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Estimation of a Term Structure Model of Carbon 
Prices through State Space Methods: The European 
Union Emissions Trading Scheme 
 

Abstract: 
This study models the term structure of the European Union Emissions Trading Scheme. Abadie & 
Chamorro’s (2008) one-factor Geometric Brownian Motion model is replicated using the data now 
available and then compared with a two-factor Short-Term/Long-Term (STLT) stochastic model. The 
STLT model has the better statistical fit to the term structure of European Union Allowances (EUAs). 
A Real Options Analysis of the value of the option to retrofit Carbon Capture and Storage shows that 
forecasting phase four EUAs with the STLT model almost triples the estimated project Net Present 
Value and lowers investment trigger prices by approximately 24%. 

1. Introduction: 
The European Union (EU) Emissions Trading Scheme (ETS) is the world’s largest and oldest cap-and-
trade carbon pricing system. Introduced in 2005, the EU ETS was established as a key method of EU 
member parties reaching emission reduction goals set in the Kyoto Protocol. Since the inception of the 
EU ETS, spot and derivative markets for European Union Allowances (EUAs) have grown substantially 
in size, stability, and liquidity. Trading periods in the EU ETS are divided into distinct trading phases. 
Phase two (2008-2012) and three (2013-2020) of the EU ETS experienced a depression and long-term 
downward trend in the price of EUAs (Figure 1) due to surplus in EUAs as a result of the 2008 Global 
Financial Crisis (Clara and Mayr, 2018). This provided little incentive for participating companies to 
lower CO2 emissions during this time period (Ellerman et al., 2010; Pindyck, 2013). Phase four (2021-
2030) market reforms were formally approved by European Lawmakers in early 2018 (Clara and Mayr, 
2018) with a focus on restoring market balance. The market responded favourably to these reforms, 
with EUA prices experiencing a strong surge from 2018 onwards. 

This study investigates the effect of long-term EUA pricing signals on private investment decisions into 
emissions reduction technology by modelling the price dynamics of the second and upcoming fourth 
phase of the EU ETS through state-space methods. The one-factor stochastic model for phase two 
carbon prices (2008 – 2012) estimated by Luis M. Abadie and Jose M. Chamorro (2008) is replicated 
and directly compared to contemporary phase four estimates. Abadie and Chamorro (2008) applied 
Kalman Filtering to estimate a Geometric Brownian Motion (GBM) stochastic model to forecast phase 
two carbon prices, and subsequently (using a lattice approach) valued the option to install a carbon 
capture unit to a coal-fired power plant. Parameter estimates from this model have been since applied 
within several studies to value carbon capture investments (Heydari et al., 2010; Knoope et al., 2015a, 
2015b; Mo and Zhu, 2014). This initial work by Abadie and Chamorro (2008) determined that the 
pricing signal generated by the EU ETS was not strong enough to trigger investment, but noted that 
changes in market structure and carbon market parameters could change optimal investment decisions. 

The EU ETS has matured and experienced considerable structural changes since the publication of 
Abadie & Chamorro’s work, warranting a re-parameterisation of the stochastic model of carbon prices. 
The trading rules during the first two trading phases of the EU ETS differed in important aspects to 
those of the third and upcoming fourth phase. Rather than EU member countries setting national caps 
on emissions, the EU ETS now operates under a single EU-wide cap on emissions (World Bank Group, 
2016). Auctioning is now the default method of allowances allocation rather than free allocations, with 
the electricity production industry no longer eligible for free allocations (European Commission, 2020). 
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In phase two of the EU ETS, no more than 4% of EUAs were auctioned and 90% free allocated (World 
Bank Group, 2014), whilst this number increased to approximately 40% of allowances auctioned at the 
beginning of the third phase of the EU ETS (World Bank Group, 2016), with zero free allocations 
scheduled within phase four of the market by 2025 (European Commission, 2020). 

Expanding on the forecasting of EUAs through a one-factor GBM model, this study adopts the two-
factor Short-Term/Long-Term (STLT) model proposed by Schwartz and Smith (2000) to evaluate short-
term and long-term dynamics of the market for EUAs. This model has the benefit of featuring the GBM 
and Geometric Ornstein-Uhlenbeck (MR) models as restricted models, which allows for goodness-of-
fit testing between one-factor and two-factor models to directly compare their abilities to capture the 
dynamics of futures prices. Five stochastic models for EUA spot prices are estimated using two sets of 
daily quoted futures market data listed on the Intercontinental Exchange (ICE) that expire within phase 
two and four of the EU ETS. Estimated stochastic models are used to investigate changes in market 
dynamics of EUAs as the EU ETS has matured. Estimated stochastic models are subsequently applied 
to the initial case study of Abadie and Chamorro (2008) using the Least-Squares Monte-Carlo (LSM) 
Simulation method to determine how carbon pricing signals under the EU ETS have influenced 
investment in carbon reduction technologies. 

Following this, Section 2 describes the price drivers and historical changes to the EU ETS that have 
occurred since market inception. Section 3 then describes the data used, and Section 4 introduces State 
Space Methods and parameter estimates of the GBM and STLT model. Section 5 discusses the carbon 
capture case study of Abadie and Chamorro (2008) and introduces the Least-Squares Monte-Carlo 
(LSM) simulation solution method. Section 6 presents a replication of this case study and the effect of 
stochastic modelling assumptions and contemporary parameter estimates on calculated project value 
and investment trigger prices. Finally, Section 7 summarises and concludes this work. 

2. Term Structure of Commodities 
Stochastic models and parameters used to forecast commodity prices are typically developed through 
investigation of the term structure, as futures prices consider future supply and demand conditions as 
well as market expectations on future price movements (Lautier and Galli, 2004). EUA prices have 
been shown within existing literature to behave as very specific commodity markets, “with distinct 
fundamentals linked to allowance supply and power demand” (Chevallier, 2009, p. 614). The analysis 
of the term structure of commodities attempts to relate the unobservable components of the futures price 
curve with observable economic variables. Calibration and estimation of unobservable quantities can 
be naturally performed through filtering. The Kalman Filter is a recursive algorithm that develops the 
optimal estimator of states of a dynamic system expressed in State Space form (Kalman, 1960). 
Parameter estimation of commodity price models through Kalman Filtering and state-space methods 
were popularised within the works of Gibson and Schwartz (1990); Schwartz (1997, 1998); Schwartz 
and Smith (2000), which expressed the futures curve in terms of unobserved factors and derive futures 
prices under no-arbitrage conditions. 

