L=
View metadata, citation and similar papers at core.ac.uk brought to you by .i CORE

provided by Electronic Archive of Kyiv Polytechnic Institute

CEKIIIA Ne3 — KOMIT'IOTEPHO-IHTETPOBAHI TEXHOJIOTTI BAPOBHUILITBA MPUJIAZIIB

UDC 621.91.01:004.032.26

O. Sokolova., Student, S. Vysloukh, PhD, Associate Professor
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

MODELING OF PARAMETERS OF THE MILLING OF PARTS FROM HEAT-
RESISTANT STEEL

Annotation. The article discusses the problems of research of the machinability of alloy steels during their machining.
The results of face milling of heat-resistant steel under different processing modes are presented. With using the
TensorFlow platform tools, the technological process of milling is modeled. The results of predicting the processing
power at different cutting modes are presented.

Keywords: machine learning, modeling, neural networks, TensorFlow platform, milling, heat-resistant steel.

INTRODUCTION

Heat-resistant steels and alloys are highly alloyed structural materials whose
physical and mechanical characteristics are stable or only slightly change at high
temperatures. These materials are highly resistant to chemical destroying in gaseous
media, work well in unloaded and lightly loaded state [1].

The main features of the processing of heat-resistant steels and alloys are the high
strengthening the material during deformation by cutting; low thermal conductivity of
the processed material; the ability to maintain the original hardness and strength at
elevated temperatures; reduce vibration resistance of the cutting movement [2].

The purpose of this research is to predict the machinability of heat-resistant steels
during their milling under different cutting modes.

RESEARCH RESULTS

To achieve this objective, experimental researches of the milling process were
carried out by determining the power spent on processing flat surfaces of workpieces
made of heat-resistant steel 10X11H20T3P with milling cutters of various sizes, the
cutting edge of which is made of BKS8 hard alloy [2].

During research, the cutting depth t varied from 1 to 3 mm, the feed S - from 75
to 150 mm/min, and the cutting speed V — from 19.0 to 41.5 m/min. As a result of
research, it was found that the power consumption during processing varied from 0.40
to 4.01 kW, depending on the cutting modes and the sizes of the milling cutter used.
Processing of research results in order to model the milling process and subsequent
prediction of cutting power was performed using the TensorFlow platform.

According to the using algorithm of TensorFlow [3], first we import the necessary
libraries. The imported NumPy library is needed for representing data, and metrics —

for computing errors.
import tensorflow as tf

import numpy as np

from sklearn import metrics

After that, a sequential model is created using the Keras add-in, which is a high-
level neural network API written in Python and can work with TensorFlow, CNTK or
Teano. It is designed with emphasis on quick experiments and the ability to go from
idea to result with the least possible delay, which is the key to good research [4].

88

https://core.ac.uk/display/343951733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

XIII Beceykpainchbka HayKOBO-TIPaKTHYHA KOH(PEPEHIIis CTYICHTIB, aCMipaHTiB Ta MOJoauX BueHuX «llormsin y
MaiOyTHe npuinanodyayBants», 13-14 tpasas 2020 poky, KIII im. Iropst Cikopcrkoro, M. KuiB, Ykpaina

In Keras the model is usually represented as a graph of layers. The most common
type of model is the layer stack: tf.keras.Sequential() model. Then layers adds
(layers.Dense()). The construction of a simple multilayer perceptron is implemented in

the following sequence:
model = tf.keras.Sequential ()

model.add (tf.keras.layers.Dense (50, input dim=5, activation='relu', bias
initializer="'glorot normal'))

model.add(tf.keras.layers.Dense (50, input dim=50, activation='relu',6 bias
_initializer='glorot normal'))

model.add(tf.keras.layers.Dense(l, input dim=50, activation='linear',6 bia
s initializer='glorot normal'))

Layers are configured as follows:

— activation. The activation function determines the output value of a neuron
depending on the result of a weighted sum of inputs and a threshold value. In this
example, ‘relu’ is used — this function returns x if x is positive, and 0 otherwise. ‘Relu’
Is non-linear in nature and the combination of these activators is also non-linear (it is a
good approximator, so any function can be approximated by a combination of Relu)
[5]. ‘Linear’ is a function of linear activation. It uses inputs multiplied by the weights
for each neuron and creates an output signal proportional to the input. This function is
linear and the combination of these activators is also linear, therefore they are usually
used alone [6];

— bias_initializer. Initialization schemes that create layer weights (core and shift).
In our example, ‘glorot normal” was used — this is an initializer that draws samples
from a truncated normal distribution centered at zero [7].

Next, configure the SGD optimizer — stochastic gradient descent. It takes three
main parameters:

— learning_rate is a hyperparameter that is responsible for the speed of learning;

— momentum is a hyperparameter that accelerates SGD in the corresponding
direction and dampens oscillations;

— nesterov is a parameter that indicates whether to use Nesterov's impulse, the

main idea of which is that in case of an error, a correction is introduced.
sgd = tf.keras.optimizers.SGD(learning rate=0.01, momentum=0.9, nesterov=
True)

After receiving the constructed model, the process of its learning is set up by
calling the model.compile() method.

