
Worcester Polytechnic Institute Worcester Polytechnic Institute

Digital WPI Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

2020-05-15

An Intuitive Look at FP Soundness An Intuitive Look at FP Soundness

Rose R. Silver
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

Repository Citation Repository Citation
Silver, R. R. (2020). An Intuitive Look at FP Soundness. Retrieved from https://digitalcommons.wpi.edu/
mqp-all/7449

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has
been accepted for inclusion in Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI.
For more information, please contact digitalwpi@wpi.edu.

https://digitalcommons.wpi.edu/
https://digitalcommons.wpi.edu/mqp-all
https://digitalcommons.wpi.edu/mqp
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/7449?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/7449?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7449&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

An Intuitive Look at FP Soundness

by

Rose Rensselaer Silver

A Major Qualifying Project

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

in Computer Science

by

May 2020

APPROVED:

Therese Mary Smith
Joshua M Cuneo

Abstract

What is efficiently computable? What can these programs describe? These ques-

tions are at the focal point of complexity theory, and find theoretical roots in im-

plicit computational complexity theory. It is widely established that the program

complexity class of functions whose runtimes are polynomial with respect to their

input is considered tractable or efficient. This thesis establishes an intuitive look at

pattern expansion, runtime expansion, and an architecture agnostic programming

language sound in FP. This language is constrasted with logics known to be both

sound and complete for FP and finally the idea of the all-encompassing or universal

algorithm is considered in FP over an FP bounded language. Is there a program

which can compute every problem solvable in polynomial time in polynomial time?

Acknowledgements

Jessica Greenleaf

The love of my life and the most patient human on earth. Thank you for supporting

me through far too many cups of coffee.

i

Contents

0.1 Polynomial Time Complexity (FP) 1

0.2 Implicit Computational Complexity (ICC) 1

0.3 Poly-Time Bounds . 3

0.3.1 syntax . 5

0.4 Playing with the Toy Language . 6

0.4.1 C . 8

0.4.2 x+ C . 8

0.4.3 Positive Coefficient Polynomials 11

0.4.4 General Polynomials . 11

0.5 Handling Randomness . 13

0.5.1 Finite Height Programs . 14

0.5.2 The Program Tree . 16

0.5.3 FP Completeness . 17

0.6 Discussion . 19

0.6.1 Comparison to Light Linear/Affine Logic 19

0.6.2 Universal Searchers . 20

0.6.3 Poly-time FP Universal Function 21

ii

List of Figures

1 Isomorphism between STLC and IPL 3

2 A block of atoms . 5

3 Step-through of THREE := [INC][INC][INC][ZERO] 6

4 LOOP Decompression step-through 9

5 Language of Intuitionistic Light Logic [Gir98] 19

6 Light Linear Logic Rules as Sequent Calculus 19

7 the language of Soft Lambda Calculus 20

8 Soft Lambda Calculus Modalities . 20

iii

0.1 Polynomial Time Complexity (FP)

Poly-Time is the complexity class containing all programs whose runtimes can be

described, or upper-bounded, by a polynomial. [Ric08] Commonly referred to as

“tractable” or “efficient”, this complexity class is considered the class of problems

which can feasibly be solved on some deterministic computational device. FP is

formally described as:

A binary relation P (x, y) is in FP if and only if there is a determin-

istic polynomial time algorithm that, given x, can find some y such that

P (x, y) holds.

A good understanding of what FP describes in terms of what programs are

allowed to do and stay within FP is important to understanding the transformations

covered by the complexity class. To begin with, computer architecture seems to play

a role. A computer only capable of incrementing a number by one every time step

would take an exponential amount of time to compute the function f(x) = 2x.

However, a much more powerful computer which has a multiply instruction could

compute this function in linear time. It appears that two different computers can

solve the same problem in different time bounds. Without the ability to divorce

computation from architecture, a unified concept of what functions are reachable in

FP time is impossible to create.

