
UDC 004

Deep learning based automatic software defects detection
framework

A. Chernousov2,3, a, A. Savchenko2,3, b, S. Osadchyi3, Y. Kubiuk1,3, Y. Kostenko3,
D. Likhomanov3

1National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
2National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»,

Institute of Physics and Technology
3Samsung R&D Institute Ukraine (SRK)

Abstract
We present the VulDetect, a source code vulnerability detection system. This system uses deep learning methods to
organizate rules for deciding whether a code fragment is vulnerable. This approach is an improvement of the approach
proposed in VulDeePecker. The model uses the AST representation of the source code. We compared vulnerability
detection results of both systems on the Bitcoin Core project.

Keywords: vulnerability detection, software vulnerability, analyzer, deep learning, BLSTM, AST

1. Introduction
Various approaches are being intensively developed

that help prevents the appearance of software vulnera-
bilities. Big companies apply the Microsoft SDL [1] pro-
cedure for security risks mitigation. SDL recommends
specific checks at different stages of the software devel-
opment life cycle. The most promising is to conduct
checks at the stage of implementation of the software.
In this paper, we propose an approach for the detection
of software defects that can lead to the vulnerabilities,
based on deep learning.

The best-known methods for source code defects de-
tection are static analyzers. The main disadvantage of
static analyzers is that for each defect expert must write
a rule or a set of rules that will detect these defects
in the code. At the same time, there are databases
of source code, which contain both examples of code
with defects, and already corrected. Based on this data,
one can take advantage of deep learning to automati-
cally build rules for source code analysis. The primary
challenge of deep learning based approach is the con-
struction of informative code representation, that will
take into account both functionality and context of
code chunks. Contributions of this paper are to im-
prove the technology of extraction code fragments and
the representation of the source code. [2].

2. Related Work
There currently exists a wide range of utilities for

finding defects in the program code. Analyzers work
with a different representation of the source code: a
pure source code, an Abstract Syntax Tree (AST) and
executable binary files [3] [4]. From the entire list of

aadrerek@gmail.com
bartichsa@gmail.com

utilities, you can define systems of static analyzers with
open source [5] [6] [7] [8] [9], commercial products [10]
[11] [12] [13], and some research projects [4] [14] [15]
[16] [17] [18] [19]. Based on analysis approach, static
analyzers can be divided into 2 types:
1) Rule-based [20]
2) Code similarity-based [21].

2.1. Rule-based approach

This approach has two main problems, which consist
of intensive manual labor and monotonous work and
high false negative rates.
1) Intensive manual labor and monotonous work

Here, task of building rules according to which
the vulnerabilities of a particular function will be
determined (discovered) rely on security specialist.
This task is quite tedious and subjective. Some-
times, errors occur due to the complexity of the
implemented functions. In other words, to identify
the signs of vulnerability, many aspects need to
be taken into account. In principle, the solution
to this problem consists of the independent writ-
ing of the same function by several experts, and
then the choice of the most effective, or combi-
nations of specific functions. However, this leads
to even more manual labor. There is a tendency
to automate cyber defense, which is stimulated
by the DARPA’s Cyber Grand Challenge [22], so
it is desirable to reduce or eliminate the reliance
on manual labor, whenever it is possible. There-
fore, it is essential to fence people from the tedious
and subjective task of manually defining rules for
detecting vulnerabilities.

2) High false negative rates

Deep learning based automatic software defects detection framework

68

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Archive of Kyiv Polytechnic Institute

https://core.ac.uk/display/343950366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On the other hand, existing solutions often overlook
many vulnerabilities. In other words, have a high
level of false negative results. According to the
results of article [23], these indicators for the Clang
Analyzer [8] or [9] were 84% and 92%, respectively.
These values may be justified by the emphasis on
a low level of false positive results, but this is still
not a very good indicator.

2.2. Code similarity-based approach

The Code similarity-based approach also has two
problems: the absence of a data set and absence of an
efficient comparison algorithm.
1) Absence of a data set

At the moment, there are no open datasets suitable
for this task. This problem is relevant, even though
the National Vulnerability Database (NVD) [24]
and the Open Sourced Vulnerability Database (OS-
VDB) [25] have become open. Also, in articles [26]
[27], databases were created for matching numbers
and identifiers of Common Vulnerabilities and Ex-
posures (CVE-ID) [28] with commits, where each
commit contains the difference of the source code
before and after commit. However, all this data is
not enough to identify all vulnerabilities.