At the same time, model.compile() accepts three important arguments:

— optimizer. This object defines the training procedure. The instances of optimizer
are passed to it. In our case, this is sgd, which is described earlier;

— loss. A function that is minimized in the learning process. One of the most
common was used here: 'mean_squared_error' — mean square error;

—run_ragerly. A parameter that is passed to the compiler to be sure that the model
Is being trained and evaluated eagerly.

model.compile (optimizer=sgd, loss='mean squared error', run eagerly=True)

89

CEKIIIA Ne3 — KOMIT'IOTEPHO-IHTETPOBAHI TEXHOJIOTTI BAPOBHUILITBA MPUJIAZIIB

Next, the user-defined callback function myCallback() was assigned to a variable.
It is written to stop the learning process as soon as the desired accuracy is achieved.

callbacks=myCallback ()

Model training was performed using the built-in fit() function. In addition to the
input and target data, it takes two important arguments:

— epochs. Learning is broken down into epochs. The epoch is one iteration over
all input data (performed in small batches);

— validation_data. When prototyping a model, it is possible track its performance
on validation data. Passing a tuple of input data and labels with this argument allows
the model to display the values of the loss function and metrics in output mode for the
data being transmitted at the end of each era. Testing data is used, since training is not

carried out on them.
model.fit (in train, out train, epochs=1200,
tion data=(in test, true))

callbacks=[callbacks], valida

Next, data prediction is implemented using the predict() method, which takes
Input test data as an argument.
make predictions on the testing set

out pred = model.predict(in test)

To compute the prediction errors, the user-defined function mean_error() was
used, which takes as arguments the expected values and data that were predicted by the
model at the same input.

mean error (true, out pred)

A fragment of the results of experimental research is presented in table 1. At the

same time, the test data are marked in blue.

Table 1. A fragment of the results of experimental research.

N, kW N, kW
D, mm B, mm t, mm S, mm/min | V, m/min (research) (predict)
80 55 1 140 35 07 0.65
80 55 2 70 36 07 0.67
80 55 2 120 30,5 1,19 113
80 55 2 165 275 1,63 1.60
80 55 3 150 25 2,23 2.15
125 85 1 95 33 0,73 0.70
125 85 1 175 27 1,34 1.29
125 85 2 85 29 13 135
125 85 2 110 26 1,68 175
125 85 2 150 235 23 2.29
125 85 3 75 26,5 1,72 1.68
160 100 2 125 23 2,48 2.34
160 100 2 150 21 2,07 2.87
200 120 2 105 22 2,1 2.09
200 120 2 120 21 2,38 2.35
200 120 2 128 20 2,56 2.50
200 120 3 110 19 31 3.15

90

XIII Beceykpainchbka HayKOBO-TIPaKTHYHA KOH(PEPEHIIis CTYICHTIB, aCMipaHTiB Ta MOJoauX BueHuX «llormsin y
MaiOyTHe npuinanodyayBants», 13-14 tpasas 2020 poky, KIII im. Iropst Cikopcrkoro, M. KuiB, Ykpaina

As a result of processing the research results using TensorFlow, the computing

errors of the training data were determined:
MAE = 0.04457477154555144;

MSE = 0.0031432110126467815;
RMSE = 0.056064347072330926

and the computing errors of the test data:
MAE = 0.07362550377845761;

MSE = 0.006938523085845853;
RMSE = 0.08329779760501387.

CONCLUTIONS

The solution to the problem of modeling the process of milling flat surfaces of
workpieces made of heat-resistant steel 10X11H20T3P with face mills of different
diameters by measuring the power that is consumed during machining showed that
creating a model using the TensorFlow platform based on the formation of artificial
neural networks is an effective method for solving similar problems of modeling
technological processes.

LIST OF USED REFERENCES

[1]MaTepuanioBeieHuE U TEXHOJIOTHSI 00pa0OTKM KOHCTPYKIMOHHBIX MAaTE€pUaIoOB B
npudopoctpoeHuu: yd. nocod. / A.H. T'opmakoB; ToOMCKUI MNOJUTEXHUYECKUI
yHuBepcuteTr. — Tomck: UM3pmarenscTBO TOMCKOro IOJMTEXHUYECKOTO
yHuepcurteta, 2010. — 340 c.

[2]CoxonoBa O. A. MonentoBanHs npoliecy (pe3epyBaHHs JgeTanei 13)KapoCTiiKoi
cTajii 3acobamu mTyuyHux HelpoHHUX mepex. / O.A. Cokomnosa, C.I1. Bucioyx //
30ipuux uaykosux npayv XV Bceykp. Haykoso-npakmuuna KoHghepeHyis
Ccmyoenmie, acniparnmis ma moaooux euenux “EgexmusHicmo iHdicenepHUX piuietsb
6 npunadobyoyeanni”, 10-11 rpymusa 2019 p. — K.: KIII im. Irops Cikopcbkoro. —
2019. - C. 172-175.

[3]0630p Keras. — Pexxum JOCTyTIA:
www.URL:https://www.tensorflow.org/guide/keras/overview?hl=ru —
10.03.2020.

[4]Keras: The Python Deep Learning library. — Pexum
nocryma:www.URL:https://keras.io/

[5] PyHKIMM aKTUBAIMK HEHPOCETH: CUTMOW/IA, JIMHEHHasI, cTyneHdatas, RelLu, tahn.
— Pexum noctyma:Wwww.URL:https://neurohive.io/ru/osnovy-data-
science/activation-functions/ — 29.11.2018.

[6]7 Types of Neural Network Activation Functions: How to Choose? — Pexum
noctyna:www.URL:https://missinglink.ai/guides/neural-network-concepts/7-
types-neural-network-activation-functions-right/

[7]tf keras.initializers.GlorotNormal — Pexum
noctyna:www.URL:https://www.tensorflow.org/api_docs/python/tf/keras/initializ
ers/GlorotNormal — 14.04.2020.

Academic adviser — PhD, associate professor S. Vysloukh

91

https://keras.io/
https://neurohive.io/ru/osnovy-data-science/activation-functions/
https://neurohive.io/ru/osnovy-data-science/activation-functions/
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotNormal
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotNormal

