
Worcester Polytechnic Institute Worcester Polytechnic Institute

Digital WPI Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

2020-05-17

Reactome Advanced Knowledgebase Search and Pathway Reactome Advanced Knowledgebase Search and Pathway

Visualization Prototype App Visualization Prototype App

Ryan T. Vereque
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

Repository Citation Repository Citation
Vereque, R. T. (2020). Reactome Advanced Knowledgebase Search and Pathway Visualization Prototype
App. Retrieved from https://digitalcommons.wpi.edu/mqp-all/7484

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has
been accepted for inclusion in Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI.
For more information, please contact digitalwpi@wpi.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/343944291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu/
https://digitalcommons.wpi.edu/mqp-all
https://digitalcommons.wpi.edu/mqp
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7484&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/7484?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7484&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Reactome Advanced Knowledgebase Search and Pathway
Visualization Prototype App

by

Ryan Vereque

A Major Qualifying Project

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

in Computer Science

by

May 2020

APPROVED:

Smith, Therese

Abstract

The goal of this project is to prototype an app that allows users to search and

visualize the Reactome knowledgebase. The Reactome ontology contains biological

pathways, their components, and interactions. The app allows the user to construct

search criteria across multiple ontological concepts and their specific relationships,

whereas existing Reactome search tools cannot. The app also re-creates pathway

visualizations. This work could serve as a basis for visualizing these pathways in

custom use cases not met by the official tools.

Contents

1 Problem Description 1

2 Related Work 3

2.1 Existing Reactome Search Tools . 3

2.2 Existing Pathway Diagram Viewer Tool 4

2.3 How this Project Advances Search and Pathway Diagram Viewer Tools 6

3 Overall Design 7

3.1 Development Environment and Utilized Packages 7

3.2 General User Interface Layout . 8

3.3 User Interface and Features . 8

3.3.1 Pathway Diagram Viewer . 8

3.3.2 Search Feature . 13

3.4 Data Structures and Algorithms . 20

4 Results and Conclusions 22

5 Limitation and Future Work 24

5.1 App Usage Instructions . 24

5.2 General Set Operations Between Search Result Sets Instead of Chains

of Intersections . 24

5.3 Searches Using Selected Diagram Elements 26

5.4 A Full-Featured Diagram Editor . 26

5.5 Using a Database in Addition to / Instead of the API 27

i

Appendices 31

A App Source Code 32

A.1 Source Code Location . 32

A.2 Instructions on Building the Node Project 32

ii

List of Figures

3.1 Pathway diagram viewer opened to pathway R-HSA-69239, known as

“Synthesis of DNA” . 10

3.2 Reactome’s pathway diagram viewer opened to same pathway as fig-

ure 3.1 . 11

3.3 A side-by-side comparison between closeups of pathway diagram

viewers from this project’s app and Reactome’s existing tools. The

portion of pathway being displayed is from the same pathway as fig-

ures 3.1 and 3.2 . 12

3.4 The same closeup from Figure 3.3 of this project’s pathway diagram

viewer, but with a context menu having been opened on empty space 13

3.5 The simple search pane appears once the “Open Pane” option has

been selected . 14

3.6 Search panes can be resized and dragged 15

3.7 The initial state of the advanced search pane and its “Query Filters”

tab . 16

3.8 The facet category for ontological type has had the “Pathway” option

chosen . 16

3.9 Facets categories can be expanded/contracted and scrolled-through . 17

3.10 The initial state of the “Relational Filters” tab 17

3.11 Ontological relationship filter options 18

iii

3.12 A second set of search panes has opened from the chosen relational

filter. These search panes have been re-positioned within the diagram

for visual clarity. The two panes on the right are the originals, and

the two panes of the left have just been created. Notice that in the

new advanced search pane, several type facet options have had their

selection disabled, while the remainder have been selected by default.

Different facet options are disabled according to their compatibility

with the chosen relational filter. 19

3.13 An example of the relational search filter in action. A summariza-

tion of important search criteria for the displayed search could be

“Human pathways containing the search-string “tumor” that contain

the selected DNA Sequence “TP53 gene””. The results of this search

are displayed in the first (right-side) simple search pane. The first of

these two pathway results was selected and then became displayed in

the pathway diagram viewer. 20

iv

Chapter 1

Problem Description

Reactome is a knowledgebase specializing in biomolecular pathways [FKV+18].

