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Abstract  
 

The scalpel is one of the most commonly used tools in surgical applications. Current designs of 

scalpel handles are not ideal for hand ergonomics and can lead to difficulties for certain cutting 

motions or slipping of the instrument. A new design was created by a previous research team 

alongside Dr. Raymond Dunn at UMass Medical School, to improve the shape of the handle as 

well as incorporating a rubber material grip portion. The goal of this project is to address the need 

to limit slipping while taking into consideration comfort and mobility of the instrument. The 

addition of a texture pattern and choice of material was utilized to increase the friction between 

the surgical glove and the grip portion of the tool. Testing protocols were created to determine 

which surface textures provided the highest coefficient of friction, as well as determining which 

prototypes were comparable to the precision of the original scalpel design. Feedback based on Dr. 

Dunn’s professional experience in the field and personal preference also aided in determining 

which grips were recommended for manufacturing.  
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Chapter 1: Introduction 

1.1 Background:  

The Current State of the Art  

 Scalpels are essential instruments in surgery. Scalpels are manufactured to be reusable or 

disposable. Reusable scalpels come in two parts as a handle and blade that will be sterilized and 

configured before surgery, whereas disposable come in individual packaging already pre-

assembled and pre-sterilized. The most common scalpel handle used in surgery is the number 3 

handle [1]. Figure 1.1 shows a sample of varying handle sizes and designs.  

 

Figure 1.1: Scalpel Handle Types [2] 

Reusable scalpel handles come in different sizes depending on the type of surgery and 

cutting techniques being performed. For example, handle number 3 is used for a wide range of 

cuts whereas number 7 is used more in plastic surgery because it is smaller and allows for a more 

precise and deeper cut [3]. These handles are made of stainless steel alloys, and can be steam 

sterilized for repeated use [4]. On the other hand, disposable scalpels are made of sterilizable 

plastics, and come in the shape of a No. 3 handle. These are typically inexpensive and are 

ordered in bulk for surgical use. Reusable scalpels generally cost between 10 to 17 dollars, while 

disposable versions typically cost between 1.50 to 3.20 dollars each.  

Scalpels in particular can be hazardous in the operating room, with scalpel wounds 

occurring in up to 15% of operations, which expose members of the operating room to patients’ 

blood in 6–50% of those cases [6]. Moreover on the topic of safety, scalpels do not exhibit 

satisfactory slip resistance depending on the bodily fluid that comes in contact with them, which 

can cause the surgeon to experience a negative effect on their haptic feedback with the 

instrument [7]. In other words, surgeons may lose their grasp on the instrument. This results in 

decreased precision, comfort, and efficiency [7]. Therefore, there is a need for a new scalpel 

design that permits the surgeon to increase efficiency in the operating room, and more 

confidence in their grasp of the instruments under circumstances that involve each type of bodily 

fluid. 

The current scalpels used in surgeries become problematic when rotational wrist 

movements are required. Surgeries that require this type of motion for scalpels in particular are 

skin growths, where the surgeon has to make two symmetrical, hemispheric cuts around the 
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growth. Another includes surgeries to treat hand lesions, which requires the surgeon to make 

elliptical incisions on the patient’s hand [7]. Both of these surgeries are done quite commonly, 

but can be difficult to administer with current scalpel designs. 

 

Significance of the Project 

 While technology has increased significantly in the field of medicine, the design for 

scalpel handles has not had any significant changes since its patent in 1914. With the current 

designs, aspects of surgery like safety for both the surgeon and the patient, precision, and 

handling are impacted due to the limited range of motion and grip. This forces surgeons to 

continue working on delicate procedures even if the grip is uncomfortable.  

It has been established that there is a need for design upgrades of these instruments. Dr. 

Raymond Dunn who is the Chief of Plastic Surgery at UMass Medical, has prototyped an 

upgraded scalpel in an attempt to correct instrument-hand ergonomics. However, even with his 

new design, there are still aspects of the design that can be improved upon. While the shape of 

the instrument is much improved for ergonomics, increasing the grip-ability on the instrument 

can limit safety or precision problems. In addition, considering material options for cost and 

manufacturability can improve the likelihood of surgeons making the switch to uncomfortable 

handled instruments, to more ergonomic tools.  

The Goal of a New Design and The Scope 

A new design of the scalpel handle should be able to comfortably be used in rotational 

motions made by the surgeon for all general surgery. It must incorporate the use of materials and 

dimensions that optimize the grip of the surgeon, decreasing the tendency for the instruments to 

slip when bodily fluid comes into contact with them. The design should feel natural to surgeons 

after sufficient practice and in no way impede their work. 

This project concerns all types of surgeons with different competences, students in 

training, and patients who may benefit from minimal scarring if surgeries can be done more 

precisely. It also concerns manufacturers. It is necessary to convince manufacturers to create the 

designs and alter the way they have been producing scalpels for the last century, meaning a goal 

of the design is to have it be comparable to the current state of the art in terms of cost, but far 

exceed the current state of the art in terms of ergonomics, safety,  

The goal is to design improved scalpel grips with materials for reusable and disposable 

applications that demonstrate increased slip resistance, efficient manufacturability, improved 

ergonomics, and optimal haptic feedback and tactile sensation during procedures that require 

rotational motion.  

 

General Project Approach 

The project strategy breaks down into a technical design requirements section created to 

form the solution to the problem presented by the client statement, engineering and industry 

standards that must be met, a revised client statement, and the team’s management approach over 

the duration of the MQP.  The general project approach is designed to achieve an ergonomic 

solution for a redesigned scalpel that has favorable haptic feedback due to its shape, mechanical, 

and material properties. The project will be completed by following milestones and objectives 

discussed in more depth in Chapter 3. The design process will explain the specific need for the 

redesign of the scalpel, display the conceptual design, the alternative design choices, and 
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feasibility testing. The objectives, constraints, functions, and specifications of the prototype 

designs are discussed and conceptualized in this section. 

 

Technical background necessary to understand the approach:  

 

To understand the approach of the project, there are certain technical elements of this 

project that should be addressed and understood.  Knowledge of Solidworks, computer aided 

design, and different means of additive manufacturing are all necessary technical background in 

creating designs and prototypes. Properties of materials such as hydrophilicity, slip resistance, 

coefficients of friction, working temperature ranges, cost of materials, sterilizability, and 

manufacturability must be researched as well. These are addressed in Chapter 3.2.4 Design 

Specifications.  

 

Chapter 2: Literature Review  

2.1 Haptics and Tactile Sensation 

Haptic feedback vs tactile sensation 

 Haptic feedback relates the sense of touch to the interactions with the world around us. 

Humans perceive haptics through two types of receptors: cutaneous and kinesthetic receptors [9]. 

Cutaneous receptors are found in the skin, and are responsible for tactile sensations such as 

touch, pain, temperature, vibrations and more [10]. Kinesthetic reception comes more 

specifically from muscle spindle receptors, which control limb position and movement during 

movements [11]. This is an important sensory channel because it combines touch to learning of 

motor skills and hand-eye coordination. In this project, altering the shape and surface of the 

surgical tool will affect the haptic feedback the surgeon is experiencing, and can affect the 

comfort and performance of the user. 

 

Haptics in the operating room 

Through research of haptic sensation in the operating room, correlations have been drawn 

between haptic feedback of using instruments and improved motor skills using those tools. This 

idea of haptics helping motor memory and trajectories is called “haptic guidance”[12]. 

Simulations using real world haptic setups allow training surgeons to gain a better understanding 

of how surgical procedures feel in relation with the patient, tool, and in their own hand, which 

can then be applied in the operating room. The tactile and force sensation from different tissues 

in the body can help guide the surgeon and also provide information on the orientation and 

location of the tools they are using.  

 

2.2 Previous MQP Works 

Reusable scalpels and disposable scalpels are types of scalpels that were requested to be 

redesigned by our sponsor. In both cases, it is important that these surgical instruments provide 

superior comfort and allow surgeons to make safe and calculated incisions with the blade. These 

types of scalpels will have common criteria that must be met, however, they also have criteria 

weighted by importance. Evaluated criteria includes durability, cost, comfort, and 

biocompatibility.  
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2010 MQP: Improving the Ergonomic Design of Scalpel Handles 

At Worcester Polytechnic Institute, previous MQP teams have worked on the ergonomic 

redesign of scalpel handles in the past decade. In 2010, an MQP group began with Dr. Raymond 

Dunn about designing new scalpel handle designs that improve ergonomics for surgeons. This 

group found that the “Golden Section Ratio” has an evident relationship with forces distributed 

by the scalpel on the hand. Another conclusion the group had was that there would need to be 

multiple sizes of scalpel handles since many surgeons have different sized hands, and one handle 

does not fit all sizes. In the field of material selection, the team had decided that metals would be 

favorable as potential manufacturable materials for reusable instruments, while disposable 

instruments could be made using plastic materials [13]. 

2014 MQP: The Commercialization of an Ergonomic Scalpel 

A group followed the progress made by the MQP in 2010 with a project centering around 

the commercialization of their ergonomic scalpel handles. The group determined that reusable 

instruments are more popular in surgeries as they decrease the overall cost and waste involved 

than disposable instrument options. Both types of devices are still used, having different 

strengths and weaknesses depending on the task. The team discovered that approximately 75% of 

handles used are reusable and 25% of handles used are disposable. Reusable tools are useful in 

most scenarios as the blade is interchangeable. The handles are sterilized after each use and are 

typically preferred in surgical settings over disposable handles. Disposable handles are preferable 

in scenarios where surgeons need to make precise incisions without the risk of having a dulling 

blade. Disposable handles are also useful when training students that have no need for their own 

scalpel handles. Because of the reusability of detachable handles and reasonable costs, reusable 

scalpel handles are more equitable in most hospitals. However, there are constraints based on 

repeated sterilization and safety that disposable scalpels are not a concern for one-time-use 

scalpel handles [14]. 

The students of this project considered a scalpel handle prototype that would be 

translated into both disposable and reusable models, however, reusable models were later not 

considered feasible due to the lack of market opportunity for the product. The team evaluated 

their model based on effectiveness, cost efficiency, and manufacturability. The team determined 

that Acrylonitrile Butadiene Styrene (ABS) molds for their model would cost approximately 

$35,000. Disposable materials would be approximately $3.00 per pound of Polycarbonate handle 

and an elastomer priced at approximately $6.00. Reusable scalpels were more difficult to 

consider because there was no market for the item since the market for reusable scalpels are 

fixed to the currently used scalpels [14]. 

 

2.3 Limitations/Opposing Viewpoints  

Historic Use and Manufacturing 

The earliest versions of scalpels could be dated back to ancient Greek times [15]. 

Scalpels continue to be essential tools used for cutting and slicing through layers of the body in 

surgery. For the past 100 years, the modern scalpel has been used in surgical and medical 

applications. Current reusable scalpels are made with stainless steel as a base material for 

handles. This design of the scalpel handle has been relatively the same, since the Bard-Parker 
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Company created the first version of a reusable model [16]. The most common design of the 

modern surgical scalpel handle is a thin rectangular slab of stainless steel with an attachment end 

that can connect to a number of different blade sizes. Blades could then be disposed of without 

having to dispose of the handle as a detachable piece. This design has remained popular because 

it is easily manufacturable, is effective, and has been effective for the past 100 years [16]. One of 

the largest challenges for a competitor to the common scalpel is that surgeons are used to using 

current scalpels to complete the surgeries. Since the design is relatively comfortable, it may be 

difficult for surgeons to consider a new design of a commonly used instrument at the operating 

room. 

 

Muscle Memory  

 Any individual who frequently takes part in activities that involve certain motor skills, 

such as typing on a computer, playing an instrument, or riding a bicycle, develops the muscle 

memory to make that activity almost automatic in order to more skillfully and intrinsically 

perform that action. Surgeons also acquire muscle memory when completing surgical 

procedures, which leads to more efficient, natural, and reliable performance during surgical 

procedures.  

With scalpels not having changed in the last century, surgeons have reliably developed 

the necessary muscle memory to complete their procedures using scalpels that currently exist. 

Just like one may have a period of adjusting their typing and where their fingers lay on the 

keyboard when they receive a new laptop, there is a period of adjustment when a surgeon is 

given a new instrument to perform their procedures with. In the latter case, however, others are 

affected by this adjustment period -- not just the user. Surgeons may not want to risk their ability 

to perform a medical procedure on a patient using a new scalpel especially when they are reliably 

able to trust their muscle memory with current, existing scalpels to do the procedure, even if the 

newer design is more ergonomic and efficient to use. Often, the evaluation as to whether newly 

innovated surgical methods or instruments should be introduced to the operating room is 

between the inclination to increase ergonomics, preciseness, and efficiency, and the 

apprehension to potentially risk the patient’s experience by using these novel instruments or 

methods [17].  

One way to try to address this concern is to “assess the amount of time needed for 

learning a new method, and if learning that method will be time-saving” [17]. This will allow the 

surgeon to logistically estimate how long it may take them to adjust to this new instrument and 

understand how the adjustment period will make their surgeries more efficient and precise in the 

future. By having select surgeons test the different instrument prototypes, they may be able to 

estimate how long it took them to completely adjust to the new device. Having a clear notion of 

how long it will take them to adjust to using the new device could help clients gain interest in 

purchasing a new instrument.  

 

 

2.4 Material Options 

2.4.1 Reusable Materials 

Stainless Steel 

 Stainless steels are typically alloy composed of Iron, Nickel, Chromium, and other 

metals. These elements are melted together and homogenized.  Manufacturing of the material is 

rather simple as this alloy could then be poured into a mold and cooled until solid [18]. More 
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recent manufacturing endeavors include additive manufacturing options as new 3D printing 

methods emerge for powdered metals including 316 and 316L stainless steels (Comparison of 

Hardness of Surface 316L Stainless Steel Made by Additive Technology and Cold Rolling).  

 Commonly used stainless steels for instruments used in the medical industry are 

typically either 316, 316L (low carbon), or other 300 series stainless steels. Medical grade 

stainless steels are stainless steels that have sterilization capabilities and are not subject to 

corrosion in most environments. As these stainless steels are already used to make reusable 

scalpel handles, it is a heavily considered material for a reusable handle base. Stainless steel can 

be priced as low as $1.00 per pound [19]. 

