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РЕФЕРАТ 

Дисертація складається з 84 сторінок, 59 Цифри та 29 джерел у 

довідковому списку. 

 Проблема: Оскільки світ стає більш безпечним, для забезпечення 

належної передачі даних між сторонами, що спілкуються, було 

використано більше протоколів шифрування. Класифікація мережі стала 

більше клопоту з використанням деяких прийомів, оскільки перевірка 

зашифрованого трафіку в деяких країнах може бути незаконною. Це 

заважає інженерам мережі мати можливість класифікувати трафік, щоб 

відрізняти зашифрований від незашифрованого трафіку. 

Мета роботи: Ця стаття спрямована на проблему, спричинену попередніми 

методами, використовуваними в шифрованій мережевій класифікації. 

Деякі з них обмежені розміром даних та обчислювальною потужністю. У 

даній роботі використовується рішення алгоритму глибокого навчання для 

вирішення цієї проблеми. 

 Основні завдання дослідження: 

 1. Порівняйте попередні традиційні методи та порівняйте їх 

переваги та недоліки 

  2. Вивчити попередні супутні роботи у сучасній галузі 

досліджень. 

 3. Запропонуйте більш сучасний та ефективний метод та алгоритм 

для зашифрованої класифікації мережевого трафіку 

 Об'єкт дослідження: Простий алгоритм штучної нейронної 

мережі для точної та надійної класифікації мережевого трафіку, що не 

залежить від розміру даних та обчислювальної потужності. 

 Предмет дослідження: На основі даних, зібраних із приватного 

потоку трафіку у нашому власному інструменті моделювання мережі. За 
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допомогою запропонованого нами методу визначаємо відмінності 

корисних навантажень мережевого трафіку та класифікуємо мережевий 

трафік. Це допомогло відокремити або класифікувати зашифровані від 

незашифрованого трафіку. 

 Методи дослідження: Експериментальний метод. 

Ми провели наш експеримент із моделюванням мережі та збиранням 

трафіку різних незашифрованих протоколів та зашифрованих протоколів. 

Використовуючи мову програмування python та бібліотеку Keras, ми 

розробили згорнуту нейронну мережу, яка змогла прийняти корисне 

навантаження зібраного трафіку, навчити модель та класифікувати трафік 

у нашому тестовому наборі з високою точністю без вимоги високої 

обчислювальної потужності 

 

Ключові слова: конволюційна нейронна мережа, дані, модель, глибокі 

нейронні мережі, глибоке навчання, протоколи, шифрування, Python. 
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ABSTRACT 

This dissertation consists of 84 pages, 59 Figures and 29 sources in the 

reference list. 

Problem: As the world becomes more security conscious, more 

encryption protocols have been employed in ensuring suecure data transmission 

between communicating parties. Network classification has become more of a 

hassle with the use of some techniques as inspecting encrypted traffic can pose 

to be illegal in some countries. This has hindered network engineers to be able 

to classify traffic to differentiate encrypted from unencrypted traffic.  

Purpose of work: This paper aims at the problem caused by previous 

techniques used in encrypted network classification. Some of which are limited 

to data size and computational power. This paper employs the use of deep 

learning algorithm to solve this problem. 

The main tasks of the research: 

1. Compare previous traditional techniques and compare their 

advantages and disadvantages 

2. Study previous related works in the current field of research. 

3. Propose a more modern and efficient method and algorithm for 

encrypted network traffic classification  

The object of research: Simple artificial neural network algorithm for 

accurate and reliable network traffic classification that is independent of data 

size and computational power. 

The subject of research: Based on data collected from private traffic 

flow in our own network simulation tool. We use our proposed method to 

identify the differences in network traffic payloads and classify network traffic. 

It helped to separate or classify encrypted from unencrypted traffic. 
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Research methods: Experimental method. 

We have carried out our experiment with network simulation and 

gathering traffic of different unencrypted protocols and encrypted protocols. 

Using python programming language and the Keras library we developed a 

convolutional neural network that was able to take in the payload of the traffic 

gathered, train the model and classify the traffic in our test set with high 

accuracy without the requirement of high computational power. 

Keywords: Convolutional Neural Network, Data, Model, Deep Neural 

Networks, Deep learning, Protocols, Encryption, Python. 
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CNN – Convolutional Neural Network 

ANN – Artificial Neural Network 
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NN – Neural Network 
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ICMP – Internet Control Message Protocol 
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SECTION I 

1.1 INTRODUCTION 

Most networks traffic are identified by features which maybe port numbers or 

statistics characteristics and so on. The fast development of the internet and 

communication devices has created bigger and more complicated network 

structures, adapting and developing bigger hubs, routers, switches, etc. This 

complexity in networks has introduced an overflow of vast amounts of traffic 

data and contributed to the challenges in network management and traffic 

optimization, including traffic measurement (e.g. traffic classification) and 

traffic prediction. 

1.2 RELATED WORKS 

Methods have been proposed on easy detection and classification of network 

traffic.  

K.Muthamil et all[1], proposed work is to detect the malicious activities in the 

SDN environment with high accuracy. Initially, the flow information is 

collected from OVS switches at regular intervals and by using that information 

essential features are extracted. After that by applying hybrid machine learning 

technique, we construct classifier module to detect attacks in the flow.  In our 

proposed work, we have implemented K-Means clustering, Modified K-Means 

clustering, C4.5 decision tree and Modified K-Means+C4.5 (MKMC4) decision 

tree hybrid algorithm.   

The IDS module consists of flow statistics collection module, traffic 

classification module, feature extraction module and hybrid machine learning 

testing and training phase to detect the attacks. From the controller, flow 

statistics are collected for every second. If a flow is inactive for more than two 

seconds, it is considered as idle. The message type indicates the reason for 
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arrival of packets towards the controller. It may be due to table miss or flow rule 

installed in the flow table directing the packets towards the controller.  

 

Fig 1.1 Features and Descriptions 

 

Fig 1.2 System Architecture 

When a packet arrives towards the controller, feature extraction and traffic 

classification could happen by analysing header fields from the packet. For TCP 

and UDP traffic, source and destination IP, source and destination port, protocol 

type will have same values. Same is applicable for ICMP traffic also but with 
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different port numbers. In addition to that, this module will eliminate the 

symmetric flow. If source IP address and source port number of one flow are 

similar to destination port number and IP address of another flow for TCP or 

UDP traffic respectively, then these flows are considered as symmetric flow. 

For ICMP symmetric flows, the two flows are request and response types. The 

main reason for eliminating symmetric flows is that attackers mainly spoof their 

IP addresses in order to restrict the responses from victims. So, this module 

installs the flow rules only for normal traffic and  avoids the saturation in flow 

tables. For their proposed work, they extracted six essential features such as 

protocol_type, duration, sorce_bytes, destination_bytes, count, service_count.. 

Then the machine learning based detection module will process the packets and 

classify it as normal or attack packets. Once the attack is detected, the 

OpenFlow protocol modifies the flow table immediately to drop the particular 

flow. Their results were accurate. 

 

Fig 1.3 Result 

 

 

Loftallahi et all[2], presented Deep Packet, a framework that automatically 

extracts features from computer networks traffic using deep learning algorithms 

to classify traffic. To the best of their knowledge, Deep Packet is the first traffic 

classification system using deep learning algorithms, namely SAE and 1D-CNN 
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that can handle both application identification and traffic characterization tasks. 

Proposed CNN as shown below. 

 

Fig 1.3 Proposed CNN Architecture 

 Results showed that Deep Packet outperforms all of the similar works on the 

“ISCX VPN-nonVPN” traffic dataset, in both application identification and 

traffic characterization tasks, to the date. Moreover, with state-of-the-art results 

achieved by Deep Packet, they envisage that Deep Packet is the first step toward 

a general trend of using deep learning algorithms in traffic classification and 

more generally network analysis tasks. 

