

1

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ

«Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра обчислювальної техніки

«На правах рукопису» «До захисту допущено»

УДК кафедри Завідувач кафедри

 Стіренко С.Г.

(підпис) (ініціали, прізвище)

“07” 05 2020 р.

Магістерська дисертація

зі спеціальності: 121. Інженерія програмного забезпечення____

(код та назва напряму підготовки або спеціальності)

Спеціалізація: 121.Інженерія програмного забезпечення комп’ютерних

систем

на тему: Ecrypted Network Classification With Deep Learning

Виконав (-ла): студент (-ка) VI курсу, групи IO-84мн

(шифр групи)

 Абдаллах Мухаммед Зайяд

(прізвище, ім’я, по батькові) (підпис)

Науковий керівник Роковий .О.П

(посада, науковий ступінь, вчене звання, прізвище та ініціали) (підпис)

2

Консультант нормокотроль проф., д.т.н. Кулаков Юрій Олексійович

(назва розділу) (посада, вчене звання, науковий ступінь, прізвище, ініціали) (підпис)

Рецензент

(посада, науковий ступінь, вчене звання, науковий ступінь, прізвище та ініціали) (підпис)

Засвідчую, що у цій магістерській

дисертації немає запозичень з праць

інших авторів без відповідних

посилань.

Студент

(підпис)

Київ – 2020 року

3

РЕФЕРАТ

Дисертація складається з 84 сторінок, 59 Цифри та 29 джерел у

довідковому списку.

 Проблема: Оскільки світ стає більш безпечним, для забезпечення

належної передачі даних між сторонами, що спілкуються, було

використано більше протоколів шифрування. Класифікація мережі стала

більше клопоту з використанням деяких прийомів, оскільки перевірка

зашифрованого трафіку в деяких країнах може бути незаконною. Це

заважає інженерам мережі мати можливість класифікувати трафік, щоб

відрізняти зашифрований від незашифрованого трафіку.

Мета роботи: Ця стаття спрямована на проблему, спричинену попередніми

методами, використовуваними в шифрованій мережевій класифікації.

Деякі з них обмежені розміром даних та обчислювальною потужністю. У

даній роботі використовується рішення алгоритму глибокого навчання для

вирішення цієї проблеми.

 Основні завдання дослідження:

 1. Порівняйте попередні традиційні методи та порівняйте їх

переваги та недоліки

 2. Вивчити попередні супутні роботи у сучасній галузі

досліджень.

 3. Запропонуйте більш сучасний та ефективний метод та алгоритм

для зашифрованої класифікації мережевого трафіку

 Об'єкт дослідження: Простий алгоритм штучної нейронної

мережі для точної та надійної класифікації мережевого трафіку, що не

залежить від розміру даних та обчислювальної потужності.

 Предмет дослідження: На основі даних, зібраних із приватного

потоку трафіку у нашому власному інструменті моделювання мережі. За

4

допомогою запропонованого нами методу визначаємо відмінності

корисних навантажень мережевого трафіку та класифікуємо мережевий

трафік. Це допомогло відокремити або класифікувати зашифровані від

незашифрованого трафіку.

 Методи дослідження: Експериментальний метод.

Ми провели наш експеримент із моделюванням мережі та збиранням

трафіку різних незашифрованих протоколів та зашифрованих протоколів.

Використовуючи мову програмування python та бібліотеку Keras, ми

розробили згорнуту нейронну мережу, яка змогла прийняти корисне

навантаження зібраного трафіку, навчити модель та класифікувати трафік

у нашому тестовому наборі з високою точністю без вимоги високої

обчислювальної потужності

Ключові слова: конволюційна нейронна мережа, дані, модель, глибокі

нейронні мережі, глибоке навчання, протоколи, шифрування, Python.

5

ABSTRACT

This dissertation consists of 84 pages, 59 Figures and 29 sources in the

reference list.

Problem: As the world becomes more security conscious, more

encryption protocols have been employed in ensuring suecure data transmission

between communicating parties. Network classification has become more of a

hassle with the use of some techniques as inspecting encrypted traffic can pose

to be illegal in some countries. This has hindered network engineers to be able

to classify traffic to differentiate encrypted from unencrypted traffic.

Purpose of work: This paper aims at the problem caused by previous

techniques used in encrypted network classification. Some of which are limited

to data size and computational power. This paper employs the use of deep

learning algorithm to solve this problem.

The main tasks of the research:

1. Compare previous traditional techniques and compare their

advantages and disadvantages

2. Study previous related works in the current field of research.

3. Propose a more modern and efficient method and algorithm for

encrypted network traffic classification

The object of research: Simple artificial neural network algorithm for

accurate and reliable network traffic classification that is independent of data

size and computational power.

The subject of research: Based on data collected from private traffic

flow in our own network simulation tool. We use our proposed method to

identify the differences in network traffic payloads and classify network traffic.

It helped to separate or classify encrypted from unencrypted traffic.

6

Research methods: Experimental method.

We have carried out our experiment with network simulation and

gathering traffic of different unencrypted protocols and encrypted protocols.

Using python programming language and the Keras library we developed a

convolutional neural network that was able to take in the payload of the traffic

gathered, train the model and classify the traffic in our test set with high

accuracy without the requirement of high computational power.

Keywords: Convolutional Neural Network, Data, Model, Deep Neural

Networks, Deep learning, Protocols, Encryption, Python.

7

CONTENTS

РЕФЕРАТ ... 3

Abstract ... 5

Abbreviations .. 9

SECTION I ... 10

1.1 INTRODUCTION .. 10

1.2 RELATED WORKS ... 10

1.3 ECRYPTED PROTOCOLS DESCRIPTION .. 16

SECTION II .. 19

2.1 NETWORK TRAFFIC CLASSIFICATION TECHNIQUES 19

2.1.1 Port-based classification .. 19

2.1.2 Behavioral classification ... 19

2.1.3 Payload classification: .. 20

2.1.4 Statistical classification .. 20

2.2 UNDERSTANDING ARTIFICIAL NEURAL NETWORKS(ANN) 21

2.3 WHAT IS DEEP LEARNING? .. 22

2.3.1 DEEP LEARNING TECHNIQUES .. 22

2.3.1.1 Multilayer Perceptron ... 23

2.3.1.2 Convolutional Neural Network ... 23

2.3.1.3 Autoencoders .. 25

2.4 BUILDING A CONVOLUTIONAL NEURAL NETWORK 25

SECTION III ... 31

3.1 ENVIRONMENT SETUP .. 31

3.1.2 GNS3 SETUP .. 37

3.1.3 INSTALLING THE GNS3 VM ON WMWARE PLAYER 39

SECTION IV ... 44

8

EXPERIMENT ... 44

4.1 GATHHERING PROTOCOL TRAFFIC ... 44

4.1.2 POP3 TRAFFIC ... 44

 4.1.2.1 ANALYSIS OF POP3 TRAFFIC .. 47

4.1.3 FTP TRAFFIC ... 53

4.1.3.1 ANALYSIS OF FTP ... 55

4.1.4 DNS TRAFFIC .. 58

4.1.5 BUILDING NEURAL NETWORK .. 63

4.2 Conclusion .. 67

References ... 69

Appendix ... 73

9

ABBREVIATIONS

POP3 – Post Office Protocol

FTP – File Transfer Protocol

VPN – Virtual Private Network

P2PP – Peer-to-Peer Protocol

DNS – Domain Name System

SFTP – SSH File Transfer Protocol

SSH – Secure Shell Protocol

CNN – Convolutional Neural Network

ANN – Artificial Neural Network

LTSM – Long Short-Term Memory

NN – Neural Network

TCP – Transmission Control Protol

UDP – User Datagram Protocol

ICMP – Internet Control Message Protocol

AE – Auto encoders

MLP – Multi layer Perceptron.

10

SECTION I

1.1 INTRODUCTION

Most networks traffic are identified by features which maybe port numbers or

statistics characteristics and so on. The fast development of the internet and

communication devices has created bigger and more complicated network

structures, adapting and developing bigger hubs, routers, switches, etc. This

complexity in networks has introduced an overflow of vast amounts of traffic

data and contributed to the challenges in network management and traffic

optimization, including traffic measurement (e.g. traffic classification) and

traffic prediction.

1.2 RELATED WORKS

Methods have been proposed on easy detection and classification of network

traffic.

K.Muthamil et all[1], proposed work is to detect the malicious activities in the

SDN environment with high accuracy. Initially, the flow information is

collected from OVS switches at regular intervals and by using that information

essential features are extracted. After that by applying hybrid machine learning

technique, we construct classifier module to detect attacks in the flow. In our

proposed work, we have implemented K-Means clustering, Modified K-Means

clustering, C4.5 decision tree and Modified K-Means+C4.5 (MKMC4) decision

tree hybrid algorithm.