Stainless steel is also a material that can be overmolded onto. This would mean that a 

stainless-steel handle would be able to have a polymer-based grip molded on top of the surface 

of it. This process would be done by extruding a plastic solution around the handle base and 

letting the material cool and set. This method is compatible with thermoplastic elastomers and 

rubbers [20]. 

 

Thermoplastic Elastomers 

Polymers are typically characterized by how they are processed. Thermoplastics are melt-

processable materials that transition from a solid to a liquid state when the temperature reaches a 

specific point. Thermoplastics are able to be repetitively melted and cooled allowing them to be 

re-processed and recycled. Thermoplastics are commonly hard and crystalline, although softer 

surface options are available. Common thermoplastics include polyethylene, nylon, and PVC. 

Thermoset materials are chemically cured during manufacturing (vulcanization), causing 

permanent crosslinks to form between polymer chains. Thermoset materials cannot be re-melted 

once they are cured. Thermosets are typically soft and flexible materials. Common thermoset 

materials include rubbers, silicone, and epoxies [21].  

Thermoplastic elastomers (TPEs) are a class of polymers that combine properties of 

thermoplastics and thermoset materials. TPEs can be made to be soft, flexible, and dimensionally 

stable like thermoset materials but have the ability to be melt-processed and re-processed 

continually.  

TPEs flexible behavior is due to the physical structure of their composed molecules. 

Unlike thermoset materials, TPEs do not form chemical crosslinks between polymers, hence 

allowing them to be melted repeatedly. TPEs contain both crystalline and amorphous structures. 

This is achieved either through the composition of block copolymers containing both crystalline 

and amorphous domains, or through a composition of mechanically blended semi-crystalline and 

amorphous polymers [22].   

Ease of manufacturing is the primary advantage of TPEs over thermoset materials. Both 

material classes are typically flexible and elastic and come in colorable and sterilizable grades. 

TPE however, has a shorter cycle time for injection molding manufacturing than most thermoset 

materials. Silicones and neoprene can take minutes to hours to manufacture since curing time 

must be allowed. The cycle time for TPEs takes seconds [23]. Another advantage of TPEs is the 

ease of modification. Copolymer blocks and polymer blends can be modified through the 

addition of sidechains Copolymer block domains can be altered in length and ratio [24]. Material 

weight can be fine-tuned through the use of fillers.  

 

Silicone 
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 In one study done on the effect of stainless steel and silicone on hand comfort and 

strength, it was found that silicone is less strenuous on the hand and reduces hand fatigue. The 

study also found that lighter instruments with a larger diameter that have a silicone grip have the 

ability to reduce force and load on the hand. Silicone also can withstand sterilization and it is 

easily manufacturable to have different textures since it can be manufactured as a liquid and 

molding resin. It does not absorb water, and it feels like natural rubber. It also has good 

colorability [25].  

Pearson Dental, a dental tool company sells silicone grips that can be manually added to 

already existing dental tools to increase slip resistance. These can be made in a variety of colors 

as shown in Figure 2.1, and they are about $0.53 each.  

 

 
Figure 2.1: Silicone Grips for Dental Instruments [26] 

 

 

Neoprene 

Neoprene is a polychloroprene, which is a synthetic rubber. It has a range of properties, 

which can be modified via copolymerization with sulfur and blending the polychloroprene with 

other polymers [27]. Polychloroprenes have great chemical stability, resistance to water oils, 

gasoline, and UV light. Neoprene has outstanding chemical resistance, colorability, and it is able 

to operate in temperatures as high as 175 C [27]. Steam sterilization does not exceed 132 C, 

making this a material that can withstand the difficult environments that the operating room 

requires it to be resistant to [27]. Depending on the degree of hardness that the client or user 

wants, neoprene can be purchased with varying durometers, which measure the hardness of a 

material, shown in the figure below. When wet, rubbers have an admirably high coefficient of 

friction, demonstrating that they increase slip resistance when added to a product.  Concerns of 

neoprene is that the durability of the material after repeated sterilization is unknown. It also is 

not as easily manufacturable as other materials like TPEs, and is requires an adhesive to bond to 

stainless steel.  
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Figure 2.2: Hardness Scale in Shore 00, A, and D [28] 

Acetal (Delrin)  

 

Acetal or polyoxymethylene, which is more commonly known as Delrin, is a hard plastic 

that is known for its high strength, low friction, and incredible wear properties when it is in wet 

and dry conditions. It is very easily manufacturable, and it often is used as a metal replacement 

in dental applications [29, 30]. There are several different types. Homopolymer acetal has better 

temperature resistance, stiffness, and toughness, while copolymer acetal works well in high heat 

and hot water conditions, as well as having less porosity than homopolymer acetal. Acetal is 

FDA compliant, easily colorable, and resistant to many fuels. It has a higher coefficient of 

friction than stainless steel, but not much higher than that of stainless steel. The coefficient of 

friction of acetal, however, could be increased by texturizing its surface [30]. It is more 

expensive than hard plastics such as polypropylene. 

 

2.4.2 Disposable Materials  

Polypropylene  

Polypropylene (PP) is a low-cost plastic that is commonly used in the medical field. PP 

comes in three material options such as a homopolymer, copolymer and carbon reinforced PP 

[31]. These different variations lead to different properties ranging from a rigid plastic to softer, 

more malleable materials. PP is often chosen for its cost, performance characteristics, and 

manufacturability. It is also used in many medical devices due to its good chemical resistance, 

high toughness, and ability to be sterilized [31]. Some examples of medical grade PP products 

are disposable syringes, vials, non absorbable sutures, and medical pouches. PP copolymers have 

a high degree of toughness, with an Izod impact toughness of 12.5 ft-lbs/in, making them very 

durable.  

 Like all medical devices it is very important to ensure all equipment is safe to use in 

surgery and will not cause harm to the patient. Testing performed from ISO 10993-1 standards, 

such as cytotoxicity, hemocompatibility, canceroginity, etc. shows that PP can be used in short 

term to medium term contact with the body without causing harm to the patient [32]. In addition, 

this material can also be sterilized to ensure safety for patients, and minimize risk of infections or 

foreign contamination. While PP has a decent temperature resistance, meaning it can be 

autoclaved, however multiple autoclave cycles can degrade the plastic, which highlights the draw 

to use this as a single use plastic [32 ]. EtO has been used previously for sterilization of PP, 

however testing has shown that may cause a buildup of toxic residue, and this method of 

sterilization is no longer used [33]. This has led to gamma radiation sterilization being the most 

common method for PP [33].    
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Another draw towards PP as a disposable plastic for medical devices is that it is easily 

manufactured for low costs. The manufacturing options for PP include injection molding, 

extrusion, compression molding, with many more options available [32]. PP can be made to be 

clear plastic or dyed varying colors.  

 

2.5 Manufacturing 

2.5.1 Types of Manufacturing 

Stainless Steel Manufacturing 

 Stainless steels are made with varying properties depending on the content of iron, 

chromium, silicon, nickel, carbon, nitrogen, and manganese. The process of manufacturing 

stainless steel products involves a number of steps [34]. 

 The first step in steel manufacturing is melting the raw materials together in a large 

furnace. High heat is applied for 8-12 hours. Once melted, the molten steel is cast into simple 

molds. The molded steel is then shaped into more finalized forms. The steel may be heat rolled 

or shaped into rods and bars. The steel is then heat treated where it undergoes an annealing 

process. The steel is heated and cooled repeatedly under controlled conditions. This process 

alters the physical and chemical properties of the stainless steel to improve the desired material 

properties. During annealing a buildup from surface oxidation forms, requiring the stainless steel 

to be descaled. Pickling and electrocleaning are common methods of descaling annealed stainless 

steel.  Finally, the steel is cut into its final shape using specific blades. A surface finish is added 

to give the steel an aesthetic surface appearance and to help fine-tune the surface properties of 

the material [35]. 

 

Injection Molding  

 Injection molding is a very simple technique that is one of the most common methods for 

manufacturing plastic. The basis of injection molding is broken down into three parts: filling, 

packing and cooling [36]. First the material is heated until it is liquid, and injected into a mold of 

the part required. Packing the mold is initiated when the pressure is increased, and more material 

is pushed through the developing part to ensure that the mold is filled completely [36]. Then 

once all the molten plastic is pushed through the mold, the mold cavity is cooled to ensure the 

material is properly solidified, and the part is ejected. The figure below shows the machine 

process of injection molding.  

 
Figure 2.3: Injection Molding Process [37]  
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Rubber Manufacturing 

There are multiple ways to manufacture rubber, the most common being extrusion, latex 

dipping, and different forms of molding [38]. Extrusion molding is similar to injection molding. 

The process begins with unvulcanized rubber being pushed through an extruder into a dye. Once 

the dye is filled, the extruded product needs to be vulcanized before being usable. It is critical 

that the rubber be vulcanized because the chemical process of vulcanizing is what allows rubber 

to return to its original shape after stress is applied [39].  

Latex dipping is advantageous for products that require thinner walls of rubber, and have 

more complex shapes compared to those made by extrusion molding [38]. In this process a thin 

walled mold is dipped into the unvulcanized latex and slowly removed. Then, the product is 

cooled in the mold, vulcanized and removed to start the cycle again. Depending on the 

manufacturer's needs, latex dipping can be repeated to increase wall thickness before 

vulcanization.  

Another way to shape and produce rubber is through various means of molding. 

Compression molding begins with a chunk of rubber, also known as a blank. Once placed in the 

mold cavity, it is compressed to take the shape of the mold, and is heated to ensure that blank 

fills the mold completely. While this method is the cheapest of the molding methods, the heating 

process of the blanks can be very slow, making curing time last longer than other processes, and 

slows down production [38]. To address the limitations of compression molding, transfer 

molding loads blanks into a chamber, preheats them, and then compresses them into several 

mold cavities. This preheating step speeds up the process, and allows the product to be made at a 

faster pace. The limitation to this step however is that the molds are more expensive than 

compression molds because of the multi cavity addition [38].  

The third most common way to manufacture rubber is through injection molding. This 

process is similar to the section described above. Injection molding is advantageous because 

there is no need to produce blanks, easily automated for quick production, and is able to fill the 

molds more accurately [38].   

 

2.5.2 Material Adhesion  

Over Molding  

 Over molding is a process of adding a different material over a pre-made part of an 

object. For example, molding a rubber grip over a metal handle. The molds for this type of 

manufacturing are specifically made to hold the first material. Once the mold is locked around 

the object, in this example a metal handle, injection molding can be done. These special molds 

ensure the molten plastic or rubber surrounds the first material, and is shaped to the specific size, 

pattern, or texture that is required. Figure 2.4 shows this process with a two-step polymer 

injection overmolding.  
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Figure 2.4: Injection Overmolding Between Two Polymers [40] 

 

Injection over molding is advantageous for manufacturers who want to create a good bond 

between two different materials. While the second material is fitted specifically over the first, 

there are ways to ensure a stronger, more long-lasting bond between materials such as primers or 

physical attachment.  

  

Primers 

 One option to strengthen an injection overmold interaction is to introduce a chemical 

primer to the base material. This is used to enhance adhesion of dissimilar materials like metals 

and polymers. During manufacturing, once the base material (metal) is produced, it is coated 

with a primer before entering the mold for injection over molding. Once the second material 

(polymer) comes in contact with the metal, it begins interacting with the primer to create a bond 

between the metal and polymer. Primers are used because they are created with specific amino 

groups and vinyl functional groups that allow inorganic and organic materials to bond together 

[41]. 

Other primers allow for polymer brushes to be added to the primers. Polymer brushes are 

small chains of polymer molecules that adhere to these designed primers. The chains are washed 

over the primer treated areas of a material. These brushes create a more secure bond between the 

polymer being added to the metal and the primers bonded to the metal because they act like 

molecular Velcro [42]. This primer/polymer brush adhesion is advantageous to include in 

overmolding because with some metals it can increase adhesion strength up to 50% [42]. Some 

of these products, such as RadiSurf™, can withstand high temperatures ranging up to 200℃ 

[42].  

  

Mechanical/ Physical Blending Bonding 

 Certain materials possess compatible properties that allow them to be physically blended 

together. This occurs for the most part between polymers with good flow melt compatibility. 

Flow melt compatibility is dependent on the polarity of the materials. A blend between a polar 

and a nonpolar material will have good flow melt compatibility. To blend polymers, materials 

with good flow compatibility are melted together at a desired connection point. The polymer 

chains at the contact point of each material will become entangled and a blend bond will be 

achieved upon solidification of the materials [43]. This process is illustrated in Figure 2.5. 
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Figure 2.5: Physical Blending of Polymer Chains [43] 

 

 Not all materials are capable of this type of physical blending of polymer chains. For 

example, achieving a bond between a stainless-steel base and a polymer grip might require a 

mechanical bond. In this scenario the shape of both the base and grip aspects of the instrument 

must be considered. Adding a slot through the center of the base for the grip to connect through 

could add a mechanical interlock method of adhering the grip to the base. Adding texture or 

ridges to the surface of the base would also aid in mechanical adhesion between the polymer grip 

and the base component substrate. Figure 2.6 illustrates the concept of mechanical interlock 

using a TPE. 

 

 
Figure 2.6: Mechanical Interlock [44] 

  

 

2.6 Prototyping   

2.6.1 Subtractive Manufacturing - Milling  
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Computer numerical control milling is a process that utilizes computerized controls and 

cutting tools to remove or cut material from an object of choice to produce a custom product. 

This works for metals, hard plastics, glass, and wood [45]. This process starts with designing a 

CAD model. Benefits of CNC machining is that the process is extremely precise, it can produce 

repeatable results, they work relatively quickly, and they demonstrate fast prototyping due to its 

integration with CAD [46]. Disadvantages of CNC and subtractive manufacturing is that they do 

not work as precisely on materials that are not hard, like rubbers. Subtractive manufacturing is 

also challenging to use on products that are not uniformly flat or uniformly round, such as 

concave materials [46]. For this project, hard plastics like polypropylene or acetal sheets and 

metals like stainless steel can become custom designed easily with subtractive manufacturing, 

while materials such as neoprene or TPEs can be more challenging to texturize using CNC or 

subtractive manufacturing; however, the hard plastics and stainless steel can only be texturized 

on uniformly flat samples of the materials. While this could be helpful for obtaining samples for 

testing coefficient of friction, this is not helpful for prototyping the scalpel, which has areas that 

need to be texturized that are concave.  

