
Worcester Polytechnic Institute Worcester Polytechnic Institute

Digital WPI Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

2020-03-05

Applying HCI Design Practices to the Development of the BrainEx Applying HCI Design Practices to the Development of the BrainEx

User-Interface to Facilitate fNIRS Research User-Interface to Facilitate fNIRS Research

Kyra R. Bresnahan
Worcester Polytechnic Institute

Margaret Ann Goodwin
Worcester Polytechnic Institute

Yihan Lin
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

Repository Citation Repository Citation
Bresnahan, K. R., Goodwin, M. A., & Lin, Y. (2020). Applying HCI Design Practices to the Development of
the BrainEx User-Interface to Facilitate fNIRS Research. Retrieved from https://digitalcommons.wpi.edu/
mqp-all/7270

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has
been accepted for inclusion in Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI.
For more information, please contact digitalwpi@wpi.edu.

https://digitalcommons.wpi.edu/
https://digitalcommons.wpi.edu/mqp-all
https://digitalcommons.wpi.edu/mqp
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/7270?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/7270?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

 Applying HCI Design Practices to the Development of the

BrainEx User-Interface to facilitate fNIRS Research

Advisors:

Professor Erin Solovey and Professor Rodica Neamtu

By:

Kyra Bresnahan

Margaret Goodwin

Yihan Lin

Working collaboratively with:

Vandana Anand

A Major Qualifying Project

WORCESTER POLYTECHNIC INSTITUTE

Submitted to the Faculty of the Worcester Polytechnic Institute in partial fulfillment of the

requirements for the Degree of Bachelor of Science in Computer Science.

August 2019 – March 2020

i

Authorship

 This project was completed over the course of seven months of study. For five of those

seven months, we worked as a team of four to complete our deliverables. A former version of this

paper detailing this period of time submitted at Vandana Anand’s completion of the project can be

found through WPI’s e-projects collection under the title “Applying HCI Design Practices to the

Design of the BrainEx User-Interface to facilitate fNIRS Research.” That paper includes a similar

authorship page detailing the contributions that Vandana specifically contributed to. The rest of us

(Kyra Bresnahan, Margaret Goodwin, and Yihan Lin) collaborated with Vandana in writing and

editing all portions of this paper that are preserved from that past version. In addition, the three of

us also collaborated on additional writing contained in this paper detailing our development

process after Vandana’s graduation. Our typical writing process involved one person writing the

original version of a section, with all other members then suggesting edits. Therefore, the final

product of these sections is work from all three of us.

ii

Abstract

 This project aims to develop a user-interface for BrainEx using HCI practices to enable

fNIRS researchers to explore and analyze large datasets. The target users were identified through

interviews with lab staff and developing user personas. Through iterative design, prototypes of

increasing complexity and detail were designed, evaluated, and refined to satisfy user needs while

fulfilling system requirements. The final application encompasses a user-friendly and tested

interface that accomplishes the tool’s most essential functionality.

iii

Acknowledgements

Many thanks to Professor Erin Solovey and Professor Rodica Neamtu for their many hours

of work advising the team. Also, thanks to all the user testing participants and developers of the

BrainEx backend. All of their feedback throughout the process was invaluable for the success of

this project. Lastly, thank you to all of our friends and family who supported us along the way.

iv

Table of Contents

Authorship i

Acknowledgements iii

Table of Contents iv

Table of Tables ix

Table of Figures xi

Executive Summary xiv

1. Introduction 1

2. Background 2

2.1 An Introduction to Human-Computer Interaction 2

2.1.1 The Principles of HCI 2

2.1.2 The User-centered and Iterative Design Process 3

2.2 Brain-Computer Interfaces 5

2.3 Functional Near-Infrared Spectroscopy (fNIRS) 6

2.4 The WPI HCI Lab 7

2.4.1 Data Collection Tools 8

2.4.2 Data Preprocessing Tools 9

2.4.3 Data Processing/Analysis Tools 11

2.5 BrainEx 12

2.6 HCI and fNIRS 13

2.7 Project Objectives 14

3. Exploration of Existing Tools to Identify Gaps in the Current Approach to BCI Tools 15

3.1 Process 15

v

3.2 Outcome of Tool Analysis 15

3.2.1 Aurora Tool Analysis 15

3.2.2 Real-time Data Streaming and Analysis (RTFD) Tool Analysis 16

3.2.3 Matlab_GUI Tool Analysis 17

3.2.4 BrainEx Tool Analysis 20

3.2.5 NirsLAB 21

3.2.6 Conclusion to Tool Analysis 21

4. Collection and Analysis of User Requirements 23

4.1 Conducted User Analysis on Lab Staff 23

4.1.1 Process 23

4.1.2 Outcomes 24

4.2 Gathered system requirements of BrainEx 28

5. Completion of System Design Specifications 29

5.1 Created the Conceptual Model  30

5.2 Created the Semantic Model 31

5.3 Created the Syntactic Model  35

5.4 Created the Lexical Model 36

6. Design of Prototypes Using Iterative Design Strategy 38

6.1 Iteration 1 - Initial Design Ideation with Storyboards 39

6.1.1 Process 40

Design of Storyboards 40

Evaluation of Storyboards 40

6.1.2 Outcomes 41

6.2 Iteration 2 – Utility refinement with low-fidelity prototype 42

vi

6.2.1 Process 43

Heuristic Evaluation 47

User Testing 47

6.2.2 Outcomes 49

Heuristic Evaluation 49

User Testing 50

6.3 Iteration 3 - Usability refinement with mid-fidelity prototype 50

6.3.1 Process 51

Heuristic Evaluation 56

User Testing 56

6.3.2 Outcomes 57

User Testing 58

6.4 Iteration 4 - User experience refinement with high-fidelity prototype 61

6.4.1 Process 61

User Testing 64

6.4.2 Outcomes 64

Description of the Final High-fidelity Prototype 64

Heuristic Evaluation 70

User Testing 71

6.4.4 Conclusion 73

7. Implementation of the User-Interface 74

7.1 Phase 1: Selection of implementation tools and creation of interface framework 74

7.1.1. Selection of implementation tools 74

vii

7.1.2 Frontend and Server Framework 77

7.2 Phase 2: Implementation of Query Pipeline 80

7.2.1 Python Server 81

7.2.2 Frontend Design 81

7.2.3 Visualization 82

7.2.4 Data Parsing 82

8. Results 84

8.1 User Testing 84

8.1.1 Goal 84

8.1.2 Process 84

8.1.3 Outcomes 84

8.2 Description of the Final Application 86

9. Discussion 94

9.1 Obstacles and Limitations 94

9.1.1 Frontend Obstacles and Limitations 94

9.1.2 Python Server Limitations 95

9.1.3 Backend Obstacles and Limitations 95

9.2 Areas of Improvement 95

9.2.1 Design 96

9.2.2 System Status Feedback 96

9.2.3 Query Sequence Upload Mechanism 96

9.2.4 Error Handling/Prevention Methods 97

9.3 Future Work 97

9.3.1 Implementation of Data Explorer Pages 97

viii

9.3.2 Performance Improvement 98

9.3.3 Hosting on the Cloud 98

9.3.4 Updates to BrainEx API 98

10. Conclusion 99

Bibliography 100

Appendix A: Interview Preamble 104

Appendix B: Storyboard Evaluation Questions 106

Appendix C: User Testing Protocol for Low-fidelity Prototype 108

Appendix D: User Testing Protocol for Mid-fidelity Prototype 111

Appendix E: User Testing Protocol for High-fidelity Prototype 112

Appendix F: Research Questions 113

Appendix G: Interview Questions 114

Appendix H: User Personas 116

Appendix I: Usability Aspect Reports for Low-fidelity Prototype 120

Appendix J: Usability Aspect Reports for Mid-fidelity Prototype 129

Appendix K: Usability Aspect Reports for High-fidelity Prototype 136

Appendix L: BrainEx User-Interface Tutorial 142

Appendix M: Storyboard Version 1 145

Appendix N: Storyboard Version 2 148

Appendix O: Storyboard Version 3 156

Appendix P: BrainEx API Tutorials 169

Appendix Q: Function Guide 173

Appendix R: BrainEx GUI Documentation 175

ix

Table of Tables

Table 1: Tool analysis ratings 21

Table 2: Template for persona information 25

Table 3: User needs for BrainEx tool alongside associated BrainEx functionality 26

Table 4: The team’s conceptual model helped organize the users’ desired functionality in one

place for reference during prototyping 31

Table 5: Semantic model of loading the preprocessed dataset 32

Table 6: Semantic model of preprocessing the raw dataset 32

Table 7: Semantic model of saving the preprocessed dataset 33

Table 8: Semantic model of generating a list of query sequences 33

Table 9: Semantic model of finding similar sequences 34

Table 10: Semantic model of plotting similar sequence results 34

Table 11: Semantic model of exploring clusters 35

Table 12: Semantic model of exploring the entire dataset 35

Table 13: The lexical model for the application allows for an understanding of the actions in the

application and how they are to be accomplished 37

Table 14: A timeline of the 3 stages of design including purpose, goal, and evaluation. 39

Table 15: Usability Aspect Report template (Solovey, 2019) 48

Table 16: Aggregated results of heuristic evaluations for the low-fidelity prototype from iteration

2 49

Table 17: Aggregated results of heuristic evaluations for mid-fidelity prototype from iteration 3

 58

Table 18: Aggregated results of SUS for the mid-fidelity prototype 60

x

Table 19: Aggregated results of heuristic evaluations for mid-fidelity prototype from final

iteration 71

Table 20: Aggregated results of SUS for the high-fidelity prototype 72

Table 21: Technology selection justification 75

Table 22: Aggregated results of SUS for the final product 85

xi

Table of Figures

Figure 1: An illustration of the iterative design cycle through rapid prototyping. Adapted from

Iterative Design by Pidoco. n.d. Retrieved from https://pidoco.com/en/help/ux/iterative-design 4

Figure 2: An example BCI annotated with the four main components 5

Figure 3: Pictures of an fNIRS cap, front and back, from the WPI HCI lab. Note the annotated

features that allow the cap to collect data. 7

Figure 4: Diagram of the overall workflow in the WPI HCI Lab. Processing applications denoted

in Stage 3 have not been fully developed at the time of this diagram’s creation. 8

Figure 5: Signal Calibration screen from Aurora. November 17, 2019. 9

Figure 6: RTFD developed by WPI students working from the HCI Lab. November 17, 2019. 9

Figure 7: Screenshot from NirsLab with the truncate, check, apply, and data analysis

functionalities highlighted. November 2019. 10

Figure 8: Screenshot of the Matlab GUI developed by Drexel students. Screenshot Retrieved

November 20, 2019. 11

Figure 9: Homer2 screenshot. Adapted from Homer2, 2017. Retrieved from

https://www.youtube.com/watch?v=MM4CB6K2Nec. 12

Figure 10: Screenshot from the BrainEx UI. Adapted from Dubey et al., 2019. 13

Figure 11: RTFD Not Responding screen 17

Figure 12: Error message received if required plug-ins not installed 18

Figure 13: Progress indicator on command line 18

Figure 14: Channel selection 18

Figure 15: Plot manipulation icons are faint 19

Figure 16: Other options are easier to find 19

Figure 17: Errors are only shown at the code-level 19

xii

Figure 18: The Group Density mapping of clusters on the BrainEx UI is hard to parse as it is

difficult to understand its presentation of data (Retrieved from BrainnEx November 4, 2019). 20

Figure 19: A flowchart explaining actions of the BrainEx application. It is mainly linear with some

deviation for multiple options, leading the team to the idea of a prescribed flow for initial screens

and tabbing for main screens. 29

Figure 20: The team’s semantic model provides an order to the functions previously outlined and

shows the states of the interface. 36

Figure 21: Brainstorming for the Storyboards 40

Figure 22: An example storyboard highlighting how to select a sequence using the Legend 42

Figure 23: Diagram of User Task Hierarchy 44

Figure 24: Whiteboard sketch of the Basic Cluster Explorer Page from the low-fidelity prototype

 45

Figure 25: Whiteboard sketch of a more detailed Cluster Explorer Page from the low-fidelity

prototype 45

Figure 26: Dataset Explorer page from the low-fidelity prototype 46

Figure 27: Query Finder page from the low-fidelity prototype 46

Figure 28: Site map of the mid-fidelity prototype 51

Figure 29: Whiteboard Sketch of the Homepage from Mid-fidelity Prototype Ver.2 52

Figure 30: Data Explorer Page from Whiteboard Sketch of the Mid-fidelity Prototype Ver.1 52

Figure 31: Preprocessing Completion Page from the Mid-Fidelity Prototype Ver.1 53

Figure 32: Homepage from the Mid-Fidelity Prototype Ver.2 54

Figure 33: Explore data by filtering page from finalized mid-fidelity prototype 55

Figure 34: Explore clustered data page from finalized mid-fidelity prototype 55

Figure 35: Find similar sequences page from finalized mid-fidelity prototype 56

Figure 36: Moodboard for High-Fidelity Prototype Ver.1 62

Figure 37: Moodboard for High-Fidelity Prototype Ver.2 63

xiii

Figure 38: Site map for the final prototype 65

Figure 39: Select a preprocessed dataset and select a raw dataset screens, annotated with key

features 66

Figure 40: Preprocessing screens annotated with key features 67

Figure 41: Explore raw data screen annotated with key features 68

Figure 42: Explore clustered data screen annotated with key features 69

Figure 43: Find similar sequences screen annotated with key features 70

Figure 44: Screenshot of the original implemented homepage of BrainEx 78

Figure 45: Screenshot of the other Phase 1 implemented pages of BrainEx 79

Figure 46: Diagram of the query data flow in the application 83

Figure 47: Home Page of the BrainEx UI 86

Figure 48: Select New CSV Screen of BrainEx UI 87

Figure 49: Build/Preprocessing Options Screen of BrainEx UI 88

Figure 50: Build/Preprocessing Progress Screen of BrainEx UI, Incomplete 89

Figure 51: Build/Preprocessing Progress Screen of BrainEx UI, Complete 89

Figure 52: Home Page of BrainEx UI 90

Figure 53: Home Page of BrainEx UI with Query Popup 91

Figure 54: Query Dashboard 92

Figure 55: Query Results 93

xiv

Executive Summary
 BrainEx is a command-line Brain Computer Interface (BCI) application that allows

researchers to find k best matches for time series sequences representing functional near-infrared

spectroscopy (fNIRS) data (Dubey, et. al., 2019). The team iteratively prototyped and began

implementing the frontend for the application using Human-Computer Interaction (HCI)

methods and principles.

Human-Computer Interaction is a multi-disciplinary field that focuses on advancing user

experience through methods such as iterative development and user-centered design (IDF, 2019a;

Usability, 2017b; Mora, 2015). According to HCI principles, in order to maximize usability and

utility of user interfaces, developers should strive for continuous and informative communication

with the user in their application (Schneiderman, 2013). To create user-friendly applications,

designers must gather user requirements and continuous feedback in the process known as iterative

design. Iterative design, the process of creating prototypes of increasing detail and complexity

while refining them based on feedback, allows developers to resolve problems early and make

improvements quickly (Pidoco, n.d).

Brain Computer Interfaces are a newer concept in the realm of HCI. A BCI is an interface

that allows computers to sense and collect brain signal data directly from the brain (Guger, et al.,

2019). fNIRS is the use of near-infrared spectroscopy that allows researchers to measure blood

hemoglobin levels to collect brain signal data (Grohol, 2017). It is relatively non-invasive and uses

a portable cap and light sensor system. According to Tan and Nijholt (2010), many BCIs are often

lacking in user-centered design is because the field of BCI “is just now coming out of its infancy”.

As fNIRS is a relatively new field, there is limited progress developing customizable and usable

research tools that could widely apply to projects outside of the original developers’ research

scope. As a result, fNIRS researchers often develop their own tools for their own research, resulting

in functionality being prioritized over usability (Anonymous lab researcher, personal interview,

September 10, 2019).

The WPI HCI lab, led by Professor Erin Solovey, aims to conduct research on mind

wandering and focus control using fNIRS data and various fNIRS research tools. Researchers in

the lab perform data collection, preprocessing, and processing/data analysis. Each of these pieces

of the overall lab workflow includes specific tools tailored to the task.

Recently, the HCI lab has begun to develop a new tool to join their current suite of tools.

BrainEx is a data analysis tool for time series data that was developed to allow researchers in the

WPI HCI Lab to efficiently explore the large amount of brain data collected from various

experiments (Dubey, et. al., 2019). This tool allows users to find k best matches to a given time

series sequence. The current BrainEx application has been designed to be a research-oriented tool

that operates through the command line. In order to expand the user base and reduce the learning

xv

effort, our team set the project goal to develop that interface through user-centered design and

rapid prototyping.

Once the team’s goal was decided, we accomplished the following objectives to complete

the project: 

1. Explored existing BCI tools by conducting usability analyses

2. Collected and analyzed user requirements to identify target users

3. Determined system requirements through design specification modeling and task

analysis

4. Designed rapid prototypes using an iterative design strategy

5. Completed development of the basic pipeline of the proposed application

6. Gathered user feedback and planned for future development

In order to complete the first objective, the team rated multiple tools using predetermined

usability parameters; the team also interviewed users in the lab that use the tools to find out their

usability and utility. After completing this objective, our team had a better understanding of the

current tools’ strengths and weaknesses. Thus, we were able to better avoid the same flaws

within their future design of the BrainEx interface.

The second objective required two parts. First, the team interviewed undergraduate and

graduate lab staff to gather user-experience feedback about the current operation of the lab as

well as collect user requirements for the BrainEx interface. From this, they were able to compile

a set of user personas that reflect the current users within the lab to better have the user in mind

when designing. The team also interviewed several developers of the BrainEx command line tool

to gather specific details on its various functionalities and how a user-interface could best

incorporate and transform these functionalities. The developer interviews gave the team the

information they needed to create a simplified state diagram and conducted a task analysis based

on potential user needs/tasks with BrainEx.

Once the team understood user needs, they created conceptual, semantic, syntactic, and

lexical models outlining the functionalities and architecture of the BrainEx command line tool.

These models allowed the team to fully understand the capability and limitations of the current

BrainEx system. The models allowed the team to consider the systematic design of the

application before designing the interface.

After completing the first three objectives, the team had enough understanding of the

system to begin designing the interface. In order to adhere to the HCI principles of iterative and

user-centered design, the team created four prototypes and received user feedback on each one.

1. First, to confirm that the team had understood user needs correctly, the team designed

storyboards which outlined the prominent features of the application. The storyboards

xvi

were then presented to users for feedback. Based on the collected user feedback, the team

corrected any major misunderstandings about the application and learned the importance

of how different functionalities are communicated to the user and how each individual

functionality should be presented.

2. Next, to establish the basic design structure of the prototype, the team designed a low-

fidelity prototype on Balsamiq with interactions. The prototype was then presented to

users for feedback. For this prototype, users were confused with the way user testing was

conducted, leading to an improvement of testing style in future iterations. In terms of the

prototype itself, users were overall lost at what to do and where to look for things. The

team decided to focus on developing a more intuitive control flow to reduce confusion.

The team also revised the user testing protocol to make the procedure more

understandable.

3. To consolidate a more intuitive and navigable control flow of the prototype, the team

designed a mid-fidelity prototype on Balsamiq with more interactions. The team also

developed sitemaps to help with understanding during this iteration. Users were overall

satisfied with the mid-fidelity prototype and indicated it was more intuitive than the

previous iteration. More work could be done to reduce confusion risen from technical

jargon or confusing names.

4. The team decided to pay attention to basic error handling, the flow within each

page/screen, and including more visuals in the next prototype. To add visual elements

(color palette, appearance of graphs, graph legends) to finalize the prototype design, the

team designed mood boards and a high-fidelity prototype on AdobeXD for a more

customizable design. The prototype was then presented to users for feedback.

The resulting high-fidelity prototype provides a concrete plan for the team’s

implementation of the interface. Users said that this prototype was easy to navigate when

performing tasks. They completed their tasks quickly and were able to give more granular

comments on the improvements to be made, such as clarification of language.

Next, the team compared different popular web development frameworks, such as React

and AngularJS, and also looked at its compatibility with other features such as including

visualizations with Javascript libraries like D3. During this period of time, Vandana also began

the implementation of the application by programming a few interface pages in JavaScript.

 Kyra, Margaret, and Yihan then continued the project by completing implementation.

Kyra focused on creating a Python file that would allow information to be passed from the

frontend to the backend and vice versa. Yihan focused on data visualization and Margaret

focused on other frontend implementation.

Finally, we finished our project by soliciting additional user feedback. We then applied

any minor user-experience changes suggested by users. We suggest that future developers in the

xvii

WPI HCI Lab continue to develop this application and add more useful features such as

exploring both the raw and preprocessed data.

1

1. Introduction

BrainEx is a tool developed at WPI to facilitate Brain-Computer Interfaces (BCI)

research, specifically in functional near-infrared spectroscopy (fNIRS) data (Dubey, et. al.,

2019). The goal of the tool is to find the k best matches for a subsequence of time series data of

their choosing. It improves upon earlier tools with similar goals by using distributed computing

to cluster similar sequences. This allows for BrainEx to find matches faster by minimizing

computations. The accuracy and efficiency of the tool have been tested using data collected from

fNIRS experiments within WPI’s HCI Lab. In these experiments, researchers gather

concentration or focus data from the brain using an fNIRS cap.

While the BrainEx tool is effective in achieving its goals, it is currently only a command

line tool. To increase its usability and accessibility to more researchers in the WPI HCI lab, this

tool needs a graphic user-interface (GUI). However, tools developed for fNIRS research are

often ad hoc and development is more focused on functionality rather than usability. Therefore,

this team’s project aims to facilitate the research of fNIRS at the WPI HCI Lab by developing an

intuitive graphical user-interface for BrainEx using effective Human Computer Interaction (HCI)

design practices as an improvement on current tools.

HCI has existed since the 1970s; researchers in this field study best practices in

interactivity for people working with computers (IDF, 2019a). The goal is to make computer

applications user-friendly by focusing on utility and usability. This means ensuring that

applications are functional and easy to use. In developing an interface for BrainEx using user-

centered design, the team will streamline the workflow of the lab by reducing the time needed to

learn and retain memory of the function of the application.

The team met their goal of applying HCI design practices to BrainEx by identifying a

methodology. The first objective of this methodology was to analyze the usability of existing

BCI tools to identify gaps in understanding and user-experience. Then, the team identified and

collected the necessary user requirements for the interface through completing user and system

analysis. Next, the team outlined the system specifications and designed rapid prototypes of the

BrainEx interface using an iterative design strategy. The team made sure to perform evaluations

of the application among themselves and conduct user testing sessions with potential users to

make sure prototypes are meeting the user’s expectations throughout the design process. Finally,

all members of the team contributed to the development of the project. By completing these

objectives, the team hopes to show the benefits of applying HCI to developing research tools,

improve the BCI pipeline and efficiency of BCI research at WPI, and identify more areas for

development.

2

2. Background

2.1 An Introduction to Human-Computer Interaction

Human-computer interaction (HCI) refers to the study of how the relationship between

humans and technology can advance user experience (IDF, 2019a). Since the 1970s, HCI has

increasingly become a vital part of developing technology with the rise of personal computers

making it necessary for technology to be more widely usable.

One goal of HCI is to identify a user-experience problem (e.g. accessibility issues caused

by disabilities, complex processes, etc.) and solve the problem through user-centered design and

iterative development (Carroll, 2012; Algrim, 2019). Feedback from users drives designs

forward as designs are refined to fit users’ needs in both functionality and usability. Through

every step, designers and developers check their understanding of user-specified requirements

until a fully realized product has been created. By following HCI guidelines and applying its

concepts to development, people can create useful products that are easy, if not enjoyable to use.

2.1.1 The Principles of HCI

To ensure that the systems developed are well-designed and useable, Schneiderman

developed eight important principles (Schneiderman, 2013). These principles include:

○ strive for consistency: consistency in both actions and visuals (e.g. terminology,

prompts, menus, etc.) should be maintained throughout the application, especially

in similar situations;

○ enable frequent users to use shortcuts: as a user becomes more familiar with an

application, they will want to reduce the time spent performing actions by using

various shortcuts;

○ offer informative feedback: each action prompts some form of feedback from

the system, correlating to the complexity and importance of the action,

○ design dialog to yield closure: related actions should be consolidated into one

package that offers the user some sense of accomplishment when each set is

completed;

○ offer simple error handling: when a user makes a serious error, the system

should both detect it and offer a simple solution;

○ permit easy reversal of actions: allow a user to undo a recently performed action

to reduce anxiety if they make an error;

○ support internal locus of control: design the system so that the user initiates the

actions rather than the system so that they feel in control of the application; and

3

○ reduce short-term memory load: keep displays simple, functionality

consolidated, and distractions limited to not force the user to remember more than

necessary.

In short, continuous and relevant communication between the user and the system is

essential for usability. The workflow of an application should be as simplified as possible while

still accomplishing a task as desired. No matter the specific needs of the user, these principles

should be followed during the design process.

2.1.2 The User-centered and Iterative Design Process

The user-centered design process (UCD) ensures that common mistakes such as inefficient

development practices, unmanaged risks, poor communication, etc. are avoided (Usability,

2017b). There are four basic activities in the initial design process (Usability, 2017a):

1. understanding the problem space,

2. identifying user requirements for a useful product,

3. creating interactive versions of the design(s), and

4. testing and evaluation of the design(s) with users.

Before tackling any problem, it is important to understand the environment in which the

problem exists. Designers should consider who will use the product, what they will use it for,

and how they will use it, also referred to as user requirements, through interviews, focus groups,

surveys, and other methods. The user requirements can then be transformed into the initial

design.

Those using UCD concepts create several successive designs, or prototypes, of their

product that increase in detail and complexity until the final design is fully realized (Mora,

2015). A prototype is a powerful and effective way to quickly collect feedback on a design or

product and they can take many forms (IDF, 2019b). The complexity ranges from simple, low-

fidelity prototypes to high-fidelity ones with visuals and interactions (Solovey, 2019g).