The long-term forecasting of EUA spot prices within existing literature has primarily been performed 
using a GBM model with positive drift term to reflect an increasing scarcity of allowances. These 
forecasts are then used to examine investment under carbon pricing uncertainty. Abadie and Chamorro 
(2008) estimated a GBM model after summary statistics of futures contracts revealed a direct 
relationship between annualised volatility and time-to-maturity. CO2 pricing scenarios required to limit 
global temperature increases have shown approximately linear long-term CO2 price increases, implying 
GBM is appropriate to model this behaviour (Hauck and Hof, 2017; Knoope et al., 2015a; Laude and 
Jonen, 2013). GBM was also determined to be suitable in phase two, as immature carbon markets 
possess low levels of liquidity and high market concentration (Daskalakis et al., 2009; Rammerstorfer 
and Eisl, 2011). This modelling choice was supported by several other studies that evaluated the early 
phases of the EU ETS, of which Hintermann et al. (2016) provide a summary and review. In an 
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extension to the GBM model, Rammerstorfer and Eisl (2011) model carbon prices with both linear and 
mean-reverting convenience yields, representing different levels of maturity in the carbon market. This 
model was first proposed by Gibson and Schwartz (1990) and has been proven within the work of 
Schwartz and Smith (2000) to be equivalent to the two-factor STLT model. 

The two-factor STLT model proposed by Schwartz and Smith (2000) is one of the most popular models 
for modelling commodity prices. The stochastic model decomposes spot prices of a commodity into the 
exponential sum of short-term deviations, 𝜒𝜒𝑡𝑡, and long-run equilibrium prices, 𝜉𝜉𝑡𝑡.  

Let 𝑆𝑆𝑡𝑡 denote the spot price of a commodity at time 𝑡𝑡: 

 ln(𝑆𝑆𝑡𝑡) = 𝜒𝜒𝑡𝑡 + 𝜉𝜉𝑡𝑡 (1) 
Where Short-run deviations (𝜒𝜒𝑡𝑡) are assumed to revert at a mean reversion rate 𝜅𝜅 toward −𝜆𝜆 𝜒𝜒/𝜅𝜅 with 
a half-life of ln(2) /𝜅𝜅 following an Ornstein-Uhlenbeck process, and long-run equilibrium prices (𝜉𝜉𝑡𝑡) 
are assumed to follow Brownian Motion. Under the assumption of risk-neutrality, 𝜒𝜒𝑡𝑡 and 𝜉𝜉𝑡𝑡 are given 
by: 

 𝑑𝑑𝜒𝜒𝑡𝑡 = �−𝜅𝜅𝜒𝜒𝑡𝑡 − 𝜆𝜆𝜒𝜒�𝑑𝑑𝑡𝑡 + 𝜎𝜎𝜒𝜒𝑑𝑑𝑧𝑧𝜒𝜒∗  (2) 
   

 𝑑𝑑𝜉𝜉𝑡𝑡 = �𝛼𝛼𝜉𝜉 − 𝜆𝜆𝜉𝜉 −
1
2
𝜎𝜎𝜉𝜉
2�𝑑𝑑𝑡𝑡 + 𝜎𝜎𝜉𝜉𝑑𝑑𝑧𝑧𝜉𝜉

∗ (3) 

 

Where 𝑑𝑑𝑧𝑧𝜒𝜒∗  and 𝑑𝑑𝑧𝑧𝜉𝜉
∗ are increments of a standard Brownian motion process with 𝑑𝑑𝑧𝑧𝜒𝜒∗𝑑𝑑𝑧𝑧𝜉𝜉

∗ = 𝜌𝜌𝜒𝜒𝜉𝜉𝑑𝑑𝑡𝑡 

The intuition behind this model is that the term structure of a commodity can be explained by the 
evolution of a long-term equilibrium and short-term deviations from this equilibrium. The assumption 
when 𝜅𝜅 is high is that the difference between short-term deviations and the long-term mean will tend 
towards zero (Sauvageau and Kumral, 2018). Over the lifetime of the EU ETS, the market for EAUs 
has been characterised by consistently high levels of volatility and experienced several structural breaks 
and market failures. Following Laurikka and Koljonen (2006) and Hintermann et al. (2016), Carbon 
prices are said to be influenced by the supply, method of allocation to participants and transparency of 
future market policies. Short-term deviations are typically driven through supply and demand. The free-
allocation and ability for participants to bank allowances between phases directly effect the supply of 
allowances. Weather, changes in prices to commodities such as oil, gas and coal and the impact of 
macro-economic conditions on production levels can influence demand for emissions allowances. 
Long-term changes in EUA prices can be said to be driven by expectations of future regulatory policies, 
subsidies and technological improvements in low carbon technology. 

***Insert Figure 1 approximately here*** 

Figure 1. Historical Futures Prices of the European Union Emissions Trading Scheme 

3. Data 
***Insert Table 1 approximately here*** 

Table 1 describes the data used in this study to estimate the parameters of stochastic models to forecast 
EUA spot prices. Data sets in this study are labelled according to the phase in which the quoted futures 
prices expired in, rather than the phase that time-series observations were quoted from. Abadie and 
Chamorro (2008) develop a stochastic model to forecast carbon prices using 2006 – 2007 quoted futures 
data of contracts expired within the second phase of the market. The model applied daily prices 
(€/tCO2e) for EUA futures prices listed on the Intercontinental Exchange (ICE), where one contract is 
for 1,000 tC02e. The work of Abadie and Chamorro (2008) used quoted futures prices for five contracts 
with December expiries due to sparse trading of other contracts. Futures markets have grown 
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substantially in trading volume since this publication, allowing for futures contracts with other expiries 
to be included within the phase four dataset. Contracts within the phase four dataset are stitched 
together, with a roll-over frequency of three months to capture the short- and long-term dynamics of 
the market (see Schwartz (1997)). Observation dates of phase two data were set directly after an initial 
recovery in EUA spot and futures price declines due to market failure resulting from a confirmed 
oversupply of EUAs in phase one (2005-2007). Phase four futures contracts were first made available 
in February 2017, but revisions for reforms were not formally declared and signed until early 2018. 
EUA market prices have experienced substantial growth since early 2018 and this observed structural 
break is selected to forecast EUA spot prices moving into phase four.  

