valve opening = 0% 
After the event, valve opening = 0% for 𝑡𝑑 
Else, valve opening = 100% 

On/off Control If ℎ < ℎ𝑐, valve opening = 0% 
If ℎ ≥ ℎ𝑐, valve opening = 100% 

TSS Control If 𝐶 ≥ 𝐶𝑐, valve opening = 0% 
If 𝐶 < 𝐶𝑐, valve opening = 100%. 

 

 

Fig. 2. Water level and TSS concentration dynamics of the pond for (a) passive control, (b) detention 

control, (c) on/off control and, (d) TSS control. 

Real-time controls were implemented in PySWMM, a python wrapper around the SWMM 

computational engine. The source code is available here: https://github.com/sazzad-

sharior/Stormwater-Management-Model_forked_SS. 

2.4. Probabilistic rainfall description 
Stochastic rainfall models can be used to generate synthetic rainfall time series for investigating 

rainfall-sensitive hydrologic phenomena. Because we are interested in rare failure events, a rainfall 

model that can capture extreme events is necessary. Cluster based models like the Bartlett-Lewis 

Rectangular Pulses Model (BLRPM) can generate rainfall in a range of temporal scales preserving the 

extreme event statistics (Khaliq and Cunnane, 1996). In this study we use the Modified BLRPM 

(Rodriguez-Iturbe et al., 1988). 



2.4.1. Modified Bartlett-Lewis Rectangular Pulses Model 

The modified BLRPM has six parameters, illustrated in Fig. 3 and described elsewhere (Islam et al., 

1990, Khaliq and Cunnane, 1996, Smithers et al., 2002). Storm origins arrive as a Poisson process with 

rate parameter 𝜆. Each storm origin is followed by a Poisson arrival of cell origins at a rate 𝛽, with one 

cell at the storm origin. The cell arrival process terminates with rate parameter 𝛾. Each cell in a storm 

event is a rectangular pulse with exponentially distributed depth and width of 𝜇𝑥 and 𝜂, respectively. 

Each storm has 𝐶 number of cells. 𝐶 is geometrically distributed with a mean, 𝜇𝑐 = 1 + 𝜅/𝜙. 

Here, 𝜅 and 𝜙 are dimensionless parameters with 𝑘 = 𝛽/𝜂 and 𝜙 = 𝛾/𝜂. The cell width parameter 𝜂 is 

modeled as a random variable described by a two-parameter gamma distribution, with 

parameters 𝛼 and 𝜐. The BLRPM model structure and parameters are shown in Fig. 3. 

 

Fig. 3. Modified Bartlett-Lewis Rectangular Pulses Model schematic. The two black circles represent the 

storm arrival at the rate, 𝜆, and termination of the storm event with rate parameter, 𝛾. The 

blue rectangles show the rainfall cells. The width and height of rainfall cells are given by the cell 

duration, 𝜂, and cell intensity, 𝜇𝑥. Cells arrive at a rate, 𝛽, and each storm has a number of cells, 𝐶. 

2.4.2. Modified BLRPM parameter estimation and sampling 

Thirty years of hourly rainfall data (1983–2013) for the rainfall station located at General Mitchell 

Airport, Milwaukee, Wisconsin were obtained from NOAA Local Climatological Data 

(https://www.ncdc.noaa.gov/cdo-web/datatools/lcd). For each month, statistical properties were 

calculated, including the mean, variance, probability of zero rainfall, and autocorrelations at 1-, 2-, and 

3-hour lags. 

The six parameters, (𝜆, 𝜇𝑥, 𝛼, 𝑣, 𝜅, and 𝜙) of the Modified BLRPM were estimated using the statistics 

calculated from the data. Statistics calculated from historical observations are equated with their 

theoretical expressions, which can be found in Rodriguez-Iturbe et al. (1987). Statistics used were 1-

hour mean, 1-hour and 24-hour variance, lag-1 autocorrelation, and 1-hour and 24-hour probability of 

zero rainfall (Rodriguez-Iturbe et al., 1987, Khaliq and Cunnane, 1996). The resulting equations are 

solved using an unconstrained nonlinear minimization scheme (Islam et al., 1990). 