0.2 Implicit Computational Complexity (ICC)

The fundamental question that must be solved is ”What takes time?” The computer

with a multiply instruction takes less time than the computer with only the successor

function, but under the surface there surely must be an at least comparable concept

1

of an atomic time step [DL19]. A natural way to measure computational complexity

without the consideration of technology is to use idealized models of computation like

turing machines or lambda calculus. Lambda calculus is turing complete, capable

of computing every computable function [Pol11]. This provides an extremely strong

starting point for describing the atomic units of computation in a turing-complete

manner, while never actually touching the architecture. This is because lambda-

calculus describes transformations and idealized functions. The actual resources

available to the machine are irrelevant. While this framework describes a complete

view of computation, its unrestrictive structure allows programs whose runtimes are

exponential with respect to the independent variable and programs that do not halt.

A common example is the omega combinator:

(λx.(xx) λx.(xx))

To illustrate the nature of this combinator it is commonly rewritten:

Ω := (ω ω)

ω := λx.(xx)

This divergent combinator applies its inner term ω to itself. In turn ω creates the

same shape as before (Ω), creating an infinite loop of replacement. This illustrates

the existence of dangerous, and non-polynomial, programs which are still considered

syntactically correct. It would be useful to create an idealized system of computa-

tion whose bounds of execution are already polynomial, restricting the runtime of

all syntactically correct programs while still defining the idealized system of com-

putation in which to root the question of “what takes time during computation?”.

The most basic typed system of lambda calculus, aptly named the Simply Typed

2

Lambda Calculus (STLC), holds the same reasoning power and operations as in-

tuitionistic propositional logic [BDPR01]. Again, through the Curry-Howard iso-

morphism, not only are these two concepts similar, they are identical to each other

[BDPR01, Ili13]. A comparison of STLC terms and logic rules are below:

Figure 1: Isomorphism between STLC and IPL

STLC is also strongly normalizing, meaning that all valid programs halt eventu-

ally [Ter12]. While exponentially complex programs still exist within this structural

framework, programs are at least guaranteed to end. While logics exist specifically

for the purpose of describing ICC [DL11, Gir98, Laf04], these will be discussed after

building an equivalent language structural restriction, and will be used to describe

the equivalency between the two constructs, and to prove soundness. For now,

STLC’s grammar rules will be used to loosely describe the concept of ICC to be

used from here on.

0.3 Poly-Time Bounds

The first step to successfully describing Poly-Time restriction is to examine what,

exactly, a polynomial runtime means, what it entails, and the minimum actions

required to describe it. It needs to be deconstructed in its simplest sense and then

reconstructed to a full generalization of the valid problem space. The first simpli-

3

fication that can be made is found by first examining the structure of a functional

program. The process towards normalization of an STLC term is through repeated

application until no more application rules can be executed [DL19]. Lambda ab-

stractions, constants and variables don’t take any time of their own accord, only

the act of application transforms or moves the expression in any way. Expectedly,

application correlates directly to the cut rule of linear logics [Gir98]. With this

observation, the simplest way of creating an ICC framework is to count the number

of applications a term requires before it becomes normalized [DL19].

A polynomial is a series of terms of the form:

Axn ±Bxn−1...± Zx0

Any program which normalizes in poly-time must contain a polynomial number

of applications to reach normalization. STLC is, as discussed, too unrestricted for

the uses of limiting programs to only poly-time. Instead of attempting to find and

remove every case which violates the runtime constraint, an empty framework will

be slowly enriched in STLC-like fashion until only polynomial time complexity is

allowed by constructs of the language. In its most basic state, this new language L1

requires only two constructs:

L1 := c | (e : τ2 → τ1 e : τ2) : τ1

Notice that lambda abstractions do not exist, and neither do variables. Addi-

tionally, the rule for application has been restricted to applying an expression to

a function type expression which accepts the argument’s type. This rule, Typed-

Application (TA), restricts valid terms to those which normalize to a value, also

known as well-typed terms [Ter12]. TA removes absurd applications like (true 3)

4

from the language. While there is nothing syntactically wrong with the term (true3)

within STLC, and in fact it is already in its normalized state, terms of such a form

are rarely useful because they don’t describe values or results of a relationship, they

instead exist as incompressible terms frozen in time, seemingly part way through

their computation. Removing these normalized but application-including terms isn’t

strictly necessary; it is a clarity choice which does not affect the complexity of the

language [Ter12]. c describes the constants of the language. This includes primitive

functions and value constants. For a first attempt at picking apart the shape and

relationship between program and runtime, c := ZERO : Int | INC : Int→ Int.