4. Parameter Estimation 
The Kalman filter facilitates the calculation of the likelihood of observing a particular data series given 
a specific set of model parameters; this allows us to estimate parameters using maximum likelihood. 
The Kalman filter is characterised by a transition and measurement equation, presented in the work of 
Schwartz and Smith (2000). Maximum Likelihood Estimation was performed using Genetic Algorithms 
through the Genoud optimisation algorithm, first introduced by Mebane Jr and Sekhon (2011). The 
Genoud algorithm applies a genetic evolution strategy with derivative-based methods to solve difficult 
optimisation problems (Mebane Jr and Sekhon, 2011). Richardson’s Extrapolation was applied to 
numerically approximate the gradient function. 

***Insert Table 2 approximately here*** 

The STLT model includes the one-factor GBM and MR models by considering uncertainty in only one 
of the two state variables. The relevant test statistic for model comparison is a 𝜒𝜒2 test statistic with 3 
degrees of freedom; the 99.9% critical value of 16.27 is used to determine whether the additional 
parameters of the two-factor model improve the fit. Estimated log-likelihood scores for the STLT model 
are significantly larger than the one-factor models across each phase dataset (Table 2), indicating that 
the additional ability for the two-factor model to explain the term structure over the one-factor models 
is large and statistically significant. Mean-reverting rates (𝜅𝜅) for the MR models were estimated to the 
lower bounds (1E-5) of the optimisation algorithm for both phase two and four; that is, a random walk, 
suggesting that the term structure of the EUAs cannot be explained through a single factor with mean-
reverting behaviour. Given that the GBM model is the primary stochastic model used to forecast EUA 
spot prices in existing literature, and that the STLT model has the greatest fit over both one-factor 
models, the MR model is not considered further. 

***Insert Figure 2 approximately here*** 

Figure 2. Errors in the Model Fit to the Logarithm of Futures Prices 

Figure 2 illustrates that the two-factor STLT models fit the term structure of the futures prices better 
than the one-factor GBM models for each contract. Root Mean Squared Error (RMSE) scores for each 
observable futures contract are low for both models across each dataset, indicating each estimated 
model’s ability to describe the observable term structure for EUAs. The errors of the GBM models fit 
the mid-term contracts best with larger errors for the shorter and longer-term contracts, whilst the STLT 
models have less disparity between contract errors. The standard deviation of the measurement error is 
selected within the parameter estimation method to maximise the likelihood of, and provide the best 
overall fit to, the data. Prices in each period can be perfectly matched for each contract up to the number 
of state variables of the stochastic model (Schwartz and Smith, 2000). 

***Insert table 3 approximately here*** 

Table 3 presents the maximum likelihood estimates and corresponding standard errors for all models, 
including a replication of the initial model of Abadie and Chamorro (2008). There are observable 
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differences in the estimated parameters across the different panel datasets, indicating that the EU ETS 
has experienced structural and behavioural changes since the initial work of Abadie and Chamorro 
(2008). Interestingly, the EU ETS has not experienced a decrease in volatility as the market has matured, 
indicating that there is still a great deal of uncertainty regarding future price paths of the commodity. 
Correlations between the mean-reverting and random walk long-term factors are low, with the 
correlation coefficient for the phase two data estimated at less than 1%, suggesting that the model has 
identified two independent price drivers within phase two of the EU ETS. The random walk processes 
of the STLT models feature lower volatility and higher drift terms in comparison to GBM models, 
suggesting that approximately 4-5% of the volatility of EUAs can be expressed as a separate factor with 
a low correlation coeffcicient. Estimated mean-reversion parameters for the STLT models (𝜅𝜅) are low, 
with estimated half-lives of phase two and four models being 3.86 and 2.82 years respectively, 
indicating that there is evidence of mean-reverting behaviour within the market for EUAs, but they are 
primarily governed by a random walk. 

5. Case Study: 
 

The purpose of this case study is to directly compare the commercial viability of retrofitting CCS 
technology under carbon pricing uncertainty. First presented within the work of Abadie and Chamorro 
(2008), this case study considers a Super Critical Pulverized Coal (SCPC) power plant with a residual 
lifetime of 40 years that is considering retrofitting a carbon capture unit. Table 4 lists the financial 
parameters of this case study. 

Increases in the scarcity of EUAs drives long-term future prices upwards, but specific price paths of 
these allowances remain unknown, providing participants with flexibility regarding how, when and if 
they respond to these economic signals. Modelling and forecasting the long-term prices of EUAs is a 
critical problem for participants evaluating private investment in emission abatement projects under 
carbon pricing uncertainty. The Energy production industry finds the optimisation of timing reactions 
to climate policy signals to be a critical problem (Fan et al., 2019), as underinvestment in mitigation 
technology risks losing an early-mover advantage whilst over-investment could lead to scarce resources 
committed to mitigation as more profitable opportunities arise (Fuss et al., 2008). Optimal timing of 
investment into emission abatement options has been suggested to have the potential to “fundamentally 
reshape future market positions of energy companies (due to) technological path-dependencies and lags 
of policy responses to global warming signals” (Fuss et al., 2008, pp. 708-709). 