Prototyping is important because, in the initial data collection stage, feedback from target users is

based on either existing products or a description of features that do not yet exist. Users share

what they might think or do given their mental model and the information provided without a

concrete example in front of them to which to react. While this is useful when starting to develop

an initial prototype, it does not lead to a perfect product. With concrete examples, the user can

demonstrate the usability of the design in real-time and save costly development time (Usability,

2017b).

Prototypes of how the product will look are created and tested to refine how elements are

arranged and tasks are represented. An initial prototype is created and tested with users; any

issues with the prototype (appearance, control flow, clarity, etc.) are recorded and analyzed. A

4

report of these findings, including prioritized Usability Aspect Reports (UARs) that detail critical

issues (how many users experienced them, what kind of issue was it, the severity of the issue,

etc.) and a summary of general findings can give valuable insight into what changes to make in

the next iteration (Affairs, 2013). Before any actual implementation is done, developers iterate

through this process to create the best design solution possible, which saves both time and money

for both the developers and the stakeholders (Usability, 2017b). The next iteration is then refined

to eliminate problems, and this process repeats until the product is ready (Pidoco, n.d.). These

iterations must be created quickly, making wireframing and prototyping tools very useful. An

illustration of this process can be seen in the figure below:

Figure 1: An illustration of the iterative design cycle through rapid prototyping. Adapted from Iterative

Design by Pidoco. n.d. Retrieved from https://pidoco.com/en/help/ux/iterative-design

One of the most important reasons to use iterative design and prototyping is that it results

in a much more usable application (Affairs, 2013). However, it also helps developers eliminate

flaws in early stages of development that would otherwise be expensive to fix later. With

constant user feedback throughout the development process, the product evolves according to the

user’s needs, thus resulting in the most useful and cost-effective solution.

5

2.2 Brain-Computer Interfaces

Brain-Computer Interfaces (BCI) are a newer space in the field of Human-Computer

Interaction. BCIs have provided a new method for people to convey messages with brain data.

These technologies collect real-time streams of brain data from people performing cognitive

activities while a signal detecting device receives their brain data. According to Guger et al.,

(2019), four main components must exist in all BCIs:

1. sensors that can detect brain activity (most of which are non-invasive),

2. automated signal processing software that is used to identify brain activity,

3. an external device that provides feedback based on the processed signal, and

4. an operating environment that controls how the above three components interact with

each other as well as the end-user.

Figure 2: An example BCI annotated with the four main components

In the early stages of BCI research, most researchers were focused on BCIs that could

facilitate communication for disabled people (Guger et al., 2019). In the past several years, BCI

research has been extended to many new applications outside of the medical field, such as

education (Brockington et al., 2018).

6

2.3 Functional Near-Infrared Spectroscopy (fNIRS)

Functional Near-Infrared Spectroscopy (fNIRS) is a type of functional neuroimaging

technology that offers a non-invasive, safe, portable, and low-cost method of indirect and direct

monitoring of brain activity. It allows researchers to collect brain data through a cognitive brain

monitor and monitor blood flow and oxygen levels in the various parts of the brain by measuring

changes in near-infrared light. It is a relatively new technique but has shown promising results in

studies done to-date (Grohol, 2017).

During fNIRS experiments, users wear caps with sensors to monitor brain activity. The

fNIRS sensor is attached to the user’s cap, as shown in Figure 3 below, and can be monitored

through a BCI that is either connected directly to a computer or a portable computing device that

records the user’s data as they engage in specific tasks. The advanced signal processing allows

real-time brain data collection during the execution of the task (Grohol, 2017). Changes in brain

activity are then measured by blood hemoglobin ― the protein molecule in red blood cells that

carries oxygen from the lungs to the body's tissues and returns carbon dioxide from the tissues

back to the lungs ― and oxygenation levels in particular brain regions. One of the important

brain regions that is most commonly measured is the prefrontal cortex because it is the part of

the brain that is responsible for planning complex cognitive behavior, personality expression,

decision making, and moderating social behavior (Grohol, 2017). Depending on the researcher’s

preferences, collected fNIRS data is parsed and stored so it can be used for further research to

test hypotheses on brain activity and workload (University of Connecticut, 2017).

7

Figure 3: Pictures of an fNIRS cap, front and back, from the WPI HCI lab. Note the annotated features

that allow the cap to collect data.

Some of the many reasons to use the fNIRS-BCI system are because it is safe, can

produce accurate results, and is portable. The fNIRS cap that the users wear emits no more light

into the user’s brain than the amount of sunlight that human skin is exposed to while walking

outside, making it largely harmless to the wearer (University of Connecticut, 2017). In addition,

fNIRS can produce highly accurate results of brain data collection because it is more tolerant of

errors such as the motion of the sensors on the cap (NASA, 2019). It is advantageous over other

neuroimaging systems because it directly measures blood oxygenation levels (Tak & Ye, 2013).

Moreover, fNIRS is portable as it can easily be taken anywhere and does not take up much

space.

2.4 The WPI HCI Lab

The WPI HCI Lab, led by Professor Erin Solovey, defines one of its goals as conducting

research to seek ways to classify cognitive states of mind wandering and focus control with

fNIRS-based brain data. Students of various educational backgrounds and progress collaborate

with Professor Solovey and other, sometimes interdisciplinary, professors to facilitate research

and develop tools to assist in that research. The research is divided into three overarching stages:

data collection (i.e. using the fNIRS brain cap and data collection tools), preprocessing (i.e.

removing noise and truncating unneeded data), and processing (i.e. data exploration and

analysis). The lab uses both open source fNIRS data analysis tools (both from external and

8

internal developers) and proprietary software developed by NIRx Medical Technologies to

perform each stage. Figure 4 below illustrates the main three stages as well as the goals and tools

that fall under each phase. Each stage is also annotated with known areas of improvement if

there are any. This section will then give a brief overview of each tool listed, as well as any tools

used in the past. More information about each of the tools as well as an analysis of their usability

can be found in Chapter 3, as understanding the current solutions to a problem is crucial in

developing a new one.

Figure 4: Diagram of the overall workflow in the WPI HCI Lab. Processing applications denoted in

Stage 3 have not been fully developed at the time of this diagram’s creation.

2.4.1 Data Collection Tools

Aurora (see Figure 5) is a tool designed to acquire fNIRS data. It is able to establish a

wireless connection with the fNIRS device known as the NIRSport2. Users can create multiple

configurations in Aurora, allowing various ways of measuring data with different regions of the

brain (see Figure 5). It also provides basic functionalities like displaying montage (i.e.

9

visualization for monitoring the channel connections) and data plots to ensure a smooth data

collection process.

Figure 5: Signal Calibration screen from Aurora. November 17, 2019.

The Real-Time fNIRS Data-analysis (RTFD) tool (see Figure 6) was designed by WPI

students working in the lab to facilitate the fNIRS data collection process in conjunction with

Aurora. It parses the fNIRS brain data from Aurora into the CSV format simultaneously as the

application receives it. As of right now, it provides a user interface for uploading the data to the

WPI HCI lab server. The developers are hoping to incorporate visualizations of different

channels into RTFD and some basic error handling prompts in the future.

Figure 6: RTFD developed by WPI students working from the HCI Lab. November 17, 2019.

2.4.2 Data Preprocessing Tools

NirsLab (see Figure 7) is used as a preprocessing tool to prepare data so that additional

operations such as machine learning algorithms can be applied to further analyze and draw

10

conclusions from the data. The application has many features for preprocessing data, but the lab

primarily uses the truncate time series, check raw data, and apply frequency filter methods. The

data analysis features are also used to view useful graphs and visualize the data.

Figure 7: Screenshot from NirsLab with the truncate, check, apply, and data analysis functionalities

highlighted. November 2019.

The Matlab_GUI (see Figure 8) is a graphical user interface developed in MATLAB by

Professor Solovey’s previous students at Drexel University that is used to preprocess collected

experimental fNIRS data offline. The functionalities implemented in the GUI were designed to

streamline analysis of fNIRS data by allowing users to visualize the whole time series, translate

from raw data to de-oxy/oxy hemoglobin values, and view specific time intervals. It also allows

users to export the data they are viewing in either CSV or *nirs format.

11

Figure 8: Screenshot of the Matlab GUI developed by Drexel students. Screenshot Retrieved November

20, 2019.

2.4.3 Data Processing/Analysis Tools

Homer2 (see Figure 9) is a Matlab-based application that has been around since the early

1990s (NITRC, 2019). According to the official documentation (Homer-fNIRS, n.d.), the

software has been widely applied to fNIRS-based projects and has many processing methods that

have been implemented to support various kinds of fNIRS-based research. Its primary purpose is

to convert fNIRS data into maps of brain activation so the data can be viewed, analyzed and

processed further down in the data handling pipeline (fNIRS Analysis, 2019). All the functions

can also be executed at the script level, allowing for more flexibility.

12

Figure 9: Homer2 screenshot. Adapted from Homer2, 2017. Retrieved from

https://www.youtube.com/watch?v=MM4CB6K2Nec.

2.5 BrainEx

When learning the overall pipeline pictured in Figure 4, the team discovered that a WPI

team was currently developing a command line tool to help with data analysis. BrainEx is a tool

designed for similarity exploration of brain data for neuroadaptive technology (Dubey et al.,

2019). It uses “different similarity distances for robust identification of similar patterns in the

brain data during complex tasks”. In short, it finds the k best matches for a user supplied time

series sequence.

 While classifying continuous time series data has remained a challenge in neuroadaptive

technology, BrainEx approaches this problem by using dynamic time warping to compute the

similarity between sequences with different lengths and temporal alignments (Rakthanmanon et

al., 2012). Common issues within large datasets such as computational overhead are solved by

using a “process one, query many” approach to effectively reduce the data mining space. Using

simple-to-compute pointwise distances including Euclidean, Manhattan, Chebyshev, etc, the

resulting dataset is reduced in size which makes exploration of specific warped counterpart

distances more efficient. The application uses the time warped versions of these distances to

improve similarity calculations for time series data. The below screenshot of the provisional

interface created by the development team shows the annotated features of Brainex (see Figure

10).

13

Figure 10: Screenshot from the BrainEx UI. Adapted from Dubey et al., 2019.

 In a recent proceeding by Dubey et al. published in 2019, BrainEx showed promising

evidence for supporting time domain data exploration to identify similar sequences of brain data.

It is capable of performing robust identification of similar patterns in the brain data during

complex tasks using different similarity distances. This will serve as the foundation for

interactive systems allowing cognitive states and adapting system behaviors to be better

classified in the future.

2.6 HCI and fNIRS

The fNIRS-based BCI tools are limited as they often cannot deliver exactly what the lab

team wants to achieve. Many of these tools are developed by neuroscientists who have specific

research needs that may not match up with another lab’s needs (anonymous lab researcher,

personal interview, September 10, 2019). Hence, sometimes the importance of making the tool

intuitive and easy-to-use for novices is overlooked.
In addition, one of the reasons user-centered design is often lacking in BCI applications is

because the field of BCI “is just now coming out of its infancy” (Tan and Nijholt, 2010). The

emerging state of the field leaves very few resources in past research and existent tools for

researchers. Professor Solovey suggests that her lab’s practice of using a combination of off-the-

shelf tools and custom-made tools is common practice across the field due to this gap (personal

correspondence, August 28, 2019). As such, most research is currently focused on the

14

development of the tools themselves, leaving less time for creating robust interfaces for said

tools (Tan and Nijholt, 2010).

For example, the original BrainEx user-interface was developed based on a list of

required features and not necessarily focusing on usability. The tool, while useful for research,

would benefit from an intuitive interface so that even novice lab staff would be able to learn it

with minimal assistance. In addition, the development team expressed the need to have a new

graphic user interface (GUI) for their improved backend since it is difficult for users of varied

technical background to learn the command line tools to use the product (personal

correspondence, August 28, 2019).

2.7 Project Objectives

Once the team decided to focus on creating a user interface for BrainEx, they created

plans and timelines for the project. The overall goal of the project is to facilitate fNIRS research

at the WPI HCI Lab and streamline workflow by developing an intuitive user-interface for

BrainEx using HCI design practices. The team accomplished the following objectives to

complete the project:

1. Explored existing BCI tools by conducting usability analyses

2. Collected and analyzed user requirements to identify target users

3. Determined system requirements through design specification modeling and task

analysis

4. Designed rapid prototypes using an iterative design strategy

5. Completed development of the main pipeline of the proposed application

6. Gathered user feedback and planned for future development

These objectives are broken down into tasks and further detailed in the following chapters of this

report.

15

3. Exploration of Existing Tools to Identify Gaps in the

Current Approach to BCI Tools

3.1 Process

To explore the current approach to BCI tools, the team analyzed the existing tools used in

the lab across all phases — Aurora, RTFD, nirsLAB, the Matlab GUI, and the original BrainEx

interface (Although it was mentioned in the background, Homer2 was not analyzed because its

use in the lab has declined) — based on the following parameters (Nielsen, 2012):

● Effectiveness: How good is a system at doing what it is supposed to do?

● Efficiency: Once users have learned the design, how quickly can they perform the task?

● Safety: How many errors do users make, how severe are these errors, and how easily can

they recover from the errors?

● Learnability: How easy is it for users to accomplish basic tasks the first time they

encounter the design?

● Memorability: When users return to the design after a period of not using it, how easily

can they reestablish proficiency?

Each category was given a rating on a scale of 1 to 5, with 1 being “not satisfied” and 5

being “completely satisfied”. The team also conducted a more in-depth analysis on each tool that

highlights key features of the tools and their usability. The analysis required each team member

to successfully install and use their designated tool based on the given documentation and

consult with other lab staff when necessary. By identifying both the strengths and weaknesses of

these tools, the team developed an improved understanding of the current usability of BCI tools

and where they can be improved.

3.2 Outcome of Tool Analysis

 The team first qualitatively analyzed and assessed each major feature within the tools

before assigning a quantitative value to each category listed above. A synthesis of our findings

and our major takeaways can be found below the individual analyses.

3.2.1 Aurora Tool Analysis

 As introduced in the Background Section, Aurora is the primary fNIRS data collection

tool used in the WPI HCI Lab. It performs data collection smoothly and provides error handling

functionalities in case of signal loss. One of Aurora’s strengths is its visualizations of montage

16

and various channels (see Figure 5 from Section 2.4.1 for the visual representation of montage).

Although it is rare to experience any data loss on Aurora, Aurora does offer warnings in case of

unstable signals. Aurora seldom crashes; once it does, there is no way to recover from the data

loss. One concerning disadvantage Aurora has is its limited capability of customization. It does

not support data files to be exported in alternative formats, nor does it allow users to change

where data files can be saved. The control flow also forces the users to traverse back and forth

between screens in less intuitive ways that consume user time and memory. Additionally, there

are unnecessary warning dialog windows that cannot be hidden once read. Nonetheless, Aurora

is still a learnable tool: only a few commands need to be remembered in order for users to

accomplish an ordinary task. The interface is not perfectly intuitive but only requires a small

learning curve. Also, because the steps required to accomplish a typical task like collecting brain

data for an experiment are minimal, Aurora makes it easy for users to reestablish proficiency

after a long time of no use.

3.2.2 Real-time Data Streaming and Analysis (RTFD) Tool Analysis

 RTFD was designed to assist with data collection which is normally done on Aurora by

simultaneously writing the received fNIRS data in CSV files. RTFD is still a work in progress

and the developers planned to develop more functionalities such as plotting and error prevention.

As of right now, RTFD is capable of integrating the data streams from both PsychoPy, a package

for neuroscientific research, and from Aurora. However, there are a few bugs which could be

detrimental to the users, primarily due to the lack of error handling or prevention functionalities.

For instance, if the user attempts to start recording fNIRS data before the connection with the

fNIRS device is established, it can cause the program to freeze without prior warning, as shown

in Figure 11.

17

Figure 11: RTFD Not Responding screen

It has also been found that some computers are unable to detect fNIRS data through RTFD and

the reason is still under investigation. If the recording process goes smoothly without freezing,

there are only a few clicks required for the user to complete the recording task on this program.

Users can then upload data files to the cloud within the program to streamline the workflow. As

discussed before, RTFD is error-prone. Once the program window is frozen, all data points

recorded are lost, and there is no way to recover the lost data. Aside from that, RTFD offers a

shortcut for users to update file names with ease. It has a relatively simple user interface and

most functions are self-explanatory. Because the interface is relatively straightforward, users

typically do not have issues with memorizing the commands required to complete a typical

recording task.

3.2.3 Matlab_GUI Tool Analysis

 The Matlab_GUI was developed to assist in the data visualization and analysis of fNIRS

brain data. It pulls the fNIRS data from a postgreSQL database and inputs it into the GUI. To run

the application, the user must have the latest version of Matlab installed and several additional

plug-ins that are not listed in the provided installation instructions. However, when the user

attempts to run the application, which they can do through the command line, it will prompt the

user to install the required plug-ins, as shown in Figure 12 The user will be unable to open the

18

application before individually installing the tools and restarting the Matlab software, preventing

progress within their workflow.

Figure 12: Error message received if required plug-ins not installed

The application takes an average of ten seconds to open to an empty plot and prompts the

user to select a specific research subject. While this is happening, in the command window it

shows the loading progress in the format shown in Figure 13. There is no indication of progress

on the actual GUI screen. The user must switch between viewing the GUI and the command

window in order to interact with the entirety of its functionality.

Figure 13: Progress indicator on command line

For the data visualizations, the user can only view time-series from one subject at a time,

but they can view multiple channels and events for that subject. To select multiple channels

and/or events, the user must use traditional keyboard shortcuts CTRL+Select and Shift+Select

and all but the current selection disappears if the shortcuts are not used, as shown in Figure 14.

Figure 14: Channel selection

Whenever the user wants to view their selection on the plot, they must select the “Plot

Data” button. This process can take anywhere from 3 to 60 seconds or more. When a different

channel or event selection is made, the plot content is erased until “Plot Data” is pressed again.

There are several plot manipulation options that appear when the user hovers their mouse over

the graph such as panning and, brushing. The icons are small in proportion to the rest of the

19

application and faint in color against the white background of the GUI, which Figure 15

demonstrates.

Figure 15: Plot manipulation icons are faint

There is also a button that restarts the application that is grouped with other more

commonly-used buttons such as “Export to Homer” and “Help”, shown below in Figure 16.

Figure 16: Other options are easier to find

This “Restart” button then closes the application after a few seconds and then reopens it

with all previously selected options cleared. This could be detrimental to the user’s workflow if

they were to select it by mistake when exporting the data.

The error messages are at the code-level, making it difficult to decipher what is wrong.

For example, when trying to export to CSV, the following error message is shown in the

command window as shown in Figure 17.

Figure 17: Errors are only shown at the code-level

The given error messages refer to specific variables and function names that are not

exposed to the user through the GUI. There is no notification for the user within the GUI that an

error has occurred and the user is unlikely to notice right away if they are not looking at the

command window, nor would they be able to understand the error without a deep knowledge of

the codebase.

 Overall, the Matlab_GUI has sufficient functionality for its purpose, but the lack of

intuitiveness within the application and the low-level error reporting detract from its usability.

20

3.2.4 BrainEx Tool Analysis

 While there is a need for a new interface, there is a provisional interface for an older

version of BrainEx that the team was able to analyze. The BrainEx tool’s purpose is to aid the

user in analysis of their previously collected time series data by helping them find the k best

matches for their desired sequence (Dubey, et al. 2019). It accomplishes its goal by prompting

the user for input on loading data on the upper left portion of the screen. Dropdown menus for

this portion make selection easy, but some of the labeling relies on technical jargon. Once the

data has been loaded, the user may choose a sequence to query by scrolling through different

thumbnails of the data. The user may also zoom into a sequence to select smaller subsequences if

desired. This is convenient because it is easy to see graphically how different subsequences

related to the larger sequence, but is displayed in the only pop-out window in the application.

The user may also input desired criteria for the query. Again, these criteria tend to overuse

inaccessible terminology. In addition, the querying input section of the application is located in

the lower left portion of the application. It is not delineated well from the data loading input

section, which could cause users to confuse their purposes. Finally, data is displayed on the right

side of the screen. After clustering, different statistics and a group density cluster map are shown

on the results panel. The group density cluster map, shown in Figure X, is difficult to interpret as

it is not in an easily recognizable format. However, the query results, as displayed graphically

and tabularly, are easy to mentally parse. Overall, the application is a safe option as data loss and

crashing are both rarities. However, there are some functionalities such as cluster exploration

that would improve the application’s ability to reach its goal. In addition, the unintuitive layout

and overuse of complicated technical terms gives this application a steep learning curve.

Figure 18: The Group Density mapping of clusters on the BrainEx UI is hard to parse as it is difficult to

understand its presentation of data (Retrieved from BrainnEx November 4, 2019).

21

3.2.5 NirsLAB

NirsLAB is an fNIRS data analysis tool that is used to preprocess and analyze the data. It

accomplishes this goal by providing the user with options such as truncating the time series data,

being able to check the raw data, and applying filters to narrow down the focus. The users are

also able to view visuals or graphs to see the results of the data. In this aspect, the tool is

effective to the users, but the application is not customizable which makes it difficult to fit

specific user needs. The application is efficient in that it is intuitive to the user to be able to

clearly see all the labels for the features in the interface. However, some features in the interface

are slow after a user clicks on it, which could be improved. Additionally, the steps to be taken to

process the data are also labeled with numbers in the order in which they should be executed so

the user knows how to immediately start handling the fNIRS data. When the user clicks on one

of these steps out of order, there is error handling dialogue displayed as a warning to the user.

However, sometimes the error messages are not meaningful or do not display. It is also rare for

the application to crash, but if it does happen, the user can lose all their data and will have to

restart. In terms of learnability, the application is easy to learn because there is only one

procedure the user must follow in order for the functionality to work. However, there is limited

or no documentation for solving technical issues which could waste a lot of the user’s time.

Regarding memorability, it is easy for the user to come back to the interface and know how to

perform all the steps because there is only one path through. Overall, the application is easy to

pick up and learn, but there could be more improvements to make the application customizable

to the user’s needs, time efficiency, and effective error handling dialogues.

3.2.6 Conclusion to Tool Analysis

Through their tool analysis described in Section 3.2.1 through Section 3.2.5, the team

produced the following table of ratings on a scale of 1 to 5 with 1 being “not met” and 5 being

“thoroughly met”:

Table 1: Tool analysis ratings

 Effectiveness Efficiency Safety Learnability Memorabilit

y

RTFD 1 4 1 4.5 5

Aurora 4.5 3 4 4.5 4.5

BrainEx 3.5 4.5 5 1.5 2

Matlab_GUI 3 2 2 3.5 4.5

NirsLab 3.5 4 2 2 4.5

22

 The team’s main takeaways from analyzing the usability of these tools were the

importance of communication, intuitive control flow, user-centered error handling, and clear and

concise verbiage. Tools that had a high score in “Memory” were simple and straightforward,

with relatively effective control flow. Tools that received a lower score in “Effectiveness” and

“Safety” had poor or no error handling and data recovery. Those with low “Learnability” had

inaccessible terminology and only partial documentation. Tools with low “Efficiency” were slow

to respond and offered little feedback to the user and there was also more room for error due to

either the application crashing or the error messages being at the developer level. In conclusion,

to meet the goals of each evaluation category and improve upon current applications, the team

aims to include user-centered error messages, continuous and useful feedback, a streamlined

control flow, accessible language, and thorough documentation when developing their interface.

23

4. Collection and Analysis of User Requirements

In addition to understanding the current solutions in the problem space, the team wanted

to understand what users would need from the system. Therefore, the team began collecting and

analyzing user data. Through interviewing potential users, the team aimed to determine the likely

end users, their technical experience, and their use of the current set of BCI tools. The team then

analyzed both the user-specific and the task-specific data collected to determine the audience for

the tool. Then, from the results, they determined the base technical requirements.

4.1 Conducted User Analysis on Lab Staff

The team conducted semi-structured interviews with nine members of the lab staff, with a

mix of undergraduate and graduate students, to be able to formulate accurate user personas, or

profiles. In addition, we interviewed one of Professor Solovey’s former students with more

familiarity with fNIRS system. Interviews were recorded with the user’s consent (recordings will

not persist beyond the length of the project) and we took detailed notes while keeping the user

anonymous. In addition to creating user personas, the team analyzed user feedback on existing

lab tools received during interviews.

4.1.1 Process

In order to gather requirements about features to implement in BrainEx, the team

conducted interviews with three undergraduate students, three graduate/PhD students, and three

developers (of varying levels of study) to acquire information about various fNIRS tools present

in the HCI Lab. The team also collected information about target users such as their

demographics, education level, and familiarity with the tools. In addition, the team analyzed their

feedback on the use of current tools and found common areas of advantages, disadvantages, and

improvements to apply to BrainEx.

To be able to approach the design of the BrainEx UI from the users’ perspective, the team

first determined who the target users are. Through consulting with the advisors, the team decided

to treat the WPI HCI Lab staff (undergraduate, graduate, and PhD researchers) as target users

since they regularly use BCI research tools such as BrainEx.

The team prepared an interview preamble that introduced themselves, described their

overall goal, and what they hoped to gain from the interview to provide useful context for the

user and a clear agenda for the interview. This document can be found in Appendix A. 

The team also produced a set of general interview questions. These questions encompass

many aspects of user experience including what tools they currently use and for what purpose,

24

their user-experience with the tools, and their expertise in using them. Depending on the user’s

role and domain of expertise in the lab, certain questions were omitted or improvised. Where

applicable, the user was asked to demonstrate the tools they mention during the interview. In

essence, the team hoped to have the following questions addressed:

● What is the demographic of the lab staff who are potential users of BrainEx in the

future? 

● What are their needs and wants of using the existing tool/tools? 

● Are there any aspects of the tools that they find frustrating?

● What is their typical workflow when using the fNIRS data?

● What is the most useful/useless thing they found on this interface?

● What is their level of understanding of the tool(s)?

A full list of interview questions can be found in Appendix F.

