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Abstract
A specific number of transaction confirmation blocks determines average time of receiving and accepting payments at
cryptocurrencies, and the shortest confirmation time for the same level of blockchain security provides the best user
properties. Existing papers on transaction confirmation blocks for Bitcoin use implicit assumption of prompt spreading of
Bitcoin blocks over the network (that is not always the case for the real world conditions). The newer publications with
rigorous analysis and proofs of Bitcoin blockchain properties that take into account network delays provide asymptotic
estimates, with no specific numbers for transaction confirmation blocks.
We propose three methods for determination of required number of confirmation blocks for Bitcoin and GHOST on
networks with delayed message delivery with different models that take into account the possibility of faster adversarial
node syncronization. For the GHOST we propose the first (to our knowledge) strict theoretical method that allows to get
required number of confirmation blocks for a given attacker’s hashrate and attack success probability.
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Introduction
Bitcoin and many other altcoins provide decentral-

ized payment services with no trusted parties. Modern
cryptocurrencies are based on public transaction ledgers
(blockchains) that are maintained by each participant (a
full node) of a distributed peer-to-peer network. Consis-
tent transaction ledger is built using consensus protocol
that must be robust to arbitrary behavior of an at-
tacker with bounded resources, as well as to honest
nodes’ failures or network outages. The latter leads to
the possibility of existing several unintentional alterna-
tive histories of blockchain concurrently run by honest
nodes, and ability of consensus protocol to select the
only one "correct" version of blockchain among several
available branches on discovering them.

These properties of cryptocurrency distributed con-
sensus protocols also allow intentional adversarial cre-
ation of a blockchain branch for a double spend attack,
when a transaction is reverted or cancelled (e.g., after
a merchant sent goods or provided services), so an at-
tacker gets goods or services and finally keeps his coins
back.

To prevent such type of attacks (to decrease their
success probability to acceptable small threshold), it is
necessary to wait for some amount of blocks that follow
the one with the transaction of interest, after which it
is accepted by merchant.

The exact number of such confirmation blocks is
important for application properties of cryptocurrency
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and closely related to average time of receiving and
accepting payments. The shortest confirmation time
for the same level of transaction security provides the
best user properties for cryptocurrency.

Previous work. The first model that shows expo-
nential decreasing of attack probability success with
number of confirmation blocks was shown in the orig-
inal Bitcoin paper [1]. It uses a random walk process
with a single random variable that follows binomial dis-
tribution (with Poisson approximation). There is also
an implicit assumption of prompt spreading of Bitcoin
blocks over a peer-to-peer network. Though several
honest chains were mentioned that may be visible to
nodes in the paper, the model takes into account only
an intentionally built alternative adversarial chain.

The paper of M.Rosenfeld [2] uses an assumption of
a random variable that follows a negative binomial dis-
tribution for defining of the difference in the number of
blocks generated by honest miners and by an adversary.
The later paper [3] by C.Grunspan and R.Perez-Marco
provides proofs on selection of the negative binomial
distribution of the analyzed random variable, and gives
strict estimates of the number of confirmation blocks.
The paper of C.Pinzon and C.Rocha [4] generalizes the
approach from [2] and incorporates generation time to
the model of double spend attack.

All mentioned papers use models with implicit as-
sumption of prompt spreading of Bitcoin blocks over
the network that leads to following consequences:
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• network synchronization is done promptly, and
each block is visible to all nodes immediately at
the very moment it is mined and published;

• two or more honest miners cannot generate blocks
simultaneously (probability of this event is equal
to zero), as well as it is impossible to create an
unintentional fork;

• probability of existence of two different chains hav-
ing the same length mined by honest miners is also
equal to zero;

• speed of the growing main chain is equal to honest
miners’ block generation speed.

These statements are not always the case for the
real world conditions of cryptocurrencies application,
so a different model should be used that should take
into account delays introduced by peer-to-peer network
message delivery.

The paper [5] introduces a formal definition and anal-
ysis of Bitcoin backbone protocol when the participants
operate in a synchronous and partially synchronous
communication network (that has an upper bound for
delays of message delivery). An approach for formal
analysis in asynchronous networks was presented at [6].
Further development of [5] is presented at [7] that allows
strict formalization of target recalculation function in
Bitcoin.

These papers provide generalized analysis with
proofs of asymptotic estimates on achievement of main
blockchain properties (persistence and liveness), but do
not give any method for computation of the required
number of confirmation blocks for cryptocurrency prac-
tical application.

In [8] and [9] a tradeoff on transaction throughput and
security of blockchains were studied, and the GHOST
rule was proposed that allows achieving higher transac-
tion rates via adoption of tree data structures for keep-
ing blocks. A discussion of options for some proofs was
presented. E.g., Proposition 11 at [8]: from inequality 1
in the proof it follows that the rate of block addition to
the main chain by honest miners only 𝛽(𝜆ℎ) is higher
than the rate of block addition when main chain is ex-
tended both by honest users blocks and a fraction 𝑓 of
the attacker’s blocks: 𝛽(𝜆ℎ) ≥ 𝛽(𝜆ℎ + 𝑓 · 𝑞 · 𝜆ℎ); mono-
tonically decreasing properties of the 𝛽(𝜆) function on
its argument follow from the same inequality (i.e., with
increase of the speed of block generation 𝜆, the rate of
block addition to the main chain is decreased). These
papers also provide upper and lower bounds of the rate
of block addition to the main chain, but there is no
published strict theoretical method (to our knowledge)
for computation of the required number of confirmation
blocks in cryptocurrencies that utilize GHOST.

Our results. Within a model of a synchronous com-
munication network with limited delays of message
delivery [5, 10], we develop several methods for determi-
nation of the required number of confirmation blocks for
Bitcoin and GHOST. The first model considers equal
delays for message delivery on the Bitcoin peer-to-peer
network both for honest and malicious miners. The
second model for Bitcoin assumes that an attacker may
create his own centralized network with faster synchro-

nization, thus optimizing attack efficiency. The last
model is for GHOST and takes into account its tree
data structure for organizing of blocks, the longest chain
selection rule and much shorter time between blocks.
For each model we develop a method for determination
of the required number of confirmation blocks with a
given attacker’s hashrate and attack success probability.

1. Notations and auxiliary statements

We define a timeslot (TS) as the period of synchro-
nization, i.e. the amount of time needed to share a
block between independent miners. We introduce a
value 𝑠𝐻 which is the ratio 𝑡1

𝑡2
, where 𝑡1 is the period

of network synchronization for honest miners and 𝑡2 is
the time needed for one attempt of block generation
(roughly speaking, time of random oracle of hash func-
tion request processing). It means that each honest
miner (HM) can make approximately 𝑠𝐻 attempts to
generate a block, before he can see a block generated by
some other HM in this TS. For a malicious miner (MM),
we assume 𝑠𝑀 = 𝑠𝐻 for the first model and 𝑠𝑀 = 𝑠𝐻

2
for the second one. For the third model, we assume
𝑠𝑀 = 𝑠𝐻 = 𝑠.