2) Absence of an efficient algorithm
There currently no single efficient code similarity
algorithm that would be effective for all types of
vulnerabilities, since each vulnerability has its char-
acteristics that should be taken into consideration.

An improved approach of Code similarity-based was
published in article [2]. The advantage of this method
over the Code similarity-based approach is an efficient al-
gorithm for finding similar code with using Deep Learn-
ing. Compared to the Rule-based approach, it has a
rather low false negative rate, about 7%. The disadvan-
tages of this method are: there is still not exists of a
sufficient data set and higher false positive rates.

It can be said that the vulnerability detection system
with high a false positive rate may be unsuitable for
use, and systems with a high false negative rate may be
useless. This justifies the importance of using systems
that can provide low false negative rates, while the false
positive rates are not too high.

3. Statement of the problem
This paper discusses the problem of building a source

code analysis system based on deep learning that allows
you to determine whether a code fragment contains a
defect (memory leaks, buffer overflow, etc.). The advan-
tages of this approach are the ability to automatically
formulate a rule for deciding whether a code fragment is
vulnerable or not, based on the accumulated experience
of writing code and fixing defects. Deep learning meth-
ods have a good ability to extract generalized patterns
from a large amount of data, which in this case is an
accumulated code base.

The object of study is the software development pro-
cess.

The subject of the study is the detection of defects
in software source code.

Research methods - AST representation of source
code, deep learning methods for solving classification
problems.

The scientific novelty of this work consists in applying
the AST representation of the source code and the
principle of its processing to extract a code fragment
(code gadget), which made it possible to improve the
accuracy of defects detection. This approach is an
improvement of the technology described earlier in the
article [2].

4. Major principles for deep learning-based
vulnerability detection

In this section, we propose to consider some basic
principles of using deep learning to detect vulnerabilities.
Some principles may need to be improved or studied in
more detail, but this is sufficient for current research
on the detection of vulnerabilities. When using neural
networks, standard basic questions always arise before
starting development, and in this research, the following
questions arose: 1. How to represent a program that is
tested for vulnerability detection system based on deep
learning? 2. How to localize a vulnerability? 3. What
neural network architecture to choose?

4.1. How to represent program?

Since the neural network accepts numerical vectors
at the input, it is necessary to transform the program
in such a way as to keep the relation between the vector
and the semantic information about the program. In
articles [3] [4], there were proposals to work with binary
program data and the AST, and with the source code
of the program, as well. In other words, we need a
method that will create a relation between the program
presentation and the vector representation, which is
input to deep learning. This led to the following steps:
1) The program is first converted to AST
2) From all, the code gadget is extracted (the part of

the code that refers to the call of a certain function
or the arguments of the function call)

3) Through word2vec [29] code gadget converted into
a vector, which is the input data for the neural
network.

4.2. How to localize a vulnerability?

Detection of the vulnerable code is not the only chal-
lenge to be solved. An essential task is also finding the
location of a vulnerability. This means that vulnerabil-
ity detection should not be carried out at a program
or function level that is too abstract. This led to the
following case: In order to determine the more precise
location of a vulnerability, a program must be presented
with a higher degree of detail than the program or func-
tion as a whole. Indeed, the presentation of the code
gadget leads to more accurate vulnerability position de-
tection, because, in most cases, the code gadget consists
of only a few lines.

Software code vulnerabilities investigation and secure applications development

69



4.3. What neural network to choose?

Neural networks have proven themselves in the follow-
ing areas: image processing, speech recognition, clus-
tering, which differ from finding vulnerabilities. From
this follows that many types of neural networks are not
suitable for our purposes and that the neural network
we need must have specific properties. This led to the
following cases: Since a particular line of vulnerabil-
ity code may depend on the context of the program
code, neural networks that can work with the context
will suit, an example would be neural networks for pro-
cessing human speech. One can see that function call
arguments are most often influenced by earlier or later
operations in the program. We begin our consideration
with a neural network with feedback, that is a Recurrent
Neural Network (RNN) [30]. But this neural network
has one major drawback, namely the vanishing gradient
problem [31] [32]. To address this issue, more complex
architecture has been chosen, namely, a neural network
with a long short-term memory (LSTM) [33]. However,
even the LSTM neural network in its standard form
does not fit, since the network is unidirectional, and
because the arguments of the function can be affected
by both earlier and later operations in the program.
From this, it follows that a unidirectional LSTM net-
work may not be enough. Therefore, it was decided to
use a bidirectional LSTM (BLSTM) [34].