The IDS module consists of flow statistics collection module, traffic

classification module, feature extraction module and hybrid machine learning

testing and training phase to detect the attacks. From the controller, flow

statistics are collected for every second. If a flow is inactive for more than two

seconds, it is considered as idle. The message type indicates the reason for

11

arrival of packets towards the controller. It may be due to table miss or flow rule

installed in the flow table directing the packets towards the controller.

Fig 1.1 Features and Descriptions

Fig 1.2 System Architecture

When a packet arrives towards the controller, feature extraction and traffic

classification could happen by analysing header fields from the packet. For TCP

and UDP traffic, source and destination IP, source and destination port, protocol

type will have same values. Same is applicable for ICMP traffic also but with

12

different port numbers. In addition to that, this module will eliminate the

symmetric flow. If source IP address and source port number of one flow are

similar to destination port number and IP address of another flow for TCP or

UDP traffic respectively, then these flows are considered as symmetric flow.

For ICMP symmetric flows, the two flows are request and response types. The

main reason for eliminating symmetric flows is that attackers mainly spoof their

IP addresses in order to restrict the responses from victims. So, this module

installs the flow rules only for normal traffic and avoids the saturation in flow

tables. For their proposed work, they extracted six essential features such as

protocol_type, duration, sorce_bytes, destination_bytes, count, service_count..

Then the machine learning based detection module will process the packets and

classify it as normal or attack packets. Once the attack is detected, the

OpenFlow protocol modifies the flow table immediately to drop the particular

flow. Their results were accurate.

Fig 1.3 Result

Loftallahi et all[2], presented Deep Packet, a framework that automatically

extracts features from computer networks traffic using deep learning algorithms

to classify traffic. To the best of their knowledge, Deep Packet is the first traffic

classification system using deep learning algorithms, namely SAE and 1D-CNN

13

that can handle both application identification and traffic characterization tasks.

Proposed CNN as shown below.

Fig 1.3 Proposed CNN Architecture

 Results showed that Deep Packet outperforms all of the similar works on the

“ISCX VPN-nonVPN” traffic dataset, in both application identification and

traffic characterization tasks, to the date. Moreover, with state-of-the-art results

achieved by Deep Packet, they envisage that Deep Packet is the first step toward

a general trend of using deep learning algorithms in traffic classification and

more generally network analysis tasks.

Fig 1.4 Results of proposed CNN

14

Furthermore, Deep Packet can be modified to handle more complex tasks like

multi-channel (e.g., distinguishing between different types of Skype traffic

including chat, voice call, and video call) classification, accurate classification

of Tor’s traffic, etc. Finally, the automatic feature extraction procedure from

network traffic can save the cost of employing experts to identify and extract

handcrafted features from the traffic which eventually leads to more accurate

traffic classification.

Naseer et all[3], analyzed the usage of deep learning algorithms, specifically

CNN, AE, and Intrusion Detection models were proposed, implemented and

trained using different deep neural network architectures including

Convolutional Neural Networks, Autoencoders, and Recurrent Neural

Networks.

Fig 1.5 Auto-encoders Architecture

These deep models were trained on NSLKDD training dataset and evaluated on

both test datasets provided by NSLKDD namely NSLKDDTest+ and

NSLKDDTest21. For training and evaluation of deep models, a GPU powered

test-bed using keras with theano backend was employed. To make model

15

comparisons more credible, they implemented conventional ML IDS models

with different well-known classification techniques including Extreme Learning

Machine, k-NN, Decision-Tree, Random-Forest, Support Vector Machine,

Naive-Bays, and QDA. Both DNN and conventional ML models were evaluated

using well-known classification metrics including RoC Curve, Area under RoC,

Precision-Recall Curve, mean average precision and accuracy of classification.

Fig 1.6 Test Times for Datasets

Both DCNN and LSTM models showed exceptional performance with 85% and

89% Accuracy on test dataset which demonstrates the fact that Deep learning is

not only viable but rather promising technology for information security

applications like other application domains.

16

Fig 1.7 Algorithm Mean Averages

1.3 ENCRYPTED PROTOCOLS DESCRIPTION

There a good range out traffic encryption protocols out there. We shall discuss

two commonly used protocols in this section: TLS, SSH. Encryptions simply

means encoding data in such a way that it not recognizable to anyone except

people with the keys to decrypt and read what the data says. Of course, this

means that the keys will only be available to the parties communicating. All

protocols that provide encryption look to provide the same service, which is,

confidentiality, some level of authentication between the communicating parties

data integrity and non repudiation.

A greater portion of encryption protocols work in the same manner: the

initialization of the connection and transport of encrypted data. It involves a

handshake and a shared secret key for ecample. During this step the

communicating parties exchange what kind of algorithm is used for encryption,

communicating parties are authenticated and then the secret key established.

These keys are used to encrypt the data to be transferred between parties.

17

Fig 1.8 general encryption scheme

Transport Layer Security (TLS) [25] is based on Secure Socket Layer version 3

(SSLv3) protocol [26]. It provides security directly on TCP which is a transport

layer protocol. It provides the features mentioned above which include but not

limited to: data integrity, confidentiality and authentication. It does this using

certificates. Protocols like HTTP, FTP, SMTP, are know to use TLS as security.

It is also used in VPN and VoIP.

Fig 1.9 TLS packet format

In the first phase of a TLS connection, communicating parties are authenticated

using an X.509 certificates chain as shown in the general scheme in Fig 1.8.

Alternatively, a previous connection can be resumed without authentication.

TLS messages exchanged during this phase are unencrypted and do not contain

MAC until the shared keys are established and confirmed. In the second phase,

these keys are used directly by the Record Protocol, which is based on the

selected algorithms ensuring communication security

18

Secure Shell Protocol (SSH): SSH is an application that runs over tcp. It uses a

client-server model. The server listens on port 22 (standard port for SSH). It

replaced telnet for remote login as telnet is unsecure. As tie went on, it

developed into being used for more than just secure login. It can be use for

secure file transfer through SFTP and SCP. It also provides authentication, data

integrity and confidentiality like TLS

Fig1.10 SSH protocol packet format

Every SSH connection goes through the same phases which were depicted in

Figure 1. In the first phase, a TCP connection is established and information

about preferred algorithms is exchanged. During authentication, a server sends

its public key which must be verified by the client. The shared keys are

subsequently established and confirmed. All following packets are then

encrypted and authenticated

Note that there are other encryption traffic protocols available that have not

been discussed in this paper such as BitTorrent[27], Skype[28] etc.

19

SECTION II

2.1 NETWORK TRAFFIC CLASSIFICATION TECHNIQUES

A great deal of interest has suddenly erupted in the field of network traffic

classification. This has led to a great number of researches and seen researchers

employ different methods and techniques to classify network traffic.

The more technology evolved the more methods and techniques have been

developed. In the last two decades, a number of techniques have been

introduced into the industry by researcher or engineers looking to classify

network for a number of reasons. This chapter discusses several techniques that

have been employed in network traffic classification.

2.1.1 Port-based classification: identifying and classifying network

traffic in the early days, did not pose any hassle. Simply inspecting the packet

header and matching the TCP or UDP port number with the appropriate

authority was enough. What this means was there are applications that were

known to specific ports, for example, HTTP port 80, SSH port 22. This was

used for a long time until of course, applications started to use unregistered or

non standard ports. Some applications used random port numbers. Some

unknown applications hid behind well known applications in order to bypass

restrictions access controls or firewalls. This led to a decline in use of this

technique because it became inaccurate and unreliable as different for the

reasons mentioned above.

2.1.2 Behavioral classification: this technique observes the whole

network traffic that comes in a node and tries to identify or classify traffic based

on a pattern from the target node. This takes into consideration the number of

hosts the port number and number of ports. Some works like in[7,8] sought to

analyze network traffic patterns by exploiting heuristic information such as the

number of distinct ports contacted, as well as transport layer protocols to

20

distinguish the type of application running on a host. Other works[9, 10]

showed that a lot of information can be utilized to classify network traffic. They

analyzed the connections between endpoints graphically, and they show that

generated connection patterns and graphs from client-server applications are

very different than those of P2P.

2.1.3 Payload classification: This is sometimes called deep packet

inspection(DPI). The widely used payload-based technique involves matching

some stored signatures or pattern with feature of packets that are inspected.

Thus technique has been employed in several researches and tools because of its

high accuracy and reliability. A good example of this is in the Linux Kernel

Firewall[11]. This techniques is also employed in intrusion detection systems

(IDS) to identify threatening or suspicious traffic that can cause damage and

leak of information to a network. Although a very efficient and accurate

technique, it poses some disadvantages or weakness, when dealing with

encrypted traffic, its abilities a minute as it cant inspect these kind of packets

and they remain unclassified. Also present is the act of privacy breach.

Inspecting encrypted traffic could break laws of certain countries. It uses a lot of

computer resources hence doing this technique comes at a cost. It is also limited

when it comes to a high number of traffic flows and network speed in real time.