We also use the following notations and assumptions:
- 𝑝 is the probability to generate a block by one

miner in one attempt; roughly speaking, this is the
probability to generate an appropriate pre-image of
some hash-function (we assume 𝑝 = 1

𝑘·𝑛·𝑠𝐻 , where 𝑘
is the ratio of block generation time to network block
propagation time);

- 𝑛 is the number of HMs;
- 𝑚 is the number of MMs (we assume that 𝑚 < 𝑛,

so honest miners have majority).
Also we emphasize once more that in Model 1 HMs

and MMs can extend the blockchain not more than by
one block during one TS, in Model 2 HMs can extend
the blockchain not more than one block during one
TS, but MMs, using their advantage in synchronization
time, can extend it by one or two blocks during one
TS. In Model 3, HMs can extend the blockchain not
more than by three blocks during one TS and MMs
can extend the blockchain not more than by two blocks
during one TS.

Now we need to define and to calculate some proba-
bilities that we will use in further statements.

In Models 1 and 2 for HMs the probability to generate
nothing during one TS is

𝑝0 = (1− 𝑝)
𝑛·𝑠𝐻 ,

and the probability to extend the blockchain exactly by
one block is

𝑝1 = 1− 𝑝0.

For MMs, the probability to generate nothing during
one TS is

𝑞0 = (1− 𝑝)
𝑚·𝑠𝐻 ,
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the probability to extend the blockchain exactly by two
blocks is

𝑞2 =
(︀
1− (1− 𝑝)

𝑚·𝑠𝑚)︀2 ,
and the probability to extend the blockchain exactly by
one block is

𝑞1 = 1− 𝑞0 − 𝑞2.

Note that for the Model I: 𝑞2 = 0.
Also, for Model 3 we introduce the corresponding

probabilities:

𝑝𝑖 = 𝐶𝑖
𝑛𝑠𝑝

𝑖(1− 𝑝)𝑛𝑠−𝑖, 𝑖 = 0, 1, 2; (1)

𝑝3 = 1− 𝑝0 − 𝑝1 − 𝑝2;

and

𝑞𝑖 = 𝐶𝑖
𝑚𝑠𝑝

𝑖(1− 𝑝)𝑚𝑠−𝑖, 𝑖 = 0, 1,

𝑞2 = 1− 𝑞0 − 𝑞1, (2)

where 𝑠 is the number of attempts in one TS (for Model
3, the parameter 𝑠 is the same that 𝑆𝐻 for Models 1
and 2).

To prove our main result, we need auxiliary lemmas.
The first and the second ones are some kind of ruin
problem generalizations. We formulate them in this
section. The others will be formulated in sections 4
and 5. To formulate the lemmas, we introduce some
additional notations.

Let {𝜉𝑖, 𝑖 ≥ 1}, and {𝜂𝑖, 𝑖 ≥ 1} be mutually indepen-
dent random variables (RVs), where for all 𝑖 ≥ 1

𝜉𝑖 =

{︂
0, with probability 𝑝0;
1, with probability 𝑝1,

(3)

𝜂𝑖 =

⎧⎨⎩ 0, with probability 𝑞0;
1, with probability 𝑞1;
2, with probability 𝑞2,

(4)

and define RVs {𝜁𝑖, 𝑖 ≥ 1}, as

𝜁𝑖 = 𝜉𝑖 − 𝜂𝑖.

It is easy to calculate probability distribution of 𝜁𝑖,
𝑖 ≥ 1:

𝑃0 := 𝑃 (𝜁𝑖 = 0) = 𝑝0𝑞0 + 𝑝1𝑞1;

𝑃1 := 𝑃 (𝜁𝑖 = 1) = 𝑝1𝑞0;

𝑃−1 := 𝑃 (𝜁𝑖 = −1) = 𝑝0𝑞1 + 𝑝1𝑞2;

𝑃−2 := 𝑃 (𝜁𝑖 = −2) = 𝑝0𝑞2.

Also let us define RVs as

𝑆𝑛 =

𝑛∑︁
𝑖=1

𝜉𝑖, 𝑛 ≥ 1;𝑆0 = 0;

Σ𝑛 =
𝑛∑︀

𝑖=1

𝜂𝑖 − 𝑘, 𝑛 ≥ 1; Σ0 = −𝑘 for some 𝑘 ∈ 𝑁

and

𝐿𝑛 = 𝑆𝑛 − Σ𝑛, 𝑛 ≥ 1;𝐿0 = 𝑘.

We can also write 𝐿𝑛 as 𝐿𝑛 =
𝑛∑︀

𝑖=1

𝜁𝑖 + 𝑘. From

the probability distribution of 𝜁𝑖, we get the following
equalities:

𝐿𝑛+1 =

⎧⎪⎪⎨⎪⎪⎩
𝐿𝑛 − 2, with prob. 𝑃−2;
𝐿𝑛 − 1, with prob. 𝑃−1;
𝐿𝑛, with prob. 𝑃0;
𝐿𝑛 + 1, with prob. 𝑃1.

(5)

Now we are ready to formulate the first lemma.

Lemma 1. Define the event 𝐴𝑘 as
𝐴𝑘 = {∃ 𝑛 ≥ 1 : 𝐿𝑛 ≤ 0} and let 𝑞(𝑘) = 𝑃 (𝐴𝑘).

Then if the condition

𝑃−1 + 2𝑃−2 < 𝑃1 (6)

holds, then

𝑞(𝑘) =
(1− 𝜆2)𝜆

𝑘+1
1 − (1− 𝜆1)𝜆

𝑘+1
2

𝜆1 − 𝜆2
, (7)

where

𝜆1 =
𝑃−1 + 𝑃−2 −

√︁
(𝑃−1 + 𝑃−2)

2
+ 4𝑃−1𝑃−2

2𝑃1
,

𝜆2 =
𝑃−1 + 𝑃−2 +

√︁
(𝑃−1 + 𝑃−2)

2
+ 4𝑃−1𝑃−2

2𝑃1
.

Proof. To prove the Lemma, we will derive a differential
equation for 𝑞(𝑘) using (5) and solve it.

According to the compound probability formula

𝑞(𝑘) = 𝑃 (𝐴𝑘) = 𝑃
(︁
𝐴𝑘/𝜁1 = −2

)︁
𝑃−2+

+𝑃
(︁
𝐴𝑘/𝜁1 = −1

)︁
𝑃−1+

+𝑃
(︁
𝐴𝑘/𝜁1 = 0

)︁
𝑃0 + 𝑃

(︁
𝐴𝑘/𝜁1 = 1

)︁
𝑃1=

=𝑞(𝑘−2)𝑃−2 + 𝑞(𝑘−1)𝑃−1 + 𝑞(𝑘)𝑃0 + 𝑞(𝑘+1)𝑃1,

where the second equality is due to (5). We can rewrite
it as

𝑞(𝑘−2)𝑃−2 + 𝑞(𝑘−1)𝑃−1+

+𝑞(𝑘) (𝑃0 − 1) + 𝑞(𝑘+1)𝑃1 = 0. (8)

The corresponding characteristic equation is

𝜆3𝑃1 + 𝜆2 (𝑃0 − 1) + 𝜆𝑃−1 + 𝑃−2 = 0

with one obvious root 𝜆 = 1. After division by 𝜆− 1,
we obtain a new equation:
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𝜆2𝑃1 − 𝜆 (𝑃−1 + 𝑃−2)− 𝑃−2 = 0.