4.1.2 Outcomes

After conducting the interviews, the team determined that the target users in the lab range

from undergraduates to PhD students from many different backgrounds. The most common

subject areas of expertise within the lab are Computer Science, Electrical & Computer

Engineering, and Biomedical Engineering. Undergraduates typically facilitate the data collection

process while graduates perform data analysis. Some undergraduate and PhD students are also

involved in developing fNIRS-based tools for various phases of the lab workflow. Overall, all

the students in the WPI HCI Lab facilitate fNIRS-based research in the lab and have experience

with the tools used in the lab to collect, process, and analyze data from fNIRS-based BCI

technologies.

In order to effectively communicate and sharpen design focus, the team developed

fictional user personas that represent the target user. When the team completed the interviews,

the information collected was synthesized into three distinct user persona groups with which to

drive the designs: novice users, intermediate users, and advanced users. The novice user group

represents the undergraduate researchers who typically facilitate data collection and some

preprocessing; the intermediate user group represents the graduate/PhD researchers who usually

perform more complicated procedures such as data analysis; and the advanced user group

represents the developers of the backend. Developers are considered a stakeholder rather than a

target user. While the developers may not necessarily use the application for its designed purpose

as target users, their roles require constant interactions with the frontend to maintain the backend.

Thus, their perspectives were considered in the design. The personas, as shown in Table 2,

include demographics, educational background, and additional character details that helped

evaluate user goals as they relate to the application. The interview results for lab staff were first

25

grouped by education and experience level. Commonly occurring themes (e.g. tool frustrations,

what they liked about the tools, etc.) were then consolidated for each group. Lastly, the different

perspectives of each of the users were included by prioritizing the most important issues that

should be addressed in the development of BrainEx. The final user persona tables to summarize

the information from conducting the interviews can be found in Appendix H.

Table 2: Template for persona information

Name Name of the user

Age Age of the user

Education Education level of the user

Title & responsibilities Title and general duties user performed in the

WPI HCI Lab

Goals & frustrations The goals, useful features, and improvements

the user mentioned about the tool they are

demonstrating

Narrative Background of the user in regard to their work

and expertise with the tool

Quote Quote the user mentioned about the tool

Through the interviews and user personas, the team decided that they will focus the UI on

novice users. If novice users are able to use BrainEx, then it most likely will not be a problem for

more experienced users to learn. From the user personas, the team was able to clearly identify the

stakeholder group, and the novice, intermediate, and advanced expertise groups. The personas

also helped the team determine which group to ask specific questions that may regard guidance,

development feasibility, or more advanced options pertaining to the BrainEx UI.

Alongside these user personas, the team also noted common user needs from the

interviews. Once the team identified the recurring needs, they consolidated and organized into 4

categories (see Table 3). They also identified the associated functionality of the user-interface

they will design, which are explained in more detail in Section 4.2 and Appendix P.

26

Table 3: User needs for BrainEx tool alongside associated BrainEx functionality

User Need Functionality

Data exploration Cluster Explorer

Dataset Explorer

Investigate data patterns Query best matches for data sequences

Export database Save database

Export best matches Save query results

User Tool Analysis

The team’s collection of data from target users included the overall task workflow of the

research as well as the user-experience of the aforementioned tools. To add depth to their

previous tool analysis, the team examined the interview data to extract the usability aspect of

each tool based on the opinions of the lab’s users. The usability aspects include the following:

● Effectiveness: How good is a system at doing what it is supposed to do?

● Efficiency: Once users have learned the design, how quickly can they perform the task?

● Safety: How many errors do users make, how severe are these errors, and how easily can

they recover from the errors?

● Learnability: How easy is it for users to accomplish basic tasks the first time they

encounter the design?

● Memorability: When users return to the design after a period of not using it, how easily

can they reestablish proficiency?

The tools that were analyzed include: RTFD, Aurora, NirsLab, Homer, Matlab GUI, and

BrainEx. The findings were summarized below:

● Effectiveness: Overall, these tools achieve promising results and are effective in

usability and transparency. However, there are significant improvements that could be

added to each of the applications to increase the usability for users.

● Efficiency: Overall, the time it takes to run certain functionalities should be fast.

Users also commented that visuals are crucial to their understanding of the data. This

is especially advantageous for data analysis purposes because users can clearly see

27

which regions need to be investigated more through color coded lines or markers on

the data points. In addition, users noted that there is a need to export data in a csv

format. Alternatively, a recurring comment was that the software was not

customizable, and a specific procedure had to be followed as it was not open source.

Another concern was overcrowding of the UI with features or graphs while at the

same time, deviation of the user by having to navigate multiple pages. The UI should

be broken up into a reasonable amount of stages for better navigability and usability.

● Safety: Users make errors sometimes in the applications, but there is often no way of

knowing what was done wrong. For example, if a user clicks on a series of buttons in

the wrong order, there is no error message or way of notifying the end user about

what is happening. This causes a lot of frustration, having to restart, or spending

hours on reading about the feature. In addition, another recurring concern was that

there is no proper documentation for the applications. Either the documentation for a

tool is poor, not updated, or does not exist. It would be easier to have guidance within

the application by hovering over a tooltip to learn more about a particular workflow

or functionality.

● Learnability: The tools, with the exception of Homer and BrainEx, are easy to learn

and are straightforward even when using for the first time. It does not take a long time

to get acclimated with the features and functionality as there are clear labels to

describe what each button does although there are areas for improvement. Homer and

BrainEx have the same concerns in which they are not apt for non-technical people,

as Homer requires programming knowledge, and both are difficult to learn for people

who are not in the field of study or do not have prior experience or knowledge of

fNIRS data procedures.

● Memorability: Overall, after using the tools and getting familiar with them, users

reported that going back after a brief interval was not a problem for any tools besides

Homer. For the other tools, they have to follow similar steps to collect and process

data that are easy to learn. For Homer, on the other hand, users lost touch with the

programming knowledge needed to process the data.

Analyzing the interview data gave the team a broader context to the usability of the lab’s entire

workflow. These findings also helped the team understand some common usability issues with

current BCI tools from the users’ perspective. Therefore, the team was able to sharpen their

focus during the design phase to prevent the same issues.

28

4.2 Gathered system requirements of BrainEx

To understand better how the UI should implement the users’ required tasks, the team

sought to understand the technical framework and structure of the BrainEx API. The team met

several times with the developers to go through how the application works and how to use it in

order to extract the system requirements of the UI. The developers provided the team with

several resources such as the system architecture diagram, tutorials, and development

documentation for a deeper understanding of the API’s implemented functionalities. In addition,

the team used the BrainEx backend through the command line to cement the user workflow. To

review and confirm these concepts, the team documented the commands and created a flowchart

to illustrate the high-level overview of the BrainEx system as well as its specific capabilities.

Doing so allowed the team to abstract the technical details so they could better focus on

identifying all the user interactions within the interface.

Through meeting with the developers of the BrainEx backend, the team had the

opportunity to see BrainEx’s command line functionality. The developers demonstrated the

process of creating a database from a CSV file, loading a database from memory, building the

cluster groups, and querying the data. The main features of the BrainEx API include the

following:

● Creating and configuring a SparkContext according to a machine’s memory and cores for

the distributed computing to take place in

● Parsing a CSV file of raw data into the desired data structure to prepare for preprocessing

● Loading a previously preprocessed dataset from a folder location

● Saving the preprocessed data into the correct format so it can be loaded again in the

future

● Preprocessing the raw data by grouping similar time sequences into clusters

● Generating a list of query sequences for experimental use

● Querying into the preprocessed dataset with a query sequence and the desired parameters

to find similar sequences

There are also several metadata features that can be used for exploring data beyond

specific queries:

● Retrieving the total number of sequences in each cluster

● Retrieving the thumbnails of representative sequences

● Retrieving the sequences within a cluster using a given representative sequence

See Appendix P for more detailed information of the functionality of the BrainEx API. Figure 19

shows the general flow of events.

29

Figure 19: A flowchart explaining actions of the BrainEx application. It is mainly linear with some

deviation for multiple options, leading the team to the idea of a prescribed flow for initial screens and

tabbing for main screens.

5. Completion of System Design Specifications

After determining user and developer technical requirements, the team created several

design specifications to start deciding how to combine the two into one cohesive system. The

team developed a series of system models starting from a high-level understanding and gradually

adding more technical details to determine the final requirements with respect to users’ needs.

These models are intended to help the overall design of the interface functionality focus on the

end user.

The first model, the conceptual model (Jacob, 2018), describes the features of the

application and the relationship to their functionality in terms of objects. Then, the semantic level

design describes the functionalities in detail, including specific functions from the current API.

Following this, the syntactic level design, also known as a state diagram, was made to establish

the different states the UI will take as different functions are executed. Lastly, the lexical level

design was used to give concrete definitions of each action executed in the syntactic level. These

models are explained in detail in Subsections 5.1 through 5.2. Each model provided different

types of insight into the desired organization of the final app that allowed for less confusion

when prototyping

30

To conclude the design phase, the team provided the backend development team with

these models to ensure that all design decisions on the user-side are implemented in the

command line tool. 

Throughout the development of the interface, the team’s understanding of the

requirements as presented in the models did not change drastically from the time the models

were initially created. Therefore, while the models presented in these documents are not the

original models created by the team, the changes are minimal enough that just presenting this

version of the models accurately portrays the team’s specification thought process.

5.1 Created the Conceptual Model 

The purpose of the conceptual model is to help the designers understand the actions and

objects necessary for users to operate the UI. It is also referred to as the “mental model” because

it represents the users’ perception of the UI. The deliverable representation of this model

includes lists of the objects, operations, and their relationships in the UI. Taking the example of

modeling a text editor, objects would include “characters, files, [and] paragraphs,” relationships

would include “files contain paragraphs contain characters,” and operations would include

“insert, delete, etc.” (Solovey, 2016).

The team created their conceptual model as the first model in their design specification

process.  They used the research collected about the technical specifications and user needs to

pull together a list of features and objects needed in the application.

Table 4 shows the initial conceptual model created by the team. The conceptual model

was helpful to the team because it helped organize the team’s thoughts on what objects,

relationships, and operations from the BrainEx command line tool that the users would want to

see implemented on the frontend. It also helped the team realize that while there are few objects,

there is much data held within these objects, which will require careful management.

31

Table 4: The team’s conceptual model helped organize the users’ desired functionality in one

place for reference during prototyping

Objects Relationships Operations

● SparkContext

● Dataset (Dataframe

structure)

● Query object

● Query results

● The other objects reside

within the SparkContext

● Query results are subsets

of dataset

● Query result is

generated from query

object

● Load database

● Build database (this

does the clustering) w/

build specifications

(length of interest, type

of distance, similarity

threshold)

● Save database

● Generate query

● Query database

● Plot query results

● Explore clusters

● Explore dataset

5.2 Created the Semantic Model

The semantic model expands upon the conceptual model to unify the technical abilities of

the backend API and user-specified functionalities. For each action, the team specified a function

definition, the necessary parameters, any output/feedback, errors that could occur, and how those

errors would be handled. This information is organized in table form. Each function is

represented by its own table.

The semantic model created by the team is comprised of Tables 5 through 12. Each table

represents a different function that users wish to see implemented in the frontend, as determined

by the conceptual model. The creation of the semantic model was essential to the team’s

understanding of how the users should be able to interact with each backend function as they

used the interface. Each table of the model ensures that the team has a plan for handling all

aspects of each function before entering prototyping.

32

Table 5: Semantic model of loading the preprocessed dataset

Function Load database

Parameters (implicit and explicit) Either an existing DB file created in another

session or a CSV file containing data, need a

Spark Context before running

Description Loads data into API for user manipulation

Feedback Loading bar while file uploads if it is able to

upload properly, then transition to next screen

where user can select build options. If unable to

upload for any reason, should produce an alert and

stay on file selection screen.

Error Conditions • Give error message if file does not

exist and stay on file selection screen

• Give error message if file is formatted

incorrectly and return to file selection

screen from loading bar

Table 6: Semantic model of preprocessing the raw dataset

Function Build database

Parameters (implicit and explicit) There must be a Spark Context and loaded dataset

before running. Explicit parameters:

Database/self, Similarity threshold, length of

interest, distance type, verbosity (may be obscured

from user)

Description Groups and clusters sections of data of length

specified by length of interest slice

Feedback Loading bar while database builds if it is able to

build properly, then transition to next screen

where user can select querying and viewing

options. If unable to build for any reason, should

display an alert and stay on build screen

Error Conditions • Limit user input to ensure length of

interest valid (i.e. upper bound larger

than lower bound and length found in

data)

• Limit user input to ensure similarity

threshold is between 0 and 1

• Limit user input to ensure distance

type valid

33

Table 7: Semantic model of saving the preprocessed dataset

Function Save database

Parameters (implicit and explicit) There must be a Spark Context and loaded dataset

before running.

Description Saves a database to the local folder to be able to

reload later

Feedback Alert to let user know if saved properly or unable

to save

Error Conditions • If unable to save, alert user

Table 8: Semantic model of generating a list of query sequences

Function Generate query

Parameters (implicit and explicit) CSV file listing desired queries (each query

includes features and start/end lengths; will

probably be abstracted by user by having user

select a sequence and generating the CSV from

that), number of features in said queries; must

have Spark Context

Description Generates an object that holds information about a

desired query

Feedback Alert when query has been generated or if it can

not be generated

Error Conditions • Give error message if CSV is invalid

• Give error message if number of

features does not match CSV

34

Table 9: Semantic model of finding similar sequences

Function Query database

Parameters (implicit and explicit) (built) Database/self, query object, number of best

matches, boolean of whether to exclude

representative sequence, overlap threshold; Spark

Context must exist

Description Generates an object that holds results for best

matches based on a given query object

Feedback Display query results if query can be computed,

give error message if not

Error Conditions • Give error message if query object is

invalid

• Limit user input to ensure best

matches is a positive whole number

• Limit user input to ensure overlap

threshold is a number between 0 and 1

Table 10: Semantic model of plotting similar sequence results

Function Plot query results

Parameters (implicit and explicit) Query results, Spark Context must exist

Description Displays desired data in a line graph

Feedback Display line graph of given data

Error Conditions • Give error message if query results

does not exist

35

Table 11: Semantic model of exploring clusters

Function Cluster explorer

Parameters (implicit and explicit) (built) Database, Spark Context must exist

Description Displays clusters in line graphs for exploration

Feedback Display line graphs and statistics of clusters,

allowing users to look through them

Error Conditions • Give error message if database does

not exist

Table 12: Semantic model of exploring the entire dataset

Function Database explorer

Parameters (implicit and explicit) (built) Database, Spark Context must exist

Description Displays sequences in line graphs and provides

statistics for exploration

Feedback Display line graphs of sequences, allowing users

to look through them

Error Conditions • Give error message if database does

not exist

5.3 Created the Syntactic Model 

This model explains the processes the users will follow while utilizing the application.

This is presented in the form of a state diagram. The model represents each state that the

application may have (Solovey, 2016). These states are distinct representations of the data

available to the user based on the operations they have completed. Each state is represented as a

circle, bubble, square, etc. The connections between each state, represented as lines, are the

operations that users may complete. The lines are labeled with the user action and system

response. A one-sided line represents entering or leaving a state from outside the application.

The team created a syntactic model for the entire system.

 Figure 20 represents the syntactic model created by the team. This diagram helped get the

team starting to think about what different states or screens should exist in their interface. The

36

team noticed that there are fewer states than they expected to see based on their earlier ideas for

interfaces.

Figure 20: The team’s semantic model provides an order to the functions previously outlined and shows

the states of the interface.

5.4 Created the Lexical Model

Finally, the team completed a lexical model based on the syntactic model.  The purpose

of the lexical model is to define each action from the syntactic model. This helped the team

understand how the end-user will be completing each of these actions. The level of granularity

for the lexical model should detail every step a user takes to complete the action (Solovey,

2016).  For example, a lexical model of shutting down a Windows computer would be to click

the Windows button, then click the power options button, then click the shutdown button.

The lexical model (Table 13) provided a way for the team to envision how the users will

interact with the application. In creating their lexical model, the team was able to determine what

interaction concepts and mechanisms the users would be able to use to make the frontend easy to

follow and effective at its purpose.

37

Table 13: The lexical model for the application allows for an understanding of the actions in the

application and how they are to be accomplished

Action Definition

Window_Open Click BrainEx icon

Load_File Browse to desired database or CSV file →

click load

Local_Copy_Database Click save database

Build_Database Enter similarity threshold on slider, enter

length of interest in 2 textboxes, select

distance type from dropdown menu → click

build

Query_Database Navigate to query tab → Enter number of best

matches in textbox, check box of whether to

exclude representative, Enter overlap

threshold on slider → click query

38

6. Design of Prototypes Using Iterative Design Strategy

After completing models of the system and confirming their understanding of the

application, the team completed several stages of prototyping, from ideation to interaction. Each

stage was iterated upon until the objective for that stage was achieved. The team justified each

design choice in an informal report, which was written along with each UI prototype. After each

iteration, the team planned their next iteration by revisiting the result of their evaluation and

listing the changes needed on the current system. The team noted features that were working well

for the user as well as features that were not noticeable or needed more improvement. If there are

multiple viable ways to design a section of the prototype, the team compared the trade-offs to

each version of the screen and decided on which version to adopt by considering usability,

desirability, and usefulness. Table 14 below shows the team’s timeline for this process. 

39

Table 14: A timeline of the 3 stages of design including purpose, goal, and evaluation.

Design Phase Purpose Design Goals Evaluation

Method(s)

Estimated Time

Iteration 1 -

Ideation

Confirm

fundamental

concepts of

system features

and user needs 

Storyboards Self-evaluate

using theoretical

models (part of

design

specification),

verify

correctness and

confirm user

needs

1 week

Iteration 2 -

Utility

Refinement

Ground the basic

prototype design

structure

Low-fidelity

prototype on

Balsamiq

(wireframes)

Heuristic

evaluation and

user testing

1 week

Iteration 3 -

Usability

Refinement

Solidify control

flow and

structure of

system through

rapid

prototyping

Mid-fidelity

prototype on

Balsamiq (more

interactive

wireframes)

Heuristic

evaluation, user

testing and post

user-testing

questionnaire

1.5 weeks

Final Iteration -

User Experience

Refinement

Determine all

visual elements

of user interface

to enhance

usability

High-fidelity

prototype on

Invision (fully

designed

prototype)

Heuristic

evaluation, user

testing and post

user-testing

questionnaire

2 weeks

6.1 Iteration 1 - Initial Design Ideation with Storyboards

The first iteration was intended to help the team collect more input on functionality,

understand the design concepts, and familiarize themselves with the fundamental structure of the

application. The team used storyboards for the initial prototype because they allowed design

concepts to be reviewed and validated by experts before receiving feedback from target users

within the lab. By the end of this iteration, the team expected to be able to answer the following

question: does the current plan for the application meet user needs and does the interface

accurately reflect the system behind it?

40

6.1.1 Process

Design of Storyboards

The team first brainstormed all features that needed to be addressed in the UI on a

whiteboard (see Figure 21) to solidify their understanding of user needs. Then, they created a

storyboard for each individual feature of the envisioned system (e.g. uploading a file, zooming in

on a graph, etc.) at a time to concentrate only on the essential interactions. Each storyboard

featured text, captions, and users with only the essential details. Depending on the complexity of

the feature, the team presented multiple versions to allow users to provide useful feedback on

which they preferred and why.

Figure 21: Brainstorming for the Storyboards

Evaluation of Storyboards

Once the team designed the storyboards, the correctness of each storyboard was verified

through self-evaluation using the models previously developed in Chapter 5. The team first

evaluated the storyboards themselves and ensured that they abide by the previously determined

41

design specifications. The BrainEx developers, who have more expertise in the domain, further

evaluated the storyboards. The resulting storyboards can be found in Appendix M.

The team then collected feedback directly from target users by presenting potential

design features to them in the form of storyboards. Storyboards were presented to the lab staff,

and the team noted strong reactions to each one. For each storyboard, the team also asked open-

ended questions to allow room for discussion. Exemplary questions included: what do you like

about this feature? Do you find it useful? See Appendix B for a full evaluation protocol. The

feedback received from users was incorporated into the storyboards, the result of which can be

found in Appendix N. Next, the team presented the storyboards to the professors to receive

critical feedback and eliminate any misconceptions about the system. Any significant changes to

the team’s understanding of the system (e.g. additional features, control flow within an

individual component, etc.) were applied to the storyboards after gathering the feedback from the

user testing sessions and advisors. Lastly, the team consolidated and analyzed the users’

responses in order to incorporate any previously unconsidered user needs into the final

storyboard design.

6.1.2 Outcomes

 Evaluations

In this iteration, the users’ feedback was instrumental in identifying the places where the

placement of tasks both in the application needed improvement in order for users to be able to

use the application effectively. Users’ feedback showed there could be clearer language and a

more simplified presentation of functionalities. Users also expressed a desire to know more about

the shape and interaction with the data, such as where it was coming from and how exactly they

could and should interact with it. Given the feedback, it became clear that clarity within the

application in terms of control flow and nomenclature would resolve most of the issues. Users

also expressed confusion in the representation of the data attributes in the storyboard as well as

how users would access data in the application. Therefore, the team decided that these topics

gathered from the testing the storyboards could become the focus of the low-fidelity prototype.

42

Figure 22: An example storyboard highlighting how to select a sequence using the Legend

Based on this round of feedback, the team discovered that the storyboards should be more

compartmentalized and independent of each other, showing just a single functionality. The users

mentioned that they were confused about the representation of the data as well as where it came

from, such as from a file or user input. This feedback was then applied to refine the storyboards

and solidify the team’s understanding, and more details can be found in Appendix O. An

example of one of the final Storyboards is shown in Figure 22. These storyboards became useful

in Iteration 2 as a preliminary prototype on which to base the Balsamiq prototype.

Conclusion

Storyboards served as a useful resource for ensuring that all features and their individual

components were incorporated into the following iterations. The feedback from users helped the

team identify flaws with their testing methods, such as not presenting the goal of the application

before beginning to ask questions. This helped the team fix wording for study methods in future

iterations.

6.2 Iteration 2 – Utility refinement with low-fidelity prototype

With a clear plan for the individual components and functionality of the BrainEx system,

the team began designing the base prototype of the application, keeping in mind the general

control flow but focusing on the flow of each individual component. The low-fidelity prototype

43

was designed to establish the basic structure of the prototype screens based on the essential

features that were highlighted from user feedback on the storyboards. The primary goal of this

iteration was to answer the following question: Does this system solve user problems and meet

user needs?

6.2.1 Process

 User Task Analysis

After creating all the related models and storyboards, the team was able to analyze what

users should be able to do with BrainEx. This step allowed the team to break down the workflow

within BrainEx and decompose the core user task into a hierarchy of ordered subtasks, thus

helping the team to brainstorm how the overall structure should be designed in the initial

prototype.

 Essentially, a typical user task would be to find similar sequences to the sequence(s) of

their interest. In order to complete this task, users are expected to know whether they have a

sequence that is ready for similarity search or not, whether they have a preprocessed dataset, and

if not, what the preprocessing parameters will be. Preprocessing in this application shortens the

amount of time spent looking for similarities as it pre-arranges similar sequences into clusters.

The starting point of the task is marked by the selection of a dataset, either preprocessed or raw,

for data analysis. Once they start preprocessing the dataset, users may know the status of the

system by checking the progress of preprocessing. Users are also required to know the

parameters input for preprocessing as well as similarity search. The end of preprocessing is

marked by the system’s capability to find similar sequences to the given sequence. Core

components that can help users understand their tasks are visualizations and tables which can

give a closer view of specific time series data. The completion of this task is indicated by the

result of similarity search of the given sequence.

In summary, the user interface of BrainEx needs to fulfill two main tasks of the user:

exploring data and finding similar subsequences in the given dataset. The bare minimum

operation requirement follows: importing a preprocessed dataset → uploading a subsequence as

the baseline → find similar subsequences in the given dataset. A more complicated task would

require users to first preprocess a raw dataset, then explore data before being able to locate a

subsequence of interest; and lastly, the user can find similar subsequences. Because the

preprocessing stage alone can take up to a day, it is important for the system to display progress

to the users so users can consider their own time constraints while working on the task. Thus, a

diagram of user task hierarchy which illustrates the major steps was created to summarize the

team’s findings and highlight the key operations within the system (see Figure 23).

44

Figure 23: Diagram of User Task Hierarchy

 Design of The Low-fidelity Prototype

After the team was able to ground their understanding on the user tasks, they started to

brainstorm ideas on how to design the first interactive prototype. To minimize time and

resources invested in developing the application, the team started with creating a low-fidelity

prototype to communicate their design ideas to the target users and collect any user requirements

that might not have come up in the interviews. The user-task related analysis above helped the

team better form the structure of the prototype design.

First, the team brainstormed together and created sketches on whiteboards (see Figures

24 and 25) as the initial design prototype. The team focused on addressing the user task

questions above as the priority in this design phase. Then the team transferred the sketches onto

Balsamiq where they designed a wireframe with basic interactions for each feature. The team

chose Balsamiq instead of other prototyping tools because it resembles paper sketches and is

reliable, in the sense that it has consistently styled UIs. It is also flexible, allowing the team to

make changes quickly using widgets and work on the project collaboratively (“Balsamiq”, n.d).

45

Figure 24: Whiteboard sketch of the Basic Cluster Explorer Page from the low-fidelity prototype

Figure 25: Whiteboard sketch of a more detailed Cluster Explorer Page from the low-fidelity prototype

 The main priority in the design of the low fidelity prototype was the layout of each of the

planned screens in the application. Based on the feedback received on storyboards and the

understanding of the application gained through modeling, the team grouped similar actions

together on separate screens. The main actions the team discovered were loading data, clustering

data, exploring data (entire dataset or clusters), and querying. The structure of the prototype

reflected the importance of these three actions.

 In this prototype, the user must load a dataset, then cluster the dataset. After these

prescribed actions, the user has more freedom to explore the entire dataset (see Figure 26) or

explore the data per cluster. They may then select a sequence in one of the explorers or using an

uploaded file to query for best matches (see Figure 27). Since the team needed to rapidly

46

prototype, Cluster Explorer was not the focus in the low-fidelity prototype; rather, the team spent

most of their efforts on the design of the Dataset Explorer and Query Finder pages.