2.1.4 Statistical classification: this method uses some flow features of

packet for classification. Some features may include, duration of packet, packet

size, flow idle time etc. some of the above mentioned features are unique for

some applications this enables the technique classify between traffic for

different applications. To perform the actual classification based on statistical

characteristics, classifiers need to employ data mining techniques, specifically

ML algorithms, because they need to deal with different traffic patterns from

large datasets[12]. ML algorithms are very lightweight and less computationally

expensive than payload-based classification techniques, because they do not

21

depend on DPI but rather utilize the information from flow-level analysis. The

effectiveness of the classifier in statistical classification depends on the features

extracted from the flow, which require extensive knowledge due to their

complexity. However, these techniques outperform payload-based techniques

since they do not deal with packet contents, and thus can analyze encrypted

traffic without any difficulty.

2.2 UNDERSTANDING ARTIFICIAL NEURAL NETWORKS(ANN)

Artificial neural networks[5] are sometimes just called neural networks.it

investigates how biological brains can solve tough tasks like prediction tasks in

machine learning. The strength of neural networks is their ability to learn the

representations in training data and relating it to output variable that needs to be

predicted. In other words they learn a mapping. They are capable of mapping

any function and are proven to be good approximation algorithm. The

hierarchical and multilayer structure they have ensures their predictive

capabilities. They can learn features at different scales or resolutions and

combine them into features of a higher lever or order. In other words learn

features such as lines, and combine them to learn the shapes those lines form

and then the full image as the case may be.

Neurons are the building block of neural networks just like in a biological brain.

They contain simple computational units with inputs signals that are weighted

and with the help of an activation function produces an output.

22

Weights, like linear regressions the neurons have biases which may have the

value 1.0. larger weights means more complex and fragility. Techniques can be

used to keep the weights in a network small as this is best practice.

Activation this encompasses the threshold at which the neuron is activated and

also how strong the output signal is.

A row of neurons is called a layer. So having multiple layers of neurons that are

connected is know as a network, hence artificial neural network. Basically there

are input layer, which takes in the training data and is visible, hidden layer,

which trains the network. There can be multiple layers is the hidden layer. The

deeper it is the slower it is to train the network. The hidden layer is not visible

to the input layer. And lastly the output layer also hidden produces a value that

correspond to the format needed to solve the problem.

2.3 WHAT IS DEEP LEARNING?

Deep learning is a model based on Artificial Neural Networks (ANN), more

specifically Convolutional Neural Networks (CNN)s. There are several

architectures used in deep learning such as deep neural networks, deep belief

networks, recurrent neural networks, and convolutional neural networks. These

networks have been successfully applied in solving the problems of computer

vision, speech recognition, natural language processing, bioinformatics, drug

design, medical image analysis, and games.

2.3.1 DEEP LEARNING TECHNIQUES

There are considerable ranges of deep learning techniques used across the globe

for various tasks. Such tasks could vary from image recognition, voice

recognition and or other classification tasks. What technique is used depends on

the researcher and the aim of the research being carried out. Deep learning is

23

based on Artificial Neural Networks(ANN). For example, convolutional neural

networks are best for image classification and prediction tasks and has grown

quite popular among researcher in recent years. We discuss below a few deep

learning techniques.

2.3.1.1 Multilayer Perceptron: this consists of an input layer that

receives signal, a hidden layer that trains the network and an output layer that

predicts or makes a decision based on the input. It is mostly used in supervised

learning. Weights and biases are adjusted as needed to reduce error. It is a feed

forward network. In the forward pass, the signal moves from the input layer that

contains the data set and through the hidden layer that trains the network and

then to the output layer that gives a value as needed for the problem to be

solved. The networks uses a backward propagation and a rule or rules of

calculus to reduce error. This keeps happening until the error can go no lower.

This is a convergence state. In regards to network traffic classification, this

technique is rarely used due to low accuracy and a high complexity.

Fig 2.1 Basic Multilayer Architecture.

2.3.1.2 Convolutional Neural Network: this is similar to multi-layer

perceptron in architecture but has more capabilities and can handle a lot more

data. The objective is to extract high level features such as edges from input

24

images. They are not limited to one convolutional layer. The first layer, the

convolutional layer, extracts low level features like line, edges, color etc. as

more layers are added, higher level features can be identified. This can enable

the network have an understanding of images as humans would. This is the

convolutional layer.

Pooling layer is responsible for reducing the spatial size of the convolved

feature. This helps decrease the computational power required to process the

data. There are two types of pooling the average pooling and the max pooling.

Max pooling returns the maximum value from the portion of the image covered

by the kernel while average pooling is the average value of the portion of the

image covered by the kernel.Fully connected layer or FC layer learns the output

of the convolutional layer. It learns a non-linear function in that space. After

formatting the input image into a suitable form, it is flattened into a single

column vector. This is then passed into a feed forward neural network and

backpropagation is applied to every iteration of training. After a few epochs, the

model is able to differentiate between features and classify them using the

provided activation technique.This technique has been the most widely used for

traffic classification and it is used in this paper for or task as well.

Fig2.2. A simple CNN architecture.

25

2.3.1.3 Autoencoders: take any input and break down don into a

compressed version. It is then used to reconstruct the input data. Usually the

hidden layer has limitations thereby keeping just the important information

about the input data. It does this automatically without human intervention.

Basically, there are an input layer that should be either encoded, an encoding

function usually in the hidden layer then a decoding function that takes the

encoded input and decodes it, loss function. An autoencoder is considered good

when the decoded version is close or similar to the input data.

Fig 2.3 Auto-encoder architecture.

2.4 BUILDING A CONVOLUTIONAL NEURAL NETWORK

It took about 14 years for the research work by Yann LeCun on CNN to be

noticed. It was brought into public view by a team of researchers during the

2012 ImageNet Computer vision competition. As at the time the architecture

called AlexNet after Alex Krizhevsky was quite successful with an error or only

15.8%. it classified millions of images from thousands of categories. Currently

CNN are capable of accuracies that surpass even the human performance.

To build a CNN, a programming language such as python or R is used. Python

is widely used in researches across the globe as it has more libraries and

packages that greatly improve and cater to Machine learning tasks.

26

In order to build a CNN we need a problem to solve and the dataset.

i.e. train dataset and test dataset.

Datasets have to be preprocessed and provided with labels. And then a one hot

encoder can be used depending on data to be preprocessed.

 def label_img(img):

 word_label = img.split('.')[-3]

 # DIY One hot encoder

 if word_label == 'cat': return [1, 0]

 elif word_label == 'dog': return [0, 1]

Libraries required:

• TFLearn – Deep learning library featuring a higher-level API for

TensorFlow used to create layers of our CNN

• tqdm – Instantly make your loops show a smart progress meter, just for

simple designing sake

• numpy – To process the image matrices

• open-cv – To process the image like converting them to grayscale and

etc.

• os – To access the file system to read the image from the train and test

directory from our machines

• random – To shuffle the data to overcome the biasing

• matplotlib – To display the result of our predictive outcome.

• tensorflow – Just to use the tensorboard to compare the loss and adam

curve our result data or obtained log.

The mentioned libraries above are then imported

 # Python program to create

Image Classifier using CNN

http://www.geeksforgeeks.org/numpy-in-python-set-1-introduction/

27

Importing the required libraries

import cv2

import os

import numpy as np

from random import shuffle

from tqdm import tqdm

'''Setting up the env'''

TRAIN_DIR = 'E:/dataset / Cats_vs_Dogs / train'

TEST_DIR = 'E:/dataset / Cats_vs_Dogs / test1'

IMG_SIZE = 50

LR = 1e-3

'''Setting up the model which will help with tensorflow models'''

MODEL_NAME = 'dogsvscats-{}-{}.model'.format(LR, '6conv-basic')

'''Labelling the dataset'''

def label_img(img):

 word_label = img.split('.')[-3]

 # DIY One hot encoder

 if word_label == 'cat': return [1, 0]

 elif word_label == 'dog': return [0, 1]

'''Creating the training data'''

def create_train_data():

 # Creating an empty list where we should store the training data

 # after a little preprocessing of the data

 training_data = []

 # tqdm is only used for interactive loading

 # loading the training data

 for img in tqdm(os.listdir(TRAIN_DIR)):

 # labeling the images

 label = label_img(img)

 path = os.path.join(TRAIN_DIR, img)

28

 # loading the image from the path and then converting them

into

 # greyscale for easier covnet prob

 img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)

 # resizing the image for processing them in the covnet

 img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))

 # final step-forming the training data list with numpy array

of the images

 training_data.append([np.array(img), np.array(label)])

 # shuffling of the training data to preserve the random state of

our data

 shuffle(training_data)

 # saving our trained data for further uses if required

 np.save('train_data.npy', training_data)

 return training_data

'''Processing the given test data'''

