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Abstract
We suggest new applications of protocols of Non-commutative cryptography defined in terms of subsemigroups of Affine
Cremona Semigroups over finite commutative rings and their homomorphic images to the constructions of possible
instruments of Post Quantum Cryptography. This approach allows to define cryptosystems which are not public keys.
When extended protocol is finished correspondents have the collision multivariate transformation on affine space 𝐾𝑛 or
variety (𝐾*)𝑛 where 𝐾 is a finite commutative ring and 𝐾* is nontrivial multiplicative subgroup of 𝐾. The security of
such protocol rests on the complexity of word problem to decompose element of Affine Cremona Semigroup given in its
standard form into composition of given generators. The collision map can serve for the safe delivery of several bijective
multivariate maps 𝐹𝑖 (generators) on 𝐾𝑛 from one correspondent to another. So asymmetric cryptosystem with nonpublic
multivariate generators where one side (Alice) knows inverses of 𝐹𝑖 but other does not have such a knowledge is possible.
We consider the usage of single protocol or combi-nations of two protocols with platforms of different nature. The
usage of two protocols with the collision spaces 𝐾𝑛 and (𝐾*)𝑛 allows safe delivery of two sets of generators of different
nature. In terms of such sets we define an asymmetric encryption scheme with the plainspace (𝐾*)𝑛, cipherspace 𝐾𝑛

and multivariate non-bijective encryption map of unbounded degree 𝑂(𝑛) and polynomial density on 𝐾𝑛 with injective
restriction on (𝐾*)𝑛. Algebraic cryptanalysis faces the problem to interpolate a natural decryption transformation which
is not a map of polynomial density.

Keywords:Multivariate Cryptography, Noncommutative Cryptography, stable trans-formation groups and semigroups,
semigroups of monomial transformations, word problem for nonlinear multivariate maps, hidden tame homomorphisms,
key exchange protocols, cryptosystems, linguistic graphs.

1. Introduction

Investigations of continuous nonlinear transformation
of vector spaces 𝑅𝑛 and 𝐶𝑛 in term of dynamic sys-
tems theory and other method of Chaos Studies have
application to Cryptography. The usual scheme use
‘’discretisation” of continuous. map, i.e. finding of its
natural discrete analog (see [1], [2], [3], [4], [5]). Other
approach is connected with studies of 𝐾-theory of affine
Cremona semigroup of all polynomial maps of affine
space 𝐾𝑛 into itself, where 𝐾 is a commutative ring.
This is the search for instruments for the constructions
of nonlinear maps defined over arbitrary K with special
properties. One of the examples is dynamical system
of large girth (or large cycle indicator) considered in
[6], [7] which allows to introduce large subgroups of
cubical transformation on free module 𝐾𝑛. Notice that
independently from choice of commutative ring com-
position of two cubic maps in ‘’general position” will
have degree 9. So these subgroups are very special
sets of transformations. Noteworthy that in the case
of commutative ring of characteristic 0 (like fields 𝑅
and 𝐶) there are bijective polynomial maps such that
their inverse are not an elements of 𝑆(𝐾𝑛). One of the
simplest examples is the map 𝑥 → 𝑥3 of one dimen-
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sional affine space 𝑅. So the family of large subgroups
of cubical transformations of 𝐾𝑛, 𝑛 > 2 over arbitrary
commutative ring is an interesting mathematical object.
We believe that studies of corresponding infinite alge-
braic graphs of large girth defined over commutative
rings of characteristic zero is an interesting topic for
future investigation, the first results in this direction
are presented in [8].

Let symbol 𝑆(𝐾𝑛) stands for the affine Cremona
semigroup (see [38]) of all polynomial transformation of
𝐾𝑛. Studies of stable subsemigroups of 𝑆(𝐾𝑛) which
are totalities oftransformations of affine space 𝐾𝑛 of
degree bounded by small constant 𝑑 are motivated by
their cryptographic applications. The cases 𝑑 = 2, 3 are
of special interest. Notice that 𝑑 = 1 corresponds to
general affine semigroup 𝐴𝐿𝑛(𝐾) of all transformations
of 𝐾𝑛 of degree 1. Cryptographic algorithms based
on cubical stable semigroups include stream ciphers
(see [29] and further references), multivariate Diffie-
Hellman key exchange protocols and corresponding El
Gamal cryptosystems (see [34] and further references),
algorithms of noncommutative cryptography with mul-
tivariate platforms ([16], [28], [35], [36]).

Notice that direct usage of cubical transformations
from stable semigroups as public encryption instru-
ments does not make sense because the inverse map
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is also cubical one. One can use 𝑂(𝑛3) pairs of kind
plaintext/corresponding ciphertext and interpolate de-
cryption map in time 𝑂(𝑛10). Anyway for the con-
struction of public keys one can use transformations
of stable semigroup in a combination with special un-
stable transformations (see [9], [10], [26], [27]). For
instance in [9] author together with the subgroup of
stable cubical subgroup uses other distinguished ob-
ject which is a totality 𝑛𝐸𝑆(𝐾) of nonlinear monomial
transformations moving each variable 𝑥𝑖 to a single
monomial term 𝑡(𝑥1, 𝑥2, . . . , 𝑥𝑛) (algorithms work in
the cases 𝐾 = 𝐹𝑞 and 𝐾 = 𝑍𝑚. In fact subsemigroups
of 𝑛𝐸𝑆(𝐾) together with stable subsemigroup can be
used in secure inverse key exchange protocol in which
each correspondents get one element from the pair of
polynomial transformations (𝑔,𝑔′) from 𝐾𝑛 preserving
(𝐾*)𝑛 such that 𝑔𝑔′ acts on (𝐾*)𝑚 as identity. Such
a protocol developed in a spirit of Noncommutative
Cryptography (NC), see [17]-[24]). It is very important
that Non-Commutative cryptography is well supported
by new modern achievements in Cryptanalysis (see [40]
— [48]).

In difference with common for NC usage of genera-
tors and relation we use standard way of Multivariate
Cryptography of presenting each element of 𝑆(𝐾𝑛) by
its standard form given by lists of monomial terms. Cor-
respondents can use (𝐾*)𝑚 as plainspace and 𝐾𝑚 as
cipherspace. So it is an interesting postquantum instru-
ment alternative to public key cryptography stimulated
recently by the U.S. NIST step toward mitigating the
risk of quantum attacks via the announcement the PQC
standardisation process [11]. In March 2019, NIST pub-
lished a list of candidates qualified to the second round
of the PQC process. We notice that in the cited above
studies of usage of stable subsemigroups of 𝑆(𝐾𝑛) for
security applications were overlooked. For instance not
only inverse but directed tahoma protocols with stable
and monomial platforms in tandem can be used for
establishment of multivariate asymmetric procedure.
We fill this gap in the section 2.

Public keys [9], [10] with the usage of semigroup
𝑛𝐸𝑆(𝐾) and stable subgroups can be used in the case
of general commutative ring 𝐾 (finite or infinite)with
nontrivial multiplicative group. This algorithm can
be enhanced via algorithms of generation pairs 𝑔 ,𝑔−1

from 𝑛𝐸𝑆(𝐾) with the usage of linguistic graphs de-
fined over commutative group 𝐾*. New version of this
cryptosystem is given in section 4. It uses the following
scheme. Let as assume that 𝐺 is a large stable subgroup
of 𝑆(𝐾𝑛) with the constant degree 𝑑. We generate the
composition 𝑧 = 𝑔𝑓 , where 𝑔 is a member of mentioned
above pair, 𝑓 ′ = 𝑇𝑓𝑇 ′ where 𝑓 ∈ 𝐺, 𝑇 and 𝑇 ′ are in-
vertible affine transformation from 𝐴𝐿𝑛(𝐾), as public
key rules of kind 𝑧𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐾[𝑥1, 𝑥2, . . . , 𝑥𝑛],
𝑖 = 1, 2, . . . , 𝑛 in the cases when ground commutative
ring 𝐾 has quite large multiplicative group 𝐾*. In
particular we can generate a polynomial transforma-
tion 𝑧 on real vector space 𝑅𝑛, 𝑛 > 2 of linear degree
and prescribed polynomial density 𝑐𝑛𝑑 which preserves
(𝑅*)𝑛 and acts as bijectively on this set (see section 4
of this paper where 𝐺𝐽𝐺 elements are introduced). Let

us assume that commutative ring 𝐾 is finite and Alice
is able to compute 𝑓−1 and 𝑔−1 in polynomial time.
Public user Bob works with the map of linear degree
in variable 𝑛 which has density 𝑂(𝑛𝑑+1) (number of
monomial terms in all public rules, which coincides with
the density of map 𝑓 ′ of degree 𝑑). This facts guarantee
the feasibility of encryption process which consist of
computation 𝑐 = 𝑧(𝑝) for element 𝑝 from the plainspace
(𝐾*). Alice in difference with Bob has the factorisa-
tion of 𝑧 into composition of 𝑔 am 𝑓 ′. She computes
(𝑓 ′)−1(𝑐) = 𝑐′ and restores the plaintext as 𝑔−1(𝑐′).
Notice that unknown for Bob inverse map (𝑓 ′)−1𝑔−1

has unbounded degree and exponential density. Thus
suggested schemes can be considered in future as can-
didates for Post Quantum Cryptography (PQC) usage.
Notice that this is an algorithm of Multivariate Cryp-
tography with general reference on the complexity to
solve nonlinear system of equations. The correspond-
ing system has unbounded degree and corresponding
multivariate map is not a bijection. Cryptanalytics
can try to factorize this map in a form 𝑓𝑔 where 𝑓
is monomial map from 𝑛𝐸𝑆(𝐾) and 𝑔 has bounded
degree 𝑑 but general algorithms even subexponential
complexity for the completion of this task are unknown.
For proper investigation of these public key algorithms
they have to be compared with other known candidates
for postquantum usage (like algorithms of the second
round of NIST competition). We discover and alterna-
tive option. No need in the announcement of standard
form of z publicly because there is a secure way (pro-
tocol) for delivery of this multivariate encryption tool
for one correspondents to another. In fact instead of
𝑧 any multivariate map 𝐺 with injective restriction on
(𝐾*)𝑛 of linear degree and polynomial density 𝑂(𝑛𝑑),
𝑑 = 1, 2, 3 can be transported safely from Alice to Bob.
Other option is use a separate delivery of 𝑓 and 𝑔 as
above which makes the computations faster. Descrip-
tion of the implementations of these delivery algorithms
in terms of directed tahoma protocol is given in section
6. In fact the author of ([14]) noticed that usage of
large groups 𝐺 and 𝑛𝐸𝑆(𝐾) allows to create natural
secure inverse protocol with usage of doubled platform
for secure delivery of pairs 𝑓−1, 𝑔−1 (for Alice) and
𝑓 , 𝑔 for Bob where 𝑓 and 𝑔 written above maps. It
means that we can postpone public announcement of
𝑔𝑓 . The security of these two solutions with directed
and inverse protocols rests on the complexity of de-
composition of element of non-commutative subgroup
𝐺 of affine Cremona semigroup or semigroup𝑛𝐸𝑆(𝐾)
into the product of several generators given by their
standard forms. This is known word problem which
is unsolvable in polynomial time with usage of Turing
machine or Quantum Computer. The first usage of the
complexity of word problem for abstract groups was con-
sidered in [15]. The further step is presented in section
5 and 6, it brings the option to deliver several bijective
multivariate transformations of degree 1, 2 and 3 and
conduct algorithm with a governing formal word and
hidden multivariate generators. Stable part of double
inverse platforms of [14] constructed in terms of alge-
braic graphs of geometrical nature, monomial part is
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defined in terms of parabolic subsemigroup of 𝑛𝐸𝑆(𝐾)
in the cases 𝐾 = 𝐹𝑞 and 𝐾 = 𝑍𝑞. In this paper we
use double directed tahoma protocol which uses cubical
stable groups (section 3) related to constructions of
Extremal Group Theory which already were used for
the construction of stream ciphers (see [25] and further
references) and new subsemigroups of 𝑛𝐸𝑆(𝐾) (section
4) defined in terms of linguistic graphs over nontrivial
multiplicative group 𝐾* of general commutative ring
defined in section 3.

2. Some protocols of noncommitative
cryptography with multivariate plat-
forms

Let 𝑆′ < 𝑆(𝐾𝑛) be a subsemigroup of affine Cremona
semigroup and 𝜙 be a homomorphism from 𝑆′ onto
semigroup 𝐺 < 𝑆(𝐾𝑛), 𝑛 > 𝑚.

2.1. Protocol 2.1.

Additionally we consider a stable subsemigroup 𝑆,
𝑆′ < 𝑆 < 𝑆(𝐾𝑛) and assume that 𝐻 is stable semigroup
𝐻, 𝐺 < 𝐻 < 𝐶(𝐾𝑚). Alice selects elements 𝑠1, 𝑠2, . . . ,
𝑠𝑟, 𝑟 > 1 of subsemigroups 𝑆′ and computes 𝜙(𝑠𝑖) = 𝑢𝑖.
She takes invertible elements ℎ ∈ 𝑆(𝐾𝑛) of kind 𝑎𝑣,
deg(𝑎) = 1, 𝑣 ∈ 𝑆 and 𝑓 ∈ 𝐶(𝐾𝑚), 𝑓 = 𝑏𝑔, deg(𝑏) = 1,
𝑔 ∈ 𝐻 and forms pairs (𝑎𝑖 = ℎ𝑠𝑖ℎ

−1, 𝑏𝑖 = 𝑓𝑢𝑖𝑓
−1)

𝑎𝑖(1)
𝛼(1) and sends them to Bob.

He forms word 𝑤 = (𝑎𝑖(1)
𝛼(1)𝑎𝑖(2)

𝛼(2) . . . 𝑎𝑖(𝑡)
𝛼(𝑡),𝑡 >

𝑟 − 1, 𝑖(𝑗) ∈ {1, 2, . . . , 𝑟}, 𝛼(𝑗) > 0, 𝑗 = 1, 2, . . . , 𝑡
and sends it to Alice. Bob changes alphabet via the
substitution of 𝑏𝑖 instead of 𝑎𝑖 and keeps the word
𝑢 = (𝑏𝑖(1))

𝛼(1)(𝑏𝑖(2))
𝛼(2) . . . (𝑏𝑖(𝑡))

𝛼(𝑡).
Alice computes 𝑢 as 𝑓𝜙(ℎ−1𝑤ℎ)𝑓−1. So Alice and

Bob when the protocol ends have collision transforma-
tion of the affine space 𝐾𝑚. Examples of the implemeta-
tions of this algorithm can be found in [16].

2.2. Protocol 2.2.

Let us consider above algorithms in the case when
semigroup 𝑆 consists of toric elements and 𝐻 <𝑚

𝐸𝐺(𝐾) and 𝑆 = 𝑆′. Alice forms ℎ and ℎ−1 from
𝑛𝐸𝐺(𝐾) together with pair 𝑓 , 𝑓−1 from 𝑚𝐸𝐺(𝐾) and
proceed with the modification of previous algorithm. Al-
ice selects elements 𝑠1, 𝑠2, . . . , 𝑠𝑟, 𝑟 > 1 of semigroups
𝑆 and computes 𝜙(𝑠𝑖)

−1
= 𝑢𝑖. She takes invertible ele-

ments ℎ and 𝑓 to form pairs (𝑎𝑖 = ℎ𝑠𝑖ℎ
−1, 𝑏𝑖 = 𝑓𝑢𝑖𝑓

−1

and sends them to Bob. The rest of the algorithm is
identical to case of procedure 2.1. After the completion
of this protocol Alice and Bob have common maps 𝑢
acting on the variety (𝐾*)𝑚.

SECURITY BASE: The adversary has to solve the
word problem for the subsemigroup 𝑆′, i. e., find the
decomposition of 𝑤 from 𝑆′ into generators 𝑎𝑖, 𝑖 =
1, 2, . . . , 𝑡. The general algorithm to solve this problem
in polynomial time for the variable 𝑛 is unknown, as well
as a procedure to get its solution in terms of quantum
computations. The problem depends heavily on the
choice of a group.

REMARK. Of course in each case alternative ways
of computation of the value 𝜎(𝑤) of isomorphism 𝜎
between semigroup < 𝑎1, 𝑎2, . . . , 𝑎𝑟 > and group <
𝑏1, 𝑏2, . . . , 𝑏𝑟 > given by the rule 𝜎(𝑎𝑖) = 𝑏𝑖 have to be
investigated.

2.3. On platforms acting in tandem

2.3.1. Algorithm 2.3.1. Alice and Bob use al-
gorithm 2.1 with the output 𝑢 on 𝐾𝑛 as leading
procedure. Supporting procedure is algorithm
of kind 2.2 with the same commutative ring 𝐾
and parameter 𝑚. Alice uses platform of algorithm
2.1 and generates elements 𝑣 and 𝑣−1. She keeps 𝑣−1

for herself and send 𝑣 + 𝑢 to Bob. So Bob gets 𝑣. Alice
selects the input of 2.2 for her correspondent as 𝑎𝑖, 𝑏𝑖 ,
𝑖 = 1, 2, . . . , 𝑟′. She sends pairs (𝑎𝑖, 𝑣

−1(𝑏𝑖)).
Notice that the elements 𝑣−1(𝑏𝑖) are well defined

maps of 𝐾𝑚 into 𝐾𝑚, they have polynomial density.
Bob computes pairs (𝑎𝑖,𝑏𝑖) because of his/her posses-

sion of 𝑣. After the completion of supporting procedure
Alice and Bob get common elements 𝑧 of 𝑚𝐸𝐺(𝐾).
Additionally Alice generates elements 𝑦 and 𝑦−1 of
𝑚𝐸𝐺(𝐾). She keeps 𝑦−1 for herself. She takes 𝑧 of
kind 𝑥𝑖 → 𝑧𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑚), 𝑖 = 1, 2, . . . ,𝑚 and forms
the tuple (𝑧1𝑦1, 𝑧2𝑦2, . . . , 𝑧𝑚𝑦𝑚) to send it to Bob. Co-
ordinates of the tuple are computed via multiplication
of monomial expressions in 𝐾[𝑥1, 𝑥2, ,̇𝑥𝑚]. Thus Bob
computes map 𝑦 easily.

They use (𝐾*)𝑚 as plainspace and 𝐾𝑚 as cipherspace.
To encrypt Alice maps her message 𝑝 in the alphabet 𝐾*

to 𝑦−1(𝑝) = 𝑚 and then she computes the ciphertext
𝑐 = 𝑣−1(𝑚). Bob decrypts via application of 𝑣 to 𝑐
and computation of 𝑦(𝑣(𝑐)). Similarly Bob encrypts 𝑝
via consecutive computation of 𝑦 and 𝑣(𝑦(𝑝)). Alice
applies 𝑣−1 to ciphertext 𝑐 and computes the plaintext
as 𝑦−1(𝑣−1(𝑐)).

REMARK. Encryption and decryption functions of
the above algorithm can be treated as polynomial maps
of 𝐾𝑚 to 𝐾𝑚 because elements of 𝑚𝐸𝐺(𝐾) act natu-
rally on 𝐾𝑚. Between encryption and decryption func-
tions there is a density gap because decryption map
is not a transformation of polynomial density. Such
pairs can be used as non-bijective stream ciphers in a
spirit of [25]. In the tandem procedure interception of
plaintexts with corresponding ciphertext attacks are
unfeasible without the computation of 𝜎(𝑤).

2.3.2. Algorithm 2.3.2. Alice and Bob can use
algorithm 2.2 with collision map 𝑢 on (𝐾*)𝑚 as leading
procedure. Supporting procedure is algorithm of kind
2.1 with the same commutative ring 𝐾 and parameter
𝑚. Alice creates elements 𝑧 and 𝑧−1 of 𝑚𝐸𝐺(𝐾). She
takes 𝑧 of kind 𝑥𝑖 → 𝑧𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑚), 𝑖 = 1, 2, . . . ,𝑚
and forms the tuple (𝑧1𝑢1, 𝑧2𝑢2, . . . , 𝑧𝑚𝑢𝑚) to send it
to Bob. He uses his knowledge on 𝑢 to compute 𝑧.
Alice sets pairs (𝑎𝑖, 𝑏𝑖) to start supporting protocol
2.1. She sends 𝑏𝑖(𝑧

−1) which has polynomial density
to Bob. He uses his knowledge on 𝑧 and computes 𝑏𝑖.
Correspondents execute protocol 2.1 and get collision
stable map 𝑢. Alice uses platform of 2.1 to generate
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mutually invertible transformations 𝑦 and 𝑦−1 acting
on 𝐾𝑚. She keeps 𝑦−1 for herself and sends 𝑦 + 𝑢
to Bob. He subtracts 𝑢 and gets 𝑦. As in previous
algorithm Alice and Bob use plainspace (𝐾*)𝑚 and
ciphertext 𝐾𝑚. To encrypt Alice maps her message
𝑝 in the alphabet 𝐾* to 𝑧−1(𝑝) = 𝑚 and then she
computes the ciphertext 𝑐 = 𝑦−1(𝑚).

Bob decrypts via application of 𝑦 to 𝑐 and computa-
tion 𝑧−1(𝑦(𝑐)). Similarly Bob encrypts 𝑝 via consecutive
computation of 𝑧 to 𝑝 and 𝑦(𝑧(𝑝)). Alice applies 𝑦−1 to
ciphertext 𝑐 and computes the plaintext as 𝑧−1(𝑦−1(𝑐)).
Remark. In the case 2.2 Alice (or Bob) instead of mu-
tually invertible 𝑦, 𝑦−1 can use elements 𝑤,𝑤′ from
𝑆(𝐾𝑚) of polynomial density such that their restric-
tions on (𝐾*)𝑚 are injective maps to 𝐾𝑚 and compo-
sition 𝑤𝑤′ acts on (𝐾*)𝑚 as identical map. Algorithm
of generation such pairs is introduced in [14], [25], [26]
and [27]. Algorithms of generation of pairs (𝑧, 𝑧−11)
from 𝑚𝐸𝐺(𝐾) are described in [28].

3. On linguistic and extremal graphs
and stable nonlinear subgroups of
affine Cremona group

3.1. Some definitions of extremal graph theory

All graphs we consider are simple ones, i. e. undi-
rected without loops and multiple edges. When it is
convenient, we shall identify Γ with the corresponding
antireflexive binary relation on 𝑉 (Γ), i.e. 𝐸(Γ) is a
subset of 𝑉 (Γ)×𝑉 (Γ). The girth of a graph Γ, denoted
by 𝑔 = 𝑔(Γ), is the length of the shortest cycle in Γ.
The diameter 𝑑 = 𝑑(Γ) of the graph Γ is the maximal
length of the shortest pass between its two vertices. Let
𝑔𝑥 = 𝑔𝑥(Γ) be the length of the minimal cycle through
the vertex 𝑥 from the set 𝑉 (Γ) of vertices in graph Γ
(see [29]). We refer to Cind(Γ) = max(𝑔𝑥|𝑥 ∈ 𝑉 (Γ)) as
cycle indicator of the graph.

The family Γ𝑖 of connected 𝑘-regular graphs of
constant degree is a family of small world graphs if
𝑑(Γ𝑖) ≤ 𝑐log𝑘(𝑣𝑖), for some constant 𝑐,𝑐 > 0.

Recall that family of regular graphs Γ𝑖 of degree 𝑘 and
increasing order 𝑣𝑖 is a family of graphs of large girth
if 𝑔(Γ𝑖) ≥ 𝑐log𝑘(𝑣𝑖), for some independent constant 𝑐,
𝑐 > 0.

We refer to the family of regular simple graphs Γ𝑖 of
degree 𝑘 and order 𝑣𝑖 as family of graphs of large cycle
indicator, if Cind(Γ𝑖) ≥ 𝑐log𝑘(𝑣𝑖) for some independent
constant 𝑐, 𝑐 > 0.

Notice that for vertex-transitive graph its girth and
cycle indicator coincide. Defined above families plays
an important role in Extremal Graph Theory, Theory
of LDPC codes and Cryptography. (see [30], [33] and
further references).

3.2. The algebraic graphs 𝐴(𝑛,𝐾) and
𝐷(𝑛,𝐾), some results and open questions

Below we consider the family of graphs 𝐴(𝑛,𝐾) and
𝐷(𝑛,𝐾), respectively where 𝑛 > 5 is a positive integer
and 𝐾 is a commutative ring. In the case of 𝐾 = 𝐹𝑞

we use symbols 𝐴(𝑛, 𝑞) and 𝐷(𝑛, 𝑞) for these graphs to

define them as homomorphic images of infinite bipartite
graphs 𝐴(𝐾) and 𝐷(𝐾) for which partition sets 𝑃 and
𝐿 formed by two copies of Cartesian power 𝐾𝑁 , where
𝐾 is the commutative ring and 𝑁 is the set of positive
integer numbers. Elements of 𝑃 will be called points
and those of 𝐿 lines. To distinguish points from lines
we use parentheses and brackets.

The description is based on the connections of these
graphs with Kac-Moody Lie algebra with extended dia-
gram 𝐴1. The vertices of 𝐷(𝐾) are infinite dimensional
tuples over 𝐾. We write them in the following way

(𝑝) = (𝑝0,1, 𝑝1,1, 𝑝1,2, 𝑝2,1, 𝑝2,2, 𝑝
′
2,2, 𝑝2,3 . . . ,

𝑝𝑖,𝑖, 𝑝
′
𝑖,𝑖, 𝑝𝑖,𝑖+1, 𝑝𝑖+1,𝑖, . . . ),

[𝑙] = [𝑙1,0, 𝑙1,1, 𝑙1,2, 𝑙2,1, 𝑙2,2, 𝑙
′
2,2, 𝑙2,3, . . . ,

𝑙𝑖,𝑖, 𝑙
′
𝑖,𝑖, 𝑙𝑖,𝑖+1, 𝑙𝑖+1,𝑖, . . . ].

