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Abstract. The paper presents the results of application of different techniques for processing of 

digital image correlation data. The algorithms are described and applied for determination of 

elasticity modulus of carbon fiber reinforced polymer specimens tested by uniaxial tension. Two 

ways of evaluation of elongation along with two methods of elastic modulus calculation resulted 

in four techniques which have shown quite similar results with a scatter of 0.5-2%.  

1. Introduction 

Evaluation of the properties of materials during their mechanical testing is an urgent task. Optical 

systems based on digital image correlation method make it possible to measure strains in a non-contact 

way with high accuracy [1-3]. Optical extensometers based on the digital image correlation method have 

been developed [4–9]. In [10], the accuracy of an optical extensometer is evaluated in comparison with 

a strain gauge, as well as a comparison of 2D and 3D optical extensometer. It is shown that 2D systems 

are not enough for real tests of materials. In our paper, the principle of evaluating the elastic properties 

of materials using a system of stereo imaging and the method of digital image correlation is considered.  

2. Mathematics 

Motion detection in Digital Image Correlation Method (DIC) on a series of images in a general form is 

based on minimizing the functional 

 𝐸(𝑤, 𝑆) = 𝐸𝐷(𝑤, 𝑆) + 𝛼𝐸𝑆(𝑤, 𝑆), (1) 

where w is the shape function, S is the image area over which E is minimized, ED is the similarity 

measure of image blocks, ES is the similarity measure of vectors in the optical stream, and α is the 

regularization coefficient. 

The similarity measures ED of two sections of the current image (CI) and the reference image (RI) 

can be determined by various functions, the condition of which is the presence of an extremum, usually 

a minimum. The simplest measure of proximity is the sum of the squared difference [11]: 

 𝑆𝑆𝐷 = ∑ (𝐹(𝑋) − 𝐺(𝑋, 𝑤))
2

𝑋∈𝑆 , (2) 

where F(X), G(X,w) are the brightness of the pixels of the compared sections of CI and RI, 

respectively, X is the coordinate of the pixels of the section S, w is the shape function. 

One of the most difficult measures is the normalized sum of squared difference with zero 

mean [12,13]: 
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 𝑍𝑁𝑆𝑆𝐷 = ∑ (
𝐹(𝑋)−𝐹̅

√∑ (𝐹(𝑋)−𝐹̅)2
𝑋∈𝑆

−
𝐺(𝑋,𝑤)−𝐺̅

√∑ (𝐺(𝑋,𝑤)−𝐺̅)2
𝑋∈𝑆

)
2

𝑋∈𝑆 , (3) 

where 𝐹̅ and 𝐺̅ are arithmetic mean values of the CI and RI images, respectively. 

There are two ways to find the minimum functional E: 

 Block method. The reference image area S is compared in a sliding window with the current 

image. Often this approach is used to pre-search for large movements with pixel accuracy. 

However, it is rarely used in calculations with subpixel accuracy and with a complex shape 

function, because it leads to unreasonably large computational costs; 

 Application of optimization. Any numerical optimization algorithm is used, for example, the 

Newton-Raphson or Gauss-Newton algorithm. The optimization approach, on the contrary, is 

used in the subpixel region, since it provides stable convergence in the range of [−1 ÷ +1] pixel. 

Newton-Raphson optimization [14,15] can be written as follows: 

 𝑃𝑘+1 = 𝑃𝑘 −
∇𝐸(𝑃𝑘)

∇∇𝐸(𝑃𝑘)
 (4) 

where k is the iteration number, p is the parametric vector containing the coefficients of the form 

function.  