 

2.6.2 Additive Manufacturing Plastics  

Fused deposition modelling (FDM)  

(FDM) is one of the most utilized form of 3D printing involving polymer filaments. This 

method involves using a thermoplastic polymer filament to print layers of the material of choice. 

First, the filament is heated to a liquid state and squeezed out of the nozzle onto a platform or 

other layers that had already been extruded [47]. The thermoplastic behavior of the filament is 

crucial for encouraging a fusion of each subsequent layer that is printed, and then solidifying 

after remaining in room temperature after printing has stopped. The main advantages of FDM is 

its low cost due to the simple nature of the process, and the high speed of the device. The 

disadvantages of this method is that the layers of the polymer are visible in the final product, and 

it does not have great surface quality. In addition, there are not many thermoplastic materials, 

meaning that the materials that can be used for FDM are limited [47].  

 

Powder Bed Fusion  

 Another form of additive manufacturing is powder bed fusion, which is the process of 

printing layers of fine powders, and these are closely packed on the platform [47]. In each layer, 

the powders are fused together using a laser beam. This continues until the product is printed. 

Excess powder is taken out using a vacuum, and often the application of a coating is done to 

improve surface qualities. The density of the product is reliant on the powder size. Only powders 

with a low melting temperature can be used with the laser to fuse the layers, otherwise a different 

binder -- most often a liquid binder-- must be used to fuse the powder layers together. Laser 

sintering can be used for many polymers, metals and alloy powders, while laser melting can be 

used for only certain metals [47].  

 

 

Stereolithography  

Stereolithography (SLA) is one of the first methods of additive manufacturing. It uses 

UV lights or electron beams to catalyze a chain reaction on a layer of resin or monomer solution 

[47]. These monomers are typically acrylic or epoxies, and are UV activated. When activated, 

they transform into polymer chains, also known as the process of polymerization [47]. After 
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polymerization, solidification occurs between the layers of the resin to hold the layers together, 

and the resin that is left unreacted is removed. SLA produces highly precise products, but it is 

slow, expensive, and the materials that can be used for this method are limited [47].  

 

Laminated Object Manufacturing 

Laminated object manufacturing (LOM) is another early method of additive 

manufacturing, which consists of a layer-by-layer cutting and lamination of rolls or sheets of 

materials [47]. Layers are cut using a mechanical cutting device or a laser, and then the layers are 

bonded together. LOM can be utilized for polymer composites, papers, ceramics, and metals 

[47].   

 

Type of Additive 

Manufacturing 

Materials that can 

be Used 

Benefits Drawbacks Resolution 

Range (um) 

FDM Thermoplastic 

polymer filament and 

fiber reinforced 

polymers 

Inexpensive, 

fast, simple 

Weaker 

mechanical 

properties, and 

limited 

compliant 

materials 

(thermoplastics) 

50-200  

Powder Bed 

Fusion 

Compacted powders, 

metals, alloys, and 

limited polymers 

High quality Slow, expensive, 

and high 

porosity 

80-250 

SLA Resin with 

photoactive 

monomers 

High quality Very limited in 

the amount of 

materials, slow, 

expensive 

10  

LOM Polymer composites, 

ceramics, paper, 

metals 

Fast, large 

range of 

materials, 

inexpensive 

Surface quality 

is not always 

sufficient, not 

reliable for 

complex shapes 

Varies 

depending on 

the thickness of 

the laminates 

Table 2.1: Additive Manufacturing [47] 

 

 

2.7 Sterilizability  

According to the Centers for Disease Control and Prevention, there are certain 

sterilization practices that must be maintained to guarantee disinfection and sterilization in 

healthcare facilities.  The two most common forms of sterilization in healthcare facilities are 

steam sterilization and ethylene oxide sterilization.  

 

Steam sterilization  
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The most commonly used form of sterilization in medical facilities is steam sterilization. 

Steam sterilization is inexpensive, fast, and nontoxic. It can, however, corrode some materials. 

Steam sterilization works by exposing medical instruments to direct steam. Ideal steam 

sterilization temperatures are 121 C and 132 C. Typically, instruments must be exposed to 30 

minutes of steam sterilization at 121 C in a gravity displacement sterilizer or 4 minutes at 132 C 

in a prevacuum sterilizer. Polypropylene, acetal, silicones, and stainless steel can be steam 

sterilized [47] Flash sterilization is a variation of steam sterilization, where the object is placed in 

a covered container to contain the steam, and allow for faster penetration of the steam into the 

instrument for 3 minutes at 132 C. This method is acceptable for items that cannot be “packaged, 

sterilized and stored before use” [48].  

 

Ethylene Oxide Sterilization  

Ethylene oxide (ETO) has used as a low temperature sterilization method. ETO is a gas that is 

flammable. Gas concentrations of 450 to 1200 mg/l with a temperature from 37-63 C, humidity 

of 40-80% and exposure times of 1-6 hours affect the ability of ETO to successful sterilize a 

material [48]. Increasing gas concentration and temperature often shorten the time that is needed 

for sterilization. The disadvantages of ETO are the time it takes to sterilize, the cost, and its 

toxicity. Exposure to ETO could cause skin, eye, gastrointestinal and respiratory irritation, and it 

is considered to be a human carcinogen [48]. ETO, however, is excellent in killing all 

microorganisms. ETO is more commonly used on materials that should not be exposed to high 

heat due to morphological issues, such as TPEs or plastics with a low melting point [48].  

 

2.8 Texturizing  

 Textures are added to the surfaces of many products to improve the friction and grip. 

Ridge height, spacing, and shape all contribute to the degree of friction of the grip. High, narrow, 

and widely spaced ridge textures contribute to a high degree of friction; however, the level of 

friction is not consistent as the material slides. Consistent friction (consider a finger sliding down 

the grip material) is better achieved under the opposite conditions [49]. A balance between high 

and consistent friction will need to be achieved. The shape and pattern of surface texture also 

contributes to the degree of friction between two different materials.  

There have been many studies testing various methods of increasing coefficient of 

friction on the surface of materials. One study that is particularly applicable to increasing grip of 

the ergonomic scalpel tested common medical glove materials against varying textures in wet 

conditions. Figure 2.7 shows the various patterns that were tested. 

 

 
Figure 2.7: Surface Textures for COF Testing on Gloves in Wet Conditions [30] 
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The results showed that patterns made using medium diamond 21 TPI blade (texture 5) 

and coarse diamond 14 TPI blade (texture 6) offered the best grip compared to finer diamond 

patterns and angular ridge patterns [30]. While the previous study found that the diamond 

textured tools performed better in friction testing, further research in enhancing coefficient of 

friction on surfaces showed that texture patterns of lines and ridges is commonly used. One study 

that was found compared how the orientation of line textures affect friction.  

 
Figure 2.8: COF Testing on Multi-Oriented Line Textures [50] 

 

Line textures that were oriented perpendicular to the pulling force outperformed longitudinal and 

zigzag lines when compared to the plane control. Other studies compared ridges to dot and 

Hilbert Curve patterns. Testing was done with patterns in three different orientations: parallel to 

force, a 45° rotation, and perpendicular to force. The dot indentations into the surface showed a 

large reduction in surface friction, followed by the Hilbert Curve pattern [51]. The ridges showed 

higher coefficient of friction, with the best results in the perpendicular orientation [51].  

To further explore aspects of texture patterns on grip, a study was found showing how 

varying texture sizes affect the grip between tool surfaces and a bare finger pad. This study 

focused on ridge patterns with varying ridge height, width and spacing, to compare coefficient of 

friction between samples and the comfort for the user. Volunteers were asked to slide their 

fingers across the textured surface while the normal force of the finger and tangential forces were 

taken. Figure 2.9 demonstrates how varying ridge dimensions and forces affect the coefficient of 

friction between the finger and the brass material being tested.  
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Figure 2.9: COF Tests Based on Ridge Height, Width, and Spacing [49] 

 

It was concluded that greater distance between ridges, 10 mm or more, created higher friction on 

the finger [49]. This is due to the deformation of the finger pad over the pattern which in turn 

calls for more force to move over the ridge. However, this study suggests the use of smaller ridge 

spacing, higher height, and smaller width for tools requiring a more consistent pattern [49]. 

 

Chapter 3: Project Strategy  

3.1  Initial Client Statement 

 The initial project statement as stated by our sponsor is as follows:  

“Investigate, develop and test ergonomic and haptic considerations with material options 

compatible with favorable manufacturability, sterilization and durability in a surgical scalpel 

and/or various forceps designs, two of the most common instruments used in surgery.” 

 

3.2 Design Requirements 

 To achieve the goal set by the client statement, the team has categorized the needs of the 

clients into design requirements which can be seen in Table 3.1. While all of these aspects of 

design are important, they have been assigned to a ranking system to better choose what aspects 

need to be prioritized. For example, biocompatibility is top priority because the new iteration of 

the design should never cause harm to a patient. On the other hand, adding color to the 

instrument was ranked last because it’s not vital to the completion of the project that color be 

incorporated. 

 

 

 

Priority Design 

Requirement 

Attribute 

2 Ergonomic Design must demonstrate good haptic feedback and  be comfortable 

for the surgeon to use in elliptical, circular, or rotational motions.  
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5 Manufacturability Design must be able to be actualized into a working instrument, that is 

affordable to produce, and easy to repeatedly create perfectly  

4 Reusable: 

Durability 

The reusable designs must be able to be steam sterilized repetitively, 

which is the standard and compatible in surgical settings. 

3 Wet-slip resistance  Both reusable and multi-use designs must maintain grip when working 

with all bodily fluids 

6 Disposable: 

Affordable 

The cost for disposable designs must be low to account for repeated 

purchases.  

1 Biocompatibility  Raw materials must be sourced from sterile manufacturers and all 

materials considered cannot induce inflammatory or toxic responses in 

patients 

7 Easily 

distinguishable  

Design must be easily distinguishable (by color) for nurses to find in 

the operating room amongst all other stainless-steel colored 

instruments 

Table 3.1: Design Requirements Ranked 

 

Ethical concerns regarding the design requirements is that all surgeons would need to be 

able to practice using the instruments sufficiently prior to bringing them in the operating room. 

In general, no new surgical instruments should be used by the surgeon without the surgeon 

feeling exceptionally  

confident in their ability to use them for their intended purpose. Meaning, that another element of 

the design implementation would have to consider practice time of the surgeon before utilization 

of the device in the operating room [52].  

 

3.2.1 Design Objectives  

In order to improve upon the current scalpel design, the project has been split up into four 

main objectives in relation to the design requirements.    

1. Research and choose materials that fulfills design requirements set forward by 

research and client interviews.   

2. Create a design with improved ergonomic grip and tactile feedback. 

3. Explore manufacturability options, and product production considerations. 

4. Create multiple product prototypes for surgical testing.  

 

These objectives lay out the different needs and considerations going forward in this 

project. First, material selection is a huge consideration when designing any medical device. 

There are many criteria and requirements that the material needs to fulfill in order to be used in 
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this application. Some examples include having good mechanical properties, able to be sterilized, 

and most importantly, must be biocompatible. Materials used in this application must also 

conform to any FDA or ISO regulations in order to be considered.  

Objective 2 addresses the need for a new design. Since the old designs are uncomfortable 

due to the fact that they are not efficiently contoured to the anatomy of the hand and can become 

very slippery when exposed to bodily fluids, Objective 2 will include testing of grip positions 

and possible applications of grip enhancers. One important consideration for designing an 

ergonomic handle, is that it needs to be both comfortable and allow for full range of motion 

when making cuts. After design considerations have been made, Objective 3 addresses the needs 

for manufacturing. Scalpels have been manufactured for decades and creating new designs will 

affect the manufacturing process and molds already being used. In this objective it’s important to 

regulate prospective costs and ease of manufacturing to be more appealing to stakeholders in the 

manufacturing business.  

The last objective allows for testing of the work done in Objective 2. In order to ensure 

the design is comfortable and usable, prototypes can be made in SolidWorks and 3D printed. 

These prototypes can allow stakeholders to try and test the product themselves. In addition, 

scalpel prototypes can be compared to old designs by side by side comparisons of precision cuts 

on human skin analogs. 3D printing the designs will also give insight on how the design fits in 

the hand during use and if there needs to be any alterations. 

 

3.2.2 Design Constraints 

During the design process, many factors can affect the design and production of a 

product. For this product, the dimensions and ability to interface with current scalpel blades 

could be a major design constraint and needed to be taken into consideration. The new shape of 

the scalpel could also affect the blade fixture methodology. Another design constraint for this 

project is the design budget. 3D printing and materials to make prototypes need to be cost 

effective in order to do multiple iterations of prototypes needed for objective 4. In addition, 

money is a design constraint in objectives 1 and 3. Choosing a material that is cost friendly for 

buyers will increase the likelihood of the stakeholders considering a new design. Manufacturing 

costs can also be a huge constraint when introducing a new product on the market. If something 

is too expensive to produce, the price of the product will increase and deter buyers.  

In addition to costs and budget constraints, time is also an important factor. Objective 4 is 

a time sensitive requirement. The ergonomic design needs to be completed in a reasonable 

amount of time to allow for redesign if need be. In addition, testing of each design is required to 

demonstrate the effectiveness of the design. Testing will provide evidence that the new design is 

improved ergonomically and in the accuracy of its use. Once these prototypes have been tested, 

there needs to be enough time allocated to possibly produce a working product for Dr. Dunn.  

 

3.2.3 Design Functions 

Surgical precision is often dependent on the angle that the scalpel is oriented. Scalpels 

must be able to function and operate in all orientations they are used in. They must be able to 

functionally cut tissue with precision in all orientations. With the current design of the scalpel 

handle being flat and lacking a design contours to a user’s hand, orienting this instrument in 

different positions can be inconvenient and strenuous. This difficulty increases the chance of the 

user’s hands trembling during rotational and angular orientations of the design, resulting in less 

precise procedures. For example, for the surgical removal of skin growths, a surgeon has to 
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utilize the scalpel to perform two symmetrical incisions around the growth. In a simple 

procedure such as this one that is done often, creating the symmetrical incisions can be difficult 

since the current “flat handle requires the surgeon’s wrist to roll more for one incision versus the 

other”, which can result in the surgeon experiencing tremors, and resultantly causes the surgeon 

to make asymmetrical incisions [53]. Figure 3.1 demonstrates the incisions that need to be made. 