In this paper, we focus on the spring and summer months that experience the most intense rainfall in 

Milwaukee: May, June, July, and August. Using the calibrated Modified BLRPM, 30-year rainfall 

realizations were sampled for each of the four months. The generated rainfall time series were used to 

force the EPA-SWMM model. 

2.5. System reliability by Monte Carlo methods 
This section of the paper discusses failure analysis by Monte Carlo Method and the limit state functions 

for basin performance failure. Two failure modes are defined for the detention basin: exceedance of 

either the basin overflow level or a maximum TSS concentration. Failure due to basin overflow 

depends on the available storage in the basin and the failure probability decreases with increasing 

available storage. Given a maximum pond water level, hmax, the limit state (failure criteria) function 

due to overflow is, 

(5) 𝑔ℎ
[ℎ(𝑡)] = ℎ𝑚𝑎𝑥 − ℎ(𝑡). 

TSS failure occurs when the outflow TSS concentration exceeds the maximum TSS criterion, 𝐶𝑚𝑎𝑥. 

Thus, this limit state function is, 

(6) 𝑔𝐶
[𝐶(𝑡)] = 𝐶𝑚𝑎𝑥 − 𝐶(𝑡). 

The probability of failure due to either overflow or TSS failure can be computed by integrating 

the probability density functions (PDFs) of the state variables over the failure zone (Shinozuka, 

1983, Schuëller and Stix, 1987). The probabilities of overflow and TSS failure can be written as, 

(7) 
𝑝𝑓,ℎ = ∫ 𝑓

ℎ
(ℎ)𝑑ℎ

𝑔ℎ(ℎ)≤0

𝑝𝑓,𝐶 = ∫ 𝑓
𝐶

(𝐶)𝑑𝐶
𝑔𝐶(𝐶)≤0

 

where 𝑝𝑓,ℎ and 𝑝𝑓,𝐶  are the overflow and TSS probabilities of failure, 𝑓ℎ(ℎ) is the marginal PDF of pond 

water level, ℎ, and 𝑓𝐶(𝐶) is the marginal PDF of pond outflow TSS concentration, 𝐶. 

For this two-component series system, we consider a system failure to occur when either component 

fails (i.e., water level or concentration). Therefore, the system failure domain is the union of the 

component failure domains, 

(8) 𝑔(ℎ, 𝐶) ≤ 0 = ⋃ [𝑔𝑖(ℎ, 𝐶) ≤ 0]
𝑛

𝑖=1
 

and the total system failure probability is then given by, 

(9) 𝑝𝑓 = ∫ 𝑓
ℎ,𝐶

(ℎ, 𝐶)𝑑ℎ𝑑𝐶
𝑔(ℎ,𝐶)≤0

 

where, 𝑓ℎ,𝐶(ℎ, 𝐶) is the joint PDF of water level and pollutant concentration. Time trajectories and 

PDFs of the pond state variables ℎ and 𝐶 were generated using the EPA-SWMM model, forced with 

stochastically generated rainfall, and the failure probabilities of Eqs. (7), (9) were calculated from these 

model results. 



2.6. Case study 
The methodology described above was applied to analyze the performance of an actively controlled 

detention pond that captures stormwater runoff from the City of Milwaukee Department of Public 

Works Tow Lot in Milwaukee, Wisconsin. The drainage area is approximately 19.4 ha with 91% 

impervious cover and a mean slope of 0.65%. The surface area of the detention pond is approximately 

5760 m2 at a maximum depth of 6 m of which 4.8 m is permanent pool. The pond discharge is 

controlled by a valve that can be adjusted by an electric actuator. 

The EPA SWMM model was calibrated using data collected at the Tow Lot detention pond. Water level 

was measured from August 22 to September 28, 2018 and turbidity data was measured from 

September 17 to September 28, 2018. Turbidity was measured at an elevation of approximately 2 m 

below the permanent pool elevation. In-situ turbidity measurements were used to calculate TSS 

concentrations using a regression developed with grab samples on multiple days. 

3. Results 

3.1. Rainfall data and Modified BLRPM parameters 
A comparison of the observed and modeled rainfall statistics is shown in Fig. 4. There was good 

agreement between observed and modeled rainfall statistics. The variance of the 24-hour aggregated 

rainfall showed the largest deviation, with the model underpredicting the historical data by 28.7%, 

28.8%, and 17.7% in June, July and August, respectively. 