 

Fig 1.4 Results of proposed CNN 
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Furthermore, Deep Packet can be modified to handle more complex tasks like 

multi-channel (e.g., distinguishing between different types of Skype traffic 

including chat, voice call, and video call) classification, accurate classification 

of Tor’s traffic, etc. Finally, the automatic feature extraction procedure from 

network traffic can save the cost of employing experts to identify and extract 

handcrafted features from the traffic which eventually leads to more accurate 

traffic classification. 

Naseer et all[3], analyzed the usage of deep learning algorithms, specifically 

CNN, AE, and Intrusion Detection models were proposed, implemented and 

trained using different deep neural network architectures including 

Convolutional Neural Networks, Autoencoders, and Recurrent Neural 

Networks.  

 

Fig 1.5 Auto-encoders Architecture 

 

These deep models were trained on NSLKDD training dataset and evaluated on 

both test datasets provided by NSLKDD namely NSLKDDTest+ and 

NSLKDDTest21. For training and evaluation of deep models, a GPU powered 

test-bed using keras with theano backend was employed. To make model 
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comparisons more credible, they implemented conventional ML IDS models 

with different well-known classification techniques including Extreme Learning 

Machine, k-NN, Decision-Tree, Random-Forest, Support Vector Machine, 

Naive-Bays, and QDA. Both DNN and conventional ML models were evaluated 

using well-known classification metrics including RoC Curve, Area under RoC, 

Precision-Recall Curve, mean average precision and accuracy of classification.  

 

 

 

 

Fig 1.6 Test Times for Datasets 

 

 

Both DCNN and LSTM models showed exceptional performance with 85% and 

89% Accuracy on test dataset which demonstrates the fact that Deep learning is 

not only viable but rather promising technology for information security 

applications like other application domains. 
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Fig 1.7 Algorithm Mean Averages 

 

1.3 ENCRYPTED PROTOCOLS DESCRIPTION 

There a good range out traffic encryption protocols out there. We shall discuss 

two commonly used protocols in this section: TLS, SSH. Encryptions simply 

means encoding data in such a way that it not recognizable to anyone except 

people with the keys to decrypt and read what the data says. Of course, this 

means that the keys will only be available to the parties communicating. All 

protocols that provide encryption look to provide the same service, which is, 

confidentiality, some level of authentication between the communicating parties 

data integrity and non repudiation. 

A greater portion of encryption protocols work in the same manner: the 

initialization of the connection and transport of encrypted data. It involves a 

handshake and a shared secret key for ecample. During this step the 

communicating parties exchange what kind of algorithm is used for encryption, 

communicating parties are authenticated and then the secret key established. 

These keys are used to encrypt the data to be transferred between parties. 
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Fig 1.8 general encryption scheme 

  

Transport Layer Security (TLS) [25] is based on Secure Socket Layer version 3 

(SSLv3) protocol [26]. It provides security directly on TCP which is a transport 

layer protocol. It provides the features mentioned above which include but not 

limited to: data integrity, confidentiality and authentication. It does this using 

certificates. Protocols like HTTP, FTP, SMTP, are know to use TLS as security. 

It is also used in VPN and VoIP.   

 

Fig 1.9 TLS packet format 

In the first phase of a TLS connection, communicating parties are authenticated 

using an X.509 certificates chain as shown in the general scheme in Fig 1.8. 

Alternatively, a previous connection can be resumed without authentication. 

TLS messages exchanged during this phase are unencrypted and do not contain 

MAC until the shared keys are established and confirmed. In the second phase, 

these keys are used directly by the Record Protocol, which is based on the 

selected algorithms ensuring communication security 
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Secure Shell Protocol (SSH): SSH is an application that runs over tcp. It uses a 

client-server model. The server listens on port 22 (standard port for SSH). It 

replaced telnet for remote login as telnet is unsecure. As tie went on, it 

developed into being used for more than just secure login. It can be use for 

secure file transfer through SFTP and SCP. It also provides authentication, data 

integrity and confidentiality like TLS 

 

Fig1.10 SSH protocol packet format 

Every SSH connection goes through the same phases which were depicted in 

Figure 1. In the first phase, a TCP connection is established and information 

about preferred algorithms is exchanged. During authentication, a server sends 

its public key which must be verified by the client. The shared keys are 

subsequently established and confirmed. All following packets are then 

encrypted and authenticated 

Note that there are other encryption traffic protocols available that have not 

been discussed in this paper such as BitTorrent[27], Skype[28] etc. 
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SECTION II 

2.1 NETWORK TRAFFIC CLASSIFICATION TECHNIQUES 

A great deal of interest has suddenly erupted in the field of network traffic 

classification. This has led to a great number of researches and seen researchers 

employ different methods and techniques to classify network traffic. 

The more technology evolved the more methods and techniques have been 

developed. In the last two decades, a number of techniques have been 

introduced into the industry by researcher or engineers looking to classify 

network for a number of reasons. This chapter discusses several techniques that 

have been employed in network traffic classification. 

2.1.1 Port-based classification: identifying and classifying network 

traffic in the early days, did not pose any hassle. Simply inspecting the packet 

header and matching the TCP or UDP port number with the appropriate 

authority was enough. What this means was there are applications that were 

known to specific ports, for example, HTTP port 80, SSH port 22. This was 

used for a long time until of course, applications started to use unregistered or 

non standard ports. Some applications used random port numbers. Some 

unknown applications hid behind well known applications in order to bypass 

restrictions access controls or firewalls. This led to a decline in use of this 

technique because it became inaccurate and unreliable as different for the 

reasons mentioned above. 

2.1.2 Behavioral classification: this technique observes the whole 

network traffic that comes in a node and tries to identify or classify traffic based 

on a pattern from the target node. This takes into consideration the number of 

hosts the port number and number of ports. Some works like in[7,8] sought to 

analyze network traffic patterns by exploiting heuristic information such as the 

number of distinct ports contacted, as well as transport layer protocols to 
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distinguish the type of application running on a host. Other works[9, 10] 

showed that a lot of information can be utilized to classify network traffic. They 

analyzed the connections between endpoints graphically, and they show that 

generated connection patterns and graphs from client-server applications are 

very different than those of P2P. 

2.1.3 Payload classification: This is sometimes called deep packet 

inspection(DPI). The widely used payload-based technique involves matching 

some stored signatures or pattern with feature of packets that are inspected. 

Thus technique has been employed in several researches and tools because of its 

high accuracy and reliability. A good example of this is in the Linux Kernel 

Firewall[11]. This techniques is also employed in intrusion detection systems 

(IDS) to identify threatening or suspicious traffic that can cause damage and 

leak of information to a network. Although a very efficient and accurate 

technique, it poses some disadvantages or weakness, when dealing with 

encrypted traffic, its abilities a minute as it cant inspect these kind of packets 

and they remain unclassified. Also present is the act of privacy breach. 

Inspecting encrypted traffic could break laws of certain countries. It uses a lot of 

computer resources hence doing this technique comes at a cost. It is also limited 

when it comes to a high number of traffic flows and network speed in real time. 

2.1.4 Statistical classification: this method uses some flow features of 

packet for classification. Some features may include, duration of packet, packet 

size, flow idle time etc. some of the above mentioned features are unique for 

some applications this enables the technique classify between traffic for 

different applications. To perform the actual classification based on statistical 

characteristics, classifiers need to employ data mining techniques, specifically 

ML algorithms, because they need to deal with different traffic patterns from 

large datasets[12]. ML algorithms are very lightweight and less computationally 

expensive than payload-based classification techniques, because they do not 
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depend on DPI but rather utilize the information from flow-level analysis. The 

effectiveness of the classifier in statistical classification depends on the features 

extracted from the flow, which require extensive knowledge due to their 

complexity. However, these techniques outperform payload-based techniques 

since they do not deal with packet contents, and thus can analyze encrypted 

traffic without any difficulty. 

