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Abstract 
In extending the use of functional MRI to neuropharmacology, a primary area of concern is that 

peripheral blood pressure changes induced by pharmacological agents could independently produce a 

change in the blood oxygenation level-dependent (BOLD) signal, resulting in difficulties distinguishing 

or interpreting drug-induced neural activations. In the present study, we utilized intravenous 

dobutamine, a beta-adrenergic receptor agonist, to increase the mean arterial blood pressure (MABP), 

while examining the effects of MABP changes on the BOLD signal in cocaine-dependent participants. 

Dobutamine infusion significantly increased the MABP from 93 ± 8 mm Hg to 106 ± 12 mm Hg 

(P < 0.0005), but did not produce a significant global BOLD signal. Yet, a few voxels in the anterior 

cingulate showed BOLD signal changes that paralleled the changes in blood pressure (BP). Our 

observations support the conclusion that following the infusion of psychoactive agents, brain BOLD 

signals accurately reflect neuronal activity, even in the face of relatively large peripheral cardiovascular 

effects that transiently increase systemic BP. 
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Introduction 
Functional MRI (fMRI) is increasingly being employed to study brain functions in patient populations 

following various pharmacological manipulations. For example, blood oxygenation level-dependent 

(BOLD) contrast techniques have been recently applied to detect changes in regional brain activity 

following the acute administration of drugs such as nicotine (Stein et al., 1998), heroin (Xu et al., 2000, 

Xi et al., 2002), and psychostimulants (Breiter et al., 1997, Li et al., 2000, Luo et al., 2003, Schwarz et 

al., 2004, Risinger et al., 2005) in humans and animals. The term pharmacological MRI (phMRI) (Chen et 

al., 1997) has been used to denote the use of pharmacological probes during fMRI either to study the 

effects of drug action in the brain or the actions of a drug on specific cognitive, affective, or sensory 

processes (Stein, 2001, Salmeron and Stein, 2002, Leslie and James, 2000). However, before such 

manipulations can be routinely employed, the influence of such potential peripheral effects as changes 

in arterial blood pressure (BP) and heart rate (HR) on the BOLD signal must be elucidated. 

As first modeled by Ogawa et al. (1993), the BOLD signal reflects changes in a number of hemodynamic 

parameters, including: (1) region cerebral blood flow (rCBF), (2) regional cerebral blood volume (rCBV), 

and (3) the local cerebral metabolic rate of oxygen (CMRO2). As such, if pharmacological agents change 

systemic BP, they could cause global or local CBF changes independent of, or in addition to, change in 



neuronal activity. Therefore, it is conceivable that such peripheral effects could confound the 

interpretation of drug-specific effects on neural activity. 

This issue has not yet received much attention, with the exception of a few studies addressing the 

issue, yielding inconsistent results. Hypotension has been induced following blood volume depletion 

(Zaharchuk et al., 1999, Kalisch et al., 2001), while hypertension has been studied following 

administration of cocaine methiodide (Luo et al., 2003) and norepinephrine (Tuor et al., 2002) in rats 

and cold application or the Valsalva maneuver in humans (Harper et al., 2000). Luo et al. (2003) and 

Zaharchuk et al. (1999) concluded that BP changes have little effect on the BOLD signal as long as BP 

remains within the range of compensatory cerebral autoregulation. On the other hand, Kalisch et al. 

(2001) and Tuor et al. (2002) suggested that changes in BP correlate with regional BOLD changes. Some 

of these inconsistencies may be attributable to the models used to produce BP changes, which are 

purely of peripheral origins. 

In this study, we modulated peripheral BP in human subjects by infusing dobutamine and examined 

the effects of BP changes on the BOLD signal. Dobutamine was selected because it increases peripheral 

BP in the absence of drug-induced neural activity. Dobutamine is used clinically to increase cardiac 

output and increase blood pressure during shock and heart failure. Also, it is used to increase the work 

of the heart in cardiac stress testing. In vitro, dobutamine is a moderately selective β1-adrenergic 

receptor agonist. Clinically, dobutamine may activate β1, β2, and α1 adrenergic receptors (Ruffolo, 