We assume that almost all components of points and
lines are zeros. The condition of incidence of point
(𝑝) and line [𝑙] ((𝑝)𝐼[𝑙]) can be written via the list of
equations below.

𝑙𝑖,𝑖 − 𝑝𝑖,𝑖 = 𝑙1,0𝑝𝑖− 1, 𝑖; 𝑙′𝑖,𝑖 − 𝑝′𝑖,𝑖 = 𝑙𝑖,𝑖−1𝑝0,1;
𝑙𝑖,𝑖+1 − 𝑝𝑖,𝑖+1 = 𝑙𝑖,𝑖𝑝0,1; 𝑙𝑖+1,𝑖 − 𝑝𝑖+1,𝑖 = 𝑙1,0𝑝

′
𝑖,𝑖.

These four relations are defined for 𝑖 ≥ 1, 𝑝′1,1 = 𝑝1,1,
𝑙′1,1 = 𝑙1,1 .

Similarly we define graphs 𝐴(𝐾) on the vertex set
consisting of points and lines

(𝑝) = (𝑝0,1, 𝑝1,1, 𝑝1,2, 𝑝2,1, 𝑝2,2, 𝑝2,3, . . . , 𝑝𝑖,𝑖, 𝑝𝑖,𝑖+1, . . . ),
[𝑙] = [𝑙1,0, 𝑙1,1, 𝑙1,2, 𝑙2,1, 𝑙2,2, 𝑙2,3, . . . , 𝑙𝑖,𝑖, 𝑙𝑖,𝑖+1, . . . ]
such that point (𝑝) is incident with the line [𝑙] ((𝑝)𝐼[𝑙],

if the following relations between their coordinates hold:
𝑙𝑖,𝑖 − 𝑝𝑖,𝑖 = 𝑙1,0𝑝𝑖−1,𝑖; 𝑙𝑖,𝑖+1 − 𝑝𝑖,𝑖+1 = 𝑙𝑖,𝑖𝑝0,1.

We consider graphs 𝐴(𝑛,𝐾*) and 𝐷(𝑛,𝐾*) with par-
tition sets isomorphic to (𝐾*)𝑛 given by equations of
𝐴(𝑛,𝐾) and 𝐷(𝑛,𝐾) where operation” ˘ ‘’is changed
for division /.

It is clear that the set of indices
𝐴 = {(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), . . . , (𝑖−
1, 𝑖), (𝑖, 𝑖), . . . } is a subset in
𝐷 = {(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 2)′, . . . , (𝑖−
1, 𝑖), (𝑖, 𝑖− 1), (𝑖, 𝑖), (𝑖, 𝑖)′, . . . }.

Points and lines of 𝐷(𝐾) (or 𝐷(𝐾*) are functions
from 𝐾𝐷−{1,0} and 𝐾𝐷−{0,1} (or (𝐾*)𝐷−{1,0} and
(𝐾*)𝐷−{0,1}) and their restrictions on 𝐴− {(1, 0)} and
𝐴 − {(0, 1)} define homomorphism 𝜉 of graph 𝐷(𝐾)
onto 𝐴(𝐾) (or 𝐷(𝐾*) and 𝐴(𝐾*)).

For each positive integer 𝑚 ≥ 2 we consider subsets
𝐴(𝑚) and 𝐷(𝑚) containing first 𝑚+ 1 elements of 𝐴
and 𝐷 with respect to the above orders.

Restrictions of points and lines of 𝐷(𝐾) (or 𝐷(𝐾*) )
onto 𝐷(𝑚)−{(1, 0)} and 𝐷(𝑚)−{(0, 1)} define graph
homomorphism 𝐷∆(𝑚) with image denoted as 𝐷(𝑛,𝐾)
(𝐷(𝑛,𝐾*)).

Similarly restrictions of points and lines of 𝐴(𝐾) (or
𝐴(𝐾*) onto 𝐴(𝑚)−{(1, 0)} and 𝐴(𝑚)−{(0, 1)} defines
homomorphism 𝐴∆(𝑚) of graph 𝐴(𝐾) (or 𝐴(𝐾*)) onto
graph denoted as 𝐴(𝑚,𝐾) (𝐴(𝑚,𝐾*) respectively).

We also consider the map ∆(𝑚) on vertices of
graph 𝐷(𝑚,𝐾) (or 𝐷(𝑚,𝐾*) ) sending its point
(𝑝) ∈ 𝐾𝐷(𝑚)−{(0,1)} (or (𝐾*)𝐷(𝑚)−{(1,0)} ) to its re-
striction into 𝐷(𝑚) ∩ 𝐴− {(1, 0)} and its line [𝑙] ∈
𝐾𝐷(𝑚)−{(0,1)} (or (𝐾*)𝐷(𝑚)−{(0,1)}) to its restriction
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onto 𝐷(𝑚)
⋂︀
𝐴− {(0, 1)}. This map is homomorphism

of 𝐷(𝑚,𝐾) onto 𝐴(𝑛,𝐾), 𝑛 = |𝐷(𝑚) ∩ 𝐴| − 1 or
𝐷(𝑚,𝐾*) onto 𝐴(𝑛,𝐾*).

Graph 𝐷(𝑞) = 𝐷(𝐹𝑞) is a 𝑞-regular forest. Its quo-
tients 𝐷(𝑛, 𝑞) are edge-transitive graphs. So their con-
nected components are isomorphic. Symbol 𝐶𝐷(𝑛, 𝑞)
stands for the graph which is isomorphic to one of such
connected components.

Family 𝐶𝐷(𝑛, 𝑞), 𝑛 = 2, 3, . . . is a family of large
girth for each fixed parameter 𝑞, 𝑞 > 2 and 𝑛 =
2, 3, . . . (see [31] and further references).

The question ‘’Whether or not 𝐶𝐷(𝑛, 𝑞) is a family
of small world graphs” is still open.

Graph 𝐴(𝑞), 𝑞 > 2 is a 𝑞-regular tree. Graphs 𝐴(𝑛, 𝑞)
are not vertex transitive. They form a family of graphs
with large cycle indicator, which is q-regular family of
small world graphs [32].

The question ‘’Whether or not 𝐴(𝑛, 𝑞), 𝑛 = 2, 3, . . .
is a family of large girth” is still open. We hope that
introduced above graphs 𝐴(𝑛, 𝐹𝑞

*) and 𝐷(𝑛, 𝐹𝑞
*) pos-

sess interesting extremal and spectral properties Groups
𝐺𝐷(𝑛,𝐾) and 𝐺𝐴(𝑛,𝐾) of cubical transformations of
affine space 𝐾𝑛 associated with graphs 𝐷(𝑛,𝐾) and
𝐴(𝑛,𝐾) are interesting objects of algebraic transforma-
tion group theory because of composition of two maps
of degree 3 for vast majority of pairs will have degree
9. Constructions and applications of these families of
transformations groups are recently observed in [33]
where some extensions of these groups are introduced.

3.3. Transformation groups related to
algebraic graphs 𝐴(𝑛,𝐾) and 𝐷(𝑛,𝐾)

All graphs defined in section 3.2 belong to class
Ling(𝐾) of linguistic graphs Γ = Γ(𝐾) of type
(1, 1, 𝑛 − 1), 𝑛 ∈ 𝑁 or 𝑛 = ∞ defined over commu-
tative ring 𝐾 which contains bipartite graphs with the
point set 𝑃 = 𝐾𝑛 and line set 𝐿 = 𝐾𝑛 such that
(𝑝) = (𝑝1, 𝑝2, . . . , 𝑝𝑛) ∈ 𝑃𝑛 and [𝑙] = [𝑙1, 𝑙2, . . . , 𝑙𝑛] ∈ 𝐿𝑛

form an edge of Γ if the following conditions holds
2𝑎𝑝2 −2 𝑏𝑙2 =2 𝑓(𝑙1, 𝑝1),
3𝑎𝑝2 −3 𝑏𝑙2 =3 𝑓(𝑝1, 𝑝2, 𝑙1, 𝑙2),
. . . ,
𝑛𝑎𝑝𝑛 −𝑛 𝑏𝑙𝑛 =𝑛 𝑓(𝑝1, 𝑝2, . . . , 𝑝𝑛−1, 𝑙1, 𝑙2, . . . , 𝑙𝑛−1),
where 𝑖𝑎 and 𝑖𝑏, 𝑖 ≥ 2 are elements of multiplicative

group 𝐾* and 𝑓𝑖 are multivariate polynomials (see [34],
[6]). We define colours (𝜌((𝑝)) and 𝜌([𝑙]) of the point
(𝑝) and the line [𝑙] as their first coordinates 𝑝1 and 𝑙1.

We introduce well defined operator 𝑁(𝑣, 𝑎) of com-
puting the neighbour of vertex 𝑣 of colour 𝑎 ∈ 𝐾
and colour jump operator 𝐽(𝑣, 𝑎) sending point or
line 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) to 𝑢 = (𝑎, 𝑣2, 𝑣3, . . . , 𝑣𝑛). Let
𝑆(𝐾𝑛) stands for the Cremona semigroup of polyno-
mial transformations of free module 𝐾𝑛 and 𝐶(𝐾𝑛) be
affine Cremona group of invertible elements of 𝑆(𝐾𝑛)
with the polynomial inverse. These algebraic structures
are important objects of algebraic geometry. One of
the difficult problem is about constructions of families
of stable subgroups 𝐺𝑛 of 𝐶(𝐾𝑛) (or semigroup 𝑆𝑛 of
𝑆(𝐾𝑛) i. e groups of polynomial transformation with
maximal degree equals to constant 𝑐. Notice that for

the majority of pairs 𝑓, 𝑔 ∈ 𝐶(𝐾𝑛) of degrees 𝑟 and
𝑠 their composition has degree 𝑟𝑠. So this problem is
difficult, it has strong cryptographical motivations.

We consider totality 𝑆𝑡(𝐾) of strings of kind
(𝑓1, 𝑓2, . . . , 𝑓𝑘, ) where 𝑓𝑖 ∈ 𝐾[𝑥]. We will identify poly-
nomial 𝑓 and the map 𝑥 → 𝑓(𝑥) from 𝑆(𝐾). The prod-
uct of two chains (𝑓1, 𝑓2, . . . , 𝑓𝑘, ) and (𝑔1, 𝑔2, . . . , 𝑔𝑡) is
the chain

(𝑓1, 𝑓2, . . . , 𝑓𝑘, 𝑔1(𝑓𝑘), 𝑔2(𝑓𝑘), . . . , 𝑔𝑡, (𝑓𝑘)).
Empty string is the unity of semigroup 𝑆𝑡(𝐾). In fact
𝑆𝑡(𝐾) is a semidirect product of a free semigroup over
the alphabet 𝐾[𝑥] and Cremona semigroup 𝑆(𝐾). We
refer to 𝑆𝑡(𝐾) as semigroup of polynomial strings. Let
𝑆𝑡′(𝐾) stands for the semigroup of strings of even length
from 𝑆𝑡(𝐾) and Σ(𝐾) be subsemigroups of strings of
even length with coordinates of kind 𝑥+ 𝑐, 𝑐 ∈ 𝐾.

Let 𝑢 = (𝑓1, 𝑓2, . . . , 𝑓𝑘, ) be an element of 𝑆𝑡′(𝐾) and
𝑥 → 𝑓𝑘, (𝑥) is an element of 𝐶(𝐾). We refer to

rev(𝑢) = (𝑓𝑘−1(𝑓𝑘
−1(𝑥)), 𝑓𝑘−2(𝑓𝑘

−1(𝑥)), . . . , 𝑓1(𝑓𝑘
−1(𝑥)))

as reverse string to 𝑢. In the case of linguistic graph
Γ = Γ(𝐾) of type (1, 1, 𝑛− 1) the path consisting of its
vertices 𝑣0,𝑣1, 𝑣22, . . . , 𝑣𝑘 is uniquely defined by initial
vertex 𝑣0, and colours 𝜌(𝑣𝑖), 𝑖 = 1, 2, . . . , 𝑘 of other
vertices from the path. We can consider graph Γ =
Γ(𝐾[𝑥1, 𝑥2, . . . , 𝑥𝑛]) defined by the same with Γ equa-
tions but over the commutative ring 𝐾[𝑥1, 𝑥2, . . . , 𝑥𝑛].