Its discriminant is positive:

(𝑃−1 + 𝑃−2)
2
+ 4𝑃−1𝑃−2 > 0,

so the equation has two real roots:

𝜆1 =
𝑃−1 + 𝑃−2 −

√︁
(𝑃−1 + 𝑃−2)

2
+ 4𝑃−1𝑃−2

2𝑃1
,

𝜆2 =
𝑃−1 + 𝑃−2 +

√︁
(𝑃−1 + 𝑃−2)

2
+ 4𝑃−1𝑃−2

2𝑃1
.

Also we can see that 𝜆1 < 0 because of

𝑃−1 + 𝑃−2 =
√︀
(𝑃−1 + 𝑃−2) <

<
√︀

(𝑃−1 + 𝑃−2) + 4𝑃−1𝑃−2

and 𝜆1 > −1 because of

𝑃1 + 𝑃−1 > 0.

The general solution of (8) is

𝑞(𝑘) = 𝑎1𝜆
𝑘
1 + 𝑎2𝜆

𝑘
2 ,

where 𝑎1 and 𝑎2 can be found from the boundary con-
ditions

𝑞(0) = 𝑞(−1) = 1. (9)

The boundary conditions (9) lead to

{︂
𝑎1 + 𝑎2 = 1;
𝑎1𝜆1 + 𝑎2𝜆2 = 𝜆1𝜆2,

whence we obtain

𝑎1 =
𝜆1 (1− 𝜆2)

𝜆1 − 𝜆2
; 𝑎2 =

𝜆2 (1− 𝜆1)

𝜆1 − 𝜆2

and, finally,

𝑞(𝑘) =
(1− 𝜆2)𝜆

𝑘+1
1 − (1− 𝜆1)𝜆

𝑘+1
2

𝜆1 − 𝜆2
.

But 𝑞(𝑘) is the probability of some event, so we should
guarantee that it is not smaller than 0 and is not larger
than 1.

The inequality 𝑞(𝑘) > 0 implies from the facts that
1− 𝜆2 < 1− 𝜆1, 𝜆𝑘

1 < 𝜆𝑘
2 (because of |𝜆1| < |𝜆2|, 𝜆1 is

negative, 𝜆2 is positive) and 𝜆1 − 𝜆2 < 0.
Now we will prove that the inequality 𝑞(𝑘) < 1 follows

from the condition 𝑃−1 + 2𝑃−2 < 𝑃1 of this lemma.
Note that the condition 𝜆2 < 1 is sufficient for 𝑞(𝑘) < 1.
Thus, if 𝜆2 < 1 then we obtain

𝑞(𝑘) =
(1− 𝜆2)𝜆

𝑘+1
1 − (1− 𝜆1)𝜆

𝑘+1
2

𝜆1 − 𝜆2
<

<
(1− 𝜆2)𝜆

𝑘+1
2 − (1− 𝜆1)𝜆

𝑘+1
2

𝜆1 − 𝜆2
=

=
(1− 𝜆2)− (1− 𝜆1)

𝜆1 − 𝜆2
𝜆𝑘+1
2 = 𝜆𝑘+1

2 < 1.

Now we have only to prove that the condition 𝑃−1 +
2𝑃−2 < 𝑃1 involves the condition 𝜆2 < 1. The former
inequality holds iff

𝑃−1 + 𝑃−2 +

√︁
(𝑃−1 + 𝑃−2)

2
+ 4𝑃−1𝑃−2 < 2𝑃1,

or iff

√︁
(𝑃−1 + 𝑃−2)

2
+ 4𝑃−1𝑃−2 < 2𝑃1 − 𝑃−1 − 𝑃−2,

or iff

{︂
𝑃−1 + 𝑃−2 < 2𝑃1;

(𝑃−1 + 𝑃−2)
2
+ 4𝑃1𝑃2 < (2𝑃1 − 𝑃−1 − 𝑃−2)

2
.

Direct calculations show that the latter system is
equivalent to the inequality 𝑃−1 + 2𝑃−2 < 𝑃1.

The Lemma is proved.

Corollary 1. In the particular case when 𝑞2 = 0 we
obtain

𝑞(𝑘) =

(︂
𝑝0𝑞1
𝑝1𝑞0

)︂𝑘

.

Proof. In the case of 𝑞2 = 0, we get the following equal-
ities:

𝑃−2 = 0; 𝜆1 = 0; 𝜆2 =
𝑝0𝑞1
𝑝1𝑞0

; 𝑎2 = 1.

Then 𝑞𝑘 = 𝜆𝑘
2 =

(︂
𝑝0𝑞1
𝑝1𝑞0

)︂𝑘

.

We also need a more complicated lemma that will be
proved using Lemma 1. Let {𝜈𝑖, 𝑖 ≥ 1} be independent
identically distributed RV, which are also mutually
independent with {𝜂𝑖, 𝑖 ≥ 1}, introduced in (4). Their
probability distribution is

𝜈𝑖 =

⎧⎪⎪⎨⎪⎪⎩
0, with probability 𝑟0;
1, with probability 𝑟1;
2, with probability 𝑟2;
3, with probability 𝑟3.

(10)

We are going to formulate some statement for RVs (4)
and (9), which is more general than Lemma 1, formu-
lated for RVs (3) and (4).

Let us define RV {𝛾𝑖, 𝑖 ≥ 1} as

𝛾𝑖 = 𝜈𝑖 − 𝜂𝑖.
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It is easy to prove that for all 𝑖 ≥ 1:

𝑅0 := 𝑃 (𝛾𝑖 = 0) = 𝑟0𝑞0 + 𝑝1𝑞1 + 𝑝2𝑞2;

𝑅1 := 𝑃 (𝛾𝑖 = 1) = 𝑟1𝑞0 + 𝑟2𝑞1 + 𝑟3𝑞2;

𝑅2 := 𝑃 (𝛾𝑖 = 2) = 𝑟2𝑞0 + 𝑟3𝑞1;

𝑅3 := 𝑃 (𝛾𝑖 = 3) = 𝑟3𝑞0;

𝑅−1 := 𝑃 (𝛾𝑖 = −1) = 𝑟0𝑞1 + 𝑟1𝑞2;

𝑅−2 := 𝑃 (𝛾𝑖 = −2) = 𝑟0𝑞2.

(11)

Also define RVs 𝑈𝑛 =
∑︀𝑛

𝑖=1 𝜈𝑖, 𝑛 ≥ 1, 𝑈0 = 0,
and

𝑇𝑛 = 𝑈𝑛 − Σ𝑛, 𝑛 ≥ 1, 𝑇0 = 𝑘.