0.3.1 syntax

Before building on this toy language and experimenting with its capabilities, a brief

overview of its syntax is required, as it is modified slightly from pure lambda calculus.

Atomic instructions are shown as a labeled box. If they are functions, they

consume the value to their right and return the transformed value to the left. This

action is equivalent to TA and takes one time step. When written vertically, this

flow is from top to bottom. Arrows may be included for clarity in the direction of

argument to function. A string of atoms is called a block.

Figure 2: A block of atoms

It is easy to see that the number of function-type atoms in a program is equal

to the time the program will take to run, as every atom resolves in one time step

and the well-typed guarantee proves that the final normalized form will be a value

5

output from the last function-type atom to resolve.

Theorem 0.3.1 (length-runtime relation) The runtime of a program is equal

to the number of function-type atoms it contains. This is always upper-bounded by

the number of atoms comprising the program.

0.4 Playing with the Toy Language

Programs are treated as simulations of functions. For now, only binary relations will

be explored, leaving the generalization to multiple dimensions as an expansion on

the final language. To examine the expressive power of the language L1, a sample

program is stepped through below:

Figure 3: Step-through of THREE := [INC][INC][INC][ZERO]

The program THREE normalizes in three time steps and expresses the value 3

itself. This supports the length-runtime theorem. The property of equality between

the number a program describes and the runtime of the program is intentional, and

particularly useful, as runtime and value are conflated at least in this very minimal

language.

6

Theorem 0.4.1 (proportional computation) The expression e(n), computing

the natural number n can be computed in O(n) time by L1 for any positive n.

Sketch Proof 0.4.1 For all natural numbers n:

e(0) =⇒ ZERO

this is a normalized, well-typed expression. No computation takes place and the

halting state is equal to the desired output. No time has been taken, therefore n = 0

= O(n)

e(n > 0) =⇒ (INC e(n− 1))

this expression requires n steps of computation, as the base case for the recursive

formula e is ZERO when n = 0 and the inductive step e(n− 1) adds one typed ap-

plication of INC for every recursive replacement. Therefore the starting expression

will contain n calls to INC, n applications, and run in O(n) time. This expression

is well-typed as it is the application of n Int → Int function-type constants to the

constant ZERO, which has type Int. It is obvious to see that at every step the

expression is still well formed, as the application of Int→ Int to Int results in type

Int, which is in turn accepted by the next call to INC.

This can be thought of as a stronger version of the length-runtime relation for

integers. This theorem only holds when the language’s one atomic construct for

which time steps are counted is INC, as every time step is equivalent to one step

on the proverbial “number line”.

Theorem 0.4.2 (runtime-length-value equivalency) Using language L1:

Due to the proportional computation theorem, n can be computed in O(n) time.

Conversely, if a program runs in O(n) time, it must compute n.

Sketch Proof 0.4.2 This theorem is true due mostly to the extreme restriction of

L1. As shown by the proportional runtime theorem, L1 can only compute positive in-

7

tegers and does so in time equal to their magnitude. The strength of this relationship

makes it reversible.

0.4.1 C

So far, the language can only describe finite natural numbers, but computes them

in time equal to the magnitude of the number. In other words it computes n

in O(n). Without capturing the independent variable of the binary relation this

simulates, constant time computation is expectedly the only form of program that

can take place. Constants are a subsection of polynomials, meaning the language is

still bounded by polynomial time, however it lacks the power to describe all of FP.

Programs can only simulate relations of the form f(x) = c.

0.4.2 x+ C

The next step is to capture the argument of the binary relation. This atom can be

thought of as a restricted version of variables introduced by lambda abstractions.