 

 

 

 

2.2 UNDERSTANDING ARTIFICIAL NEURAL NETWORKS(ANN) 

Artificial neural networks[5] are sometimes just called neural networks.it 

investigates how biological brains can solve tough tasks like prediction tasks in 

machine learning. The strength of neural networks is their ability to learn the 

representations in training data and relating it to output variable that needs to be 

predicted. In other words they learn a mapping. They are capable of mapping 

any function and are proven to be good approximation algorithm. The 

hierarchical and multilayer structure they have ensures their predictive 

capabilities. They can learn features at different scales or resolutions and 

combine them into features of a higher lever or order. In other words learn 

features such as lines, and combine them to learn the shapes those lines form 

and then the full image as the case may be. 

Neurons are the building block of neural networks just like in a biological brain. 

They contain simple computational units with inputs signals that are weighted 

and with the help of an activation function produces an output. 



 
22 

 

Weights, like linear regressions the neurons have biases which may have the 

value 1.0. larger weights means more complex and fragility. Techniques can be 

used to keep the weights in a network small as this is best practice. 

Activation this encompasses the threshold at which the neuron is activated and 

also how strong the output signal is.  

A row of neurons is called a layer. So having multiple layers of neurons that are 

connected is know as a network, hence artificial neural network. Basically there 

are input layer, which takes in the training data and is visible, hidden layer, 

which trains the network. There can be multiple layers is the hidden layer. The 

deeper it is the slower it is to train the network. The hidden layer is not visible 

to the input layer. And lastly the output layer also hidden produces a value that 

correspond to the format needed to solve the problem. 

 

2.3 WHAT IS DEEP LEARNING? 

Deep learning is a model based on Artificial Neural Networks (ANN), more 

specifically Convolutional Neural Networks (CNN)s. There are several 

architectures used in deep learning such as deep neural networks, deep belief 

networks, recurrent neural networks, and convolutional neural networks. These 

networks have been successfully applied in solving the problems of computer 

vision, speech recognition, natural language processing, bioinformatics, drug 

design, medical image analysis, and games. 

2.3.1 DEEP LEARNING TECHNIQUES 

There are considerable ranges of deep learning techniques used across the globe 

for various tasks. Such tasks could vary from image recognition, voice 

recognition and or other classification tasks. What technique is used depends on 

the researcher and the aim of the research being carried out. Deep learning is 
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based on Artificial Neural Networks(ANN). For example, convolutional neural 

networks are best for image classification and prediction tasks and has grown 

quite popular among researcher in recent years. We discuss below a few deep 

learning techniques. 

2.3.1.1 Multilayer Perceptron: this consists of an input layer that 

receives signal, a hidden layer that trains the network and an output layer that 

predicts or makes a decision based on the input. It is mostly used in supervised 

learning. Weights and biases are adjusted as needed to reduce error. It is a feed 

forward network. In the forward pass, the signal moves from the input layer that 

contains the data set and through the hidden layer that trains the network and 

then to the output layer that gives a value as needed for the problem to be 

solved. The networks uses a backward propagation and a rule or rules of 

calculus to reduce error. This keeps happening until the error can go no lower. 

This is a convergence state. In regards to network traffic classification, this 

technique is rarely used due to low accuracy and a high complexity. 

 

Fig 2.1 Basic Multilayer Architecture. 

 

2.3.1.2 Convolutional Neural Network: this is similar to multi-layer 

perceptron in architecture but has more capabilities and can handle a lot more 

data. The objective is to extract high level features such as edges from input 
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images. They are not limited to one convolutional layer. The first layer, the 

convolutional layer, extracts low level features like line, edges, color etc. as 

more layers are added, higher level features can be identified. This can enable 

the network have an understanding of images as humans would. This is the 

convolutional layer. 

Pooling layer is responsible for reducing the spatial size of the convolved 

feature. This helps decrease the computational power required to process the 

data. There are two types of pooling the average pooling and the max pooling. 

Max pooling returns the maximum value from the portion of the image covered 

by the kernel while average pooling is the average value of the portion of the 

image covered by the kernel.Fully connected layer or FC layer learns the output 

of the convolutional layer. It learns a non-linear function in that space. After 

formatting the input image into a suitable form, it is flattened into a single 

column vector. This is then passed into a feed forward neural network and 

backpropagation is applied to every iteration of training. After a few epochs, the 

model is able to differentiate between features and classify them using the 

provided activation technique.This technique has been the most widely used for 

traffic classification and it is used in this paper for or task as well. 

 

Fig2.2. A simple CNN architecture. 
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2.3.1.3 Autoencoders: take any input and break down don into a 

compressed version. It is then used to reconstruct the input data. Usually the 

hidden layer has limitations thereby keeping just the important information 

about the input data. It does this automatically without human intervention. 

Basically, there are an input layer that should be either encoded, an encoding 

function usually in the hidden layer then a decoding function that takes the 

encoded input and decodes it, loss function. An autoencoder is considered good 

when the decoded version is close or similar to the input data. 

 

Fig 2.3 Auto-encoder architecture. 

 

2.4 BUILDING A CONVOLUTIONAL NEURAL NETWORK 

It took about 14 years for the research work by Yann LeCun on CNN to be 

noticed. It was brought into public view by a team of researchers during the 

2012 ImageNet Computer vision competition. As at the time the architecture 

called AlexNet after Alex Krizhevsky was quite successful with an error or only 

15.8%. it classified millions of images from thousands of categories. Currently 

CNN are capable of accuracies that surpass even the human performance. 

To build a CNN, a programming language such as python or R is used. Python 

is widely used in researches across the globe as it has more libraries and 

packages that greatly improve and cater to Machine learning tasks. 
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In order to build a CNN we need a problem to solve and the dataset.  

i.e. train dataset and test dataset.  

Datasets have to be preprocessed and provided with labels. And then a one hot 

encoder can be used depending on data to be preprocessed. 

 def label_img(img): 

      word_label = img.split('.')[-3] 

    

  # DIY One hot encoder 

      if word_label == 'cat': return [1, 0] 

      elif word_label == 'dog': return [0, 1] 

 

Libraries required: 

• TFLearn – Deep learning library featuring a higher-level API for 

TensorFlow used to create layers of our CNN 

• tqdm – Instantly make your loops show a smart progress meter, just for 

simple designing sake 

• numpy – To process the image matrices 

• open-cv – To process the image like converting them to grayscale and 

etc. 

• os – To access the file system to read the image from the train and test 

directory from our machines 

• random – To shuffle the data to overcome the biasing 

• matplotlib – To display the result of our predictive outcome. 

• tensorflow – Just to use the tensorboard to compare the loss and adam 

curve our result data or obtained log. 