Figure 26: Dataset Explorer page from the low-fidelity prototype

Figure 27: Query Finder page from the low-fidelity prototype

47

Heuristic Evaluation

Before the prototype was presented in front of users, it was analyzed for compliance with

guidelines. Heuristic evaluation can easily expose problems before any user testing without the

need for identifying any specific tasks or activities. This also provided a shared language for any

better solutions to be proposed. 

Regarding guidelines, the team adopted applicable items from Nielson’s heuristics model

(Nielson, 1994), which encompasses the following aspects:

1. Visibility of system status: Is there appropriate feedback of what is going on in the

system?

2. Match between system and the real world: Are any real-world metaphors and/or analogs

used? If so, do they match how the real-world objects interact?

3. User control and freedom: Are users able to choose several/many paths of interacting?

Are there exits for mistaken choices?

4. Error prevention: Does the interface attempt to minimize possible user errors?

5. Recognition rather than recall: Does the system fill in known info when possible?

6. Flexibility and efficiency of use: Are there special shortcuts that experts can use for

efficiency? Can users record/tailor actions to suit their needs? (advanced)

7. Help users recognize, diagnose and recover from errors: Are error messages clear to user?

Do they suggest solutions?

8. Help and documentation: Are there clear and concise labels? When needed, is help

available?

Using Nielsen’s ten principles for heuristic evaluations, each team member individually

rated the low-fidelity prototype on eight different aspects (two of which were not applicable to

the low-fidelity design).

User Testing

After the team performed the heuristic evaluations, the prototypes went through user

testing. User testing served as an empirical evaluation method that allowed the team to observe

the user interacting with the UI prototype. The team recruited the lab staff who were previously

interviewed as test subjects since they are the target users. Testing was performed by giving

users a specific task and asking them to execute it on the UI prototype without giving specific

directions. The team asked the users to discuss everything they were thinking from the time the

users saw the statement of the task to completion (i.e. “thinking aloud”) and video recorded the

screens of the user plus their voice, for reference later. The videos were not kept permanently.

The team observed this process and noted any critical incidents that point to the user’s success or

48

failure with respect to their tasks. These critical incidents include but are not limited to (Solovey,

2019):

● User does not succeed in achieving the goal within 5 minutes 

● User tries several operations or the same operation over again, and then explicitly

gives up

● User attempts to find three or more alternatives in order to achieve the goal 

● User achieves the goal using a suboptimal approach that is not within the team’s

intention

● User expresses hesitation or other negative affect

The team’s observations were documented in the format of the following Usability

Aspect Report (UAR):

Table 15: Usability Aspect Report template (Solovey, 2019)

SubjectID A code to anonymize the participant

Name Succinct description of the incident

Evidence Facts

Explanation Interpretation of the evidence

Severity Rating on a 1-4 scale where 4 means

catastrophic and 0 means not a problem. 

Justify the severity with the following

parameters: frequency (of the occurrence),

impact, and persistence (whether it is an one-

time error). 

Solution (optional) Possible fixes and tradeoffs

Relationship (optional) Link to related reports

After organizing the user testing information in the UARs to capture incidents based on user

feedback, the team analyzed the information by grouping similar incidents together and

prioritizing the ones that had high severity ratings.

Users were asked a set of questions when the test was complete to solicit direct feedback.

Questions were revised to reflect the result of heuristic evaluations so that user responses could

be used later to address or help prioritize the concerns raised from the heuristic results. Below

are examples of questions the team asked:

49

● Is the task confusing or too complicated?

● What are the system features that they feel are not useful and ones that are

extremely useful?

Through observing the users who will navigate and interact with the system, the team

hoped to discover details that might have been left out in their own perspectives.

6.2.2 Outcomes

By conducting both heuristic evaluations and user testing, the team was able to keep the

design centered on their utility goals.

Heuristic Evaluation

Although done independently, team members gave relatively consistent ratings to each

category of the heuristic evaluation overall. The team concluded that they should prioritize the

categories of “help and documentation”, “error prevention”, as well as “error recovery”, in

descending order of prioritization. This means, in the next iteration, the team should aim for

more intuitive label names in the design, as well as means to handle user errors. The team also

would apply fixes to small issues that were identified during user testing. An aggregated table of

ratings is included below.

Table 16: Aggregated results of heuristic evaluations for the low-fidelity prototype from iteration

2

Category Average Rating out of 5 (based on four

team members’ input)

Visibility of system status 3.25

Match between system and the real world 3.5

User control and freedom 5

Error prevention 2

Recognition rather than recall 3.125

Flexibility and efficiency of use 3

Help users recognize, diagnose and recover

from errors (Error recovery)

0.25

Help and documentation 1.25

50

User Testing

User tests were conducted with two target users who were more experienced with brain

data analysis so the team could have a better understanding of whether the prototype would meet

their needs. The complete user testing protocol can be found in Appendix C. Users were able to

successfully complete most of the assigned user tasks but they had many troubles arriving at the

solution. The average task completion time was more than five minutes, given that testing

subjects were not given time to play around the prototype for enough time before user tasks were

assigned. Researchers also had to step in multiple times to give more instructions on how to

proceed because testing subjects kept experiencing critical incidents, which are documented in

more detail in the Usability Aspect Reports in Appendix I. Overall, the team was recommended

to develop a more intuitive and effective control flow for the prototype and offer more guidance

within the application. The team also needed to fix the nomenclature inconsistencies to reduce

any confusion. Current user testing protocol needed to be revised so users could have more time

to get familiar with the prototype on their own before user tasks were assigned. In future user

tests, giving instructions to the testing subjects should be avoided as much as possible. The team

needed to prioritize the development of a more intuitive and effective control flow for the mid-

fidelity prototype. The team also actively looked for better naming conventions to make the

application more intuitive.

Conclusion

 To make meaningful decisions to prioritize features to be tested in the next prototype, the

team evaluated the importance of the design aspects brought up from both the heuristic

evaluations and user testing. Their findings from these evaluations suggest that common design

aspects the team should focus on included error handling, labels and guidance within the system,

and most importantly, a more intuitive control flow. Therefore, it was the team’s priority to

develop a control flow that requires a minimum learning curve for novice users. Nonetheless, the

goal of this design phase was met as the team was able to confirm that the system design was

meeting user needs from user testing.

6.3 Iteration 3 - Usability refinement with mid-fidelity prototype

Once the team had the general structure of the application solidified, they focused on the

overall control flow, refining the prototype to be intuitive and easier to understand. The primary

goal of this iteration was to answer the following question: Can the user understand/navigate

through the system without much external guidance?

51

6.3.1 Process

Design of The Mid-fidelity Prototype

As the design matured, the team moved towards linking all wireframe windows

containing the various functionalities of the application together to ensure a smooth user-

interaction control flow. The team started to develop more mid-fidelity prototypes that allowed

more interactions and highlight key features. They then wrote up design justifications for each

page in the prototype and created a sitemap (see Figure 28) that provided additional information

about screens and their relationships to support the structure of the control flow.

Figure 28: Site map of the mid-fidelity prototype

 Following the user feedback from the low-fidelity prototype, the team decided to focus

on the control flow of the application. Therefore, this was the focus of the team’s mid-fidelity

prototype design as the team used whiteboards to brainstorm more ideas (see Figures 29 and 30).

52

Figure 29: Whiteboard Sketch of the Homepage from Mid-fidelity Prototype Ver.2

Figure 30: Data Explorer Page from Whiteboard Sketch of the Mid-fidelity Prototype Ver.1

53

In order to determine the most user-friendly control flow for the application, the team

designed two different prototypes with different flows. One included the same flow as the low-

fidelity prototype with specific updates based on feedback. This version of the mid-fidelity

prototype begins with loading in the data and then leads to clustering the data. If the data does

not need to be clustered or when data finishes clustering, the application moves to the

preprocessing completion page shown in Figure 31. From here, the user can select the tab they

would like to start on within the application, with the tabbed structure mirroring that of the low-

fidelity prototype.

Figure 31: Preprocessing Completion Page from the Mid-Fidelity Prototype Ver.1

The other prototype included a central menu page instead of tabbed navigation (see

Figure 32). This was menu page also replaced the data load landing page of the low-fidelity

prototype. This page allowed the user to break up the tasks in their work as it required them to go

back to the menu whenever they are switching tasks. While this may bring some clarity to the

user, it doesn’t allow for smooth transitions between tasks.

54

Figure 32: Homepage from the Mid-Fidelity Prototype Ver.2

After gaining feedback from two users and completing heuristic evaluations, the team

combined the favored features of the two prototypes into one prototype that includes a central

menu, but includes tabs between the two styles of exploration to enable easier switching between

the two. The data exploration page, shown in Figure 33, was also improved by the

implementation of features such as a back button and statistics, as well as clarified language.

55

Figure 33: Explore data by filtering page from finalized mid-fidelity prototype

 The team was able to spend more efforts on the clustered data page (see Figure 34) in the

mid-fidelity prototype. A smooth transition between cluster selection through representative

sequences and exploration of the sequences within the clusters was implemented.

Figure 34: Explore clustered data page from finalized mid-fidelity prototype

56

 Finally, for the mid-fidelity prototype, the query page also benefited from clarifying

language (see Figure 35). Also, the accordion style menu was replaced with a numbered menu as

users suggested this would be a welcomed clarification.

Figure 35: Find similar sequences page from finalized mid-fidelity prototype

Heuristic Evaluation

The team conducted heuristic evaluations after the prototype design on Balsamiq was

completed. Besides the original set of questions laid out in Section 6.2.2, two more questions that

were not applicable to the previous low-fidelity prototype were added to the heuristic evaluation

in this iteration to be evaluated (Nielson, 1994):

1. Consistency and standards: Keep a consistent look and feel throughout the interface

2. Aesthetic and minimalist design: Maintain an aesthetic and minimalist layout without

unneeded baggage (not applicable to low-fidelity prototype)

User Testing

Following the heuristic evaluation, the team conducted experiments by showing the user

testing subjects two versions of the mid-fidelity prototype, with only the necessary difference in

screens related to the control flow to gather rapid feedback. This step ensured that the control

57

flow could be settled as soon as possible in the early stage of the design before more details are

added. Then, the team merged the best control flow features of the two designs and completed

more user testing to ensure that the ultimate control flow was successful.

The team also sent out post-testing satisfaction questionnaires in the form of a system

usability scale (SUS) to user testing subjects to assess how the mid-fidelity prototypes were

perceived. The list of subjective questions from the questionnaire included:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this

system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

User responses were on a 1-5 scale with 1 being strongly disagree and 5 being strongly

agree. The results were recorded and further analyzed as quantitative data to help the team better

grasp their progress.

After user testing was conducted, four out of five participants voluntarily filled out the

questionnaire (see Table 18).

6.3.2 Outcomes

 Heuristic Evaluations

Using the predetermined heuristics, each team member individually rated the mid-fidelity

prototype on ten different aspects along with a short explanation of their rating for each category.

An aggregated table of ratings is included below.

58

Table 17: Aggregated results of heuristic evaluations for mid-fidelity prototype from iteration 3

Category Average Rating out of 5 (based on four

team members’ input)

Visibility of system status 4.625

Match between system and the real world 4.625

User control and freedom 4.56

Error prevention 3.375

Recognition rather than recall 3.875

Flexibility and efficiency of use 1.75

Help users recognize, diagnose and recover

from errors (Error Recovery)

1.25

Help and documentation 3.625

Consistency and standards 4.5

Aesthetic and minimalist design 3.875

Although done independently, team members have given relatively consistent rating to

each category overall. The team came to the conclusion that they should prioritize the categories

of “flexibility and efficiency of use”, “error prevention,” and “error recovery.” Error handling is

still worth a lot of attention. However, this prototype has improved in terms of clarity on the

labels compared to the previous iteration. In contrast, flexibility and efficiency of use was

sacrificed to offer a less confusing and more straightforward workflow as a tradeoff. This means,

in the next iteration, the team should aim to achieve a more flexible system, in addition to

exploring more error handling methods.

User Testing

The goal of testing the mid-fidelity prototype was initially to test two variations of

control flow and compare and contrast the merits of each based on user testing feedback. A total

of five testing subjects participated in the user testing session that were spread across two days

(see Appendix J for complete UARs). On the first day, two testing subjects reacted to two

different versions of the prototype. Once the team collected sufficient feedback on each, the two

59

prototypes were combined based on their strengths and adjusted for flow. On the first day of

testing, users provided valuable insights to the team by suggesting a combination of the strengths

of both versions could be combined into one. Based on the feedback from day one that suggested

confusion at a distinct menu screen, the team then merged two versions of design into one and

conducted three more testing sessions on the second day. A full testing protocol can be found in

Appendix D. User responses of their preference between the two versions also provided valuable

information to the team on how to improve the control flow (see Section 6.3.1 for more design

details).

Users also completed the SUS, as mentioned previously. The four participating users

agreed that the program did not require a large learning curve (see Table 18 below). The SUS

results conveyed a positive message to the team, particularly addressing the team’s fundamental

design goal: the design was easily understandable without much external guidance. The

prototype had achieved satisfying results based on user responses in terms of the control flow

and the team should move on to adding more visual elements to the prototype. Although users

rarely made any errors to trigger the error handling functionalities implemented on this

prototype, users expressed their appreciation of error prevention handling functionalities once

they were introduced to them. The team should still look for better nomenclature and start

making the wireframe prototype into a fully designed and interactive prototype.

60

Table 18: Aggregated results of SUS for the mid-fidelity prototype

SUS Questions Average Rating (1 being strongly disagree

and 5 being strongly agree)

I would like to use this system frequently. 3.75

I found the system unnecessarily complex. 1.75

The system was easy to use. 3.5

I would need technical support to be able to

use the system.

1.5

Various functions in this system were well

integrated.

4

There was too much inconsistency in the

system.

1.75

Most people would learn to use this system

very quickly.

4.25

The system was cumbersome to use. 1.5

I felt confident using the system. 3.75

I needed to learn a lot of things before I could

get going with this system.

2

 Conclusion

The team met their design goal at this phase because based on the SUS and user testing

results, users consented that the system was intuitive. The team should aim for developing more

error handling functionalities while taking time constraints into account. On the other hand, the

team should make a final decision on the naming convention of labels so there could be less

confusion, although this aspect had significantly improved from the previous iteration. Most

importantly, the team should move on to including all design elements in the full prototype which

should showcase all the necessary features. Additionally, if time permits, the team should explore

more error handling functionalities and investigate whether to increase user restrictions so the

system could be made even more straightforward.

61

6.4 Iteration 4 - User experience refinement with high-fidelity prototype

Predicting an application’s usefulness involves making sure the application has sufficient

utility and usability. After refining the prototype to achieve utility and usability, the application

was made to provide a more intuitive user experience with a consistent appearance and layout.

The primary goal of this iteration was to answer the following question: Does this application

have a cohesive design and is it pleasant to use? In the final design stage, the prototype was

transformed into a prototype with fully designed visuals and maximized interactivity.

6.4.1 Process

Aesthetic Styles of Final Prototype Design

The team created moodboards using Niice (see Figures 36 and 37), a creative review

platform specifically focused on helping teams build effective graphic designs for web

applications (“Niice”, n.d), to enable them to articulate the correct tone for the users'

demographic. The moodboards helped map out the team’s potential choices of font, color, and

styles which the team can use when creating the final prototype, the steps of which are further

detailed in Section 7.1.2.

62

Figure 36: Moodboard for High-Fidelity Prototype Ver.1

63

Figure 37: Moodboard for High-Fidelity Prototype Ver.2

The team collected feedback from five users in total and asked their preference on the

two moodboards shown above. Four out of five users preferred Version 1; therefore, the team

decided to adopt a blue color scheme and font choices of Open Sans (for texts) and Lora (for

headers).

When designing the final layout of the UI, two important things the team considered were

leveraging the target users’ current mental models using metaphors and providing visual clues

that suggest operations using affordances. The team referred to the following design principles

(“7 Gestalt Principles of Visual Perception”, 2019):

64

● Minimize visual interruptions (have panes on different screens structured

similarly)

● Emphasize elements with the use of contrast (use different colors or font sizes to

direct user attention)

● Direct user attention by manipulating their scanning patterns on the screen (place

the boxes in the order of human scanning patterns)

● Group similar items together using proximity (place similar items more closely

together)

By following these principles, the team was able to create a cohesive design theme with

the overall appearance of the application. Screens for the finalized UI prototype were created in

AdobeXD, a user-experience tool used to create designs of web pages (“AdobeXD”, n.d), to

allow more thoroughly designed screens. The team added a color scheme and font family to the

designs and then added interactivity by uploading them to Invision, another user-experience tool

used to add interaction and navigation between previously designed screens (“Invision”, n.d).

After the fully designed prototype was created, the team moved on to evaluation and testing for

the finalized UI prototype.

Heuristic Evaluations

The team followed the same procedure to conduct heuristic evaluations as in Iteration 3,

and the outcomes of which are further detailed in the next Section.

User Testing

For the final round of user testing, the team shifted their focus to the usability aspect to

make sure the final product can make brain data analysis more productive, efficient, and less

prone to errors. Using the user feedback from previous iterations, the team refined the final UI

prototype and presented it to three members of the HCI lab staff to gather any final feedback.

These members ranged in expertise from novice to advanced, bringing in a variety of viewpoints.

The team also collected feedback from a high-fidelity specific SUS from all three subjects who

participated in the user testing (see Table 20).

6.4.2 Outcomes

Description of the Final High-fidelity Prototype

To illustrate the overall control flow of the user-interface, the team created a site map that

includes each major component of the prototype. Users may navigate back-and-forth between the

screens shown in Figure 38 as needed.

65

Figure 38: Site map for the final prototype

 Users begin on the homepage, which allows two main operations: preprocessing raw

datasets by uploading a CSV file (either by selecting from the server or uploading a local file to

the server and then selecting) or loading preprocessed datasets (in gxdb format) from the server.

Figure 39 below shows the key features of this process, including the server-side datasets, adding

files to the server, and previewing a raw dataset.

66

Figure 39: Select a preprocessed dataset and select a raw dataset screens, annotated with key features

The process of selecting a preprocessed dataset (above, left) is identical to selecting a raw

dataset other than users previewing the contents of a raw dataset before proceeding to

preprocessing. The previewed dataset is inset to indicate that it is currently selected. The user

may also use the search bar above the listed datasets to filter by name, but this feature is not

currently interactive within the prototype.

Once the user uploads an unpreprocessed dataset, the user is provided with a set of

parameters with default values already selected (see Figure 40), allowing them to make

adjustments before proceeding. Then, once the user initiates preprocessing, users are free to

explore the raw data separately while the process is in progress. Once preprocessing is

completed, users are able to explore clustered data.

67

Figure 40: Preprocessing screens annotated with key features

 As shown above (top left), each parameter also has a tooltip that the user can view if they

need clarification on what a parameter is and how it affects the preprocessing. These tooltips can

also be found throughout the application in areas we felt required more guidance based on user

feedback. In the bottom screen shown in Figure 40, the user is provided with a progress bar

indicating how far along the preprocessing is. While this is still in progress, the user can either

cancel it entirely or view the original raw data.

Users are able to select a subsequence in order to find similar subsequences in the given

dataset by:

● selecting a subsequence from raw data,

● selecting a subsequence from clustered data, and

68

● uploading a saved subsequence from a local drive.

Users may upload a pre-saved sequence or select one from the raw data even while the dataset is

being preprocessed. However, they cannot find similar sequences to this selection until the

preprocessing is complete. The current sequence selected, as well as the option ofuploading a

sequence, can be found in the top left of the screen, as shown below in Figure 41. Located on the

same panel, the save icon button allows the user to save their current selection to their local

drive.

Figure 41: Explore raw data screen annotated with key features

When the user views the “Explore Raw Data” page, they are presented with a table of the whole

time series within the dataset in the Data Viewer as well as dynamically populated filter options

with various types of labels that together form the unique ID of the time series . The user can

filter the data by any combination of filters and apply them to the Data Viewer content.

To view time series in the Data Visualizer, the user can select and deselect multiple items

in the table, as well as in the legend (top right of Figure 41). If the user wants to take a closer

look at a particular region of the time series, they may use the sliders below the visualizer or

“brush” on the graph (click and drag on the graph to select the desired interval) and the graph

will zoom into the desired region.

69

The current selection window will update with the users most recently selected time

series. When the user wishes to find similar sequences with their selection from the raw data,

they can select “query with selected sequence” to proceed to Find Similar Sequences.

Alternatively, a user may also select a time series from the Explore Clusters page. These

sequences are the “exploded” time series created during preprocessing; they consist of

subsequences of varying length of the original set of time series. The subsequences are grouped

by similarity. They are represented by a single subsequence that is used in the querying process.

In the initial Explore Clusters screen, shown below in Figure 42, the user is able to view just the

clusters and a visual of their representative. In addition to the filter options on the top left that

include the number of clusters shown and the length of interest, the user may also sort the Data

Viewer to show the top largest clusters or the top longest clusters using the drop-down annotated

below. The clusters also have an additional legend on the left-hand side that shows the cluster

details alongside a thumbnail of their representative.

Figure 42: Explore clustered data screen annotated with key features

 The currently selected cluster is indicated by the selected cluster being highlighted on

left-side legend and in the Data Viewer. If the user wishes to view the contents of the cluster,

they can do so by selecting the cluster in the legends, Data Visualizer, or Data Viewer and

selecting “View Selected Cluster”. This will bring them to a nearly identical page, but the top left

filter options are replaced with the current selection window and the Data Viewer contains the

70

sequence information of the contained sequences, similar to that of Explore Raw Data. If they

just wish to search with the representative of the cluster, thought, they can select “Query with

Selected Sequence”.

 When on the Find Similar Sequences screen (see Figure 43), the user is presented first

with empty Data Visualizer, Data Viewer, and Legend components. To find matches, the user

must adjust the query parameters to their liking and initiate the query with “Start Query”. The

user will then be provided with useful statistics about their results, including the average

similarity value as well as the standard deviation of how similar the results are to the query. The

Data Visualizer functionality remains the same across all components, but the Data Viewer in

Find Similar Sequences lists the query sequence as well as the results in ranked order of

similarity.

Figure 43: Find similar sequences screen annotated with key features

 The user can save their query results to their local drive if they want to refer back to the

results later. At the moment, reloading these results back into the application is not in our current

scope, but the results will be formatted in such a way that they can be loaded into other tools for

viewing fNIRS data.

Heuristic Evaluation

 The team completed heuristic evaluations individually and all the results were aggregated

in Table 19. As shown, error prevention and error recovery had the lowest rating among all the

71

categories that were rated. This was expected by the team because there were nearly no error

handling functionalities implemented in the final prototype, due to time constraints as well as the

technical limitations of Invision. However, this will be made entirely feasible once the team is

able to move on to the implementation phase and this aspect has been considered as necessary in

the team’s implementation goals, which will be introduced further in the Discussion Chapter.

The aesthetic style could be further polished if the team was given more time to clean up the

design but the prototype was able to maintain a simplistic design.

Table 19: Aggregated results of heuristic evaluations for mid-fidelity prototype from final

iteration

Category Average Rating out of 5 (based on four

team members’ input)

Visibility of system status 4.125

Match between system and the real world 4.25

User control and freedom 4.625

Error prevention 3.375

Recognition rather than recall 4.25

Flexibility and efficiency of use 3.875

Help users recognize, diagnose and recover

from errors (Error recovery)

3

Help and documentation 4.5

Consistency and standards 4.375

Aesthetic and minimalist design 4.125

User Testing

User testing was performed with three users, one of which was from the more

experienced user group and the other two were from the novice user group (see Appendix E for

full user testing protocol). This helped the team to gather feedback from more perspectives and

understand the learning curve of the prototype required for different target user groups. The team

proposed an additional set of questions that were related to the overall look of the user interface

and the team received an average score of four out of five on the overall look of the UI. The

72

success rates of user testing was almost a hundred percent and the average task completion time

was less than 3 minutes, though the team acknowledged that testing subjects had had previous

experience from the mid-fidelity prototype user testing to become more familiar with the

application.

Upon comparing the SUS collected for the high-fidelity prototype with the one for mid-

fidelity prototype, all but one category received a better score. Specifically, users did not think

various functions in this prototype were as well integrated. This might be due to the fact that the

interactive prototype on Invision contained some improper linking between the pages, thus

giving the users a less pleasant navigation experience. This concluded the design phase and

allowed the team to transition to the next step in the project, implementing the finalized UI and

integrating it with the backend. 

Table 20: Aggregated results of SUS for the high-fidelity prototype

SUS Questions Average Rating (1 being strongly disagree

and 5 being strongly agree)

I would like to use this system frequently. 4.6667

I found the system unnecessarily complex. 1.3333

The system was easy to use. 4

I would need technical support to be able to

use the system.

1.3333

Various functions in this system were well

integrated.

3.6667

There was too much inconsistency in the

system.

2

Most people would learn to use this system

very quickly.

4.6667

The system was cumbersome to use. 1

I felt confident using the system. 4.333

I needed to learn a lot of things before I could

get going with this system.

2

73

6.4.4 Conclusion

The high-fidelity prototype was designed to finalize the overall aesthetics of the

prototype, while addressing inconsistent nomenclature issues. Overall, users expressed that there

has been a great improvement since the mid-fidelity prototype and users were not experiencing

major difficulties completing the assigned tasks, which were documented in more detail in

Appendix K. At the end, the team decided to apply necessary changes to the prototype, i.e., the

flaws that might lead to the misunderstanding of the system structure and make the visual

representation more consistent. For instance, a mistake was made in the high-fidelity prototype

draft where users would not be able to select a subsequence until preprocessing executes to full

completion; such mistakes were highly prioritized by the team and fixed instantly after it was

found. Changes that would require longer input time were documented to be applied for future

development plan (see Section 9.3 for more details).

74

7. Implementation of the User-Interface

 Implementation of the BrainEx user-interface was started while some members of the team

were still completing prototyping since Vandana needed to complete the project early. Therefore,

Vandana completed Phase 1 of implementation. We defined phase 1 as the selection of the tools

we would eventually use to implement the entire interface and the creation of the framework for

the interface. All other implementation work was part of Phase 2, completed by all other members

of the team.