1987). Its cardiovascular effects include a prominent inotropic rather than chronotropic effect on the 

heart, resulting in increased BP (Wahl et al., 2004, Hardman and Limbird, 2001). This inotropic effect 

usually has a rapid onset (within 1 to 2 min) and a short half-life of about 2 min. Adrenergic β1 

receptors predominate in the heart, kidney, and brain (Minneman et al., 1979, Engel et al., 1985). High 

levels of β1 receptors have been observed in the rat cingulate cortex, hippocampus, mediodorsal, and 

ventral nuclei of the thalamus, etc. (Rainbow et al., 1984). However, it has been reported that 

peripherally infused dobutamine does not interact with brain β1 receptors (Conway et al., 1987), nor 

does it have a direct vasomotor effect on rodent brain microvessels (Kawamura and Yasui, 1998). 

Dobutamine, therefore, is believed to have no direct effect on brain activity. Thus, any drug-induced 

changes in BOLD signal would be interpreted as peripheral in origin as a result of change in BP. 

Materials and methods 

Human subjects selection and risk minimization procedure 
Approximately 50 cocaine users were screened and 13 were recruited. Among the 13 subjects, six were 

eliminated due to a left ganglion cyst, high blood pressure, history of hand injuries, and subjects' 

decision to abandon the study. Seven right-handed cocaine-dependent individuals finally participated 

in this study (demographic data shown in Table 1). This study was approved by the Institutional Review 

Board of the Medical College of Wisconsin. After receiving a complete description of the study, written 

informed consent was obtained. Current cocaine users were included to compare the effects of a pure 

peripheral agent on BOLD signal changes to the effects of cocaine, which we have previously used in 

fMRI studies (see e.g. Risinger et al., 2005). In addition to cocaine's CNS effects, it is known to cause 

significant increases in BP which, as stated above, could independently influence BOLD signal. Subjects 

underwent an evaluation that included a medical history, physical, and mental status examination. 



Laboratory studies (including blood and urine batteries and a 12-lead EKG) excluded potential subjects 

with medical conditions. A careful vascular history was also elicited. Subjects were excluded if they 

were positive for HIV, hepatitis, or had a history of drug dependence other than nicotine, cocaine, 

marijuana, or caffeine use. Participating subjects could be occasional marijuana users relieving 

symptoms of acute cocaine use, but cocaine was clearly their drug of choice. Urine toxicology (Triage®) 

screens were completed at each visit to identify use of other illicit substances. All subjects had 

experience in at least one prior fMRI study, which may have included the administration of cocaine. 

Other study exclusion criteria included pregnancy, hypertension, presence of cardiac dysrhythmia, a 

history of, or current diagnosis of cardiovascular, gastrointestinal, renal, or hepatic impairment. They 

also had to be negative for all DSM-IV criteria for Axis I psychiatric conditions. 

Table 1. Demographic data of all subjects, in addition to the subjects whose data were included in the 

fMRI data analyses during scans 1, 2, and 3 
 

All seven 
subjects 

Scan 1 (6 
subjects) 

Scan 2 (7 
subjects) 

Scan 3 (6 
subjects) 

Age (years) 37.9 ± 6.5 39.7 ± 4.8 37.9 ± 6.5 36.8 ± 6.5 

Gender 2F/5M 2F/4M 2F/5M 1F/5M 

Education (years) 11.6 ± 1.5 12.0 ± 1.1 11.6 ± 1.5 11.5 ± 1.6 

Cocaine use (years) 10.8 ± 4.1 10.6 ± 4.3 10.8 ± 4.1 11.8 ± 3.5 

Times of use/week 5.8 ± 1.2 5.8 ± 1.3 5.8 ± 1.2 5.6 ± 1.2 

$ spent/week 307 ± 313 325 ± 339 307 ± 313 317 ± 342 

 

Since an arterial line was inserted during the study to record real-time arterial BP, ultrasound 

evaluations of the radial and ulnar arteries were performed before any experimental procedures in 

order to evaluate the patency of the palmar arch to minimize the possibility of ischemic damage. 

Likewise, an evaluation was performed, 1 day and 1 week after cannulation, to ensure the absence of 

significant occlusion or damage caused by the arterial catheter placement. 