Fig. 1. A brief review of BLSTM neural network

The Figure 1 shows a block diagram of a BLSTM
neural network, with several BLSTM layers, a dense
layer, and a softmax layer. The entrance to the neu-
ral network at the training stage is a specific vector
representation. The BLSTM layers themselves have
two directions: forward and backward and contain sev-
eral complex LSTM cells. The dense layer reduces the
number of vectors obtained as a result of the BLSTM
layer, and the softmax layer accepts vectors from the
dense layer as input and is responsible for the presenta-
tion and formatting of the classification result, which
provides feedback for updating the neural network pa-
rameters during the learning phase. The result of the
learning phase is the BLSTM neural network with pre-

cisely tuned model parameters, and the output of the
detection phase is the classification results.

5. Design

Our objective is to design a vulnerability detection
system (VulDetect) that can automatically tell whether
a given program in the source code is vulnerable or
not and if so, the locations of the vulnerabilities. This
should be achieved without asking human experts to
define features manually and without incurring high
false negative rates (as long as the false positive rates
are reasonable). In this section, we describe the design
of VulDetect. We start with a discussion on the notion
of code gadget because it is crucial to the representation
of programs.

5.1. Extracting code gadgets

Working with the source code, we need to decide
which part of the code we should work with, this can
be functions or strings or the entire file. We need to
extract from the source code a piece of code that will
be associated with a potential vulnerability, and with
which we will work in the future. This piece of code
will be called Code Gadget by analogy with article [2].
Code gadget is a set of statements influenced by a single
data stream (data flow). We will not extract the code
gadget from raw text, but in advance transformed into
an AST. This is a data structure that represents the
source code in the form of a tree, where each node is
associated with a language construct that is found in
the source code. There are following steps to extract
code gadgets demonstrated in Figure 2:
1) Preprocessor. Based on the source code, using the

built-in clang preprocessor, a new source code file
is created without preprocessor directives that have
been defined by a user.

2) Build AST. To build AST, we use the clang com-
piler toolkit.

3) Search for start points. Under the start point
means the place in the source code, which begins
the analysis. We use function calls from the stan-
dard C library as a start point (for example, malloc,
memcpy, fopen, etc.)

4) Building a dependency graph. At this stage, we
build a dependency graph of the arguments (or
return values) on the start point; in other words,
the function. Functions can belong to one of two
types: backward and forward. The backward type
includes those functions for which it is important
to monitor the previous state of the arguments (for
example, malloc). The forward type includes those
functions for which it is important to monitor the
status of the returned values.

5) Obfuscation of user variables or functions. On this
step, we get rid of the dependencies of the names
of user functions and variables. We replace all
names of functions and variables with symbolic
names such as: «var1», «var2», etc. and «func1»,
«func2», etc. At the same time, different names

Deep learning based automatic software defects detection framework

70



Fig. 2. Steps to extract code gadget

from different code gadget can be mapped into the
same symbolic name.

6) Generate code gadget. Based on the graph, a code
gadget is formed from tokens taken from the nodes
of the graph.

5.2. Approach details

When we extract the code gadget from the context
file, it is necessary to take into consideration all depen-
dencies from internal files or libraries and external ones.
First of all, we downloaded and saved the Windows OS
libraries into a separate folder, and when analyzing the
source code files, in addition to the .c/.cpp files, we also
found and included .h/.hpp files. This made it possible
to view the code in a correct form because sometimes
the operators that affect variables were not limited to
one file. After that, we encoded the converted code
gadget into a numerical vector, whose indexes will cor-
respond to the line number of the code in the current

code gadget. To achieve the desired result, we used
word2vec [29], which allowed us to preserve the lexical
and logical relationships within the vector for each code
segment.

We use a supervised learning model, and each input
vector was marked as 1 or 0, respectively vulnerable and
not. The following structure of the model was chosen,
which had n_epochs/batch_size = 100 and consisted
of four parts:

1) five BLSTM layers, at the input and output of
which was a vector of size N_features;

2) one dense layer of «rele» type had the same size;
3) dense layer of type «softmax», which took a vector

of size N_features, and narrowed it to six;
4) the last layer used the loss function «bi-

nary_crossentropy» and, as a result, returned a
value of type «float» from 0 to 1.