Note that 𝑇𝑛 =
∑︀𝑛

𝑖=1 𝛾𝑖 + 𝑘, 𝑛 ≥ 1.
From (11) we obtain that

𝑇𝑛 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑇𝑛−1 − 2, with probability 𝑅−2;
𝑇𝑛−1 − 1, with probability 𝑅−1;
𝑇𝑛−1, with probability 𝑅0;
𝑇𝑛−1 + 1, with probability 𝑅1;
𝑇𝑛−1 + 2, with probability 𝑅2;
𝑇𝑛−1 + 3, with probability 𝑅3.

Lemma 2. Let us define the event

𝐵𝑘 = {∃ 𝑛 ≥ 1 : 𝑇𝑛 ≤ 0}.

Also, define 𝑄1 = 𝑅1 +𝑅2 +𝑅3.
Then if the condition

𝑅−1 + 2𝑅−2 < 𝑄1 (12)

holds, then 𝑃 (𝐵𝑘) ≤ 𝑄(𝑘), where

𝑄(𝑘) =
(1− 𝜆2)𝜆

𝑘+1
1 − (1− 𝜆1)𝜆

𝑘+1
2

𝜆1 − 𝜆2
,

𝜆1 =
𝑅−1 +𝑅−2 −

√︀
(𝑅−1 +𝑅−2)2 + 4𝑅−1𝑅−2

2𝑄1
,

𝜆2 =
𝑅−1 +𝑅−2 +

√︀
(𝑅−1 +𝑅−2)2 + 4𝑅−1𝑅−2

2𝑄1
.

Proof. Let us introduce new RVs {𝛿𝑖, 𝑖 ≥ 1} that are
obtained from 𝜈𝑖 in such a way:

𝛿𝑖 =

{︂
𝜈𝑖, 𝑖𝑓 𝜈𝑖 ∈ {0, 1};
1, 𝑖𝑓 𝜈𝑖 ∈ {2, 3}; (13)

It is easy to see that ∀𝑖 ≥ 1 : 𝛿𝑖 ≤ 𝜈𝑖, and therefore ,

𝑍𝑛 =

𝑛∑︁
𝑖=1

𝛿𝑖 ≤ 𝑈𝑛, 𝑛 ≥ 1;

𝑌𝑛 = 𝑍𝑛 − Σ𝑛 + 𝑘 ≤ 𝑇𝑛, 𝑛 ≥ 1. (14)

Let us introduce the event

𝐶𝑘 = {∃ 𝑛 ≥ 1 : 𝑌𝑛 ≤ 0}.

From the definition of 𝐵𝑘 and (14) we get that
𝐵𝑘 ⊂ 𝐶𝑘 and

𝑃 (𝐵𝑘) ≤ 𝑃 (𝐶𝑘). (15)

Next, from (13) we get that

𝛿𝑖 =

⎧⎪⎨⎪⎩
0, with probability 𝑅0,

1, with probability
𝑄1 = 𝑅1 +𝑅2 +𝑅3.

(16)

Then we can apply Lemma 1 to RVs (4) and (13) and
obtain the probability 𝑃 (𝐶𝑘) = 𝑄(𝑘), and then use
inequality (15) to complete the proof of this Lemma.

2. Model 1. Fork probability for an adversary
with ordinary synchronization.

Let us fix some 𝑁 ∈ N and consider a part of
blockchain from TS number 𝑡0 = 1 to TS number 𝑁 .

We define the event:
𝐹 (𝑙, 𝑁) = { the fork occurred, that started at 𝑡0 = 1

and got the length 𝑙 before the TS number 𝑁 , under
the condition that HMs generated 𝑙 confirmation blocks
starting at 𝑡0 }.

Theorem 1. For the event 𝐹 (𝑙, 𝑁), the following upper
bound holds:

𝑃 (𝐹 (𝑙, 𝑁)) ≤
𝑁−𝑙∑︁
𝑙0=0

[︃
𝐶𝑙−1

𝑙+𝑙0−1𝑝
𝑙
1(1− 𝑝1)

𝑙0 ·

·
(︂
(1−

𝑙−1∑︁
𝑘=0

𝐶𝑘
𝑙+𝑙0𝑞

𝑘
1 × (1− 𝑞1)

𝑙+𝑙0−𝑘)+

+

𝑙−1∑︁
𝑘=0

{︂
𝐶𝑘

𝑙+𝑙0𝑞
𝑘
1 (1− 𝑞1)

𝑙+𝑙0−𝑘·

·
(︂
𝑞1(1− 𝑝1)

𝑝1(1− 𝑞1)

)︂𝑙−𝑘}︂)︂]︃
. (17)

Proof. It is obvious that 𝐹 (𝑙, 𝑁) ⊂ ∪𝑁−𝑙
𝑙0=0𝐹𝑙,𝑙0 ,

where 𝐹𝑙,𝑙0 is the event
𝐹𝑙,𝑙0 = { the fork occurred after HMs generated 𝑙

confirmation blocks, and they generated these blocks
exactly during 𝑙 + 𝑙0 TSs starting from 𝑡0 = 1}.

Also for some fixed 𝑙, 𝑙0 ∈ N we introduce the follow-
ing events:

𝐻𝑙,𝑙0 = { HMs generated 𝑙 confirmation blocks during
exactly 𝑙 + 𝑙0 TSs, starting at 𝑡0 = 1};

𝑀 = { MMs generated not less then 𝑙 (i.e. 𝑙 or more)
blocks during exactly 𝑙 + 𝑙0 TSs, starting at 𝑡0 };

𝑀𝑘 = { MMs generated exactly 𝑘 (0 ≤ 𝑘 ≤ 𝑙 − 1)
blocks during 𝑙 + 𝑙0 TSs, starting at 𝑡0 };

𝐻∞
𝑙−𝑘 = { MMs ever catch up with the honest chain

under the condition that in TS 𝑙 + 𝑙0 they are exactly
𝑙 − 𝑘 blocks behind }.

From the definition of 𝐹𝑙,𝑙0 , we get

𝐹𝑙,𝑙0 ⊂ 𝐻𝑙,𝑙0 ∩ (𝑀 ∪ (∪𝑙−1
𝑘=0(𝑀𝑘 ∩𝑀∞

𝑙−𝑘))).

It is easy to calculate that

𝑃 (𝐻𝑙,𝑙0) = 𝐶𝑙−1
𝑙+𝑙0−1𝑝

𝑙
1(1− 𝑝1)

𝑙0 ;
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𝑃 (𝑀) = 1− 𝑃 (𝑀̄) = 1−
𝑙−1∑︁
𝑘=0

𝐶𝑘
𝑙+𝑙0𝑞

𝑘
1 × (1− 𝑞1)

𝑙+𝑙0−𝑘;

𝑃 (𝑀𝑘 ∩𝑀∞
𝑙−𝑘) = 𝑃 (𝑀𝑘) · 𝑃 (𝑀∞

𝑙−𝑘) =

= 𝐶𝑘
𝑙+𝑙0𝑞

𝑘
1 (1− 𝑞1)

𝑙+𝑙0−𝑘 ·
(︂
𝑞1(1− 𝑝1)

𝑝1(1− 𝑞1)

)︂𝑙−𝑘

,

where the first equality in the latter expression is due
to independence of 𝑀𝑘 and 𝑀∞

𝑙−𝑘, and the second one
is due to the Corollary 1.