On the day of an experiment, an intravenous catheter was inserted into a forearm vein to deliver saline 

and dobutamine and to draw blood for drug level measurement during the experiment. Prior to fMRI 

scans, a drug toleration procedure was employed to ensure the safety of dobutamine infusion for each 

subject, as well as to develop dosing guidelines and infusion profiles for subsequent scanning. This 

allowed the subject to become familiar with the experience of having the drug injected while 

monitoring vitals signs for any idiosyncratic response to the dobutamine or the monitoring procedures 

in the safety of a Clinical Research Center rather than in an MRI scanner room. During the drug 

tolerance procedure, both saline and dobutamine injections were completed sequentially. Blood was 

withdrawn after each injection for arterial blood gases and drug level measurements. All subjects 

tolerated this assessment procedure well and no idiosyncratic response to dobutamine was found. All 

vital signs remained within the delimited safety limits. The subjects proceeded to the fMRI session 

after their BP returned to baseline levels. After scanning, BP was monitored until the effects of 

dobutamine subsided. Subjects were admitted overnight and a wrist ultrasound was performed the 

next day to verify circulatory status. All subjects underwent a brief physical exam prior to discharge. 

Subjects returned 1 week after the scan session to have wrist circulation checked with a repeat 



ultrasound examination again. Throughout the drug tolerance procedure and the subsequent fMRI 

experiments, the following physiological parameters were monitored and recorded electronically: (1) 

heart rate, (2) SpO2, (3) respiration rate, (4) end tidal CO2, and (5) blood pressure from both indwelling 

arterial line and BP cuff. Also, an EKG was continuously monitored. All physiological data, except cuff 

BP, which was sampled every 2–3 min, were acquired at 1 Hz. 

fMRI experiments 
Two consecutive fMRI sessions were conducted on a GE Signa 1.5 T scanner separated by a 30–60 min 

rest interval between sessions. The first session consisted of two 25-min scans. During each scan, a 

single infusion of either saline (scan 1) or dobutamine (scan 2) (Fig. 1A) was administered 5 min into 

the respective scan. The saline infusion always delivered a total of 10 ml at a rate of 0.7 ml/s. Because 

of variations in individual BP responses to the dobutamine, the rate of drug infusion varied from 7–10 

mg/kg/min during the infusion period, as determined by the subject's response during the drug 

tolerance procedure. In the second session, a 30-min scan with a double dobutamine infusion 

paradigm (scan 3) was conducted. As shown in Fig. 1B, the first infusion of dobutamine started 5 min 

into the scan and lasted for 3 min. The second infusion started at 17 min into the scan and also lasted 

for 3 min. The dobutamine infusion rate was fixed for each subject for the single and both of the 

double infusion trials. Two SPGR image sets were acquired before scan 1 and scan 3 and used for 

subsequent image registration. In order to assess potential behavioral effects from the alterations in 

BP, during scans 1, 2, and 3, subjects were prompted to evaluate their feelings of “liking drug,” “high,” 

“queasy,” “light headed,” and “racing” in a random order once every minute with a joystick-type wheel 

device. They turned a wheel to move a tab on a visual analog scale displayed via computer, then 

pressed a button to record the final tab position. Whole-brain axial images were collected using a 

hybrid pulse sequence. The superior portion of the brain was acquired with a standard EPI sequence, 

while the inferior portion of brain was acquired with an EPI pulse sequence with z-shimmed 

background gradient compensation to overcome susceptibility artifacts (Li et al., 2002). A total of 19 

continuous 5-mm slices were acquired with FOV of 24 cm, matrix size of 64 × 64, TE of 30 ms, and an 

equivalent TR of 6 s. Only the four most inferior slices required the z-shim method, which covered the 

brain region where susceptibility artifacts are most significant, including the orbitofrontal cortex. 



 

Fig. 1. Representative arterial systolic blood pressure (SBP) profile from a single subject during a single- 

(A) and double- (B) dobutamine infusion experiment. The shadowed bars indicate infusion periods. 