7.1 Phase 1: Selection of implementation tools and creation of interface

framework

During the last design phase, the high-fidelity prototype, one of the team members,

Vandana, started the implementation phase of the project. This phase was continued by the three

other team members once the final design decisions had been made and the final prototype has

been evaluated.

The goal of this phase is to ensure that the user-interface designs created in the previous

steps can be translated into a fully integrated system as well as ensure that an initial framework

and functionality is implemented so that the rest of the team can easily pick up where the

implementation was left off.

7.1.1. Selection of implementation tools

The team’s understanding of the command line code and user needs informed their

selection of tools and languages used to build the frontend. In particular, Vandana pooled

knowledge of relevant frontend tools, such as AngularJS and React, by researching online and

holding discussions with the WPI HCI Lab members and development team. All the team

members then evaluated each tool based on a table. The table details how the tools/languages

would interact with technical and user needs. Each technology has a row and each need has a

column. Vandana rated each technology on a scale of 1-5 based on how she thought it would fill

the need, then explained why. The team then selected their tools based on which tools show the

most promise in covering all needs. The tables may be revisited as needed if gaps in coverage are

found during implementation, although this is not expected since all needs should be discovered

in past analysis.

75

Table 21: Technology selection justification

 Technology Easy to learn Integrate with other

 technologies

 Interesting features

JavaScript/HTML/

CSS

These programming

languages go hand in

hand to help developers

create well designed,

functional user

interfaces. HTML

(“HTML: Hypertext

Markup Language”,

2019) and CSS (“CSS:

Cascading Style

Sheets”, 2019) is used

to structure content and

present the appearance

of the content,

respectively. JavaScript

(“JavaScript, 2019) is a

high-level, object-

oriented programming

language used to

provide functionality to

the content on the

screen.

 4

These three

programming

languages are easy to

pick up and start

implementing right

away and have lots of

documentation online.

 4.5

These technologies can

be integrated with

mostly all web

development languages

and tools such as

Angular, React, D3,

Bootstrap, and

Express.

 4

There are many

content structuring and

presentation templates

that provide an

interesting way to

portray a web page.

AngularJS

AngularJS

(“AngularJS”, 2019) is

a JavaScript-based

open-source front-end

web framework mainly

maintained by Google,

a community of

individuals, and

corporations to address

common challenges of

 3

Angular is a little

difficult to set up in the

beginning but easy to

adapt and learn.

 3

Angular integrates well

with HTML/CSS, but

not with visualization

technologies like D3.

 4

Angular has a very

good framework for

structuring code and is

neatly organized.

76

developing web

applications.

React

React (“ReactJS”,

2019) is a JavaScript

library for building user

interfaces and is

optimal for fetching

and storing rapidly

changing data. It is

maintained by

Facebook and a

community of

individual developers

and companies.

 4

With React, there is

lots of documentation

online and it is very

widely used. In fact,

during conversations

with the backend

development team,

many of the members

have used React so

they can be contacted

for any questions.

React is also easy to

use and setup.

4

React is easy to

integrate with most

technologies and can

work well with D3.

 4

Users can get started

with creating

applications right away

and React has a nice

framework.

D3

D3 (Bostock, 2019) is a

JavaScript library for

producing dynamic,

interactive data

visualizations in web

browsers.

 3

D3 has many

components involved

so it is difficult to learn

initially. However,

there are lots of

examples and

documentation to learn

from online.

 3

D3 can only be

integrated with limited

technologies and React

is one of them.

 4

The

graphs/visualizations

made in D3 are useful

and colorful. D3

provides interesting

features built into

visuals such as

zooming and panning.

Bootstrap

Bootstrap (“Bootstrap”,

2019) is an open-source

CSS framework for

creating responsive,

front-end web pages. It

contains CSS- and

JavaScript-based design

templates for

typography, forms,

 5

Bootstrap is widely

used and is one of the

best and consistent

CSS templates.

 5

Bootstrap easily

integrates with

technologies such as

Angular and React.

 5

Bootstrap provides lots

of interesting styles

and components to

pick from. It gives any

application a unique

aesthetic.

77

buttons, navigation and

other interface

components.

Express/Axios/Node.js

Express (“Express”,

2019) is an open-source

web application and

API framework for

Node.js (“Node.js”,

2019), which is a

JavaScript runtime

environment that

executes JavaScript

code outside of a

browser. Axios

(“Axios”, 2018) is used

to retrieve data from the

client side, or frontend

of the application and

process the data in the

server.

4

These technologies are

widely used to develop

servers to

communicate between

the backend and client

side of a web

application. They are

easy to install and

integrate into a project.

 4

The technologies

easily integrate with

most web development

application languages

such as Angular,

React, D3, Bootstrap,

and

Javascript/HTML/CSS

4

There are interesting

ways to develop the

server and many

features that add value,

such as data protection,

to the web application

From Table 21, the team decided that between React and Angular, React would be the

best tool to use to implement the frontend of BrainEx because it scored highly in terms of

effectiveness, learnability, and integration with other tools. The team will also utilize D3 for

visualizations and graphs depicting the data since it works well with React. Bootstrap, HTML,

CSS, and JavaScript will be used because they are both widely used and have interesting built-in

frontend designs. Express, Axios, and Node.js will be used to develop the server to help

communicate functions and logic between the backend and the client side of the BrainEx web

application.

7.1.2 Frontend and Server Framework

Once the team decided the technologies they would like to use to program the UI,

Vandana began to implement it. To start off the development process, Vandana created a set of

initial tasks for development in regards to the server and frontend framework. Vandana first set

78

up the project environment, ensuring that the technologies selected for implementation, such as

React, JavaScript, HTML CSS, Express, Axios, Node.js, and Bootstrap were configured

properly.

For the GUI, she first focused on creating the page components and basic templates for

each of the screens in the high fidelity mockup design. She then established the routers and

clickable buttons on the pages to navigate between the different screens. After this, she focused

on implementing the design of the BrainEx homepage (see Figure 44) using React, HTML, CSS,

and Bootstrap to make sure it matched the designs and aesthetics of the high-fidelity prototype.

Figure 44: Screenshot of the original implemented homepage of BrainEx

Next, Vandana also added the header bar that contains the BrainEx title, logo, version,

and screen title to the rest of the pages of the application. She also started creating a more

structured and detailed layout of the CSV data viewer page and preprocessing options page (see

Figure 45).

79

Figure 45: Screenshot of the other Phase 1 implemented pages of BrainEx

Then, Vandana added the BrainEx command line tool that the development team had

been working on in the UI project. She first met with the developers to discuss the functionality

and capabilities of the backend. She then ran through it using the command line to create the

gxdb object that contains information about the inputted time series sequence’s clusters and

query results. This process will make it easier for the rest of the team to retrieve functions from

the backend to apply and process the user inputs in the UI. Vandana also started working on the

functionality to choose time series csv files from the user’s local files on their device to the

homepage of the UI. For this functionality, she first consulted a tutorial (Hamedani, 2019) to

learn about setting up and implementing the Express and Node.js server in addition to setting up

Axios in the frontend to upload files. She then wrote the server logic and frontend data-retrieving

code to ensure there is communication between the server and the client side of the interface.

This allows the application to retrieve multiple files that the user uploads to the UI and store the

files in a folder on the server in order to access them when the user wants to preprocess the data.

Vandana also implemented an error checking functionality that only allows the user to upload

files with the “.csv” extension.

In addition to implementation, Vandana created a BrainEx tutorial document, Appendix

L, that highlights how to run the application locally, how to use the application and run through

the functionality at its current state, and an explanation of the project structure along with details

of the contents of each file and folder. She also highlighted the future work in Section 8.3 that

goes through the tasks that she has already done as well as the tasks she couldn’t get to due to

lack of time.

80

Overall, creating the initial framework to navigate between different pages of the

application, implementation of the design of the homepage, CSV data viewer, and preprocessing

options, and functionality to upload files of BrainEx will help build a foundation for the rest of

the team members to immediately pick up the development process.

7.2 Phase 2: Implementation of Query Pipeline

When we began implementation, we knew we would have to break up the app into smaller

pieces so that each person would have a set number of tasks to work on. We also knew that

development often doesn’t go according to plan, so we needed a plan that could be flexible. We

wanted a full, working product by the end of the project, even if we couldn’t implement every

planned feature. Therefore, each person working on the project at this point was assigned a focus

area based on their skill sets and learning interests. Kyra is knowledgeable in Python and wanted

to learn more about how BrainEx handles data, so she focused on the Python code to wrap the

BrainEx library. Margaret has experience in React and wants more practice programming frontend

code, so she focused on the general frontend structure and capabilities. Finally, Yihan is also

interested in the frontend and specifically has an interest in design, so she focused on representing

the data processed by BrainEx.

 In addition, we needed to order tasks to ensure we had a working product by the end of the

time allotted for the project. Therefore, we decided to focus on implementing all tasks related to

completing a query before implementing the dataset explorer or cluster explorer. This includes

preprocessing, uploading a query sequence, and running a query. We believe this is the most

important pipeline because it is the core functionality of the BrainEx interface.

To make sure we were completing tasks, we used the Trello online tool. Trello allowed us

to make “cards” for each of our tasks that we could move around between categories on a board

depending on their development status. It allowed us to see how many tasks we had created, were

working on, or had finished. In addition, we met at least three times a week (if not daily) outside

of our meeting time with our advisors to have a standup meeting in which each of us could discuss

our progress and any challenges we may have had. Therefore, we were all knowledgeable in the

progress of the app and could help another team member if they had a problem. In addition, we

used a Git repository hosted on GitHub for version control of our code. Each of us had a separate

branch so we could develop without breaking the current working version of the code. Once we

developed to the point that an important feature was implemented and worked properly, we merged

the code to master so that the master branch always had a working version of the application.

The final application allows end users to query for similar sequences in a CSV time series

dataset of their choice. Due to the time constraints of the project and obstacles encountered, dataset

81

explorer and cluster explorer were not implemented, but we provide a plan for doing so. The

specific implementation processes for different focus areas in the app are detailed below.

7.2.1 Python Server

 Since the backend library for the interface is written in Python, we had to have some way

for our frontend to call Python functions. The easiest method we found was to write a server in

Python using a library called Flask. This library allows for RESTful API methods to be created for

Python code. A RESTful API allows for HTTP “requests” to be made to a URL for a function to

be completed. An HTTP “response” is returned that either confirms the proper execution of the

function or provides an error message. Both requests and responses may pass data between the

calling application and the API. In order to develop these methods, we looked back to the models

we made prior to prototyping. Since we were focusing on getting the query pipeline to work first,

we decided to implement the necessary functions to complete a query successfully using our

interface. As we continued to work on the frontend, we could then use the Axios JavaScript library

to make HTTP Post requests to these functions to complete the connected task on the backend. For

example, when the user inputs the preprocessing arguments and clicks the “Start Preprocessing”

button, the frontend uses Axios to send an HTTP Post request to the backend with the form

information included, so that they can be used as arguments for preprocessing using the backend.

 As we continued to develop the frontend, we also found a few more necessary functions

that were not included in the models. For example, we have panels on the “Select preprocessed”

and “Select raw dataset” pages that display names of files that have already been input into the

application so that the user can query with those files without having to re-upload. It is not

something we anticipated, but those file names must be provided by the backend. While we are

implementing our application as a local application, if this were to be transferred to a central server

setup one day, it would be especially imperative that the backend delivered the names of the

functions instead of the frontend retrieving them itself, as they will be separated even more.

Therefore, we wrote two functions: one that returns the list of preprocessed file names and one

that returns the list of raw CSV files that are already ‘uploaded’ to the backend. The full list of

functions and a description of what they do can be found in Appendix Q.

7.2.2 Frontend Design

 We chose React, a Model-View-Controller (MVC) JavaScript framework, to develop the

frontend because of its lightweight performance and compatibility with full stack technologies

based on our evaluation prior to development. We found React to be extremely useful in

development due to several of its features. Utilizing reusable components, React is able to keep a

copy of the Document Object Model (DOM), also known as the virtual DOM to only render

elements that need to change based on received data, thus optimizing the performance dynamic

displays. React utilizes the DOM lifecycle and state values in order to achieve its lightweight

82

performance. Each component can have a state with one or more variables that contain some initial

value, that can then be referenced throughout the JavaScript and HTML code. When a state value

is changed, React re-renders only the component that uses the state value.

When approaching the front-end this term, it was important that the code was

compartmentalized and design in such a way that allowed minor changes without compromising

the appearance of the application. This involved using more dynamic CSS as well as following

proper React design principles. The original code written in the previous term did not exhibit these

qualities, and required significant refactoring to allow for proper scaling.

Alongside this technology, we also decided to use Material UI, a component library

specifically made for React and React hooks, to achieve a more unified and consistent application

design.

7.2.3 Visualization

 Visualization of sequences, including the sequence thumbnails in the Ranked sequence

matches table, the query result sequence plot, and the query sequence line chart, were all done

through Recharts, despite our evaluation of D3 as best for our purposes prior to development.

Recharts is a data visualization library native to React that is built on top of SVG elements with a

lightweight dependency on D3 modules. It does not offer as much customizability as D3 does, but

it allows simple visualizations to be quickly built on the fly and does not conflict with the React

lifecycle.

 Recharts offers many examples and detailed tutorials online; it is easier to adapt compared

to D3. It also offers built-in API functions for tooltips, legends, axis labels, and brushing. We did

not include tooltips in the design, however, due to performance concerns. The actual drawing

functions are only re-rendered when the state variables change, which are primarily linked to the

data being plotted on the chart.

 With Recharts, the only remaining challenge pertained to data parsing. The way the time-

series data points are formatted in the datasets did not match the way Recharts parses data, making

it was necessary to reshape the line data points as well as assign a unique color to each row of data.

Our steps to achieve the mapping is described in the section below.

7.2.4 Data Parsing

 A key issue with having different technologies for the frontend and backend of the

application is passing the data between the two. As data is primarily passed through HTTP requests

in the BrainEx UI, it is passed in the JSON format. The JSON format is a string that formats data

through a series of key-value pairs. Therefore, both the frontend and backend developers became

83

very familiar with encoding and decoding these JSONs to get the necessary information across.

Oftentimes, the frontend would need the data in a specific shape in order to display it properly, or

the backend would need arguments that were specific data types. We often used the Python library

pandas to achieve this. This library is very responsive and allows for easy manipulation of data in

a ‘data table’ format. Since the data we are working with has originated in CSV files and is only

being fed through JSONs, it is in the proper format to be processed with padas without extra

parsing. Using pandas, it only takes one Python command to remove a column of data or change

the shape of the output JSON.

 After the data is fed into the frontend from the backend, this data is then communicated

using React’s props across multiple components. On the “Ranked Matching Sequence” table,

colors in hex format and a column of checkbox values, which determine whether a sequence is

being shown on the plot, are appended to the rest of the data before it is sent to the sequence plot

as a JSON response.

Figure 46: Diagram of the query data flow in the application

Then, another layer of data parsing is required as the data is passed from the “Ranked

Sequence Matches” table to the “Query Results” plot. As the “Query Results” plot only requires

data points with the proper ID as the header, more parsing is done with JavaScript on the frontend.

Color codes are separated out as an array of strings, before they are mapped on the chart to fill in

the lines on the sequence plot.

84

8. Results

The results of our design and development phases include our deliverable of a web

application that provides a full, robust, tested pipeline for finding similar sequences within a time

series dataset. It is tailored to users within the WPI HCI Lab working with data from fNIRS BCIs.

We verified this by completing final testing with users within the lab.

8.1 User Testing

8.1.1 Goal

 We aimed to collect a final round of user testing feedback so users could help highlight

key changes needed in order to release the BrainEx UI as a final application. We hoped to use the

feedback to prioritize the essential parts of our development plans to polish the final product.

8.1.2 Process

We completed a total of 3 user testing sessions, one with a graduate student who is very

experienced in the lab and two with undergraduates who have a programming background but

have less background in the fNIRS data analysis realm. One of the testing sessions focused on the

application setup process while the other two emphasized on the potential improvement of the

application design more.

 We asked users to download the required packages with instructions from our

documentation and provided them with guidance whenever there was a need. Then we asked the

user to preprocess a new dataset and query using the default parameters. The users were asked to

think aloud while they were interacting with the application.

 At the end of each user testing, each participant completed an online system usability scale

questionnaire (see detailed questions in Table 22 below) identical to those completed during the

prototyping phase.

8.1.3 Outcomes

Most users experienced various levels of difficulty in installing all software requirements

for the application. It was also made clear that our instructions were not as clear as possible and

assumptions of the users’ software environment on their personal machines were made without

careful thinking. This process helped us acknowledge the details we missed in our documentation.

 Throughout the testing sessions, we were able to identify many flaws in our application.

Since we were still polishing the application at the time of user testing, many of the concerns raised

85

by the users were within our expectation. For instance, the font was too small to see clearly on

some pages. In addition, necessary error prevention functionalities were not present in our system.

Nonetheless, we were still able to collect valuable insight such as the suggestion to implement a

button for saving query results, as well as making the distinction between dataset selection pages

for preprocessing and raw clearer and more explicit. We applied most of the feedback right away

to improve the design of the application as most of them only required small fixes from the

frontend. For instance, all the testing subjects indicated that the font size on all the pages should

be made larger and button colors should be made more visible, and we quickly adopted those

changes where we saw fit. User feedback also tremendously helped us shape our documentation,

since we were able to identify many details that we overlooked from developers’ point of view.

 Overall, we could see from the SUS results (see Table 22 below) that users were mostly

satisfied with our application and did not experience much difficulty using the system. They felt

the system was intuitive and had a consistent look throughout all the pages. The only major

difference compared to the previous SUS result during prototyping was that users felt that they

required more technical support to use the system. This also emphasized the importance of

documentation, and we were able to produce a thorough documentation/tutorial on the usage of

the application (see Appendix R).

Table 22: Aggregated results of SUS for the final product

SUS Questions Average Rating (1 being strongly disagree

and 5 being strongly agree)

I would like to use this system frequently. 4

I found the system unnecessarily complex. 1

The system was easy to use. 4

I would need technical support to be able to

use the system.

3

Various functions in this system were well

integrated.

4.5

There was too much inconsistency in the

system.

1.5

Most people would learn to use this system

very quickly.

4

86

The system was cumbersome to use. 2

I felt confident using the system. 4.5

I needed to learn a lot of things before I could

get going with this system.

1.5

8.2 Description of the Final Application

Currently, the web application is broken into 2 main parts, with the first part being

preprocessing and the second part being querying. There exist two main routes for preprocessing

depending on whether the user already has a preprocessed dataset or would like to preprocess a

raw dataset. Then once preprocessing is done, querying functionality is consistent across the two

use cases.

 If the user’s goal is to query with a dataset that has never been preprocessed before, they

need to first click on the “Preprocess A New Dataset” button on the homepage, then using the

panel on the left, the user needs to upload a CSV file to preprocess by clicking on the “Choose

Files” button on the lower left hand corner of the page.

Figure 47: Home Page of the BrainEx UI

87

Once a file is selected on windows explorer, users can preview the dataset they have chosen by

clicking on the “add” button near the “Choose Files” button.

Figure 48: Select New CSV Screen of BrainEx UI

Once users verify that the file selected is correct, they can proceed to preprocess this dataset by

clicking on the “Proceed to Preprocess” button on the lower right-hand corner. This will take users

to the “Preprocessing Options” page, where users can fill in parameters for preprocessing. The

user has the option to either use Python’s native multithreading processing or Apache Spark. Spark

often runs faster but can be complicated to install locally depending on the host operating system.

Therefore, if the user selects that they wish to use Spark, the program will check to make sure it is

installed correctly.

88

Figure 49: Build/Preprocessing Options Screen of BrainEx UI

Clicking on the “Start Preprocessing” button will take the user to the “Preprocessing Progress”

page where an ongoing indeterminate linear progress bar is shown in the middle of the page to

indicate that the preprocessing step has not been finished yet.

89

Figure 50: Build/Preprocessing Progress Screen of BrainEx UI, Incomplete

Once preprocessing is finished, users have the choices to either 1) cancel and go back to home or

2) query using the preprocessing dataset.

Figure 51: Build/Preprocessing Progress Screen of BrainEx UI, Complete

90

The user also has the option to first “Download Preprocessed Dataset” before taking any of the

aforementioned actions. After the spinner icon stops spinning, a notification popup will appear at

the bottom of the page, showing that the downloaded preprocessed dataset is saved as a zipped file

in the folder Saved_Preprocessed by default. If the user decides not to save the dataset, they can

proceed straight to the “Find Best Matches” dashboard.

On the other hand, If the user already has a preprocessed dataset, they can upload it on the

homepage via the “Choose Files” and “Add” buttons to upload a preprocessed dataset to the server.

Figure 52: Home Page of BrainEx UI

This will open up a popup window, asking users to confirm their query options. Once confirmed,

the user is going to be directed straight to the “Find Best Matches” dashboard.

91

Figure 53: Home Page of BrainEx UI with Query Popup

On the “Find Best Matches” dashboard, the user needs to first upload a query in “Query

Sequence” on the top left corner in order to find any similar sequences. Then, they should fill out

the “Query Options” form below the “Query Sequence” section of the screen. The default values

have been filled in so the user can directly click on “Start Query” if no parameter change is

required. A spinner icon should appear on the right side of the page, indicating that querying is in

progress, and the “Query Results” plot as well as “Ranked Sequence Matches” table are not ready

for viewing yet. Once the spinner icon disappears from the page, the user should be able to view

the “Query Results” sequence plot and “Ranked Sequence Matches” table.

92

Figure 54: Query Dashboard

The user can toggle the show/hide column in the table on individual rows, as well as select/deselect

all the rows. The visualization should be live updated as the checkbox fields change in the “Ranked

Sequence Matches” table. The “Query Results” plot also enables brushing so lines can be zoomed

in by using the range slider at the bottom of the “Query Results” plot. The user can also view the

statistics on the bottom left corner of the dashboard.

93

Figure 55: Query Results

If the user decides to switch to query with a different set of parameters or a different query

sequence, they can always update their selections on the application by uploading a new query in

the “Query Sequence” window or modifying the query parameters in the “Query Options” form.

 For more in-depth information about our final product, please see our final README

guide in Appendix R.

94

9. Discussion

 While we are confident in our final product, we did of course come across some obstacles

that affected our development. In addition, we have some suggestions for future improvements to

the application and other features that can be added to the application to improve users’ experience.

9.1 Obstacles and Limitations

In completing this project, we came across some obstacles. Many of these obstacles came

from the technology that we utilized to make this project. In order to get the most robust frontend

possible, we used React for JavaScript. However, the package we were given for the backend of

our application was written in Python. While there are many successful applications that combine

these two technologies, they are not made to interface easily. In addition, the backend for this

application was actively developed while we were working on our project, so we had to make sure

to adapt to the changes quickly so they would affect our project as little as possible.

9.1.1 Frontend Obstacles and Limitations

We started out developing the visualizations with D3.js, a JavaScript-based library for

rendering visualizations using DOM elements as D3 is friendly with large datasets and supports

intricate interactivity and animation. Using web standards such as SVG and canvas, D3 is capable

of rendering creative and interactive interactions while maintaining extreme customizability.

Implementing visualizations using D3.js later became one of the most challenging parts of

development because both React and D3 wanted to control the DOM. Resources online on how to

build React with D3 together, particularly for complex interactive charts, are seriously lacking. In

our case, our dataset already required a lot of parsing, as well as dynamic population, which made

rendering the chart in D3 more difficult given the dataset had an atypical shape. Furthermore,

mapping individual colors to each line also created technical challenges. D3 requires data to be

loaded at first, and then bound with the created SVG elements. This created conflicts with React’s

lifecycle; furthermore, it caused any changes, i.e, color mapping in our case, that must take place

on the DOM hard to be made seamless.

 In the end, we decided to switch to using Recharts, a D3-based library that does not collide

with the use of React lifecycles. Although Recharts renders the visualization slightly slower than

D3 does, we believe this is sufficient for our use case, which for the most part, is displaying only

selected matching sequences. We expect that users would not attempt to view a very large number

of matching sequences at a time, so Recharts is able to achieve the effect that we desire for now.

However, if a dataset explorer page were to be developed next switching to another library such

as D3 should be considered as D3 is better able to handle larger datasets.

95

9.1.2 Python Server Limitations

 As all data sent between the frontend and backend were served using HTTP using Flask in

the Python code and Axios in the JavaScript code, there were some transmission limitations. For

example, in loading the files that are currently uploaded from the backend, we realized that we

could not load the contents of every file to the frontend, because it was hard to get Flask to handle

multiple files being uploaded at once. However, since the file is never processed on the frontend

(it is just sent back to the backend when it is selected), we realized that the only information that

needed to be passed was the filename so users could recognize and select it. The backend could

then load that file for processing by name.

 Another major limitation is that the backend includes a loading bar for preprocessing a

dataset using Spark, but there is no way to transmit that information to the frontend since a

RESTful API doesn’t allow for multiple responses from one request. Therefore, we implemented

an indeterminate loading bar for preprocessing so that the user can be sure that preprocessing is

still happening. The loading bar begins to display on the frontend when the request is sent and

stops moving when a response is received.

9.1.3 Backend Obstacles and Limitations

 It was helpful in many aspects to be developing a frontend for a backend that was in active

development and testing. If we were having issues with any of the code, it was easy to contact the

developers. They could explain how we were calling functions incorrectly or even implement new

features (i.e. preprocessing using Python native multiprocessing wasn’t available until after we

told the developer the issues we were having with our own Spark installations). However, while

the application was frozen for most of our development, there was some refactoring between our

prototyping and our implementation that led to some features we were expecting to exist to not be

implemented. Sometimes, we were able to write our own code to work around this, such as

uploading a query sequence. In other cases, such as lengths of interest for querying and

preprocessing, we had to remove functionalities designed during the prototyping stage to better

align with the backend code.

9.2 Areas of Improvement

In every project, there are always improvements to be made and this project is no exception.

While the BrainEx application is attractive, intuitive, and usable, we suggest multiple

improvements both to its aesthetics and functionalities.