Almost same as processing the training data but

we dont have to label it.

def process_test_data():

 testing_data = []

 for img in tqdm(os.listdir(TEST_DIR)):

 path = os.path.join(TEST_DIR, img)

 img_num = img.split('.')[0]

 img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)

 img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))

 testing_data.append([np.array(img), img_num])

 shuffle(testing_data)

 np.save('test_data.npy', testing_data)

 return testing_data

'''Running the training and the testing in the dataset for our

model'''

29

train_data = create_train_data()

test_data = process_test_data()

train_data = np.load('train_data.npy')

test_data = np.load('test_data.npy')

'''Creating the neural network using tensorflow'''

Importing the required libraries

import tflearn

from tflearn.layers.conv import conv_2d, max_pool_2d

from tflearn.layers.core import input_data, dropout, fully_connected

from tflearn.layers.estimator import regression

import tensorflow as tf

tf.reset_default_graph()

convnet = input_data(shape =[None, IMG_SIZE, IMG_SIZE, 1], name

='input')

convnet = conv_2d(convnet, 32, 5, activation ='relu')

convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 64, 5, activation ='relu')

convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 128, 5, activation ='relu')

convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 64, 5, activation ='relu')

convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 32, 5, activation ='relu')

convnet = max_pool_2d(convnet, 5)

convnet = fully_connected(convnet, 1024, activation ='relu')

convnet = dropout(convnet, 0.8)

convnet = fully_connected(convnet, 2, activation ='softmax')

convnet = regression(convnet, optimizer ='adam', learning_rate = LR,

 loss ='categorical_crossentropy', name ='targets')

30

model = tflearn.DNN(convnet, tensorboard_dir ='log')

Splitting the testing data and training data

train = train_data[:-500]

test = train_data[-500:]

'''Setting up the features and lables'''

X-Features & Y-Labels

X = np.array([i[0] for i in train]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)

Y = [i[1] for i in train]

test_x = np.array([i[0] for i in test]).reshape(-1, IMG_SIZE,

IMG_SIZE, 1)

test_y = [i[1] for i in test]

'''Fitting the data into our model'''

epoch = 5 taken

model.fit({'input': X}, {'targets': Y}, n_epoch = 5,

 validation_set =({'input': test_x}, {'targets': test_y}),

 snapshot_step = 500, show_metric = True, run_id = MODEL_NAME)

model.save(MODEL_NAME)

'''Testing the data'''

import matplotlib.pyplot as plt

if you need to create the data:

test_data = process_test_data()

if you already have some saved:

test_data = np.load('test_data.npy')

fig = plt.figure()

for num, data in enumerate(test_data[:20]):

 # cat: [1, 0]

 # dog: [0, 1]

 img_num = data[1]

 img_data = data[0]

 y = fig.add_subplot(4, 5, num + 1)

31

 orig = img_data

 data = img_data.reshape(IMG_SIZE, IMG_SIZE, 1)

 # model_out = model.predict([data])[0]

 model_out = model.predict([data])[0]

 if np.argmax(model_out) == 1: str_label ='Dog'

 else: str_label ='Cat'

 y.imshow(orig, cmap ='gray')

 plt.title(str_label)

 y.axes.get_xaxis().set_visible(False)

 y.axes.get_yaxis().set_visible(False)

plt.show()

Obviously for the task depending on the task at hand the program can be re

written to suit the network as needed. This is just an example of a flow on how a

basic CNN can be programmed.

SECTION III

3.1 ENVIRONMENT SETUP

Tools and version used:

GNS3 v2.22

VMWare workstation player 15

3.1.1How to install vmware workstation player 15

First, we visit the website (https://my.vmware.com/web/vmware/downloads) to

download the player (We use this to run our gns3 server). Or visit the direct link

(https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html)

https://my.vmware.com/web/vmware/downloads
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html

32

Step 1 – Run the installer

Start the installer by double clicking it. You might see User Account Control

Warning. Click Yes to continue.

Fig 3.1 User Access Control

Then, you will see a splash screen. It will prepare the system for installation and

then the installation wizard opens.

Fig 3.2 Splash Screen

https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware-player-15-installation-initial-splash-screen/

33

Fig 3.3 setup wizard

Click next and accept the license terms and click next again to move on to the

next screen.

Fig 3.4 User agreement

Step 2 – Custom setup – Enhanced Keyboard driver and Installation

directory

In this dialog box, please select the folder in which you want to install the

application. I leave it as it is. Also check the box Enhanced Keyboard Drivers

option. Click next.

https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware-player-15-installation-setup-wizard/
https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware_player_15_installation_setup_wizard_end_user_agreement_screenshot/

34

Fig 2.5 Keyboard Driver

Step 3 – User Experience Settings

Check the options for Check the product update at Startup and Join the VMware

Customer Program. I normally leave it as it is. You can unchecked it if you so

desire. Click next

Step 4 – Select where the shortcuts will be installed

Check the box where the shortcut to run the application will be created. I leave

it as it is. Click on next.

Step 5 – Ready to install

Now the installation wizard is ready to install. Click on install to begin the

installation.

Installation begins, wait for it to complete.

After sometime, you will see installation compete message. You are done.

Click on Finish to Complete the installation.

https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware_player_15_installation_setup_wizard_custom_setup_enhanced_keyboard__screenshot/

35

You will be asked to restart your system. Click on Yes to restart. Click No, if

you want to restart later. But you must restart before using the application, else

some features will not work properly.

Step 6 – License

Now Run the application. You should see a desktop icon. Douple click on that

or use the start menu to navigate to VMware Player option.

Once you run the application for the first time, you will be asked for licence.

Select the option Use VMware Workstation Player 15 for for free for non

commercial use.

Click continue.

Fig 3.6 liscence

Click on Finish.

https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware_player_15_license_screenshot/

36

Fig 3.7 finished install

Now you will see VMware Workstation Player 15 ready to be used for free for

non-commercial purpose.

Fig 3.8 vmware window

https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware_player_15_installation_setup_finish/
https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/vmware_player_15_screenshot-2/

37

3.1.2 GNS3 SETUP

• Visit the gns3 link to download the installer

(https://www.gns3.com/software/download)

• Click twice on your downloaded GNS3 Windows installer file (GNS3-

2.2-all-in-one.exe). A security warning window will appear. Inside this

window, click on Run button.

• GNS3-2.2 Setup starting window will appear to welcome you. Nothing to

do in this window. Just click on Next button.

• License Agreement window will appear. Accept the license agreement

clicking the I Agree button.

• Choose Start Menu Folder window will appear. Keep default name

(GNS3) or if you wish you can change it. Click on Next button.

• Choose Components window will appear where available GNS3 features

will be listed. Among these features uncheck only Wireshark, SolarWinds

Response and Npcap features because initially we don’t require these

features. Now click Next button.

https://www.gns3.com/software/download

38

Fig 3.9 features list

• Choose Install Location window will appear. Keep default location or if

you wish you can change browsing destination folder. Now click Install

button.

• GNS3 features installation will be started and installation progress will be

found on progress bar. During GNS3 installation, WinPCAP installation

will be appeared separately. Follow some easy instructions as indicated.

Also keep your internet connection OK because virt-viewer will be

downloaded during GNS3 installation.

• Within a few minutes, GNS3 installation will be completed and

Installation Complete window will appear with success message. Click

Next button from this window.

• Solarwinds Standards Toolset window will appear. We don’t need any

toolset now. So, click on No radio button and then click on Next button.

39

• GNS3 Setup close window will appear. Click Finish button. GNS3

installation will be finished and GNS3 will start to run now.

3.1.3 INSTALLING THE GNS3 VM ON WMWARE PLAYER

Visit the gns3 vm download link https://www.gns3.com/software/download-vm

Since we are using vmware player we only download the virtual machine image

for wmware player

Fig 3.10 VMware version

This is the downloaded vm image

Fig3.11 Image file

Next run the vmware player

Click on File > Open

https://www.gns3.com/software/download-vm

40

Select the file path for th gns3 vm image (the .ova file)

Then click import

Fig3.12 Import VM

Depending on your system resources, you can decide to adjust ram size as you

see fit.

Fig 3.13 resources

I used 4GB of Ram.

41

Start the GNS3 version 2.x, and then from the Help tab click on Setup Wizard.

Fig 3.14 setup wizard

Select the Server option 'Run Modern IOS (IOSv or IOU), ASA and appliances

from non-Cisco manufacturers' and click on Next

Fig 3.15 Appliance

42

Fig 3.16 server configuration

In the Local server configuration, whatever the IP address and TCP Port no.

which is 3080 we will select now, next time it will use the same combination for

running the Local server.

If you will face such type of error select the IP address 127.0.0.1 from the list.

From this point we will associate our GNS3 VM with GNS3. Click on Refresh

button in case of error.