CCS is the process of capturing anthropogenic emissions from large point sources for long-term storage 
and isolation from the atmosphere through injection into appropriate geological rock formations (IPCC, 
2005). Whilst CCS requires greater energy to facilitate the capture and storage of emissions, it is capable 
of a net reduction in CO2 emissions of a point source of up to 90% (IPCC, 2005). CCS can be both in-
built during the construction of new point sources or built onto existing point sources (retrofit) at a 
higher cost and lower efficiency (Reinelt and Keith, 2007). Bibliometric studies (Li et al., 2019; Yu et 
al., 2016) have determined that the evaluation of the investment decision to invest in low-carbon energy 
technologies and CCS technology under carbon pricing uncertainty has typically been performed 
through ROA. Studies that have evaluated CCS technology have applied a variety of different financial 
inputs and stochastic model parameters, which can make the direct comparison of results difficult or 
invalid, even when they have applied similar valuation methods or case studies (Rubin, 2012). Existing 
literature that has applied ROA to value CCS technology has determined that the commercial viability 
of retrofitting CCS technology is highly dependent on strong carbon-pricing signals, transparent, long-
term government commitments and higher existing prices of carbon (Abadie and Chamorro, 2008; Fuss 
et al., 2008; Mo et al., 2015; Zhou et al., 2014; Zhou et al., 2010; Zhu and Fan, 2011, 2013). Evaluation 
of the comparative propensity to retrofit CCS technology has also been considered under both 
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deterministic carbon taxes and stochastically evolving ETS (Blyth et al., 2007; Compernolle et al., 
2017; Knoope et al., 2015a; Szolgayova et al., 2008; Walsh et al., 2014). 

***Insert table 4 approximately here*** 

The option to retrofit CCS technology is a function of stochastic carbon allowance and wholesale 
electricity prices as retrofitting CCS technology to an SCPC plant reduces total electricity production 
due to the energy required to capture, condense, transport and store CO2 emissions (Abadie and 
Chamorro, 2008; Abadie et al., 2014; Rohlfs and Madlener, 2011; Zhu and Fan, 2011, 2013). Stochastic 
parameters for electricity prices were estimated by Abadie and Chamorro (2008) (Table 5) through an 
Ordinary Least Squares (OLS) regression applied to monthly average prices of Spanish Wholesale 
Electricity Prices (OMEL) for an inhomogeneous GBM model, which corresponds to an Autoregressive 
model of order 1 ((Abadie and Chamorro, 2008), see also (Abadíe, 2007).) 

Let 𝐸𝐸𝑡𝑡 denote the price of electricity at time 𝑡𝑡: 

 𝑑𝑑𝐸𝐸𝑡𝑡 = 𝑘𝑘𝑒𝑒(𝐿𝐿𝑒𝑒 − 𝐸𝐸𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑒𝑒𝐸𝐸𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡
𝐸𝐸 (4) 

Where, 𝐿𝐿𝑒𝑒 denotes the equilibrium price, 𝑘𝑘𝑒𝑒 is the rate of mean-reversion and 𝜎𝜎𝑒𝑒 is the instantaneous 
volatility. The stochastic model for electricity estimated by Abadie and Chamorro (2008) is applied 
within this case study (Table 5), with the estimated correlation between carbon and electricity prices 
applied to both factors for the STLT models. This allows for direct comparison between the modelling 
assumptions of EUA prices and the pricing signals generated by the EU ETS. This case study uses up 
to three stochastic variables. 

***Insert table 5 approximately here*** 

The option to retrofit CCS technology is classified as an American call option with dividends equal to 
the cash flows accrued through investment. Calculating the value of an American option requires 
finding the optimal exercise rule through the solution of an optimal stopping problem and computing 
the expected discounted payoff of the option under this rule (Glasserman, 2004). At any time, the SCPC 
plant evaluates the decision to exercise the option to retrofit CCS technology or delay the exercise 
decision. Optimal investment timing and the value of the option to retrofit CCS is solved in this study 
through the LSM Simulation method proposed by Longstaff and Schwartz (2001). The LSM simulation 
method is a dynamic programming method that solves for the value of an American option through the 
regression of economic values across simulated price paths in each period on a linear combination of a 
set of basis functions of underlying stochastic variables. The LSM simulation technique is considered 
the most flexible real options valuation method that is comparatively easy to implement, particularly 
for multi-dimensional problems, with Schwartz (2013) concluding “it is intuitive, transparent, flexible, 
easily implemented, and computationally efficient” (p. 167). The option value of retrofitting CCS 
technology is calculated by discounting the payoffs of investing at the optimal investment timing 
calculated through the backwards induction process and averaging across all price paths. For an example 
on solving for CCS option values through the LSM Simulation method, see Mo et al. (2018) section 
2.3. 

Continuation values in this case study were approximated using cross products of Carbon and Electricity 
state variables and the first nine Laguerre polynomials (see Abramowitz and Stegun (1965)) although 
project values were determined to be insensitive to the choice of orthogonal polynomial and degrees 
higher than nine. The LSM Simulation method was performed using 100,000 simulations (of which 
50% were antithetic) and a discrete-time step of six per year. Projects under phase two and four 
stochastic models were estimated at an initial carbon price of 18.02 €/tCO2e and 25.61 €/tCO2e 
respectively. 
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6. Results and Discussion: 
Calculated project values under the different estimated stochastic models are presented in Table 6. 
Estimated project values and trigger prices of investment are highly sensitive to modelling assumptions, 
investment criteria and ROA solution methods. The trigger prices of investment under the ROA 
investment criteria are much higher than that of the Net Present Value (NPV) criteria because of the 
uncertainty of future carbon price paths and corresponding risk associated with retrofitting CCS 
technology. Trigger prices of investment are substantially lower using the LSM simulation method in 
comparison to a lattice approach, despite comparable NPV, real option values (ROV) and waiting option 
values (WOV); however, the effect of ROA solution methods on trigger prices is not the focus of this 
study.  

***Insert table 6 approximately here*** 

Parameter estimates for the GBM models featured lower drift and higher volatility terms under phase 
four (Table 3) and have resulted in an increase in the trigger price at which immediate retrofits of CCS 
is optimal. The results of the GBM models would suggest that despite the higher starting carbon price, 
the pricing signal of future EUA price paths has decreased since the publication of Abadie and 
Chamorro (2008) and CCS technology has become less viable as an emission abatement option. 