So,

𝑃 (𝐹𝑙,𝑙0) ≤ 𝐶𝑙−1
𝑙+𝑙0−1𝑝

𝑙
1(1− 𝑝1)

𝑙0×

×
(︂
(1−

𝑙−1∑︁
𝑘=0

𝐶𝑘
𝑙+𝑙0𝑞

𝑘
1 × (1− 𝑞1)

𝑙+𝑙0−𝑘)+

+

𝑙−1∑︁
𝑘=0

{︂
𝐶𝑘

𝑙+𝑙0𝑞
𝑘
1 (1− 𝑞1)

𝑙+𝑙0−𝑘 ·
(︂
𝑞1(1− 𝑝1)

𝑝1(1− 𝑞1)

)︂𝑙−𝑘}︂)︂
,

and

𝑃 (𝐹 (𝑙, 𝑁)) ≤
𝑁−𝑙∑︁
𝑙0=0

𝑃 (𝐹𝑙,𝑙0) ≤

≤
𝑁−𝑙∑︁
𝑙0=0

[︃
𝐶𝑙−1

𝑙+𝑙0−1𝑝
𝑙
1(1− 𝑝1)

𝑙0×

×
(︂
(1−

𝑙−1∑︁
𝑘=0

𝐶𝑘
𝑙+𝑙0𝑞

𝑘
1 × (1− 𝑞1)

𝑙+𝑙0−𝑘)+

+
𝑙−1∑︁
𝑘=0

{︂
𝐶𝑘

𝑙+𝑙0𝑞
𝑘
1 (1− 𝑞1)

𝑙+𝑙0−𝑘 ·
(︂
𝑞1(1− 𝑝1)

𝑝1(1− 𝑞1)

)︂𝑙−𝑘}︂)︂]︃
,

the theorem is proved.

Note that formula (17) contains binomial coefficients
with large parameters 𝑙 and 𝑙0, which may take values
103 and more. For such values it is computationally
hard to calculate the coefficients directly. But we can
use the Moivre-Laplace local and integral theorem that
gives a rather good approximation in our case.

So we will use the Moivre-Laplace local and integral
theorem to approximate the sum.

Hence, using the Moivre-Laplace local theorem we
obtain:

𝐶𝑙−1
𝑙+𝑙0−1𝑝

𝑙
1(1−𝑝1)

𝑙0 ≈ 𝑝1 ·
𝜙(

𝑙0𝑝1 + (𝑙 − 1)(1− 𝑝1)√︀
(𝑙 + 𝑙0 − 1))𝑝1(1− 𝑝1)

)√︀
(𝑙 + 𝑙0 − 1)𝑝1(1− 𝑝1)

;

𝐶𝑘
𝑙+𝑙0𝑞

𝑘
1 (1− 𝑞1)

𝑙+𝑙0−𝑘 ≈
𝜙(

𝑘 − (𝑙 + 𝑙0)𝑞1√︀
(𝑙 + 𝑙0))𝑞1(1− 𝑞1)

)√︀
(𝑙 + 𝑙0)𝑞1(1− 𝑞1)

.

And using Moivre-Laplace integral theorem we ob-
tain:

1−
𝑙−1∑︁
𝑘=0

𝐶𝑘
𝑙+𝑙0𝑞

𝑘
1 × (1− 𝑞1)

𝑙+𝑙0−𝑘 =

=

𝑙−𝑙0∑︁
𝑘=𝑙

𝐶𝑘
𝑙+𝑙0𝑞

𝑘
1 × (1− 𝑞1)

𝑙+𝑙0−𝑘 ≈

≈ 1

2
− Φ

(︂
𝑙 − (𝑙 + 𝑙0)𝑞1√︀
(𝑙 + 𝑙0)𝑞1(1− 𝑞1)

)︂
=

=
1

2
+ Φ

(︂
(𝑙 + 𝑙0)𝑞1 − 𝑙√︀
(𝑙 + 𝑙0)𝑞1(1− 𝑞1)

)︂
,

where 𝜙(𝑥) =
1√
2𝜋

𝑒

−𝑥2

2 is normal density, 𝜙(−𝑥) =

𝜙(𝑥), and Φ is a Laplace function, Φ(𝑥) =
∫︀ 𝑥

0
𝜙(𝑥)𝑑𝑥 =∫︀ 𝑥

−∞ 𝜙(𝑥)𝑑𝑥− 1

2
, for 𝑥 ≥ 0, and Φ(−𝑥) = −Φ(𝑥).

Using these approximations, we can provide another
formulation of Theorem 1.

Theorem 2. For the event 𝑃 (𝐹 (𝑙, 𝑁)), the following
upper bound holds:

𝑃 (𝐹 (𝑙, 𝑁)) ≤
𝑁−𝑙∑︁
𝑙0=0

[︃
𝑝1 ·

𝜙(
𝑙0𝑝1 + (𝑙 − 1)(1− 𝑝1)√︀
(𝑙 + 𝑙0 − 1))𝑝1(1− 𝑝1)

)√︀
(𝑙 + 𝑙0 − 1)𝑝1(1− 𝑝1)

×

×
(︂
(
1

2
+ Φ

(︂
(𝑙 + 𝑙0)𝑞1 − 𝑙√︀
(𝑙 + 𝑙0)𝑞1(1− 𝑞1)

)︂
)+

+
𝑙−1∑︁
𝑘=0

{︂𝜙(
𝑘 − (𝑙 + 𝑙0)𝑞1√︀

(𝑙 + 𝑙0))𝑞1(1− 𝑞1)
)√︀

(𝑙 + 𝑙0)𝑞1(1− 𝑞1)
×

×
(︂
𝑞1(1− 𝑝1)

𝑝1(1− 𝑞1)

)︂𝑙−𝑘}︂)︂]︃
. (18)

3. Model 2: Fork probability for an adversary
with fast synchronization.

In this section we consider an advanced model for
an adversary. We allow malicious miners (MMs) to be
corrupted in such a way that they can be synchronized
about twice as fast as the honest ones (HMs).

For some 𝑇, 𝑘 ∈ 𝑁 , let us define the event 𝑀𝑇,𝑘 as
“During exactly 𝑇 TSs MMs generate exactly 𝑘 blocks”.

Lemma 3. In our notations,

𝑃 (𝑀𝑇,𝑘) =

[ 𝑘2 ]∑︁
𝑘2=0

𝐶𝑘2

𝑇 𝐶𝑘−2𝑘2

𝑇−𝑘2
𝑞𝑘2
2 𝑞𝑘−2𝑘2

1 𝑞𝑇−𝑘+𝑘2
0 . (19)

Proof. Let 𝑘2 be the number of TSs where MMs extend
their branch on two blocks.

Note that if 𝑘2 is fixed, the event 𝑀𝑇,𝑘 is just the
intersection of the following events:

- MMs extend their branch by two blocks exactly in
𝑘2 TSs;
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- MMs extend their branch by one block exactly in
𝑘 − 2𝑘2 TSs;

- MMs generate no blocks in exactly 𝑇 − 𝑘2 −
(𝑘 − 2𝑘2) = 𝑇 − 𝑘 + 𝑘2 TSs.