For writing this model, numpy and keras were used.

Software code vulnerabilities investigation and secure applications development

71



Fig. 3. General data-flow of vulnerabilities detection based on DL

As a result, the analysis of vulnerabilities of the
project, showed the probability of vulnerability of
C/C++ files consisted of the following steps that il-
lustrated on Figure 3:
1) extracting C/C++ files and their dependencies;
2) AST conversion and localization of potentially vul-

nerable parts of the code;
3) transformation of code sections in code gadgets;
4) encoding code gadget into a numerical vector;
5) using the neural model to find vulnerable parts of

the source code.

5.3. Approach weaknesses

The proposed approach has the following weaknesses:
1) The source codes from the training sample con-

tained specific Windows and *nix system libraries,
so to correctly create the code gadget, we needed
a manual installation of the missing dependencies.
Otherwise, parts of the code associated with un-
known libraries did not fall into the AST, which
significantly reduced the size and quality of the
training sample.

2) Also, an important aspect of the source code pro-
cessing is that in order to correctly extract code
gadgets, it is necessary to make a list of poten-
tially vulnerable functions manually and set a list
of their features, for example, whether this function
is forward or backward, whether it is necessary to
track function arguments, whether it is necessary
to track returned function values.

3) In order for the code gadgets did not include in-
formation from third-party files and libraries; it
is required to manually set the directory with the

files on which the code gadgets will be built. Oth-
erwise, as a result of passing through the nested
functions, the code gadget will have information
that is not relevant from the user’s point of view
and potentially may introduce an error during the
analysis.

4) When we track the arguments or return values of
the function, it rarely occurs cases with a large
number of nestings, as a result of which the code
gadgets become quite large. This problem entails
a number of consequences:

a) decreases the accuracy of the model results;
b) from the user’s point of view, the informative-

ness of the resulting report falls because the
description of the vulnerable part of the code
is too inaccurate;

c) in general decreases system performance be-
cause more information needs to be processed.

This problem was partially managed to get rid of by
manually setting the bound level of nesting. This
solution has reduced the size of the code gadgets
and increase the accuracy of the analysis, but it
can potentially miss important details of the code
gadget.

6. Results of work

As part of the research, was made a comparison of
two models: VulDeePecker and VulDetect. To train the
VulDeePecker model as a training sample, pre-prepared
code gadgets were taken from the authors of the origi-
nal article [2]. For training the VulDetect model, own
code gadgets were generated using the algorithms men-
tioned above. Both training samples were created based

Deep learning based automatic software defects detection framework

72



on source codes taken from the National Vulnerability
Database (NVD) [24], and from the NIST Software
Assurance Reference Dataset (SARD) [35]. The initial
sample contains 8122 sample code with the presence
of a buffer overflow vulnerability, as well as 1729 code
samples with vulnerabilities associated with incorrect
resource management. The sample was divided into
training and test in the ratio of 80% and 20%, re-
spectively. Comparative characteristics of the output
accuracy of training and testing for VulDeePecker and
VulDetect models are presented in Table 1.

Table 1. Comparison of VulDeePecker and VulDetect
in accuracy on different phases

Phase/accuracy VulDeePecker VulDetect
Learning 96% 97%
Testing 91% 92%

As can be seen from the Table 1, the accuracy of
the model VulDetect exceeds the accuracy of the model
VulDeePecker. This is due to the use of another algo-
rithm for generating gadget code that we proposed.

As an experiment, the trained VulDeePecker and
VulDetect models were used to search for vulnerable
areas in the source codes of the Bitcoin protocol im-
plementation, available from the [36]. The results are
presented in Table 2.

Table 2. Comparison of VulDeePecker and VulDetect
in different metrics of number of finded code gadgets

Metrics VulDeePecker VulDetect
Original number of
code gadgets 1510

Number of code
gadgets marked as
«safe»

970 1326

Number of code gad-
gets marked as «vul-
nerable»

540 184

Number of code gad-
gets marked as «safe»
by both models

802 802

Number of code gad-
gets marked as «vul-
nerable» by both
models

16 16

The number of
unique code gadgets
marked as «safe»

168 524

The number of
unique code gad-
gets marked as
«vulnerable»

524 168

The anomaly rating for each code gadget of the orig-
inal sample is presented in Figure 4:

Fig. 4. Comparison of VulDeePecker and VulDetect

According to the results of the experiment, it is clear
that the VulDeePecker model marked as “vulnerable”
a much larger number of gadgets than the VulDetect
model, but with a lower anomaly index, which indicates
a higher false positive rate.