Data analysis 
Analyses of Functional NeuroImages (AFNI) software (Cox, 1996) were employed to perform all fMRI 

analyses. One subject did not participate in scan 3 and one saline scan (scan 1) data set was eliminated 

due to excessive body motion. The rejection threshold was set at displacement of 2.5 mm and rotation 

of 2.5°, as estimated by the AFNI 3dvolreg program. Subject demographics for the scan sessions are 

shown in Table 1. To assess whether BP changes influenced the BOLD signal, two data analysis 

methods were employed: (1) a cross-correlation (cc) calculation to evaluate the relationship between 

the fMRI time course and the downsampled systolic BP profile (only systolic BP was used, as it has 

been reported that dobutamine infusion does not alter diastolic BP (Wahl et al., 2004), which was 



confirmed in this study); (2) a nonlinear regression with a differential exponential model (Ward et al., 

1998) to calculate the percent change in the area under the fitted curve (AUC%). The cc and %AUC 

maps were converted to standard Talairach coordinates (Talairach and Tournoux, 1988). Analyses 

across subjects with individual significance cc thresholds and F statistic values corresponding to a 

Bonferroni corrected P < 0.05 were performed to obtain group maps. One-tailed t tests on the cc data 

(i.e., correlation between BP and BOLD) from the single- and double-dobutamine infusions vs. the null 

hypothesis of zero correlation, and a two-tailed, t test on the %AUC from the single dobutamine 

infusion vs. saline control, were performed, respectively. A minimum cluster activation volume of 350 

μl was required to achieve an omnibus corrected P of 0.05. 

To help establish the false positive level for the two dobutamine scans, we applied a bootstrap 

statistical method. Artificial data sets were generated from the actual data sets in a random manner 

and the correlation of such artificial fMRI signals and actual SBP profiles was tested for statistical 

errors. Therefore, these artificial data sets can be characterized as randomized noise rather than true 

signal and no significant correlation was expected between the “noise” and SBP profile. A bootstrap 

method (Zoubir and Iskander, 2004) was implemented to rearrange time courses and produce 10 

artificial data sets for each scan, leading to a total of 20 artificial data sets. For all voxels in the data set, 

a block length of 10 points was used to divide the fMRI time courses consisting of 250(300) time points 

sequentially to 25(30) blocks for scan 2(3). A rearrangement sequence, which was applied to all voxels, 

was then randomly generated to pick blocks 25(30) times to create one new artificial data set. In other 

words, a particular block in the original time course could be used more than once or not used at all, 

such as the example in Fig. 4A, where the bootstrap sequence was [22, 8, 14, 0, 4, 16, 20, 0, 18, 19, 20, 

19, 10, 8, 5, 24, 0, 9, 14, 19, 0, 13, 19, 21, 1] for a single dobutamine paradigm. The cross-correlation 

between artificial data sets and the original SBP profiles was then calculated. 

During infusion scans, the visual analog scale subjective ratings provided by the subjects usually 

consisted of sudden rating variations as time progressed. One of the causes for this variability could 

have been the discomfort created by the arterial line and the lightheaded feeling due to the 

dobutamine infusion, which may prevent subjects from effectively performing the rating task. Also, we 

took into consideration the limited number of subjects who participated in this study. We determined 

that a mean rating curve was not the best or most reliable way to understand the behavioral data. 

Instead, the absolute change of the mean VAS behavioral ratings during dobutamine infusion vs. 

baseline was calculated for each of the five behavioral constructs on a per subject basis. The baseline 

rating was obtained by averaging ratings during the baseline period, i.e., min 0–5 for the single infusion 

paradigm (scan 2) and min 0–5 and 13–17 for the double infusion paradigm (scan 3). Similarly, ratings 

during dobutamine infusion were acquired during min 5–25 for the single infusion paradigm scans and 

min 5–13 and 17–30 for the double infusion paradigm scan. The Wilcoxon nonparametric signal-rank 

test was then applied. P values were estimated according to the signed rank of absolute rating change 

and the W-estimate was calculated to represent treatment effect as shown in Table 2. 

  



Table 2. Wilcoxon statistics of percentage changes of mean VAS behavioral ratings during elevated SBP 

vs. during baseline SBP in single- (n = 7) and double- (n = 6) dobutamine infusions scans (italic font 

denotes significant ratings) 

Visual analog scale behavior 
ratings 

      

Scan rating 
 

Like 
drug 

Lightheaded High Queasy Racing 

Single infusion W-estimate −2.6 13.8 2.2 8.9 14.4  
P value 2e−9 < 1e−12 7e−12 < 1e−12 < 1e−12 

Double infusion W-estimate −0.4 2.0 −1.2 −3.7 3.3  
P value 0.3 0.1 0.2 3e−4 0.02 

Single vs. double infusion W-estimate −3.3 8.2 2.7 5.1 11.7  
P value 0.2 <1e−12 3e−4 1e−8 <1e−12 

The “W-estimate” is an estimate of the difference in location of the two populations, which is used in 

calculating the nonparametric Wilcoxon signed-rank test as described by Noether (1991). 