The probability of such event is

𝐶𝑘2

𝑇 𝐶𝑘−2𝑘2

𝑇−𝑘2
𝑞𝑘2
2 𝑞𝑘−2𝑘2

1 𝑞𝑇−𝑘+𝑘2
0 .

Then the probability of the event 𝑀𝑇,𝑘 is the union
of such events for all possible values of 𝑘2 (note that
any two of these events have empty intersection), and
its probability is the sum of corresponding probabilities.

Finally, it is easy to see that 𝑘2 can take values from
0 to

[︀
𝑘
2

]︀
.

The Lemma is proved.

Now we are ready to formulate the main theorem
about fork probability for Model 2.

Let us fix some 𝑁 ∈ 𝑁 and consider the part of
blockchain from TS number 𝑡0 = 1 to TS number 𝑁 .
For some 𝑙 ≤ 𝑁 let us define the event 𝐹 (𝑙, 𝑁) as “The
fork occurred that started in TS 𝑡0 = 1 and achieved
the length 𝑙 before TS number 𝑁 under the condition
that HMs generated 𝑙 confirmation blocks starting at
𝑡0 = 1 and the fork was hidden till HMs generated these
𝑙 confirmation blocks”.

Theorem 3. In our notations, the following upper esti-
mate holds:

𝑃 (𝐹 (𝑙, 𝑁)) ≤
𝑁−𝑙∑︁
𝑙0=0

[︃
𝐶𝑙−1

𝑙+𝑙0−1𝑝
𝑙
1𝑝

𝑙0
0

(︃
1−

𝑙−1∑︁
𝑘=0

𝑃 (𝑀𝑙+𝑙0,𝑘)+

+

𝑙−1∑︁
𝑘=0

𝑃 (𝑀𝑙+𝑙0,𝑘)𝑞
(𝑙−𝑘

)︃]︃
, (20)

where the value 𝑞(𝑙−𝑘) is defined according to (7), and
the value 𝑃 (𝑀𝑙+𝑙0,𝑘) is defined according to (19).

Proof. For some 𝑙0 ≤ 𝑁 − 𝑙 let us define the event 𝐹𝑙, 𝑙0

as “The fork with the length at least 𝑙 occurred that
started in TS 𝑡0 = 1 and was hidden till HMs generated
𝑙 confirmations blocks, and these blocks were generated
during exactly 𝑙 + 𝑙0 TSs starting at 𝑡0 = 1”.

Then

𝐹 (𝑙, 𝑁) ⊂
𝑁−𝑙⋃︁
𝑙0=0

𝐹𝑙, 𝑙0 𝑎𝑛𝑑 𝑃 (𝐹 (𝑙, 𝑁)) ≤

≤
𝑁−𝑙∑︁
𝑙0=0

𝑃 (𝐹𝑙, 𝑙0). (21)

Also let us introduce the following events:
- 𝐻𝑙, 𝑙0 is “HMs generated 𝑙 confirmation blocks during

exactly 𝑙 + 𝑙0 TSs starting at 𝑡0 = 1”;
- 𝑀𝑙+𝑙0, ≥𝑙 is “MMs generated not less than 𝑙 (i.e. 𝑙

or more) blocks during 𝑙 + 𝑙0 TSs starting at 𝑡0 = 1”;
- 𝑀𝑙+𝑙0,𝑘 is “MMs generated exactly 𝑘 (0 ≤ 𝑘 ≤ 𝑙−1)

blocks during 𝑙 + 𝑙0 TSs starting at 𝑡0 = 1”;

- 𝑀∞
𝑙−𝑘

is “MMs ever catch up with the honest chain
under the condition that in TS number 𝑙 + 𝑙0 they are
exactly 𝑙 − 𝑘 blocks behind”.

From the definition of 𝐹𝑙, 𝑙0 , we see that

𝐹𝑙, 𝑙0 ⊂ 𝐻𝑙, 𝑙0∩

∩

(︃
𝑀𝑙+𝑙0, ≥𝑙 ∪

(︃
𝑙−1⋃︁
𝑘=0

(︁
𝑀𝑙+𝑙0,𝑘 ∩𝑀∞

𝑙−𝑘

)︁)︃)︃
.

Next,

𝑃 (𝐻𝑙,𝑙0) = 𝐶𝑙−1
𝑙+𝑙0−1𝑝

𝑙
1𝑝

𝑙0
0 ,

𝑃 (𝑀𝑙+𝑙0, ≥𝑙) = 1− 𝑃
(︀
𝑀 𝑙+𝑙0, ≥𝑙

)︀
=

= 1−
𝑙−1∑︁
𝑘=0

𝑃 (𝑀𝑙+𝑙0, 𝑘) ,

where 𝑃 (𝑀𝑙+𝑙0, 𝑘) is defined according to (19) and

𝑃
(︁
𝑀𝑙+𝑙0,𝑘 ∩𝑀∞

𝑙−𝑘

)︁
= 𝑃 (𝑀𝑙+𝑙0,𝑘)𝑃

(︁
𝑀∞

𝑙−𝑘

)︁
=

= 𝑃 (𝑀𝑙+𝑙0,𝑘) 𝑞
(𝑙−𝑘)

where 𝑞(𝑙−𝑘) is defined according to (7).
Then

𝑃 (𝐹𝑙, 𝑙0) ≤ 𝐶𝑙−1
𝑙+𝑙0−1𝑝

𝑙
1𝑝

𝑙0
0

(︃
1−

𝑙−1∑︁
𝑘=0

𝑃 (𝑀𝑙+𝑙0, 𝑘)+

+
𝑙−1∑︁
𝑘=0

𝑃 (𝑀𝑙+𝑙0, 𝑘) · 𝑞(𝑙−𝑘)

)︃
. (22)

Substituting (22) into (21), we obtain (20) and finish
the proof of the theorem.

Note: we can also rewrite the inequality (20) in a
such way:

𝑃 (𝐹 (𝑙, 𝑁)) ≤
𝑁−𝑙∑︁
𝑙0=0

[︃
𝐶𝑙−1

𝑙+𝑙0−1𝑝
𝑙
1𝑝

𝑙0
0 ·

·

(︃
1−

𝑙−1∑︁
𝑘=0

𝑃 (𝑀𝑙+𝑙0,𝑘)
(︁
1− 𝑞(𝑙−𝑘)

)︁)︃]︃
, (23)

which is easier to calculate.
And, at last, we want to simplify the condition (6).

Lemma 4. In our notations, condition (6) is equivalent
to the inequality

(1− 𝑝)
𝑛 𝑠𝐻 < 2 (1− 𝑝)

𝑚
𝑠𝐻
2 − 1.

Proof. In our notations,

𝑃1 = 𝑝1𝑞0;
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𝑃−1 = 𝑝0𝑞1 + 𝑝1𝑞2;

𝑃−2 = 𝑝0𝑞2,

so inequality (19) can be rewritten as

𝑝0𝑞1 + 𝑝1𝑞2 + 2𝑝0𝑞2 < 𝑝1𝑞0,

or

𝑝0
1− 𝑝0

<
𝑞0 − 𝑞2

1− (𝑞0 − 𝑞2)
,

or

𝑝0 < 𝑞0 − 𝑞2.

Direct calculations give us

𝑞0 − 𝑞2 = 2 (1− 𝑝)
𝑚

𝑠𝐻
2 − 1,

and, according to the definition

𝑝0 = (1− 𝑝)
𝑛 𝑠𝐻 .

The Lemma is proved.

4. Model 3: fork probability for GHOST
In this section we assume 𝑘 = 1, i.e.

𝑝 =
1

𝑛𝑠
(24)

where 𝑛 is the number of HMs, 𝑠 is the number of
attempts in one TS.

Note that in that model probability of success in one
attempt (24) is 47 times larger than for two previous
models.

In this section we make the following assumptions.
1) Some transaction was made at TS 𝑡0, and there

exists only one chain of blocks at this TS. Hence
block 𝐵0 with transaction was the last block of this
chain. And all the next blocks generated by HMs
are the "children" of block 𝐵0, so its "weight" at
some TS 𝑡 > 𝑡0 is equal to the number of all blocks
generated by HMs from the TS 𝑡0 till the TS 𝑡.

2) For the sake of simplicity, we assume that HMs
can generate not more than 3 blocks and MMs can
generate not more than 2 blocks during one TS.
This restriction is not essential: the probability
that HMs generate 4 or more blocks during one TS
is about 0,01; the probability that MMs generate
3 or more blocks during one TS is about 0,02 in
case when the ratio of MMs is about 33%.
Without these restrictions, it seems impossible to
obtain valuable results in this model.

Now we need one additional lemma.
For some 𝑙, 𝑙0 ∈ N, define the event 𝐻𝑙,𝑙0 as "It takes

exactly 𝑙+ 𝑙0 TSs for HMs to generate at least 𝑙 blocks".
In other words, 𝐻𝑙,𝑙0 means that HMs generate not
more than 𝑙− 1 blocks during TSs 1, 2, ...𝑙 + 𝑙0 − 1 and
generate not less than 𝑙 blocks during TSs 1, 2, ...𝑙 + 𝑙0.

Also let us define probabilities

𝑃𝑖 = 𝐶𝑖
𝑠𝑛𝑝

𝑖(1− 𝑝)𝑠𝑛−𝑖, 𝑖 = 0, 1, 2, 3, (25)

where 𝑝𝑖 is the probability that HMs generate exactly 𝑖
blocks during one TS.

Lemma 5. In our notations

𝑃 (𝐻𝑙,𝑙0) = 𝑃 (𝑆𝑙+𝑙0−1 = 𝑙 − 1) · (𝑝1 + 𝑝2 + 𝑝3)+

+ 𝑃 (𝑆𝑙+𝑙0−1 = 𝑙 − 2)·
· (𝑝2 + 𝑝3) + 𝑃 (𝑆𝑙+𝑙0−1 = 𝑙 − 3) · 𝑝3), (26)

where

𝑃 (𝑆𝑙+𝑙0−1 = 𝑙 − 𝑖) =

=

[︂
𝑙 − 𝑖

3

]︂
∑︁
𝑘3=0

[︂
𝑙 − 𝑖− 3𝑘3

2

]︂
∑︁
𝑘2=0

𝐶𝑘3

𝑙+𝑙0−1𝐶
𝑘2

𝑙+𝑙0−1−𝑘3
×

×𝐶𝑙−𝑖−3𝑘3−2𝑘2

𝑙+𝑙0−1−𝑘3−𝑘2
· 𝑝𝑘3

3 · 𝑝𝑘2
2 · 𝑝𝑙−𝑖−3𝑘3−2𝑘2

1 ×

×𝑝𝑙0−1+𝑖+2𝑘3+𝑘2
0 , 𝑖 = 1, 2, 3. (27)

Proof. We define as 𝜉𝑖, 𝑖 ≥ 1 the number of blocks that
HMs generate in TS number 𝑖. According to (25) and
our assumptions,

𝜉𝑖 =

⎧⎪⎪⎨⎪⎪⎩
0, with probability 𝑝0,
1, with probability 𝑝1,
2, with probability 𝑝2,
3, with probability 𝑝3.

Also define the 𝑆𝑛 =
∑︀𝑛

𝑖=1 𝜉𝑖.
Now we introduce the event 𝐴𝑛 as

𝐴𝑛 = {𝑚𝑖𝑛{𝑘 ≥ 1 : 𝑆𝑘 ≥ 𝑙} = 𝑛}.
In other words, 𝐴𝑛 means that {𝑆𝑛−1 < 𝑙}∩{𝑆𝑛 ≥ 𝑙}.
In our notations, we need to find the probability

𝑃 (𝐴𝑙+𝑙0).
We define the events
𝐵

(𝑖)
𝑛 = {𝜉𝑛 = 𝑖}, 𝑖 = 0, 1, 2, 3, and note that

𝑃 (𝐵
(𝑖)
𝑛 ) = 𝑝𝑖.

Then, according to the compound probability formula

𝑃 (𝐴𝑛) =
3∑︁

𝑖=0

𝑃 (𝐴𝑛/𝐵
(𝑖)
𝑛 )𝑃 (𝐵(𝑖)

𝑛 ) =

=

3∑︁
𝑖=1

𝑃 (𝐴𝑛/𝐵
(𝑖)
𝑛 )𝑝𝑖, (28)

as 𝑃 (𝐴𝑛/𝐵
(0)
𝑛 ) = 0.

Next, note that for 𝑖 = 1, 2, 3 :

𝑃 (𝐴𝑛/𝐵
(𝑖)
𝑛 ) = 𝑃 (𝑙 − 𝑖 ≤ 𝑆𝑛−1 ≤ 𝑙 − 1). (29)

Let us find 𝑃 (𝑆𝑛−1 = 𝑙 − 𝑖), 𝑖 = 1, 2, 3.
We note as 𝑘𝑖 the number of TSs where HMs generate

exactly 𝑖 blocks, 𝑖 = 0, 1, 2, 3.

Then 0 ≤ 𝑘3 ≤ [
𝑙 − 𝑖

3
].

Note that if 𝑘3 is fixed, then 0 ≤ 𝑘2 ≤
[︀ 𝑙 − 𝑖− 3𝑘3

2

]︀
.

Theoretical and cryptographic problems of cybersecurity

19



Next if 𝑘3 and 𝑘2 are fixed, then 𝑘1 = 𝑙−𝑖−3𝑘3−2𝑘2
and finally,

𝑘0 = 𝑛− 1− 𝑘3 − 𝑘2 − 𝑘1 =
= 𝑛− 1− 𝑘3 − 𝑘2 − (𝑙 − 𝑖− 3𝑘3 − 2𝑘2) =
= 𝑛− 1− 𝑙 + 𝑖+ 2𝑘3 + 𝑘2.