So the following symbolic computation can be de-
fined. Take the symbolic point 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛),
where 𝑥𝑖 are generic variables of 𝐾[𝑥1, 𝑥2, . . . , 𝑥𝑛] and
polynomial string 𝐶 ∈ 𝑆𝑡′(𝐾) which is a tuple of poly-
nomials 𝑓1, 𝑓2,. . . , 𝑓𝑘, from 𝐾[𝑥1] with even param-
eter 𝑘 (𝑥 = 𝑥1). Form the path of vertices 𝑣0 = 𝑥,
𝑣1 such that 𝑣1𝐼𝑣0 and 𝜌(𝑣1) = 𝑓1(𝑥1), 𝑣2 such that
𝑣2𝐼𝑣1 and 𝜌(𝑣2) = 𝑓2(𝑥1), . . . , 𝑣𝑘 such that 𝑣𝑘𝐼𝑣𝑘−1

and 𝜌(𝑣𝑘) = 𝑓𝑘(𝑥1). We choose parameter 𝑘 as even
number. So 𝑣𝑘 is the point from the partition set
𝐾[𝑥1, 𝑥2, . . . , 𝑥𝑛]

𝑛 of the graph Γ′.
We notice that the computation of each coordinate

of 𝑣𝑖 depending on variables 𝑥1,𝑥2, . . . , 𝑥𝑛 and polyno-
mials 𝑓1, 𝑓2, . . . , 𝑓𝑘 needs only arithmetical operations
of addition and multiplication. As it follows from the
definition of linguistic graph final vertex 𝑣𝑘 (point)
has coordinates (ℎ1(𝑥1), ℎ2(𝑥1, 𝑥2), ℎ3(𝑥1, 𝑥2, 𝑥3), . . . ,
ℎ𝑛(𝑥1, 𝑥2, . . . , 𝑥𝑛)), where ℎ1(𝑥1) = 𝑓𝑘(𝑥1). Let us
consider the map Γ𝐻(𝐶) : 𝑥𝑖 → ℎ𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑛),
𝑖 = 1, 2, . . . , 𝑛 which corresponds to polynomial string
𝐶.

PROPOSITION 1. The map Γ𝜂 : 𝐶 →Γ 𝐻(𝐶) is
a homomorphism of 𝑆𝑡′(𝐾) into Cremona semigroup
𝑆(𝐾𝑛).

LEMMA 1. Let 𝑢 = (𝑓1, 𝑓2, . . . , 𝑓𝑘, ) and 𝑥 → 𝑓𝑘(𝑥)
is an element of 𝐶(𝐾).Then for each linguistic graph Γ
of type (1, 1, 𝑛 − 1) element rev(𝑢)𝑢 be an element of
kernel of Γ𝜂.

More general form of this statement is proven in [14].
We refer to Γ𝜂 as linguistic compression map. If 𝐾
is finite then the map converts totality of potentially
infinite strings into finite semigroup.

THEOREM 1. If Γ is one of graphs 𝐷(𝑛,𝐾) and
𝐴(𝑛,𝐾), then Γ𝜂(Σ(𝐾)) is stable subgroup of 𝐶(𝐾𝑛)
of degree 3.
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We denote Γ𝜂(Σ(𝐾)) for Γ = 𝐷(𝑛,𝐾) and Γ =
𝐴(𝑛,𝐾) as 𝐺𝐷(𝑛𝐾) and 𝐺𝐴(𝑛,𝐾).These groups were
already used in all cryptographical applications of
graphs 𝐷(𝑛,𝐾) and 𝐴(𝑛,𝐾).

PROPOSITION 2.Homomorphisms 𝜎 of 𝐷(𝑛,𝐾)
onto 𝐴(𝑚,𝐾), 𝑛 > 𝑚 described in section 2 induces
homomorphism ind(𝜎) of 𝐺𝐷(𝑛,𝐾) onto 𝐺𝐴(𝑚,𝐾),
𝑛 > 𝑚.

3.4. Generalisations

We consider totality 𝐵𝑆(𝐾*) of strings of kind
(𝑓0, 𝑓1, 𝑓2, . . . , 𝑓𝑘, ) where 𝑓𝑖 are expressions of kind
𝑎𝑥𝑑, 𝑑 ∈ 𝑍𝑚, 𝑚 = |𝐾*|, 𝑎 ∈ 𝐾* and 𝑘 = 0 (mod
4). We will identify polynomial 𝑓 and the map
𝑥 → 𝑓(𝑥) on 𝐾*. The product of two chains
(𝑓0, 𝑓1, 𝑓2, . . . , 𝑓𝑘, ) and (𝑔0, 𝑔1, 𝑔2, . . . , 𝑔𝑡) is the chain
(𝑓0, 𝑓1, 𝑓2, . . . , 𝑓𝑘−1, 𝑔0(𝑓𝑘), 𝑔1, (𝑓𝑘), . . . , 𝑔𝑡−1(𝑓𝑘), 𝑔𝑡(𝑓𝑘)).
The string of kind (𝑒), where 𝑒 is identity map → 𝑥 is
the unity of semigroup 𝐵𝑆(𝐾*). Let 𝐵𝑅(𝐾*) stand
for totality of strings (𝑓1, 𝑓2, . . . , 𝑓𝑘, ) from 𝐵𝑆(𝐾*)
with invertible maps 𝑥 → 𝑓𝑘(𝑥) from 𝐸𝐺(𝐾*). We
refer to elements of 𝐵𝑅(𝐾*) as reversible multi-
plicative strings. Let 𝑢 = (𝑓1, 𝑓2, . . . , 𝑓𝑘, ) be an
element of 𝐵𝑅(𝐾*). We refer to string rev(𝑢) =
(𝑓𝑘−1, (𝑓𝑘

−1), 𝑓𝑘−2(𝑓𝑘
−1), . . . , 𝑓1(, 𝑓𝑘

−1), 𝑓𝑘
−1) as

reverse string for 𝑢. Let 𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛] be group
of monomials from 𝐾[𝑥1, 𝑥2, . . . , 𝑥𝑛] with operation
of multiplication. For each linguistic graph Γ(𝐾*)
over 𝐾* of type (1, 1, 𝑛 − 1) we can consider infinite
graph Γ′ = Γ(𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛]) defined by the same
equations with Γ but over the commutative group
𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛].

Let us consider the homomorphism of the group
𝐵𝑆(𝐾*) into Cremona semigroup 𝑆(𝐾𝑛) defined in
terms of linguistic graph 𝐼 = 𝐼𝑛(𝐾*). Notice that one
can consider graph 𝐼𝑛(𝐾 ′) over the extension 𝐾 ′ of
𝐾* with the usage of the same equations. Let us take
𝐾 ′ = 𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛],where 𝑥𝑖 are formal variables
and consider an infinite graph 𝐼𝑛(𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛]),
with partition sets 𝑃 ′ = 𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛]

𝑛 and 𝐿′ =
𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛]

𝑛. After that we take a bipartite
string 𝑢 = (𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, . . . , 𝑓𝑡−1, 𝑓𝑡) formed
by a totality of terms from the subgroup 𝐾*[𝑥1] of 𝐾 ′ =
𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛] and the point (𝑥) = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
formed by generic elements of 𝐾 ′. This data de-
fines uniquely a skating chain (𝑥), 𝐽((𝑥), 𝑓0) = (1𝑥),
𝑁((1𝑥), 𝑓1) = [2𝑥], 𝐽([2𝑥], 𝑓2) = [3𝑥], 𝑁([3𝑥], 𝑓3) =
(4𝑥), 𝐽((4𝑥), 𝑓4) = (5𝑥), . . . , 𝐽([𝑡−2𝑥], 𝑓𝑡−2) = [𝑡−1𝑥],
𝑁([𝑡−1𝑥], 𝑓𝑡−1) = (𝑡𝑥), 𝐽((𝑡𝑥), 𝑓𝑡) = (𝑡𝑥).

Let (𝑡𝑥) be the tuple (𝑓𝑡, 𝐹2, 𝐹3, . . . , 𝐹𝑛) where
𝐹𝑡 ∈ 𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛]. We define 𝐼𝜉(𝑢) as the map
(𝑥1, 𝑥2, . . . , 𝑥𝑛 → (𝐻𝑡, 𝐹2, 𝐹3, . . . , 𝐹𝑛) and refer to it as
chain transition of point variety. The statement written
below follows from the definition of the map.

LEMMA 2.Let 𝐼(𝐾*) be a linguistic graph of type
(1, 1, 𝑛−1) over 𝐾* defined over multiplicative group of
commutative ring 𝐾. Then map 𝜉 =𝐼 𝜉 : 𝐵𝑆(𝐾*) →𝑛

𝐸𝑆(𝐾*) is a homomorphism of semi-groups.
LEMMA 3. Let 𝑢 ∈ 𝐵𝑅(𝐾*) then 𝑢rev(𝑢) is an

element of kernel of 𝐼𝜉.

CORROLARY. 𝐼𝜉(𝐵𝑅(𝐾*)) is a subgroup of
𝐼𝜉(𝐵𝑆(𝐾*)).

Generalisation of lemma 1 for the case of general
linguistic graph over commutative group is proposed in
[14].

Let 𝐸𝐷(𝑛,𝐾*) and 𝐸𝐴(𝑛,𝐾*) stands for
𝐼𝜉(𝐵𝑆(𝐾*)) with 𝐼 = 𝐷(𝑛,𝐾*) and 𝐼 = 𝐴(𝑛,𝐾*).
It is easy to see that 𝐸𝐷(𝑛,𝐾*) > 𝐺𝐷(𝑛,𝐾*) and
𝐸𝐴(𝑛,𝐾*) > 𝐺𝐴(𝑛,𝐾*). Below we define an extension
of group of computationally tame transformations.

4. On Eulerian groups and semigroups
and multiplicative linguistic graphs

4.1. Basic constructions

Similarly to the case of commutative ring
we introduce a linguistic graph 𝐼 = Γ(𝐺)
over abelian group 𝐺 defined as bipartite graph
with partition sets isomorphic to 𝐺𝑛 such that
(𝑥1, 𝑥2, . . . , 𝑥𝑛)𝐼[𝑦1, 𝑦2, . . . , 𝑦𝑛] if and only if 𝑥2/𝑦2 =
𝑔2𝑤2(𝑥1, 𝑦1), 𝑥3/𝑦3 = 𝑔3𝑤3(𝑥1, 𝑥2, 𝑦1, 𝑦2), . . . , 𝑥𝑛/𝑦𝑛 =
𝑔𝑛𝑤𝑛(𝑥1, 𝑥2, . . . , 𝑥𝑛−1, 𝑦1, 𝑦2, . . . , 𝑦𝑛−1), where 𝑔𝑖 ∈ 𝐺 ,
𝑖 ≥ 2 and 𝑤𝑖 are words in characters 𝑥𝑖 and 𝑦𝑗 from
𝐺. We define colours 𝜌((𝑝)) and 𝜌([𝑙]) of the point (𝑝)
and the line [𝑙] as their first coordinates 𝑝1 and 𝑙1. We
introduce well defined operator 𝑁(𝑣, 𝑎) of computing
the neighbour of vertex 𝑣 of colour 𝑎 ∈ 𝐾* and consider
an Eulerian semigroup 𝑛𝐸𝑆(𝐾) of transformations of
kind

𝑥1 → 𝑑1𝑥1
𝑎(1,1)𝑥2

𝑎(1,2) . . . 𝑥𝑛
𝑎(1,𝑛),

𝑥2 → 𝑑2𝑥1
𝑎(2,1)𝑥2

𝑎(2,2) . . . 𝑥𝑛
𝑎(2,𝑛).

. . . ,
𝑥𝑛 → 𝑑𝑛𝑥1

𝑎(𝑛,1)𝑥2
𝑎(𝑛,2) . . . 𝑥𝑛

𝑎(𝑛,𝑛)), where 𝑎(𝑖, 𝑗)
are elements of arithmetic ring 𝑍𝑑, 𝑑 = |𝐾*|, 𝑑𝑖 ∈ 𝐾*.

Let 𝑛𝐸𝐺(𝐾) stand for Eulerian group of invertible
transformations from 𝑛𝐸𝑆(𝐾). It is easy to see that
the group of monomial linear transformations 𝑀𝑛 is
a subgroup of 𝑛𝐸𝐺(𝐾). So semigroup 𝑛𝐸𝑆(𝐾) is a
highly noncommutative algebraic system. Each element
from 𝑛𝐸𝑆(𝐾) can be considered as transformation of a
free module 𝐾𝑛.

The problems of constructions of large subgroups
𝐺 of 𝑛𝐸𝐺(𝐾), pairs (𝑔, 𝑔−1), 𝑔 ∈ 𝐺, and tame Eu-
lerian homomorphisms 𝐸 : 𝐺 → 𝐻, i. e. com-
putable in polynomial time 𝑡(𝑛) homomorphisms of
subgroup 𝐺 of 𝑛𝐸𝐺(𝐾) onto 𝐻 <𝑚 𝐸𝐺(𝐾) are moti-
vated by tasks of Nonlinear Cryptography . We con-
sider totality 𝑆𝑡(𝐾*) of strings of kind (𝑓1, 𝑓2, . . . , 𝑓𝑘)
where 𝑓𝑖 are expressions of kind 𝑎𝑥𝑑, 𝑑 ∈ 𝑍𝑚,
𝑚 = |𝐾*|, 𝑎 ∈ 𝐾*. We will identify polynomial
𝑓 and the map 𝑥 → 𝑓(𝑥) on 𝐾*. The product
of two chains (𝑓1, 𝑓2, . . . , 𝑓𝑘) and (𝑔1, 𝑔2, . . . , 𝑔𝑡, ) is
the chain (𝑓1, 𝑓2, . . . , 𝑓𝑘), 𝑔1(𝑓𝑘), 𝑔2, (𝑓𝑘), . . . , 𝑔𝑡(𝑓𝑘)).
Empty string is the unity of semigroup 𝑆𝑡(𝐾*). Let
𝑆𝑡′(𝐾*) stand for the semigroup of strings of even
length from 𝑆𝑡(𝐾*) and 𝑅𝑆(𝐾*) stand for totality of
strings (𝑓1, 𝑓2, . . . , 𝑓𝑘) with invertible maps 𝑥 → 𝑓𝑘(𝑥)
from 𝑆𝑡′(𝐾*). We refer to elements of 𝑅𝑆(𝐾*) as
reversible multiplicative strings.