Select the GNS3 VM.

43

Fig 3.17 select gns3 vm

Fig 3.18 finish setup

44

SECTION IV

EXPERIMENT

4.1 GATHHERING PROTOCOL TRAFFIC

Traffic for three protocols were gathered. POP3, FTP and DNS traffic.

Using the gns3 vm we were able to setup a network environment consisting of a

client a switch a NAT cloud for internet connection and a server to run the

services on. All servers were Ubuntu docker containers as well as clients. Both

plain traffic and secure traffic were gathered using this method.

4.1.2 POP3 TRAFFIC:

We setup two network devices, Ubuntu docker containers, one serves as the

SMTP POP3 server and the other as the client.

We also introduce a NAT cloud to help us have connectivity to the internet so

we can download the necessary packages to run the services we need.

Fig 4.1 POP3 topology

Next we open a command line interface to the server node and run the following

command:

-sudo apt-get install postfix

Postfix is a mail transfer agent. This enables us sent mail from one user to the

other using SMTP(simple mail transfer protocol).

45

We edit the lines in

-vi /etc/postfix/main.cnf

Next we install dovecot. This is a mail delivery agent that lest clients check and

read their emails either downloaded from the mail server(POP3) or on the mail

server (IMAP).

-sudo apt-get install dovecot-pop3d dovecot-imapd

After installation and configuration, we can now use telnet to send mail and

then check mail box. Also we start a wire capture on the client link

We use ‘telnet ip address of smtp server and then the port’

-telnet 192.168.122.251 25

Fig 4.2 Telnet session

Next command is the ‘ehlo’ this is the first command when using smtp to send

messages. We say ehlo and our FQDN in my case ‘server.example.com’

-ehlo server.example.com

Next we use the command ‘mail from:’ to choose the sender and ‘rcpt to:’ for

the receiver. ‘data’ indicates the start of the mail body.

-mail from: tony@server.example.com

-rcpt to: ghost@server.example.com

-data

mailto:tony@server.example.com
mailto:ghost@server.example.com

46

-subject: test

Then we type our message and then indicate the end of the message by typing

‘.’ on a new line alone.

Fig 4.3 POP3 commands

-quit

The ‘quit’ command terminates the connection to the server.

Now to access the mail that ghost just received, we start a telnet connection to

the server this time on a different port 143 since pop3 runs on that port.

-telnet 192.168.122.251 110

We login to our user account to check our mailbox

-user ghost

-pass 12345

We can check our messages using the command ‘list’ -list

47

Fig 4.4 List command

We can see that there’s one message in ghost’s inbox.

The command ‘retr’ helps download the message from the server for us to read

-retr 1

Fig 4.5 Retr command

4.1.2.1 ANALYSIS OF POP3

Using Wireshark (a packet sniffing tool) we were able to capture as packets

were moving from the client to the server.

Fig 4.6 wireshark capture

48

We see how packets containing our data which include username, passwords

and even the contents of our email messages.

Fig 4.7unencrypted data

POP3 by itself is not a secure way of accessing our messages. This proves that

the traffic is unencrypted and data can be accessed using a tool like Wireshark

or Tcpdump.

To get encrypted traffic, we use SSL/TLS. We use a self-signed certificate and

make sure that connection between the client and server is secure.

First, we generate a private key

-openssl genrsa -aes128 -out server123.key 2048

Then we use the key to generate a certificate signing request file .csr

- openssl req -new -days 3650 -key server123.key -out server123.csr

We use the generated csr and key to generate a certificate

- openssl x509 -in server123.csr -out server123.crt -req -signkey server123.key -

days 3650

We now move the files we have generated to the /etc/ssl/private directory

49

-mv server123.* /etc/ssl/private/

Now we point postfix and dovecot to use SSL during connections.

We edit the main.cf file in /etc/postfix/main.cf and add the following line to the

end of the file

smtpd_use_tls = yes

smtp_tls_mandatory_protocols = !SSLv2, !SSLv3

smtpd_tls_mandatory_protocols = !SSLv2, !SSLv3

smtpd_tls_cert_file = /etc/ssl/private/server123.crt

smtpd_tls_key_file = /etc/ssl/private/server123.key

smtpd_tls_session_cache_database = btree:/etc/postfix/smtpd_cache

In the master.cf file in /etc/postfix/master.cf we uncomment a few lines as

shown in the photo below

Fig 4.8 ssl config file

50

Next, we edit point dovecot by editing the /etc/dovecot/conf.d/10-ssl.conf file as

shown below. Make sure to write in the correct path to the certificate and key

files.

Fig 4.9 ssl config file 2

Now restart both postfix and dovecot services.

Also POP3 with SSL runs on port 995 and we test that our traffic is now

encrypted by coonecting via openssl to this port. We don’t use telnet for this as

telnet is not a secure protocol.

We use the following command to securely connect to our pop3 server

-openssl s_client -connect 192.168.122.251:995

Based on the photos below we see that our client and successfully carried out a

ssl handshake with our server and opened a secure connection. All traffic

moving forward, are encrypted and will not be seen by or decrypted without the

51

private key.

Fig 4.10 ssl Certificate

Fig 4.11 TLS handshake

52

Using our packet sniffing tool, we are able to see packets going to our POP3

server but we are not able to decipher the contents of the emails being

downloaded. All data re encrypted

Fig 4.12 Protocol

Fig 4.13 encrypted traffic

53

4.1.3 FTP TRAFFIC

FTP(file transfer protocol) runs on port 21. It is a file sharing service and on its

own is no a secure way of file transfer and sharing.

To setup we add two linux nodes as clients and server. We install, the server

software on the sever node and access it through the client node, we download

some files and upload some and watch the unencrypted traffic flow. Also we

introduce a NAT cloud node for internet access.

Fig 4.14 FTP topology

In the command line prompt of the server we type in the following command to

install and configure FTP:

-sudo apt-get install vsftpd

In the /etc/vsftpd.conf file we edit the following line according to our liking.

anonymous_enable=NO # disable anonymous login

local_enable=YES # permit local logins

write_enable=YES # enable FTP commands which change the filesystem

local_umask=022 # value of umask for file creation for local users

54

dirmessage_enable=YES # enable showing of messages when users first

enter a new directory

xferlog_enable=YES # a log file will be maintained detailing uploads

and downloads

connect_from_port_20=YES # use port 20 (ftp-data) on the server machine

for PORT style connections

xferlog_std_format=YES # keep standard log file format

listen=NO # prevent vsftpd from running in standalone mode

listen_ipv6=YES # vsftpd will listen on an IPv6 socket instead of

an IPv4 one

pam_service_name=vsftpd # name of the PAM service vsftpd will use

userlist_enable=YES # enable vsftpd to load a list of usernames

tcp_wrappers=YES # turn on tcp wrappers

We alo setup a chroot jail so users only have access to the directory and

nowhere else on the system i.e users are restricted to their home directories.

chroot_local_user=YES

allow_writeable_chroot=YES

To login to the server we use the simple command

-ftp IP ADDRESS

We enter our name and password if enabled or anonymously.

After login we are able to Upload and download files to and from the server.

55

4.1.3.1 ANALYSIS OF FTP:

From our packet-sniffing tool, Wireshark, we see that all traffic is plain and can

be accessed by anyone on the network with this tool.

Fig 4.15 unencrypted ftp traffic

To get encrypted traffic we can either use SFTP or FTPS, for this project we

have chosen to use SFTP. This is simply FTP over SSH connection.

To set this up firs we install the SSH server

-apt-get install openssh-server

Next we a directory to house our FTP data

-mkdir /sftp

-chmod 701 /sftp

The “chmod” command grants the necessary permissions for the directory.

Next we create a group for sftp users

56

-groupadd sftponly

We then add a user that doesn’t have regular login privileges, but belongs to the

newly created group ‘sftponly’

-useradd –g sftponly –d /upload –s /sbin/nologin zed

Note that ‘zed’ is the user name we have chosen.

Next we give the user a password

-passwd zed

Now we create a directory specified to the new user and give the directory the

proper permissions.

-mkdir –p /sftp/zed/upload

-chown –R root:sftponly /sftp/zed

-chown –R zed:sftponly /sftp/zed/upload

Now we configure our SSH daemon at /etc/ssh/sshd_config. At the bottom of

the file, we add the following:

 -Match Group sftponly

 -ChrootDirectory /stftp/%u

 -ForceCommand internal-sftp

Save the configuration file and the restart the ssh server.

Now on the client node we open the terminal and use the command:

-sftp IP ADDRESS

57

Fig 4.16 secure FTP connection

As seen above we enter our password and we are granted access to the server.

Using Wireshark this time we see that all commands, file and credentials are

encrypted and cannot be accessed easily.