By including the atom X : Int, a value set before execution to a concrete number

equal to the argument of the relation, the language can not only compute n as shown

above, but also x + n in O(n) time. This is trivially proven by the fact that X is

precomputed to a value, all integers are processed the same way by INC, and don’t

require time-steps to resolve to a value – they already are a value.

In terms of time complexity, all programs still execute in constant time. This

is a break from the proportional computation theorem, as values can be computed

in time less than their magnitude. To keep with the proportional computation

theorem the computation of x must take x time. This can’t happen yet because

even with the inclusion of the independent variable, programs cannot alter their own

structure or length. As given by the length-runtime relation theorem, the length

8

of a program is directly related to its execution time. This expanded language can

simulate functions of the form f(x) = x + C and normalizes the program in O(C)

time. Ideally, keeping the proportional computation theorem true lets the distinction

between described function classes and runtime disappear again. f(x) = x + C

should be computed in O(x+ C) time.

To modify runtime with respect to x, and the program length must change to

reflect this on each instance of the function. A new language construct must be

included to capture this idea of programs whose lengths can vary to be able to

compute x in proportional time. This construct is LOOP , and it is one of the two

required structural constructs. The syntax of LOOP is:

Figure 4: LOOP Decompression step-through

An interesting discovery from the LOOP construct is the idea of concatenating

blocks. Since the block within the LOOP is applied into itself the number of times

9

called for by the iteration count, the runtime of the resulting program is equal to

the iteration count multiplied by the runtime of the captured block. Not only is this

intuitive, the length-runtime relation shows that the concatenation of two blocks

into one is equal in runtime to the sum of the runtimes of each block independently.

Succinctly, LOOP (A){B} runs in O(A ∗B) time.

By re-restricting the X atom to use only within the iteration count of LOOP ,

x can be simulated to be computed in O(x) time by the program:

LOOP (X){[INC]}[ZERO]

Now relations of the form f(x) = x+C can still be simulated, the only difference

is that these relations run inO(x+C) time, re-unifying the proportional computation

theorem. This new language is:

L2 := c | (e : τ2 → τ1 e : τ2) : τ1

c := {m | x := LOOP (X){INC} | INC | ZERO }

m := { LOOP (n){ } | LOOP (X){ } }

L2 enjoys the same runtime-length-value equivalency as L1, as LOOP is sim-

ply a pattern compression meta-construct and x is computed in O(X) time. All

meta-constructs (denoted by m) are expanded before runtime and create a constant

slowdown for any given program. Due to the constant nature of the slowdown, it

can be ignored in asymptotic calculations.

10

0.4.3 Positive Coefficient Polynomials

In fact, upon closer inspection of the LOOP meta-construct, all positive coefficient

polynomial functions can be described. In their abstract form, positive coefficient

polynomials are of the form:

Axn +Bxn−1...+ Zx0

Through the runtime-length-value equivalency theorem, addition is analogous to

block concatenation. All that needs to be described is each term. Stitching them

together into a positive polynomial is as simple as concatenating programs together.

Each term is a coefficient multiplied by the independent variable raised to a finite,

constant power. a := LOOP (A){[INC]} computes a block of INC A long and of

value A when given the constant ZERO as the rightmost atom for the application

string. ax := LOOP (X){[a]} then computes a block of INC A ∗X long. Following

this logic, LOOP (X){[ax]} computes a block of length A ∗X2. Clearly any finite,

constant power can be constructed via sinking the coefficient within a nesting of

LOOP (X) equal in depth to the power. By restricting LOOP depth to a constant

level, and without a way for loop depth to be written in an independent variable

dependent sense, exponential functions cannot be described. It is, in essence, the

restriction on the depth of recursion that is so crucial to confining programs to

FP-complexity [Gir98].

0.4.4 General Polynomials

It is at this moment that many of the grounding theorems must sadly become

invalidated. To describe all polynomials, subtraction must finally be implemented.

A polynomial takes the general form:

11

Axn ±Bxn−1...± Zx0

Each term is either positive or negative, and positive terms have already been

constructed; all that remains are the negative terms. These can be constructed

by including an atom to L2’s constants, DEC : Int → Int. DEC decreases the

input value by one. By substituting a positive term construction’s INC within

its LOOP nesting with DEC, this term expands to be a decrement to a value

of the size called for by the term. Unfortunately, programs’ runtimes are now not

always equal to the value they report, but their runtime can be found by turning the

general polynomial into a positive polynomial via substitution of subtraction with

addition. Since the only programmatic difference between a general polynomial and

its positive counterpart is whether certain blocks are constructed of INC or DEC,

polynomial runtime is not jeopardized.

No program can execute in time equal to a polynomial with a negative term,

because that would imply the ability to remove atoms from the program, an ability

not present in any of the languages presented here. If this were possible, DEC

would not be needed, the proportional runtime theorem and the length-runtime-

value relation would still hold true. The inclusion of the DEC atom changed the

expressiveness of the language but not the runtime constraint. Investigating this

further, it becomes evident that the actual atoms themselves do not matter. The

meta-constructs change the shape of the program, and they can only change the

shape in polynomial-length expansions. As long as every included atom is guar-

anteed to run in polynomial time with respect to the independent variable, every

constructable program must admit FP-complexity. The question that remains is one

of completeness. Can every FP program be written in an atom-generic version of

L2, or are there unreachable programs which would run within the time-complexity

12

restraint?

0.5 Handling Randomness

With a generic language containing an arbitrary collection of atomic combinators, it

is no longer true that the functions describable in polynomial runtime are polynomi-

als themselves. But within the constraint of LOOP , every program only describes

its length expansion in terms of concatenations of blocks with lengths equal to the

coefficient. Completely random blocks of polynomial length cannot be constructed.

A certain function might be described as:

for any x, f(x) is computable by a random, valid, and unchanging

string of atoms of length p(x), where p is a polynomial function

This piece-wise function admits polynomial runtime as is evident from the length-

runtime relation. p outputs a series of atoms of polynomial length and polynomial

length means polynomial runtime. This function is not compressible into a collec-

tion of LOOP s, because there is no pattern between instances of x. Creating a

program which describes f is, as the language structure stands, impossible. The

solution lies in the ability to modify the content of a program based on the value

of x. SWITCH(x){K1, K2...Kxmax} is the last meta-construct and allows this.

SWITCH takes in a number x, and replaces itself with the content of the xth block

within its braces (Kx). This is currently an unsafe operation that allows the poly-

nomial time restriction to be broken. Just as this solves the issue for the example

function, consider the following function:

for any x, f(x) is computable by a random, valid, and unchanging

string of atoms of length e(x), where e is an exponential function

13

A program structured as:

SWITCH(x){1 : random string length e(1), ...n : random string length e(n)}

is legal within the constraint of the language structure, but grows exponentially in

runtime.

0.5.1 Finite Height Programs

This issue’s origin is the lack of restriction placed on the form of atomic concate-

nation blocks. When these blocks can be infinite in length, then simply creating

any function from piece-wise instances of programs with the SWITCH construct is

possible. By restricting all blocks to be of finite length, all super-polynomial runtime

classes are unreachable [DL11]. Using the previous exponential function as an exam-

ple, it is obvious that the nth term will be of length e(n). The function is also known

to be incompressible because of its randomness, meaning no use of LOOP is possible

for compression or pattern repetition. Even if the function was not completely ran-

dom but still exponential, any use of LOOP would still only become uncompressed

when considering runtime. As LOOP only compresses program length by a polyno-

mial factor, the exponential function still wouldn’t be constructable in finite length

because exponentials divided by polynomials still trend towards infinity for large n .

If this function’s domain is bounded by a finite maximum number, the longest possi-

ble string would be of length e(DOMAIN MAX), making the program computable

in O(e(DOMAIN MAX)); a known, constant, and therefore polynomial, runtime.

However, assuming the nontrivial case wherein the function’s domain is nonfinite,

the length of the blocks tends towards infinity at a rate of e(n)/p where p is some

polynomial best-guess compression. By removing the possibility of block-length

14

trending towards infinity, this, and any other super-polynomial function cannot be

simulated.