Let 𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛] be group of monomials from
𝐾[𝑥1, 𝑥2, . . . , 𝑥𝑛] with operation of multiplication. For
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each linguistic graph Γ(𝐾*) over 𝐾* we can consider
infinite graph Γ′ = Γ(𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛]) defined by the
same equations with Γ but over the commutative group
𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛].

So the following symbolic computation can be de-
fined. Take the symbolic point 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛),
where 𝑥𝑖 are generic variables of 𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛] and
polynomial string 𝐶 ∈ 𝑆𝑡′(𝐾*) which is a tuple of
polynomials 𝑓1, 𝑓2, . . . , 𝑓𝑘, from 𝐾*[𝑥1] with even pa-
rameter 𝑘 (𝑥 = 𝑥1). Form the path of vertices 𝑣0 = 𝑥,
𝑣1 such that 𝑣1𝐼𝑣0 and 𝜌(𝑣1) = 𝑓1(𝑥1), 𝑣2 such that
𝑣2𝐼𝑣1 and 𝜌(𝑣2) = 𝑓2(𝑥1),. . . , 𝑣𝑘 such that 𝑣𝑘𝐼𝑣𝑘−1

and 𝜌(𝑣𝑘) = 𝑓𝑘(𝑥1). We choose parameter 𝑘 as even
number. So 𝑣𝑘 is the point from the partition set
𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑛]

𝑛 of the graph Γ′.
As it follows from the definition of linguistic graph fi-

nal vertex 𝑣𝑘 (point) has coordinates (ℎ1(𝑥1), ℎ2(𝑥1, 𝑥2),
ℎ3(𝑥1, 𝑥2, 𝑥3), . . . , ℎ𝑛(𝑥1, 𝑥2, . . . , 𝑥𝑛)), where ℎ1(𝑥1) =
𝑓𝑘(𝑥1). Let us consider the map Γ𝐻*(𝐶) :
𝑥𝑖ßℎ𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑖 = 1, 2, . . . , 𝑛 which corresponds
to polynomial string 𝐶.

PROPOSITION 3. For each linguistic graph Γ over
𝐾* the map Γ𝜂* : 𝐶 →Γ 𝐻*(𝐶) is a homomorphism of
𝑆𝑡′(𝐾*) into Eulerian semigroup 𝑛𝐸𝑆(𝐾).

We refer to Γ𝜂* as linguistic multiplicative compres-
sion map.

PROPOSITION 4. For each linguistic graph Γ′ over
𝐾* the image Γ𝜂*(𝑅𝑆(𝐾*)) is a subgroup of Eulerian
group 𝑛𝐸𝐺(𝐾).

We denote Γ𝜂(𝑅𝑆(𝐾*)) for Γ = 𝐷(𝑛,𝐾*) and Γ =
𝐴(𝑛,𝐾*) as 𝐺𝐷(𝑛,𝐾*) and 𝐺𝐴(𝑛,𝐾*).

PROPOSITION 5. Homomorphisms 𝜎 of 𝐷(𝑛,𝐾*)
onto 𝐴(𝑚,𝐾*), 𝑛 > 𝑚 described in section 2 induces
tame Eulerian homomorphism of group 𝐺𝐷(𝑛,𝐾*) onto
𝐺𝐴(𝑚,𝐾*), 𝑛 > 𝑚.

Let 𝜋 and 𝜎 be two permutations on the set
{1, 2, . . . , 𝑛}. Let us consider a transformation of (𝐾*)𝑛,
𝐾 = 𝑍𝑚 or 𝐾 = 𝐹𝑞 and 𝑑 = |𝐾*|. We define transfor-
mation 𝐴𝐽𝐺(𝜋, 𝜎), where 𝐴 is triangular matrix with
positive integer entries 0 ≤ (𝑖, 𝑗 ≤ 𝑑, 𝑖 ≥ 𝑑 defined by
the following closed formula.

𝑦𝜋(1) = 𝜇1𝑥
𝑎(1,1
𝜎(1)

𝑦𝜋(2) = 𝜇2𝑥
𝑎(2,1)
𝜎(1) 𝑥

𝑎(2,2)
𝜎(2)

. . .
𝑦𝜋(𝑛) = 𝜇𝑛𝑥

𝑎(𝑛,1)
𝜎(1) 𝑥

𝑎(𝑛,2)
𝜎(2) . . . 𝑥

𝑎(𝑛,𝑛)
𝜎(𝑛) ,

where (𝑎(1, 1), 𝑑) = 1, (𝑎(2, 2), 𝑑) = 1, . . . ,
(𝑎(𝑛, 𝑛), 𝑑) = 1.

We refer to 𝐴𝐽𝐺(𝜋, 𝜎) as Jordan-Gauss multiplica-
tive transformation or simply JG element. It is an
invertible element of 𝑛𝐸𝑆(𝐾) with the inverse of kind
𝐵𝐽𝐺(𝜎, 𝜋) such that 𝑎(𝑖, 𝑖)𝑏(𝑖, 𝑖) = 1 (mod 𝑑). Notice
that in the case 𝐾 = 𝑍𝑚 straightforward process of
computation of the inverse of JG element is connected
with the factorization problem of integer 𝑚. If 𝑛 = 1
and 𝑚 is a product of two large primes 𝑝 and 𝑞 the
complexity of the problem is used in RSA public key
algorithm. We introduced Generalized Jordan Gauss
elements (GJG-transformations)of 𝑆(𝐾𝑛) in the case
of arbitrary commutative ring with nontrivial multi-
plicative group. For this task we consider the totality

𝐼(𝐾) of Eulerian positive integers 𝑒 such that equation
𝑥𝑒 = 𝑏 where 𝑥 ∈ 𝐾*, 𝑏 ∈ 𝐾* has a unique solution
and change condition (𝑎(1, 1), 𝑑) = 1, (𝑎(2, 2), 𝑑) = 1,
. . . , (𝑎(𝑛, 𝑛), 𝑑) = 1 in the definition of JG element
for 𝑎(𝑖, 𝑖) ∈ (𝐾). Noteworthy that such generalization
is especially productive in the case of infinite rings.
We refer to the composition of several GJG elements
as computationally tame multiplicative transformation.
Let 𝑛𝐸𝑆′(𝐾) stands for the group of computationally
tame elements from 𝑛𝐸𝑆(𝐾).

4.2. On general linguistic graphs over
commutative groups and generating
procedure of mutually inverse
transformations of (𝐾*)𝑛.

Similarly to the case of commutative ring we in-
troduce a linguistic graph 𝐼(𝐺) = Γ(𝐺) over abelian
group 𝐺 defined as bipartite graph with partition sets
𝑃 = 𝑃𝑠,𝑚 = 𝐺𝑠+𝑚 and 𝐿 = 𝐿𝑟,𝑚 = 𝐺𝑟+𝑚 such that
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑠, 𝑥𝑠+1, 𝑥𝑠+2, . . . , 𝑥𝑠+𝑚)
𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑟, , 𝑦𝑟+1, 𝑦𝑟+2, . . . , 𝑦𝑟+𝑠]
if and only if
𝑥2/𝑦2 = 𝑔2𝑤2(𝑥1, 𝑦1),
𝑥3/𝑦3 = 𝑔3𝑤3(𝑥1, 𝑥2, 𝑦1, 𝑦2),
. . . ,
𝑥𝑛/𝑦𝑛 = 𝑔𝑛𝑤𝑛(𝑥1, 𝑥2, . . . , 𝑥𝑛−1, 𝑦1, 𝑦2, . . . , 𝑦𝑛−1),
where 𝑔𝑖 ∈ 𝐺, 𝑖 ≥ 2 and 𝑤𝑖 are words in characters 𝑥𝑖

and 𝑦𝑗 from 𝐺. We refer to the triple (𝑟, 𝑠,𝑚) as type
of 𝐼(𝐺). We define colours 𝜌((𝑝)) and 𝜌([𝑙]) of the point
(𝑝) and the line [𝑙] as the tuple of their first coordinates
of kind 𝑎 = (𝑝1, 𝑝2, . . . , 𝑝𝑠) or 𝑎 = (𝑙1, 𝑙2, . . . , 𝑙𝑟) and in-
troduce well defined operator 𝑁(𝑣, 𝑎) of computing the
neighbour of vertex 𝑣 of colour 𝑎 ∈ 𝐺𝑠 or 𝑎 ∈ 𝐺𝑟. Sim-
ilarly to the case of linguistic graph over commutative
ring we define jump operator 𝐽(𝑝, 𝑎), 𝑎 ∈ 𝐾𝑠 on parti-
tion set 𝑃 and 𝐽(𝑙, 𝑎),𝑎 ∈ 𝐾𝑟 on partition set 𝐿 by con-
ditions 𝐽(𝑝, 𝑎) = (𝑎1, 𝑎2, . . . , 𝑎𝑠, 𝑝1+𝑠, 𝑝2+𝑠, . . . , 𝑝𝑠+𝑛)
and 𝜌(𝐽(𝑙, 𝑎)) = [𝑎1, 𝑎2, . . . , 𝑎𝑟, 𝑝1+𝑟, 𝑝2+𝑟, . . . , 𝑝𝑟+𝑚].

Let as assume that 𝐺 = 𝐾* and consider semigroup
𝑠𝑆𝑟(𝐾*) of tuples
𝐹 = (𝑓1(𝑥1, 𝑥2, . . . , 𝑥𝑠), 𝑓2(𝑥1, 𝑥2, . . . , 𝑥𝑠), . . . ,
𝑓𝑟(𝑥1, 𝑥2, . . . , 𝑥𝑠𝑠)) where 𝑓𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑠) are mono-
mial terms with coefficients from 𝐾*. We iden-
tify elements 𝐹 of 𝑆𝑠,𝑠(𝐾*) with the maps 𝛼(𝐹 ) :
𝑥1 → 𝑓1(𝑥1, 𝑥2, . . . , 𝑥𝑠), 𝑥2 → 𝑓2(𝑥1, 𝑥2, . . . , 𝑥𝑠),
. . . , 𝑥𝑠 → 𝑓𝑠(𝑥1, 𝑥2, . . . , 𝑥𝑠). For 𝐻 ∈ 𝑆𝑠,𝑟(𝐾*)
and 𝐹 ∈ 𝑆𝑠,𝑟(𝐾*) we define 𝐹 (𝐻) as tuple
(𝑓1(𝛼(𝑥1), 𝛼(𝑥2),. . .𝛼(𝑥𝑠)), 𝑓2(𝛼(𝑥1), 𝛼(𝑥2), . . . 𝛼(𝑥𝑠),
. . . , 𝑓𝑟(𝛼(𝑥1), 𝛼(𝑥2), . . . , 𝛼(𝑥𝑠)) for 𝛼 = 𝛼(𝐻).

Let us consider a to totality 𝑠𝐵𝑆𝑟(𝐾
*) of sequences

of kind
𝑢 = (𝐻0, 𝐺1, 𝐺2, 𝐻3, 𝐻4, 𝐺5, 𝐺6, . . . ,𝐻𝑡−1, 𝐻𝑡), 𝑡 = 4𝑖,
where 𝐻𝑘 ∈ 𝑆(𝐾𝑠), 𝐺𝑗 ∈ 𝑆𝑠,𝑟(𝐾). We refer to
𝑠𝐵𝑆𝑟(𝐾

*) as a totality of bigraded multiplicative sym-
bolic strings.