96

9.2.1 Design

 Because we used Material UI (MUI) as the main framework, modifying the stylings of the

component proved challenging. We relied on the “!important” tag at several places on the CSS

stylesheets in order to override MUI’s defaults, which is not always the best practice in CSS. The

best way to style MUI components is to use them within a functional component rather than a class

component, but in some cases it was necessary to convert components from functional to class in

order for passing props to work. Due to limitations with Material UI, we were unable to make the

UI as responsive as possible in the given amount of time.

There are also some design choices that, if time permitted, we would have refactored. For

example, on the Home page the preprocessed files are located on the left and a button to go to the

“Select a new dataset” page is on the right. The “Select a new dataset” page looks nearly identical

to the previous page. This is not ideal because the user believes that they are still on the same page

or do not clearly see the difference between them. One solution to this, we believe, is to host both

contents on the same page and simply have tabs labeled something along the lines of

“preprocessed” and “raw”.

9.2.2 System Status Feedback

 In terms of system feedback to the user, we were unable to implement all that we wanted

to due to time constraints and other setbacks. While we were able to apply the most prominent and

useful after hearing back from users, not all possible errors have a corresponding client-facing

notice. For example, if a file is not found, there is no notification displayed to the user. Also, when

an action is successful (e.g. file is successfully uploaded), there is no notification sent to the user.

Ideally, we would want any action made by the user to have some sort of feedback whether in the

form of a notification or some other visual indication.

9.2.3 Query Sequence Upload Mechanism

Currently, the mechanism for selecting a sequence to query is not incredibly intuitive. In

order to find similar sequences, the user must copy an entire row from the same CSV or

preprocessed dataset they are looking at into a separate CSV. It must be a whole row since it

requires all the same number of features as the dataset and the Python server is only expecting one

row. If there were not the same number of features, then the features could not be converted to an

identifier for the sequence, which allows for the “Exclude subsequence matches from current

sequence” attribute to be applied when querying.

 One way to improve this mechanism would be to allow the user to query with sequences

from other datasets. The user should specify then whether the sequence was from the same dataset

97

as is being queried from. This will allow the system to determine whether the “exclude same

sequence” is relevant.

 Another way to improve this mechanism would be to allow users to select the data sequence

graphically, since this is easier to understand than copying and pasting. This would be possible if

the dataset and/or cluster explorers were implemented.

9.2.4 Error Handling/Prevention Methods

 Although we tried to add as many error prevention/handling functionalities as possible,

there exist some known methods that we did not implement due to time constraint. Namely, the

“Start Query” button on the “Find Best Matches” dashboard should be disabled before a query is

uploaded.

In regard to the parameters filled in the “Query Options” form, the frontend is able to

display the maximum number of matches available right below the input field, and the text field

of number of matches will turn red if the input number is greater than the maximum. However,

there is nothing against inputting a number that is greater than the maximum number of matches

available; the user is still able to submit the form which can trigger errors.

 Additionally, users should avoid refreshing the page as much as possible. If they start

preprocessing after refreshing the preprocessing options page, the form data will get cleared and

throw an error. Similar data saved in the forms can be cleared after refreshing the page because

the application is using web services to pass data back and forth.

9.3 Future Work

 Finally, there are some extensions to this project that were either not implemented due to

time constraints or being out of the scope of our project that we would like to propose to future

developers in the WPI HCI lab.

9.3.1 Implementation of Data Explorer Pages

 In the final prototype, we have designed the pages for “Dataset Explorer” as well as

“Cluster Explorer.” However, both pages were not implemented at the time of this report due to

time constraints. Although the final implemented application could handle the baseline

functionality of finding similar sequences by querying, users are currently required to select and

save a query outside of the application in order to find similar sequence matches. If given more

time, developing the Dataset Explorer would be a priority as it could enable users to save a query

so they could upload it on the “Find Best Matches” dashboard. Moreover, the implementation of

98

these pages would allow users to stay within the application after selecting a sequence as they

could pass their desired sequence from an explorer to the querying page.

9.3.2 Performance Improvement

The application could become slower when the server has been running for a long time,

because memory is not freed during this process. Although the preprocessing processes are shut

down properly after each preprocessing cancellation/completion step, inevitably the application

can lag over time. A temporary fix can be restarting the server, but implementing some kind of

performance improving methods would be desirable in the long run.

9.3.3 Hosting on the Cloud

While the application is currently hosted on the user’s local machine, the application has

been built with the idea that it would be hosted on a cloud server in the future.

This could introduce several issues: for example, Spark can only allow one session running

at a time. Data security would also become an issue as each user must have their own account in

order to authenticate and keep their own data safe on the cloud.

However, there are also numerous benefits to hosting an application like BrainEx on the

cloud. It will allow for users to be able to access the application and their data from any machine,

which is often important for lab researchers as their equipment may change from location to

location. In addition, it would allow for larger amounts of data to be stored and used with the

application than are being used currently. Depending on the server hardware that is being used,

the speed of the application could also be increased severely. Due to a combination of these factors,

it is in fact, imperative that the application eventually be served from the cloud as the size of

datasets and magnitude of research increase. We would highly recommend implementing some

sort of database structure if BrainEx were to become a cloud application as well, since all data is

currently saved in a simple file structure.

9.3.4 Updates to BrainEx API

 At the time of our development, the backend developer of the BrainEx API refactored the

query parameters. Therefore, lengths of interest, which was an old feature from the pre-refactored

Genex API are not included in our “Query Options” form. If further updates to the Genex API are

made available then an updated “genex” folder must be added to the BrainEx to replace the old

version. The only required folder is the “genex” folder within the “Genex” repository. Currently,

the best way to do this is to clone only the release branch of the Genex project and paste the

“genex” folder into the BrainEx root project directory.

99

10. Conclusion

In completing this project, the team has completed a major learning experience and created

a tool that could be used and expanded upon in the WPI HCI Lab for the foreseeable future.

Throughout our project, we have learned many great ideas and techniques for improving user-

experience. We were able to apply most, if not all, of these ideas to our application to ensure that

this is a tool users could actually integrate into their daily research tasks. In addition to our

thorough user documentation, our work on preserving this knowledge in our prototypes and paper

ensure that future developers will be able to continue to use our philosophies.

100

Bibliography

7 Gestalt Principles of Visual Perception. (2019, April 10). Retrieved October 6, 2019, from

UserTesting Blog website: https://www.usertesting.com/blog/gestalt-principles/

AdobeXD. (n.d.). Retrieved December 11, 2019, from

https://www.adobe.com/products/xd.html?sdid=12B9F15S&mv=Search&ef_id=CjwKCAi

AxMLvBRBNEiwAKhr-

nE3ARjUlxfF8ZGRnj1zwz7EjkKjTvrae80Yw101LEC2eRYDvnxgwhoCqn0QAvD_BwE:

G:s&s_kwcid=AL!3085!3!315233774139!e!!g!!adobexdadobexdadobexd.

Affairs, A. S. for P. (2013, October 9). Reporting Usability Test Results. Retrieved

November 23, 2019, from /how-to-and-tools/methods/reporting-usability-test-results.html

Algrim. (2019). How HCI (Human-Computer Interaction) Has Evolved Alongside

Technology. Retrieved September 30, 2019, from Algrim.co website:

https://www.algrim.co/posts/51-how-hci-human-computer-interaction-has-evolved-

alongside-technology

AngularJS. (n.d.). Retrieved December 11, 2019, from https://angularjs.org/.

Axios. (2018, April 4). Retrieved December 11, 2019, from https://flaviocopes.com/axios/.

Balsamiq. (n.d.). Retrieved December 11, 2019, from ￼https://balsamiq.com/company

Bootstrap. (n.d.). Retrieved December 11, 2019, from https://getbootstrap.com/.

Bostock, M. D3.js. Retrieved December 11, 2019, from https://d3js.org/.

Brockington, G., Balardin, J. B., Morais, G. A. Z., Malheiros, A., Lent, R., Moura, L. M., &

Sato, J. R. (2018). From the Laboratory to the Classroom: The Potential of Functional Near-

Infrared Spectroscopy in Educational Neuroscience. Frontiers in Psychology, 9.

https://doi.org/10.3389/fpsyg.2018.01840

Carroll, J. M. (2012, October 12). Human Computer Interaction—Brief intro. In The

Encyclopedia of Human-Computer Interaction (2nd ed.). Retrieved from

https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-

interaction-2nd-ed/human-computer-interaction-brief-intro

CSS: Cascading Style Sheets. (n.d.). Retrieved December 11, 2019, from

https://developer.mozilla.org/en-US/docs/Web/CSS.

https://www.usertesting.com/blog/gestalt-principles/
https://www.usertesting.com/blog/gestalt-principles/
https://doi.org/how-to-and-tools/methods/reporting-usability-test-results.html
https://doi.org/how-to-and-tools/methods/reporting-usability-test-results.html
https://www.algrim.co/posts/51-how-hci-human-computer-interaction-has-evolved-alongside-technology
https://www.algrim.co/posts/51-how-hci-human-computer-interaction-has-evolved-alongside-technology
https://www.algrim.co/posts/51-how-hci-human-computer-interaction-has-evolved-alongside-technology
https://www.algrim.co/posts/51-how-hci-human-computer-interaction-has-evolved-alongside-technology
https://angularjs.org/
https://flaviocopes.com/axios/
https://doi.org/10.3389/fpsyg.2018.01840
https://doi.org/10.3389/fpsyg.2018.01840
https://doi.org/10.3389/fpsyg.2018.01840
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/human-computer-interaction-brief-intro
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/human-computer-interaction-brief-intro
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/human-computer-interaction-brief-intro
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/human-computer-interaction-brief-intro

101

Dubey, J., Sumaria, M., Oktay, E., Li, Y., Li, Z., Neamtu, R., & Solovey, E. (2019).

Towards neuroadaptive technology using time warped distances for similarity exploration

of brain data. Proc. of Neuroadaptive Technology Conference. Presented at the NAT 2019,

Liverpool UK.

Express. (n.d.). Retrieved December 11, 2019, from https://expressjs.com/.

FNIRS Analysis. (2019). Retrieved September 29, 2019, from NIRx Medical Technologies

website: https://nirx.net/fnirs-analysis

Grohol, J. M., & read, P. D. L. updated: 19 J. 2019~ L. than a minute. (2017, May 17).

What is Functional Near-Infrared Spectroscopy? Retrieved November 23, 2019, from

//psychcentral.com/lib/what-is-functional-optical-brain-imaging/

Guger, C., Allison, B. Z., & Mrachacz-Kersting, N. (2019). Brain-Computer Interface

Research: A State-of-the-Art Summary 7 BT - Brain-Computer Interface Research: A State-

of-the-Art Summary 7 (C. Guger, N. Mrachacz-Kersting, & B. Z. Allison, Eds.).

https://doi.org/10.1007/978-3-030-05668-1_1

Hamedani, M. (2019, January 14). React file upload: proper and easy way, with NodeJS!

Retrieved December 11, 2019, from https://programmingwithmosh.com/javascript/react-

file-upload-proper-server-side-nodejs-easy/

Homer-fNIRS. (n.d.). Homer2 Documentation. Retrieved March 5, 2020 from

https://homer-fnirs.org/documentation/

How to improve your UX designs with Task Analysis | Interaction Design Foundation.

(n.d.). Retrieved November 26, 2019, from https://www.interaction-

design.org/literature/article/task-analysis-a-ux-designer-s-best-friend

HTML: Hypertext Markup Language. (n.d.). Retrieved December 11, 2019, from

https://developer.mozilla.org/en-US/docs/Web/HTML

IDF. (2019a, March). A Brief History of Human-Computer Interaction. Retrieved

September 30, 2019, from The Interaction Design Foundation website:

https://www.interaction-design.org/literature/article/a-brief-history-of-human-computer-

interaction

IDF. (2019b, September 1). Design iteration brings powerful results. So, do it again

designer! Retrieved September 30, 2019, from The Interaction Design Foundation website:

https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-

results-so-do-it-again-designer

https://nirx.net/fnirs-analysis
https://nirx.net/fnirs-analysis
https://doi.org/psychcentral.com/lib/what-is-functional-optical-brain-imaging/
https://doi.org/psychcentral.com/lib/what-is-functional-optical-brain-imaging/
https://doi.org/psychcentral.com/lib/what-is-functional-optical-brain-imaging/
https://doi.org/10.1007/978-3-030-05668-1_1
https://doi.org/10.1007/978-3-030-05668-1_1
https://doi.org/10.1007/978-3-030-05668-1_1
https://programmingwithmosh.com/javascript/react-file-upload-proper-server-side-nodejs-easy/
https://programmingwithmosh.com/javascript/react-file-upload-proper-server-side-nodejs-easy/
https://homer-fnirs.org/documentation/
https://www.interaction-design.org/literature/article/task-analysis-a-ux-designer-s-best-friend
https://www.interaction-design.org/literature/article/task-analysis-a-ux-designer-s-best-friend
https://www.interaction-design.org/literature/article/task-analysis-a-ux-designer-s-best-friend
https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.interaction-design.org/literature/article/a-brief-history-of-human-computer-interaction
https://www.interaction-design.org/literature/article/a-brief-history-of-human-computer-interaction
https://www.interaction-design.org/literature/article/a-brief-history-of-human-computer-interaction
https://www.interaction-design.org/literature/article/a-brief-history-of-human-computer-interaction
https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-results-so-do-it-again-designer
https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-results-so-do-it-again-designer
https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-results-so-do-it-again-designer
https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-results-so-do-it-again-designer

102

Invision. (n.d.). Retrieved December 11, 2019, from https://www.invisionapp.com/about.

Jacob, Rob. (2018, January 6). Templates and Examples for User Interface Specifications.

Retrieved October 6, 2019, from https://www.cs.tufts.edu/~jacob/171/templates.html

JavaScript. (n.d.). Retrieved December 11, 2019, from https://developer.mozilla.org/en-

US/docs/Web/JavaScript.

NASA. (2019, November 22). Functional Near-Infrared Spectroscopy (fNIRS) Cognitive

Brain Monitor. Retrieved November 23, 2019, from Nasa Technology Transfer Program

website: https://technology.nasa.gov/patent/LEW-TOPS-84

Nielson, J. (1994, April 24). 10 Usability Heuristics for User Interface Design. Retrieved

November 25, 2019, from Nielsen Norman Group website:

https://www.nngroup.com/articles/ten-usability-heuristics/

Nielsen, Jakob. (2012, January 3). Retrieved October 6, 2019, from Nielsen Norman Group

website: https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Niice. (n.d.). Retrieved December 11, 2019, from https://niice.co/.

NITRC. (2019). Homer2: Tool/Resource Info. Retrieved November 23, 2019, from

https://www.nitrc.org/projects/homer2

Node.js. (n.d.). Retrieved December 11, 2019, from https://nodejs.org/en/about/.

ReactJS. (n.d.). Retrieved December 11, 2019, from ￼https://reactjs.org/￼

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J.,

& Keogh, E. (2012). Searching and Mining Trillions of Time Series Subsequences under

Dynamic Time Warping. Proceedings of the 18th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 262–270.

https://doi.org/10.1145/2339530.2339576

Schneiderman, B. (2013, September 12). Shneiderman’s “Eight Golden Rules of Interface

Design.” Retrieved October 1, 2019, from Design Principles FTW website:

https://www.designprinciplesftw.com/collections/shneidermans-eight-golden-rules-of-

interface-design

Solovey, E. (2016, October). CS338: Design Lifecycle Part 2. PDF.

Solovey, E. (2019a, January). Design & Think Alouds. Google Slides.

https://www.cs.tufts.edu/~jacob/171/templates.html
https://www.cs.tufts.edu/~jacob/171/templates.html
https://technology.nasa.gov/patent/LEW-TOPS-84
https://technology.nasa.gov/patent/LEW-TOPS-84
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nitrc.org/projects/homer2
https://www.nitrc.org/projects/homer2
https://www.nitrc.org/projects/homer2
https://nodejs.org/en/about/
https://doi.org/10.1145/2339530.2339576
https://www.designprinciplesftw.com/collections/shneidermans-eight-golden-rules-of-interface-design
https://www.designprinciplesftw.com/collections/shneidermans-eight-golden-rules-of-interface-design
https://www.designprinciplesftw.com/collections/shneidermans-eight-golden-rules-of-interface-design
https://www.designprinciplesftw.com/collections/shneidermans-eight-golden-rules-of-interface-design

103

Solovey, E. (2019b, January). Prototyping. PDF. Retrieved from

https://drive.google.com/open?id=1RSC6FG32X596JTssdoHwiChlHuqHfsNm

Solovey, E. (2019c, February). Ideation (2). Google Slides.

Solovey, E. (2019d, February). Communication (1). Google Slides.

Solovey, E. (2019e, February). Communication (2). Google Slides.

Solovey, E. (2019f, March). Good Design. Google Slides.

Solovey, E. (2019g, April). Interface Evaluation. Google Slides.

Tan, D., & Nijholt, A. (2010). Brain-Computer Interfaces and Human-Computer

Interaction. In D. S. Tan & A. Nijholt (Eds.), Brain-Computer Interfaces: Applying our

Minds to Human-Computer Interaction (pp. 3–19). https://doi.org/10.1007/978-1-84996-

272-8_1

Usability. (2017a, April 3). User-Centered Design Basics. Retrieved September 30, 2019,

from https://www.usability.gov/what-and-why/what-and-why/user-centered-design.html

Usability. (2017b, December 1). Benefits of User-Centered Design. Retrieved September

30, 2019, from https://www.usability.gov/what-and-why/benefits-of-ucd.html

https://drive.google.com/open?id=1RSC6FG32X596JTssdoHwiChlHuqHfsNm
https://drive.google.com/open?id=1RSC6FG32X596JTssdoHwiChlHuqHfsNm
https://drive.google.com/open?id=1RSC6FG32X596JTssdoHwiChlHuqHfsNm
https://doi.org/10.1007/978-1-84996-272-8_1
https://doi.org/10.1007/978-1-84996-272-8_1
https://doi.org/10.1007/978-1-84996-272-8_1
https://www.usability.gov/what-and-why/benefits-of-ucd.html
https://doi.org/what-and-why/user-centered-design.html
https://www.usability.gov/what-and-why/benefits-of-ucd.html
https://www.usability.gov/what-and-why/benefits-of-ucd.html

104

Appendix A: Interview Preamble

Intro:

Good morning/afternoon; we are Vandana Anand, Kyra Bresnahan, Maggie Goodwin, and Yihan

Lin. We are four seniors at WPI working on the development of a brain computing interface

(BCI) for the functional near-infrared spectroscopy machine, also known as fNIRS. We are

currently collecting qualitative data from users who have worked with fNIRS in the past, in order

to identify potential areas of improvement in the user experience of existing BCI tools. Your

input will be a valuable resource that can assist us in discovering the underlying user needs and

future development opportunities.

Requirements:

This will only take about 30 minutes to an hour of your time and we will take notes along this

process. Please understand that your participation is completely voluntary; you do NOT have to

answer anything that you do not want to and the session can end at any time that you wish.

General Questions:

May we have your permission to record your audio for reviewing purposes?

May we have your permission to record your demo of using the tool for reviewing purposes? We

will not be capturing your face during this process.

May we have your permission to quote this conversation in our final report?

If yes, may we have your permission to quote the conversation under your personal name? If not,

you will be quoted anonymously to keep your information confidential.

105

Would you like a copy of our writing after we finish analyzing the qualitative data from this

interview?

May we have your permission to take photos for our report?

106

Appendix B: Storyboard Evaluation Questions

Goal: Ensure the team’s understanding of the backend and frontend requirements is accurate.

Gather initial implementation and user requirements.

Procedure: Discussion format, gather a group of users and ask about implementing certain

features. Trigger the group to talk about the pros and cons of how to implement said features.

Go to your target population.

Focus groups (small groups of people)

Present them with many alternate storyboards

Make ones you think they’ll react strongly to

For each storyboard, ask a discussion question. Let the users talk, follow up.

Questions:

What did they like? Hate?

Did they have any strong reactions? Any surprising ones?

How does what they said indicate underlying needs they might have?

How does what they said indicate potential design opportunities?

Did they have any suggestions?

1. Is this feature useful? User inputs a graph and if that is found in the first channel but not

the rest of the channel, we don’t want to store this result. If this result is found in a

majority of channels (# specified by user), we want to keep this information

2. Is this feature useful? Should we be able to identify 2 data shapes given by the user in the

graph (not implemented in backend yet and can only search by 1 data shape currently)

107

3. Is this feature useful? Do we want to filter the correct, incorrect, and no response before

building (before seeing the cluster explorer) to save more time or build everything in the

beginning and then filter based on subject response in cluster explorer?

1.

2.

108

Appendix C: User Testing Protocol for Low-fidelity

Prototype

Goal: Include user interaction and control flow to guide the user through the application and

gather more information about the team’s understanding of BrainEx and feedback on design

decisions for the features.

Procedure: Check and observe whether the user is able to perform the following tasks when

they are given the application and told to freely explore and figure out features of the application

by themselves. Ask questions about user experience and usability at the end of the testing

session. Specifically address if there is a problem, any recommendations for that problem, and

assess if anyone else complained about this problem.

Tasks with necessary instructions:

1. Generate clusters from a new dataset

2. Upload a new dataset

3. Select a dataset and proceed to build the clusters

4. Pick the appropriate parameters and start clustering

5. NOTE: Loading page will automatically take you to the finished loading page once it is

done (not a task)

6. Pick the page to view all the data

7. Filter the data based on the channel, subject, and label

8. Pick the region you want to view on the graph

9. Go to the cluster explorer

10. Filter the number of clusters to view

11. Filter the sequence length to view in each cluster

12. Click on the cluster and its representative to find it in the data visualizer

13. Click on next

109

14. NOTE: The cluster and its representative is still highlighted on this page. The clusters

data points are listed in a table (not a task)

15. Filter the number of sequences in this cluster to view

16. Filter the sequence length to view in each cluster

17. Proceed to the Query finder

18. Pick use selection from cluster explorer

19. Enter the appropriate parameters

20. Show the query results

21. Pick the specific region to view in the data visualizer

22. Click on save file

23. Navigate back to the Home page

Questions:

1. Where do you think you would need more guidance in terms of using the feature? What

seems unclear?

2. What parts of the app do you think would be useful and would definitely like to use?

3. On cluster explorer,

a. How do we decide how many representatives to display to the user (maybe ask to

input a number from 1-10) and on what basis (show representatives of the top 10

clusters with most data points)?

b. If we have 30,000 clusters, how do we filter them down to approx 20? Should we

ask for user input or another screen?

c. Should number or length be displayed as the identifier in the view data shapes

area?

4. On dataset explorer,

a. How would you want to filter the data if there is so many to look at?

5. On query result page,

a. What do you think is the most important information you would need to see on

this page?

6. What statistics would you like us to see displayed?

110

111

Appendix D: User Testing Protocol for Mid-fidelity

Prototype

Good morning/afternoon, we are Vandana Anand, Kyra Bresnahan, Maggie Goodwin, and

Sylvia Lin. We are four seniors currently designing a user-interface for the time-series querying

application, BrainEx. We are currently conducting user testing to receive feedback on the layout

and basic functionality of the design. We will present you with our current iteration of the

implemented front-end and several tasks to perform. Please speak your thoughts aloud whenever

possible to provide any additional insight into your experience. Once you have completed all the

tasks, there will be a series of reflective questions about the experience. You may opt-out of this

test at any time. Your input will be a valuable resource that can assist us in improving the

usability of our application.

Tasks:

1. For the already preprocessed dataset ‘SART2’, find a similar sequence by uploading a

sequence file called ‘queryseq1.csv’

2. Preprocess a new dataset called “dataset2.csv” and explore that dataset while

preprocessing. Then after preprocessing is done, select the sequence that has the subject

ID of ‘101HART’ and use it to find similar sequences.

3. Explore data by clusters and, from the cluster that has 5 sequences, sort the sequences in

the order of channel name. Then select the sequence that has the channel number 18JVO

and save it

Questions:

4. Do you feel like the following aspects are lacking in the prototype: flexibility and

efficiency of use(shortcuts), Error prevention and Error recovery?

5. How to best visualize data in dataset explorer?

6. How does the control flow feel to you?

7. Which version do you prefer between the two?

112

Appendix E: User Testing Protocol for High-fidelity

Prototype

Good morning/afternoon, we are Vandana Anand, Kyra Bresnahan, Maggie Goodwin, and

Sylvia Lin. We are four seniors currently designing a user-interface for the time-series querying

application, BrainEx. We are currently conducting user testing to receive feedback on the layout

and basic functionality of the design. We will present you with our current iteration of the

implemented front-end and several tasks to perform. Please speak your thoughts aloud whenever

possible to provide any additional insight into your experience. Once you have completed all the

tasks, there will be a series of reflective questions about the experience. You may opt-out of this

test at any time. Your input will be a valuable resource that can assist us in improving the

usability of our application.

Tasks:

1. Preprocess a raw dataset named dataset_6

a. Explore while preprocessing

b. save selected subsequence

c. Find similar subsequences by uploading a sequence

2. Explore clusters after preprocessing is completed

Questions:

3. On a scale of 1-5, please rate the learning curve of this tool, with 1 being extremely easy

to learn and 5 being extremely difficult to comprehend.

4. On a scale of 1-5, please rate your satisfaction of this tool based on the overall UI look

alone, with 1 being extremely consistent and usable and 5 being extremely difficult to use

and sloppy.

113

Appendix F: Research Questions

1. What is our scope/what should we tackle? - BrainEx (identify problem)

1. What are the lab’s current tools and processes?

2. What direction is the lab moving in?

3. What technologies are being developed in the lab that require an interface?

4. Why does a particular technology deserve our attention?

2. What would a user-interface for BrainEx have to do/look like? (requirements gathering)

1. What have they used in the past? (old version of BrainEx)

2. What do the developers of BrainEx need from an interface?

3. What do the end-users of BrainEx need from an interface?

4. What backend support does BrainEx offer?

5. How does BrainEx work?

6. User needs and wants from the lab staff

7. Why would people use BrainEx?

3. How do we use HCI principles to design a UI for BrainEx? (“final” step/put it all

together)

1. What are the HCI principles? (refer to background)

2. How do we ensure that we make a good design?

3. What methods are we gonna use to design a prototype?

114

Appendix G: Interview Questions

1. How long have you been working with the fNIRS brain data and what do you use it

for?