Fig 4.17 Encrypted SFTP traffic

58

4.1.4 DNS TRAFFIC

DNS stands for domain name system and it maps ip addresses to FQDN (fully

qualified domain name)

DNS server software comes in different flavors: the most popular being bind.

We have setup bind in out project to collect the necessary traffic.

Fig 4.18 DNS network topology

To setup up the service in our server, we open a terminal and run the following

command

-sudo apt-get install bind9 bind9utils

After installation, we proceed to configure our server as a primary master. Our

domain is example.com.

We edit the /etc/named.conf.local file and add our forward zone (this translates

domain names addresses to ip addresses) and our reverse zone (translates ip

addresses to domain names).

We add the following lines

 zone “example.com”{

 type master;

59

 file “/etc/bind/forward.example.com”;

};

The above line is for the forward zone while below is for the reverse zone. In

the reverse zone we write our network address in reverse and add “in-

addr.arpa”.

zone “122.168.192.in-addr.arpa”{

 type master;

 file “/etc/bind/reverse.example.com”;

};

Fig 4.19 configuration file

We save the file and exit. Now we have to create the “forward.example.com”

and “reverse.example.com” files in the /etc/bind directory. We do this by

copying the template file.

-cd /etc/bind

-cp db.local forward.example.com

We then edit the file to look as below

60

Fig 4.20 forward zone

We make sure to ‘.’ at the end of a domain name, this is very important or the

dns server wont work.

Next we save and exit and create our “reverse.example.com” file same as we

did for the forward zone file and edit it to look as below

Fig 4.21 reverse zone

In reverse zones we set PTR or pointer records.

Next we check our that our configurations are correct using the following

commands

-named-checkconf -z /etc/bind/named.conf

61

Fig 4.22 Checking Configuration

Output should be as above.

To test we may ping any of the nodes or use nslookup or kdig tools to resolve

hostnames.

We have use kdig

-kdig server.example.com

Our result from Wireshark shows that the traffic is unencrypted and we can see

the server queries and responses.

Fig 4.23 Plain DNS Traffic

This is observed for the reverse lookup as well.

62

-kdig –x IP ADDRESS

Fig 4.24 reverse lookup

To ensure traffic is encrypted we use a software called DNScrypt. We install it

with the following command on the client node:

-sudo apt install dnscrypt-proxy

Next we configure our client to use one of many free public dnscrypt servers in

the config file /etc/dnscrypt-proxy/dnscrypt-proxy.conf

-ResolverName random

We can choose a ResolverName from the list in the excel file located at

/usr/share/dnscrypt-proxy/dnscrypt-resolvers.csv.

After this we save and restart the dnscrypt-proxy service.

From wireshark we see that the dns request are sent out as encrypted udp

packets and ip addresses or domain names that are resolved cannot be seen.

63

Fig 4.25 Encrypted DNS traffic

4.1.5BUILDING NEURAL NETWORK

As explaine in a previous chapeter in this paper. The same methos has been

employed to build the CNN to classify the traffic we previously gathered

although we have tweaked the code a bit and have ommitted and added in a few

new libraries. We decide to use keras library.

Keras is an open source neural-network library written in Python. It can use any

of the following libraries Tesnserflow (another neural-network library written in

python), R, Microsoft Cognitive Toolkit, Theano in the backend. It is widey

used for it simplicity and very user-friendly. Its primary authour is François

Chollet, a Google engineer.

We will need a computer for to run this task on, a graphics card is most

preferred of course as it can handle more task in lesser time.

64

Computational device used: Intel(R) Core(TM) i5-4200M CPU 2.50GHZ

12.0GB RAM

Libraries Used:

I. Os

II. Glob

III. Pandas

IV. Numpy

V. Functools

VI. Keafrs.models

VII. Keras.layers

VIII. Keras.utils

IX. Sklearn.model_selection

Editor: Visual studio code

We import our traffic data in raw format and preprocess it to machine

understandable lanfuage so it can be fed into our neural network.

As seen in figure below:

Fig4.26 raw tcp payload.

We then create a function to create a label for our databased on the file name.

We split the date into two columns: data and label.

65

1000 bytes of the packet is collected, if the payload length is less than 1000

bytes we pad it with zeroes at the end. Then we convert it to integer’s and

normalize.

Using the sklearn.model_selection library, we split the data into a training set

and test set. We have decide to use 10% of the data for testing and training the

remaining 90%.

Next the trainset and test set are reshaped to the correct tensor for the CNN.

Next we with the following code we build the neural network

model = Sequential()

model.add(Conv1D(512, strides=2, input_shape=X_train.shape[1:], activation=activation,

kernel_size=3, padding='same'))

model.add(MaxPooling1D())

model.add(Conv1D(256, strides=2, activation=activation, kernel_size=3, padding='same'))

model.add(MaxPooling1D())

model.add(Flatten())

model.add(Dense(128, activation=activation))

model.add(Dropout(0.5))

model.add(Dense(32, activation=activation))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

print(model.summary())

print model summary gives us the summary of our model

66

Fig 4.27 Model summary

We can see all the layers involved in the CNN.

The trainset is trained for 50 epochs and our result at the end is quite

satisfactory considering the fact that out data isn’t a lot.

Fig 4.28 Result of Model

We had a loss of 0.4 and an accuracy of 0.82 that is to show that the model

correctly classified the traffic in the test set as whether it is encrypted or not.

67

4.2 CONCLUSION

This thesis encompasses encrypted network traffic classification. Loads of

techniques and methods have been proposed and used by different researches to

classify network traffic. Different programming languages tools and libraries

have been employed as well. While some have proven to work with great

accuracy to with some drawbacks such as amount of data that can be processed,

some have been unreliable.

Many statistical and machine-based learning methods have been applied to the

task of traffic classification. Despite this, there are no conclusive results to show

which method has the best properties. The main reason is that the results depend

heavily on the data sets used and the configuration of the methods. Our results

show that most of the authors use private data sets, sometimes in combination

with public ones. Most of the methods use supervised or semi-supervised

machine learning algorithms to classify flows and even determine the

application protocol of a given flow.

This paper discusses a simple yet effective method using the convolutional

neural network. It is highly accurate and reliable for both large dataset and few

dataset. The greatest advantage will be that it requires not as much

computational power. Of course the larger the data set the larger the

computational power needed as is the case for other techniques. As compared to

other techniques, our mode uses less overhead.

Also this paper has further introduced us into another area of information

technology, that is, machine learning. Our knowledge has been broadened and it

has sparked more interest in the aforementioned field. It has show that machine

68

learning, deep learning to be more specific can be used to solve majority of

tasks with or without human intervention and get a high accuracy on problems.

69

REFERENCES

[1]. K.Muthamil Sudar, P.Deepalakshmi

http://www.ijitee.org/wpcontent/uploads/papers/v9i2s2/B11081292S219.pdf

[2]. Mohammad Lotfollahi1 ·Mahdi JafariSiavoshani1 ·Ramin

ShiraliHosseinZade1· Mohammdsadegh Saberian1 M (2017) Deep packet: a

novel approach for encrypted traffic classification using deep learning. CoRR

abs/1709.02656. arXiv:1709.02656

[3]. SHERAZ NASEER1,2, YASIR SALEEM1, SHEHZAD KHALID3,

MUHAMMAD KHAWAR BASHIR1,4, JIHUN HAN5, MUHAMMAD

MUNWAR IQBAL 6, AND KIJUN HAN

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8438865

[4]. https://www.shaileshjha.com/step-by-step-install-vmware-workstation-

player-12-in-windows-10/

[5]. Sumit Saha

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way-3bd2b1164a53

[6].https://www.geeksforgeeks.org/image-classifier-using-cnn/

[7]. T. Karagiannis, A. Broido, M. Faloutsos, and K. C. Claffy,

“Transport layer identification of P2P traffic,” in 4th ACM Special

Interest Group on Data Communication Internet Measurement Conf. 2004,

Taormina, Italy, pp. 121-134, October 2004.

[8]. K. Xu, Z.-L. Zhang, and S. Bhattacharyya, “Profiling Internet

backbone traffic: Behavior models and applications,” ACM

SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 169–180, 2005

http://www.ijitee.org/wpcontent/uploads/papers/v9i2s2/B11081292S219.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8438865
https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/
https://www.shaileshjha.com/step-by-step-install-vmware-workstation-player-12-in-windows-10/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

70

[9]. M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, and

G. Varghese, “Network monitoring using traffic dispersion graphs

(TDGs),” in Proc. Internet Measurement Conf. 2007, San Diego, CA, pp.

315-320, 2007.

[10]. Y. Jin, N. Duffield, P. Haffner, S. Sen, and Z.-L. Zhang, “Inferring

applications at the network layer using collective traffic statistics,”

SIGMETRICS Perform. Eval. Rev., vol. 38, p. 1-8, June 2010.