The mentioned libraries above are then imported  

 # Python program to create  

# Image Classifier using CNN  

   

http://www.geeksforgeeks.org/numpy-in-python-set-1-introduction/
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# Importing the required libraries  

import cv2  

import os  

import numpy as np  

from random import shuffle  

from tqdm import tqdm  

   

'''Setting up the env''' 

   

TRAIN_DIR = 'E:/dataset / Cats_vs_Dogs / train' 

TEST_DIR = 'E:/dataset / Cats_vs_Dogs / test1' 

IMG_SIZE = 50 

LR = 1e-3 

   

   

'''Setting up the model which will help with tensorflow models''' 

MODEL_NAME = 'dogsvscats-{}-{}.model'.format(LR, '6conv-basic')  

   

'''Labelling the dataset''' 

def label_img(img):  

    word_label = img.split('.')[-3]  

    # DIY One hot encoder  

    if word_label == 'cat': return [1, 0]  

    elif word_label == 'dog': return [0, 1]  

   

'''Creating the training data''' 

def create_train_data():  

    # Creating an empty list where we should store the training data  

    # after a little preprocessing of the data  

    training_data = []  

   

    # tqdm is only used for interactive loading  

    # loading the training data  

    for img in tqdm(os.listdir(TRAIN_DIR)):  

   

        # labeling the images  

        label = label_img(img)  

   

        path = os.path.join(TRAIN_DIR, img)  
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        # loading the image from the path and then converting them 

into  

        # greyscale for easier covnet prob  

        img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)  

   

        # resizing the image for processing them in the covnet  

        img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))  

   

        # final step-forming the training data list with numpy array 

of the images  

        training_data.append([np.array(img), np.array(label)])  

   

    # shuffling of the training data to preserve the random state of 

our data  

    shuffle(training_data)  

   

    # saving our trained data for further uses if required  

    np.save('train_data.npy', training_data)  

    return training_data  

   

'''Processing the given test data''' 

# Almost same as processing the training data but  

# we dont have to label it.  

def process_test_data():  

    testing_data = []  

    for img in tqdm(os.listdir(TEST_DIR)):  

        path = os.path.join(TEST_DIR, img)  

        img_num = img.split('.')[0]  

        img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)  

        img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))  

        testing_data.append([np.array(img), img_num])  

           

    shuffle(testing_data)  

    np.save('test_data.npy', testing_data)  

    return testing_data  

   

'''Running the training and the testing in the dataset for our 

model''' 
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train_data = create_train_data()  

test_data = process_test_data()  

   

# train_data = np.load('train_data.npy')  

# test_data = np.load('test_data.npy')  

'''Creating the neural network using tensorflow''' 

# Importing the required libraries  

import tflearn  

from tflearn.layers.conv import conv_2d, max_pool_2d  

from tflearn.layers.core import input_data, dropout, fully_connected  

from tflearn.layers.estimator import regression  

   

import tensorflow as tf  

tf.reset_default_graph()  

convnet = input_data(shape =[None, IMG_SIZE, IMG_SIZE, 1], name 

='input')  

   

convnet = conv_2d(convnet, 32, 5, activation ='relu')  

convnet = max_pool_2d(convnet, 5)  

   

convnet = conv_2d(convnet, 64, 5, activation ='relu')  

convnet = max_pool_2d(convnet, 5)  

   

convnet = conv_2d(convnet, 128, 5, activation ='relu')  

convnet = max_pool_2d(convnet, 5)  

   

convnet = conv_2d(convnet, 64, 5, activation ='relu')  

convnet = max_pool_2d(convnet, 5)  

   

convnet = conv_2d(convnet, 32, 5, activation ='relu')  

convnet = max_pool_2d(convnet, 5)  

   

convnet = fully_connected(convnet, 1024, activation ='relu')  

convnet = dropout(convnet, 0.8)  

   

convnet = fully_connected(convnet, 2, activation ='softmax')  

convnet = regression(convnet, optimizer ='adam', learning_rate = LR,  

      loss ='categorical_crossentropy', name ='targets')  
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model = tflearn.DNN(convnet, tensorboard_dir ='log')  

   

# Splitting the testing data and training data  

train = train_data[:-500]  

test = train_data[-500:]  

   

'''Setting up the features and lables''' 

# X-Features & Y-Labels  

   

X = np.array([i[0] for i in train]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)  

Y = [i[1] for i in train]  

test_x = np.array([i[0] for i in test]).reshape(-1, IMG_SIZE, 

IMG_SIZE, 1)  

test_y = [i[1] for i in test]  

   

'''Fitting the data into our model''' 

# epoch = 5 taken  

model.fit({'input': X}, {'targets': Y}, n_epoch = 5,   

    validation_set =({'input': test_x}, {'targets': test_y}),   

    snapshot_step = 500, show_metric = True, run_id = MODEL_NAME)  

model.save(MODEL_NAME)  

   

'''Testing the data''' 

import matplotlib.pyplot as plt  

# if you need to create the data:  

# test_data = process_test_data()  

# if you already have some saved:  

test_data = np.load('test_data.npy')  

   

fig = plt.figure()  

   

for num, data in enumerate(test_data[:20]):  

    # cat: [1, 0]  

    # dog: [0, 1]  

       

    img_num = data[1]  

    img_data = data[0]  

       

    y = fig.add_subplot(4, 5, num + 1)  
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    orig = img_data  

    data = img_data.reshape(IMG_SIZE, IMG_SIZE, 1)  

   

    # model_out = model.predict([data])[0]  

    model_out = model.predict([data])[0]  

       

    if np.argmax(model_out) == 1: str_label ='Dog' 

    else: str_label ='Cat' 

           

    y.imshow(orig, cmap ='gray')  

    plt.title(str_label)  

    y.axes.get_xaxis().set_visible(False)  

    y.axes.get_yaxis().set_visible(False)  

plt.show()  

 

Obviously for the task depending on the task at hand the program can be re 

written to suit the network as needed. This is just an example of a flow on how a 

basic CNN can be programmed. 

 

 

 

SECTION III 

3.1 ENVIRONMENT SETUP 

Tools and version used: 

GNS3 v2.22 

VMWare workstation player 15 

3.1.1How to install vmware workstation player 15 

First, we visit the website (https://my.vmware.com/web/vmware/downloads) to 

download the player (We use this to run our gns3 server). Or visit the direct link 

(https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html) 

https://my.vmware.com/web/vmware/downloads
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
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Step 1 – Run the installer 

Start the installer by double clicking it. You might see User Account Control 

Warning. Click Yes to continue. 

 

Fig 3.1 User Access Control 

 

 

Then, you will see a splash screen. It will prepare the system for installation and 

then the installation wizard opens. 

 

Fig 3.2 Splash Screen 

https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware-player-15-installation-initial-splash-screen/
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Fig 3.3 setup wizard 

 

Click next and accept the license terms and click next again to move on to the 

next screen. 

 

Fig 3.4 User agreement 

Step 2 – Custom setup – Enhanced Keyboard driver and Installation 

directory 

In this dialog box, please select the folder in which you want to install the 

application. I leave it as it is. Also check the box Enhanced Keyboard Drivers 

option. Click next. 

https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware-player-15-installation-setup-wizard/
https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware_player_15_installation_setup_wizard_end_user_agreement_screenshot/
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Fig 2.5 Keyboard Driver 

 

Step 3 – User Experience Settings 

Check the options for Check the product update at Startup and Join the VMware 

Customer Program. I normally leave it as it is. You can unchecked it if you so 

desire. Click next 

Step 4 – Select where the shortcuts will be installed 

Check the box where the shortcut to run the application will be created. I leave 

it as it is. Click on next. 

Step 5 – Ready to install 

Now the installation wizard is ready to install. Click on install to begin the 

installation. 

 

Installation begins, wait for it to complete. 

After sometime, you will see installation compete message. You are done. 

Click on Finish to Complete the installation. 

https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware_player_15_installation_setup_wizard_custom_setup_enhanced_keyboard__screenshot/
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You will be asked to restart your system. Click on Yes to restart. Click No, if 

you want to restart later. But you must restart before using the application, else 

some features will not work properly. 

Step 6 – License 

Now Run the application. You should see a desktop icon. Douple click on that 

or use the start menu to navigate to VMware Player option. 

Once you run the application for the first time, you will be asked for licence. 

Select the option Use VMware Workstation Player 15 for for free for non 

commercial use. 

Click continue. 

 

Fig 3.6 liscence 

Click on Finish. 

https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware_player_15_license_screenshot/
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Fig 3.7 finished install 

Now you will see VMware Workstation Player 15 ready to be used for free for 

non-commercial purpose. 

 

Fig 3.8 vmware window 

 

 

https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware_player_15_installation_setup_finish/
https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware_player_15_screenshot-2/
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3.1.2 GNS3 SETUP 

• Visit the gns3 link to download the installer 

(https://www.gns3.com/software/download) 

 

• Click twice on your downloaded GNS3 Windows installer file (GNS3-

2.2-all-in-one.exe). A security warning window will appear. Inside this 

window, click on Run button. 