2. What is your typical workflow when using the fNIRS machine? Please include both

customized tools that you/your lab may have built on your own as well as the pre-existing

ones.

3. If you/your lab have built your own tools, why did you build it and what do you use it

for?

4. If there is more than one, please let us know which tool you like the most and which

tool you like the least. Why so?

5. How long have you been using and how often do you use this set of BCI tools?

6. Why did you/your lab choose/use these particular BCI tools?

7. Are there any aspects of the tools that you find frustrating? How so?

8. Have you ever felt at any point that certain functionalities you need are missing from

this interface?

9. In the case of technical difficulties, how do you usually resolve them? Do you just

google the problems you encounter? Search in their official documentation? Email the

support team?

10. What is the most useful thing you found on this interface? Can you point to us things

that you feel like you have never found a use of on this interface?

11. What do you find to be the most useful/helpful way of visualizing the fNIRS data?

12. Please rate your level of understanding of the tool(s) (1 being you have no idea and 7

being expert).

13. On a scale of 1 to 7 (1 being expert on first try and 7 being it took years to master),

please rate the learning curve of the tool(s).

14. How long did it take you to get acclimated to them? What level of technical expertise

do you think a person would need to use this tool?

15. Please take some time to envision the most ideal workflow of a BCI tool, from your

personal point of view. Feel free to draw a diagram to elaborate.

115

16. Where do you usually save the data after it’s collected/processed? Any issues with

data loss?

116

Appendix H: User Personas

Table X: Persona Information (Undergraduates)

Persona Result 1

Name Joe

Education Freshman majoring in Biology

Titles & Responsibilities Student worker in the lab training to facilitate fNIRS based research and

use various BCI tools for data collection.

Goals & Frustrations As a new student who just joined the lab, Joe feels that it is easy to pick up

the procedures and workflow in the lab tools with some guidance.

However, it is hard for him to learn specific features in the data collection

tools needed to conduct fNIRS research without a prior background. He

feels that there is a lack of documentation and is very difficult to

troubleshoot technical issues himself.

Narrative Joe is a freshman at WPI majoring in Biology. He is spending his first

semester working in the HCI lab, primarily to conduct experiments with

users and collect fNIRS data.

Quote “It’s important to have a tool that is easy to learn and does not require any

technical expertise”

Persona Result 2

Name Sheila

Education Junior majoring in CS

Titles & Responsibilities Student worker in the lab performing fNIRS research by using data

collection tools and performing minimal data preprocessing.

Goals & Frustrations Overall, Sheila feels that the tools she has used are straightforward and

easy to learn. She especially likes the fact that there is no technical

experience needed to begin using them. However, she feels that it would

be ideal to have one UI to follow all the steps of the workflow because it

gets confusing to navigate through multiple pages. The data collection tool

has some useful data processing functions as well as the capability to

remove discontinuities and pieces of data. The visualizations are very

117

useful since they are customizable, but it would be ideal to limit the

number of graphs to make it easier to use and visualize. Moreover, the data

collection tools are not customizable itself, so Sheila is required to follow a

specific procedure in the application and cannot adapt the tool based on her

needs. In addition, it would be more convenient to run multiple

applications on one machine rather than several. Also, all the tools lack

documentation for technical issues. Because of this, Sheila finds that many

features are still unknown and have never been explored. The tools were a

little confusing to learn initially because there are no tooltips to guide her

within the application. In terms of solving technical difficulties, error cases

are hard to troubleshoot and the system freezes if a data stream cannot be

detected.

Narrative Julia is a junior at WPI double majoring in CS and BME. They have spent

the summer of 2019 working in the HCI lab, primarily to conduct

experiments with users to collect fNIRS data .

Quote “It’s important to have a tool that is easy to learn, straightforward, and has

meaningful visuals.”

Table X: Persona Information (Graduates)

Persona Result 3

Name Julia

Education PhD student with a concentration in Bioinformatics

Titles & Responsibilities Works in the lab with fNIRS brain data and conducts a cognitive study on

learning in the prefrontal cortex using AX-CPT to detect different

cognitive states in users. They also work on signal processing and

developing algorithms to perform time series data analysis. They perform

data collection and analysis with Aurora, RTFD, NirsLAB, MATLAB

GUI as well as Homer and have a vast amount of expertise in these tools.

Goals & Frustrations Overall, Julia feels that the data collection and data analysis tools are very

available and widely used. They are easy to learn for the most part, except

for one of the data analysis tools, as there is no coding or technical

knowledge needed. In addition, she thinks the visualizations of the data are

helpful because there are line graphs clearly showing the spikes and areas

that need further investigation. The plotting and mapping functions for

data analysis are visually appealing such as the color coordinated graphs

and there is the ability to easily mark specific points on the chart as well as

118

remove noise. However, Julia feels that it would be helpful to view only

relevant (less than 4) charts at once instead of all together to increase

usability and decrease overcrowdedness of the features. Also, the data

analysis tools have one interface that performs all the functionalities, but

Julia feels that this is not efficient because it slows down her productivity

in the application. Instead, it would be more useful to break it up into

different stages and ensure that the transition is smooth so that processing

data can be streamlined. Another concern she had are that the tools are not

open source, thus not customizable, and only function when following a

specific procedure in the application. This makes it hard for Julia to adapt

the tool based on her needs and the data. She also feels that the tools are

not very intuitive, have bad documentation as it is poor or doesn’t exist,

and contain lots of pre-processing steps. A lot of her time is wasted by

trying to learn and understand what a feature does or emailing the

companies that make the tool to solve technical issues. She believes it

would be useful to have guidance within the application for the workflow

and specific features in the form of question mark icons. Especially for the

data analysis tools, Julia felt she was less experienced with using them

after taking a break from using the tool. Ideally, Julia thinks an application

would be more usable, navigable, and understandable in a user’s point of

view if dialog boxes are shown for error handling when a user performs a

wrong action on the UI, more information, such as markers, are shown on

graphs, after the data collection step the data is exported in the format the

user wants, such as .csv, to go into a data analysis software for

pattern/anomaly detection, machine learning is used to tell users to look at

an area after the data preprocessing step and these regions are highlighted

for the user to investigate more closely for analysis, and the data collection

as well as the data processing steps are separate from each other.

Narrative Julia went to school for Computational Biology & Bioinformatics as well

as CS and is completing their PhD at WPI with Professor Solovey. She has

spent a year and a half working in the HCI lab, collecting and primarily

analyzing fNIRS data by performing experiments with users.

Quote “Clear, concise, and easy to access documentation as well as a clean,

navigable website without overcrowding features are very important to aid

in a user’s ability to immediately understand an application”

Table X: Stakeholder Persona Information (Developers)

Stakeholder Result

119

Name Troy

Education PhD with a concentration in CS

Titles & Responsibilities Working in the lab to develop an improved backend, including the

database and API, for BrainEx and improve functionalities in processing

brain data while also designing the architecture of projects, running

experiments, and testing BCI tools.

Goals & Frustrations Troy explained that BrainEx was an old data analysis tool to perform

analysis on brain data coming from a user during an experiment. The

backend is implemented using PySpark and the UI is implemented with

fairly new technologies including React, JavaScript, and Redux. He feels

that BrainEx is easy to use for someone who has experience and

understands the features, but not for a HCI-oriented professional who is

just using the tool for example. He expressed that the new UI should be

made easier to use because people who did not come from a technical

background tend to have a bit of a learning curve using BrainEx without

the documentation. In addition, the biggest problems with BrainEx was

that it was taking a very long time to run and had many missing features,

which is why a new version would be created to utilize distributed

computing for better efficiency and contain additional functionality.

Narrative Troy is completing his PhD at WPI with Professor Solovey. He has been

researching and working in the lab on many BCI related projects,

specifically on the project in regards to implementing an improved

backend for BrainEx.

Quote “Understanding the functions behind features of a UI can help designers

and developers improve the usability and intuitiveness of the UI for the

user”

“Gathering and incorporating the user requirements is an essential part of

delivering a viable UI”

“Extensive documentation should be given for any UI so that any user,

both technical and non-technical, can quickly become acclimated to it”

120

Appendix I: Usability Aspect Reports for Low-fidelity

Prototype

Usability Aspect Report

Subject ID 1, 2

Name Confusion about where data was coming

from in different pages of the application

Evidence “Where do the csv files on the left side

of the window come from? Are they from

the local machine, server, application,

etc...?”

“On dataset explorer -- what is this

table? Is it csv file content? If so, which one

is selected?”

“What does filter mean -- what is it

showing in the visualizer on dataset

explorer?”

Explanation 1) The user was confused as to where

the csv files displayed on the left side of the

homepage screen, labeled as SART1,2,3

datasets, had actually come from. They

were not sure if they were already uploaded

and did not click on them.

2) The user was confused as to where

the data viewer contents on the dataset

explorer page was coming from and did not

know which sequence was selected in order

to investigate further.

3) The user was not sure what the filter

option on the dataset explorer page and

what it would be showing in the data

visualizer graph.

121

Severity 3, frequent as user encountered this

problem several times, persistent because it

is important to know where the files and

table data come from in order to understand

the application, high impact because it

made the user confused about features of

the application.

Solution (optional) Improve the wording for the uploading

files feature to make it more intuitive

The user would rather see a blank screen

when he/she first arrives to the page so

he/she knows that nothing is currently

selected. And when it is selected and being

displayed, indicate which one it is. Start

with nothing in the preview window in

selection of csv files.

Relationships (optional) N/A

Usability Aspect Report

Subject ID 1, 2

Name The options the user has to pick are not

clear

Evidence “What are the best choices for the build

options screen -- is the one already selected

in similarity threshold the recommended

default?”

“What does ‘k best matches’ mean?”

122

“Is altering this slider altering the length

of clusters displayed or length of sequences

within cluster displayed?”

Explanation 1) The user was confused as to whether

the default options on the build screen, such

as similarity threshold, distance type, and

length of interest, are the recommended

default or not

2) The user did not understand at first

what “k best matches” referred to. He/she

questioned if it referred to the shape, length,

or channel.

3) On the cluster explorer screen, the

“range of sequence length” option is

confusing. All sequences within a cluster

being the same length doesn’t make sense

to the user. This makes he/she think of

individual sequences and not the whole

clusters.

Severity 3, very frequent as the problem occurred

many times, somewhat persistent because

was with multiple options on different

screens, medium impact as it affects the

user’s ability to select options in order to

proceed

Solution (optional) Have a help button on the side of each

option to explain any confusion the user

may have

Label or have a description of the “k

best matches” option

Relationships (optional) N/A

123

Usability Aspect Report

Subject ID 1, 2

Name Before making a selection to view data,

the display pages were confusing

Evidence “I am not sure why data is shown even

though I haven’t selected anything.”

Explanation The user was confused when he/she

navigated to the CSV file viewer page and

there was already a dataset displayed before

he/she clicked on anything so it was not

clear if it was already selected to be

processed. In addition, when the user went to

the explorer pages, there was data displayed

before he/she selected or filtered any data.

Severity 3, it was a frequent problem with the

user, not very persistent as this is a

preference, medium impact because it can

affect user experience

Solution (optional) Current selection box should not have a

selection shown if user has not selected

anything

Don’t display results in query finder

unless there is something selected/queried

Relationships (optional) N/A

Usability Aspect Report

124

Subject ID 1, 2

Name Graphs and visuals were not intuitive

Evidence “The colors and shapes are not

consistent when I’m navigating to another

page”

Explanation The user though the graphs were not

intuitive as it looked like the selected

cluster was just added into the data

visualizer and the other lines are not similar

in the graph. Moreover, some lines in the

cluster explorer graph were similar to other

shapes on other graphs in different screens.

It was not clear that the application was

highlighting the shape he/she had selected.

Severity 2.5, frequent as user encountered the

problem multiple times, persistent as it

should be applied on all screens that have

graphs, low impact because it helps to

perfect the prototypes

Solution (optional) The graphs should reflect what the user

is actually selecting.

The colors of the same shapes should be

consistent.

When showing users a chart of visual,

make sure it is worded so that a non

technical user can understand

Relationships (optional) N/A

Usability Aspect Report

125

Subject ID 1, 2

Name There are naming inconsistencies within

the application

Evidence “The number of clusters does not equal

the range of the clusters”

Explanation 1) On cluster explorer, the cluster

size range is not meant to show how many

clusters to show. The user cannot change

the length of a cluster as that is a data point,

so saying that the user is selecting the range

of the sequence length for all clusters would

more clear. In addition, the wording for

“Previously clustered datasets” and “CSV

files” are changed between the homepage

and the dataset explorer. Also, when the

user goes to upload a file and return to the

dataset explorer, the names of the datasets

on the left change from “SART#” to

“Dataset#”.

Severity 1.5, frequent as the problem occurred a

couple of times, persistent because user is

confused about the functionality, low

impact because it is a preference

Solution (optional) Keep names and screens more

consistent or make them more clear as to

what they are and where they come from on

each screen.

Relationships (optional) N/A

Usability Aspect Report

126

Subject ID 1, 2

Name The control flow of the application is

not clear

Evidence “The flow and transitions of the

application is not very clear.”

Explanation 1) The dataset explorer should not come

after cluster explorer and the user would

like to view what the data looks like before

clustering the data. Also, the user thought

the workflow was over at cluster explorer

and was confused as to why he/she would

want to have another query if he/she already

had one.

2) The user did not know where to click

or how to start in the query finder page. For

example, it is not clear that entering

parameters is the next step.

3) The user ended up circling between

the dataset explorer, cluster explorer, and

query finder which did not make sense so

he/she went back to the homepage without

meaning to go there. The transitions

between screens eventually became clear,

but were not intuitive in the beginning.

4) The tabs, that are intended to help the

user navigate between the 3 screen

mentioned above, do not make the control

flow clear to the user. Buttons would be

better in this case.

Severity 4, very frequent as it happened many

times, persistent as it is important to have a

control flow that is understandable and

doesn’t deviate the user from the task, high

impact as it could highly affect a user’s

127

ability to perform functionalities in the

application. 

Solution (optional) The exact flow of the application should

be made clear to the user. Make sure to

consider all the paths a user could take in

the site.

Automatically go to the next screen

when the build process finishes.

Relationships (optional) N/A

Usability Aspect Report

Subject ID 1, 2

Name Guidance in certain places within the

application is needed

Evidence Facts 

Explanation 1) The user was unsure where the

number 200 came from on the loading

clusters screen when it says the sequences

have been processed

2) The user wanted more guidance for

the build and clustering options, such as

length of interest and what it means.

3) The user wanted to make more clear in

the application that clustering is done on all

the channels

4) The user wanted a more clear

description of the purpose of each screen,

such as dataset or cluster explorer.

128

Severity 2.5, frequent as the concern was brought

up several times when testing the

application, persistent, because the user was

confused about what some features were

doing which hindered their progress in

achieving the task at hand, medium impact

as guidance and documentation has been an

overall concern in the lab.

Solution (optional) Show what the numbers in the

application mean

Highlight the purpose of each option,

especially in the build options screen, in

terms that the user can understand and get

rid of the default values

Relationships (optional) N/A

129

Appendix J: Usability Aspect Reports for Mid-fidelity

Prototype

Usability Aspect Report

Subject ID 1,3,2,4,5

Name Confusion with the control flow when

navigating between pages

Evidence Went to find similar sequence page and asked

“didn’t I already upload a file?”

Clicked on Dataset explorer on find best

sequences screen and said “they have no idea

what they’re doing”

Clicked on find similar sequences on dataset

explorer and asked “why am I back to this

[find similar sequences] screen”

Explanation 1) The user kept going back and forth

between the dataset and cluster explorer

pages as well as the find similar sequences

page. They were confused about the

application and why they are getting back to

the same page over again. After a lot of trial

and error in navigating between pages, the

user got to the find similar sequences page.

For example, the user accidently went back to

load dataset when he/she didn’t necessarily

mean to and lost pre-existing dataset he/she

was working with

2) The user wasn’t sure how to select a

sequence and subsequently find the similar

sequence on the find similar sequences page.

Took the user a bit to find the “upload

sequence file” button. The user thought there

130

would be a filter bar to filter the data but

didn’t realize that clicking on the filter

selection page or option was they way to start

the process

3) Dataset explorer by filtering was hard to

understand since the user remembered seeing

it in the data viewer, which isn’t filtering.

Also have a back button to go back to the

homepage on the dataset explorer screen.

Right now the user is inclined to go back to

the dialogue box screen with the progress bar.

4)The user was confused when clicking

“upload” and the “next” button on uploading

a new dataset in dataset viewer and then

wasn’t sure what next step was

5)The user was confused as to why he/she is

exploring data while preprocessing happens

and didn’t know what exactly he/she was

exploring.The user didn’t know what

preprocessing was doing and wasn’t sure how

to go back and check the progress of

preprocessing right away

Severity 3.5, frequent because this problem occurred

multiple times, persistent because control

flow is very important as that is the way users

can transition from screens to achieve their

goal in the app, medium impact because it

made the user very confused.

Solution (optional) Improve the control flow and make it more

intuitive, trade off is having enough time to

do this

It should be more direct to find a sequence

from the query screen

And it would be more helpful to have more

ways to navigate.

131

Relationships (optional) N/A

Usability Aspect Report

Subject ID 1, 3, 4, 5

Name Aesthetics and layout of the screens can be

more appealing and consistent

Evidence “I wouldn’t have noticed that I can sort by

channels on the data table”

“The data can be more consistent across

screens”

Explanation 1) The user is not sure why scroll bar doesn’t

work

2) On the BrainEx homepage having the file

selection on the home screen is misleading

because users will think they can select it and

preprocess it again. Make the preexisting file

selection a dialogue window.

3) It is not clear how to sort by channels in

the data tables

4) Didn’t notice the tabs at the bottom the

first time while using it

5) The Hart 101 subject ID in the data table in

the find similar sequences screen should have

100% similarity

6) Should not be able to change sequence

length on the second cluster explorer screen.

Grey it out or just get rid of it, which would

be more intuitive

132

7) Underline sequences to make it like a

header and make all the blue outlined save

buttons into black.

8) Looking at twenty clusters at once would

be enough for the user to look at on the

cluster explorer page

9) The user got confused and couldn’t tell

which cluster had 5 sequences right away

Severity 1.5, frequent as the concern came up many

times to improve the screen, not very

persistent or impactful as these are opinions

and help make the application more pleasing

to use

Solution (optional) Move the tabs leading to the different

explorer screens to the top of the application

instead of having them at the bottom

Relationships (optional) N/A

Usability Aspect Report

Subject ID 2, 4, 5

Name Naming and labels in the application can be

more consistent

Evidence “Would the name of the button be start

preprocessing or just preprocess?”

Explanation 1) The user thought “preprocessing” meant

cleaning the data, meaning he/she would not

want to bother looking at it. Is the naming

convention start processing or preprocessing?

133

2) Instead of load dataset, Home would be

more intuitive

3) Keep it consistent as on screen says

“processing dataset4” when it is actually

processing dataset2

Severity 1, frequent as the problem came up several

times, not very persistent as it is a preference

to heighten intuitiveness, low impact

Solution (optional)

Relationships (optional) N/A

Usability Aspect Report

Subject ID 1, 4

Name Error prevention should be added so that the

user doesn’t make costly mistakes within the

application

Evidence “It would be helpful to handle possible user

errors in the application to avoid catastrophic

accidents”

Explanation 1) Add a “Is this the selection you want”

dialog box on find similar sequences page

after clicking on “upload sequence file”. Also

add “You’re about to erase your upload

sequence, are you sure you want to go back?”

on the find similar sequences page. When the

user clicks on “select a sequence”, the order

of the option change so it would be helpful to

134

have a back button in case the user clicks on

something wrong.

2) Anytime the user selects a sequence, cache

the data and save it as a temp file even if

he/she doesn’t click on the “save selected

sequence” button

Severity 2.5, frequent as it was brought up in a few

areas of the application, persistent because it

would be helpful to keep the user from

crashing the application and provides better

user experience, medium impact as it would

prevent accidental errors

Solution (optional) Add a pop up box to and have user confirm

when switching screens

Relationships (optional) N/A

Usability Aspect Report

Subject ID 1, 5

Name The graphs and visuals can be more appealing

and intuitive

Evidence “What is the big white area for in the find

similar sequences page?”

Explanation 1) The user feels it is a little confusing in the

find similar sequence page what goes in the

big white space meant for the graphs and data

tables before selecting any data to find similar

data matches.

2) The minimum number of sequences to be

displayed in the graphs should be 5 and the

maximum should be 10 or 15. Anything more

135

than that and there would be no more space or

colors.

3) Add a magnifying glass on the slider to

make it more intuitive and make it more

interactive

4) Use the subject ID in the legend for the

graphs on all the screens

Severity 2, not very frequent as it was not brought up

as much, persistent because the visuals and

graphs can convey important information to

the user, low impact as it is preferences

Solution (optional) Could have an empty visual or table before

the user enters any data

For the magnifying glass, add a + on the

magnifying glass to represent zooming in and

one for - to represent zooming out.

Relationships (optional) N/A

Usability Aspect Report

Subject ID 5

Name More guidance in the application is needed

Evidence “It would be nice to have a tutorial in the

application before having to use it”

Explanation The user believes it would be more intuitive

and useful to have a tutorial in the application

itself to get more accustomed to the tool

Severity 1, not very frequent or persistent as this is a

nice-to-have feature, low impact

136

Solution (optional) Can have a short tutorial when the user first

opens app

Relationships (optional) N/A

Appendix K: Usability Aspect Reports for High-fidelity

Prototype

Usability Aspect Report

Subject ID 1, 4

Name Confusion with the control flow when

navigating between pages

Evidence “It would be useful to have all buttons in the

application clickable to simulate a real UI”

“Clicking on the BrainEx logo should take me

back to the homepage”

Explanation 1) The save subsequence button is not

mapped to the correct screen

2) Allow the user to save before

preprocessing is done! Also, the user should

be able to save query results

3)For the cluster explorer screen, make the

data table reflect the user’s selection of

looking at the top 5 and bottom 5 clusters

4) Make the progress bar when preprocessing

the data pop out as dialog box so the user can

keep an eye on it

137

5) Make the “return to homepage” button

clickable. The user hopes in the implemented

application that loading a dataset would take

them back to the home screen.

6) Add ability to be able to click on the

BrainEx logo to go back to the homepage

7) The user thought that after filtering, there

would be a button to click to apply the filters

to the data

8) The user had to click around a lot in the

application in order to find functional buttons

because not all buttons were functional on a

given screen

9) Change the upload file dialog to upload,

which is a copy of save right now, and add a

sequence to be selected

Severity 2, frequent as the problem occurred often, but

not very persistent as these are nice-to-have

features, low impact

Solution (optional) Make sure the save button is clickable in file

explorer

Relationships (optional) N/A

Usability Aspect Report

Subject ID 3

Name More guidance in the application is needed

Evidence “What is the find similar sequences page,

how did I get here?”

138

Explanation 1) User needed a little bit of guidance to

explore the data during preprocessing

2) User was a little confused on the find

similar sequences page and went back to the

tabs

Severity 2, not very frequent, persistent as it is

important for the application to be intuitive,

medium impact

Solution (optional) Add tooltips and clear descriptions

Relationships (optional) N/A

Usability Aspect Report

Subject ID 1, 4

Name Naming and labels in the application can be

more consistent

Evidence “The recent and server files are confusing,

why are those there and have I used this

before?”

Explanation 1) User had many questions about the

“Recent” files and was confused. They were

not sure if they or another person had used the

dataset before

2) The event names, labeled as target correct

and incorrect, are confusing to the user

Severity 1, not very frequent or persistent as these are

nice-to-have features, low impact

139

Solution (optional) Remove recent files and all server files

Relationships (optional) N/A

Usability Aspect Report

Subject ID 1

Name The graphs and visuals can be more intuitive

Evidence “It makes sense for the legend to be located

on the left of the graphs”

Explanation 1) The left side of the explorer screens is

sufficient as a legend and it makes sense to

have it on the left. The user believes the

legend would apply to what is in the data

viewer

Severity 1, not very frequent or persistent as this is a

nice-to-have feature, low impact

Solution (optional) Place legend on the left of the graphs on all

the screens to make it consistent

Relationships (optional) N/A

Usability Aspect Report

Subject ID 1, 4

140

Name Understanding user input options could be

more intuitive

Evidence “What are dataset headers?”

Explanation 1) The user was confused as to what dataset

headers mean and whether he/she needed to

previously know how many headers were in

the dataset or if he/she can limit the amount of

headers

2) The user was confused as to why there is no

recommended length.

3) User was confused as to what distance type

is

4) The current selection on the find similar

sequences page is confusing

Severity 2, frequent as the problem occurred more than

once, persistent because it is important to

make the application intuitive, medium

impact

Solution (optional) Add a recommended length default parameter

and make sure to start at 1 and not 0

Relationships (optional) N/A

Usability Aspect Report

Subject ID 1, 4

Name Aesthetics and layout of the screens can be

more appealing and consistent

Evidence “Aesthetics are very important to the appeal

of the application”

141

Explanation 1) Buttons are a little big on CSV Data

Viewer screen

2) Move question mark help button to the top

right and move save away from the “select

from upload” button

3) The user pointed out missing lines on some

boxes

4) Adjust the legend size so that labels don’t

get split into two lines

5) Orange and red colors have the same end

time in the data

6) Goes from “current selection” to “current

sequence from…”. The user says this is not

needed and just should have the current

selection

7) There should be better contrast and clearer

distinction between close buttons

8) Data viewer contents should be adjusted

eventually so that they match better with the

overall aesthetic

9) Adjust screen size. Invision does fit to

width but not fit to height. The user had to

scroll to view the entire screen and this makes

it harder to find and click things in the UI

10) The user didn’t understand that the save

button was different from the “select from

upload” button because they were right next

to each other

11) Switch the cancel and explore locations

button. The user hovered over cancel first and

didn’t want to misclick

Severity 1, not very frequent or persistent as this is a

nice-to-have feature, low impact

Solution (optional)

142

Relationships (optional) N/A

Appendix L: BrainEx User-Interface Tutorial

BrainEx is the tool that helps find the top similar matches in fNIRS time series data

● Fork the project on Github from vanand23’s (Vandana) repository:

https://github.com/vanand23/BrainEx-UI

● Clone or download the project from Github

● Open the project in the Pycharm IDE

● Open the terminal and run the command: npm install to install all the project modules

and dependencies

● To run the application in Pycharm, open two terminals. One for running the frontend and

one for running the backend. Make sure you are in the “brainex” folder (the command is:

cd brainex)

○ Starting frontend command: npm start

■ After running the frontend, the message in the terminal will say

“Compiled successfully. Server is now running on localhost:3000”

○ Starting backend command: node server.js

https://github.com/vanand23/BrainEx-UI

143

■ After running the backend, the message in the terminal will say “App is

running on port 8000”

● Once the application automatically opens up on the website (“localhost:3000”), you will

see the homepage of BrainEx

● To upload an already preprocessed dataset, click on “Choose File” and select multiple

CSV files. You can also choose a single CSV file. Note that if you try to choose any other

file type, it will not work and you will encounter an error.