[11]. J. Levandoski, E. Sommer, and M. Strait, , “Application layer packet

classifier for Linux”, 2008

[12]. Al Khater, N., & Overill, R. E. (2016). Network Traffic Classification

Techniques and Challenges. In The 10thInternational Conference on Digital

Information Management, ICDIM 2015 (pp. 43-48). [7381869] Institute of

Electrical and Electronics Engineers Inc..

https://doi.org/10.1109/ICDIM.2015.738186

[13]Y. Kumano, S. Ata, N. Nakamura, Y. Nakahira, and I Oka.Towards

real-time processing for application identification of encrypted traffic. In

Computing, Networking and Communications (ICNC), 2014 International

Conference on, pages 136–140, Feb 2014.

[14]Y. Okada, S. Ata, N. Nakamura, Y. Nakahira, and I Oka. Application

Identification from Encrypted Traffic Based on Characteristic Changes by

Encryption. In Communications Qual

71

[15]. R. Alshammari and A.N. Zincir-Heywood. A Flow Based Approach for

SSH Traffic Detection. In Systems, Man and Cybernetics, 2007. ISIC. IEEE

International Conference on, pages 296–301, Oct 2007.

[16]. R. Alshammari and A.N. Zincir-Heywood. A Preliminary Performance

Comparison of Two Feature Sets for Encrypted Traffic Classification. In

Proceedings of the International Workshop on Computational Intelligence in

Security for Information Systems CISIS’08, volume 53 of Advances in Soft

Computing, pages 203–210. Springer Berlin Heidelberg, 2009.

[17]. R. Alshammari and A.N. Zincir-Heywood. Machine learning based

encrypted traffic classification: Identifying SSH and Skype. In Computational

Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE

Symposium on, pages 1–8, July 2009.

[18]. R. Alshammari and A.N. Zincir-Heywood. An Investigation on the

Identification of VoIP traffic: Case study on Gtalk and Skype. In Network and

Service Management (CNSM), 2010 International Conference on, pages 310–

313, Oct 2010.

[19]. R. Alshammari and A.N. Zincir-Heywood. Can encrypted traffic be

identified without port numbers, IP addresses and payload inspection?

Computer Networks, 55(6):1326 – 1350, 2011.

[20]. P.V. Amoli and T. Hamalainen. A Real Time Unsupervised NIDS for

Detecting Unknown and Encrypted Network Attacks in High Speed Network.

In Measurements and Networking Proceedings (M N), 2013 IEEE International

Workshop on, pages 149–154, Oct 2013.

[21]. D.J. Arndt and A.N. Zincir-Heywood. A Comparison of Three Machine

Learning Techniques for Encrypted Network Traffic Analysis. In

Computational Intelligence for Security and Defense Applications (CISDA),

2011IEEE Symposium on, pages 107–114, April 2011.

72

[22]. Azureus Software Inc. Message Stream Encryption.Vuze Wiki. Web page,

May 2014. Accessed: 2014-10-31.

 [23]. C. Bacquet, A.N. Zincir-Heywood, and M.I. Heywood. An Investigation

of Multi-objective Genetic Algorithmsfor Encrypted Traffic Identification.

InComputational Intelligence in Security for Information Systems, volume

63ofAdvances in Intelligent and Soft Computing, pages 93–100. Springer

Berlin Heidelberg, 2009.

[24]. C. Bacquet, A.N. Zincir-Heywood, and M.I. Heywood. Genetic

Optimization and Hierarchical Clustering Appliedto Encrypted Traffic

Identification. InComputational Intelligence in Cyber Security (CICS), 2011

IEEE Symposiumon, pages 194–201, April 2011.

[25]. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5246 (ProposedStandard), August 2008. Updated by RFCs

5746, 5878, 617

[26]. A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL)

Protocol Version 3.0. RFC 6101 (Historic),August 2011.

[27]. D. Harrison. Index of BitTorrent Enhancement Proposals. Web page,

October 2014. Accessed: 2014-11-27.

[28]. Skype and Microsoft. Skype. Web page, 2014. Accessed: 2014-11-25

[29]. Petr Velan, MilanˇCerm ́ak, PavelˇCeleda, Martin Draˇsar A Survey of

Methods for Encrypted TrafficClassification and Analysis INTERNATIONAL

JOURNAL OF NETWORK MANAGEMENT. 2014

73

APPENDIX

import os

import glob

import pandas as pd

import numpy as np

from functools import partial

from keras.models import Sequential

from keras.layers import Flatten, Conv1D, MaxPooling1D, Dropout,

Dense

from keras.utils import to_categorical

from sklearn.model_selection import train_test_split

LABELS = {}

counter = iter(range(20))

def pad_and_convert(s):

 """Collect 1000 bytes from packet payload. If payload length is less

than

 1000 bytes, pad zeroes at the end. Then convert to integers and

normalize."""

 if len(s) < 2000:

 s += '00' * (2000-len(s))

74

 else:

 s = s[:2000]

 return [float(int(s[i]+s[i+1], 16)/255) for i in range(0, 2000, 2)]

def read_file(f, label):

 df = pd.read_csv(f, index_col=None, header=0)

 df.columns = ['data']

 df['label'] = label

 return df

def preprocess(path):

 files = glob.glob(os.path.join(path, '*.txt'))

 list_ = []

 for f in files:

 label = f.split('/')[-1].split('.')[0]

 LABELS[label] = next(counter)

 labelled_df = partial(read_file, label=LABELS[label])

 list_.append(labelled_df(f))

 df = pd.concat(list_, ignore_index=True)

 return df

def main():

75

 activation = 'relu'

 df = preprocess('Dataset')

 df['data'] = df['data'].apply(pad_and_convert)

 num_classes = len(LABELS)

 X_train, X_test, y_train, y_test = train_test_split(df['data'], df['label'],

 test_size=0.2, random_state=4)

 X_train = X_train.apply(pd.Series)

 X_test = X_test.apply(pd.Series)

 X_train = X_train.values.reshape(X_train.shape[0], X_train.shape[1],

1)

 X_test = X_test.values.reshape(X_test.shape[0], X_test.shape[1], 1)

 y_train = to_categorical(y_train, num_classes)

 y_test = to_categorical(y_test, num_classes)

 model = Sequential()

 model.add(Conv1D(512, strides=2, input_shape=X_train.shape[1:],

activation=activation, kernel_size=3, padding='same'))

 model.add(MaxPooling1D())

 model.add(Conv1D(256, strides=2, activation=activation,

kernel_size=3, padding='same'))

 model.add(MaxPooling1D())

 model.add(Flatten())

76

 model.add(Dense(128, activation=activation))

 model.add(Dropout(0.5))

 model.add(Dense(32, activation=activation))

 model.add(Dropout(0.5))

 model.add(Dense(num_classes, activation='softmax'))

 print(model.summary())

 model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

 result = model.fit(X_train, y_train, verbose=1, epochs=50,

batch_size=16, validation_data=(X_test, y_test))

if __name__ == '__main__':

 main()

Model: "sequential_1"

__

_

Layer (type) Output Shape Param #

===

========

conv1d_1 (Conv1D) (None, 500, 512) 2048

77

__

_

max_pooling1d_1 (MaxPooling1 (None, 250, 512) 0

__

_

flatten_1 (Flatten) (None, 15872) 0

__

_

dense_1 (Dense) (None, 128) 2031744

__

_

dropout_1 (Dropout) (None, 128) 0

__

_

dense_2 (Dense) (None, 32) 4128

__

_

dropout_2 (Dropout) (None, 32) 0

__

_

dense_3 (Dense) (None, 6) 198

===

========

Total params: 2,431,590

78

Trainable params: 2,431,590

Non-trainable params: 0

__

_

None

2020-05-17 15:19:58.631635: I

tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports

instructions that this TensorFlow binary was not compiled to use: AVX AVX2

WARNING:tensorflow:From C:\Users\mrmal\anaconda3\lib\site-

packages\keras\backend\tensorflow_backend.py:422: The name

tf.global_variables is deprecated. Please use tf.compat.v1.global_variables

instead. nstructions

that this TensorFlow binary

Train on 165 samples, validate on 42 samples

py:422: The name tf.global_variables is

Epoch 1/50

165/165 [==============================] - 5s 33ms/step - loss:

1.6361 - accuracy: 0.4667 - val_loss: 1.2403 - val_accuracy: 0.5952

Epoch 2/50

165/165 [==============================] - 2s 15ms/step - loss:

1.4579 - accuracy: 0.5030 - val_loss: 1.2403 - val_accuracy: 0.5952: 1.2154 -

val_accuracy: 0.5952

Epoch 3/50 : 1.2154 -

val_accuracy: 0.5952

79

165/165 [==============================] - 2s 14ms/step - loss:

1.1707 - accuracy: 0.5576 - val_loss: 0.9637 - val_accuracy: 0.5714

: 0.9637 - val_accuracy: 0.5714

Epoch 4/50

165/165 [==============================] - 3s 17ms/step - loss:

0.9292 - accuracy: 0.6242 - val_loss: 0.8868 - val_accuracy: 0.6667

Epoch 5/50

165/165 [==============================] - 2s 14ms/step - loss:

0.9267 - accuracy: 0.6303 - val_loss: 0.9174 - val_accuracy: 0.6667

Epoch 6/50

165/165 [==============================] - 2s 14ms/step - loss:

0.9967 - accuracy: 0.6727 - val_loss: 0.8263 - val_accuracy: 0.7381

Epoch 7/50

165/165 [==============================] - 2s 15ms/step - loss:

0.9703 - accuracy: 0.6242 - val_loss: 0.8300 - val_accuracy: 0.7143

Epoch 8/50

165/165 [==============================] - 2s 15ms/step - loss:

0.8513 - accuracy: 0.7152 - val_loss: 0.7695 - val_accuracy: 0.7381

Epoch 9/50

165/165 [==============================] - 2s 14ms/step - loss:

0.9150 - accuracy: 0.7030 - val_loss: 0.7679 - val_accuracy: 0.7381

Epoch 10/50

165/165 [==============================] - 2s 14ms/step - loss:

0.8018 - accuracy: 0.7212 - val_loss: 0.8819 - val_accuracy: 0.7381

80

Epoch 11/50

165/165 [==============================] - 2s 14ms/step - loss:

0.7590 - accuracy: 0.6970 - val_loss: 0.7850 - val_accuracy: 0.7381

Epoch 12/50

165/165 [==============================] - 2s 14ms/step - loss:

0.7062 - accuracy: 0.7333 - val_loss: 0.8899 - val_accuracy: 0.7381

Epoch 13/50

165/165 [==============================] - 2s 15ms/step - loss:

0.7052 - accuracy: 0.7333 - val_loss: 0.8268 - val_accuracy: 0.7143

Epoch 14/50

165/165 [==============================] - 2s 15ms/step - loss:

0.6922 - accuracy: 0.7758 - val_loss: 0.8693 - val_accuracy: 0.7381

Epoch 15/50

165/165 [==============================] - 2s 14ms/step - loss:

0.6684 - accuracy: 0.7697 - val_loss: 0.8862 - val_accuracy: 0.7381

Epoch 16/50

165/165 [==============================] - 2s 14ms/step - loss:

0.5658 - accuracy: 0.8061 - val_loss: 0.8328 - val_accuracy: 0.7143

Epoch 17/50

165/165 [==============================] - 2s 14ms/step - loss:

0.7480 - accuracy: 0.7273 - val_loss: 0.8232 - val_accuracy: 0.7381

Epoch 18/50

165/165 [==============================] - 2s 14ms/step - loss:

0.6390 - accuracy: 0.7636 - val_loss: 0.8177 - val_accuracy: 0.7381

81

Epoch 19/50

165/165 [==============================] - 2s 14ms/step - loss:

0.5732 - accuracy: 0.7697 - val_loss: 0.8565 - val_accuracy: 0.7381

Epoch 20/50

165/165 [==============================] - 2s 15ms/step - loss:

0.6116 - accuracy: 0.7697 - val_loss: 0.7191 - val_accuracy: 0.7381

Epoch 21/50

165/165 [==============================] - 2s 15ms/step - loss:

0.5427 - accuracy: 0.7818 - val_loss: 0.8175 - val_accuracy: 0.7381

Epoch 22/50

165/165 [==============================] - 2s 14ms/step - loss:

0.5769 - accuracy: 0.8000 - val_loss: 0.7019 - val_accuracy: 0.7143

Epoch 23/50

165/165 [==============================] - 2s 14ms/step - loss:

0.5820 - accuracy: 0.7515 - val_loss: 0.8283 - val_accuracy: 0.7381

Epoch 24/50

165/165 [==============================] - 2s 14ms/step - loss:

0.5724 - accuracy: 0.7576 - val_loss: 0.8428 - val_accuracy: 0.7381

Epoch 25/50

165/165 [==============================] - 2s 14ms/step - loss:

0.5623 - accuracy: 0.7818 - val_loss: 0.7535 - val_accuracy: 0.7619

Epoch 26/50

165/165 [==============================] - 2s 14ms/step - loss:

0.4812 - accuracy: 0.7879 - val_loss: 0.9690 - val_accuracy: 0.7381

82

Epoch 27/50

165/165 [==============================] - 2s 15ms/step - loss:

0.4294 - accuracy: 0.8182 - val_loss: 0.9311 - val_accuracy: 0.7381

Epoch 28/50

165/165 [==============================] - 2s 15ms/step - loss:

0.5142 - accuracy: 0.7939 - val_loss: 0.9224 - val_accuracy: 0.7381

Epoch 29/50

165/165 [==============================] - 2s 14ms/step - loss:

0.5728 - accuracy: 0.7333 - val_loss: 0.6957 - val_accuracy: 0.7619

Epoch 30/50

165/165 [==============================] - 2s 14ms/step - loss:

0.5463 - accuracy: 0.7818 - val_loss: 0.8702 - val_accuracy: 0.7143

Epoch 31/50

165/165 [==============================] - 2s 14ms/step - loss:

0.4888 - accuracy: 0.8242 - val_loss: 0.8081 - val_accuracy: 0.7143

Epoch 32/50

165/165 [==============================] - 2s 14ms/step - loss:

0.4386 - accuracy: 0.8182 - val_loss: 0.9840 - val_accuracy: 0.7381

Epoch 33/50

165/165 [==============================] - 2s 14ms/step - loss:

0.4776 - accuracy: 0.8000 - val_loss: 0.7868 - val_accuracy: 0.7619

Epoch 34/50

165/165 [==============================] - 2s 15ms/step - loss:

0.5190 - accuracy: 0.8303 - val_loss: 0.7083 - val_accuracy: 0.7381

83

Epoch 35/50

165/165 [==============================] - 2s 15ms/step - loss:

0.4598 - accuracy: 0.8364 - val_loss: 0.9478 - val_accuracy: 0.7381

Epoch 36/50

165/165 [==============================] - 2s 14ms/step - loss:

0.4021 - accuracy: 0.8606 - val_loss: 0.8667 - val_accuracy: 0.6905

Epoch 37/50

165/165 [==============================] - 2s 14ms/step - loss:

0.4988 - accuracy: 0.7697 - val_loss: 1.0474 - val_accuracy: 0.7381

Epoch 38/50

165/165 [==============================] - 2s 15ms/step - loss:

0.4747 - accuracy: 0.7939 - val_loss: 0.8448 - val_accuracy: 0.7381

Epoch 39/50

165/165 [==============================] - 2s 15ms/step - loss:

0.4013 - accuracy: 0.8182 - val_loss: 0.8952 - val_accuracy: 0.7381

Epoch 40/50

165/165 [==============================] - 3s 16ms/step - loss:

0.4490 - accuracy: 0.7879 - val_loss: 0.9596 - val_accuracy: 0.7619

Epoch 41/50

165/165 [==============================] - 3s 16ms/step - loss:

0.4169 - accuracy: 0.8182 - val_loss: 0.9806 - val_accuracy: 0.7619

Epoch 42/50

165/165 [==============================] - 2s 15ms/step - loss:

0.3729 - accuracy: 0.8303 - val_loss: 1.0120 - val_accuracy: 0.7619

84

Epoch 43/50

165/165 [==============================] - 2s 14ms/step - loss:

0.3787 - accuracy: 0.8303 - val_loss: 1.1354 - val_accuracy: 0.7619

Epoch 44/50

165/165 [==============================] - 2s 14ms/step - loss:

0.3989 - accuracy: 0.8061 - val_loss: 1.0433 - val_accuracy: 0.7381

Epoch 45/50

165/165 [==============================] - 2s 14ms/step - loss:

0.4072 - accuracy: 0.8364 - val_loss: 1.1868 - val_accuracy: 0.7381

Epoch 46/50

165/165 [==============================] - 2s 14ms/step - loss:

0.4595 - accuracy: 0.8000 - val_loss: 0.9927 - val_accuracy: 0.7381

Epoch 47/50

165/165 [==============================] - 3s 15ms/step - loss:

0.4182 - accuracy: 0.8000 - val_loss: 0.8451 - val_accuracy: 0.7381

Epoch 48/50

165/165 [==============================] - 2s 15ms/step - loss:

0.3989 - accuracy: 0.8121 - val_loss: 0.8181 - val_accuracy: 0.7381

Epoch 49/50

165/165 [==============================] - 2s 14ms/step - loss:

0.3856 - accuracy: 0.8182 - val_loss: 0.8848 - val_accuracy: 0.7381

Epoch 50/50

165/165 [==============================] - 2s 14ms/step - loss:

0.4121 - accuracy: 0.8242 - val_loss: 1.1089 - val_accuracy: 0.7381