Perhaps it would appear that the random polynomial function shown previously

would be impossible to simulate as it too is incompressible. This is not true. For any

x, the string of length p(x) is known to be polynomial in length with respect to x. A

LOOP (X) command compresses the length of the block created by a factor of x. For

every term of p(x), wrapping the simulated term within the program in a number

of LOOP s equal to the degree of the term results in a finite, constant number,

unrelated to the magnitude of x. In fact, it is equal in length to the coefficient of

the term. In this way a finite block length can be obtained for polynomial programs.

This is only half the answer, as LOOP s impose order on the resulting program in

the form of tiled concatenations of their internal blocks. In some sense, the ability

to ”choose” a different block of code every iteration is necessary to maintain the

randomness property of the original function. Exposing the iteration of a LOOP as

a variable is the last key element of the language. With this variable, a SWITCH

can nest within a LOOP , switching on every iteration. The randomness feature

of the function is now able to be described, and every block is of finite length. It

should be noted that to maintain finite program length, in addition to finite block

length, the random polynomial function is not completely computable. A finite

subset of instances can be captured in a finite program, but because there is no

way to predict the string computing the next instance, each instance of the function

sits in its own branch of a SWITCH statement, preparing to unroll to the correct

polynomial length string for that instance. No compression exists to make this

SWITCH statement have finite branches as each branch holds no relation to any

other branch.

15

0.5.2 The Program Tree

To answer the problem of completeness, the program space itself must be well un-

derstood. A naive approach might be to catalog every possible string of atoms and

meta-constructs. Random strings of this nature can be created in O(|L|d) time,

where |L| is the number of atoms and meta-constructs in the language and d is the

length of the string [Lev73]. This captures every possible program, but it also cap-

tures a lot of garbage that is unexecutable. To remove the unexecutable programs,

a syntax graph can be used to direct flow of the random strings, only ever choosing

the next symbol from a list of viable symbols at the point of program construction

[Sch04]. Every valid program starts with a beginning symbol, or atom in its lan-

guage. For the binary relation f(x : A) = y : B, these are the atoms whose return

types are B. From this entrance symbol, any symbol whose return type matches the

input type of the start symbol can be concatenated with it. The natural description

of this data structure is a tree, where leaves symbolize the terminal symbols (value-

typed nodes) and the branch is a complete program which can be executed from the

leaf towards the root, and internal nodes are atoms which accept the return type of

all the nodes branching from it and return a type coherent with the node it stems

from.

This program tree is the beginning program state tree (T-META). Because it

captures meta-constructs, each program in it containing one or more meta-constructs

transforms into a program without meta-constructs at execution and when all inde-

pendent variables are defined before execution time. This uncompressed version of

programs can also be constructed into a tree (T-BARE). All programs in T-META,

when uncompressed and considered ranging over the domain on which they operate,

are tree slices of T-BARE. A branch of T-BARE is a program capable of computing

an instance of a binary relation, much like L1, and T-META contains programs

16

which compute whole functions. For a given branch of T-META, the branches of

T-BARE it describes must be polynomial in length to the independent variable, oth-

erwise the poly-time constraint is violated as given by the length-runtime relation.

Theorem 0.5.1 (FP Soundness) Any finite branch of T-META decompresses to

polynomial length branches of T-BARE.

Sketch Proof 0.5.1 The meta-constructs of T-META are m := {LOOP |SWITCH}

LOOP can only perform multiplicative expansion. Polynomials are closed under

multiplication.

SWITCH performs block substitution, and is runtime upper-bounded by the

length of the longest potential substitution. It can be substituted from the program

by its longest block in an asymptotic calculation. A potential simplification on this

idea could be to include a passthrough atom NOP for no-operation, which takes a

timestep but simply passes the value received through itself. By padding the short

branches of a SWITCH with NOP all branches are the same length.

The implicit meta-construct of concatenation affects runtime in an additive sense.

Polynomials are closed under addition.