The Reactome project also provide a variety of bioinformatics tools including but

not limited to a full-text search tool [FSG+16], an API for programmatic access to

the knowledgebase [Reab], and a pathway diagram viewer [Reaf].

Searching the Reactome knowledgebase using the available tools for entries that

relate to another set of entries via specific ontological relationships can be a labo-

rious task when additional search criteria is placed on either set of entries. If a

search task involves identifying a set of entries that are further ontologically related

to the results of the previous task, then the number of search queries and man-

ual involvement required quickly grows unreasonable without automation. These

search-related limitations of the existing set of tools is addressed in the prototype

app developed for this project.

Furthermore, Reactome’s pathway diagram viewer does not feature the ability to

have a user modify a pathway’s contents or stylize them in any customized manner.

The prototype app in this project aims to reproduce some of the visual contents

from the existing pathway viewer, and in doing so will address challenges associated

with gathering and processing diagram data that would be needed for implementing

a new and enhanced pathway diagram viewer.

This prototype app is hosted publicly on GitHub Pages:

https://kicknickr.github.io/reactome-search-vis-prototype/

1

https://kicknickr.github.io/reactome-search-vis-prototype/

The source-code is available, and the app may be hosted locally. The repository

may be found at:

https://github.com/kicknickr/reactome-search-vis-prototype

See appendix chapter A for more information.

2

https://github.com/kicknickr/reactome-search-vis-prototype

Chapter 2

Related Work

The Reactome knowledgebase follows a formal data schema [VDS+07] than can

be interpreted as an ontology. This ontology delineates concepts including chemical

reactions, genes and their products, cell compartments, diseases, and pathways and

their regulation, among other things [Reac, Read].

2.1 Existing Reactome Search Tools

The full-text search tool provided by Reactome allows the user to search for

entries in the knowledgebase by specifying a search string and selecting any number

of options for facets [FSG+16]. Some examples of these facets include a general

category of ontological concepts the entry belongs to, the compartment within a cell

that the entry is associated with, the species that the entry is associated with, and

a set of predefined keywords it is associated with.

The search functionality provided by this existing Reactome tool is useful for a

variety of use cases, but is lacking in some respects. Many use cases for searching

the Reactome knowledgebase may require the ability to explore entries that are

ontologically related by some specific concept to a first entry. One such realistic

use case is a user wanting to search for pathways that contain a given gene product

and that also meet a certain search string. To find entries that are associated with

another (set of) entr(ies) in a specific ontological relationship is not possible through

the aforementioned full-text search tool.

3

There are other less user-friendly tools provided by Reactome that may partially

aid a user with these kinds of use cases. One such tool is the Content Service API

which can find entries that are related to a single entry for a certain limited set of

relationships, including the relationship that would be relevant for finding pathways

that contain a gene product [Reac]. However, further filtering this set of pathway

entries with a search-string is non-trivial because this set of results would have to be

intersected with a set of results from the a full-text search in highly manual process.

As the use case increases in complexity, the benefits of automating this process

become clearer. Consider a use case where the user wants to search for all pathways

that contain any of the reactions from a given initial pathway. This would require

one use of the API to find reactions contained in the given pathway, then another

use of the API for each reaction to find the pathways that contain that reaction

[Reaa]. The search process would be even more complex if either these intermediate

reactions or the final pathways needed to satisfy criteria about what species or cell

compartment they exist in. While these searches queries could be fulfilled by directly

querying Reactome’s publicly available relational or graph databases, the technical

knowledge of syntax required for forming these queries, along with it taking place

outside the web browser, limits its target audience as a search tool.

2.2 Existing Pathway Diagram Viewer Tool

Another tool provided by the Reactome project is the pathway diagram viewer

which displays curated visualizations of pathways [Reaf]. These diagrams represent

networks of reactions including their inputs, outputs, catalysts, and other related

concepts each represented with their own node in the diagram. The reactions in these

diagrams are all of the ontological concept “Reaction-Like-Event” (RLE). A RLE is

4

represented via “edges” with multiple tails connected to instances of its previously

mentioned related concepts. Not all possible ontological relationships and entries

are included in a pathway diagram, instead the diagram mostly consists of RLEs and

their constituent Physical Entities (PEs). These diagrams also feature interactivity

including the ability to view more information on a selected visual element and

search for elements within a diagram using a search string [FKV+18]. It should

also be noted that there is a distinction between detailed pathway diagrams (which

are also dubbed as “low-level” diagrams in the API documentation) and enhanced

high-level diagrams (EHLD) [Reae, Reaa].