7. Conclusion
In this paper presented a new DL-based source code

vulnerability detection system called VulDetect, which
is an improvement of VulDeePecker technology. The
model uses the AST representation of the source code. A
new code gadget extraction system has been developed.
We compared the results of detecting vulnerabilities
of both systems on the Bitcoin Core project. In the
VulDetect model, the false positive rates were reduced,
which led to increase in false negative rates. There is
still a problem with a valid dataset, which will increase
the accuracy of neural network predictions and increase
the number of detected vulnerabilities. In the future,
it is planned to make a more efficient algorithm for
extracting the code gadgets, which will increase the
accuracy of vulnerability detection in the source code.

References
[1] “Microsoft security development lifecycle (sdl).”

http://www.cs.fsu.edu/~jowett/MS_SDL_
Version_3.2.pdf. Accessed: 2019-03-26.

[2] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang,
Z. Deng, and Y. Zhong, “VulDeePecker: A deep
learning-based system for vulnerability detection,”
in Proceedings 2018 Network and Distributed Sys-
tem Security Symposium, Internet Society, 2018.

[3] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neu-
ral nets can learn function type signatures from
binaries,” in 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017. (E. Kirda and T. Ristenpart,
eds.), pp. 99–116, USENIX Association, 2017.

[4] F. Yamaguchi, M. Lottmann, and K. Rieck, “Gen-
eralized vulnerability extrapolation using abstract
syntax trees,” in Proceedings of the 28th Annual

Software code vulnerabilities investigation and secure applications development

73

http://www.cs.fsu.edu/~jowett/MS_SDL_Version_3.2.pdf
http://www.cs.fsu.edu/~jowett/MS_SDL_Version_3.2.pdf


Computer Security Applications Conference on -
ACSAC '12, ACM Press, 2012.

[5] “Flawfinder.” https://dwheeler.com/
flawfinder/flawfinder.pdf. Accessed: 2019-
03-26.

[6] “Rough auditing tool for security.”
https://code.google.com/archive/p/
rough-auditing-tool-for-security/. Ac-
cessed: 2019-03-26.

[7] J. Viega, J. Bloch, Y. Kohno, and G. McGraw,
“ITS4: a static vulnerability scanner for c and c++
code,” in Proceedings 16th Annual Computer Secu-
rity Applications Conference (ACSAC'00), IEEE
Comput. Soc, 2000.

[8] D. Marjamaki, “Cppcheck - a tool for static
c/c++ code analysis.” http://cppcheck.wiki.
sourceforge.net/. Accessed: 2019-03-26.

[9] B. D. Fandrey, “Clang/llvm.” https://llvm.org/
pubs/2010-06-06-Clang-LLVM.pdf. Accessed:
2019-03-26.

[10] “Checkmarx.” https://www.checkmarx.com/. Ac-
cessed: 2019-03-26.

[11] “Coverity.” https://scan.coverity.com/. Ac-
cessed: 2019-03-26.

[12] “Hp fortify.” https://www.hpfod.com/. Accessed:
2019-03-26.

[13] “Dexter.” https://github.com/Samsung/Dexter.
Accessed: 2019-03-26.

[14] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat,
J. Feist, and L. Mounier, “Toward large-scale vul-
nerability discovery using machine learning,” in
Proceedings of the Sixth ACM on Conference on
Data and Application Security and Privacy - CO-
DASPY '16, ACM Press, 2016.

[15] S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A
scalable approach for vulnerable code clone discov-
ery,” in 2017 IEEE Symposium on Security and
Privacy (SP), IEEE, may 2017.

[16] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu,
“VulPecker,” in Proceedings of the 32nd Annual
Conference on Computer Security Applications -
ACSAC '16, ACM Press, 2016.

[17] S. Neuhaus and T. Zimmermann, “The beauty and
the beast: Vulnerabilities in red hat’s packages,”
in In Proceedings of the 2009 USENIX Annual
Technical Conference (USENIX ATC, 2009.

[18] S. Neuhaus, T. Zimmermann, C. Holler, and
A. Zeller, “Predicting vulnerable software compo-
nents,” in Proceedings of the 14th ACM conference
on Computer and communications security - CCS
'07, ACM Press, 2007.