Results 
Seven subjects participated in the single-dobutamine infusion paradigm and six of the seven subjects 

participated in the double dobutamine infusion paradigm. With the exception of systolic blood 

pressure, analysis of physiological data (HR, ECG, SpO2, respiration rate, end tidal and inhaled CO2, 

diastolic BP) showed no significant change during dobutamine infusion. 

In the single-dobutamine paradigm, the mean arterial blood pressure (MABP) (1/3 SBP + 2/3 DBP) 

significantly increased from 93 ± 8 mm Hg (during min 0–5) to 106 ± 12 mm Hg (during min 5–25) 

(P < 0.0005). In the double dobutamine infusion paradigm, the MABP also significantly increased from 

104 ± 7 mm Hg (during min 0–5 and 13–17) to 109 ± 6 mm Hg (during min 5–13 and 17–30) 

(P < 0.0004). A set of representative systolic BP (SBP) responses from one subject following single- and 

double-dobutamine infusions is shown in Fig. 1. In the single-infusion paradigm (Fig. 1A), the SBP was 

elevated to about 150% of its baseline value after 7 min of dobutamine infusion, sustained for 2 min 

and gradually dropped back to baseline after the infusion was stopped. Fig. 1B shows the SBP changes 

seen as a result of the double infusion paradigm. With the same infusion rate, SBP was elevated to 

125% of the baseline during both 3-min dobutamine infusion periods. The rates of SBP elevation were 

consistent between the single-infusion and the double-infusion paradigms and verify dobutamine's 

characteristic rapid onset and a short half-life effect on acute BP. 

Increases in SBP after either a single- or double-dobutamine infusion had no effect on the global BOLD 

signal. Only limited significant BOLD regional changes were seen and these were restricted to the 

anterior cingulate region (BA32). In the single-dobutamine injection trials, very similar changes were 

seen based on the %AUC (Fig. 2A) and the cc analysis methods (Fig. 2B). However, these regional 

“activations” were absent in the double-infusion paradigm (Fig. 2C). Further analysis revealed that the 

averaged SBP profile induced by the single dobutamine infusion was strongly correlated with the mean 

time course of the activated voxels across all subjects (R = 0.69, P < 1 × 10−36) (Fig. 3). The mean time 

course was obtained by averaging the mean time courses of activated voxels of each subject. In 

addition, the z-shim gradient compensation EPI pulse sequence was used to minimize susceptibility-



induced signal loss in the inferior portions of the brain. Therefore, the detection of ‘activation’ was not 

confounded by susceptibility. 

 

Fig. 2. (A) %AUC results from the single-dobutamine vs. saline infusion, df = 11, (B) cross-correlation 

(cc) results from the single-dobutamine infusion SBP profile and voxel BOLD time courses, df = 6, (C) cc 

map from the double-dobutamine infusion SBP profile and the voxel BOLD time courses, df = 5. 

Functional activation is overlaid on a standardized brain anatomy. (All figures are shown using 

neurological viewing convention: the left side of the image is the left side of the anatomy). 

 

Fig. 3. Mean arterial systolic blood pressure curve (top, right side y-axis) obtained from all subjects and 

mean BOLD voxel time course averaged over the activated anterior cingulate region across all subjects 

(bottom, left y-axis) in a single-infusion paradigm (scan 2). 

Table 2 summarizes the real-time VAS ratings during the single- and double-dobutamine infusions as a 

direct comparison between the two scans. All five ratings –“liking drug,” “lightheaded,” “high,” 

“queasy,” and “racing” – were significantly different during the single-dobutamine infusion vs. 



baseline, while only “queasy” was significantly different during the double infusion. Further, a direct 

comparison between single- and double-infusion epochs shows that “lightheaded,” “high,” “queasy,” 

and “racing” were significantly decreased during the double infusion scan. 

Discussion 
This study demonstrated that in the face of robust increases in systemic BP induced by infusion of 

dobutamine, a peripherally acting agent, no significant correlation was seen with either global or 

regional brain BOLD signal changes, with the possible exception of a small, restricted area in the 

anterior cingulate region. The relative independence of the BOLD signal with peripheral BP is likely due 

to the well-known autoregulation of CBF under a wide range (60–160 mm Hg) of mean arterial blood 

pressure. Pharmacological agents such as dobutamine can increase MABP by changing cardiac 

function, as well as by modifying the systemic vasculature, particularly arterial resistance. Changes in 

peripheral circulation engage multiple homeostatic compensatory mechanisms in order to maintain a 

normal MABP. For example, an increase in MABP will induce systemic vasodilation and a decrease in 

MABP will induce systemic vasoconstriction. In contrast, the cerebral vasculature primarily controls 

blood flow rather than pressure. Thus, the cerebrovascular response to an increase in MABP is the 

opposite of that in the periphery. These concepts can be summarized in the following way: MABP 

depends on cardiac output (CO) and total peripheral resistance (TPR): MABP = CO × TPR. Total CBF 

depends on MABP and cerebrovascular resistance (CVR): CBF = MABP / CVR. Many pharmacological 

agents affect MABP, CO, and TPR and some, which cross the blood–brain barrier, may also affect CVR 

and CBF (Ishiyama et al., 1998, Ganjoo et al., 1998). The BOLD signal has been shown to be dependent 

upon CBF, CBV, and blood oxygenation (Ogawa et al., 1993, Buxton et al., 1998, Hoge et al., 1999). 

Therefore, the effects of a change in MABP induced by a pharmacological agent on the BOLD signal will 

be largely dependent on whether CBF, CBV, and CMRO2 have changed. These principles are required to 

interpret the current and historic data. For example, in reporting an apparent correlation between BP 

change and BOLD signal, Tuor et al. (2002) and Kalisch et al. (2001), not only changed BP but also 

changed CBF or CBV, calling into question the causative relationship between BOLD and BP. 

In contrast, similar to our findings, Luo et al. (2003) administered cocaine methiodide, a quaternary 

derivative of cocaine that shares the same peripheral vascular actions of cocaine but does not cross the 

blood–brain barrier, to increase BP while measuring BOLD change in rats. In the face of large changes 

in BP, only scattered, weak, and transient changes in BOLD signal were observed that were not dose-

dependent. Similarly, Zaharchuk et al. (1999) showed that changing MABP did not alter CBF due to 

presumed autoregulatory mechanisms, resulting in little effect on brain BOLD signal. 

Although the BP increase following dobutamine infusion did not induce a significant global BOLD signal 

change, it did correlate with small regional changes in the anterior cingulate. This correlated activity 

may be attributed to one or more possibilities. The first possibility is that the observed anterior 

cingulate activation from the single infusion scan may have resulted from a false positive error. In fact, 

when we reran the cc t test with individual significance threshold increased to cc > ± 0.37, the single 

infusion then gave a null activation map, exactly as that from double infusion data. As described below, 

the bootstrap analysis helps explain why the correlation threshold for the single infusion should be 

± 0.37 in order to retain a false positive rate of 0.05. Quantitatively, based on the bootstrap simulation, 

the application of a Bonferroni correction (α = 0.05) is equivalent to a correlation threshold of 0.29 for 



single and 0.27 for the double-dobutamine infusion paradigms. The difference between correlation 

thresholds is a result of the different data lengths for each paradigm. As shown in Fig. 4B, 

approximately 12% of the voxels for the single infusion data had a correlation coefficient greater than 

0.29 or less than −0.29. In contrast, only approximately 2% of voxels had a correlation coefficient 

exceeding the threshold of 0.27 for double-infusion data (Fig. 4C). If a false positive rate of 0.05 is to be 

retained, the correlation threshold should be ±0.37 for single infusion and ±0.21 for double infusion 

according to the bootstrap simulation. By applying this correlation threshold of ±0.37 to the single-

infusion data, no activation was seen in the anterior cingulate region. These findings indicate that a 

Bonferroni correction procedure, which assumes independent white Gaussian noise, remains too 

liberal to correct the rate of false positives in the single-dobutamine infusion data, perhaps due to the 

inherent temporal autocorrelation of fMRI time series. The same bootstrap simulation indicates that 

the Bonferroni correction procedure is sufficient for the double infusion data analysis. Clearly, since 

the rate of false positive error is higher in the case of single infusion than that of double infusion, the 

identified anterior cingulate activation in the single-infusion scan may be due to a false positive error. 