These diagrams do not, however, allow elements to be re-positioned, included, or

excluded. It also does not allow the customization of visual styles used for different

diagram elements. These claims are evidenced by that fact of there being no men-

tion to such features in the collection of papers published by the Reactome project

under their regular naming convention of “The reactome pathway knowledgebase”

[CMH+14, FSG+16, FJM+18, JMV+20] and in the latest pathway diagram focused

paper [FSV+18] which collectively go back 2014. This dates back some time before

the last major version release (version 3) of the pathway diagram viewer in 2015

[FSG+16]. It also evidenced by no mention in pathway diagram related documen-

tation [Reae, Reaf]. One use case where such functionality may be useful is where a

user wishes to create an alternative interpretation of what reactions are relevant to

a given biological pathway. While this use case is beyond the scope of the prototype

app, it could theoretically involve the user starting from an existing diagram and

then including searched-for RLEs that connect to Physical Entities already present

in the diagram, extending the network.

5

2.3 How this Project Advances Search and Path-

way Diagram Viewer Tools

Developing the aforementioned desirable features in a piece of software may

require several iterations of design. To make progress towards this goal, a prototype

web app was created in this project. It implements a UI with some relational search

features and some underlying logic necessary for future pathway diagram features.

6

Chapter 3

Overall Design

3.1 Development Environment and Utilized

Packages

The development environment for this web app is reliant upon Node.js (Node).

Node is “an asynchronous, event-driven JavaScript runtime that offers a powerful

but concise standard library”. It is has a built-in package manager named NPM

which allows for the inclusion of publicly accessible packages into a node project

[You17].

Notable packages that provide additional context to the app’s development, with-

out significantly influencing import design choices, include Babel and Parcel. “Babel

is a toolchain that is mainly used to convert ECMAScript 2015+ code into a back-

wards compatible version of JavaScript in current and older browsers or environ-

ments” including the features to transform syntax, polyfill features that are missing

in your target environment, and perform source code transformations [Bab]. Parcel

is an asset-bundler for web apps with many automatically configured features for

optimization and supports JavaScript transformers and transpilers such as Babel

[Par].

Some notable packages aiding the construction of the UI and its logic include

D3.js (D3) version 5 and Material Web Components version 5. D3 “is a JavaScript

library for manipulating documents based on data” [D3]. Material Web Compo-

7

nents is package designed for web apps that wish to execute Material Design, a

UI design system developed by Google [Mata]. “Material is an adaptable system

of guidelines, components, and tools that support the best practices of user in-

terface design” [Matb]. The Material Design system was not strictly executed in

this project’s app, however UI components provided by the package where utilized

wherever possible. Aside from the pathway diagram viewer portion of the UI, the

remainder of the app has a look and feel that could be primarily associated with

Material Design.

3.2 General User Interface Layout

The entirety of screen space in the app is occupied by a large and central pathway

diagram viewport. Upon the user initiating a context menu on empty space within

the viewport, this new menu gives the user a choice to open a search pane. This

search pane allows a user to construct search criteria for entries in the Reactome

knowledgebase.

3.3 User Interface and Features

3.3.1 Pathway Diagram Viewer

The app’s diagram viewport is where a rough re-creation of any Reactome path-

way that has a low-level diagram can be displayed. Figure 3.1 shows the app’s

recreation of pathway R-HSA-69239 or “Synthesis of DNA”. The app’s diagram

differs from the existing Reactome pathway diagram viewer (Figure 3.2) in a few

key ways. Firstly, RLEs are represented with their own nodes, rather than by

multi-tailed edges. Edges now represent a link between a RLE and just one of its

8

constituent PEs, rather than representing an entire RLE itself. These new edges do

not denote in what way a PE contributes do a given RLE. Secondly, groupings of

diagram elements denoted by shadows, seen as translucent boxes, featured in the

existing diagram viewer have not been implemented in this app, although it should

be noted the data for their positions was found to exist in the API. Thirdly, this

app features no interactivity with diagram elements. The two diagram viewers do,

however, share some features. Notably including similar styling for PE nodes, the

same relative locations for elements in the diagram, and the ability to zoom and

pan through the viewport.