 

• GNS3-2.2 Setup starting window will appear to welcome you. Nothing to 

do in this window. Just click on Next button. 

 

• License Agreement window will appear. Accept the license agreement 

clicking the I Agree button. 

 

 

• Choose Start Menu Folder window will appear. Keep default name 

(GNS3) or if you wish you can change it. Click on Next button. 

 

• Choose Components window will appear where available GNS3 features 

will be listed. Among these features uncheck only Wireshark, SolarWinds 

Response and Npcap features because initially we don’t require these 

features. Now click Next button. 

 

 

https://www.gns3.com/software/download


 
38 

 

 

Fig 3.9 features list 

• Choose Install Location window will appear. Keep default location or if 

you wish you can change browsing destination folder. Now click Install 

button. 

 

• GNS3 features installation will be started and installation progress will be 

found on progress bar. During GNS3 installation, WinPCAP installation 

will be appeared separately. Follow some easy instructions as indicated. 

Also keep your internet connection OK because virt-viewer will be 

downloaded during GNS3 installation. 

 

 

• Within a few minutes, GNS3 installation will be completed and 

Installation Complete window will appear with success message. Click 

Next button from this window. 

 

• Solarwinds Standards Toolset window will appear. We don’t need any 

toolset now. So, click on No radio button and then click on Next button. 
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• GNS3 Setup close window will appear. Click Finish button. GNS3 

installation will be finished and GNS3 will start to run now. 

 

 

 

3.1.3 INSTALLING THE GNS3 VM ON WMWARE PLAYER 

Visit the gns3 vm download link https://www.gns3.com/software/download-vm 

Since we are using vmware player we only download the virtual machine image 

for wmware player  

 

 

Fig 3.10 VMware version 

 

 

This is the downloaded vm image 

 

 

Fig3.11 Image file 

 

 

Next run the vmware player 

  

Click on File > Open  

https://www.gns3.com/software/download-vm
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Select the file path for th gns3 vm image (the .ova file) 

Then click import 

 

Fig3.12 Import VM 

 

Depending on your system resources, you can decide to adjust ram size as you 

see fit. 

 

Fig 3.13 resources 

 

I used 4GB of Ram. 
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Start the GNS3 version 2.x, and then from the Help tab click on Setup Wizard. 

 

Fig 3.14 setup wizard 

Select the Server option 'Run Modern IOS (IOSv or IOU), ASA and appliances 

from non-Cisco manufacturers' and click on Next 

 

Fig 3.15 Appliance  
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Fig 3.16 server configuration 

In the Local server configuration, whatever the IP address and TCP Port no. 

which is 3080 we will select now, next time it will use the same combination for 

running the Local server. 

If you will face such type of error select the IP address 127.0.0.1 from the list. 

From this point we will associate our GNS3 VM with GNS3. Click on Refresh 

button in case of error. 

 

Select the GNS3 VM. 
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Fig 3.17 select gns3 vm 

 

Fig 3.18 finish setup 

 

 



 
44 

 

SECTION IV 

EXPERIMENT 

4.1 GATHHERING PROTOCOL TRAFFIC 

Traffic for three protocols were gathered. POP3, FTP and DNS traffic. 

Using the gns3 vm we were able to setup a network environment consisting of a 

client a switch a NAT cloud for internet connection and a server to run the 

services on. All servers were Ubuntu docker containers as well as clients. Both 

plain traffic and secure traffic were gathered using this method.  

4.1.2 POP3 TRAFFIC: 

We setup two network devices, Ubuntu docker containers, one serves as the 

SMTP POP3 server and the other as the client. 

We also introduce a NAT cloud to help us have connectivity to the internet so 

we can download the necessary packages to run the services we need. 

 

Fig 4.1 POP3 topology 

 

Next we open a command line interface to the server node and run the following 

command: 

-sudo apt-get install postfix  

Postfix is a mail transfer agent. This enables us sent mail from one user to the 

other using SMTP(simple mail transfer protocol). 
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We edit the lines in 

-vi /etc/postfix/main.cnf  

Next we install dovecot. This is a mail delivery agent that lest clients check and 

read their emails either downloaded from the mail server(POP3) or on the mail 

server (IMAP). 

-sudo apt-get install dovecot-pop3d dovecot-imapd 

After installation and configuration, we can now use telnet to send mail and 

then check mail box. Also we start a wire capture on the client link 

We use ‘telnet ip address of smtp server  and then the port’ 

-telnet 192.168.122.251 25 

 

Fig 4.2 Telnet session 

Next command is the ‘ehlo’ this is the first command when using smtp to send 

messages. We say ehlo and our FQDN in my case ‘server.example.com’ 

-ehlo server.example.com 

Next we use the command ‘mail from:’ to choose the sender and ‘rcpt to:’ for 

the receiver. ‘data’ indicates the start of the mail body. 

-mail from: tony@server.example.com 

-rcpt to: ghost@server.example.com 

-data 

mailto:tony@server.example.com
mailto:ghost@server.example.com
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-subject: test 

Then we type our message and then indicate the end of the message by typing 

‘.’ on a new line alone. 

 

Fig 4.3 POP3 commands 

-quit 

The ‘quit’ command terminates the connection to the server. 

 

 

Now to access the mail that ghost just received, we start a telnet connection to 

the server this time on a different port 143 since pop3 runs on that port. 

-telnet 192.168.122.251 110 

We login to our user account to check our mailbox 

-user ghost 

-pass 12345 

We can check our messages using the command ‘list’ -list  
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Fig 4.4 List command 

We can see that there’s one message in ghost’s inbox. 

The command ‘retr’ helps download the message from the server for us to read 

-retr 1 

 

Fig 4.5 Retr command 

 

4.1.2.1 ANALYSIS OF POP3  

Using Wireshark (a packet sniffing tool) we were able to capture as packets 

were moving from the client to the server. 

 

Fig 4.6 wireshark capture 
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We see how packets containing our data which include username, passwords 

and even the contents of our email messages. 

 

Fig 4.7unencrypted data 

POP3 by itself is not a secure way of accessing our messages. This proves that 

the traffic is unencrypted and data can be accessed using a tool like Wireshark 

or Tcpdump. 

 

To get encrypted traffic, we use SSL/TLS. We use a self-signed certificate and 

make sure that connection between the client and server is secure. 

First, we generate a private key 

-openssl genrsa -aes128 -out server123.key 2048  

Then we use the key to generate a certificate signing request file .csr 

- openssl req -new -days 3650 -key server123.key -out server123.csr  

We use the generated csr and key to generate a certificate  

- openssl x509 -in server123.csr -out server123.crt -req -signkey server123.key -

days 3650 

 

We now move the files we have generated to the /etc/ssl/private directory  
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-mv server123.* /etc/ssl/private/ 

Now we point postfix and dovecot to use SSL during connections. 

We edit the main.cf file in /etc/postfix/main.cf and add the following line to the 

end of the file  

 

smtpd_use_tls = yes 

smtp_tls_mandatory_protocols = !SSLv2, !SSLv3 

smtpd_tls_mandatory_protocols = !SSLv2, !SSLv3 

smtpd_tls_cert_file = /etc/ssl/private/server123.crt 

smtpd_tls_key_file = /etc/ssl/private/server123.key 

smtpd_tls_session_cache_database = btree:/etc/postfix/smtpd_cache 

 

In the master.cf file in /etc/postfix/master.cf we uncomment a few lines as 

shown in the photo below 

 

Fig 4.8 ssl config file 
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Next, we edit point dovecot by editing the /etc/dovecot/conf.d/10-ssl.conf file as 

shown below. Make sure to write in the correct path to the certificate and key 

files. 