We define a product of 𝑢 with
𝑢′ = (𝐻 ′

0, 𝐺
′
1, 𝐺

′
2, 𝐻

′
3, 𝐻

′
4, 𝐺

′
5, 𝐺

′
6, . . . ,𝐻

′
𝑙−1, 𝐻

′
𝑙) as

𝑤 = (𝐻0, 𝐺1, 𝐺2, 𝐻3, 𝐻4, 𝐺5, 𝐺6, . . . ,
𝐻𝑡−1, 𝐻

′
0(𝐻𝑡), 𝐺

′
𝑙(𝐻𝑡), 𝐺

′
2(𝐻𝑡), 𝐻

′
3(𝐻𝑡),

𝐻 ′
4(𝐻𝑡), 𝐺

′
5(𝐻𝑡),𝐺

′
6(𝐻𝑡), . . . ,𝐻

′
𝑙−1(𝐻𝑡), 𝐻

′
𝑙(𝐻𝑡)).
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This operation converts 𝑠𝐵𝑆𝑟(𝐾
*) into a semi-

group. 𝐻𝑡 is an element of 𝑠𝐸𝐺(𝐾) then rev(𝑢) =
(𝐻𝑡−1(𝐻𝑡

−1), 𝐺𝑡−2(𝐻𝑡
−1), 𝐺𝑡−3(𝐻𝑡

−1),
𝐻𝑡−4(𝐻𝑡

−1), 𝐻𝑡−5(𝐻𝑡
−1),

𝐺𝑡−6(𝐻𝑡
−1), 𝐺𝑡−7(𝐻𝑡

−1), . . . ,
𝐻𝑙(𝐻𝑡

−1), 𝐻𝑡
−1), 𝑡 = 4𝑖,

where 𝐻𝑘 ∈ 𝑆(𝐾𝑠). Linguistic compression homomor-
phism 𝐼𝜉 of 𝑠𝐵𝑆𝑟(𝐾

*) into 𝑚+𝑠𝐸𝐺(𝐾) can be defined
for arbitrary linguistic graph 𝐼(𝐾*) of type 𝑠, 𝑟,𝑚 via
generalisation of the definition of the map given in
4.2. In general case 𝐼𝜉(rev(𝑢)𝑢) = 𝑒. Let us consider
group 𝐾 ′ = 𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑠, 𝑦1, 𝑦2, . . . , 𝑦𝑟] and total-
ity of chains of maps 𝐹 of kind 𝑥1 → 𝑓1, 𝑥2 → 𝑓2, . . . ,
𝑥𝑠 → 𝑓𝑠, 𝑦1 → 𝑔1, 𝑦2 → 𝑔2, . . . , 𝑦𝑟 → 𝑔𝑟 from the semi-
group 𝑝𝐸𝑆(𝐾). If 𝑟 and 𝑠 are chosen then we can iden-
tify 𝐹 with the pair of elements 1𝐹 = (𝑓1, 𝑓2, . . . , 𝑓𝑠) ∈𝑝

𝑆𝑠(𝐾*) and 2𝐹 = (𝑓1+𝑠, 𝑓2+𝑠𝑠, . . . , 𝑓𝑝) ∈𝑝 𝑆𝑟(𝐾*).
The product of two chains (𝐹1, 𝐹2, . . . , 𝐹𝑘, )

and (𝐺1, 𝐺2, . . . , 𝐺𝑡) is the chain
(𝐹1, 𝐹2, . . . , 𝐹𝑘, 𝐺1(𝐹𝑘), 𝐺2(𝐹𝑘), . . . , 𝐺𝑡(𝐹𝑘)). Empty
chain is the unity of the semigroup 𝑝𝑆(𝐾*) formed
by this totality of chains. In fact semigroup 𝑝𝑆(𝐾*)
is a semidirect product of a free semigroup over
the alphabet 𝑝𝑆𝑝(𝐾*) and Eulerian semigroup
𝑝𝐸𝑆(𝐾*). We refer to this object as semigroup of
strings of Eulerian transformations. We consider
also semigroup 𝑝𝑅𝑆(𝐾*) of reversible strings of
kind 𝑢 = (𝐹1, 𝐹2, . . . , 𝐹𝑘), 𝐹𝑘 ∈ 𝑝𝐸𝑆(𝐾*). For such
special string we introduce its reverse as rev(𝑢) =
(𝐹𝑘−1((𝐹𝑘)

−1), 𝐹𝑘−2((𝐹𝑘)
−1), . . . , 𝐹1((𝐹𝑘)

−1), (𝐹𝑘)
−1).

Let 𝑝𝑆(𝐾*) and 𝑝𝑅𝑆(𝐾*) be subsemigroups of
strings of even length in 𝑝𝑆(𝐾*) and 𝑝𝑅𝑆(𝐾*).
Edge (𝑝, 𝑙) of linguistic graph 𝐼(𝐾*), where
𝑝 ∈ 𝑃 , 𝑙 ∈ 𝐿,𝑝𝐼𝑙 can be presented via the tu-
ple (𝑝1, 𝑝2, . . . , 𝑝𝑠+𝑚, 𝑙1, 𝑙2, . . . , 𝑙𝑟) ∈ (𝐾*)𝑠+𝑟+𝑚

where 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑠+𝑚) and the tuple
(𝑙1, 𝑙2, . . . , 𝑙𝑟) is a colour of the line 𝑙. We con-
sider the graph 𝐼(𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑠+𝑚, 𝑦1, 𝑦2, . . . , 𝑦𝑟])
defined by the same list of equations with
𝐼(𝐾*) but over larger commutative group
𝐾 ′ = 𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑠+𝑚, 𝑦1, 𝑦2, . . . , 𝑦𝑟]. The fol-
lowing symbolic computation can be defined. Take
the symbolic edge 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑠+𝑚, 𝑦1, 𝑦2, . . . , 𝑦𝑟)
where 𝑥𝑖 and 𝑦𝑖 are generators of 𝐾 ′ over
smaller commutative group 𝐾* and polyno-
mial string 𝑢 =𝑝 𝑆(𝐾*) which is a tuple
(𝐹1, 𝐹2, . . . , 𝐹𝑡) ∈ 𝑝𝑆(𝐾*) of strings 𝑓1, 𝑓2, . . . , , 𝑓𝑝
from 𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑠+𝑚, 𝑦1, 𝑦2, . . . , 𝑦𝑟]

𝑝 with even
parameter 𝑡. We have to complete the following steps.

𝑆0. Compute the line 𝑙 =
(𝑦1, 𝑦2, . . . , 𝑦𝑟, 𝐿1, 𝐿2, . . . , 𝐿𝑚). Noteworthy that
𝐿𝑖 ∈ 𝐾 ′.

𝑆1. Take operation 𝐽(𝑙,2 𝐹1) of change the colour of
𝑙 for 2𝐹1. Let 1𝑙 = 𝐽(𝑙, 2𝐹1).

𝑆2. Compute the neighbor 1𝑝 of the line of colour
1𝐹1. We have 1𝑝 = 𝑁(1𝑙,1 𝐹1).

𝑆3. Change the colour of 1𝑝 for 1𝐹2. Let 2𝑝 =
𝐽(1𝑝,1 𝐹2).

𝑆4. Compute the neighbouring line 2𝑙 of 2𝑝 with the
colour 2𝐹2..

Repeat steps 𝑆1-𝑆4 with initial edge 2𝑝, 2𝑙 and com-
ponents 𝐹3 and 𝐹4 of the string 𝐹 . After the completion
of the cycle 𝑆1-𝑆4 of 𝑑 = 𝑡/2 times we get the edge 𝑑𝑝,
𝑑𝑙 of the algorithm. Let (𝑃1, 𝑃2,. . . , 𝑃𝑠, 𝑃𝑠+1, 𝑃𝑠+2,. . . ,
𝑃𝑠+𝑚) coordinates of the line 𝑑𝑝 of the graph 𝐼(𝐾 ′) and
𝐿1, 𝐿2,. . . , 𝐿𝑟 be the colour of the line 𝑑𝑙. Noteworthy
that (𝑃1, 𝑃2, . . . , 𝑃𝑠) =

1 𝐹𝑡 and (𝐿1, 𝐿2, . . . , 𝐿𝑟) =
2 𝐹𝑡.

Finally we consider the map 𝜙 on edge variety
(𝐾*)𝑠+𝑟+𝑚 of the original graph 𝐼(𝐾*) given by the
rule 𝑥1 → 𝑃1, 𝑥2 → 𝑃2, . . . , 𝑥𝑠+𝑚 → 𝑃𝑠+𝑚, 𝑦1 → 𝐿1,
𝑦2 → 𝐿2, . . . , 𝑦𝑟 → 𝐿𝑟, which is an element of
𝑚+𝑠+𝑟𝐸𝑆(𝐾).

We refer to 𝜙 =𝐼 𝜙 as linguistic edge compression
map of graph 𝐼(𝐾*).

LEMMA 3. Let 𝐼(𝐾*) be a linguistic graph of type
(𝑠, 𝑟,𝑚) over 𝐾* defined over multiplicative group of
commutative ring 𝐾. Then edge compression map 𝜙 =𝐼

𝜙 : 𝑟+𝑠𝑆(𝐾*) →𝑟+𝑠+𝑚 𝐸𝑆(𝐾*) is a homomorphism
of semigroups.

LEMMA 4. Let 𝑢 ∈𝑝 𝑅𝑆(𝐾*) then 𝑢rev(𝑢) is an
element of kernel of 𝐼𝜙.

COROLLARY. 𝐼𝜙(𝑟+𝑠𝑅𝑆(𝐾*)) is a subgroup of
𝐼𝜙(𝑟+𝑠𝑆(𝐾*)).

We refer to elements of 𝐼𝜉(𝑠𝐵𝑆𝑟(𝐾*)) and 𝐼𝜙(𝑟 +
𝑠𝑆(𝐾*)) as chain transitions of points and edges of
type (𝑠, 𝑟,𝑚) on the varieties (𝐾*)𝑟+𝑠 and (𝐾*)𝑟+𝑠+𝑚

respectively.
We consider totalities 𝑠𝑅𝑟 of 𝑅𝑠,𝑟 reversible strings

from 𝑠𝐵𝑆𝑟(𝐾
*) and 𝑟 + 𝑠𝑆(𝐾*) with last component

from 𝑠𝐸𝐺′(𝐾), 𝑠+𝑟𝐸𝐺′(𝐾), 𝐼𝜉(𝑠𝑅𝑟) and 𝐼𝜙(𝑅𝑠,𝑟). Let
𝑛𝑋(𝐾*) be the totality of chain transition from sets
𝐼𝜉(𝑠𝑅𝑛) for all possible linguistic graphs 𝐼(𝐾*) of type
𝑠, 𝑟, 𝑛− 𝑠, 0 < 𝑟, 𝑠 < 𝑛 and 𝑛𝑌 (𝐾*) be the totality of
chain transitions from 𝐼𝜙(𝑅𝑠,𝑟) of type 𝑠, 𝑟, 𝑛 − 𝑠 − 𝑟.
We consider multiplicative linguistic group 𝑛𝐿𝐺(𝐾*)
generated by elements 𝑛𝑋(𝐾*) , 𝑛𝑌 (𝐾*) and all gen-
eralized Jordan-Gauss elements of 𝑛𝐸𝐺(𝐾*). In some
cases of special commutative rings 𝐾 one can prove
that 𝑛𝐸𝐺(𝐾*) = 𝑛𝐿𝐺(𝐾*).

The following natural algorithm for generation of pair
𝑔 and 𝑔−1 consists of four steps 𝑆1 – 𝑆4.

𝑆1. take several generalised Jordan-Gauss elements
𝑗1, 𝑗2, . . . , 𝑗𝑘 and

compute their inverses.
𝑆2. select pairs 𝑠(𝑖), 𝑟(𝑖) for 𝑖 = 1, 2, . . . , 𝑡 and cor-

responding linguistic graphs 𝐿(𝑖) = 𝐿(𝑟(𝑖), 𝑠(𝑖))(𝐾*)
of type 𝑠(𝑖), 𝑟(𝑖), 𝑛 − 𝑠(𝑖). Take strings 𝑢(𝑖) from
the subset 𝑠(𝑖)𝑅𝑟(𝑖) of 𝑠(𝑖)𝐵𝑆𝑟(𝑖)(𝐾

*). Compute rev(𝑢).
Take linguistic compression homomorphism 𝐿(𝑖)𝜉 and
compute 𝑎𝑖 =

𝐿(𝑖) 𝜉(𝑢(𝑖)) and their inverses (𝑎𝑖−1 =𝐿(𝑖)

𝜉(rev(𝑢(𝑖)))).
𝑆3. select pairs 𝑠(𝑖), 𝑟(𝑖) for 𝑖 = 𝑡 + 1,𝑡 + 2,. . . ,

𝑡 + 𝑑 and corresponding linguistic graphs 𝐿(𝑖) =
𝐿(𝑟(𝑖), 𝑠(𝑖))(𝐾*). Take strings 𝑢(𝑖) from the subset
𝑅𝑠(𝑖),𝑟(𝑖) of 𝑠(𝑖)+𝑟(𝑖)𝑅𝑆(𝐾*). Compute rev(𝑢). Take
linguistic compression homomorphism 𝐿(𝑖)𝜉 and com-
putes 𝑎𝑖 =𝐿(𝑖) 𝜙(𝑢(𝑖)) and their inverses 𝑎𝑖

−1 =𝐿(𝑖)

𝜙(rev(𝑢(𝑖))).
𝑆4 take alphabet 𝐴 =

{𝑗1, 𝑗2, . . . , 𝑗𝑘, 𝑎1, 𝑎2, . . . , 𝑎𝑡+𝑑}, and write a word
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𝑔 in this alphabet 𝑧1𝑧2 . . . 𝑧𝑙 where 𝑧𝑖 ∈ 𝐴. Then
𝑔−1 = 𝑧𝑙

−1𝑧𝑙−1
−1 . . . 𝑧1

−1.