Expanding the stochastic modelling assumption of carbon prices from a one-factor GBM model to the 
two-factor STLT model substantially affected valuation estimates, investment trigger prices and the 
probability of investment over the lifetime of the SCPC unit (Figure 3). Modelling carbon prices through 
a two-factor model has notably increased the strength of the carbon pricing signal under phase four, 
with the estimated NPV of the project almost tripling and the EUA trigger price decreasing by 
approximately 24%. Estimated project values with the STLT model under phase two decreased project 
value and increased trigger prices in comparison to the GBM model. Investment decisions under the 
GBM models were identical within 0.3% within the first fifteen years of the power plants lifetime 
despite the lower estimated drift term and higher initial carbon price under phase four. Modelling EUAs 
with the STLT model has increased the probability of investment by 3.46% under phase two and 9.39% 
under phase four. Modelling EUAs with the STLT model has had a two-tailed effect upon trigger prices 
and project value under phase two and four, suggesting that the effect of increasing the complexity of 
EUA modelling through additional factors on valuation estimates cannot be explained by the 
introduction of downward or upward bias.  

***Insert Figure 3 approximately here*** 

Figure 3. Proportion of invested paths over the forecasting horizon 

The extreme length of the forecasting horizon (40 years) within this case study has resulted in high 
standard errors for the NPV and ROV. Forecasting projects beyond 40 years is unlikely when 
performing ROA and thus these standard errors can be considered to be at their highest. Increasing the 
dimensions of the EUA stochastic model has increased standard errors for the NPV and ROV under 
phase four, however, the WOV to delay investment and corresponding investment trigger price, being 
the difference between the ROV and NPV, is calculated with a higher level of precision. Therefore an 
increase in the dimensionality of the problem has not decreased the uncertainty of the estimated value 
of the option to delay investment and corresponding optimal investment decisions. 

LSM Simulation is the recommended ROA solution method when valuing projects under carbon pricing 
uncertainty due to the multi-dimensional STLT stochastic model used and the curse of dimensionality 
prohibiting efficient valuation within a lattice framework. The two-dimensional binomial lattice solved 
by Abadie and Chamorro (2008) further required an analytic expression for the NPV of annuities under 
a GBM and inhomogeneous GBM stochastic process, whilst a closed-form expression for the present 
value of an annuity that follows the STLT stochastic process does not exist. The LSM Simulation 
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solution method further allows for greater analysis of investment performance measures (Table 7), such 
as the expected sequestered emissions resulting from this investment decision under existing carbon 
pricing signals. This metric is of importance to EUA policy setters, as it estimates the reduction in 
emissions in response to existing climate-policy pricing signals. Applying this metric to a portfolio of 
abatement options can provide climate-policy regulators with estimates to future emission abatement. 

***Insert table 7 approximately here*** 

Figure 4 displays a replication of Figure 5 from the work of Abadie and Chamorro (2008), with output 
trigger prices from this study included. Following the work of Abadie and Chamorro (2008), the trigger 
price of investment increases steeply for power plants with a remaining useful life below 8 years, with 
comparable trigger prices for each of the different stochastic models and ROA solution methods. 
Trigger prices under phase four through GBM modelling are comparable with those found within the 
initial work of Abadie and Chamorro (2008). However, extending the stochastic model to the STLT 
model has greatly decreased these trigger prices. 

***Insert figure 4 approximately here*** 

Figure 4. Investment and no-investment regions depending on useful life 

The ongoing progression of research and development into CCS technology means that the financial 
parameters of the original CCS retrofit case study may have changed substantially since their 
publication, warranting a sensitivity analysis of key variables to the value of retrofitting CCS and 
associated trigger prices. Following the work of Abadie and Chamorro (2008), it is assumed that the 
power plant has a residual lifetime of 30 years for sensitivity analysis purposes. Outputs of sensitivity 
analysis of this case study are in line with major findings found within the literature that have performed 
ROA to value CCS retrofits. 

***Insert table 8 approximately here*** 

Parameter estimates for wholesale electricity prices have been assumed constant for this case study, 
while in reality, these parameters are likely to change over time and depending on geographic location, 
highly influencing calculated project value and trigger prices (Table 8). 

***Insert table 9 approximately here*** 

Decreases to the initial capital expenditure of CCS retrofits can increase the propensity to invest within 
the technology (Table 9), making technology investment subsidies a possible method of increasing the 
commercial uptake of this emission abatement option (Abadie and Chamorro, 2008; Wang and Du, 
2016; Zhang et al., 2014). Immediate investment into CCS retrofits is sup-optimal even with a 100% 
investment subsidy, suggesting that energy producers feature a low willingness to capture emissions 
even after retrofits (Zhang et al., 2014; Zhu and Fan, 2013).  

***Insert table 10 approximately here*** 

***Insert table 11 approximately here*** 

Changes in the operational costs (Table 10) and energy efficiency penalty (Table 11) of transporting 
and storing (T&S) CO2 has a greater effect on project value than changes to capital expenditure, 
although subsidies on captured emissions would be much higher, suggesting that there is little likelihood 
of governments introducing capture subsidies (Zhu and Fan, 2011, 2013).  

***Insert table 12 approximately here*** 

Increases to the construction time of CCS units can negatively influence trigger prices (Table 12), 
particularly if energy production of the SCPC plant must be halted during this construction phase. 
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7. Conclusion: 
 

This study has evaluated the ability of one-factor and two-factor models to explain the term structure 
of the EU ETS and the value of the option to retrofit CCS technology under these models. The two-
factor STLT model of Schwartz and Smith (2000) was empirically determined to possess a better fit 
than popular one-factor models at a 0.1% level of statistical significance to observed futures contracts 
that expired within phases two and four of the EUA carbon market. Compared with GBM model 
parameters, the STLT model featured higher drift and lower volatility terms for the random-walk factor, 
suggesting that 4-5% of the volatility of EUAs can be explained through a separate factor with minimal 
mean-reversion and very low correlation to the random-walk factor. 

Estimated stochastic models were used to replicate and extend the CCS retrofit case study first presented 
by Abadie and Chamorro (2008). It was demonstrated that the stochastic process used to forecast EUA 
spot prices has a large impact on the calculated project value and critical values at which immediate 
investment is optimal. Immediate investment in the retrofitting of CCS is not optimal under either phase 
of the EU ETS. Modelling EUAs through a GBM model leads to the conclusion that the pricing signals 
generated by the market have decreased in relation to phase two estimates. In contrast, the STLT model 
greatly increases the strength of this signal, such that current signals in conjunction with market high 
existing price levels create the strongest pressure to reduce emissions under the EU ETS since market 
inception. Reforms implemented to address the problem of overabundance of allowances in the market 
has substantially strengthened the carbon pricing signal. 