So,

𝑃 (𝑆𝑛−1 = 𝑙 − 𝑖) =

[︀ 𝑙 − 𝑖

3

]︀∑︁
𝑘3=0

[︀ 𝑙 − 𝑖− 3𝑘3
2

]︀∑︁
𝑘2=0

𝐶𝑘3
𝑛−1×

×𝐶𝑘2

𝑛−1−𝑘3
· 𝐶𝑙−𝑖−3𝑘3−2𝑘2

𝑛−1−𝑘3−𝑘2
· 𝑝𝑘3

3 · 𝑝𝑘2
2 ×

×𝑝𝑙−𝑖−3𝑘3−2𝑘2
1 × 𝑝𝑛−1−𝑙+𝑖+2𝑘3+𝑘2

0 . (30)

Also, using (28) and (29), we can write that

𝑃 (𝐴𝑛) =
(︀
𝑃 (𝑆𝑛−1 = 𝑙 − 1) + 𝑃 (𝑆𝑛−1 = 𝑙 − 2)+

+ 𝑃 (𝑆𝑛−1 = 𝑙 − 3))
)︀
· 𝑝3 + (𝑃 (𝑆𝑛−1 = 𝑙 − 2)+

+ 𝑃 (𝑆𝑛−1 = 𝑙 − 1)) · 𝑝2 + 𝑃 (𝑆𝑛−1 = 𝑙 − 1)𝑝1 =

= 𝑃 (𝑆𝑛−1 = 𝑙 − 1)(𝑝1 + 𝑝2 + 𝑝3)+

+ 𝑃 (𝑆𝑛−1 = 𝑙 − 2)(𝑝2 + 𝑝3)+

+ 𝑃 (𝑆𝑛−1 = 𝑙 − 3)𝑝3, (31)

and formulas (30) and (31) finish the proof of the lemma,
when 𝑛 = 𝑙 + 𝑙0.

To formulate the main result, we also need for-
mula (19) from Lemma 3, but for values 𝑞0, 𝑞1, 𝑞2 defined
for Model 3 in (2).

Theorem 4. Let the event 𝐹 (𝑙, 𝑁) be the same as defined
in Models 1 or 2. Then

𝑃 (𝐹 (𝑙, 𝑁)) ≤

≤
𝑁−𝑙∑︁
𝑙0=0

[︀
𝑃 (𝐻𝑙,𝑙0)× (1−

𝑙−1∑︁
𝑘=0

{𝑃 (𝑀𝑙+𝑙0,𝑘) · (1−𝑄(𝑙−𝑘))})
]︀
,

where 𝑃 (𝑀𝑙+𝑙0,𝑘) is as defined in (19) and 𝑃 (𝐻𝑙,𝑙0) is
as defined in (26) using values (2) and (3).

The proof of this theorem is just the same as the
proof of Theorem 3, but the probabilities of events 𝐻𝑙,𝑙0

and 𝑀𝑙+𝑙0,𝑘 take other values that in (20).

5. Comparison of confirmation blocks’ num-
bers for different methods

The Table 1 shows the number 𝑧 of block confirma-
tions for attack success probability of 0.001 for various
values of the adversarial hashrate 𝑞, determined by the
methods developed by S.Nakamoto [1], M.Rosenfeld [2],
C. Grunspan and R.Perez-Marco [3], compared to our
results obtained for Bitcoin consensus in the network
with equal delays both for honest miners and attacker
nodes (Model 1), for Bitcoin consensus on the network
with faster (2x) adversarial synchronization (Model 2)
and for the GHOST protocol (Model 3).

For this computation, we took 𝑠𝐻 = 1000 and
𝑠𝑀 = 𝑠𝐻 for Model 1 and Model 3; for Model 2, we
took 𝑠𝑀 = 𝑠𝐻

2 that means twice as fast synchronization

for adversarial nodes; 𝑛 = 1000 and 𝑁 = 17000 (these
parameters provide sufficiently good accuracy due to
attack success probability value saturation; further in-
creasing of 𝑁 , shows no changes in block confirmations
number given in the table). We took the ratio of block
generation time to network block propagation time as
𝑘 = 47.6 for Bitcoin, Model 1 and Model 2, and 𝑘 = 1
for GHOST, Model 3 [10].

To verify theoretical results independently, we also
performed direct simulation of attacks in the software
and obtained results that are very close to the ones
given in the table.

Though our method for Model 1 is quite different from
the methods proposed by M.Rosendeld and C.Grunspan,
we got exactly the same numbers for block confirmation
number. Full coincidence of results provides additional
evidence of right approach taken in the papers.

For the Model 2, we can see that even 2x faster
adversarial synchronization gives an advantage for an
attacker only for high adversarial hash rate (0.35+).

The GHOST rule requires the number of confirmation
blocks comparable to Bitcoin. Taking into account
much shorter time between blocks for GHOST, that
gives advantage to this consensus protocol by providing
the same level of blockchain security in shorter time.

Conclusions

The number of transaction confirmation blocks is
important for application properties of a cryptocurrency
and is closely related to average time of receiving and
accepting of payments. The shortest confirmation time
for the same level of transaction security provides the
best user properties for cryptocurrency.

Papers that provide a number of transaction con-
firmation blocks for Bitcoin use models with implicit
assumption of prompt spreading of Bitcoin blocks over
the network that leads to conditions that are not al-
ways the case for the real world conditions of cryp-
tocurrencies application. Papers that take into account
delays of message delivery on peer-to-peer networks,
provide proofs of asymptotic estimates on reaching of
main blockchain properties, with no specific values of
numbers of transaction confirmation blocks.

We developed three methods for determination of the
required number of confirmation blocks for Bitcoin and
GHOST. The first method uses a model that considers
equal network delays for message delivery on Bitcoin
peer-to-peer network both for honest and malicious
miners. The second one is for Bitcoin and assumes that
an attacker may have faster synchronization for attack
optimization. The third method allows to determine
required number of confirmation blocks for the GHOST
protocol. It is the first strict theoretical method (to our
knowledge) that allows obtaining of these values for the
GHOST.

Compared to other existing methods, in the con-
ditions of equal delays of synchronization for honest
miners and adversarial nodes, our method gives the
same numbers as the known results by M.Rosenfeld and
C.Grunspan, et.al, though uses quite different approach
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Table 1. The number 𝑧 of block confirmations for attack success probability of 0.001 for various values of the
adversarial hashrate 𝑞 for different models

q S.Nakamoto M.Rosenfield C.Grunspan
and
R.Perez-
Marco

Model 1
(Bitcoin)

Model 2
(Bitcoin,
fast adv.
synch.)

Model 3
(GHOST)

0.1 5 6 6 6 6 6
0.15 8 9 9 9 9 8
0.2 11 13 13 13 13 12
0.25 15 20 20 20 20 18
0.3 24 32 32 32 32 28
0.35 41 58 58 58 59 49
0.4 81 133 133 133 136 101

(also taking into account message delivery delays). In
the model with 2x faster adversarial synchronization,
an attacker may gain an advantage only controlling
high hash rate (0.35+).

According to our method, the GHOST protocol re-
quires the number of confirmation blocks, comparable
to Bitcoin. But having much shorter time between
blocks, GHOST has advantage by providing the same
level of blockchain security in shorter time.
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