9

F
ig

u
re

3.
1:

P
at

h
w

ay
d
ia

gr
am

v
ie

w
er

op
en

ed
to

p
at

h
w

ay
R

-H
S
A

-6
92

39
,

k
n
ow

n
as

“S
y
n
th

es
is

of
D

N
A

”

10

F
ig

u
re

3.
2:

R
ea

ct
om

e’
s

p
at

h
w

ay
d
ia

gr
am

v
ie

w
er

op
en

ed
to

sa
m

e
p
at

h
w

ay
as

fi
gu

re
3.

1

11

(a) This project’s app (b) Reactome’s existing tool

Figure 3.3: A side-by-side comparison between closeups of pathway diagram viewers
from this project’s app and Reactome’s existing tools. The portion of pathway being
displayed is from the same pathway as figures 3.1 and 3.2

12

3.3.2 Search Feature

The search pane appears as a window that can be re-positioned, resized, closed,

and pinned. Through user interaction in the search pane, more search panes may

be produced for further refining search criteria and for specifying relational search

criteria. The simple search pane can be accessed via a context menu on the diagram

viewport (see Figure 3.4). The simple search pane serves two functions. To specify a

search string, and to view a list of results for the search. Its initial state, before and

search criteria are input, can been seen in Figure 3.5 and Figure 3.6. To expedite

debugging and testing of the simple search pane, a hard limit of 100 entry search

results are accepted from queries to the Reactome API.

Figure 3.4: The same closeup from Figure 3.3 of this project’s pathway diagram
viewer, but with a context menu having been opened on empty space

13

F
ig

u
re

3.
5:

T
h
e

si
m

p
le

se
ar

ch
p
an

e
ap

p
ea

rs
on

ce
th

e
“O

p
en

P
an

e”
op

ti
on

h
as

b
ee

n
se

le
ct

ed

14

Figure 3.6: Search panes can be resized and dragged

The advanced search pane provides two mechanisms which work simultaneously

for further constructing search criteria (See Figure 3.7).

The first mechanism appears on the advanced search pane’s “Query Filters” tab.

This tab allows the selection of options from multiple search facet categories. This

tab, along with the simple search pane, replicates the functionality of the existing

Reactome full-text search tool. For examples of a multi-choice selection of facet

options from a set of different facet categories, one may see them featured in the

product search interface for many online shopping websites. For each category of

facet, the user may select any number of options (See Figure 3.8). If none are se-

lected, no additional search criteria are imposed. If one or more options are selected,

the returned search results must belong to one of the selected options. Search re-

sults must satisfy this for all categories of facets, and not just any of them. The

categories of facets implemented include: ontological concept category (displayed as

“Type”), associated species, associated cell compartment, and associated predefined

keywords (See Figure 3.9)

15

Figure 3.7: The initial state of the advanced search pane and its “Query Filters”
tab

Figure 3.8: The facet category for ontological type has had the “Pathway” option
chosen

The second mechanism appears on the “Relational Filters” tab (see Figure 3.10).

The functionality on this tab and the functionality provided by the additional UI

components that it generates is not available in the existing Reactome search tools

with UI. It constitutes the bulk of this project’s contribution to advancing search

functionality for Reactome’s knowledgebase. This tab provides the ability for a set

of search result entries returned from the current search pane’s criteria to be further

narrowed down by whether they satisfy a specified ontological relationship with one

of the search results from another search pane.

16

Figure 3.9: Facets categories can be expanded/contracted and scrolled-through

Figure 3.10: The initial state of the “Relational Filters” tab

17

Figure 3.11: Ontological relationship filter options

On this tab, there is a drop-down menu for selecting an ontological relationship,

shown in Figure 3.11. There is also a radio button set for selecting whether the

new set of results have to satisfy the relational search criteria, the original criteria

sans relations, or both. The following search logic will be described under the

assumption that the both option (“Intersection” option in the actual app’s UI) is

selected. Upon making appropriate selections to these two fields, a second set of

search panes is created (see Figure 3.12). The new intersected search results are

displayed in the first simple search pane and must now have a specified ontological

relationship with one selected entry from the second simple search pane (see Figure

3.13). It should be noted the because of a entry result size limitation discussed

previously, this intersection of results is also similarly incomplete. Furthermore,

this second set of search panes may further refine their search results by also using

their own “Relational Filters” tab, thereby producing a third set of panes, and etc.

18

Figure 3.12: A second set of search panes has opened from the chosen relational filter.
These search panes have been re-positioned within the diagram for visual clarity.
The two panes on the right are the originals, and the two panes of the left have
just been created. Notice that in the new advanced search pane, several type facet
options have had their selection disabled, while the remainder have been selected by
default. Different facet options are disabled according to their compatibility with
the chosen relational filter.

This relational searching feature allows users to build a non-branching chain of

search queries. Each step in the chain represents finding the set of knowledgebase

entries which satisfy a specified ontological relationship with a single selected entry

found in the previous step. Previously existing non-relational search functionality

(via the “Query Filters” tab), is also specifiable at each step in the chain. As

previously mentioned, both search criteria mechanisms operate simultaneously.

In this prototype app, only two ontological relationships are implemented (see

Figure 3.11). The filtering mechanism and UI logic is independent of search results.

Implementing additional relational filters for the search pane will only require new

logic for how the Content Service API can be leveraged to gather all entries that

have the desired relationship to a single given entry.

19

Figure 3.13: An example of the relational search filter in action. A summarization of
important search criteria for the displayed search could be “Human pathways con-
taining the search-string “tumor” that contain the selected DNA Sequence “TP53
gene””. The results of this search are displayed in the first (right-side) simple search
pane. The first of these two pathway results was selected and then became displayed
in the pathway diagram viewer.

3.4 Data Structures and Algorithms

The only external web requests this app produces are those to Reac-

tome’s Content Service API. To make these calls, the ReactomeAPIQuerier and

ReactomeRequestProcessor classes exist. Each of ReactomeAPIQuerier’s meth-

ods point to a unique end point in the API and transform parameters that are

supplied programmatically into parameters formatted to be understood by the API.

The ReactomeRequestProcessor manages the logic of caching some requests and

formatting results in a way that is most usable by other classes concerned with

search mechanism logic.

The ISearchPresManager class acts as an interface for classes responsible for

bridging the gap between UI logic and search mechanism logic. For example, the

PaneComponent class, responsible for a search pane’s window-like features, and the

20

CustomMDCChipSetComp, responsible for the facet option selection chips, do not talk

directly with implementations of the BaseSearchComponent class. This interface

has methods for displaying/clearing result data, enabling/disabling the ability to

select search criteria including individual facet options, and gathering user-entered

search criteria, among other things.

The BaseSearchComponent is an abstract base class that outlines the logic

of a single search and the general approach for how other searches may nar-

row and expand its result set. Implementations of BaseSearchComponent, such

as PresentingQueryBasedSearchComp, may instantiate more implementations of

BaseSearchComponent. When a user selects an ontological relationship in the “Re-

lational Filters” tab, PresentingQueryBasedSearchComp must instantiate one new

instance of PresentingQueryBasedSearchComp for the new search pane. This new

instance will potentially instantiate one or more instances of a different implemen-

tation of BaseSearchComponent for each search result in that new pane. These

instances are dubbed “sub-searches” and each will be constructed with a result

from the new search pane and find the knowledgebase entries that are related via

the specified ontological relationship. One such example of a BaseSearchComponent

“sub-search” is NonPresentingPathwaysContainingEntrySearchComp which finds

all pathways that contain a given entry. BaseSearchComponent is also responsi-

ble for instantiating implementations of ISearchPresManager and making calls to

them with new search results as they are received and processed in ways described

previously.

21

Chapter 4

Results and Conclusions

The web app developed in this project can serve as a prototype for expanding on

the set of features provided by Reactome’s tools. The app allows for arbitrarily long

chains of relational searches on Reactome’s knowledgebase entries to be constructed

by the user. Albeit, currently limited to a small selection of ontological relationships.

It also implements some of the logic necessary to replicate existing low-level pathway

diagrams using only API data. That is, without the need to reverse engineer HTML

canvas contents from existing Reactome pathway diagram viewer pages, and then

infer the presence of knowledgebase entries and their diagram positioning data.

The app did utilize server-side code and also did not rely on hosting a custom

API for data needed by the app. In other words, cached content for queries to

Reactome’s APIs was client-side and not server-side. Despite this, the user interface

is responsive and search retrieval is relatively quick, with no apparent cap on request

frequency. This suggests that a more feature complete app would also not necessarily

need a custom data API to achieve desirable performance and responsiveness.