 
Figure 3.1: Symmetrical Incisions for Removal of Skin Growths [54] 

 

Many procedures involve instrument contact with bodily fluids, meaning that the scalpel 

must be able to operate and function properly in wet and slippery conditions. As a result, the 

scalpel handle should be contoured, so that they can comfortably be held and can function in the 

hand of the surgeon, allowing for more control, confidence in the surgeon’s grip, and precision in 

all types of surgeries [53]. 

 

 3.2.4 Design Specifications 

A brief overview of the desired design specifications can be seen below, and are further 

explained in the following paragraphs:  

  

● Be the correct dimensions to contour the hand & allow for 0-180-degree angular 

rotation of the hand 

● Be able to undergo steam sterilization up to 132℃ 

○ Be as durable as stainless steel in terms of withstanding repeated 

sterilization 

● Be equal in cost or lower than current models for reusable designs and 

significantly less in cost for disposable designs 

● Have a colored element on it making it easily distinguishable 

● Use FDA compliant materials 

● Have high dynamic coefficient of friction for the materials used (closer or greater 

than 1) 

● For rubbery materials, have a durometer (hardness) that is ideal for grip materials -

- most likely between 40A-60A 

 

The scalpel design should have a circular cross section along the handle(s), allowing the 

surgeon to be able to rotate the instruments anywhere between 0-180 degrees [53]. This avoids 

requiring the surgeon to hold the scalpels or forceps differently for incisions or procedures that 

demand rotational or angular motions. The scalpel must follow the contouring of the hand and 
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have the correct dimensions that allow it to easily sit in the hand’s architecture while allowing 0-

180-degree motion.  

The design should be able to also be manufactured via injection molding and should be 

composed of materials that can be sterilized for reuse, such as stainless-steel composites that are 

used today, and autoclavable plastics. According to the Center of Disease Control and 

Prevention, steam sterilization, used by most medical facilities such as UMass Medical, require 

medical supplies to be able to withstand sterilization maximum temperatures of 121 °C – 132 °C 

for at least 45 minutes, which are two of the most commonly used temperatures in steam 

sterilization [55]. As a result, the materials used in the reusable forceps and scalpels that are in 

the new designs must be able to withstand these temperatures like the current all-stainless-steel 

designs that exist, and not dull or corrode easily over time.  

The manufacturing of the design also must be able to be modified for the creation of the 

disposable version with the same dimensions and function as the reusable one. The disposable 

version must be made of a cost-efficient molded plastic that is feasible for medical facilities to 

purchase in bulk for single use. The reusable versions should be either the same or less costly 

than current designs in order to encourage manufacturers to create them and medical facilities to 

purchase them. Below is Table 3.2 showing the costs of current designs that exist. Creating 

designs with cost specifications lower than these values is desirable. 

 

Product Brand Price/Quantity  Size 

No. 10 disposable 

scalpel.  

Thermo scientific $34.25/ 10 individually 

wrapped [56] 

14.6cm 

No. 10 disposable 

scalpel 

Exel International 

 

$15.07/ 10 individually 

wrapped [57] 

N/a 

No. 3 reusable scalpel 

handle  

World Precision 

Instruments 

$10.00/ 1 handle [58] 13-14cm 

No. 3 reusable Fine Science Tools $17.00/ 1 handle [59] 12cm 

Table 3.2: Sample Brands and Costs of Scalpels 

 

Additionally, the scalpel (reusable or disposable) should have an element of color other 

than stainless steel on the handle for medical professionals to quickly locate it in the operating 

room among all the other stainless-steel instruments on the Mayo table. Colors such as blues and 

greens are ideal to use in medical equipment, since they are contrast red, allowing blood to 

visually stick out in the operating room [63]. The scalpel must also be FDA compliant and 

demonstrate excellent slip resistance to bodily fluids to ensure that the surgeon has a sufficient 

grip on it and prevent any unsafe or inefficient procedures from taking place. This includes using 

materials with a high dynamic coefficient of friction, meaning it has a coefficient of friction 

closer to or greater than 1 than 0, and perforated grips to increase the surgeons grasp [64]. 
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Finally, for rubbery materials, a durometer of 40-60 Shore A are ideal, as they are similar 

hardnesses used in toothbrushes and tire treading, which still exhibit a high coefficient of friction 

in wet conditions [65] 

 

3.3  Industry Standards 

Engineering standards specify guidelines and specifications that should be met by the 

product in question. Standards help ensure that minimum performance characteristics and safety 

standards are met. Standards also aid in ensuring a product’s consistency and that it is compatible 

with other standard compliant parts. Standards are especially important in the medical field as 

they’re typically higher risk compared to consumer products. Once standards are incorporated 

into regulations, they become requirements. Products must adhere to regulations in order to be 

approved for market and use.  

The International Organization for Standardization (ISO) is an independent organization 

that develops international standards. Individual countries have national organizations that 

correspond with and represent their country to ISO. In the United States, the standards 

organization that corresponds with ISO is the American National Standards Institute (ANSI.) 

ANSI is composed of other more specific US organizations such as the Advancement of Medical 

Instrumentation (AAMI.)  

ISO has many standards pertaining to medical devices such as ISO 11737 which specifies 

requirements on the sterilization of medical products, components, raw materials, and packaging 

[66]. It will be necessary to keep this standard in mind while developing our product. The raw 

materials and final product must have the capability to abide by this regulation. Another relevant 

standard is ISO 10993-5 which describes standard tests for testing the in vitro cytotoxicity of 

medical devices [67]. It was determined that the most prioritized design requirement of the 

project is ensuring the final product is completely biocompatible. It is vital that surgical 

instruments do not induce a cytotoxic response in internal environments. ISO 10993 in general 

will be relevant during the design and fabrication of our product. ISO 10993 lays out guidelines 

for evaluation and testing of medical devices with respect to biocompatibility.  

The United States Pharmacopeia Convention (USP) is another independent organization 

but is specific to the United States. USP develops standards primarily for medicines and foods 

but also raw materials. USP Class Testing I-VI lay out standardized methods and specifications 

for pharmaceutical grade raw materials. These tests provide standardized testing for in-vitro and 

in-vivo biological reactivity [68]. Ideally, the raw materials used in the final product will have 

passed these tests. 

Many standards specify what additives are allowed in materials used in medical devices. 

In general, the final product will not use materials containing Phthalates, PVC, BPA and latex. 

Some people have adverse reactions to these materials and additives. BPA and latex may induce 

allergic reactions in some individuals [69]. 

As the project will focus heavily on biomaterials, raw materials standards will be very 

important to be aware of. It will also be important that the final design will be compatible with 

preexisting and standardized blades. ISO 7740 defines the dimensions of fitting features for 

detachable scalpel blades and the handles. It ensures minimal performance and interchangeability 

of scalpel parts from different manufacturers [70]. This will be important when designing the 

final product as an instrument that is not compatible with necessary parts cannot be effectively 

used. 
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3.4  Revised Client Statement    . 

Upon review of the initial client statement it was decided that the project would focus primarily 

on biomaterials pertaining to scalpel grips; more broadly, the project concerns the materials for 

the reusable and disposable scalpel designs that are slip resistant, affordable, and autoclavable.  

 

Investigate, develop and test ergonomic and haptic considerations with material options 

compatible with favorable manufacturability, sterilization and durability in a surgical scalpel 

design. The project will focus specifically on the material properties of disposable and reusable 

surgical scalpel grasps, their costs, and their viability for universal surgical applications. The 

goal of our project is to improve upon a current prototype of a scalpel design that increases the 

comfort, precision, and ease of use for the surgeon by selecting ideal materials for both 

disposable and reusable versions. 

 

3.5 Management Approach 

The management approach to the project includes various milestones the team will 

achieve to reach the final goal. The team ultimately produced prototypes for a specially designed 

reusable scalpel grip, a disposable scalpel handle, and a forceps handle. We finalized the ideal 

material options for these prototypes by identifying characteristics and properties necessary and 

favorable for these handles: manufacturability, shape, sterilizability, cost, biocompatibility, 

durability, safety, and comfort. 

 For reusable scalpel handles, low cost was not prioritized because the instrument would 

have the ability to be reused many times. Instead, durability became a higher priority. On the 

other hand, the team prioritized manufacturability and low cost over comfort and durability for 

disposable scalpel handles. For material properties, it is essential to have biocompatibility and to 

accomplish the objectives discussed in the needs statement. Determining materials was 

concluded before November 2019. 

After determining the most ideal materials, the team developed prototypes using 

computer aided design. Here the prototypes are tested by mechanical properties and the structural 

design can be developed. Once the prototypes can be manufactured or 3D printed, these may be 

tested for haptic feedback and ergonomic comfort for the surgeons. For initial prototyping, these 

devices are tested on objects that are comparable to cutting through and grasping tissue or skin 

(e.g. orange peels). Mechanical and haptics testing was concluded in December 2019.  

After receiving mechanical feedback from the other MQP team working on the 

ergonomics of surgical instruments and haptic feedback from surgeons who had tested the 

ergonomics of the instruments, final prototypes were created by February 2020 with acceptance 

from our sponsor and advisor. Patenting paperwork was finalized by the end of February 2020. 

The final handle designs were completed and verified by March 2020 so the final goals and final 

paper could be completed for this project by April 2020.  

Project completion was tracked by following the completion of objectives in the 

Objectives Tree that the team created seen in Figure 3.2 below. This diagram is a way to 

visualize the general paths we took in order to complete our overall objectives. Major objectives 

were achieved by completing minor objectives and testing shown in each of the paths. The 

overall goal of redesigning the scalpel and forceps handles were completed using various levels 

of research, testing, and prototyping.  For milestone completion, progress was tracked by 
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following the Gantt Chart seen in Figure 3.3. This Gantt Chart was created to outline the time 

frame of our major milestones.  

 

 
Figure 3.2 Major Objectives for Project Completion and Progress 

 

 
Figure 3.3: Gantt Chart Tracking of Project Completion and Progress 

 

Through the Worcester Polytechnic Institute, there is a $250 budget per registered 

student. Therefore, the project team has a $1000 budget total. This budget is split into smaller 
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categories to organize where money is allocated. The team allows $50 for prototyping grip 

shape, physical properties, and material properties. $550 of the budget however will be allocated 

for developing and purchasing the materials chosen for the grips. The remaining $400 will be 

allotted for the manufacturing options chosen for the material. If the material is capable of being 

used in 3D printing or additive manufacturing, development can be much more affordable than 

manufacturing counterparts. As certain materials and manufacturing methods are more 

expensive, it is important to research the ability and feasibility of their options.  

Additive manufacturing and 3D printing have been on the rise in the recent past. This is 

partially because additive methods use less material, which in turn makes the manufacturing less 

expensive compared to other manufacturing methods. Additive manufacturing methods include 

fused deposition modeling, extrusion, jetting, Inkjet binding, powder bed fusion, and resin-bath 

lithography. Depending on the materials at hand, cost, and the availability to manufacture, the 

additive manufacturing can be chosen.  

 

Financial Statement 

Total Budget $1000 

Prototyping $50 

Materials $550 

Additive Manufacturing/3D Printing Services $400 

Table 3.3: Financial Statement. 

 

Chapter 4: Project Design Process 
4.1 Needs Analysis  

 Current scalpels do not demonstrate sufficient tactile sensation, ergonomics, leading to 

decreased safety, ease of use for many procedures, and slip resistance. This problem directly 

affects surgeons as they are the ones directly experiencing the performance feedback of the 

surgical instruments. In a more derivative fashion patients are also affected by the shortcomings 

of current instruments. If the surgeon’s job is difficult there is greater opportunity for error in the 

surgery. To a lesser extent, medical device manufacturers would be affected by a design change 

as the production of medical devices is strictly regulated and production will need to adjust to the 

changes. The ultimate outcome of device improvement would be increased ease of use and 

subsequently reduced chance of error in surgeries. 

Broadly speaking, we aim for our finalized product to be ergonomic, manufacturable, 

durable, have good wet slip resistance, be affordable, biocompatible, and easily distinguishable 

on the Mayo table. However, it is important to distinguish the priority of these objectives as an 

objective with a higher weighted score should take precedence over an objective with a lower 

weighted score. A design matrix was constructed by scoring these objectives based on design 

criteria as shown in table 4.1. Additionally, each criteria statement is weighted based on 

importance with safety and effectiveness being top priority and cost being less of a priority. Each 

objective is then scored out of 5 based on how well it satisfied the criteria. To come up with 
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weighted scores for each objective based on how well they satisfied the most important weighted 

criteria, the following equation is used: 

Weighted Score = Weight*(Score/5) 

It was determined through this matrix that in order of priority our project objectives are 

as follows; ergonomics, wet slip resistance, biocompatibility, durability, manufacturability, 

affordability, and distinguishability.  

A central point made in our client statement is the need for this project to develop an 

ergonomic surgical instrument. Our final product should rotate easily and sit securely in the 

surgeon’s hand while providing a good tactile sensation. It makes sense that achieving an 

ergonomic design would be a top priority. On a similar note, a product with good wet-slip 

resistance addresses important criteria such as safety, effectiveness, ease of rotation, and stability 

of grip. Finally, it is necessary for the final product to be biocompatible in order to adhere to 

industry regulations and be approved for market. It is determined that these three objectives, an 

ergonomic, wet-slip resistant, and biocompatible design, will be the primary objectives moving 

forward. Durability, manufacturability, affordability, and distinguishability are less crucial 

objectives. They would benefit the product’s design but should not be prioritized over 

ergonomics, wet-slip resistance, and biocompatibility.  