The system of equations describing the displacements in the region S, based on the affine shape 

function, has the following form [15,16]: 

 {
 𝑥̃(𝑥, 𝑦) = 𝑝0 + 𝑝2𝑥 + 𝑝4𝑦

 𝑦̃(𝑥, 𝑦) = 𝑝1 + 𝑝3𝑥 + 𝑝5𝑦
 (5) 

In the case of using a stereo vision system, processing of stereo pairs of images is required to 

determine the spatial coordinates of points on the surface of an object. Initially a calibration is carried 

out to determine the parameters of individual cameras and the system as a whole for the installed stereo 

vision system. The parameters contain the matrix of projective transformations of the object on the plane 

of the cameras, distance, angle between the planes of the cameras, etc. The reconstruction of three-

dimensional coordinates for the points of the stereo pair is carried out by calculating the disparity map, 

which reflects the displacement of the image points of the right camera relative to the left. The 

determination of disparity maps is carried out by the algorithms considered above. The obtained spatial 

coordinates of the points are recalculated into displacements corresponding to the given values of the 

loading of the sample. The set of points forms the spatial field of the displacement vectors of the sample 

surface. 

In the paper two extensometer algorithms were used to assess the strain: 

 Determination of elongation of the specimen between two points (gagelength); 

 Integrated strain assessment of the whole specimen. 

The elongation of the sample between two points (p1 and p2) is defined as the difference between 

the two Euclidean distances before and after application of the load. The deformation is calculated as 

follows: 

ε =
𝐿𝑖−𝐿0

𝐿0
,

𝐿0 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 + 𝑧1)2, 𝐿𝑖 = √(𝑥2
′ − 𝑥1

′ )2 + (𝑦2
′ − 𝑦1

′ )2 + (𝑧2
′ − 𝑧1

′ )2,
 (6) 

where (x1,y1,z1), (x2,y2,z2) are coordinates of the points of the extensometer before loading, (x'1,y'1,z'1), 

(x'2,y'2,z'2) are coordinates of the points of the extensometer after loading. 

An integral estimate of the strain over a region implies an approximation of the field of displacement 

vectors converted to local coordinates and differentiation of the resulting function. The surface of the 

sample is approximated by a function; a biquadratic function was used in the work: 
 𝑧(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗(𝑥 − 𝑥𝑐)𝑖(𝑦 − 𝑦𝑐)𝑗2

𝑗=0
2
𝑖=0  (7) 

where xc, yc are the coordinates of the center point of the sample or region of interest highlighted on 

the sample. 
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The field of displacement vectors is approximated using trilinear approximation: 

𝑈(𝑥, 𝑦, 𝑧) = 𝑈0 + 𝑈1𝑥 + 𝑈2𝑦 + 𝑈3𝑧 + 𝑈4𝑥𝑦 + 𝑈5𝑥𝑧 + 𝑈6𝑦𝑧 + 𝑈7𝑥𝑦𝑧, 

 𝑈0 = [
𝑢0

𝑣0
] … 𝑈7 = [

𝑢7

𝑣7
] , 𝑥 = 𝑥 − 𝑥𝑐 , 𝑦 = 𝑦 − 𝑦𝑐 , 𝑧 = 𝑧 − 𝑧𝑐 (8) 

where ui, vi, i=0..7 are trilinear approximation coefficients. 

Since the differentiation on the surface is considered, by substituting z(x,y) in U(x,y,z), the function 

U depending only on two coordinates (x,y) is obtained. The final function is bicubic. 

 𝑈(𝑥, 𝑦) = 𝑈0 + 𝑈1𝑥 + 𝑈2𝑦 + 𝑈3𝑧(𝑥, 𝑦) + 𝑈4𝑥𝑦 + 𝑈5𝑥𝑧(𝑥, 𝑦) +  

 𝑈6𝑦𝑧(𝑥, 𝑦) + 𝑈7𝑥𝑦𝑧(𝑥, 𝑦) = ∑ ∑ 𝑈𝑖𝑗
′ (𝑥 − 𝑥𝑐)𝑖(𝑦 − 𝑦𝑐)𝑗3

𝑗=0
3
𝑖=0  ;  𝑈𝑖𝑗

′ = [
𝑢𝑖𝑗

′

𝑣𝑖𝑗
′ ] (9) 

where u'ij, v'ij are the approximation coefficients of the vector field. 