By restricting programs to be of finite length, all T-META branches are guar-

anteed to expand to polynomial length (runtime) branches of T-BARE because ex-

ponential and super-polynomial length sequences cannot be compressed to a finite

length by operations polynomials are closed under.

0.5.3 FP Completeness

As T-META stands, the author is unaware of a way to prove its completeness

within the complexity class of FP. The format of LOOP and SWITCH as pattern

constructors and manipulators is too alien to lambda calculus to form a coherent

17

equivalency between the FP describing logics such as light logics. The largest issue

is the unconvertability from LOOP style pattern expansion to lambda style pattern

expansion. SWITCH and LOOP were based on the fundamental basic operations

of primitive recursion (general recursive functions without minimization) [Col91],

as an expansion of the projection function and primitive recursive function, respec-

tively. Because SWTICH is more general than the projection function Π, it is also

not known to the author if this language reduces to the time class ELEMENTARY

is PR does [Sch16].

Interestingly, the flexibility of SWITCH allows random piece-wise polynomial

functions to be described. These functions are not computable, as they are not

able to be contained in a finite program; their algorithmic complexity is infinite

because there is no finite length program capable of computing any instance of the

function. By the finite program length restriction these can’t be described in a finite

sense in T-META, but they are describable in an infinite-allowing construction of

T-META that still disallows super-polynomial runtimes. By looking at a T-META

program in two dimensions, block length and branch length, it is clear that the

polynomial restraint lies only on the block length axis and algorithmic complexity

lies on both axes; linearly increasing on both. The random polynomial function used

in the Handling Randomness section is a good example of how thinking of T-META

programs in two dimensions allows some incomputable but FP-instance relations to

be described.

18

0.6 Discussion

0.6.1 Comparison to Light Linear/Affine Logic

Logics are another form of computation useful in categorizing implicit computational

complexities. These forms of math look at resource use as a description of the time

bound taken by a program. The simplest logic is classical logic. Unfortunately

this formalism is easily proven to be too weak to describe FP. In classical logic the

implication A → B doesn’t consume A. This is referred to as contraction or the

idempotency of entailment. To translate logical connectives to programming, one

considers truths to be resources. Resources are functionally equivalent to blocks as

they have been described in this paper. Such unrestricted introduction of resources

allows the program to grow in completely unrestricted bounds. To combat this

issue linear logics were created, and further refined by light logics, discussed here.

The following is the language for the intuitionistic fragment of Light Linear Logic,

without additive connectives [Gir98]. The sequent calculus interpretation of the

Figure 5: Language of Intuitionistic Light Logic [Gir98]

introduction rules are the same as the inuitionistic fragment of linear logic, except

for the handling of the exponential modalities ! and §.

Figure 6: Light Linear Logic Rules as Sequent Calculus

It is known that the class of functions on binary lists representable in LLL is

exactly FP [Gir98]. By this fact, dissecting the available operations in LLL helps

characterize the operations allowable in FP. The dual fragment of LLL doesn’t con-

tain §. All of LLL, LAL, and the dual classes of both of these fragments are FP

19

[Laf04]. The crucial operations made available by these fragments are the exponen-

tial modalities which can be explained succinctly as soft lambda calculus:

M := x | λx.M | λ!x.M |MM | !M

Figure 7: the language of Soft Lambda Calculus

Modalities control copying [DL19]. a variable appears linearly in the body it

is bound in or can be copied by loss of a modality. The following are legal Soft

Lambda Calculus terms:

λ!x.yxx

λ!x.y!x

λ!!x.y!x!x!x

Figure 8: Soft Lambda Calculus Modalities

The maximum depth a variable is nested in an exponential modality bounds the

maximum polynomial degree a LLL term takes to normalize [DL11]. This runtime-

bounding system is reminiscent of LOOP , but allows the pattern re-organization

available to lambda abstractions, where LOOP only concatenates blocks at their

end.