 

Objective: 

 

Criteria 

(Weight): 

Ergonomic Manufactura

bility 

Reusable: 

Durability 

Wet-slip 

resistance 

Disposable: 

Affordable 

Biocompatib

ility  

Easily 

distinguishab

le  

Safety (25) 5/5 

25 
0/5 

0 
2/5 

10 
4/5 

20 
0/5 

0 
5/5 

25 
0/5 

0 

Effectiveness 

(25) 

5/5 

25 
2/5 

10 
4/5 

20 
5/5 

25 
1/5 

5 
5/5 

25 
3/5 

15 

Ease of 

Rotation (20) 

5/5 

20 
0/5 

0 
0/5 

0 
4/5 

16 
0/5 

0 
0/5 

0 
0/5 

0 

Stability of 

Grip (20) 

5/5 

20 
0/5 

0 
1/5 

4 
5/5 

20 
0/5 

0 
0/5 

0 
0/5 

0 

Interchangeabi

lity of Parts 

(15) 

4/5 

12 
5/5 

15 
3/5 

9 
0/5 

0 
3/5 

9 
1/5 

3 
2/5 

6 

Cost (10) 0/5 

0 
5/5 

10 
2/5 

4 
0/5 

0 
5/5 

10 
0/5 

0 
0/5 

0 

Rank 

Score 

102 35 47 81 24 53 21 

Table 4.1: Design Matrix: Priority of Design Criteria and Objectives 

    In order to achieve each objective, physical limitations and technical constraints will 

need to be adhered to. To design an ergonomic instrument, the instrument must fit comfortably 

in the surgeon’s hand, rotate easily, sit securely, and provide good tactical sensation. Hand 
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measurements for males in females in 5th, 50th, and 95th percentile groupings have been 

quantified as shown in tables 4.2 – 4.5 [71]. 

Percentile 5th 50th 95th 

Male 7.9 8.6 9.7 

Female 6.9 7.6 8.6 

Table 4.2: Hand Breadth at Metacarpal (cm) 

 

Percentile 5th 50th 95th 

Male 2.8 3.0 3.3 

Female 2.0 2.5 2.8 

Table 4.3: Hand Thickness at Metacarpal (cm) 

 

Percentile 5th 50th 95th 

Male 9.4 10.4 11.2 

Female 8.1 9.1 10.2 

Table 4.4: Hand Breadth at Thumb (cm) 

 

Percentile 5th 50th 95th 

Male 17.8 19.3 20.8 

Female 16.3 17.5 18.8 

Table 4.5: Hand Length (cm) 

Based on this information, the size of our handle should suit these measurements and 

perhaps multiple sizes will be required to suit each percentile and sex.  

To design an instrument with ideal wet-slip resistance the coefficient of friction between 

the grip material and wet and dry standard medical grade latex gloves. A thermoplastic elastomer 

developed specifically for grip in wet conditions has a coefficient of friction against a smooth 

stainless-steel surface from 1.5 to 2.5 under dry conditions and 1.3 to 2.4 under wet conditions 

[72]. The final design will be tested under slightly different conditions, however, a COF between 

1.5-2.5 gives a baseline range to aim for. Disposable versions may be able to include plastics that 

have a coefficient of friction this high, but reusable, autoclavable versions may have a more 

limited variety of COFs.  
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Biocompatibility of the device can be quantified using the testing parameters set in ISO 

10993-5 [67] for measuring in vitro cytotoxicity will be adhered to. In this test, standard 

mammalian cells exposed to the material being tested should maintain approximately 80% 

confluency by the end of their growth period.  

4.2 Concepts and Feasibility 

4.2.1 Existing Conceptual Design and Relevant Design Calculations 

 Dr. Raymond Dunn created a more ergonomic handle for the surgical scalpel and has 

patented the design detailing measurements of the device. He drafted dimensions that he tested to 

be sufficient for more precision and control of the instrument. The blade can be detached, and 

different sized blades can be attached to it. The scalpel in particular has a distal section, proximal 

section, and center section. Between the distal section and the center section is a concave area 

with a circular cross section diameter minimum of 1.0-1.5 cm [53]. The distal section itself has 

an increasing diameter toward the blade, to prevent hand slippage toward the blade. The larger 

area of the distal portion has a diameter in the range of 1.2-1.8 cm [53]. The central portion has a 

diameter in the range of 1.6-2.4 cm [53]. There is another concave between the central section 

and the proximal section, with a diameter from 1.0-1.5 cm [53]. The proximal portion is flared, 

with a radius ranging from 1.5-2.0 cm [53]. The distance between the two concaves is in the 

range of 6.4-7.2 cm, and the distance between the distal end to the proximal end is in the range of 

12-14 cm [53]. The length of the device in total should be in the range of 14-15 cm.  The image 

below has these areas labeled. The new design of the scalpel should have a conceptual design 

containing measurements similar to these shown in Figure 4.1 [53].  

  
Figure 4.1: Sponsor’s Previous Scalpel Design 

 

The design should also be able to be manufactured using materials that can be reused for 

the reusable options, as well as more cost-efficient disposable options. This means that the 

materials used for the conceptual designs are extremely critical to its success and adoption in the 

medical field.  

 

4.2.2 Material Options for Conceptual Design 

Although the aim for the conceptual design is to find ideal materials with a coefficient of 

friction greater than 1.5, some autoclavable via steam sterilization materials that could be used 

that have a coefficient of friction greater than that of greasy-conditioned stainless steel include 

Neoprene, Delrin, Polypropylene, Silicone, and TPEs. Although the coefficient is extremely 

critical for ensuring slip resistance, reusable options have the priority of being autoclavable. If 

they are being conceptually designed using autoclavable materials, they are simply not reusable 

as surgical instruments. Characteristics of each of these autoclavable materials are listed below in 

Table 4.6. The table demonstrates that the materials and currently used stainless steel options are 

comparable, but under greasy conditions, the plastics may have a slightly higher coefficient of 

friction. For autoclavable plastics, the coefficient of friction may not be extremely different than 
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that of stainless steel when being used in the operating room, but the combination of a slightly 

better coefficient of friction and a more contoured, hand-fitting design, will ensure slip 

resistance. As stated previously in section 4.1, the coefficient of friction for disposable 

conceptual design versions may be able to be as high as 1.5, but designs drafted with 

autoclavable plastics may have a more limited variety of coefficients of friction.  

 

Material  Stainless 

Steel 

Neoprene Delrin Silicone 

Elastomer 

TPE Polypropylene 

Coefficient of 

Dynamic Friction 

Can be as 

low as 0.11 

[73] 

High 0.21-0.35 High High 0.28 

Machining/Manuf

acturing of 

textured pattern 

Easy to 

machine 

Not easy to 

texturize 

Easy to 

texturize 

Easy to 

texturize 

Easy to 

texturize 

Easy to 

texturize 

Ability to bond 

to/be incorporated 

onto stainless steel  

n/a n/a Used as 

metal 

replacement, 

not as grip 

itself 

Great  Great Used as metal 

replacement, 

not as grip 

itself 

Chemical 

Resistance to 

oil/most alcohols  

Outstandin

g  

Outstandin

g 

Outstanding Outstanding Outstanding Outstanding 

Radiation/Heat 

Sterilization 

Resistant 

x yes yes yes yes yes 

FDA Compliant x yes yes yes yes yes 

Color Stainless 

Steel 

Black Any color Any color Black/Natural Natural/White 

Table 4.6: Material Comparison [74] 

 

4.2.3 Addressing Overall Need  

The design that Dr. Dunn created includes dimensions of a scalpel handle that contour the 

hand, which provides “increased contact area with the user’s hand using a larger diameter central 

portion and a smaller diameter trough”, or concave, that “allows rotation of the angle of the blade 

relative to the tissue without the need to change the grip on the handle” [53]. Dr. Dunn’s design 

is also a handle that can be utilized as an “adapter sleeve”, where the handle of already existing 

scalpels can be inserted. Using an adapter sleeve meets the need of making the design universally 

accepted; perhaps since it can fit over already existing scalpel blades that are currently used in 

every hospital, medical professionals will be much more willing to purchase them rather than 

needing to purchase newly designed scalpels altogether. The dimensions of the scalpel meet the 

need of making the scalpel more ergonomic during rotation of the angle of the blade: it contours 

the hand so it can sit comfortably in the hand, and it is easy to use during rotational incisions or 

motions. It also addresses the need for a safer design. With the distal section having an 

increasing diameter toward the blade, and the dramatic concave troughs, the hand is much less 
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likely to slip out of the surgeon’s hand due to the design’s stability. The polymer grip would also 

have a coefficient of friction closer to one, or greater than one, than that of stainless steel, 

making it more slip resistant. As a result, the new designs would be able to address the needs and 

requirements that Dr. Dunn desires to achieve.  

 

4.2.4 Design Feedback 

After handling the first manufactured prototype, and receiving opinions from colleagues, 

he provided feedback on the current design on his own ergonomic scalpel. His current design of 

the reusable ergonomic scalpel, according to him, does not have the proper weight to it, which is 

a requirement that would have to be altered. Currently, the proximal portion of the new scalpel is 

heavier than the distal or central sections, making the design slightly unbalanced during use. 

Other feedback received on ideas include also adding perforated or textured grips to the handle 

to increase slip resistance. By using these instruments, surgeons will experience a more 

comfortable tactile sensation when compared against standard instruments. This feedback was 

incorporated into the designs that are updated and drafted, while working alongside Dr. Dunn 

and the other MQP team. 

 

4.2.5 Initial Design Alterations 

The first design iteration attempts to maintain aspects of the original patent, as well as 

incorporating feedback. The materials chosen for the scalpel are stainless steel for handle and 

medical grade TPE was chosen to be the grip material. During material consideration, contacts 

from Teknor Apex provided samples of TPE with varying hardness ranging from 30 Shore A to 

80 Shore A to determine which hardness would be optimal for this application. After the material 

was chosen, the length of the grip piece was increased to ensure more optimal contact with the 

user's hand, taking into consideration variations of hand size. 

The next step in the design was to improve the friction between user and tool. The variety 

of texture patterns was chosen based on previously conducted research and personal preference 

from Dr. Dunn. The initial designs included a variety of ridges, diamond textures, knurled 

textures, and raised bumps to test. Out of these texture patterns, the most optimal grip was 

chosen to be manufactured onto the stainless-steel core of the body.  

 

4.2.6 CAD Modeling and Prototyping 

 Computer aided modeling was completed using the Solidworks 2019-2020 software. Dr. 

Dunn’s previous prototype of the improved ergonomic scalpel handle was recreated using 

precise measuring tools to determine its dimensions. Both the reusable and disposable models 

used the same dimensions. The major difference between the disposable and reusable models 

was that the reusable models were created using two material components.  

The initial 3D model we received was given to us by the other team working on the 

improvement of the scalpel handle to remain consistent with dimensions (Designing of 

Ergonomic Scalpel Handles with Optimized Weight and Balance). Their model is shown below 

in Figure 4.2. The model is shown to have a 7mm diameter hole through 118.675mm of the 

length of the scalpel starting at the base and 2 rectangular indents of 1.452mm on the grip 

segment. The base was given a fillet with a radius of 7.7mm. The scalpel handle part was 

segmented into 3 portions to make further alterations more approachable. Dimensions are shown 

in Table 4.7. Each iteration mentioned onwards has the same dimensions unless a change is 

stated in this section. 
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Figure 4.2: Weight and Balance MQP Group’s Model 

 

Next, our team recreated our own model that would be more useful for the purposes of 

the group. This model consisted of a solid core and slightly altered concavities at the grip and 

back segments of the handle. Dimensions are shown in Table 4.7. 

 

 
Figure 4.3: Optimized Grip MQP Group’s Model 

 

 Handle 

Length 

(mm) 

Grip 

Segment 

Length 

(mm) 

Grip 

Segment 

Concave 

Radius 

 (mm) 

Middle 

Handle 

Segment 

Length 

(mm) 

Middle 

Handle 

Convex 

Radius 

(mm) 

Back 

Handle 

Segment 

Length 

(mm) 

Back 

Handle 

Segment 

Concave 

Radius 

(mm) 

Weight and 

Balance 

Group’s 

Model 

122 40 68 35 72 45 101 

Optimized 

Grip 

Group’s 

Model 

122 40 94 35 72 45 104 

Table 4.7: Model Dimension Comparison 

 

Each of the following pictures will be displayed with the scalpel head side to the bottom 

right to help better visualize the grip portion of the handle consistently. 

Using the model in Figure 4.3 above, grip textures could then be added onto the surface 

of the grip segment. Grip textures were chosen based on research articles about high friction 
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textures in medical and dental applications. These textures were then tested for frictional 

properties. Each testing slab was created with 3 standard variations in texture size in PLA. The 

base of each slab was 76.2mm in width, 152.4mm in length, and 6.35mm in height. Textures 

were printed on the top face of each slab. This can be seen in Figures 4.4 through 4.9. Each type 

of texture had slabs printed with 1mm offsets from the slab and shape sizes of 3mm, 6mm, and 

9mm. 

 

Figure 4.4 shows slabs with the “Checkered Knurl” texture in 3mm, 6mm, and 9mm shape sizes 

(left to right). 

 

 
Figure 4.4: Checkered Knurl Texture Slabs 

 

Figure 4.5 shows slabs with the “Gear Teeth” texture in 3mm, 6mm, and 9mm shape sizes (left 

to right). 

 
Figure 4.5: Gear Teeth Texture Slabs 

 

Figure 4.6 shows slabs with the “Knurl Bump 4” texture in 3mm, 6mm, and 9mm shape sizes 

(left to right). 

 
Figure 4.6: Knurl Bump 4 Texture Slabs 

 

Figure 4.7 shows slabs with the “Knurl Bump” texture in 3mm, 6mm, and 9mm shape sizes (left 

to right). 
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Figure 4.7: Knurl Bump Texture Slabs 

 

Figure 4.8 shows slabs with the “Straight Knurl” texture in 3mm, 6mm, and 9mm shape sizes 

(left to right). 

 

 
Figure 4.8: Straight Knurl Texture Slabs 

 

Figure 4.9 shows slabs without texture to be used as a control for testing. 

 

 
Figure 4.9: Blank Texture Slab 

 

 

Figure 4.10 shows the same scalpel handle as in Figure 4.3, however the grip segment of 

the handle is replaced with an 8mm diameter core of the same material. This was done so that it 

could supplement removable grip prototypes with different surface textures. 