No full-featured web frameworks, UI frameworks, or combinations thereof, such

as React.js or AngularJS, were used in development. These types of frameworks

could have accelerated the development process had they been used, especially for

apps with somewhat complex UI state logic like this one. Not using these frameworks

served as an educational opportunity for what their benefits may be. Over the

course of the development process, and as the complexity of the UI increased, the

22

design patterns that emerged were motivated by the same technical challenges these

frameworks specialize in addressing. One such challenge is the exchanging of data

and callback functions between hierarchically-arranged UI logic components and

furthermore the life-cycle of said components as they compute data, pass data up

and down the hierarchy, and make changes to a browser’s document object model

(DOM) [Mai]. The degree of this challenge was not initially anticipated.

This prototype app also addresses many of the technical challenges that are

involved with gathering the data for relational searches and reproducing pathway

diagrams. It also demonstrates the responsiveness that a web app can have despite

the presence of many diagram elements and rapid sequences of tens of API calls.

In conclusion, this project’s prototype app demonstrates that the development

of an app satisfying new use cases in the areas of relational searches and customized

diagrams of Reactome’s knowledgebase is an endeavor that can be realistically ap-

proached through a web app based solution without a significant need for a back-end

API.

23

Chapter 5

Limitation and Future Work

5.1 App Usage Instructions

Usage instructions are important for software that reference domain-specific

knowledge or other abstractions that are particular to that app’s solution to de-

sign goals. An example of that in this project’s app would be the concept of a

relational filter in a search query. Using such software correctly is usually not intu-

itive, potentially unless the user has read about the motivation behind the features

in a corresponding research paper or other resource. In order to remedy this need,

the app could integrate general usage instructions accessible through buttons pro-

vided in the app’s header section, along with short relevant tooltips (in some cases

in the form of an icon) present somewhere on many or most UI components. At the

time of writing, this feature is not present, but may be added to the project’s Git

repository in the future.

5.2 General Set Operations Between Search Re-

sult Sets Instead of Chains of Intersections

One significant limitation of the app’s search logic is the life cycle of the search

logic component, BaseSearchComponent. In this component, relational searches

must be conceptualized as the intersection between the results of the current search’s

24

non-relational criteria, and the results of just one other high-level search which may

itself involve sub-searches. This is the case because having more than one high-level

search to intersect results with would require an algorithm to determine what order

search components are evaluated. Furthermore, it is easy for the user lose track of

which set of search panes are the originals, and which are the new ones that are

implicitly using a sub-search as defined by the first set’s choice of relational filter.

A mechanism in the UI of differentiating these sets of panes was not implemented.

A better design would not intertwine the displaying of search results and the

combination of multiple search criteria in this way. One ambitious design will be

roughly outlined. The user could have the ability to construct a directed acyclic

graph (DAG) of search criteria. Each node contains a collapsible search pane that

determines either some non-relational search criteria and/or some set operation

on incoming result set(s). Each edge either simply forwards a result set from the

outgoing to incoming nodes, or produces a new result set that represents entries

meeting a specified ontological relationship with those entries from the outgoing

node. Each edge also specifies whether one chosen or all results from the outgoing

node are to be considered. An algorithm could transverse this DAG in such a way

to only compute a node’s result set when all of its incoming neighbors have already

had theirs computed. Finally, for any node in this DAG, but especially those with

no outgoing edges, the working search results can be viewed and interacted with.

This interaction should still include the ability for entry results that are pathways

to be displayed in the diagram viewport.

At the time of writing, no mockups for this future design were produced, but

may or may not become available in the future at the project’s Git repository, under

./FutureWorkDocs.

25

5.3 Searches Using Selected Diagram Elements

Pathways returned in search results may be displayed in the diagram viewport,

but elements in the diagram viewport cannot be interacted with and do not influence

searches. Because all elements in the diagram are knowledgebase entries, a set of

selected diagram elements could be used by search mechanism components in a sim-

ilar way as results from a set of search panes. This suggests that the usage of search

pane results and selected diagram elements could in some way be interchangeable, if

the search mechanism were refactored. Doing so would yield the potential to initiate

a search based on selected diagram components.

5.4 A Full-Featured Diagram Editor

As discussed previously in chapter 1, diagram customization may be a desirable

feature. A feature in this area on the higher end of development complexity is

a diagram editor. A diagram editor could allow the user to move diagram nodes

around, add nodes into the diagram from search pane entry results, control the level

of informational detail on each node, group nodes together for moving them around

in a consolidated fashion, save the diagram state for later usage, or export that

state in the same format as that provided by Reactome’s API. This set of features

would be a minimum in order to be considered a diagram editor for Reactome.

Optional features may include customizing the styling of different diagram elements

and creating new nodes from new entities with user-provided properties.

26

5.5 Using a Database in Addition to / Instead of

the API

Reactome’s Content Service API only allows for querying entries that are related

to a given entry for a limited set of ontological relationships. To expand coverage

for what kind of ontological relationships can be implemented as relational search

filters, either Reactome’s relational database or graph database could be leveraged

in addition or instead of their Content Service API. This would, however, necessitate

the creation of a custom server-side API for retrieving specific queries on a server-

side hosted Reactome database.

Reactome’s graph database would provide several advantages over their rela-

tional database in the areas of query complexity and response times [FKV+18]. Fur-

thermore, the translation of user -constructed relational search criteria into database

queries would be more syntactically organic for a graph database than for a rela-

tional database, despite the name.

27

Bibliography

[Bab] Babel documentation. https://babeljs.io/docs/en/.

[CMH+14] David Croft, Antonio Fabregat Mundo, Robin Haw, Marija Milacic, Joel

Weiser, Guanming Wu, Michael Caudy, Phani Garapati, Marc Gillespie,

Maulik R. Kamdar, Bijay Jassal, Steven Jupe, Lisa Matthews, Bruce

May, Stanislav Palatnik, Karen Rothfels, Veronica Shamovsky, Heeyeon

Song, Mark Williams, Ewan Birney, Henning Hermjakob, Lincoln Stein,

and Peter D’Eustachio. The reactome pathway knowledgebase. Nucleic

Acids Research, 42(D1):D472–D477, 2014.

[D3] D3 home page. https://d3js.org/.

[FJM+18] Antonio Fabregat, Steven Jupe, Lisa Matthews, Konstantinos Sidiropou-

los, Marc Gillespie, Phani Garapati, Robin Haw, Bijay Jassal, Florian

Korninger, Bruce May, Marija Milacic, Corina Duenas Roca, Karen

Rothfels, Cristoffer Sevilla, Veronica Shamovsky, Solomon Shorser,

Thawfeek Varusai, Guilherme Viteri, Joel Weiser, Guanming Wu, Lin-

coln Stein, Henning Hermjakob, and Peter D’Eustachio. The reactome

pathway knowledgebase. Nucleic Acids Research, 46(D1):D649–D655,

2018.

[FKV+18] Antonio Fabregat, Florian Korninger, Guilherme Viteri, Konstantinos

Sidiropoulos, Pablo Marin-Garcia, Guanming Wu, Lincoln Stein, and

Henning Hermjakob. Reactome graph database: Efficient access to com-

plex pathway data. PLoS Computational Biology, 14(1):e1005968, 2018.

28

https://babeljs.io/docs/en/
https://d3js.org/

[FSG+16] A. Fabregat, K. Sidiropoulos, P. Garapati, M. Gillespie, K. Hausmann,

R. Haw, B. Jassal, S. Jupe, F. Korninger, S. McKay, L. Matthews,

B. May, M. Milacic, K. Rothfels, V. Shamovsky, M. Webber, J. Weiser,

M. Williams, G. Wu, and L. Stein. The reactome pathway knowledge-

base. Nucleic Acids Research, 44(D1):D481–D487, 2016.

[FSV+18] Antonio Fabregat, Konstantinos Sidiropoulos, Guilherme Viteri, Pablo

Marin-Garcia, Peipei Ping, Lincoln Stein, Peter D’Eustachio, and Hen-

ning Hermjakob. Reactome diagram viewer: data structures and strate-

gies to boost performance. Bioinformatics, 34(7):1208–1214, 2018.