Future research opportunities include applying our phase four models to value alternate emission 
abatement technologies, such as renewable energies or other carbon sequestration technologies, with 
contemporary financial estimates. Further, the use of contemporary parameter estimates for wholesale 
electricity prices would provide further insights into the commercial viability of CCS technology and 
the correlation between different factors of the carbon price and electricity prices. The work of Cortazar 
and Naranjo (2006) presents an N-factor stochastic model to describe the term structure of commodities, 
of which the model of Schwartz and Smith (2000) is a special case when 𝑁𝑁 = 2. Extending the 
stochastic modelling of carbon prices into an N-factor framework or expanding the Kalman Filter 
methodology by accounting for non-linearity in the transition equations or relaxed assumptions of a 
Gaussian residual term, is a natural methodological extension. Extending the Real Options framework 
to allow for the exercise of operational flexibilities, such as temporary suspension or permanent 
abandonment, of the CCS project could decrease the irreversibility of this project and promote CCS 
retrofits. Applying the two-factor STLT model within this framework may affect the value of short-
term real options made under uncertainty due to the additional information captured by the stochastic 
model over one-factor models, reducing the effect of hysteresis on the values of these Real Options. 
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Dataset Name Start Date End Date Observations Maturities 

Phase Two 
(Abadie and Chamorro, 2008) 01/05/2006 10/5/2007 265 Dec {08-12} 

Phase Four 2/01/2018 28/07/2020 661 {0.25,0.5,1,1.5,1.75} 
Table 1. Description of phase two replication and phase four futures data 
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 Phase Two Phase Four 
Geometric Ornstein-Uhlenbeck 

(MR) 4,682 8,985 

Geometric Brownian Motion 
(GBM) 4,674 12,129 

Short-Term/Long-Term Model 
(STLT) 5,505 15,320 

Table 2 Log-Likelihood Scores for Model Comparison 
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Abadie 
and 

Chamorro 
(2008) 

Replication 

Phase Two Phase Four 

GBM STLT GBM STLT 

𝛼𝛼𝜉𝜉 - 0.1741 
(0.4675) 

0.0189 
(0.4783) 

0.1361 
(0.4497) 

0.4583 
(0.3310) 

0.4973 
(0.3024) 

𝛼𝛼𝜉𝜉 − 𝜆𝜆𝜉𝜉 0.0308 
 

0.0308 
(0.0001) 

0.0306 
(0.0001) 

0.0365 
(0.0003) 

0.0115 
(0.0001) 

0.0446 
(0.0030) 

𝜎𝜎𝜉𝜉 0.4683 
 

0.4731 
(0.0208) 

0.4845 
(0.0210) 

0.4401 
(0.0215) 

0.5307 
(0.0145) 

0.5077 
(0.0141) 

𝜅𝜅 - - - 0.1792 
(0.0005) - 0.2462 

(0.0184) 

𝜆𝜆𝜒𝜒 - - - 0.0443 
(0.0063) - 0.0622 

(0.0045) 

𝜎𝜎𝜒𝜒 - - - 0.2059 
(0.0005) - 0.0748 

(0.0050) 

𝜌𝜌𝜒𝜒𝜉𝜉 - - - 0.0091 
(0.0595) - 0.2960 

(0.0420) 

𝑠𝑠1 

0.0056 
 

0.0056 
(0.0002) 

0.0081 
(0.0003) 

0.0033 
(0.0001) 

0.0021 
(0.0001) 0 

𝑠𝑠2 0.0036 
(0.0001) 

0.0015 
(0.0002) 0 0.0008 

(0.0001) 

𝑠𝑠3 0 0.0005 
(0.0002) 

0.0030 
(0.0001) 

0.0013 
(0.0001) 

𝑠𝑠4 0.0034 
(0.0034) 

0.0016 
(0.0003) 

0.0060 
(0.0001) 

0.0005 
(0.0002) 

𝑠𝑠5 0.0066 
(0.0066) 

0.0036 
(0.0005) 

0.0076 
(0.0002) 

0.0017 
(0.0001) 

Table 3. Maximum-Likelihood Parameter Estimates of panel data. Standard errors of estimates are given in brackets 
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Parameter Unit Value 
SCPC remaining lifetime Years 40 
Construction period Years 1 
Initial capital expenditure M€ 214.5 
Learning rate %/year 2.02 
SCPC initial output GWh 3,504 
Ancillary unit output penalty % 5% 
CCS unit output penalty % 15% 
CCS operation and maintenance 
costs 

€/MWh p.a. 1.348 

Captured CO2 Emissions tCO2/year 2,396,736 
CCS transport and storage costs €/tCO2 7.32 

Table 4. Financial Parameters of a Super Critical Pulverized Coal Power Plant 
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Description Parameter Value 
Initial Price 𝐸𝐸0  0.04083 
Equilibrium Price 𝐿𝐿𝑒𝑒  0.037852 
Reversion Rate 𝑘𝑘𝑒𝑒   0.9604 
Instantaneous Volatility 𝜎𝜎𝑒𝑒  0.4968 
Correlation in commodities 𝜌𝜌𝑐𝑐,𝑒𝑒  0.2738 

Table 5. Wholesale Electricity stochastic modelling parameters 
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Abadie and 
Chamorro 

(2008) 
Replication 

Phase Two Phase Four 

GBM STLT GBM STLT 

NPV 

(M€) 

262.02 

 

267.43 

[18.95] 

265.31 

[20.72] 

171.78 

[15.8] 

293.37 

[22.15] 

856.74 

[43.63] 

ROV 

(M€) 
606.53 

 

632.99 

[18.77] 

641.95 

[20.56] 

548.73 

[15.61] 

642.57 

[22.00] 

1,122.38 

[43.52] 

WOV 

(M€) 

344.49 

 