 

Fig 4.9 ssl config file 2 

Now restart both postfix and dovecot services.  

Also POP3 with SSL runs on port 995 and we test that our traffic is now 

encrypted by coonecting via openssl to this port. We don’t use telnet for this as 

telnet is not a secure protocol. 

We use the following command to securely connect to our pop3 server 

-openssl s_client -connect 192.168.122.251:995 

Based on the photos below we see that our client and successfully carried out a 

ssl handshake with our server and opened a secure connection. All traffic 

moving forward, are encrypted and will not be seen by or decrypted without the 



 
51 

 

private key. 

 

Fig 4.10 ssl Certificate  

 

Fig 4.11 TLS handshake 
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Using our packet sniffing tool, we are able to see packets going to our POP3 

server but we are not able to decipher the contents of the emails being 

downloaded. All data re encrypted 

 

Fig 4.12 Protocol  

  

 

Fig 4.13 encrypted traffic 
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4.1.3 FTP TRAFFIC 

FTP(file transfer protocol) runs on port 21. It is a file sharing service and on its 

own is no a secure way of file transfer and sharing. 

To setup we add two linux nodes as clients and server. We install, the server 

software on the sever node and access it through the client node, we download 

some files and upload some and watch the unencrypted traffic flow. Also we 

introduce a NAT cloud node for internet access. 

 

 

Fig 4.14 FTP topology 

 

In the command line prompt of the server we type in the following command to 

install and configure FTP: 

-sudo apt-get install vsftpd  

In the /etc/vsftpd.conf file we edit the following line according to our liking. 

anonymous_enable=NO             # disable  anonymous login 

local_enable=YES  # permit local logins 

write_enable=YES  # enable FTP commands which change the filesystem 

local_umask=022          # value of umask for file creation for local users 
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dirmessage_enable=YES         # enable showing of messages when users first 

enter a new directory 

xferlog_enable=YES  # a log file will be maintained detailing uploads 

and downloads 

connect_from_port_20=YES        # use port 20 (ftp-data) on the server machine 

for PORT style connections 

xferlog_std_format=YES          # keep standard log file format 

listen=NO      # prevent vsftpd from running in standalone mode 

listen_ipv6=YES          # vsftpd will listen on an IPv6 socket instead of 

an IPv4 one 

pam_service_name=vsftpd         # name of the PAM service vsftpd will use 

userlist_enable=YES           # enable vsftpd to load a list of usernames 

tcp_wrappers=YES    # turn on tcp wrappers 

We alo setup a chroot jail so users only have access to the directory and 

nowhere else on the system i.e users are restricted to their home directories. 

chroot_local_user=YES 

allow_writeable_chroot=YES 

 

To login to the server we use the simple command  

-ftp IP ADDRESS  

We enter our name and password if enabled or anonymously.  

After login we are able to Upload and download files to and from the server. 
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4.1.3.1 ANALYSIS OF FTP: 

From our packet-sniffing tool, Wireshark, we see that all traffic is plain and can 

be accessed by anyone on the network with this tool.  

 

Fig 4.15 unencrypted ftp traffic 

 

 

To get encrypted traffic we can either use SFTP or FTPS, for this project we 

have chosen to use SFTP. This is simply FTP over SSH connection. 

To set this up firs we install the SSH server 

-apt-get install openssh-server  

Next we a directory to house our FTP data  

-mkdir /sftp 

-chmod 701 /sftp   

The “chmod” command grants the necessary permissions for the directory. 

Next we create a group for sftp users  
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-groupadd sftponly  

We then add a user that doesn’t have regular login privileges, but belongs to the 

newly created group ‘sftponly’  

-useradd –g sftponly –d /upload –s /sbin/nologin zed  

Note that ‘zed’ is the user name we have chosen. 

Next we give the user a password  

-passwd zed  

Now we create a directory specified to the new user and give the directory the 

proper permissions. 

-mkdir –p /sftp/zed/upload 

-chown –R root:sftponly /sftp/zed 

-chown –R zed:sftponly /sftp/zed/upload 

 

Now we configure our SSH daemon at /etc/ssh/sshd_config. At the bottom of 

the file, we add the following: 

 -Match Group sftponly 

 -ChrootDirectory /stftp/%u 

 -ForceCommand internal-sftp 

Save the configuration file and the restart the ssh server. 

Now on the client node we open the terminal and use the command: 

-sftp IP ADDRESS 
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Fig 4.16 secure FTP connection 

As seen above we enter our password and we are granted access to the server. 

Using Wireshark this time we see that all commands, file and credentials are 

encrypted and cannot be accessed easily.  

 

 

Fig 4.17 Encrypted SFTP traffic 
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4.1.4 DNS TRAFFIC  

DNS stands for domain name system and it maps ip addresses to FQDN (fully 

qualified domain name) 

 

DNS server software comes in different flavors: the most popular being bind. 

We have setup bind in out project to collect the necessary traffic. 

 

Fig 4.18 DNS network topology 

 

To setup up the service in our server, we open a terminal and run the following 

command  

-sudo apt-get install bind9 bind9utils 

After installation, we proceed to configure our server as a primary master. Our 

domain is example.com. 

We edit the /etc/named.conf.local file and add our forward zone (this translates 

domain names addresses to ip addresses) and our reverse zone (translates ip 

addresses to domain names). 

We add the following lines  

 zone “example.com”{ 

 type master; 
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 file “/etc/bind/forward.example.com”; 

}; 

 

The above line is for the forward zone while below is for the reverse zone. In 

the reverse zone we write our network address in reverse and add “in-

addr.arpa”. 

zone “122.168.192.in-addr.arpa”{ 

 type master; 

 file “/etc/bind/reverse.example.com”; 

}; 

 

Fig 4.19 configuration file 

We save the file and exit. Now we have to create the “forward.example.com” 

and “reverse.example.com” files in the /etc/bind directory. We do this by 

copying the template file. 

-cd /etc/bind 

-cp db.local forward.example.com 

We then edit the file to look as below  
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Fig 4.20 forward zone 

We make sure to ‘.’ at the end of a domain name, this is very important or the 

dns server wont work. 

Next we save and exit and create our “reverse.example.com” file same as we 

did for the forward zone file and edit it to look as below  

 

Fig 4.21 reverse zone 

In reverse zones we set PTR or pointer records. 

Next we check our that our configurations are correct using the following 

commands  

-named-checkconf   -z  /etc/bind/named.conf 
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Fig 4.22 Checking Configuration 

Output should be as above. 

 

To test we may ping any of the nodes or use nslookup or kdig tools to resolve 

hostnames.  

We have use kdig  

-kdig server.example.com 

Our result from Wireshark shows that the traffic is unencrypted and we can see 

the server queries and responses. 

 

Fig 4.23 Plain DNS Traffic 

 

This is observed for the reverse lookup as well. 
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-kdig –x IP ADDRESS 

 

 

Fig 4.24 reverse lookup 

 

To ensure traffic is encrypted we use a software called DNScrypt. We install it 

with the following command on the client node: 

-sudo apt install dnscrypt-proxy  

Next we configure our client to use one of many free public dnscrypt servers in 

the config file /etc/dnscrypt-proxy/dnscrypt-proxy.conf 

-ResolverName random 

We can choose a ResolverName from the list in the excel file located at 

/usr/share/dnscrypt-proxy/dnscrypt-resolvers.csv. 

After this we save and restart the dnscrypt-proxy service. 

From wireshark we see that the dns request are sent out as encrypted udp 

packets and ip addresses or domain names that are resolved cannot be seen. 
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Fig 4.25 Encrypted DNS traffic 

 

4.1.5BUILDING NEURAL NETWORK 

As explaine in a previous chapeter in this paper. The same methos has been 

employed to build the CNN to classify the traffic we previously gathered 

although we have tweaked the code a bit and have ommitted and added in a few 

new libraries. We decide to use keras library. 