5. Implementation of algorithm 2.3.2
with subsemigroups 𝐸𝐷(𝑛,𝐾*) and
𝐸𝐴(𝑛,𝐾*) and corresponding cryp-
tosystems

5.1. Implementation of protocol 2.3.2.

Recall that Alice and Bob have to use algorithm 2.2
with collision map 𝑢 on (𝐾*)𝑚 as leading procedure. So
Alice works with objects related to graph 𝐷(𝑛,𝐾*). She
takes strings 𝑢1,𝑢2,. . . ,𝑢𝑠, 𝑠 > 1 of 𝐵𝑆(𝐾*). She com-
putes images 𝑔𝑖 and ℎ𝑖 of linguistic compression maps
𝐷(𝑛,𝐾*)𝜉 of 𝐵𝑆(𝐾*) onto 𝐸𝐷(𝑛,𝐾*) and 𝐴(𝑚,𝐾*)𝜉 of
𝐵𝑆(𝐾*) onto 𝐸𝐴(𝑚,𝐾). Alice will use homomorphism
𝜙 of 𝐸𝐷(𝑛,𝐾*) onto 𝐸𝐴(𝑚(𝑛),𝐾*) induced by graph
homomorphism of 𝐷(𝑛,𝐾*) onto 𝐴(𝑚,𝐾*) (see section
3). Noteworthy that 𝜙(𝑔𝑖) = ℎ𝑖. She use algorithm
of section 4.3 and generate pairs 𝑔, 𝑔−1 from 𝑛𝐿𝐺(𝐾)
and ℎ, ℎ−1 ∈ 𝑚𝐿𝐺(𝐾). Finally Alice computes pairs
𝑎𝑖 = 𝑔𝑔𝑖𝑔

−1 and 𝑏𝑖 = ℎℎ𝑖ℎ
−1 and sends them to Bob.

Further steps of algorithms follows to general scheme.
As output correspondents get collision element 𝑢 from
𝑚𝐸𝑆(𝐾*).

5.2. Conversion to a cryptosystem

Alice uses algorithm 4.3 to generate new pair
of mutually invertible elements 𝑓 and 𝑓−1. As-
sume that 𝑓 is given by tuple (𝑓1, 𝑓2, . . . , 𝑓𝑚)
from the 𝐾*[𝑥1, 𝑥2, . . . , 𝑥𝑚] and 𝑢 is presented
by (𝑢1, 𝑢2, . . . , 𝑢𝑚). Alice computes string
(𝑓1𝑢1, 𝑓2𝑢2, . . . , 𝑓𝑘𝑢𝑘) and sends it to Bob. He
restores the string (𝑓1, 𝑓2, . . . , 𝑓𝑚) and uses this map
for the encryption. Alice decrypts with 𝑓−1.

5.3. Asymmetric schemes of multivariate
cryptography on safe eulerian mode

Let 𝐹 , 𝐹−1 be an asymmetric multivariate encryp-
tion scheme like one of various modifications of Imai-
Matsumoto MIC cryptosystem or another known bi-
jective quadratic multivariate scheme. Assume that
multivariate encryption rule 𝐹 is given in its standard
form. Note that procedure of computation of 𝐹−11
in the given point can be given as numerical algo-
rithms. Alice selects 𝑔 from, 𝑚𝐿𝐺(𝐾) given by the
rule (𝑔1, 𝑔2, . . . , 𝑔𝑚) and computes 𝑔−1. She sends ‘’de-
formed 𝑔” (see [16] and examples in [41]) in the form
of tuple (𝑔1𝑢(𝑓)1, 𝑔2𝑢(𝑓)2, . . . , 𝑔𝑚𝑢(𝑓)𝑚) together with
𝐹 (𝑔−1) in its standard form. Bob is notified on the
form of ‘’deformation rule”. So he restores the map 𝐹 .

Correspondents works with the plainspace (𝐾*)𝑚

and cipherspace 𝐾𝑚. Bob writes his massage 𝑝, trans-
forms it to 𝑝′ = 𝑓(𝑝) and creates the ciphertext as
𝐹 (𝑝′) = 𝑐. Alice computes 𝐹−1(𝑐) = 𝑐′ and restores
the plaintext as 𝑓−1(𝑐′). Adversary is not able to apply
known methods of Algebraic Cryptology, because of en-
cryption multivariate map 𝐺 = 𝐹 (𝑓) is not a bijective
transformation of 𝐾𝑚, it has unbounded degree. Task

of finding of 𝐺′ on 𝐾𝑚 such that 𝐺(𝐺′) acts on (𝐾*)𝑚

as identity is unfeasible task because of standard form
for 𝐺′ is not a rule of polynomial density.

Supporting procedure is algorithm of kind 2.1 with
the same commutative ring Kand parameter 𝑚. Alice
creates elements 𝑧 and 𝑧−11 of 𝑚𝐿𝐺(𝐾). She takes
𝑧 of kind 𝑥𝑖 → 𝑧𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑚), 𝑖 = 1, 2, . . . ,𝑚 and
forms the tuple (𝑧1𝑢1, 𝑧2𝑢2, . . . , 𝑧𝑚𝑢𝑚) to send it to Bob.
He uses his knowledge on 𝑢 to compute 𝑧. Alice sets
pairs (𝑎𝑖, 𝑏𝑖) to start supporting protocol 2.1. She sends
𝑏𝑖(𝑧

−1) which has polynomial density to Bob. Bob use
his knowledge on 𝑧 and computes 𝑏𝑖. Correspondents
execute protocol 2.1 and get collision stable map 𝑢.
Alice uses platform of 2.1 to generate mutually invertible
transformations 𝑦 and 𝑦−1 acting on 𝐾𝑚. She keeps
𝑦−1 for herself and sends 𝑦 + 𝑢 to Bob. He subtracts 𝑢
and gets 𝑦. As in previous algorithm Alice and Bob use
plainspace (𝐾*)𝑚 and ciphertext 𝐾𝑚. To encrypt Alice
maps her message 𝑝 in the alphabet 𝐾* to 𝑧−1(𝑝) = 𝑚
and then she computes the ciphertext 𝑐 = 𝑦−1(𝑚). Bob
decrypts via application of 𝑦 to 𝑐 and computation
𝑧−1(𝑦(𝑐)). Similarly Bob encrypts 𝑝 via consecutive
computation of 𝑧 to 𝑝 and 𝑦(𝑧(𝑝)). Alice applies 𝑦−1 to
ciphertext 𝑐 and computes the plaintext as 𝑧−1(𝑦−1(𝑐)).

6. Groups 𝐺𝐷(𝑛,𝐾) and 𝐺𝐴(𝑚,𝐾)
and corresponding cryptosystems

6.1. Implementation of algorithm 2.3.1 with
groups 𝐺𝐷(𝑛,𝐾) and 𝐺𝐴(𝑚,𝐾)

Implementation of 2.3.2 on the base of platform
𝐺𝐷(𝑛,𝐾) and homomorphism of this group onto trans-
formation group 𝐺𝐴(𝑚,𝐾) is very similar to the case
of the inverse Tahoma protocol presented in [14]. The
difference is that the outcome of directed protocol is
a collision element 𝑢 from 𝐺𝐴(𝑚,𝐾), recall that uis a
cubic map.

Let us describe the directed protocol.
Alice takes strings 𝑢1, 𝑢2,. . . , 𝑢𝑙. 𝑙 > 1 from the semi-

group Σ(𝐾). She takes elements 𝑔 and 𝑔′ from Σ(𝐾)
together with reversing strings rev(𝑔) and rev(𝑔′). Alice
formselements 𝑣𝑖 = 𝑔𝑢𝑖 rev(𝑔) and 𝑣′𝑖 = 𝑔′𝑢𝑖rev(𝑔

′).
She takes homomorphism Γ𝜂 defined in section 3.2
for cases Γ = 𝐷(𝑛,𝐾) and 𝐴(𝑚,𝐾) and computes
𝑦𝑖 =𝐷(𝑛,𝐾) 𝜂(𝑣𝑖) and 𝑧𝑖 =𝐴(𝑛,𝐾) 𝜂(𝑣′𝑖). Alice takes
affine transformations 𝑇1 and 𝑇2 of free modules 𝐾𝑛

and 𝐾𝑚 respectively and forms cubic transformations
𝑎𝑖 = 𝑇1𝑦𝑖𝑇1

−1 and 𝑏𝑖 = 𝑇2𝑧𝑖𝑇2
−1. She sends pairs (𝑎𝑖,

𝑏𝑖), 𝑖 = 1, 2, . . . , 𝑙 to Bob.
He takes abstract alphabet 𝑐1, 𝑐2,. . . , 𝑐𝑙 and writes

word 𝑤 = 𝑤(𝑐1, 𝑐2, . . . , 𝑐𝑙) of some length 𝑡, 𝑡 > 𝑙. Bob
specialize 𝑐𝑖 as 𝑎𝑖 and computes cubical transformation
𝑤(𝑎1, 𝑎2, . . . , 𝑎𝑙) = 𝑣 to Alice but keep specialisation
𝑢 = 𝑤(𝑏1, 𝑏2, . . . , 𝑏𝑙) for himself. Alice restores 𝑢 via
following steps.

𝑆1. Computation of 𝑇−1
1 𝑉 𝑡1 = 𝑣 , rev(𝑔)𝑣𝑔 = 𝑣.

𝑆2. Computation of ind(𝜎)(𝑣) = 𝑦.
𝑆3. Computation of 𝑦 = (𝑔)𝑦rev(𝑔) and 𝑢 as

𝑇2𝑦𝑇2
−1.
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6.2. Conversion to a cryptosystem

Alice can take two other invertible affine transforma-
tions 𝑇 ′

1 and 𝑇 ′
2 of free module 𝐾𝑚 and generate pair

of mutually inverse elements 𝑔 and 𝑔−1 from 𝐺𝐴(𝑚,𝐾)
and sends ℎ = 𝑇 ′

1𝑔𝑇
′
2 + 𝑢 to Bob.

He restores encryption map 𝑓 = 𝑇 ′
1𝑔𝑇

′
2. Alice can

decrypt with 𝑇1𝑧
−1𝑔−1𝑇1

−1. The disadvantage of this
cryptosystem is the fact that decryption map is also
cubical one. It means that in the case of 𝑂(𝑛3) inter-
ceptions of plaintext-ciphertext pairs the adversary is
able to conduct linearization attack in time 𝑂(𝑛10).

Natural recommendation is to execute just 𝑂(𝑛2)
exchanges and set the new encryption rule (possibly
with new session of protocol 6.1).

6.3. Transform to eulerian mode

Alice can use algorithm 4.3 for generation of 𝑧,𝑧−1

from can send 𝑧𝑓−1 to Bob. He restores 𝑧. So correspon-
dents works with plainspace (𝐾*)𝑚 and cipherspace
𝐾𝑚. Bob encrypts his plaintext 𝑝 as 𝑐 = 𝑓(𝑧(𝑝). Alice
restores 𝑝 as 𝑧−1𝑓−1(𝑐).

6.4. On schemes of quadratic multivariate
cryptography on safe eulerian mode

Assume that scheme 𝐹 , 𝐹−1 as in 5.3 where 𝐹 is
quadratic multivariate map is chosen by Alice. Let
𝐷 be the differential operator 𝑑/𝑑𝑥1 + 𝑑/𝑑𝑥2 + · · · +
𝑑/𝑑𝑥𝑚. After the completion of 6.1. Alice takes
the collision map 𝑢 : 𝑥𝑖 → 𝑢𝑖 and forms the tuple
𝑣 = (𝐷𝑢1, 𝐷𝑢2, . . . , 𝐷𝑢𝑚). Now she transforms 𝐹 =
(𝑓1, 𝑓2, . . . , 𝑓𝑚) to 𝑊 = (𝑓1 + 𝑣1, 𝑓2 + 𝑣2, . . . , 𝑓𝑚 + 𝑣𝑚).
Alice sends 𝑊 to Bob. He restores 𝐹 . Now correspon-
dents can work on Eulerian mode. Bob transforms his
plaintext 𝑝 ∈ (𝐾*)𝑚 into 𝑝′ = 𝑧(𝑝) and compute the ci-
phertext as 𝐹 (𝑝′). Alice uses computational procedure
for 𝐹−1 and 𝑧−1 to decrypt.

6.5. on the usage of toric and stable platforms
in tandem

6.5.1. Public key algorithm with Eulerian
transformations on private mode Correspondents
can implement schemes 2.3.1 and 2.3.2 with the plat-
forms of Sections 5 and 6. The output for each of these
versions will be the collision map 𝑢 ∈ 𝑚𝐿𝑆(𝐾) and
another collision element 𝑦 ∈ 𝐾𝑚.