363.44 

[1.42] 

376.64 

[1.44] 

376.95 

[1.32] 

349.20 

[1.54] 

265.65 

[1.73] 

NPV Trigger 
Price 

(€/tCO2e) 
13.95 13.87 13.92 15.68 19.31 13.15 

ROA Trigger 
Price 

(€/tCO2e) 
54.09 41.79 41.56 43.52 54.71 44.02 

Table 6. Calculated Project Value of the option to retrofit CCS technology under different phases of the EU ETS. Standard 
errors of estimates are given in square brackets. 
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Phase Two Phase Four 

GBM STLT GBM STLT 

Proportion of 
Invested Paths 17.97% 21.43% 14.52% 23.91% 

Expected 
Investment Time 10.52 Years 11.24 Years 8.27 Years 9.73 Years 

Expected Payback 
Period 8.57 Years 8.79 Years 7.35 Years 7.95 Years 

Expected 
Sequestered 
Emissions 

68.27 MtCO2e 66.54 MtCO2e 73.66 MtCO2e 70.15 MtCO2e 

Table 7. Simulation Investment Characteristics 

  



This is the peer reviewed version of the following article: Aspinall, T., Gepp, A., Harris, G., Kelly, S., Southam, C., & Vanstone, B. J. (2020). 
Estimation of a Term Structure Model of Carbon Prices through State Space Methods: The European Union Emissions Trading Scheme. 

Accounting and Finance., which has been published in final form at https://doi.org/10.1111/acfi.12708. 
This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. 

 

𝐿𝐿𝑒𝑒 (cents 
€/kWh) 

Abadie and 
Chamorro 

(2008) 

Phase Two Phase Four 

GBM STLT GBM STLT 

1.8926 
(-50%) - 

486.80 M€ 
(+6.10%) 

[35.48 €/tCO2e] 

420.38 M€ 
(+7.50%) 

[36.48 €/tCO2e] 

542.40 M€ 
(+5.90%) 

[44.92 €/tCO2e] 

845.81 M€ 
(+4.25%) 

[37.37 €/tCO2e] 

3.0282 
(-20%) 

 
 

[50.76 €/tCO2e] 

469.01 M€ 
(+2.20%) 

[39.88 €/tCO2e] 

401.97 M€ 
(+2.80%) 

[40.80 €/tCO2e] 

522.56 M€ 
(+2.10%) 

[50.52 €/tCO2e] 

820.18 M€ 
(+1.09%) 

[41.81 €/tCO2e] 

3.4067 
(-10%) 

 
 

[52.57 €/tCO2e] 

463.41 M€ 
(+1.00%) 

[41.36 €/tCO2e] 

396.55 M€ 
(+1.40%) 

[42.30 €/tCO2e] 

516.46 M€ 
(+0.90%) 

[52.40 €/tCO2e] 

812.68 M€ 
(+0.16%) 

[43.40 €/tCO2e] 

3.7852 
 
 

[54.51 €/tCO2e] 

458.72 M€ 
 

[42.99 €/tCO2e] 

391.09 M€ 
 

[44.34 €/tCO2e] 

512.00 M€ 
 

[54.61 €/tCO2e] 

811.36 M€ 
 

[45.52 €/tCO2e] 

4.1637 
(+10%) 

 
 

[56.29 €/tCO2e] 

453.47 M€ 
(-1.10%) 

[44.33 €/tCO2e] 

385.96 M€ 
(-1.30%) 

[45.21 €/tCO2e] 

505.55 M€ 
(-1.30%) 

[56.16 €/tCO2e] 

797.80 M€ 
(-1.67%) 

[46.41 €/tCO2e] 

4.5422 
(+20%) 

 
 

[58.28 €/tCO2e] 

448.77 M€ 
(-2.20%) 

[45.81 €/tCO2e] 

381.05 M€ 
(-2.60%) 

[46.66 €/tCO2e] 

500.38 M€ 
(-2.30%) 

[58.04 €/tCO2e] 

790.31 M€ 
(-2.59%) 

[47.90 €/tCO2e] 

5.6778 
(+50%) - 

434.82 M€ 
(-5.20%) 

[50.22 €/tCO2e] 

366.89 M€ 
(-6.20%) 

[51.01 €/tCO2e] 

485.58 M€ 
(-5.20%) 

[63.64 €/tCO2e] 

769.46 M€ 
(-5.16%) 

[52.39 €/tCO2e] 
Table 8. Calculated Real Option Value and investment trigger price as a function of Equilibrium Electricity Price. Percentage 
changes in ROV are shown in brackets, and investment trigger prices are shown in square brackets. 
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CAPEX Phase Two Phase Four 
GBM STLT GBM STLT 

0 
(-100%) 

504.47 M€ 
(+9.97%) 

[31.93 €/tCO2e] 

438.16 M€ 
(+12.00%) 

[32.87 €/tCO2e] 

562.73 M€ 
(+9.91%) 

[40.52 €/tCO2e] 

870.65 M€ 
(+7.31%) 

[33.72 €/tCO2e] 

54.625 M€ 
(-75%) 

491.55 M€ 
(+7.16%) 

[34.69 €/tCO2e] 

424.94 M€ 
(+8.70%) 

[35.73 €/tCO2e] 

548.33 M€ 
(+7.10%) 

[44.04 €/tCO2e] 

853.96 M€ 
(+5.25%) 

[36.68 €/tCO2e] 

107.25 M€ 
(-50%) 

479.74 M€ 
(+4.58%) 

[37.46 €/tCO2e] 

412.70 M€ 
(+5.50%) 

[38.60 €/tCO2e] 

534.93 M€ 
(+4.48%) 

[47.56 €/tCO2e] 

838.43 M€ 
(+3.34%) 

[39.63 €/tCO2e] 

160.875 M€ 
(-25%) 

468.76 M€ 
(+2.19%) 

[40.23 €/tCO2e] 

401.44 M€ 
(+2.60%) 

[41.47 €/tCO2e] 

523.01 M€ 
(+2.15%) 

[51.08 €/tCO2e] 

824.34 M€ 
(+1.60%) 

[42.57 €/tCO2e] 