 

 
Figure 4.10: Main Body Scalpel Handle with 40mm Grip Core 
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Next, textured grip surfaces were made of each texture in Figure 4.11. Figure 4.11 shows 

an example of an isolated grip textured with “Knurl Bump” texture. The shape size of this 

example was set at 3mm and the offset of the shapes outwards from the material was set at 1mm. 

 

 
Figure 4.11: Knurl Bump 3mm Grip 

  

Furthermore, another handle design was created with an extended grip segment towards 

the middle segment. This would allow for longer grips to be made and is shown in Figure 4.12. 

The new grip segment length was 51.67mm instead of the previous length of 40mm. 

 

 
Figure 4.12: Main Body Scalpel Handle with 51.67mm Grip Core 

 

Naturally, longer grips were also created at the same 51.67mm length with the same design as 

shown in Figure 4.3. An example of the longer grips can be seen below in Figure 4.13. This 

example shows the texture “Straight Knurl” with a 6mm shape size and 1mm offset outward 

from its center. 

 
Figure 4.13: Straight Knurl 6mm Grip 

 

4.2.7 Final Design 
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The length of the cylindrical handle, from base (back end) to head (blade attachment 

site), was measured to be 122.675mm. At the base, the diameter was measured to be 14mm, at its 

widest point ... mm, and 14mm at the head of the handle. The back-end concavity was measured 

to have a radius of 104.628mm, the convexity of the handle was measured to have a radius of 

72.459mm, and the anterior concavity was measured to have a radius of 94.149mm. The base of 

the recreated model was given a fillet with a radius of 7.7mm. Based on testing results, three 

separate surface textures were chosen as final designs: Knurl Bump 6mm shape size by 1.5mm 

offset, Straight Knurl 6mm shape size by 1mm offset, and Knurl Bump 3mm shape size by 

1.5mm offset pivoted by 45 degrees. The reusable handle was altered by separating the grip 

portion from the remainder of the handle. This was done by replacing the dimensions of the 

model with an 8mm diameter core of material that extended 51.67mm into the handle from the 

head. Figures 4.14, 4.15, and 4.16 show the 3D modeling of the final design of the reusable and 

disposable scalpel handles. 

 

 
Figure 4.14: Knurl Bump 6mm x 1.5mm Grip Scalpel 

 

 
Figure 4.15: Straight Knurl 6mm x 1mm Grip Scalpel 
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Figure 4.16: Knurled 6 Pivoted 45° 3mm D x 1.5mm Grip Scalpel 

 

 

4.2.8 Feasibility Studies 

In order to determine if aspects of the design are applicable to the design requirements set 

forth earlier in the paper, feasibility studies were conducted. These studies were designed to 

allow both quantitative and qualitative data to be taken on the designs. Two aspects of the design 

that are being prioritized is functionality of a more ergonomic handle, and the safety of using 

these instruments. Safety is highly concerned with the slip resistance that the scalpel handle is 

able to perform. The feasibility studies here will determine if prototyped designs meet the 

requirements needed to be manufactured into usable instruments from a safety standpoint.  

To narrow down texture patterns that were discussed earlier in the chapter, coefficient of 

friction testing was done to provide quantitative data that would determine which textures were 

better for this application. This was done to be able to see which textures had the largest 

coefficient of friction on metal and on a rubbered surface (emulating a rubber glove). As 

mentioned previously, a larger coefficient of friction indicates better slip resistance, which was 

one of the major goals of this project.  

The textures and their variations were 3D printed on PLA flat blocks for the coefficient 

of friction testing. Using these set up in the schematic below, the test was set up. The texture 

pattern side was placed face down on the metal runway with a known weight (Ma) attached to the 

top of it. Attached to the block was also a string that ran over a pulley which was attached to 

another weight (Mb). The pulley was securely fastened to the table, and Ma was securely fastened 

to the textured block. A velocity and displacement sensor made by Vernier® was placed on one 

side of the runway and connected to the Logger Pro® software. When Mb was released to fall 

due to gravity, the velocity, acceleration, displacement, and time were recorded into a comma 

separated file for data analysis. The experiment was repeated with a rubber of 20A shore 

hardness sheet on the runway to emulate the coefficient of friction each texture would have 

against rubber gloves.  
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Figure 4.17: Coefficient of Friction Set Up 

 

 The coefficient of dynamic friction was calculated since this describes the coefficient of 

friction a material has when one object is moving against another, or if both objects are moving. 

This helped us estimate the coefficient of friction that a surgeon may have with these textures 

while their hand is moving on the scalpel handle. The acceleration that was used in the data was 

the average of the acceleration during the time that the black weight was moving. The equation 

that was used can be seen below.  

 

Equation 1: ud = (a(Mb+Ma) - Mbg)/-Mag 

 

Where ud is the coefficient of dynamic friction, a is the average acceleration while the 

block is moving, Ma and Mb are the weights defined in the schematic, and g is gravity (9.81 

m/s2). After completing these calculations for all of the textures, the following results were 

found. Checkered Knurl 3mm and Knurl Bump 3 mm were not able to be printed with the 

student printers at WPI, so those results are missing.   

 

Pattern Coefficient of Friction 

Checkered Knurl 3 mm N/A 

Checkered Knurl 6  mm 0.19239217 

Checkered Knurl 9 mm 0.19524076 

Knurl 4 3 mm 0.20027623 

Knurl 4 6 mm 0.17942971 
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Knurl 4 9 mm 0.17879563 

Knurl Bump 3 mm N/A 

Knurl Bump 6 mm 0.19550908 

Knurl  Bump 9 mm 0.1955473 

Gear Teeth 3 mm 0.21569011 

Gear Teeth 6 mm 0.21571578 

Gear Teeth 9 mm 0.20152888 

Straight Knurl 3 mm 0.20182785 

Straight Knurl 6 mm 0.20121172 

Straight Knurl 9 mm 0.20138151 

Control  0.17698614 

Table 4.8: COF Results for Test 1 

 

Here, we can see that the Gear Teeth, the Straight Knurls, and Knurl 4 3mm did the best 

during this testing by demonstrating higher coefficients of friction, closely followed by Knurl 

Bump and Checkered Knurl, which was consistent with the literature that we found. Since Gear 

Teeth 6mm, Straight Knurl 3mm, Knurl Bump, and Knurl 4 3 mm did well in the testing, the 

patterns we decided to move forward and do more testing with were these ones and their 

counterparts of different sizes. 

Using the more successful patterns, the same coefficient of friction test was repeated with 

a rubber sheet on the runway. Here, we expected the coefficients of friction to be much higher 

since the rubber would inhibit the block from moving more than the bare metal runway. The 

results can be seen below.  

 

Pattern Coefficient of Friction 

Checkered Knurl 6 mm 3.02296459 

Knurl 4 3 mm 2.12732807 

Knurl 4 6 mm 1.53073337 

Knurl 4 9 mm 1.53857683 

Knurl Bump 6 mm 2.0127038 

Knurl Bump 9 mm 2.01987031 

Gear Teeth 3 mm 1.8404908 

Gear Teeth 6 mm 1.84048234 

Gear Teeth 9 mm 2.25538919 

Straight Knurl 3 mm 2.22027957 
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Straight Knurl 6 mm 2.22776619 

Straight Knurl 9 mm 2.23123067 

Control  1.3069645 

Table 4.9: COF Results for Test 2 

 

 The patterns that did the best during this testing included the Checkered Knurl 6 mm 

pattern by far, which had the highest coefficient of friction, followed by Gear Teeth 9 mm, the 

Straight Knurl patterns, Knurl 4 3 mm, and the Knurl Bumps. Although Gear Teeth 9mm 

performed well in a block form during this testing, it was eliminated for this project due to the 

fact that the spaces between each ridge would be too large to fit on the scalpel grip and would 

not be feasible. Dr. Dunn was interested in us creating a Knurl Bump pattern that included more 

of a square pattern than a diamond pattern, which can be seen below. He was also interested in 

creating a Knurl Bump 6 mm texture with a greater depth.  

 

 

 
Figure 4.18: Knurl Bump Pivoted to be Squares 

 

Because of these results, the textures that remained the most relevant and interesting for our 

project to pursue were the following:  

1. Checkered Knurl 6 mm 

2. Straight Knurl 3 mm  

3. Knurl 4 3 mm  

4. Knurl Bump 6mm with a greater depth  

5. Knurl Bump Pivoted to be squares 

  

4.3 Alternative Design Options: 

Mechanical Interlock design.  

 In order to maintain a smooth transition from stainless steel to TPE, the diameter of the 

stainless-steel grip portion was decreased to an 8 mm core, enabling the TPE grip to replace the 

dimensions where the stainless-steel material would have been. This allows for the addition of a 

material grip portion without altering the diameter dimensions of the original patent. Once the 

decision was made to add a non-removable TPE grip around a stainless-steel core, aspects of 

manufacturing a plastic to metal interface had to be taken into account. To ensure that the TPE 

remains securely attached to the scalpel, small ridges were designed onto the stainless-steel core 

to ensure mechanical interlocking during compression molding manufacturing.   
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Two-part design:  

 With it being crucial that the design have a slip resistant material component to it, 

manufacturing of these materials onto the scalpel handle as discussed with more detail in 

Chapters 2.4 and 2.5, is critical for characterizing how the material can be sterilized, it’s 

durability, it’s cost, and it’s ease of bulk production. Dr. Dunn’s patented design involves the 

stainless-steel material being blended or incorporated with the slip resistant material (black) to be 

one full body, as seen below.  

 
Figure 4.19: Dr. Dunn’s Scalpel 

 

In addition to the first design, other design options were considered that would also fulfill 

the design criteria set for this product. One alternative iteration includes similar dimensions and 

parameters as the previous design, however the product is a two-part assembly which we call the 

“Pencil Grip” design, since many pencil grips can slip on and off. The stainless-steel body is 

designed to have a core section for the attachment of the TPE grip. This core is smooth, 

compared to the ridged core of the previous design, because the body and grip are manufactured 

as separate components that the user assembles when needed. This allows the user to slide on 

and off TPE grips before and after use. Adjustments are able to be made to the user’s texture 

preferences, instead of being limited to one universal grip. This can be seen below in Figure 

4.20.  

 

 
Figure 4.20: Pencil Grip Design 
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There are several reasons for why this design was created, which can be summarized 

below. This summary also includes possible ideas for this alternative design. 

1. Sterilizability  

a. The grip will degrade faster than the stainless steel, so making the 

grip disposable after however many cycles will make this design 

more practical, so one doesn't have to buy the whole device each time 

the grip degrades.  

b. Being able to take each part of the scalpel apart decreases the chance 

of crevice contamination, where microbes can enter crevices and 

remain alive even after steam sterilization. 

2. Grip Choice  

a. The surgeon could be able to choose the grip pattern that they find to 

be the most comfortable for them. 

3. Ease of manufacturing 

a. Manufacturing just one material is easier than manufacturing a 

stainless-steel body and an overmolding of a grip with a different 

material on it.   

Disposable design: 

 Since the disposable design had slightly different design criteria based on cost and ease of 

manufacturing, a different design was made. The grip length and diameter were held constant, 

but to limit cost expenditures, it was decided that the disposable scalpel be made of one material. 

Polypropylene was chosen as the disposable material due to its low cost and easy manufacturing. 

Since there was no need to account for multiple materials, the grip texture was added to the 

surface of the scalpel, eliminating the core rod design element in previous iterations. This allows 

the scalpel to be produced through injection molding in a singular mold, which reduces 

production and material costs.     

 

4.4 Final Design Selection 

 After reading the literature, discussing Dr. Dunn’s preferences, and completing our 

coefficient of friction testing and analysis, we finalized our design selection. The current 

literature and our coefficient of friction testing proved the success of patterns similar to the 

Checkered Knurl 6 mm, the Straight Knurl 3 mm, and the Knurl 4 3 mm textures. Dr. Dunn was 

interested in the Straight Knurl 3 mm texture, the Knurl Bump 6 mm texture with a greater 

depth, and the Knurl Bump Pivoted Square texture.  

 Because of the discrepancy between preferences, it is possible that different surgeons 

may have different preferences in terms of the grip texture. With the two part assembly “pencil 

grip” design, this discrepancy can be ameliorated. This will allow surgeons to pick their ideal 

grip pattern. The decision matrix below shows the comparison between the designs. The priority 

of each requirement and characteristic is ranked via a weight that is assigned to it, closely 

matching the priority of the design requirements listed in Table 4.10. The most important 

requirements or desirable characteristics are weighted as 5 in the decision matrix, and the lowest 

priority characteristics are labeled as 1.  The current standard, which are the No.3 and No.7 

scalpels used in most surgeries today, is assigned “0” for all characteristics. The Two Part Pencil 

Grip design, and the Mechanical Interlock design are assigned a 1 or a -1 if they are better or 

worse respectively,  than the current standard with regards to each characteristic. The Two part 
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Pencil Grip and the Mechanical Interlock designs are assigned a 0 if the characteristics are not 

better or worse in the new designs versus the standard.  

 

Characteristics Weight  The Standard 

(Currently Used 

Scalpels)  

Two Part Pencil 

Grip Design 

Mechanical 

Interlock Design 

Easy Manufacturability 4 0 -1 -1 

Affordable Cost  4 0 0 -1 

Biocompatibility/Medically compatibility  5 0 0 0 

Colorability/ Easily Distinguishable in the 

OR 

3 0 1 1 

No Crevice Contamination 5 0 0 -1 

Durability for repeated sterilization 5 0 1 -1 

Labor to clean the instrument 3 0 -1 0 

Slip Resistance/ Safety   5 0 1 1 

Accuracy/Precision of Surgeon using 

instrument 

5 0 1 1 

Ergonomics 5 0 1 1 

Easily addresses the problem of different 

surgeons having different texture 

preferences   

3 0 1 0 

Physical Appearance/Aesthetics 2 0 1 1 

Profitable for the Seller 2 0 0 1 

TOTAL   0 21 4 

Table 4.10: Decision Matrix for Choosing Final Design 

 

According to this table, the two part Pencil Grip design demonstrates more of the desired 

or positive characteristics than the one piece Mechanical Interlock design. Because of this, we 

are recommending that the final design that we chose is the Pencil Grip design. Since our testing 

and the literature we found support the Checkered Knurl 6 mm, the Straight Knurl 3 mm, and the 

Knurl 4 3 mm textures, our final design is focused on implementing these textures due to their 

scientific verification. We believe the surgeon or customer should be able to purchase their 

favorite grip out of these three patterns, since they were the most successful in the literature and 

our testing. 