Keras is an open source neural-network library written in Python. It can use any 

of the following libraries Tesnserflow (another neural-network library written in 

python), R, Microsoft Cognitive Toolkit, Theano in the backend. It is widey 

used for it simplicity and very user-friendly. Its primary authour is François 

Chollet, a Google engineer.  

We will need a computer for to run this task on, a graphics card is most 

preferred of course as it can handle more task in lesser time. 
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Computational device used: Intel(R) Core(TM) i5-4200M CPU 2.50GHZ 

12.0GB RAM 

Libraries Used: 

I. Os 

II. Glob 

III. Pandas 

IV. Numpy 

V. Functools 

VI. Keafrs.models 

VII. Keras.layers 

VIII. Keras.utils 

IX. Sklearn.model_selection 

 

Editor: Visual studio code 

We import our traffic data in raw format and preprocess it to machine 

understandable lanfuage so it can be fed into our neural network. 

As seen in figure below: 

 

Fig4.26 raw tcp payload. 

We then create a function to create a label for our databased on the file name. 

We split the date into two columns: data and label. 
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1000 bytes of the packet is collected, if the payload length is less than 1000 

bytes we pad it with zeroes at the end. Then we convert it to integer’s and 

normalize. 

Using the sklearn.model_selection library, we split the data into a training set 

and test set. We have decide to use 10% of the data for testing and training the 

remaining 90%. 

Next the trainset and test set are reshaped to the correct tensor for the CNN. 

Next we with the following code we build the neural network 

  

model = Sequential() 

model.add(Conv1D(512, strides=2, input_shape=X_train.shape[1:], activation=activation, 

kernel_size=3, padding='same')) 

model.add(MaxPooling1D()) 

model.add(Conv1D(256, strides=2, activation=activation, kernel_size=3, padding='same')) 

model.add(MaxPooling1D()) 

model.add(Flatten()) 

model.add(Dense(128, activation=activation)) 

model.add(Dropout(0.5)) 

model.add(Dense(32, activation=activation)) 

model.add(Dropout(0.5)) 

model.add(Dense(num_classes, activation='softmax')) 

print(model.summary()) 

print model summary gives us the summary of our model 
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Fig 4.27 Model summary 

 

We can see all the layers involved in the CNN. 

The trainset is trained for 50 epochs and our result at the end is quite 

satisfactory considering the fact that out data isn’t a lot. 

 

Fig 4.28 Result of Model 

We had a loss of 0.4 and an accuracy of 0.82 that is to show that the model 

correctly classified the traffic in the test set as whether it is encrypted or not. 
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4.2 CONCLUSION 

This thesis encompasses encrypted network traffic classification. Loads of 

techniques and methods have been proposed and used by different researches to 

classify network traffic. Different programming languages tools and libraries 

have been employed as well. While some have proven to work with great 

accuracy to with some drawbacks such as amount of data that can be processed, 

some have been unreliable. 

Many statistical and machine-based learning methods have been applied to the 

task of traffic classification. Despite this, there are no conclusive results to show 

which method has the best properties. The main reason is that the results depend 

heavily on the data sets used and the configuration of the methods. Our results 

show that most of the authors use private data sets, sometimes in combination 

with public ones. Most of the methods use supervised or semi-supervised 

machine learning algorithms to classify flows and even determine the 

application protocol of a given flow.  

This paper discusses a simple yet effective method using the convolutional 

neural network. It is highly accurate and reliable for both large dataset and few 

dataset. The greatest advantage will be that it requires not as much 

computational power. Of course the larger the data set the larger the 

computational power needed as is the case for other techniques. As compared to 

other techniques, our mode uses less overhead. 

Also this paper has further introduced us into another area of information 

technology, that is, machine learning. Our knowledge has been broadened and it 

has sparked more interest in the aforementioned field. It has show that machine 
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learning, deep learning to be more specific can be used to solve majority of 

tasks with or without human intervention and get a high accuracy on problems. 
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APPENDIX 

import os 

import glob 

import pandas as pd 

import numpy as np 

from functools import partial 

from keras.models import Sequential 

from keras.layers import Flatten, Conv1D, MaxPooling1D, Dropout, 

Dense 

from keras.utils import to_categorical 

from sklearn.model_selection import train_test_split 

 

 

LABELS = {} 

counter = iter(range(20)) 

 

def pad_and_convert(s): 

    """Collect 1000 bytes from packet payload. If payload length is less 

than 

    1000 bytes, pad zeroes at the end. Then convert to integers and 

normalize.""" 

    if len(s) < 2000: 

        s += '00' * (2000-len(s)) 
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    else: 

        s = s[:2000] 

    return [float(int(s[i]+s[i+1], 16)/255) for i in range(0, 2000, 2)] 

 

def read_file(f, label): 

    df = pd.read_csv(f, index_col=None, header=0) 

    df.columns = ['data'] 

    df['label'] = label 

    return df 

 

def preprocess(path): 

    files = glob.glob(os.path.join(path, '*.txt')) 

    list_ = [] 

    for f in files: 

        label = f.split('/')[-1].split('.')[0] 

        LABELS[label] = next(counter) 

        labelled_df = partial(read_file, label=LABELS[label]) 

        list_.append(labelled_df(f)) 

    df = pd.concat(list_, ignore_index=True) 

    return df 

 

def main(): 
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    activation = 'relu' 

    df = preprocess('Dataset') 

    df['data'] = df['data'].apply(pad_and_convert) 

    num_classes = len(LABELS) 

    X_train, X_test, y_train, y_test = train_test_split(df['data'], df['label'], 

                                                        test_size=0.2, random_state=4) 

    X_train = X_train.apply(pd.Series) 

    X_test = X_test.apply(pd.Series) 

    X_train = X_train.values.reshape(X_train.shape[0], X_train.shape[1], 

1) 

    X_test = X_test.values.reshape(X_test.shape[0], X_test.shape[1], 1) 

    y_train = to_categorical(y_train, num_classes) 

    y_test = to_categorical(y_test, num_classes) 

 

    model = Sequential() 

    model.add(Conv1D(512, strides=2, input_shape=X_train.shape[1:], 

activation=activation, kernel_size=3, padding='same')) 

    model.add(MaxPooling1D()) 

    model.add(Conv1D(256, strides=2, activation=activation, 

kernel_size=3, padding='same')) 

    model.add(MaxPooling1D()) 

    model.add(Flatten()) 
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    model.add(Dense(128, activation=activation)) 

    model.add(Dropout(0.5)) 

    model.add(Dense(32, activation=activation)) 

    model.add(Dropout(0.5)) 

    model.add(Dense(num_classes, activation='softmax')) 

    print(model.summary()) 

 

    model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

    result = model.fit(X_train, y_train, verbose=1, epochs=50, 

batch_size=16, validation_data=(X_test, y_test)) 

 

if __name__ == '__main__': 

    main() 

 

 

Model: "sequential_1" 

________________________________________________________________

_ 

Layer (type)                 Output Shape              Param # 

=========================================================

======== 

conv1d_1 (Conv1D)            (None, 500, 512)          2048 
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________________________________________________________________

_ 

max_pooling1d_1 (MaxPooling1 (None, 250, 512)          0 

________________________________________________________________

_ 

flatten_1 (Flatten)          (None, 15872)             0 

________________________________________________________________

_ 

dense_1 (Dense)              (None, 128)               2031744 

________________________________________________________________

_ 

dropout_1 (Dropout)          (None, 128)               0 

________________________________________________________________

_ 

dense_2 (Dense)              (None, 32)                4128 

________________________________________________________________

_ 

dropout_2 (Dropout)          (None, 32)                0 

________________________________________________________________

_ 

dense_3 (Dense)              (None, 6)                 198 

=========================================================

======== 

Total params: 2,431,590 
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Trainable params: 2,431,590 

Non-trainable params: 0 

________________________________________________________________

_ 

None 

2020-05-17 15:19:58.631635: I 

tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports 

instructions that this TensorFlow binary was not compiled to use: AVX AVX2 

WARNING:tensorflow:From C:\Users\mrmal\anaconda3\lib\site-

packages\keras\backend\tensorflow_backend.py:422: The name 

tf.global_variables is deprecated. Please use tf.compat.v1.global_variables 

instead.                                                                                                   nstructions 

that this TensorFlow binary 

 

Train on 165 samples, validate on 42 samples                                                        

py:422: The name tf.global_variables is 

Epoch 1/50 

165/165 [==============================] - 5s 33ms/step - loss: 

1.6361 - accuracy: 0.4667 - val_loss: 1.2403 - val_accuracy: 0.5952 

Epoch 2/50 

165/165 [==============================] - 2s 15ms/step - loss: 

1.4579 - accuracy: 0.5030 - val_loss: 1.2403 - val_accuracy: 0.5952: 1.2154 - 

val_accuracy: 0.5952 

Epoch 3/50                                                                                          : 1.2154 - 

val_accuracy: 0.5952 
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165/165 [==============================] - 2s 14ms/step - loss: 

1.1707 - accuracy: 0.5576 - val_loss: 0.9637 - val_accuracy: 0.5714                                                                     

: 0.9637 - val_accuracy: 0.5714 

Epoch 4/50 

165/165 [==============================] - 3s 17ms/step - loss: 

0.9292 - accuracy: 0.6242 - val_loss: 0.8868 - val_accuracy: 0.6667 

Epoch 5/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.9267 - accuracy: 0.6303 - val_loss: 0.9174 - val_accuracy: 0.6667 

Epoch 6/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.9967 - accuracy: 0.6727 - val_loss: 0.8263 - val_accuracy: 0.7381 

Epoch 7/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.9703 - accuracy: 0.6242 - val_loss: 0.8300 - val_accuracy: 0.7143 

Epoch 8/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.8513 - accuracy: 0.7152 - val_loss: 0.7695 - val_accuracy: 0.7381 

Epoch 9/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.9150 - accuracy: 0.7030 - val_loss: 0.7679 - val_accuracy: 0.7381 

Epoch 10/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.8018 - accuracy: 0.7212 - val_loss: 0.8819 - val_accuracy: 0.7381 
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Epoch 11/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.7590 - accuracy: 0.6970 - val_loss: 0.7850 - val_accuracy: 0.7381 

Epoch 12/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.7062 - accuracy: 0.7333 - val_loss: 0.8899 - val_accuracy: 0.7381 

Epoch 13/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.7052 - accuracy: 0.7333 - val_loss: 0.8268 - val_accuracy: 0.7143 

Epoch 14/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.6922 - accuracy: 0.7758 - val_loss: 0.8693 - val_accuracy: 0.7381 

Epoch 15/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.6684 - accuracy: 0.7697 - val_loss: 0.8862 - val_accuracy: 0.7381 

Epoch 16/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.5658 - accuracy: 0.8061 - val_loss: 0.8328 - val_accuracy: 0.7143 

Epoch 17/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.7480 - accuracy: 0.7273 - val_loss: 0.8232 - val_accuracy: 0.7381 

Epoch 18/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.6390 - accuracy: 0.7636 - val_loss: 0.8177 - val_accuracy: 0.7381 
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Epoch 19/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.5732 - accuracy: 0.7697 - val_loss: 0.8565 - val_accuracy: 0.7381 

Epoch 20/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.6116 - accuracy: 0.7697 - val_loss: 0.7191 - val_accuracy: 0.7381 

Epoch 21/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.5427 - accuracy: 0.7818 - val_loss: 0.8175 - val_accuracy: 0.7381 

Epoch 22/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.5769 - accuracy: 0.8000 - val_loss: 0.7019 - val_accuracy: 0.7143 

Epoch 23/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.5820 - accuracy: 0.7515 - val_loss: 0.8283 - val_accuracy: 0.7381 

Epoch 24/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.5724 - accuracy: 0.7576 - val_loss: 0.8428 - val_accuracy: 0.7381 

Epoch 25/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.5623 - accuracy: 0.7818 - val_loss: 0.7535 - val_accuracy: 0.7619 

Epoch 26/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.4812 - accuracy: 0.7879 - val_loss: 0.9690 - val_accuracy: 0.7381 
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Epoch 27/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.4294 - accuracy: 0.8182 - val_loss: 0.9311 - val_accuracy: 0.7381 

Epoch 28/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.5142 - accuracy: 0.7939 - val_loss: 0.9224 - val_accuracy: 0.7381 

Epoch 29/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.5728 - accuracy: 0.7333 - val_loss: 0.6957 - val_accuracy: 0.7619 

Epoch 30/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.5463 - accuracy: 0.7818 - val_loss: 0.8702 - val_accuracy: 0.7143 

Epoch 31/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.4888 - accuracy: 0.8242 - val_loss: 0.8081 - val_accuracy: 0.7143 

Epoch 32/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.4386 - accuracy: 0.8182 - val_loss: 0.9840 - val_accuracy: 0.7381 

Epoch 33/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.4776 - accuracy: 0.8000 - val_loss: 0.7868 - val_accuracy: 0.7619 

Epoch 34/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.5190 - accuracy: 0.8303 - val_loss: 0.7083 - val_accuracy: 0.7381 
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Epoch 35/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.4598 - accuracy: 0.8364 - val_loss: 0.9478 - val_accuracy: 0.7381 

Epoch 36/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.4021 - accuracy: 0.8606 - val_loss: 0.8667 - val_accuracy: 0.6905 

Epoch 37/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.4988 - accuracy: 0.7697 - val_loss: 1.0474 - val_accuracy: 0.7381 

Epoch 38/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.4747 - accuracy: 0.7939 - val_loss: 0.8448 - val_accuracy: 0.7381 

Epoch 39/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.4013 - accuracy: 0.8182 - val_loss: 0.8952 - val_accuracy: 0.7381 

Epoch 40/50 

165/165 [==============================] - 3s 16ms/step - loss: 

0.4490 - accuracy: 0.7879 - val_loss: 0.9596 - val_accuracy: 0.7619 

Epoch 41/50 

165/165 [==============================] - 3s 16ms/step - loss: 

0.4169 - accuracy: 0.8182 - val_loss: 0.9806 - val_accuracy: 0.7619 

Epoch 42/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.3729 - accuracy: 0.8303 - val_loss: 1.0120 - val_accuracy: 0.7619 
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Epoch 43/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.3787 - accuracy: 0.8303 - val_loss: 1.1354 - val_accuracy: 0.7619 

Epoch 44/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.3989 - accuracy: 0.8061 - val_loss: 1.0433 - val_accuracy: 0.7381 

Epoch 45/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.4072 - accuracy: 0.8364 - val_loss: 1.1868 - val_accuracy: 0.7381 

Epoch 46/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.4595 - accuracy: 0.8000 - val_loss: 0.9927 - val_accuracy: 0.7381 

Epoch 47/50 

165/165 [==============================] - 3s 15ms/step - loss: 

0.4182 - accuracy: 0.8000 - val_loss: 0.8451 - val_accuracy: 0.7381 

Epoch 48/50 

165/165 [==============================] - 2s 15ms/step - loss: 

0.3989 - accuracy: 0.8121 - val_loss: 0.8181 - val_accuracy: 0.7381 

Epoch 49/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.3856 - accuracy: 0.8182 - val_loss: 0.8848 - val_accuracy: 0.7381 

Epoch 50/50 

165/165 [==============================] - 2s 14ms/step - loss: 

0.4121 - accuracy: 0.8242 - val_loss: 1.1089 - val_accuracy: 0.7381 