The strain tensor values are obtained by differentiating the function U(x,y) at the point (xc,yc) 

𝜀𝑥𝑥 =
𝜕𝑢(𝑥𝑐,𝑦𝑐)

𝜕𝑥
= 𝑢10

′ ; 𝜀𝑦𝑦 =
𝜕𝑣(𝑥𝑐,𝑦𝑐)

𝜕𝑦
= 𝑣01

′ ; 𝜀𝑥𝑦 = 0.5 (
𝜕𝑢(𝑥𝑐,𝑦𝑐)

𝜕𝑦
+

𝜕𝑣(𝑥𝑐,𝑦𝑐)

𝜕𝑥
) = 0.5(𝑢01

′ + 𝑣10
′ )    (10) 

The elastic modulus was calculated by two methods: 

 As the ratio of stress increment and strain taken between two points; 

 Using a linear approximation of stress-strain points. 

3. Materials and testing technique 

The specimens for testing were carbon fiber reinforced polymers (CFRP) prepared according to ASTM 

D3039M-14 with a balanced symmetric pseudosotropic lay-up [0/90;+45/-45]4S. CBX300 biaxial 

fabrics made of PAN carbon fiber Mitsubishi Pyrofil TR50S 12K was used along with R&G Epoxy L 

with GL2 hardener to prepare blanks. The specimens with sizes of 250 х 25 х 4 mm were cut from 

blanks and tested using Instron 5582 with a loading rate of 3 mm/min. 

The speckle was applied to the specimen surface in imaged during tensile testing. The experimental 

stereo vision system included two Canon EOS 700D digital cameras (CMOS sensor resolution is 

5184×3456 pixels with a physical size of 22.3×14.9 mm). The imaging was synchronized using a 

computer-controlled hardware trigger. 

4. Experimental results and discussion 
Tensile elongation of the tested CFRP specimens exceeds 6000 με thus according to ASTM D3039M-

14 the elastic modulus was determined in the range from 0.25εmax to 0.5εmax (figure 1). εmax was defined 

as the strain corresponding to the maximum tensile stress achieved during testing. 

 

Figure 1. Typical strain-stress plot with defined limits for elastic modulus calculation. 

 



PFSD 2020

Journal of Physics: Conference Series 1611 (2020) 012019

IOP Publishing

doi:10.1088/1742-6596/1611/1/012019

4

 

 

 

 

 

 

The elastic modulus was determined by the four described methods (table 1, figure 2a). The 

description of alphanumeric designations is following: 

 e2p is 2 point-extensometer; 

 efit is an extensometer based on fitting a strain field of displacement vectors; 

 EM2p is 2 point elastic modulus approximation (according to the technique proposed in ASTM 

D30309M-14); 

 EMfitting is a calculation of elastic modulus based on linear fitting. 

For all specimens except ST2 all four methods demonstrate similar modulus values. The deviation 

between the values for different methods is in the range of 307–1235 MPa. For ST2, the maximum 

deviation between the module values is observed and equals 2267 MPa. This is explained by the 

deviation from the linear dependence of the σ-ε plot obtained using DIC analysis (figure 2b), which is 

probably due to errors during the DIC data acquisition. Also it can be seen from the results that the 1st 

blank has lower mechanical properties than 2nd and 3rd. It has been also confirmed by similar dependence 

of the ultimate tensile strength obtained after tensile testing. 

 

Table 1. Elastic modulus calculated by different methods. 

CFRP 

blank 
Specimen 

Elastic modulus, MPa 

e2p/EM2p e2p/EMfitting efit/EM2p efit/EMfitting 

1 ST1 55315 55093 55740 55632 

1 ST2 53587 56008 52929 55860 

2 ST3 60491 59832 59390 59399 

2 ST4 59834 59645 60163 60073 

3 ST5 57946 58157 59140 59142 

3 ST6 57157 57193 57385 57315 

5. Conclusion 

The experimental testing of the technique for calculation of elasticity modulus has been performed using 

CFRP specimens. There were 4 methods combining two ways of elongation evaluation and two data 

fitting techniques. All proposed methods give similar results of elasticity modulus determination with a 

slight deviation from each other. Calculation of the elastic modulus using linear approximation in 

combination with an integrated estimate of the strain over the strain filed shows a more stable result.  

 
a 

 
b 

Figure 2. Elastic modulus depending on the specimen for various calculation methods (a) and two 

calculation methods for the specimen ST2 (b) 
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