214.5 M€ 
 

458.72 M€ 
 

[42.99 €/tCO2e] 

391.09 M€ 
 

[44.34 €/tCO2e] 

512.00 M€ 
 

[54.61 €/tCO2e] 

811.36 M€ 
 

[45.52 €/tCO2e] 
Table 9. Calculated Real Option Value and investment trigger price as a function of Initial Capital Expenditure. Percentage 
changes in ROV are shown in brackets, and investment trigger prices are shown in square brackets. 
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T&S Cost Phase Two Phase Four 
GBM STLT GBM STLT 

3.68 €/tCO2e 
(- 50%) 

484.00 M€  
(+5.50%) 

[36.36 €/tCO2e] 

416.87 M€  
(+6.60%) 

[37.44 €/tCO2e] 

539.77 M€ 
(+5.42%) 

[46.17 €/tCO2e] 

844.15 M€ 
(+4.04%) 

[38.46 €/tCO2e] 

7.35 €/tCO2e 
458.72 M€ 

 
[42.99 €/tCO2e] 

391.09 M€ 
 

[44.34 €/tCO2e] 

512.00 M€ 
 

[54.61 €/tCO2e] 

811.36 M€ 
 

[45.52 €/tCO2e] 

11.03 €/tCO2e 
(+ 50%) 

437.63 M€  
(-4.60%) 

[49.65 €/tCO2e] 

369.08 M€  
(-5.60%) 

[51.26 €/tCO2e] 

488.72 M€ 
(-4.55%) 

[63.04 €/tCO2e] 

782.47 M€ 
(-3.56%) 

[52.58 €/tCO2e] 
Table 10. Calculated Real Option Value and investment trigger price as a function of Transport and Storage Cost. Percentage 
changes in ROV are shown in brackets, and investment trigger prices are shown in square brackets. 
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Penalty (%) Phase Two Phase Four 
GBM STLT GBM STLT 

0% 
(-15%) 

524.66 M€ 
(+14.40%) 

[27.77 €/tCO2e] 

458.19 M€ 
(+17.20%) 

[28.83 €/tCO2e] 

584.33 M€ 
(+14.10%) 

[35.25 €/tCO2e] 

899.20 M€ 
(+10.80%) 

[29.56 €/tCO2e] 

5% 
(-10%) 

498.74 M€ 
(+8.70%) 

[32.84 €/tCO2e] 

432.11 M€ 
(+10.50%) 

[34.00 €/tCO2e] 

557.24 M€ 
(+8.80%) 

[41.68 €/tCO2e] 

865.57 M€ 
(+6.70%) 

[34.88 €/tCO2e] 

15% 
458.72 M€ 

 
[42.99 €/tCO2e] 

391.09 M€ 
 

[44.34 €/tCO2e] 

512.00 M€ 
 

[54.61 €/tCO2e] 

811.36 M€ 
 

[45.52 €/tCO2e] 

20% 
(+5%) 

442.50 M€ 
(-3.50%) 

[48.08 €/tCO2e] 

374.15 M€ 
(-4.30%) 

[49.53 €/tCO2e] 

494.09 M€ 
(-3.50%) 

[61.06 €/tCO2e] 

788.00 M€ 
(-2.90%) 

[50.85 €/tCO2e] 
Table 11. Calculated Real Option Value and investment trigger price as a function of CCS Energy Output Penalty. Percentage 
changes in ROV are shown in brackets, and investment trigger prices are shown in square brackets. 
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Construction 
(Years) 

Phase Two Phase Four 
GBM STLT GBM STLT 

0 
461.26 M€ 
(+0.55%) 

[40.88 €/tCO2e] 

393.67 M€ 
(+0.66%) 

(42.10 €/tCO2e] 

517.46 M€ 
(+1.10%) 

[50.78 €/tCO2e] 

817.84 M€ 
(+0.80%) 

[43.11 €/tCO2e] 

1 
458.72 M€ 

 
[42.99 €/tCO2e] 

391.09 M€ 
 

[44.34 €/tCO2e] 

512.00 M€ 
 

[54.61 €/tCO2e] 

811.36 M€ 
 

[45.52 €/tCO2e] 

2 
453.99 M€ 
(-1.03%) 

[45.72 €/tCO2e] 

386.28 M€ 
(-1.23%) 

[47.35 €/tCO2e] 

502.60 M€ 
(-1.80%) 

[59.67 €/tCO2e] 

800.66 M€ 
(-1.32%) 

[48.62 €/tCO2e] 

3 
446.68 M€ 
(-2.62%) 

[48.31 €/tCO2e] 

379.48 M€ 
(-2.97%) 

[50.24 €/tCO2e] 

490.27 M€ 
(-4.20%) 

[64.83 €/tCO2e] 

786.58 M€ 
(-3.05%) 

[51.43 €/tCO2e] 

4 
437.35 M€ 
(-4.66%) 

[50.75 €/tCO2e] 

371.40 M€ 
(-5.04%) 

[52.86 €/tCO2e] 

476.29 M€ 
(-7.00%) 

[69.99 €/tCO2e] 

769.22 M€ 
(-5.19%) 

[54.16 €/tCO2e] 

5 
426.28 M€ 
(-7.07%) 

[53.09 €/tCO2e] 

361.84 M€ 
(-7.48%) 

[55.43 €/tCO2e] 

460.41 M€ 
(-10.10%) 

[74.78 €/tCO2e] 

749.39 M€ 
(-7.64%) 

[56.66 €/tCO2e] 
Table 12. Calculated Real Option Value and investment trigger price as a function of construction time. Percentage changes 
in ROV are shown in brackets, and investment trigger prices are shown in square brackets. 
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Figure 2. Errors in the Model Fit to the Logarithm of Futures Prices 
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Figure 3. Proportion of invested paths over the forecasting horizon 

0%

5%

10%

15%

20%

25%

0 5 10 15 20 25 30 35 40

In
ve

st
ed

 P
at

hs
 (%

)

Forecasting Horizon (Years)

Phase Two (GBM)

Phase Two (STLT)

Phase Four (GBM)

Phase Four (STLT)



 

 
Figure 4. Investment and no-investment regions depending on useful life 
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