 Because one of the goals of our project was to manufacture designs for Dr. Dunn 

specifically, the final design that we are manufacturing at Teknor Apex, a plastics company in 

Leominster, MA, is the Pencil Grip Design, with the Straight Knurl 3 mm texture, the Knurl 
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Bump 6 mm texture with a greater depth, and the Knurl Bump Pivoted Square textures, which 

were the textures that he preferred. 

 Although Dr. Dunn originally preferred a one-piece design, which is the Mechanical 

Interlock Design, this product was difficult to manufacture during the scope of this project for 

several reasons. The first is that manufacturability of the Mechanical Interlock design is a 

complex and costly process that would require our team to closely work with our consultant at 

Teknor Apex. It would require us to have access to the Manufacturing Labs at WPI, because we 

would have to manufacture the metal handle in the lab, bring it to Teknor Apex, and be onsite at 

the company to help with any troubleshooting. However, because the COVID-19 pandemic 

prevented us from being at WPI or Teknor Apex onsite, the Pencil Grip design is a better choice 

since its manufacturing does not require as complex as a process according to the consultant at 

Teknor Apex, and would not require an onsite presence, and it can be manufactured 

independently of the stainless steel handle. As a result, to be able to manufacture a product for 

this project, the Pencil Grip design became the final design.  

 

 

Chapter 5: Testing and Results 
The following testing protocols were drafted, however due to the COVID-19 pandemic, 

they could not be done during the scope of this project. Therefore, we recommend that this 

testing be done to verify the grip strength, the slip resistance, and the accuracy of the surgeon 

while using this device.  

The first study that can be run is practicing scalpel cuts on skin analogues, which Dr. 

Dunn suggested should be a grapefruit. This study can be broken down into two parts: comfort 

using the instrument, and precision and accuracy when making circular (0°-180°) or curved 

motions. This testing would be done with the help of resident surgeons who would volunteer to 

do the incisions on the grapefruit. This would allow feedback on the shape of the design because 

they would be able to express their opinions on comfort or ease of use, and how the instrument 

fits into their hand. The full protocols can be found in the Appendix.  

Testing would include tracing common cutting techniques on the grapefruit. This will be 

used in a side by side comparison between cuts from old scalpel handles, to determine the 

precision of the new design. Testing cuts such as circular or elliptical patterns will also give 

feedback if the design can increase ability to do 0°-180° motions, which is one of the priorities of 

a more ergonomic design. The grapefruits would be cut in half, with the flat, cut side being face 

down on a cutting board. Each surgeon would be given gloves, the new scalpel design, a No.3 

scalpel, and five halves of a grapefruit. The first grapefruit would be used as a practice for the 

surgeons to become comfortable using the new scalpel. The remaining second grapefruit halves 

will have stencil tracings similar to what can be seen below in Figure 5.1. The surgeon would be 

asked to make incisions that follow the stencil tracings using the new scalpel on one grapefruit 

half, and again using the No.3 scalpel on another grapefruit half.   
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Figure 5.1: User Testing Semi-Circle Cut Setup 

 

The second test would be done to compare how different materials and designs may 

interact with liquids similar to bodily fluids. This test will help determine the ability to grip the 

instrument, even when in contact with body fluids that make conventional instruments slippery 

to handle. To do this, the test subject, while wearing surgical gloves, would perform the same 

test above, with the No.3 scalpel and the new design having been introduced to a lubricant or oil. 

This will mimic the slippery conditions commonly endured in a surgery. The test subjects would 

then be asked to provide feedback on how comfortable they feel using these designs in 

comparison to current handles.  

 The third test would include a mole removal simulation. Section 3.2.3 mentions how 

mole removals are a common surgery that can be difficult to do with current scalpels. To 

simulate this and see if the new scalpel design makes this procedure easier, an irregular shape 

would be drawn on the grapefruit, and the surgeon would be asked to complete a standard mole 

removal surgery around the mole drawing on the other halves of the grapefruits that were not 

drawn on. This can be seen below in Figure 5.2.  

 
Figure 5.2: User Testing Semi-Circle and Ellipses Incision Cut Setup 

 

The surgeons would be asked a series of questions to help us both quantify and qualify 

our results. These questions include asking the surgeon to rate the quality of comfort of the new 

instrument and the No.3 scalpel on a scale of 1 to 5, with 1 being low comfort and 5 being high 

comfort. The surgeon will be asked to rate the slip resistance they experienced on the new design 

and the No.3 scalpel on a scale of 1 to 5, with 1 being low slip resistance and 5 being high. We 

will also ask how accurate they felt like they were while tracing the stencil tracings with the new 
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design versus the No.3, and if they felt like any improvements could be made to improve their 

accuracy with the new design. Finally, we would ask if they had any other general comments.  

 

Chapter 6: Final Design Validation 

Final Appropriate Engineering Standards 

 There were final appropriate engineering standards that were taken into account for our 

final products. ISO 11737 is concerned with the sterilization of medical products, components, 

raw materials, and packaging [66]. Although packaging of our final design is something that was 

not a concern that was covered during the scope of this project, all of the materials used in the 

final designs are autoclave sterilizable and EtO sterilizable, complying with this standard [75]. 

The raw materials and final product have the capability to abide by this regulation. More testing 

and information has to be researched in terms of packaging the designs.  

ISO 10993-5 which is concerned with biocompatibility and cytotoxicity was also 

considered when choosing our materials [67]. Teknor Apex’s medical grade TPEs, which is what 

is to be used for our device, are ISO 10993-5 compliant, and the stainless steel on the handle, 

which is used in most scalpels today, is also of a medical grade, showing its compliance with this 

standard [76].   

Another standard that was taken into account was ISO 13485, which details requirements 

of a quality management system that a company must show to prove its ability to create medical 

grade materials or medical devices that abide by regulatory requirements and customer needs. 

[77]. The medical grade stainless steel that is used in current scalpels abides by this standard for 

it to be used as a medical device, and the medical grade TPE sold by Teknor Apex also abides by 

this standard [75].   

Finally, ISO 7740 defines the dimensions of fitting features for detachable scalpel blades 

and the handles. This ensures interchangeability of scalpel parts from different manufacturers 

[70]. The blade fittings were also considered for the final design.  

 

6.1 Economics  

The proposed design will have an effect on the economy, especially the disposable 

version. One study that investigated the economic advantages of single-use, sterile-packed 

instruments for total knee arthroplasty found that single use instruments like our disposable 

scalpel improve efficiency and safety in the operating room [78]. The event of surgical site 

infections is less likely to occur via single-use instruments according to several studies that 

illustrate the possibility of reusable instruments being contaminated even after sterilization 

[economy]. They also found that for total knee arthroplasties, there were significantly more 

infections at the surgical site when reusable instruments were used rather than single-use 

instruments [economy]. Additionally, the operating room staff members that must clean the 

instruments were found to save a significant amount of time not having to clean the instruments 

and sterilize them, improving efficiency. Overall, from the 500 total knee arthroplasty cases at 

each of the 200 sites the researchers tested the usage of disposable instruments at, the average 

cost savings that they found by using disposable instruments rather than reusable instruments 

saved about 994 dollars per total knee arthroplasty. This was largely due to the decreased need to 

sterilize trays, which is expensive. Hospitals with higher wages and sterilization costs had more 

apparent cost savings with single-use instruments, and they found that up to 51% of operating 

days could have been used to do additional procedures due to the time that was saved in the OR 

from having to perform less cleaning [78]. As a result, the reusable instrument may not have 
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much economic impact as current instruments, but the disposable version may have a significant 

impact. It may even entice hospitals to pursue other disposable instruments, improving their 

efficiency more. 

 

6.2 Environmental Impacts. 

 As with most consumable products, these scalpel handles do not provide any major 

positive changes to the environment. The disposable scalpel handles are made out of 

Polypropylene, a hard plastic. These handles are used for a total of one operation, and are meant 

to be disposed afterwards. The negative impacts that the disposable handle will have on the 

environment is equal to the current standard of the competitors on the market. Within recent 

years, Polypropylene has been optimized to cause a lower negative impact on the environment. 

The chemical makeup of polypropylene does not have any toxic components. However, 

Polypropylene has a slow degradation rate [79]. 

 The reusable scalpel handles are made of two primary materials, stainless steel and 

thermoplastic elastomer. The effects on the environment are lesser as these tools are meant to be 

reused. Due to the lower durability of the thermoplastic elastomer, the grip portion of the 

reusable handle would need to be replaced every so often due to wear on the material. Because of 

this, the grip portion may cause a similar negative effect on the environment to that of the 

Polypropylene. Both the Polypropylene and the thermoplastic elastomer would be disposed of by 

biotrash disposal.  

 

6.3 Ethical Concerns  

 With new surgical instruments comes a learning curve for surgeons to undergo in order to 

achieve proper usage of the instruments. Although a procedure using current scalpels and our 

proposed design would be the same, the incisions that the surgeons make on the patients using 

the proposed design will inevitably feel different than incisions made using current scalpels.  As 

mentioned in section 2.1, sufficient practice with a surgical instrument instils a learned sense of 

haptic feedback associated with each instrument, which is necessary for a surgeon to better 

understand how surgical procedures feel in relation with the patient, tool, and in their own hand. 

The tactile and force sensation from different tissues in the body can help guide the surgeon and 

also provide information on the orientation and location of the tools they are using, and how hard 

to press the scalpel on the bodily tissue that they are making an incision on. A new instrument, 

regardless of how similar the haptic feedback the new instrument demonstrates in relation to 

current instruments, would require a new understanding of the haptics of that new instrument.  

According to an article written by the Society of American Gastrointestinal and 

Endoscopic Surgeons on ethical considerations involving new surgical instruments or 

techniques, when new instruments and techniques are created and shared experience with the 

new device is limited, there is a need for early users to document the outcomes of using these 

instruments. This helps to improve the number of shared experiences with the device in early 

clinical use of the instrument, as well as allow more surgeons to ask for improvements on the 

device to be made before mass production of it [80]. It’s also critical for surgeons to gain enough 

training on the device on skin or flesh analogs prior to using them in the operating room, to 

ensure that their patients are not being put at risk due to a surgeon’s lack of confidence 

associated with the proposed scalpel [80].  

 

6.4 Health and Safety 
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Both the disposable and reusable design were made to address issues that are associated 

with the use of the current block scalpel design. The age-old design of the surgeon's scalpel has 

made very little change, in an ever expanding medical world. Tools become covered in bodily 

fluids and become slippery when handled with surgical gloves. Oftentimes tools need to be 

swapped out for clean, dry scalpels to minimize slip. In addition, the rectangular shape of the 

scalpel does not fit comfortably in the hand and can hinder movement or rotation of the tool [53]. 

These can lead to slipping and injury to patients or doctors, and directly impact the safety and 

health of those involved.  

To combat these design limitations, the increased curvature and addition of a grip 

material and texture has been incorporated into the design for increased gripping ability of the 

surgeons during procedures. The ergonomic scalpel will allow for an increase in the safety of 

both the surgeon and the patient. Both the material and textures of the grips have been chosen 

because of their comfort and data showing increased coefficient of friction. Increasing the 

friction, and ensuring the comfort of the user, allows the doctors to have better haptic feedback 

with their instrument, and better control of the procedures they are performing. More 

importantly, the addition of the texture is intended to limit the hand slipping down the tool when 

applying pressure to perform a cut. The round shape of the tool will allow the surgeon to perform 

circular or elliptical cuts without having to adjust the instrument, leading to cleaner and more 

precise cuts, which can minimize scarring. With better control over the instrument, and less need 

to swap instruments during surgery, this can improve incidental poking injuries for all parties in 

the operating room. As stated previously, scalpel injuries are seen in up to 15% of surgeries, and 

pose a risk of blood contamination between user and patient [6]. Increasing the ergonomics of 

this tool and addition of a grip section can increase the safety of the patient and staff in the 

surgical room.  

Other aspects of the design, such as the two-part assembly and the materials are chosen 

greatly impact the stakeholders in this project. The two-part assembly was specifically designed 

to minimize bodily fluids from building up between the TPE and metal interface, which allows 

for a more thorough sterilization between uses. Additionally, giving the surgeons multiple grip 

textures allows them to choose which grip they are most comfortable with, instead of having to 

adapt to a texture that might not be ideal for them. The materials were all chosen based on 

biocompatibility, sterilizability, and other medical standards to ensure the best quality tool for 

the job. All these aspects combined into one design ensures improved health and safety for the 

medical staff and the patients who are the most important stakeholders in the project.  

 

6.5 Manufacturability Prospects 

 The next step in the project is large scale manufacturing. Prototype creation and large-

scale manufacturing typically follow different processes. The goal of a prototype is to test that an 

idea can be actualized. The goal of large-scale manufacturing is to maximize the efficiency of 

production. Prototype production may be slow and expensive while large scale manufacturing 

should be efficient.  

 Manufacturing will be executed in two parts. The steel base component will be 

manufactured separately from the TPE grip component. The grip component will be 

manufactured via injection molding, a process in which pressurized melted material is injected 

into a die where the material fills a mold and solidifies into a part. Injection molding is ideal 

because it allows cost efficient manufacturing quickly of many precisely detailed parts since the 

process is automated. The texture design will not be lost using this method. To achieve this, an 



 

 48 

initial mold will be designed in Solidworks to interface with an injection molder. The simplest 

injection mold design is that of an insert that fits into aluminum frames within the injection 

molder. The insert must be made out of a 3D printable material that has high temperature 

resistance and toughness. Specialty materials for this purpose exist including Formlabs High 

Temperature resin and Stratasys Digital ABS [81]. 

 This manufacturing would be produced by an external company that has injection 

molding plants that adhere to the regulations of manufacturing medical devices in facilities such 

as ISO-13485.  