○ You will see that the “No file chosen” will change to the name of the file you

chose

● After choosing the file, click on “Add”

● Once you do this, go to the project directory and under the folder named

“PreprocessedDataFiles”, you will see that the files that you chose from your local

directory will be added to the server of the website

● To start preprocessing a new dataset, click on the button named “Preprocess a new

dataset”

● You can then click on the navigation buttons in the rest of the screens labeled as “back”,

“next”, etc to get from one screen to another

Project Directory

BrainEx-V1

● The “test_db” folder is the database for BrainEx

● “ItalyPower.csv” contains an example of the fNIRS time series sequences

● “Test.py” is the file to run through BrainEx as the command line tool. Use this script to

copy and paste sections of the code into the python console and go through the database

functionalities

● brainex - folder where all the frontend code is stored and the directory to be in in order to

run the BrainEx application

○ “Node_modules” are the node modules and project dependencies that are used by

the project. This is added by typing the command: npm install in the terminal

○ “PreprocessedDataFiles” is the folder that contains all the user file uploads from

the homepage

○ The “public” folder contains index.html. Index.html links to index.js (and it’s

stylesheet called index.css) which is linked to App.js

○ “Server.js” contains the express server code and the logic to do the file uploading

functionality

○ “Src” is the main folder with all the ReactJs code

144

■ App.js is the main file of the application that executes the homepage as

well as all the routers and navigation pages in the site. App.css is this file’s

stylesheet

■ The BrainEx image logo is located here

■ The “components” folder has the rendering of all the other pages in the

application. If a new page needs to be created, create and name the page in

this folder, go to App.js, and create a Router link to the page you are

creating.

145

Appendix M: Storyboard Version 1

146

147

148

Appendix N: Storyboard Version 2

149

150

151

152

153

154

155

156

Appendix O: Storyboard Version 3

157

158

159

160

161

162

163

164

165

166

167

168

169

Appendix P: BrainEx API Tutorials

By/Courtesy of Ziheng (Leo) Li, BrainEx Team

170

171

172

173

Appendix Q: Function Guide

Name URL Description

getRawNames /rawNames Retrieves the names of the raw

CSV files already uploaded to

the application

getProNames /proNames Retrieves the names of the

preprocessed database files

already uploaded to the

application

getStoreCSV /getCSV Uploads a raw CSV file to the

application

getStoreDB /getDB Uploads a preprocessed

database file to the application

setFileRaw /setFileRaw Sets the raw CSV file to be

preprocessed and queried

setFilePro /setFilePro Sets the preprocessed

database file to be queried

saveFilePro /saveFilePro Save a recently preprocessed

file in a place accessible by the

user

checkSpark /checkSpark Check if the user’s Spark

installation works

build /build Preprocess the dataset to the

specifications

uploadSequence /uploadSequence Upload the CSV file with the

sequence to be queried

complete_query /query Query the dataset with the

uploaded sequence and given

arguments

save /saveDataOutput Saves the query results to a

CSV

174

stop /restart Shuts down the current Genex

engine so another one may be

made

175

Appendix R: BrainEx GUI Documentation

A guide to installing and using the BrainEx application

 Use this application in full screen mode for best results.

Table of Contents:

Installation

Required Software

Installing the Application

Cloning/Downloading GitHub repository

About the Application

 Overview

 General File Structure

 Application Tour

 Home

 Select a new dataset

 Preprocessing options

 Distance Type

 Similarity Threshold

 Lengths of Interest

 Number of Workers

 Preprocessing using Spark

 Preprocessing progress menu

 During preprocessing

 After preprocessing is complete

 Find Similar Sequences

 Query Options

 Query Results

 Known limitations

Using the Application

 Use case tutorial: Querying with a raw dataset

 Use case tutorial: Querying with a preprocessed dataset

176

Installation

Note: This app was developed on Windows 10 OS, but additional directions for MacOS and Linux

are supplied when possible. Any operating system-specific additions are welcome.

Required software

It is necessary for the machine that BrainEx is running on to have the following software installed

and configured:

1. Python 3.6 or 3.7 (Python 3.8 has some known issues with packages used by this

application and the backend requires 3.6 or greater) with pip included

a. Add the path to the python.exe and the Scripts folder to PATH

i. For more information on how to add environment variables on Windows,

Linux and MacOS, refer to this link

ii. Note: for environment variables to take effect, the command window must

be opened after they are set.

To check if Python is properly installed, or to see what version of python is on your current

machine, open a new command prompt and execute the following command:

● Windows and Linux: `python --version`

● MacOS: `python -version`

For more information on how to verify your python installation/version, refer to this link.

2. Node.js (npm is required to run the React app)

a. To check if node is properly installed execute the command `node --version` in a

new terminal.

3. Microsoft Visual C++ Build Tools (install with default options)

4. Java 8 (required for Spark)

a. To check if java is properly installed (and that you have the right version),

execute the command `java -version`.

5. If you are on Windows, you will need additional software to unzip the Spark installation.

We recommend 7zip as it is free and can handle .tgz unzips.

6. Spark/Pyspark (Please note that while PySpark is available for Pip install, environmental

variables must be set to get the install to work properly)

a. Windows installation and configuration

b. MacOS installation

c. Linux installation

d. To verify that Spark is installed correctly, open a command terminal and execute

the command `pyspark --version`.

If Spark is unable to be installed, you will still be able to run the functionalities of the app,

though not to their best ability.

https://www.python.org/downloads/
https://www.schrodinger.com/kb/1842
https://phoenixnap.com/kb/check-python-version
https://nodejs.org/en/download/
https://go.microsoft.com/fwlink/?LinkId=691126
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.7-zip.org/
https://spark.apache.org/downloads.html
https://www.folio3.ai/how-to-install-spark-pyspark-on-windows/
https://kevinvecmanis.io/python/pyspark/install/2019/05/31/Installing-Apache-Spark.html
https://www.roseindia.net/bigdata/pyspark/install-pyspark-on-ubuntu.shtml

177

Installing the application

Cloning/Downloading Github repository

If you wish to use an IDE, we recommend installing Pycharm (Community Edition should

be sufficient) with the default options and install the “JavaScript and TypeScript” bundled plugin.

On startup of the IDE, you can select “Checkout from Version Control” and clone the Github repository

this way. If there are any remote changes on the gitHub repository you wish to retrieve, check out how

to sync with a remote repository on Pycharm for instructions on how to use the IDE for version

control.

If you are not using an IDE or simply prefer using git through the command line, open a

command prompt and navigate to the location you wish to install the application. Then, execute

the following command:

`git clone https://github.com/krbrez/BrainEx-UI.git`

If there are any remote changes to the application, just execute `git pull origin` in the

command line from within the project directory.

Alternatively, you can open this github link and download the repo as a zip file. Then,

simply extract the containing files to the desired installation location. To update the application in

this case would require re-downloading the application and completing the following installation

instructions again.

Please note that the Github repository for the BrainEx UI includes a frozen version

of the Genex API. If any major changes are made to Genex, the version in this repository

will not be updated automatically.

Installing dependencies

Though it is not required, if you wish to use a virtual environment (directions for Pycharm) for

this project (especially if you have multiple versions of Python installed), you will want to configure

the Python interpreter with the version of Python that you want prior to installing any dependencies. If

you are not using an IDE and still wish to do this through the command line, try referring to this link.

Otherwise, as long as the `--user` option is included in the pip installation command,

packages should install without additional permission required.

If you are running this on a Windows operating system, you can simply execute the

following command: `run_all.bat` and it will open two command prompts and simultaneously

install npm and python dependencies and run both the React app and the Flask server.

https://www.jetbrains.com/pycharm/download/#section=windows
https://www.jetbrains.com/help/pycharm/sync-with-a-remote-repository.html
https://www.jetbrains.com/help/pycharm/sync-with-a-remote-repository.html
https://github.com/krbrez/BrainEx-UI.git
https://github.com/krbrez/BrainEx-UI.git
https://www.jetbrains.com/help/pycharm/creating-virtual-environment.html
https://docs.python.org/3.7/library/venv.html

178

Otherwise, execute the following commands approximate commands on your machine:

● To set up the backend:

○ `venv/scripts/activate` (only if using virtual environment)

○ `python -m pip install --user requirements.txt`

○ `cd BrainEx/backend` (when you are in the BrainEx-UI root directory)

○ `set FLASK_APP=functions.py`

○ `flask run`

■ This may need to be replaced by ‘python -m flask run’ if your Python Path

is not configured properly.

● To set up the frontend (in a separate terminal/command window):

○ `cd BrainEx` (when you are in the BrainEx-UI root directory)

○ `npm install`

○ `npm start`

Once the development server is started and compiles, it should open a window in your

default browser. If it does not automatically open, using the browser of your choice navigate to

`localhost:3000`. If you wish, you can create a shell script for your non-Windows operating

system, add it to the root directory and use that when you want to come back to the application.

Additionally, if you are using a virtual environment, the genex folder, while included in

the root directory of the repo, will also be needed to be added to site-packages within the lib folder

of the virtual environment.

Installation Troubleshooting

- If pip is not found, execute this command in the root directory (/BrainEx-UI): `python

get-pip.py`

- If upon running the backend you receive any “module not found” errors (that are not

genex) just execute `python -m pip --user install <package name>` in the root directory.

- If any problem persists with node modules, try deleting the `package-json.lock` file and

node_modules folder and execute `npm install` again.

179

About the Application

Overview

BrainEx finds the k most similar sequence matches from within a dataset using a given

individual query sequence. The advantage of this application is that querying time is reduced due

to the similarity grouping done during preprocessing. Currently the application is capable of the

following use cases:

● Uploading a raw dataset and/or choosing a raw dataset, preprocessing it for use, and

querying with a sequence of the same number of identifiers (i.e. SubjectID, EventName

and SubjectID, ChannelNum). The general path of this use case would be Home > Select

a new dataset > Preprocessing options > Preprocessing progress menu > Find Similar

Sequences.

● Choosing a preprocessed dataset and proceeding straight to querying, and using a query

sequence with the same number of identifiers. The general path of this use case would be

Home > Find Similar Sequences.

 General File Structure

● BrainEx-UI

○ BrainEx

■ Backend: contains files relevant to the backend

● tests

○ Test_functions.py: functions used to test some of the

Python backend

● Uploads

○ Preprocessed: contains all uploaded preprocessed files.

These will appear on the Home page

○ Raw: contains all raw files. These will appear on Select a

new dataset.

● Functions.py: the Python backend that receives http requests from

the frontend and parses them to work with BrainEx functionality

■ Node_modules: when `npm install` is executed, this folder will be created.

It will contain all installed packages.

■ Src: contains files relevant to the React front end

● Components: folder containing the individual components of this

app. The main components are described below in Application tour

○ Preprocessing: contains files relevant to the preprocessing

pipeline

○ Singletons: contains files that should only exist as once

instance across the app (i.e. header and navigation bar)

● Data: contains default data as well as dummy data used to develop

this app

180

● Stylesheets: contains any styling for the app. If a component does

not have a dedicated stylesheet, the parent stylesheet is what is

being applied (e.g. App.css also applies to any component within

the app as it is the highest parent, but child CSS will override it if

they exist)

● App.js: the highest class/parent of the application. Contains all

relevant Router info for navigation to each page

● Brain.svg: the app logo

● Index.js: file that servers the main App.js

● serviceWorker.js: a file that can allow the React frontend to work

offline and load faster. See the file contents for more detail. This

file will only be used if the function called in index.js is changed

from unregister() to register()

● README.md: a readme file provided by React that details

available scripts

● Test.py: more test functions for testing backend functionality

■ Package.json: contains package dependencies to run React frontend. This

is what is installed when `npm install` is executed. Executing `npm install

--save <package>` will add the package to this file as well as install it

○ Example_files: contains example CSV files for raw datasets as well as query

sequence CSV files

○ genex: folder containing the Genex package/API (when Genex is available as a

pip package, use that instead)

○ Saved_Preprocessed: folder containing the saved preprocessed datasets in zip file

format

○ Saved_Results: folder containing saved query results in a parsable format.

Currently not outputted as a CSV file

○ Venv (if you are using one for this project): contains virtual environment

information such as scripts and installed packages

■ Lib

● Site-packages: this is where you would paste the genex package if

you were using a virtual environment

○ .gitignore: contains the names of files and folders that should not be pushed to the

repo and therefore not tracked by git.

○ brainex.bat: script to start the front-end React app

○ LICENSE: MIT license

○ README.md: the file you are currently viewing

○ requirements.txt: names of required Python packages to be able to run the

backend and Genex

○ run_all.bat: script to run both the front-end and backend in two separate terminals

○ server.bat: script to run the Python backend

Application tour

Home

181

This is the initial/main page of the app. It has 3 main elements.

● A user can upload a preprocessed dataset created by this application, which comes

in the form of a compressed (“zip”) file that contains the necessary information

for the application to use. The zip file must be created by this application or in the

exact format to be of valid use.

● If the user clicks on a preprocessed file from the left side of the screen, a dialog

will appear asking the user if they wish to proceed with this dataset, and to verify

the Spark context parameters (number of workers, driver memory, max result

memory). The user will then be brought to the “Find Similar Sequences” page

upon confirmation of the parameters.

● On the right hand side of the screen, there is a brief description of the app and a

button to instead choose a new, raw dataset. This will bring the user to the next

screen, “Select a new dataset”

Select a new dataset

 This page is for selecting a new, raw dataset rather than a preprocessed one. Users may

also upload new datasets to their local copy of the application.

Listed below are the requirements of new datasets:

1. The dataset must be a CSV file of time series data.

2. The first row of the dataset must contain the headers/identifiers of the dataset

3. Any column header for a column containing the time series data points must be blank

4. The dataset should have at least 1 header/identifier.

 When the user selects a dataset from the left side of the screen, a preview of the file contents

will be displayed on the right side, including headers. The unlabeled time series data are given the

nickname “unnamed #”. Upon clicking a dataset, the “Proceed to Preprocessing” button will

activate and the user will be able to go to the next screen.

Preprocessing options

The purpose of this page is to select the parameters with which the backend should

preprocess your raw dataset. The screen begins with the recommended defaults displayed

(Distance type: Euclidean with Dynamic Time Warping (DTW), Similarity Threshold: 0.1, Length

of Interest: entire dataset, and preprocess without using Spark).

The parameters for the preprocessing stage are as follows:

Distance Type

This option is Euclidean with Dynamic Time Warping (DTW) by default.

182

This is the distance type used for similarity calculations. The choices are Euclidean with

DTW), Manhattan with DTW, Minkowski with DTW, and Chebyshev with DTW. These options

really only differ in how the similarity/distance is calculated, so the appropriateness is up to user

preference.

Similarity Threshold

This option is set to 0.1 by default.

This parameter determines the upper bound of the similarity value between two time series.

It is on a scale of [0:1]. The closer the threshold is to 0, the more similar the matches must be to

be grouped together (and vice versa). For example, if the user sets the similarity threshold to 0,

each sequence would be in a cluster/group consisting of only itself. If the user were to set the

threshold to 1, then one large group of sequences for each specific length would be created.

Lengths of interest

This option is set to all lengths by default.

Lengths of interest refers to the interval of sequence lengths into which the user wishes to

query. Grouping/clustering will be done only on the sequences of length within the given interval.

All outside sequence lengths will not be included and therefore will not be queried. To achieve the

“all lengths” setting again, just set the interval to the lowest and highest values allowed by the

slider/input.

Number of Workers

This option is 4 by default and is required for preprocessing with and without Spark.

Number of workers refers to the number of cores that will be used to run the preprocessing

algorithm. Please do not exceed the number of cores on your machine. You can check the number

of cores on your machine through the performance tab on your task manager.

Preprocess using Spark

This option is deselected by default.

When this option is selected (to select it simply check the checkbox), additional options

will appear to the right for memory allocation. If the Spark installation is found to be invalid, an

error will occur and the options will not appear. These parameters, Driver Memory and Max

Result Memory (both 16 GB by default), are used to configure the Spark Context.

183

When this option is not selected, the dataset will be preprocessed using Python Native

Multiprocessing. Using this option may cause preprocessing and querying to take longer than if

using Spark for larger datasets, but for smaller datasets the difference is negligible.

Preprocessing progress menu

During preprocessing

This page will show an indeterminate progress bar while the dataset is being preprocessed.

The user will also be presented with the options to cancel preprocessing and return to the previous

screen (preprocessing options) or cancel preprocessing and return to the home page. If you are

preprocessing while using Spark, the backend terminal will show the progress of the Spark

tasks/jobs. It may hang for some time before starting Stage 0 but then it will progress quite steadily.

After preprocessing is complete

Once preprocessing is complete, the screen will show a filled progress bar and the user will

be presented with the option to restart with another dataset (and return to home), to proceed to find

similar sequences, and/or to download the preprocessed dataset to the local root directory in a

folder called “Saved_Preprocessed”. The dataset will be saved as a zip file containing the

necessary information for the application to use in the future.

Note: It is important to go through the proper channels if you wish to restart with another

dataset, especially if you are using Spark. In order to correctly end your Spark session, you may

select either cancel button, the “restart with another dataset” button, as well as the “Home” button

on the “Find Similar Sequences” page. The browser “back” button is not sufficient in this case.

Find Similar Sequences

This page contains the main functionality of this application, finding the k best matches to

a given query sequence.

Query Options

There are three available parameters for querying into the given dataset:

● Query sequence: a full row of data (identifiers, data points, etc.) copied from a dataset

into another CSV file. This does not include any headers. The sequence must have the

same number of identifiers as the dataset into which you are querying.

● Number of best sequence matches: the number of sequence matches the backend will

return. This value must be equal to or less than the number of sequences within the

preprocessed dataset. However, this does not guarantee that there will be matches close to

the given query sequence. The max number of matches allowed for the particular dataset

184

is displayed below this field, and depends on the number of subsequences collected

during preprocessing.

● Overlap: This value determines how much the sequence matches will overlap with each

other. For example, if you set the overlap value to 40, then no two matches in the query

result will overlap by more than 40%.

● Exclude subsequence matches from current sequence: This checkbox indicates whether

or not any sequences with the same sequence id (a concatenation/tuple of the identifier

values) will be considered in the match ranking process. This field is most relevant when

the query sequence comes from within the chosen dataset.

● Lengths of interest: This feature is not currently implemented in the Genex package. In

theory, you would be able to query for specific sequence lengths within the lengths of

interest that was originally provided before preprocessing.

To start the querying process, the user must have a query sequence selected and valid input

for the above options and then select “Start Query”. The query may take some time depending on

how the dataset was preprocessed and the k number of matches requested but when it returns the

graph, table, and stats will populate with the results. To clear the results, the user can click “Clear

Options”, which will clear the currently selected options, not including the query sequence.

Query Results

 This portion of the page displays the query results in both graph and table format. The

“Ranked Sequence Matches” table includes the following information:

● Show: checkboxes to toggle an individual sequence’s visibility in the graph. There is also

a select all/deselect all checkbox in the header cell. With the current implementation, if

the user were to uncheck all sequences individually, then the most recently displayed

sequence would still appear on the graph. This column is color coded using a gradient

scale between blue and orange with blue being the most similar match and orange being

the least similar match. The colors correspond to the sequence’s line color in the graph.

● Rank: the sequence’s match rank (#1 being the best match)

● Sequence ID: a unique sequence identifier consisting of the concatenated row identifiers

● Start Time, End Time: The start and end time of the sequences as points in the data set

● Similarity: The percentage of similarity between this match and the query sequence. The

closer to 100% the more similar the match is.

● Thumbnail: A color-coded thumbnail of the sequence showing the user its general shape.

The color corresponds to its color in the graph.

The “Query Results” plot includes the sequences toggled to be shown in the graph, where

the user can view and use the brushing tool below the plot to zoom into a specific interval of the

graph. Simply click and drag each side to the desired area and click again to release. There is also

a legend that displays the color and sequence IDof each displayed line. This legend will possibly

become legible as more and more matches are requested.

Known limitations

185

1. We recommend using this application in fullscreen mode for the best results and

experience.

2. Refreshing the page may cause the application to lose track of some relevant variables. If

you have refreshed by mistake, return to the beginning of the pipeline through the proper

channels (not through the browser back button).

3. If a change is made to the Genex package that changes names of functions, parameters,

and/or return values, this application will require refactoring in order to function as

expected.

Using the application

Once the dependencies for the application are properly installed (see Installation), the

application is ready to be used. The user can execute the “run_all.bat” Windows batch script in

order to start both the backend server and the BrainEx front end (“server.bat” and “brainex.bat”,

respectively), and the default browser should open to “localhost:3000”. If the browser does not

automatically open, typing this into any browser that supports JavaScriptwill work. The

application will open up to the Home page and files from the path `BrainEx-

UI/BrainEx/backend/uploads/preprocessed’ (this is the path for uploaded preprocessed datasets)

should populate on the left side `.

Use case tutorial: Querying with a raw dataset

To use a new, raw dataset, select “Preprocess with a new dataset” on the Home page. The

following page, “Select a new dataset”, will show the files stored in the folder `BrainEx-

UI/BrainEx/backend/uploads/raw`. If you have a dataset on your local machine you wish to upload

to the application, you can do so using the “Choose File” button below the file list. The file should

follow the format outlined in Select a new dataset in order to be valid.

Selecting a file from the list will activate the “Proceed to Preprocessing” button and cause

a paginated table of the file’s contents to populate to the right. There may be some delay, during

which “No Data” will be displayed in its place. When the preview appears, it will show 10 rows

at a time, and the rest can be viewed by paging through using the table controls.

When you have selected the dataset you want to preprocess, clicking “Proceed to

Preprocessing” will bring you to the Preprocessing options page. Here, you can use the default

selections or enter your own. See Preprocessing Options for more detail on each option. If you

select “Preprocess using Spark”, the application will verify that Spark/Pyspark is properly

installed. If it isn’t, you will be notified. Otherwise, additional Spark/Pyspark parameters will

appear.

186

Once you are satisfied with the selected preprocessing options, click “Start Preprocessing”,

and you will be brought to the Progress page. While preprocessing is happening, the only options

presented are to cancel and return to either Preprocessing options or the Home page. This will

properly end the current Spark/Pyspark session so that another one may be created. A notification

will appear when this happens successfully. Otherwise, once preprocessing is complete the screen

will change to have the options to restart with another dataset (which will also properly end the

current Spark/Pyspark session), to find similar sequences, and/or to download the preprocessed

dataset.

Clicking on “Download the preprocessed dataset” will cause a spinning progress circle to

appear while the download is in progress. Once the download is complete, the circle will disappear

and a notification will appear indicating that it has been saved in the “Saved_Preprocessed” folder.

This folder is located in the root directory of the project and contains compressed (“zip”) files of

preprocessed datasets.

To query into this preprocessed dataset, select “Find similar sequences” to proceed to that

page. Here, you will see querying parameters available on the left side, as well as an unpopulated

statistics window, empty table, and empty graph. To select a query sequence, choose the file from

your local machine. The query sequence file must contain only a single row of data taken from the

same dataset or a dataset with the same number of identifiers. See Query Options for more

information.

After entering the number of matches and overlap values, or using the defaults, clicking

“Start Query” will initiate the querying process. While the matches are being found, a loading

overlay will appear over the graph. On completion of the query, the table and graph will populate

with all the matches. To toggle the visibility of each sequence on the graph, select/deselect the row

in the table. To save the query results into a CSV file, click on the “Save Query Results” button at

the bottom of the table. This will create a CSV file and store it in the “Saved_Results” folder of

the project root directory.

Use case tutorial: Querying with a preprocessed dataset

 This use case begins from the Home page as well. However, instead of selecting the

“Preprocess a new dataset” button, you must select a zip file listed on the left side of the screen.

Similar to using a new dataset, you can upload a preprocessed dataset to use. This dataset must be

the same format as or come from the Saved_Preprocessed folder mentioned in the previous section.

When a file is selected, a dialog modal will appear in the center of the page asking if you would

like to query using this dataset. It will also prompt you to review/enter the necessary parameters

to create the Spark context.

187

 Clicking “yes” on this modal will bring you straight to the “Find Similar Sequences” page.

Here, you will see querying parameters available on the left side, as well as an unpopulated

statistics window, empty table, and empty graph. To select a query sequence, choose the file from

your local machine. The query sequence file must contain only a single row of data taken from the

same dataset or a dataset with the same number of identifiers. See Query Options for more

information.

After entering the number of matches and overlap values, or using the defaults, clicking

“Start Query” will initiate the querying process. While the matches are being found, a loading

overlay will appear over the graph. On completion of the query, the table and graph will populate

with all the matches. To toggle the visibility of each sequence on the graph, select/deselect the row

in the table. To save the query results into a CSV file, click on the “Save Query Results” button at

the bottom of the table. This will create a CSV file and store it in the “Saved_Results” folder of

the project root directory.

	Applying HCI Design Practices to the Development of the BrainEx User-Interface to Facilitate fNIRS Research
	Repository Citation

	tmp.1594045083.pdf.72Eyt