[JMV+20] B. Jassal, L. Matthews, G. Viteri, C. Gong, P. Lorente, A. Fabregat,

K. Sidiropoulos, J. Cook, M. Gillespie, R. Haw, F. Loney, B. May, M. Mi-

lacic, K. Rothfels, C. Sevilla, V. Shamovsky, S. Shorser, T. Varusai,

J. Weiser, and G. Wu. The reactome pathway knowledgebase. Nucleic

acids research, 48(1):D498–D503, 2020.

[Mai] Hello world. https://reactjs.org/docs/hello-world.html. Note

that the collection of pages under the “MAIN CONCEPTS” section in

the website sidebar are being referenced, and not just this first one.

[Mata] Material components for the web. https://github.com/

material-components/material-components-web.

[Matb] Foundation. https://material.io/design/foundation-overview.

[Par] Parcel documentation. https://parceljs.org/getting_started.

html.

[Reaa] Content service. https://reactome.org/ContentService.

29

https://reactjs.org/docs/hello-world.html
https://github.com/material-components/material-components-web
https://github.com/material-components/material-components-web
https://material.io/design/foundation-overview
https://parceljs.org/getting_started.html
https://parceljs.org/getting_started.html
https://reactome.org/ContentService

[Reab] Content service. https://reactome.org/dev/content-service.

[Reac] Data model. https://reactome.org/documentation/data-model.

[Read] Graph database :: Data schema. https://reactome.org/content/

schema.

[Reae] The pathway browser. https://reactome.org/dev/content-service.

[Reaf] Reactome pathway diagrams specifications.

https://reactome.org/dev/diagram/pathway-diagram-specs.

[VDS+07] Imre Vastrik, Peter D’Eustachio, Esther Schmidt, Geeta Joshi-Tope,

Gopal Gopinath, David Croft, Bernard de Bono, Marc Gillespie, Bijay

Jassal, Suzanna Lewis, Lisa Matthews, Guanming Wu, Ewan Birney,

and Lincoln Stein. Reactome: a knowledge base of biologic pathways

and processes. Genome Biology, 8(3):R39, 2007.

[You17] Alex Young. Node.js in action. Manning Publications, Shelter Island,

NY, second edition. edition, 2017.

30

https://reactome.org/dev/content-service
https://reactome.org/documentation/data-model
https://reactome.org/content/schema
https://reactome.org/content/schema
https://reactome.org/dev/content-service

Appendices

31

Appendix A

App Source Code

While this prototype app is hosted publicly on GitHub Pages:

https://kicknickr.github.io/reactome-search-vis-prototype/

the ability to build the app from the source is available.

A.1 Source Code Location

The Node project files for the web app constitute all code written in this project.

They can be found at the GitHub Git repository:

https://github.com/kicknickr/reactome-search-vis-prototype

A.2 Instructions on Building the Node Project

It is recommended that one be familiar with Node project structures and pack-

age.json files before attempting to build the source code into a functioning a web

app.

Building the project will require the Node and NPM applications to be installed

on one’s machine. Once installed, navigate to the top level directory of the project,

and run the default package installation command:

npm install

Followed by the customized build script:

32

https://kicknickr.github.io/reactome-search-vis-prototype/
https://github.com/kicknickr/reactome-search-vis-prototype

npm run parcel-build --scripts-prepend-node-path=auto

This will create a ./build/output directory containing html, js, and css files that

can be opened in a browser.

If alternatively one wishes to run a dev server on the localhost domain that they

can point their browser towards, then run the following customized dev server script:

npm run parcel-dev --scripts-prepend-node-path=auto

and point their browser towards http://localhost:1234/.

Further instructions regarding building may be found at the repository.

33

http://localhost:1234/

	Reactome Advanced Knowledgebase Search and Pathway Visualization Prototype App
	Repository Citation

	Problem Description
	Related Work
	Existing Reactome Search Tools
	Existing Pathway Diagram Viewer Tool
	How this Project Advances Search and Pathway Diagram Viewer Tools

	Overall Design
	Development Environment and Utilized Packages
	General User Interface Layout
	User Interface and Features
	Pathway Diagram Viewer
	Search Feature

	Data Structures and Algorithms

	Results and Conclusions
	Limitation and Future Work
	App Usage Instructions
	General Set Operations Between Search Result Sets Instead of Chains of Intersections
	Searches Using Selected Diagram Elements
	A Full-Featured Diagram Editor
	Using a Database in Addition to / Instead of the API

	Appendices
	App Source Code
	Source Code Location
	Instructions on Building the Node Project