 

 

Chapter 7 

The results of the testing detailed in Chapter 5 that was completed with one of our MQP 

teammates can be seen below. Ideally, the scalpels would be tested with several surgeons; 

however due to the COVID-19 pandemic, these had to be tested by the teammate who had the 

scalpels with her. It was not feasible to send the scalpels to Dr. Dunn for testing because the 

hospital was concerned with combatting the pandemic. To prove that the user testing protocol 

and the process of data analysis was sufficient, the testing was done by one of our teammates and 

her results can be seen below. ImageJ was used for this analysis.   

In the table below, the “ratio” value in the table and in the bar graph depicts how close 

the user was able to make incisions that followed the elliptical symmetry for the skin growth 

removal simulation. The closer the number is to 1, the more symmetrical the cut was. It is 

evident that Straight Knurl 3mm did the best, closely followed by Knurl Bump Pivoted to be 

Squares, and the scalpel without a texture. The ones that did the most poorly were Knurl 4 3mm 

and Checkered Knurl 6mm.   

 

 

Grapefruit Scalpel  Area Hemi-

Ellipse A 

(cm) 

Area Hemi-

Ellipse B 

(cm) 

Difference 

(cm) 

Ratio 

1 Knurl Bump 

6mm with 

greater depth 

3.087 4.238 1.151 0.72 

2 Knurl 4 3mm 2.545 1.690 0.855 0.66 

3 No Pattern 5.735 6.759 1.024 0.85 

4 Checkered 

Knurl 6mm 

4.976 3.450 1.526 0.69 

5 Straight 

Knurl 3mm 

6.913 6.121 0.792 0.89 

6 No.3 scalpel 5.251 3.929 1.322 0.75 

7 Knurl Bump 2.665 2.290 0.375 0.86 
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Square  

Table 7.1: Ellipses Cut Symmetry User Testing 

 

 

 
Figure 7.1: Ellipses Cut Symmetry User Testing Ratio 

 

 

Qualitative 

 After the user completed the test, they were asked to rank the comfort they experienced 

with each scalpel grip and the slip resistance they experienced when the scalpel was dipped in 

oil. The results can be seen in the table below.  

 

Scalpel Prototype Comfort (1 = low comfort, 5 

= high comfort) 

Slip (1 = worse slip 

resistance, 5= excellent slip 

resistance) 

Checkered Knurl 6 mm 5 5 

Straight Knurl 3mm 4 3 

Knurl 4 3mm  3 2 

Knurl Bump 6mm 1.5mm 

offset 

4 5 

Knurl Bump Pivoted 

Squares 

4 5 

No texture at all  2 2 

No.3 scalpel 1 1 

Table 7.2: Textured Scalpels Comfort Rating 
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In terms of comfort, Checkered Knurl 6 mm was the most comfortable for the user, 

followed by Straight Knurl 3mm, Knurl Bump 6mm 1.5 offset, and Knurl Bump pivoted to be 

squares. The user felt that the worst for comfort was the No.3 scalpel and the scalpel that did not 

have any texture at all. The most slip resistant patterns scored equally. They were Checkered 

Knurl 6 mm,  Knurl Bump 6mm 1.5 offset, and Knurl Bump pivoted to be squares. The reason 

why the user scored Checkered Knurl 6mm higher overall than the Knurl Bump designs was 

because the Checkered Knurl Pattern 6mm had enough space between each raised diamond 

where rotation of the scalpel was easier. However, even with this space, the user felt that when 

the device was covered in oil, the pattern was still able to inhibit her hand from falling toward 

the blade while cutting. While the Knurl Bumps did well in the slip resistance aspect, it was 

difficult for the user to move their fingers at all. This inhibition of any movement made the 

rotational cuts more challenging in comparison to the Checkered Knurl pattern.  

 Knurl 4 3mm was a pattern that did exceptionally well in the coefficient of friction 

testing and in the literature. However, according to the user, the pattern was not raised enough 

for it to have enough friction when the user had gloves on, which caused the user’s to feel like 

their hand was slipping toward the blade when it was covered in oil. Straight Knurl 3 mm was 

also a design that was confirmed in the literature and in coefficient of friction testing. According 

to the user, this pattern was comfortable until rotational motion was being performed. Since the 

straight-line pattern goes across the circumference of the grip, the user felt like there was barely 

any friction when the user was performing elliptical incisions, which could cause slippage in dry 

or wet conditions. As a result, according to this user, Checkered Knurl 6mm performed the best 

in terms of comfort.  

Although Checkered Knurl scored highly in the comfort area, it scored low in the 

precision area. This can be attributed to the user not being a surgeon who knows how to make 

the elliptical cuts, however, so the precision data is not reflective of a user who has experience 

with these procedures. However, this data is still useful because it provides validation that the 

protocol for this experiment is usable and would yield accurate information if a surgeon were to 

complete the protocol.  

 It is likely that if every teammate completed the test, that these opinions would be 

different. It is also likely that if we did this testing with surgeons who have different specialties, 

the grip choice between them would be varied, or different surgical procedures could have 

different grips that are the most beneficial to use for that specific surgery. One may need a grip 

that completely inhibits any rotational motion, for example. This only validates that the final 

design choice made would effectively please a wide variety of people. Allowing the surgeon to 

pick the grip of their choice out of several tested options that are proved to be effective in the 

operating room, would eradicate the need to choose the “best” grip design. The “best” grip 

design could vary between different surgeons and even different procedures. 

 

 Literature Comparison 

 The texture designs in this project were based on current literature, testing, and feedback 

from surgeons at University of Massachusetts Memorial Medical Center.  

 From our initial literature review it was anticipated that diamond patterned texture would 

provide the scalpel with the best grip under wet conditions compared with a straight knurl texture 

[30]. It was also anticipated based on past literature that textures oriented perpendicular to the 

direction of pulling force would provide the highest coefficient of friction [[51]. Additionally, it 

was also found in a study that ridge height, width, and spacing making up the texture affect the 
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coefficient of friction against a gloveless finger. This study recommended the use of 10 mm 

spacing between ridges, a ridge height of around 2.5 mm, and a short ridge width of around 1mm 

to create the optimal gripping texture. The study also noted that depending on the height and 

width of the ridges, the optimal ridge spacing is also likely to be less than 10 mm especially for 

hand gripped textures [50].  

 Our own results show that the straight knurl pattern with 3 mm ridge spacing and the 

pivoted (square) knurl bump pattern performed the best in the user test in which the subject 

performed an elliptical incision to remove a hypothetical mole from a grapefruit. The aim of the 

incision is to create a shape as symmetrical as possible. The incisions made with the Straight 

Knurl 3mm and the Knurl Bump Pivoted textured scalpels were found to possess the highest 

symmetry of all the cuts. Knurl 4 3mm and Checker Knurl 6mm texturized scalpels performed 

the most poorly during this test. These results deviated slightly from what was anticipated based 

on the literature. Straight Knurl 3mm for one does not offer any perpendicular texture in the 

direction of rotation which hypothetically should decrease the rotational grip. However, the 

Knurl Bump Pivoted (Square) texture did well on this test as well. This texture does offer texture 

in both planes. Based on the literature, we anticipated this texture to do well in user testing and it 

did. Both textures display ridge spacing less than 10 mm apart, however, so do the textures that 

did the most poorly on this test. The discrepancies between our results and those expected based 

on previously published literature could be to do with a number of factors. Most importantly, our 

test was novel. None of the literature we examined performed testing where textured instruments 

were being used as intended. Perhaps when actually using a scalpel, maximum grip force is not 

necessarily ideal, especially since the instrument is required to rotate in the surgeon’s hand. 

Additionally, our sample size was quite small and not made up of trained surgeons. There is a 

good chance that the data we collected is not reflective of the population we are targeting.  

 Users rated the Checkered Knurl 6 mm, Straight Knurl 3 mm, Knurl Bump 6mm 1.5 

offset, and Knurl Bump Pivoted (Square) textures the highest in terms of comfort. The textures 

that scored the highest during the elliptical incision user testing, Straight Knurl 3mm and the 

Knurl Bump Pivoted, scored high in terms of comfort as well. The studies looked at did not 

investigate user comfort but there could be a correlation between grip effectiveness and comfort. 

The untextured scalpel and the control No.3 scalpel scored the lowest in terms of comfort. Knurl 

4 3mm was a pattern that performed well in the coefficient of friction testing and in the literature. 

However, according to the user, the pattern was not raised enough for it to have sufficient grip. 

Straight Knurl 3 mm was also a design that was confirmed in the literature and in coefficient of 

friction testing. According to the user, this texture did not provide sufficient grip for rotational 

motion.  

 

Chapter 8 

Recommendations:  

 After considering design criteria, manufacturing, testing, and feedback from our peers, 

we recommend the use of the two part “pencil grip” design. This design was ultimately chosen 

because it functions similarly to the one-part design in improving grip, but the interchangeable 

grips allow for additional benefits for the buyer and manufacturer. This product would allow for 

an easier manufacturing process and saves on production costs. From the testing and feedback 

that was received: the textures recommended for final production are as follows: Checkered 

Knurl 6 mm, Straight Knurl 3 mm, Knurl 4 3 mm, the Knurl Bump 6 mm texture with a greater 

depth, and the Knurl Bump but with slight alteration with the orientation. This allows buyers to 
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choose and swap grips according to their favorite grip with varying colors. We believe the ability 

to customize the tools would be a more marketable product than one universal grip. In terms of 

long-term use of the tool, since the rubber grip will degrade from repeat sterilization quicker than 

the metal handle, replacing only the grip portion is more cost effective than having to buy a new 

tool. Sterilization of the scalpel is recommended to be done as separate parts for ensuring the tool 

is fully clean and not storing hazardous material in crevices.  

 For future work on this project, it is recommended that further testing be done on the grip 

textures and user testing of the final prototypes. The final grip textures were chosen based on 

coefficient of friction testing done by the group, and personal preference feedback from the 

group and both advisors. It is suggested that the textures that performed well in coefficient of 

friction testing, as well as Dr. Dunn’s preferred textures, be evaluated by user testing outlined in 

chapter 5. Further testing will provide a larger sample number, and more reliable data. One key 

aspect of testing is to see how the different textures and shape of the tool affect the accuracy and 

precision of surgeons. Additionally, feedback on comfort and aesthetics is important in 

determining what prototypes should move forward to final production.  

 

Conclusion:  

 As mentioned, current designs of scalpel handles are not ideal for hand ergonomics and 

can lead to difficulties for certain cutting motions or slipping of the instrument. The goal of this 

project was to address the need to limit slipping while taking into consideration comfort and 

mobility of the instrument. The final Pencil grip design was created to enhance the shape of the 

Dr. Dunn’s already existing handle as well as to incorporate a rubber material grip portion to Dr. 

Dunn’s design. The addition of a texture pattern and choice of material was utilized to increase 

the friction between the surgical glove and the grip portion of the tool. Testing protocols were 

created to determine which surface textures provided the highest coefficient of friction, as well 

as determining which prototypes were comparable to the precision of the original scalpel design. 

Feedback based on Dr. Dunn’s professional experience in the field and personal preference also 

aided in determining which grips were recommended for manufacturing.  
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Appendix: Testing Protocols  

 

**Tests must be done in the following order:  

I.DRY TEST  

1. Setup: cut grapefruit into halves and place onto table. Layout scalpels of choice in order 

of testing, as well as No.3 scalpel.  

1. Layout surgical gloves 

2. Use a compass to draw concentric semi-circles on the grapefruit using a 

light pink or green color seen below  

 

2. Begin warmup:  

1. Have the surgeon trace designs to allow for multiple tests/trials with the 

scalpel prior to the test 

2. Total warmup time: 1-2 minutes for each practice run, on the first half of 

warmup-grapefruit.  

3. Throw out practice run 

3. Begin testing 

1. Give surgeon 30 seconds minute per cut: total of 1.5  minutes for the dry 

run 

2. Label each grapefruit: student number, grip texture,  

3. Take pictures to then collect accuracy trace data on ImageJ 

4. Repeat steps a-d with each scalpel  

 

II. MOLE REMOVAL TEST:  
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1. On other side of the grapefruit used in the dry run, draw a small circle to emulate a mole 

seen below  (mole removals require symmetrical elliptical cuts, which are deemed 

difficult to do with the current scalpel) 

2. Surgeon is asked to cut what would be the dotted line in the figure below (but the dotted 

line will not be there; they are expected to make the symmetrical cuts without guidance 

 
4. Begin testing 

1. Surgeon has 30 seconds minute side: total of 1 minute for the dry run 

2. Label each grapefruit: student number, grip texture,  

3. Take pictures to then collect accuracy trace data on ImageJ 

4. Repeat steps a-d with each scalpel  

III. OIL TEST 

1. Setup: cut grapefruit into halves and place onto table. Layout scalpels of choice in order 

of testing, as well as No.3 scalpel.  

1. Layout surgical gloves 

2. Use a compass to draw concentric semi-circles on the grapefruit using a 

light pink or green color seen below  

2. Begin testing 

1. Surgeon has 30 seconds minute per cut: total of 1.5  minutes for the oil run 

2. Label each grapefruit: student number, grip texture  

3. Take pictures to then collect accuracy trace data on ImageJ 

4. Repeat steps a-d with each scalpel  

 

SURVEY AFTER TESTING 
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• Ask surgeons on a scale of 1 to 5 to quantify comfort 

o 1= low, 5= high 

•  Ask surgeons on a scale of 1 to 5 to quantify slip 

• How accurate do you think you were/Do you think there is anything about the design that 

could have improved your accuracy?  

• Any other general comments?  

Outcome: Determine best textures and create sterilizable models with TPE 

IMAGEJ ANALYSIS 

1. A photo taken from the ellipses incision test is opened in ImageJ 

2. Using the Polygon Selection Tool, one half of the ellipse cut is selected (hemi-ellipse A).  

3. Hemi-ellipse A's area is measured in pixels and then converted to cm using a known 

length in the analyzed image. 

4. The other half of the ellipse cut is then selected using the Polygon Selection Tool (hemi-

ellipse B) 

5. Hemi-ellipse A's area is measured in pixels and then converted to cm. 

6. The ratio between the areas of each symmetrical half should be as close to 1 as possible.  
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