Alice can generate a public key map suggested in
the paper [9] (case of arithmetical ring 𝑍𝑑, 𝑑 > 2) and
[10] (the case of finite field). So she generate maps
𝑧 and 𝑧−1 from 𝑚𝐿𝐺(𝐾) as in 6.3 and cubical map
𝑓 = 𝑇 ′

1𝑔𝑇
′
2 as in 6.2 and its reverse 𝑓−1. Alice takes

composition 𝑓(𝑧) as in 6.2. She computes 𝑓(𝑧) + 𝑦(𝑢)
and sends it to Bob. He restores 𝑓(𝑧) and uses this
map for encryption. Alice decrypt the ciphertext via
consequtive applications of 𝑓−1 and 𝑧−1 to ciphertext.
Let us parameter 𝑡′ stands for the length of reimage of
𝑔 in Σ(𝐾).

We refer to 𝑡′ as the length of the string. Com-
puter simulations demonstrates the ‘’condensed mat-

ters physics” digital effect. If 𝑡′ is ”sufficiently large”,
then 𝑀(𝑔,𝑚, 𝑡′) is independent from 𝑡′ constant. We
have written a program for the implementation of the
protocol. It written in 𝐶++ and compiled with the
gcc compiler. We used an average PC with processor
Pentium 3.00 GHz, 2GB memory RAM and system
Windows 7. We have implemented three cases:

(1) 𝑇 ′
1 and 𝑇 ′

2 are identities ,
(2) 𝑇 ′

𝑖 , 𝑖 = 1, 2 is the map of kind 𝑥1 → 𝑥1 + 𝑎2𝑥2 +
𝑎3𝑥3 + · · ·+ 𝑎𝑚𝑥𝑚, 𝑥2 → 𝑥2, 𝑥3 → 𝑥3, . . . , 𝑥𝑚 → 𝑥𝑚,
𝑎𝑖 ̸= 0,𝑖 = 1, 2, . . . ,𝑚.

(3) 𝑇𝑖 = 𝐴𝑖𝑥 + 𝑏𝑖, where the majority of entries of
each matrix 𝐴𝑖 and coordinates of vector 𝑏𝑖 are nonzero
elements.

The number of monomials depends from parameters
𝑚 and 𝑡′ and the form of transformation 𝑇𝑖. Let us
assume that parameter 𝑚, matrices 𝑇𝑖 and commutative
ring are chosen. So the value of 𝑀(𝑔,𝑚, 𝑡′) depends
only from variable 𝑡′.

Computer simulation shows that if 𝑡′ is “sufficiently
large” then 𝑀(𝑔,𝑚, 𝑡′) is a constant. Results of com-
puter simulation are presented in tables given in [39].
Notice that encryption map is a composition of cubical
map investigated in [35] and [36] and toric transfor-
mation of density 1 of linear degree. So numbers of
monomial terms is determined by cubical part.

6.5.2. Correspondents can implement schemes
2.3.1 and 2.3.2 with the platforms of Sections 5 and
6. The output for each of these versions will be the
collision map 𝑢 ∈ 𝐿𝑆(𝐾) and another collision element
𝑦 ∈ 𝐾𝑚.

In this case Alice can select arbitrary element 𝑧 given
by a string (𝑧1, 𝑧2, . . . , 𝑧𝑚) from 𝑚𝐿𝐺(𝐾) and cubic (or
quadratic) multivariate scheme of kind (𝐹 , 𝐹−1). She
sends tuples (𝑧1𝑢1, 𝑧2𝑢2, . . . , 𝑧𝑚𝑢𝑚) and (𝑓1 + 𝑦1, 𝑓2 +
𝑦2, . . . , 𝑓𝑚+𝑦𝑚) (in the case of deg(𝐹 ) = 2 we compute
(𝑓1, 𝑓2, . . . , 𝑓𝑚) + (𝐷𝑦1, 𝐷𝑦2, . . . , 𝐷𝑦𝑚). Bob restores 𝑧
and 𝐹 and correspondents work with plainspace (𝐾*)𝑚

and 𝐾𝑚 similarly to previous case 6.5.
6.5.3. Usage of recurrent and governing rules to work

with combine multivariate transformations of different
nature.

Let us assume that Alice takes several bijective trans-
formations 𝐹1, 𝐹2, . . . , 𝐹𝑘 of degree at most 2. She
can use transformation 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑚) and de-
liver several elements 𝑖𝑦, 𝑖 = 1, 2, . . . , 𝑡 from the sta-
ble platform via recurrent procedure. One of the
options is the following. Alice sends 𝑟1 =1 𝑦 + 𝑦,
𝑟2 =2 𝑦(1𝑦) +1 𝑦, . . . , 𝑟𝑘 =𝑘 𝑦(𝑘−1𝑦) +𝑘−1 𝑦 to
Bob. So he computes 𝑖𝑦. Secondly she computes
𝐷(𝑖𝑦) = (𝐷(𝑖𝑦1), 𝐷(𝑖𝑦2), . . . , 𝐷(𝑖𝑦𝑚)) and sends to Bob
elements 𝐺𝑖 = 𝐹𝑖 +𝐷(𝑖𝑦) where + is an operation in
𝐾[𝑥1, 𝑥2, . . . , 𝑥𝑚]𝑚.

So Bob can use a sequence of elements 𝑢(1) =1

𝑦, 𝑢(2) =2 𝑦, . . . , 𝑢(𝑘) = 𝑘𝑦, 𝑢(𝑘 + 1) = 𝐹1,
𝑢(𝑘 + 2) = 𝐹2,. . . , 𝑢(2𝑘) = 𝐹𝑘 of the alphabet
𝐴. Alice writes governing rule in the form of word
𝑤 = 𝑤(𝑧(1), 𝑧(2), . . . , 𝑧(2𝑘)) = 𝑧(𝑖1)𝑧(𝑖2) . . . 𝑧(𝑖𝑙) in
formal alphabet 𝑍 formed by 𝑧(𝑖), 𝑖 = 1, 2, . . . , 2𝑘
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where 𝑖1, 𝑖2,. . . , 𝑖𝑙 is a sequence of elements from
{1, 2, . . . , 2𝑘}. She sends 𝑤 via open channel to Bob.
He specialises 𝑧(𝑖𝑗) as 𝑢(𝑖𝑗), 𝑗 = 1, 2, . . . , 2𝑘, writes his
message as 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑚) and computes cipher-
text with the procedure 𝑐1 = 𝑢(𝑖1)(𝑝),𝑐𝑗 = 𝑢(𝑖𝑗)(𝑐𝑗−1)),
𝑗 = 2, 3, . . . , 2𝑘, 𝑐 = 𝑐2𝑡. Alice writes reverse word and
takes sequence 𝑢(𝑖2𝑡)−1, 𝑢(𝑖2𝑡−1)

−1, . . . , 𝑢(𝑖1)−1 for the
decryption.

Correspondents can use the above platform in tandem
with the standard platform 𝑚𝐿𝑆(𝐾) of toric directed
Tahoma protocol with the output 𝑢 ∈ 𝑚𝐿𝑆(𝐾). Alice
can generate pairs 𝑖𝑢, 𝑖𝑢−1, 𝑖 = 1, 2, . . . , 𝑙 from 𝑚𝐿𝑆(𝐾).
She uses open recurrent rules to compute

(1𝑢(𝑢1),
1 𝑢(𝑢2), . . . ,

1 𝑢(𝑢𝑚)) =1 ℎ,
(2𝑢(1𝑢)1

1𝑢1, 2𝑢(1𝑢)2
1𝑢2, . . . , 2𝑢(1𝑢𝑚

1𝑢𝑚) =2 ℎ,
. . .

(𝑙(𝑙−1𝑢)1
𝑙−1𝑢1,

𝑙 (𝑙−1𝑢)2
𝑙−1𝑢2, . . . ,

𝑙 (𝑙−1𝑢)𝑚
𝑙−1𝑢𝑚) =𝑙

ℎ

for Bob. He restores 𝑖𝑢 = 𝑣(𝑖).
Alice writes second governing rule in the form of

word 𝑤′ = 𝑤′(𝑧(1), 𝑧(2), . . . , 𝑧(𝑙)) = 𝑧(𝑖1)𝑧(𝑖2) . . . 𝑧(𝑖𝑡),
𝑡 > 𝑙 − 1 in formal alphabet 𝑍 ′ formed by 𝑧(𝑖), 𝑖 =
1, 2, . . . , 𝑙 where 𝑖1, 𝑖2,. . . , 𝑖𝑡 is a sequence of elements
from {1, 2, . . . , 𝑙}. She sends 𝑤′ via open channel to
Bob. He specialises 𝑧(𝑖𝑗) as 𝑣(𝑖𝑗), 𝑗 = 1, 2, . . . , 𝑡, writes
his message as 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑚) and applies elements
𝑣(𝑖1), 𝑣(𝑖2), . . . , 𝑣(𝑖𝑡), 𝑢(𝑖1), 𝑢(𝑖2), . . . , 𝑢(𝑖2𝑘).

7. Conclusion

Let us consider totality 𝑉 (𝐾) of elements 𝐹 of Cre-
mona semigroup of polynomial degree 𝑂(𝑛𝑡) and poly-
nomial density 𝑂(𝑛𝑑) such that the re-striction 𝐹 ′ of
𝐹 onto (𝐾*)𝑚 is an injective map and there is a poly-
nomial algorithm of computation of reimage of element
from Im(𝐹 ′) = 𝐹 ((𝐾*)𝑚). We assume that element of
𝑉 (𝐾) is given via its standard form. In fact we are
interested only in the usage of 𝐹 ′. It means that we
can substitute each syllable 𝑥1

𝑎 of each monomial term
for 𝑥1

𝑎 mod (|𝐾*|). So without loss of generality we
may assume that 𝑡 = 1.

We assume that commutative ring 𝐾 with unity has
nontrivial multiplicative group 𝐾*. Noteworthy that
variety 𝑚𝑉 (𝐾) contains all bijective maps of 𝐶(𝐾𝑚)
of bounded degree for which a polynomial procedure to
compute reimage x of F(x) is available. Wide class of
such maps is formed by explicit constructions of Multi-
variate cryptography designed as potential candidates
for a secure public keys or stream ciphers of multivari-
ate nature. For us existence of effective cryptanalysis
for such candidates is immaterial. Some examples of
non-bijective elements of 𝑚𝑉 (𝐾) for special rings are
given in [26] or [27].

(1) Construction of group 𝑚𝐿𝐺(𝐾) allows to generate
pair of mutually inverse elements 𝑧, 𝑧−1 of the group
and to transfer selected 𝐹 from 𝑚𝑉 (𝐾) into new map
𝑥 → 𝑌 = 𝐹 (𝑧(𝑥)) from 𝑚𝑉 (𝐾). Really both 𝐹 ′ and
𝐹 ′(𝑧) have degree 𝑂(𝑛).

(2) So the owner of the pair (Alice) can announce
𝑌 written in standard form as new public key cryp-

tosystem with the plainspace (𝐾*)𝑚 and ciphertext
𝐾𝑚.

(3) Alternatively Alice and her correspondent (Bob)
can use cryptosystem of El Gamal type based on sub-
semigroups of 𝑛𝐸𝑆(𝐾) and 𝑚𝐸𝑆(𝐾) (see [28]). Secu-
rity of this cryptosystem is based on the word problem.
Notice that together of algorithm of the section 4.3
inverse protocol can be used in the wide case of finite
commutative ring with nontrivial multiplicative group.

So correspondents elaborate pair 𝑢, 𝑢−1 where 𝑢
belongs to Alice and 𝑢−1 is in the possession of Bob.

Alice send 𝐹 (𝑧(𝑢)) to Bob and he restores 𝑌 = 𝐹 (𝑧).
Bob can write plaintext 𝑝 ∈ (𝐾*)𝑚 and form ciphertext
as 𝑌 (𝑝). Alice can compute 𝑐′ = 𝐹 − 1(𝑐) and compute
his plaintext as 𝑧−1(𝑐′).

Notice that this algorithm is asymmetrical. Bob does
not have ‘’local inverse” 𝑌 ′ of 𝑌 for which 𝑌 ′𝑌 acts
identically on the variety (𝐾*)𝑚.

(4) For safe delivery of 𝑌 to Bob correspondents may
use direct Tahoma protocol with two platforms 𝑛𝐸𝑆(𝐾)
and 𝐺𝐷(𝑛,𝐾). So they elaborate 𝑢 ∈ 𝑚𝐸𝑆(𝐾) and
𝑔 ∈ 𝐺𝐷(𝑚,𝐾) for Alice and Bob. Alice sends 𝑢𝑔+𝐹 (𝑧)
to Bob. He restores 𝐹 (𝑧) via subtraction of 𝑢𝑔. The
remaining part of such algorithm is same with previous
one.

Correspondents can use symmetric scheme because
Alice can deliver 𝑧 and 𝐹 on secure mode via schemes
of section 6.

Known methods of algebraic cryptanalysis with the
usage of Shirshov-Grobner algorithms are not applicable
to suggested above cryptosystems especially in the cases
of alternative form to public key cryptosystems.
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