 

Fig. 4. Observed and modeled rainfall statistics using the Modified Barlett-Lewis Rectangular Pulses 

Model. (a) 1-hour rainfall mean, (b) 1-h rainfall variance, (c) 24-h rainfall variance (d) 1-h lag-

1 autocorrelation (e) 1-h probability of zero rainfall, (f) 24-h probability of zero rainfall. 

The Modified BLRPM parameters for each month are shown in Fig. 5. In general, the mean storm 

arrival frequency decreased and the mean cell depth increased throughout the summer, from May to 

August (Fig. 5a; b). May had the lowest and July had the greatest mean cell width, while June and 

August had similar intermediate values (Fig. 5c; d). Finally, in general, the mean number of cells 

increased throughout the summer, from May to August (Fig. 5e). Therefore, there was a strong 

contrast in rainfall statistical properties between months at this site. Early-season rainfall was 

characterized by frequent storms with low cell frequency, width, and depth. On the other hand, mid- 

to late-season rainfall was characterized by infrequent storms with high cell frequency, width, and 

depth. The influence of these rainfall characteristics on active control performance will be addressed 

below. 



 

Fig. 5. Modified BLRPM parameters. (a) storm arrival rate, 𝜆 (h−1), (b) mean cell depth, 𝜇𝑥, (mm h−1), 

(c-d) Gamma distribution parameters for the cell width, 𝜂, 𝑣 (h−1) and 𝛼, (e) mean storm cell 

number, 𝜇𝑐 = 1 +
𝜙

𝜅
. 

3.2. SWMM model calibration 
SWMM model calibration results are shown in Fig. 6. The runoff model was calibrated by adjusting the 

impervious surface Manning’s n and depression storage. The calibration resulted in a coefficient of 

determination of 0.86 between the observed and modeled time series. The RMSE was 0.0343 and 

Nash-Sutcliffe efficiency coefficient was 0.8. Fig. 6a shows the calibration result for the runoff model. 

The pollutant model was calibrated by adjusting the buildup rate constant, washoff exponent, and 

washoff coefficient. The calibration resulted in a coefficient of determination of 0.42 between the 

observed and modeled time series. The RMSE was 3.26 and Nash-Sutcliffe efficiency coefficient was 

−0.76. Therefore, there was a substantial amount of variability in the measured TSS that the model was 

unable to capture. However, Fig. 6b shows that the model captures well the shape of the pollutograph. 

 

Fig. 6. SWMM model calibration. (a) runoff model calibrated from Aug. 22, 2018 to Sept. 28, 2018. (b) 

pollutant model calibrated from Sept. 17, 2018 to Sept. 28, 2018. 

3.3. Reliability analysis 
Bivariate histograms of the simulated pond outflow TSS concentration and water level for June are 

shown in Fig. 7. The red horizontal line indicates the TSS limit state function and the red vertical line 

indicates the overflow limit state function. Events that exceed these limit states individually, or 

together, indicate system failures. For June, passive control had the greatest number of points above 

the TSS concentration threshold (Fig. 7a) and, therefore, the TSS failure probability, 𝑝𝑓,𝐶, was the 

largest for June. This trend is carried out through the other simulation months as well (Fig. 8b). For 

detention and on/off control, the TSS concentration threshold was exceeded less frequently (Fig. 7b; c) 



than the passive control and, therefore, 𝑝𝑓,𝐶  was lower in June than the passive control (Fig. 8b). 

Finally, for the TSS control, the TSS concentration never exceeded the threshold (Fig. 7d). The TSS 

control was designed to limit the TSS concentration to below the threshold, resulting in zero 𝑝𝑓,𝐶  for 

June and rest of the simulation months (Fig. 8b). 

 

Fig. 7. Bivariate histogram plot of pond outflow TSS vs. water level for the month of June from EPA 

SWMM simulation. (a) Passive control, (b) detention control, (c) on/off control, (d) TSS control. The red 

line perpendicular to the y-axis is the limit state function for TSS failure and the red line perpendicular 

to x-axis is the limit state function for overflow failure. 

 

Fig. 8. Simulated failure probabilities for different controls for different simulation months: (a) water 

level failure, (b) TSS concentration failure, and (c) total system failure. 

The water level and TSS concentration failure probabilities, 𝑝𝑓,ℎ and 𝑝𝑓,𝐶, respectively, for each month 

are summarized in Fig. 8. The passive control had the lowest 𝑝𝑓,ℎ and the on/off control had slightly 

larger, but similar 𝑝𝑓,ℎ (Fig. 8a). In contrast, the detention and TSS controls had the highest 𝑝𝑓,ℎ, with 

the largest 𝑝𝑓,ℎ simulated for detention control in July. The on/off control had the lowest 𝑝𝑓,ℎ of the 

three active controls. The passive control had the largest 𝑝𝑓,𝐶, whereas the on/off and detention 

controls had similar, lower 𝑝𝑓,𝐶 (Fig. 8b). For May and June, detention control 𝑝𝑓,𝐶  was larger than 

on/off control 𝑝𝑓,𝐶. In July and August, the 𝑝𝑓,𝐶  was similar for detention and on/off control. Finally, 

the TSS control 𝑝𝑓,𝐶  was zero. 

With respect to pf, the relative performance of the four control scenarios did not depend on the month 

of analysis. The TSS control had the lowest and the passive control had the largest pf for all months 

(Fig. 8c). The detention control had the second largest and the on/off control had the second lowest pf. 

Across a gradient of increasing storm intensity and decreasing storm frequency (i.e., from May to 



August), pf increased for the TSS and on/off controls, while pf showed a maximum for the passive and 

detention controls. The performance of the passive and active controls therefore depended on the 

rainfall statistics for each month. 

Table 2 shows the percent decrease in pf for each active control compared to the passive control. 

Detention control had the largest pf of all the active controls. The pf decreased by 59.6%, 61.4%, 48.2% 

and, 57.8% compared to the passive control for May, June, July and, August, respectively. For on/off 

control, the pf decreased by 93%, 75.8%, 66.5%, and 68.7% compared to the passive control for each 

month, respectively. For the TSS control, the pf decreased by 99.5%, 96.7%, 91.1%, and 92.3% for each 

month, respectively. Therefore, the detention control consistently performed worse than the TSS and 

on/off controls and the TSS control showed similar high performance across all months. 

Table 2. Percent decrease (%) in pf for active controls compared to passive control. 

Month Detention On/off TSS 

May 59.6 93 99.5 

June 61.4 75.8 96.7 

July 48.2 66.5 91.1 

August 57.8 68.7 92.3 

 

3.4. Duration curve analysis 
Duration curves for daily peak water level, daily peak flow, daily sediment load, and daily peak TSS 

concentration are plotted in Fig. 9 for the month of June. The passive control resulted in the lowest 

water level duration curve (Fig. 9a). The detention and TSS controls increased the water level duration 

curve across all exceedance probabilities compared to passive control. The on/off control resulted in 

the largest daily peak water levels for low water levels with exceedance probabilities greater than 5%. 

However, the TSS and detention control water level was greater than the on/off control water level for 

high water levels with exceedance probabilities less than 5%. 

 

Fig. 9. Simulated duration curves for (a) daily peak water level, (b) daily peak flow, (c) daily peak 

sediment load, (d) daily peak concentration. 



Daily peak flow duration curves were similar across all four control scenarios (Fig. 9b). One exception 

to this result is that for the on/off control, the valve was closed approximately 80% of the time, and for 

the detention control, the valve was closed approximately 60% of the time. This was reflected in the 

corresponding flow duration curves. 

Daily sediment load duration curves are plotted in Fig. 9c. The passive control resulted in the largest 

sediment load duration curve across all exceedance probabilities. The TSS control and detention 

control resulted in very similar daily sediment load duration curves. For high sediment loads with 

exceedance probabilities greater than 30%, the TSS control decreased the daily sediment load relative 

to the detention control. The on/off control performed similar to the passive control for high sediment 

loads with exceedance probabilities less than 10% and decreased sediment loads with exceedance 

probabilities greater than 10%. 

Daily peak TSS concentration duration curves are plotted in Fig. 9d. All active controls decreased the 

daily peak TSS concentration for all exceedance probabilities relative to the passive control. The TSS 

control resulted in the lowest TSS concentration when the valve was open. The on/off control resulted 

in lower TSS concentration than detention and passive control when the valve was open and released 

zero TSS when the valve was closed 85% of the time. The detention control resulted in higher TSS 

concentration than the other active controls and had a similar valve open time to the TSS control. 

3.5. Sensitivity of active control performance to rainfall statistics 
The sensitivity of active control performance to the Modified BLRPM parameters is plotted in Fig. 10. 

The mean storm arrival frequency, 𝜆, and the mean cell depth, 𝜇𝑥, were varied such that the mean 

expected value of daily rainfall remained constant, 𝜆𝜇𝑥𝜇𝑐
𝜈

𝛼−1
 (Islam et al., 1990). The 𝑝𝑓,ℎ decreased 

with 𝜆 for passive, on/off, and detention controls (Fig. 10a). For TSS control, the 𝑝𝑓,ℎ shows a peak 

around 𝜆=0.025 h−1. The 𝑝𝑓,𝐶  increased with 𝜆 for the passive, on/off, and detention controls, whereas 

the 𝑝𝑓,𝐶 for the TSS control was equal to zero for all values of 𝜆 (Fig. 10b). The pf increases with 𝜆 for 

passive, on/off, and detention controls, while it showed a peak for TSS control. This is because 

the pf for the TSS control was dominated by the 𝑝𝑓,ℎ which shows peak around λ value of 0.025 h−1, 

whereas the 𝑝𝑓 for the other controls was dominated by the 𝑝𝑓,𝐶. 

 

Fig. 10. (a) 𝑝𝑓,ℎ, (b) 𝑝𝑓,𝐶, (c) pf for passive, detention, on/off, and TSS control for different storm arrival 

rates. On the x-axis, the storm arrival rate, 𝜆, is varied, while the average daily rainfall is maintained 

constant. 



4. Discussion 
A continuous simulation, Monte Carlo approach was employed to evaluate the performance of several 

algorithms for real-time, active control of stormwater detention basin outflows. Active controls based 

on basin water level, detention time, and TSS concentration were compared to a baseline scenario with 

no outflow control (i.e., passive control). The active controls were compared within a simulation model 

that coupled hydrologic and pollutant dynamics in an urbanized watershed, forced by stochastic 

rainfall. This comparison provides insight into the attributes of “smart” stormwater systems (Mullapudi 

et al., 2017) and their sensitivity to rainfall-runoff and pollutant buildup-washoff dynamics. 

Previous experimental and modeling studies demonstrated TSS removal efficiencies in stormwater 

detention basins ranging between 60 and 91% (Shammaa et al., 2002, Chen and Adams, 

2006, Middleton and Barrett, 2008, Gaborit et al., 2013, Carpenter et al., 2014, Muschalla et al., 2014). 

In the simulations presented here, the average TSS removal efficiencies across all simulation months 

were 64%, 87%, 77%, and 95% for passive, detention, on/off, and TSS controls, respectively. Therefore, 

the TSS removal efficiency performance of our active controls improved on the passive control and was 

consistent with previous findings. The detention and TSS controls resulted in the largest TSS removal 

efficiencies. 

Despite their similarity with respect to average TSS removal efficiency, the three active controls 

differed with respect to their performance during specific days. The detention and TSS control behaved 

similarly. The two were nearly identical for exceedance probabilities less than 40% for pond water level 

and peak daily flow. However, in the same exceedance probability range, the TSS control decreased 

the sediment load and peak TSS concentration more than the detention control. At lower exceedance 

probabilities of less than 2%, the detention and TSS control behave similarly. The on/off control 

resulted in more sediment loads than any other controls for exceedance probabilities greater than 

10%. Therefore, the maximum TSS removal efficiency of the TSS control seems to result from its ability 

to reduce sediment loads under high probability, low sediment load events. These differences in 

sediment load may have implications for fluvial geomorphology of receiving streams (Poff et al., 1997). 

In addition to TSS load reduction, stormwater management systems may also be designed to control 

TSS concentrations in downstream receiving waters. Suspended sediment concentration is an 

important control of aquatic ecosystem function through its impact on light availability and transport 

of nutrients, metals, and other contaminants (Bilotta and Brazier, 2008). In general, all three active 

controls evaluated here reduced TSS concentrations compared to the passive scenario at exceedance 

probabilities less than 50%. Throughout the entire range of exceedance probabilities, the TSS control 

resulted in the lowest suspended sediment concentration followed by on/off, detention, and passive 

control. 

The model simulations demonstrated a trade-off between the 𝑝𝑓,ℎ and 𝑝𝑓,𝐶 that varied across the 

active controls. All of the active controls increased the basin water level and, accordingly, the 𝑝𝑓,ℎ. 

Basin water levels and 𝑝𝑓,ℎ scaled directly with the fraction of time the valve was closed for each active 

control, 90%, 80%, and 40% for on/off, detention, and TSS control, respectively. Therefore, the TSS 

control not only captured the most sediment, but also minimally altered the hydrologic function of the 

stormwater basin from the baseline passive scenario. 



The detention control provided a detention time of 24 h, resulting in 87% pollutant removal efficiency. 

On the other hand, the TSS control provided an average of 8.2 h of detention time with a removal 

efficiency of 95%. The on/off control provided an average of 74 h of detention time, but the pollutant 

removal efficiency was only 77%. Therefore, the TSS control provides the largest removal efficiency 

with the shortest detention time. This indicates that a longer detention time doesn’t always lead to 

increased pollutant removal efficiency. 

Rainfall characteristics were a critical determinant of both passive and active control performance. 

Under passive conditions, pf increased with the mean storm arrival frequency, 𝜆, primarily driven 

by 𝑝𝑓,𝐶. This pattern likely results from interaction between the rainfall-runoff and buildup-washoff 

processes. For climates characterized by low frequency, high intensity events, long inter-storm times 

allow watershed pollutant storage to saturate with minimal opportunity for stored pollutants to 

washoff into the stormwater basin. As storm frequency increases, buildup is maintained at a higher 

rate and washoff occurs more frequently, which we expect leads to a concomitant increase in 𝑝𝑓,𝐶. 

Active control performance was most sensitive to rainfall characteristics for the detention and TSS 

control. Indeed, for months characterized by infrequent, high intensity storms (i.e., June, July, and 

August), 𝑝𝑓,ℎ and 𝑝𝑓,𝐶 increased. When the total rainfall was held constant, 𝑝𝑓,𝐶  also increased for 

frequent, low intensity events whereas 𝑝𝑓,ℎ decreased or showed a maximum with 𝜆. Therefore, the 

variability in external climate forcing and internal interactions among system components are 

important to the overall effectiveness of real-time control of stormwater systems. 

In this study, changes in climate parameters such as temperature or wind speed were not considered, 

while the simulated synthetic rainfall scenarios correspond to possible variability of rainfall frequency 

and intensity due to climate change (Kunkel et al., 2013). Across the spectrum of rainfall scenarios 

modeled here, the TSS control resulted in zero 𝑝𝑓,𝐶 and the lowest and least variable system failure. 

Increased TSS load is expected due to climate change (He et al., 2010, Wilson and Weng, 2011, Sharma 

et al., 2016). Our results indicate the TSS control may be more adaptive to climate change by 

considering the concurrent impact of changes in rainfall-runoff and buildup-washoff processes on 

stormwater runoff water quality. 

5. Conclusion 
Active stormwater system controls driven by water quality information or detention time show 

promise to improve the water quality of stormwater basin outflows beyond traditional controls based 

on water level alone. On average, the TSS control reduces the system failure probability by 18.7% and 

38.7% relative to the on/off and detention controls, respectively. The TSS and detention controls settle 

18.9% and 11.4% more suspended solids relative to the on/off control. This is because the water 

quality and the detention controls provide a more direct measure of basin water quality as compared 

to water level measurements. The TSS control evaluated here closed the outflow valve only 40% of the 

time, because it was able to open the valve when the water quality reached the target level, thereby 

maintaining a high level of available storage in the pond. In cases where high cost or measurement 

uncertainty limits the opportunity for real-time water quality measurements, a detention time method 

can be implemented to achieve similar reductions in TSS concentration and loading. However, the 



performance of the detention time control was strongly influenced by the rainfall characteristics and in 

some cases, detention time control may therefore not be effective when compared to TSS control. 
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