0.6.2 Universal Searchers

Universal searchers are programs which instead of operating on functions operate

on program space itself. They are used in an attempt to build solutions to relations

in an unsupervised manner. They can be useful in helping to create programs which

solve relations previously not known to be solvable. Particular work has been done

in this field by Jürgen Schmidhuber. Universal searchers such as LSEARCH search

20

the program space interleaving every possible program by running the programs in

time inversely proportional to their length [Lev73]. LSEARCH works by running

one step of a program every |L||d| time steps, where |d| is the length of the program

and |L| is the number of symbols in the language. Through this interleaving method

LSEARCH runs in polynomial time on an exponential problem space [Lev73].

Much work has been done to refine universal searchers to run faster, learn from

their failures, and have some form of bias optimality. The largest weakness of

LSEARCH is its inability to describe more than instances, except by random chance.

OOPS (Optimal Ordered Problem Solver) is an attempt to improve on this weakness

by creating two partial solutions. One tries to solve the current instance and the

other attempts to find a program which solves all instances up to the current one

[Sch04]. The first solution behaves like the piecewise function discussed in Handling

Randomness, where each instance is handled by a different solver, and the second

solution attempts to find the general solution. OOPS additionally exploits its pre-

vious knowledge when creating further solutions, a feature absent from LSEARCH

[Sch04].

0.6.3 Poly-time FP Universal Function

Of course the question must be asked, since universal searchers operate in a sim-

ulated FP time bound, if they are fed a language constrained to FP; is there any

problem within FP unsolvable by this meta-program? Well, no. But this isn’t the

holy grail of tractable programs either. While this program will solve the posed

problem in a polynomial time, the polynomial time is directly proportional to the

length of the program. Even short programs quickly begin to require resources and

time growing to magnitudes outliving the lifetime of the universe [Sch03]. This

has always been the practical curse of the universal searcher. In the words of the

21

immortal Leonid Levin, inventor of LSEARCH:

“Only math nerds consider 2500 finite”

22

Bibliography

[BDPR01] Gianluigi Bellin, Valeria De Paiva, and Eike Ritter. Extended curry-

howard correspondence for a basic constructive modal logic. In Proceed-

ings of methods for modalities, volume 2, 2001.

[Col91] Löıc Colson. About primitive recursive algorithms. Theoretical Computer

Science, 83(1):57–69, 1991.

[DL11] Ugo Dal Lago. A short introduction to implicit computational com-

plexity. In Lectures on Logic and Computation, pages 89–109. Springer,

2011.

[DL19] Ugo Dal Lago. Machine-free complexity: Implicit complexity. University

Lecture, 2019.

[Gir98] Jean-Yves Girard. Light linear logic. Information and Computation,

143(2):175–204, 1998.

[Ili13] Danko Ilik. Continuation-passing style models complete for intuitionistic

logic. Annals of Pure and Applied Logic, 164(6):651–662, 2013.

[Laf04] Yves Lafont. Soft linear logic and polynomial time. Theoretical computer

science, 318(1-2):163–180, 2004.

23

[Lev73] Leonid Anatolevich Levin. Universal sequential search problems. Prob-

lemy peredachi informatsii, 9(3):115–116, 1973.

[Pol11] Andrew Polonsky. Proofs, types, and lambda calculus. PhD thesis, PhD

thesis, University of Bergen, 2011.

[Ric08] Elaine Rich. Automata, computability and complexity: theory and appli-

cations. Pearson Prentice Hall Upper Saddle River, 2008.

[Sch03] Jürgen Schmidhuber. Godel machines: Self-referential universal prob-

lem solvers making provably optimal self-improvements. arXiv preprint

cs.LO/0309048, 2003.

[Sch04] Jürgen Schmidhuber. Optimal ordered problem solver. Machine Learn-

ing, 54(3):211–254, 2004.

[Sch16] Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM

Transactions on Computation Theory (TOCT), 8(1):1–36, 2016.

[Ter12] Kazushige Terui. Semantic evaluation, intersection types and complex-

ity of simply typed lambda calculus. In 23rd International Conference

on Rewriting Techniques and Applications (RTA’12). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2012.

24

	An Intuitive Look at FP Soundness
	Repository Citation

	tmp.1594045083.pdf.HC1sw