 



Fig. 4. Analysis of potential false positive activations related to the single and double dobutamine 

infusion paradigms. (A) A representative plot of the bootstrap rearrangement data on a single-infusion 

time course. The top curves are the SBP profiles induced by the single infusion (scaled and shifted for 

clarify). The bottom left panel of panel A is the original voxel time course and the right is the 

bootstrapped version. The cross-correlation coefficient dropped from 0.62 to 0.07 after bootstrap. 

Panels B and C show the correlation histograms of 10 artificial data sets of “false signal” for the single 

and double infusions, corresponding to 155,056 and 154,446 voxels, respectively. 

The second possibility is that the observed anterior cingulate activity may be related to functional 

control of BP. It long has been implicated that the anterior cingulate is involved in control over 

autonomic responses (Kremer, 1947, Kaada et al., 1949). Both phasic increases and decreases in BP can 

be elicited with direct electrical stimulation of the cingulate in the rat (Kaada et al., 1949), dog (Kremer, 

1947), and human (Pool and Ransohoff, 1949). In addition, pyramidal cells of the anterior cingulate 

cortex project directly to brain regions involved with homeostatic and autonomic control, including the 

hypothalamus (Ongur et al., 1998), pontine gray matter (Vilensky and van Hoesen, 1981, Porrino and 

Goldman-Rakic, 1982), and periaqueductal gray (An et al., 1998). It is thus conceivable that the 

observed anterior cingulate BOLD signal change may have resulted from a localized brain response to 

changes in systemic BP. 

Since these subjects were active cocaine users, the third possibility is that the observed anterior 

cingulate activation following the single-dobutamine infusion may have been as a result of secondary 

emotional feelings to perceived changes in BP acting as drug-related internal cues. It is possible that 

the dobutamine-induced hypertensive effect may have mimiced the physiological and/or affective 

experience of cocaine use and evoked increased activity in the anterior cingulate. It could be argued, 

however, that if this conditioned cue hypothesis is true, such activations should have occurred in both 

the single- and double-infusion paradigms. The disparate results could be explained by rapid extinction 

or habituation of the conditioned response whereby after the single infusion and before the second 

infusion of the double infusion paradigm, the subjects may have learned (consciously or unconsciously) 

that no cocaine was or would be actually administered. The real-time behavior ratings support this 

possibility. As shown in Table 2, subjective ratings of “liking drug,” “lightheaded,” “high,” and “racing” 

were significantly altered during the single-infusion period but not during double-infusion period. 

Ideally, a counter-balanced order of single- and double-infusion scans could be employed to verify this 

argument. However, due to our initial subject safety considerations, the double infusion scan was 

designed to always run second. Clearly, an appropriate order-balanced protocol should be conducted 

in the future. This issue could be further investigated by applying the same experimental procedure to 

normal control subjects rather than cocaine abusers. In the case of normal control subjects, no cocaine 

conditional cue would be expected; thus a similar null activation map for the single infusion would 

confirm this conclusion. 

In conclusion, while potential secondary effects of BP changes on cognitive and affective states need to 

be examined, and additional mechanistic issues of cerebral autoregulatory processes need to be 

further addressed by pulse sequences that are sensitive to CBF and or CBV, our data indicate that 

relatively large, acute changes in peripheral BP as a consequence of dobutamine infusion do not 

directly induce a BOLD signal change in the human brain. These observations suggest that, within the 



range of cerebral autoregulatory capacity, peripheral BP changes alone will not confound the 

interpretation of BOLD signal changes induced following administration of CNS acting drugs and 

support the utility of extending fMRI techniques to map and quantify drug-induced neuronal activity. 

Such applications should extend new insights into the systems level sites and mechanisms of action of 

drugs in the brain and potentially provide a new tool for drug discovery and assessments. 
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