[19] Y. Shin, A. Meneely, L. Williams, and J. A. Os-
borne, “Evaluating complexity, code churn, and
developer activity metrics as indicators of software
vulnerabilities,” IEEE Transactions on Software
Engineering, vol. 37, pp. 772–787, nov 2011.

[20] “Static code analysis.” https://www.owasp.org/
index.php/Static_Code_Analysis. Accessed:
2019-03-26.

[21] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo, “Comparison and evaluation of clone
detection tools,” IEEE Transactions on Software
Engineering, vol. 33, pp. 577–591, sep 2007.

[22] “Cyber grand challenge.” https://www.
cybergrandchallenge.com/. Accessed: 2019-03-
26.

[23] N. L. Athos Ribeiro, Paulo Meirelles and
F. Kon, “Ranking source code static analysis warn-
ings for continuous monitoring of floss reposi-
tories.” https://www.oss2018.org/wp-content/
uploads/2018/06/Athos-Ribeiro-oss.pdf. Ac-
cessed: 2019-03-26.

[24] “National vulnerability database.” https://nvd.
nist.gov/. Accessed: 2019-03-26.

[25] “Open sourced vulnerability database.” http://
www.osvdb.org. Accessed: 2019-03-26.

[26] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda,
M. Mokary, and B. Spates, “When a patch goes
bad: Exploring the properties of vulnerability-
contributing commits,” in 2013 ACM / IEEE In-
ternational Symposium on Empirical Software En-
gineering and Measurement, IEEE, oct 2013.

[27] H. Perl, S. Dechand, M. Smith, D. Arp, F. Ya-
maguchi, K. Rieck, S. Fahl, and Y. Acar, “VC-
CFinder,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communi-
cations Security - CCS '15, ACM Press, 2015.

[28] “Common vulnerabilities and exposures.” https:
//cve.mitre.org/. Accessed: 2019-03-26.

[29] “word2vec.” https://code.google.com/
archive/p/word2vec/. Accessed: 2019-03-26.

[30] A. Mani, “Solving text imputation using recurrent
neural networks,” 2015.

[31] S. Hochreiter, “Untersuchungen zu dynamischen
neuronalen Netzen. Diploma thesis, Institut für
Informatik, Lehrstuhl Prof. Brauer, Technische
Universität München,” 1991.

[32] J. F. Kolen and S. C. Kremer, Gradient Flow in Re-
current Nets: The Difficulty of Learning LongTerm
Dependencies. IEEE, 2001.

[33] S. M. A. A. Mamun and J. Valimaki, “Anomaly
detection and classification in cellular networks
using automatic labeling technique for applying
supervised learning,” Procedia Computer Science,
vol. 140, pp. 186–195, 2018.

[34] A. Ray, S. Rajeswar, and S. Chaudhury, “Text
recognition using deep blstm networks,” in 2015
Eighth International Conference on Advances in
Pattern Recognition (ICAPR), pp. 1–6, Jan 2015.

[35] “Nist software assurance reference dataset.” https:
//samate.nist.gov/SARD/. Accessed: 2019-03-
26.

[36] “Bitcoin core.” https://github.com/bitcoin/
bitcoin. Accessed: 2019-03-26.

Deep learning based automatic software defects detection framework

74

https://dwheeler.com/flawfinder/flawfinder.pdf
https://dwheeler.com/flawfinder/flawfinder.pdf
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
http://cppcheck.wiki.sourceforge.net/
http://cppcheck.wiki.sourceforge.net/
https://llvm.org/pubs/2010-06-06-Clang-LLVM.pdf
https://llvm.org/pubs/2010-06-06-Clang-LLVM.pdf
https://www.checkmarx.com/
https://scan.coverity.com/
https://www.hpfod.com/
https://github.com/Samsung/Dexter
https://www.owasp.org/index.php/Static_Code_Analysis
https://www.owasp.org/index.php/Static_Code_Analysis
https://www.cybergrandchallenge.com/
https://www.cybergrandchallenge.com/
https://www.oss2018.org/wp-content/uploads/2018/06/Athos-Ribeiro-oss.pdf
https://www.oss2018.org/wp-content/uploads/2018/06/Athos-Ribeiro-oss.pdf
https://nvd.nist.gov/
https://nvd.nist.gov/
http://www.osvdb.org
http://www.osvdb.org
https://cve.mitre.org/
https://cve.mitre.org/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://samate.nist.gov/SARD/
https://samate.nist.gov/SARD/
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin

