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ABSTRACT 
 
Pre-exposure prophylaxis (PrEP) for HIV prevention may not only benefit the individual 

who uses it, but also their uninfected sexual risk contacts. We developed an agent-based 

model using a novel trial emulation approach to quantify disseminated effects of PrEP use 

among men who have sex with men in Atlanta, GA. Components (subsets of agents 

connected through partnerships in a sexual network, but not sharing sexual partnerships 

any other agents) were first randomized to an intervention coverage level or control, then 

within intervention components, eligible agents were randomized to PrEP. We estimated 

direct and disseminated (indirect) effects using randomization-based estimators and 

reported corresponding 95% simulation intervals (SI) across scenarios ranging from 10% 

to 90% coverage in the intervention components. A population of 11,245 agents was 

simulated for two years, with an average of 1,551 components identified. Comparing agents 

randomized to PrEP in 70% coverage components to control agents, there was an 15% 

disseminated risk reduction in HIV incidence (95% SI = 0.65, 1.05). Individuals not on PrEP 

may receive a protective benefit by being in a sexual network with higher PrEP coverage. 

Agent-based models are useful to evaluate possible direct and disseminated effects of HIV 

prevention modalities in sexual networks.   
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INTRODUCTION 
 

Once daily pre-exposure prophylaxis (PrEP) is a single tablet containing tenofovir 

disoproxil fumarate (TDF) and emtricitabine (FTC) that is effective for preventing HIV 

transmission among men who have sex with men (MSM) (1, 2). Despite strong evidence of 

its effectiveness (3, 4), access to PrEP among MSM remains low, particularly among MSM in 

the Southern United States who experience among the highest incidence and prevalence 

burdens of HIV infection among all groups in the United States (5-7).  

Traditional randomized clinical trials assessing the effect of PrEP use on HIV 

incidence only consider the direct (individual) effect of reducing HIV incidence among 

individuals who use PrEP.  However, PrEP for HIV prevention may not only benefit the 

individual user, but also their sexual risk contacts (8). In preventing HIV acquisition among 

an individual who uses PrEP, the possibility of secondary transmission to this individual’s 

other HIV-uninfected sexual risk contacts and possibly their partners’ partners is also 

eliminated (9). This feature (common to other prophylactic therapies such as vaccines) is 

referred to as spillover, dissemination, or interference (10, 11). Estimators of the maximal 

attainable benefit of an intervention like PrEP, referred to as its composite (total) effect, 

should account for both the impact of the intervention on its users, as well as the impact of 

the intervention on individuals who did not use the intervention themselves, but were 

connected to users.  

 In causal inference methodology, a fundamental assumption of much work is the 

stable unit treatment value assumption (SUTVA) (12), which includes an assumption of no 

dissemination, or interference, between individuals. An assumption of no dissemination 

requires that the potential outcomes of one individual be unaffected by the treatment or 
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intervention assignment of other individuals. Both effects are readily identifiable in two-

stage randomized trials (Figure 1) (10, 13), where randomization first occurs at a group 

level (i.e., groups of connected individuals are randomly assigned to an intervention 

allocation strategy or control) and then at an individual level (i.e., individuals are assigned 

to receive an intervention or not according to their group allocation strategy) (Figure 2). 

The disseminated (indirect) effect of the intervention is defined as the effect of being in an 

intervention group and randomized to not receive an intervention versus being in a control 

group.  

We adapted a previously published agent-based model (ABM) (14, 15), simulating 

HIV transmission in a hypothetical population of MSM in Atlanta, GA, USA (16, 17), to 

emulate a two-stage randomized clinical trial (18), which may be considered unfeasible or 

currently unethical to implement in this population, as PrEP is currently FDA-approved for 

HIV prevention and often used as an active control in studies of ‘next generation’ HIV 

prevention modalities (19). We selected the city of Atlanta, GA as a case study because of 

the high HIV incidence and prevalence among MSM in this setting (20). Access to PrEP 

could be improved in this population and benchmarks for coverage could be used to inform 

and expedite efforts to end the HIV epidemic in the Southeastern United States (21). We 

aim to evaluate the magnitude and direction of possible disseminated effects of PrEP use 

among MSM in Atlanta, GA. 

METHODS 

Model Setting 

We adapted a previously published model of PrEP uptake and HIV transmission 

among MSM in Atlanta and complete details about this model can be found in (14). We 
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employed a discrete-time, stochastic, agent-based model to simulate a two-stage 

randomized trial of PrEP for HIV prevention in a population of MSM (aged 18-65 years) in 

Atlanta, GA, USA and followed agents for two years from 2015 to 2017 (14, 22). Each agent 

in the model was assigned characteristics related to demographic, behavioral, HIV status, 

and clinical status. The simulated agent population was 51% African American. Aligning 

with empirical estimates (20, 23, 24), we assumed that, among African American agents, 

the median age was 32 years, 30% were using substances, 32% had a preferred receptive 

sexual role, and 24% had a preferred insertive sexual role. Among white non-Hispanic 

agents, we assumed that the median age was 35 years, 49% were using substances, 23% 

had a preferred receptive sexual role, and 23% had a preferred insertive sexual role. 

Whenever possible, each individual agent’s behaviors and characteristics were 

parameterized based on empirical estimates from the study setting. Several parameter 

values (e.g., those governing initial HIV prevalence and treatment) were stratified by race 

(14), reflecting the substantial racial/ethnic disparities in HIV incidence and prevalence in 

this setting (20).   

The model simulated a dynamic population with 1,000 total simulations per 

scenario, where the scenarios corresponded to a series of two-stage randomized trials. 

Because this ABM was simulating a randomized trial with a short duration of follow-up, 

agents and their characteristics were generated in a base population and no new agents 

were allowed to enter the population. Python (version 2.7.12) was used for coding, testing 

and performing sensitivity analyses of this model and R (Version 3.5.1) was used to analyze 

the model output. Additional information regarding parameter values, key model 

assumptions, and data sources are included in the Supplemental Appendix. 
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Sexual Networking and Components 

Prior to “enrollment” (i.e., model initialization) in the hypothetical trial, agents 

formed sexual partnerships to create a sexual network of many distinct components. A 

sexual network component was defined as a subset of the agents in a network that are all 

connected through at least one partnership and not connected to any other agents in the 

network. After two-stage randomization, where components were first randomized to an 

intervention allocation strategy, then within each component, agents were randomized 

according to that strategy, annual number of partners and number of sex acts were 

assumed to follow stochastic distributions with parameters based on the literature (20, 

25). At discrete time-steps (measured in months since randomization) over the two years 

of follow-up, relationships were not dissolved and new relationships were not formed, but 

rather sexual networks were assumed to be static, as ascertained prior to enrollment in the 

trial. This is akin to a randomized trial design, where often the sexual networks are 

ascertained only once at the start of the study (26, 27). These partnerships at enrollment 

were used to determine network components of size 2 to 100 agents.  

HIV Transmission, Treatment and Progression 

Detailed HIV transmission, treatment, and disease progression processes and 

parameters have been described in detail previously (14, 15). At each monthly interval, 

agents had a certain number of sex acts with their partners. The probability of condom use 

was lower if the agent used substances and also decreased as a function of the number of 

prior contacts with a given partner. In the absence of any biomedical intervention (PrEP or 

treatment as prevention, known as TasP), any condomless sex act in a serodiscordant 
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partnership had a non-zero probability of HIV transmission (per-act probability for 

condomless receptive anal intercourse was 1.38% and insertive was 0.11%) (28). This 

probability varied depending upon the following factors: if the HIV-negative agent was 

randomized to PrEP; among HIV-negative agents randomized to PrEP, their adherence to 

PrEP; and among HIV-infected agents, knowledge of their HIV status, HIV treatment, and if 

they achieved viral suppression after initiation of HIV treatment.  

Impact of Substance Use on Agent Behavior 

We included an agent class characterized by substance use, which was defined at 

model initialization and remained stable for the duration of the study.  The prevalence of 

substance use, defined as any drug use, was set to 30% among African Americans and 

48.5% among whites (20, 23). In the model, substance use influenced PrEP adherence, 

condomless sex, and assortative mixing in sexual partner selection. Agents who were 

defined as substance users had a 35% lower probability of achieving optimal adherence to 

PrEP (8), and a 20% higher probability of engaging in condomless sex (29). In addition, we 

assumed that 20% of substance using agents mix with other substance using agents.  

Oral Pre-Exposure Prophylaxis (PrEP) Use and HIV Treatment 

After enrollment in the hypothetical trial, eligible agents who were randomized to the PrEP 

intervention were assumed to continue to receive PrEP for the two-year duration of the 

trial. For the two-year duration of this simulated trial, all agents were retained in the study 

and no agents died. At enrollment in the trial, agents were classified as optimally adherent 

to PrEP (defined as 4 or more doses per week), or were sub-optimally adherent (defined as 

2 to 4 doses per week). Those with optimal adherence had a 96% reduction in the per-act 
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probability of HIV acquisition, while those with partial adherence had only a 76% 

reduction (30). Agents on ART were less likely to progress to AIDS than other HIV-infected 

agents. This was achieved through a scalar reduction in profession probability, with the 

reduction dependent on ART adherence (31, 32). 

Simulated Trial Design 

The current study simulated a two-stage randomized trial (Figure 2). In the first stage, 

network components were randomized 1:1 to either receive a certain PrEP coverage 

(referred to as “intervention components) or no PrEP coverage (referred to as “control 

components) (18, 33). PrEP coverage level was defined as the proportion of eligible agents 

receiving PrEP in a component, where eligible agents were defined as those who were HIV-

negative with one or more partnerships and ages 18 to 65 years old at enrollment. PrEP 

coverage was assigned at baseline. We assumed that agents assigned to PrEP take at 

minimum two or more doses per week with adherence pattern remained stable for the 

duration of follow-up. We assumed that PrEP adherence did not change PrEP coverage 

following an intention-to-treat approach and that PrEP coverage generally remained stable 

during follow-up. HIV-negative agents in each intervention component were randomized to 

PrEP according to the assigned coverage level. We consider the following scenarios: PrEP 

coverage level (in each component) of 10% to 90%, in increments of 10%.  

At the baseline visit of the trial, agents who were randomized to PrEP initiated their 

intervention and all agents, regardless of HIV status, were followed for two years to 

ascertain their HIV status. We assumed no drop out (i.e., 100% retention on PrEP over the 

two years of follow-up). We also assumed over the two years that the probability of death 
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is zero, which may be reasonable given the age range of agents and short duration of 

follow-up. 

Causal Inference Methods for Evaluation of Dissemination using ABMs 

Several assumptions are needed to identify causal effects in the presence of 

dissemination. We assumed partial interference (13); that is, the intervention assignment 

affects the outcomes of other agents in the same component only, but does not extend to 

other agents outside their component. We also assumed stratified interference, in which an 

agent’s potential outcome is dependent only on their own intervention assignment and the 

proportion of those randomized to the intervention in their component (34). We also make 

the usual assumptions required for causal inference (exchangeability, consistency, and 

positivity) (35). Due to randomization at both the component- and agent-level, marginal 

exchangeability holds: Components randomized to the intervention will be, on average, 

comparable to components randomized to the control.  Furthermore, within each 

component, agents randomized to the intervention will be, on average, comparable to 

agents randomized to the control. Positivity means that there is a non-zero probability of 

exposure within each level of the covariates (36, 37). We assumed an independent 

Bernoulli allocation strategy for intervention assignment within each intervention 

component (13). 

 In our simulated trial, the sexual risk component sizes vary, so we employed estimators 

that account for varying component size (38). Assume there are 𝐼 components and each of 

the component has 𝑛𝑖 individuals indexed by 𝑗 = 1,2, . . . , 𝑛𝑖 and ∑ 𝑛𝑖 = 𝑁.𝐼
𝑖=1  Let 𝑌𝑖𝑗 , 

𝐴𝑖𝑗 represent an observed outcome and intervention assignment status of 𝑗𝑡ℎ agent in 
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component 𝑖. In addition, 𝐶𝑖 denotes the intervention assignment strategy at the 

component level that corresponds to intervention coverage denoted by 𝛼, where 𝐶𝑖 = 1 if 

the intervention allocation strategy was 𝛼 and 𝐶𝑖 = 0, otherwise.  Let 𝐴(𝑛) be the set of 

vectors of all possible exposure allocations of length 𝑛. We consider the potential outcome 

for agent 𝑗 in component 𝑖 as 𝑌𝑖𝑗(𝐶𝑖 = 𝑐, 𝐴𝑖𝑗 = 𝑎). Because we have a “pure control group”, 

there are three possible combinations of the following potential outcomes: 

𝑌𝑖𝑗(1,1), 𝑌𝑖𝑗(1,0), 𝑌𝑖𝑗(0,0). By (causal) consistency (39-41), the observed outcome is a 

function of the intervention assignment and potential outcomes; that is, 𝑌𝑖𝑗
𝑜𝑏𝑠 =

𝐶𝑖𝐴𝑖𝑗𝑌𝑖𝑗(1,1) + 𝐶𝑖(1 − 𝐴𝑖𝑗)𝑌𝑖𝑗(1,0) + (1 − 𝐶𝑖)𝑌𝑖𝑗(0,0). Let 𝑇𝑐𝑎 = {(𝑖, 𝑗): 𝐶𝑖 = 𝑐 𝑎𝑛𝑑 𝐴𝑖𝑗 =

𝑎} to denote the set of components and agents who are assigned to 𝐶𝑖 = 𝑐 and 𝐴𝑖𝑗 = 𝑎.  

 In the setting with varying component sizes, there are two types of estimands: 

component-weighted estimands that assign equal weight to components, regardless of the 

number of individuals in each component; and agent-weighted estimands that assign equal 

weight to agents, regardless of the distribution across components. The direct (i.e., 

individual) effect measures the additional benefit of being on PrEP beyond being in an 

intervention component with a fixed PrEP coverage level (Figure 1) and is defined as  

𝐷𝐸 = ∑ 𝑤𝑖
∗𝐼

𝑖=1 ∑ [𝑌𝑖𝑗(1,1) − 𝑌𝑖𝑗(1,0)]
𝑛𝑖
𝑗=1  ; 

The disseminated (i.e., indirect) effect compares those who were not on PrEP themselves 

and in an intervention component, to those who were in a control component and is 

defined as 

𝐼𝐸 = ∑ 𝑤𝑖
∗𝐼

𝑖=1 ∑ [𝑌𝑖𝑗(1,0) − 𝑌𝑖𝑗(0,0)]
𝑛𝑖
𝑗=1  ; 
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The composite (i.e., total) effect is the combined direct and disseminated effect and is 

defined as 

𝑇𝐸 = ∑ 𝑤𝑖
∗𝐼

𝑖=1 ∑ [𝑌𝑖𝑗(1,1) − 𝑌𝑖𝑗(0,0)]
𝑛𝑖
𝑗=1  ; 

The overall effect marginalizes over the agent exposure and compares intervention to 

control components; that is,  

𝑂𝐸 = ∑ 𝑤𝑖
∗𝐼

𝑖=1 ∑ [𝑌𝑖𝑗(1,⋅) − 𝑌𝑖𝑗(0,⋅)]
𝑛𝑖
𝑗=1 , 

where 𝑤𝑖
∗ =

1

𝐼𝑛𝑖
 corresponds to component-weighted estimands and 𝑤𝑖

∗ =
1

𝑁
 corresponds to 

agent-weighted estimands with 𝑁 = ∑𝑛𝑖.  

 To quantify these estimands, we employ the two-stage inverse probability weights 

𝑤𝑖
(0), 𝑤𝑖

(10), 𝑤𝑖
(11) as 𝑤𝑖

(11) =
1

𝑃𝑟(𝐶𝑖=1)

1

𝑃𝑟(𝐴𝑖𝑗=1|𝐶𝑖=1)
, 𝑤𝑖

(10) =
1

𝑃𝑟(𝐶𝑖=1)

1

𝑃𝑟(𝐴𝑖𝑗=0|𝐶𝑖=1)
, and 

𝑤𝑖
(0) =

1

𝑃𝑟(𝐶𝑖=0)
. Define 𝑤𝑖

(𝑐) =
1

𝑃𝑟(𝐶𝑖=𝑐)
. The weighted direct, disseminated, composite, and 

overall effect estimators are 

𝐷𝐸̂ = ∑ 𝑤𝑖
∗𝑤𝑖

(11)𝑌𝑖𝑗
𝑜𝑏𝑠(1,1)(𝑖,𝑗)∈𝑇11

− ∑ 𝑤𝑖
∗𝑤𝑖

(10)𝑌𝑖𝑗
𝑜𝑏𝑠(1,0)(𝑖,𝑗)∈𝑇10

, 

 

𝐼𝐸̂ = ∑ 𝑤𝑖
∗𝑤𝑖

(10)
𝑌𝑖𝑗

𝑜𝑏𝑠(1,0)(𝑖,𝑗)∈𝑇10
− ∑ 𝑤𝑖

∗𝑤𝑖
(0)

𝑌𝑖𝑗
𝑜𝑏𝑠(0,0)(𝑖,𝑗)∈𝑇00

, 

 

𝑇𝐸̂ = ∑ 𝑤𝑖
∗𝑤𝑖

(11)𝑌𝑖𝑗
𝑜𝑏𝑠(1,1)(𝑖,𝑗)∈𝑇11

− ∑ 𝑤𝑖
∗𝑤𝑖

(0)
𝑌𝑖𝑗

𝑜𝑏𝑠(0,0)(𝑖,𝑗)∈𝑇00
, 

 

𝑂𝐸̂ = ∑ 𝑤𝑖
∗𝑤𝑖

(1)
𝑌𝑖𝑗

𝑜𝑏𝑠(1,⋅)(𝑖,𝑗)∈𝑇1⋅
− ∑ 𝑤𝑖

∗𝑤𝑖
(0)

𝑌𝑖𝑗
𝑜𝑏𝑠(0,⋅)(𝑖,𝑗)∈𝑇0⋅

. 

For example, the estimator of the disseminated effect is the weighted average of the 

outcomes among agents assigned to no PrEP in intervention components minus the 
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weighted average of the outcomes among agents in control components (Figure 1). These 

estimators are unbiased in a two-stage randomized design (12).  

Outcome Measures 

The primary outcome measure was cumulative HIV incidence over 24 months after 

randomization in the simulated trial. We examined the estimated HIV incidence for each 

component PrEP coverage level among the intervention group, separately for agents on 

PrEP and agents not on PrEP. These parameters were computed using nonparametric 

estimators, as described above, along with 95% simulation intervals (i.e., credible 

intervals) given the stochastic framework of these models (i.e., middle 95% of simulated 

output) (42). Comparisons were made between the intervention agents and control agents 

within each simulated trial and across trials comparing various intervention coverage 

levels. 

Sensitivity Analyses 

Because we are evaluating disseminated effects, the results may depend on not only the 

efficacy of PrEP, but also the number and probability of sexual partnerships, as well as the 

size of the components. We performed one-way sensitivity analyses to evaluate the impact 

of modifying adherence to PrEP and maximum PrEP efficacy to prevent HIV (see 

Supplemental Appendix).  Specifically, we assessed the following: probability of 

partnership, baseline number of sexual acts, adherence to PrEP, efficacy of PrEP for 

suboptimal adherence, and maximum component size. We also performed a sensitivity 

analysis excluding the substance use agent class. 

RESULTS 
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There were 11,245 agents in the simulated population, followed from 2015 to 2017 with an 

average of 1,551 components identified in each iteration of the model. At enrollment in the 

entire simulated trial with 70% PrEP coverage, the HIV point prevalence was 29% (95% 

simulation interval (SI) = 27%, 30%).  The majority of components (48%) had low HIV 

prevalence (< 5%), while 26% had higher HIV prevalence (45% to 50%) at enrollment. 

Although our model considered a range of intervention coverage levels (Table 1), we 

focused the discussion of results on two simulated trial designs that provide insights into 

two strategies: (1) intervention components with lower (30%) PrEP coverage and (2) 

intervention components with higher (70%) PrEP coverage.   

We first report the average results from simulated trials with 30% coverage in the 

intervention components (Table 2). Within intervention components, there was an 

estimated 82% direct risk reduction in cumulative HIV incidence among agents on PrEP 

compared to agents not on PrEP (Risk Ratio (RR) = 0.18, 95% SI: 0.13, 0.24). Comparing 

agents not on PrEP within intervention components to agents within control components, 

the estimated disseminated effect was an estimated 8% risk reduction (RR = 0.92, 95% SI: 

0.79, 1.06). The estimated composite (combined direct and disseminated) effect was an 

estimated 83% risk reduction (RR = 0.17, 95% CI: 0.11, 0.22). Comparing agents within 

intervention components to those within control components, marginalizing over 

individual-level PrEP use, there was an estimated 30% reduction in the overall risk (RR = 

0.70, 95% SI: 0.60, 0.80).  

We then report the average results from simulated trials with 70% coverage in the 

intervention components (Table 2). The estimated direct effect was an 83% reduction (RR 

= 0.17, 95% SI = 0.13, 0.23) in cumulative HIV incidence among agents on PrEP compared 
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to agents not on PrEP within intervention components.  The estimated disseminated effect 

was a 15% reduction (RR = 0.85, 95% SI = 0.65, 1.05) in cumulative HIV incidence, which 

means that agents not on PrEP in the intervention group had lower cumulative HIV 

incidence, as compared to control agents. The estimated composite effect was an 85% 

reduction in the cumulative incidence of HIV, comparing agents on PrEP within 

intervention components to agents within control components (RR = 0.15, 95% SI = 0.11, 

0.20). Comparing agents within intervention components to those within control 

components, there was an estimated 65% reduction in the overall effect (RR = 0.35, 95% 

SI: 0.28, 0.42).  

Figure 3 displays the estimated direct and disseminated risk difference and risk 

ratio effects on cumulative incidence of HIV as a function of component PrEP coverage with 

95% simulation intervals. As the intervention coverage increases in a component, the 

estimated direct effect is attenuated towards the null, although this trend is more apparent 

on the difference scale. On the other hand, when the intervention coverage is increased in a 

component, the estimated disseminated effect increased in magnitude on both the 

difference and ratio scale.  

We performed one-way sensitivity analyses to assess the impact of our model 

parameterization on the results, specifically cumulative HIV incidence over two years. In 

Table S8 and S9 (see Supplemental Appendix), we display the HIV prevalence and 

cumulative incidence at the end of two years of follow-up after randomization based on a 

simulated trial with 30% and 70% coverage, respectively. The number of incident HIV 

infections among agents in the base case was typically between the estimates for the 

scenarios with the parameters either half or double the base case, except for annual sexual 
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partnerships. In a sensitivity analysis excluding the substance use agent class, the 

disseminated effect was stronger for 30% coverage trials (RD = -0.02 and RR = 0.65) and 

70% coverage trials (RD = -0.03 and RR = 0.24) (Table S4 to S7). The linear trends of the 

effects on the difference scale across increasing coverage levels were more visually 

apparent (Figure S2 to S3). We also displayed the estimated effects across the one-way 

sensitivity analysis (Tables S10 and S11, Figures S4 to S7). The estimated effects were 

typically attenuated towards the null on the difference scale and away from the null on the 

ratio scale. 

 

DISCUSSION 

We employed an ABM to simulate an idealized two-stage randomized trial to evaluate the 

direct and disseminated effects of PrEP among MSM in Atlanta (14). We observed 

disseminated effects of PrEP among those not randomized to PrEP, but who shared a sexual 

risk network component with agents randomized to PrEP (with up to a 15% reduction in 

cumulative HIV incidence at coverage level 70%). We found that increasing PrEP coverage 

levels in a component strengthens the disseminated effect on reducing HIV incidence 

among those who were not randomized to the intervention; however, increasing PrEP 

coverage also possibly weakens the direct effect among those who were randomized to the 

intervention on the difference scale only. In other words, the individual benefit of receiving 

PrEP depends on the coverage of PrEP in an individual’s network: the higher the 

proportion of one’s sexual partners is on PrEP, the smaller the absolute direct, additional 

individual benefit of therapy beyond being in an intervention component. This type of 

simulation study can help to inform PrEP coverage levels needed to reduce HIV incidence 
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below a targeted threshold, while considering the complex sexual risk networks in which 

MSMs are embedded, as well as considering related risk factors, such as substance use. 

Many evaluations of the efficacy and effectiveness of PrEP focus on overall effect 

without consideration of the sexual risk network in which these individuals are embedded 

(43). Many of these studies are individually-randomized designs and often lack inference 

regarding the influence of others in the sexual network component or study cluster. Overall 

effects depend on spurious features of the study design, including the size of the 

components and PrEP coverage in each component. Therefore, it will likely not be 

generalizable from one study to the next or to any scaled-up population, unless these 

features remain constant (44).  In this ABM, we observed many scenarios contrasting 

adjacent coverage levels for which the overall effect estimate was closer to the null, while 

the composite effect demonstrated a more protective effect, highlighting the importance of 

considering the suite of disseminated and direct effects when dissemination may be 

present. 

 There are several strengths to this approach. As it would be unethical and likely 

unfeasible to conduct a two-stage randomized trial in this population, this ABM-based 

approach provides insights about the direction and magnitude of these various effects. 

Furthermore, we can run numerous simulated trials with different coverage PrEP levels to 

better understand the impact on population-level HIV incidence. To the best of our 

knowledge, this is the first paper to assess causal disseminated effects in the context of an 

ABM and offers additional insight on how to leverage causal inference methodology to 

improve the inference gleaned from simulation-based techniques.  
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This particular agent-based modeling approach has several limitations. We made 

strong assumptions, such as static sexual networks and 100% retention in care during the 

two years of study follow-up. Assuming static components in the sexual networks does not 

accurately reflect the underlying true sexual network; however, if we allow the sexual 

networks to vary over time, there could be a violation of the partial interference or the 

stratified interference assumptions. Future methods work is needed to develop 

appropriate methods for interference structures that change over time. Randomized trials, 

as well as two-stage randomized trials, are subject to Hawthorne effects, and may not 

actually represent the patient experience in medical care. Unfortunately, there are no two-

staged randomized trials of PrEP to compare and contrast our model results; however, 

further comparisons to trial-based estimates of HIV prevalence and incidence could help to 

improve the model to simulate more realistic scenarios that emulate a real-world trial. 

In future work, we will evaluate possible effect modification by component-level 

characteristics, such as HIV prevalence, racial distribution, and substance use prevalence, 

and this information can be used to better allocate resources. We will also extend our 

approach for other study design settings, including cluster-randomized trials and 

observational cohort studies. When the design requires adjustment for confounding at 

either the agent and/or component levels, we will triangulate this approach with a g-

formula approach in the context of dissemination (45, 46). Future work could also compare 

different counterfactual definitions in agent-based models, including simulating potential 

outcomes at the component level. Individuals not on PrEP may benefit by being in a sexual 

network with higher PrEP coverage levels.  
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ABMs are useful to evaluate potential direct and disseminated effects of HIV 

prevention modalities in complex sexual networks among men who have sex with men. 

Employment of these models can provide more timely information about the most 

impactful ways to increase PrEP access, particularly among those underserved in the 

Southern United States.  
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Tables and Figures 

 
Table 1. Cumulative incidence of HIV over two years of follow-up after two-stage randomization among agents within PrEP 
intervention and control components with 95% simulation intervals (SI) in an agent-based model representing among men 
who have sex with men Atlanta, Georgia, 2015-2017 (n = 11,245) 
 

 Agents on PrEP Agents Not on PrEP Control Agents 

Component PrEP 
Coverage Level,% 

Total 
Persons 

HIV+ 
Cumulative 
Incidence 

Total 
Persons 

HIV+ 
Cumulative 
Incidence 

Total 
Persons 

HIV+ 
Cumulative 
Incidence 

10 396.94 17.4 0.044 3098.96 711.5 0.230 4095.03 894.3 0.137 

20 771.12 32.27 0.042 3113.59 612.65 0.197 4091.70 895.05 0.138 

30 1163.53 44.3 0.038 3109.28 519.21 0.167 4100.73 897.47 0.138 

40 1572.93 59.07 0.038 3115.15 432.86 0.139 4096.74 893.14 0.137 

50 1967.04 68.08 0.035 3106.68 339.58 0.109 4093.03 885.55 0.136 

60 2395.52 77.5 0.032 3117.22 257.92 0.083 4083.12 884.76 0.136 

70 2806.26 84.92 0.030 3141.71 183.82 0.059 4065.79 871.33 0.135 

80 3177.9 91.83 0.029 3139.32 120.57 0.038 4037.26 874.74 0.136 

90 3612.07 97.8 0.027 3146.35 50.31 0.013 4031.51 871.25 0.136 
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Table 2. Effects of PrEP on cumulative incidence of HIV over two years of follow-up after 
two-stage randomization among agents within PrEP intervention and control components 
with 95% simulation intervals (SI) in an agent-based model representing men who have 
sex with men, Atlanta, Georgia, 2015-2017 (n = 11,245)1 
 
 

Effect RD 95% SI RR 95% SI 

30% Coverage      

Direct -0.05 -0.06, -0.04 0.18 0.13, 0.24 

Disseminated -0.01 -0.01, 0.00 0.92 0.79, 1.06 

Composite -0.06 -0.06, -0.05 0.17 0.11, 0.22 

Overall -0.02 -0.03, -0.01 0.70 0.60, 0.80 

70% Coverage      

Direct -0.05 -0.06, -0.04 0.17 0.13, 0.23 

Disseminated -0.01 -0.02, 0.00 0.85 0.65, 1.05 

Composite -0.06 -0.06, -0.05 0.15 0.11, 0.20 

Overall -0.04 -0.05, -0.04 0.35 0.28, 0.42 

 
1 RD = Risk Difference; RR = Risk Ratio. 
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Figure 1: Types of causal effects in the context of dissemination (or interference) in two-
stage randomized designs of a pre-exposure prophylaxis (PrEP) intervention in an agent-
based model representing men who have sex with men, Atlanta, Georgia, 2015-2017 (17). 
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Figure 2: Two-stage randomized design to evaluate PrEP for HIV prevention in a population 
of MSM. Trial 1 corresponds to a PrEP allocation strategy with 33% coverage in intervention 
components. Trial 2 corresponds to a PrEP allocation strategy with 66% coverage in 
intervention components. 
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Figure 3. Estimated (a) direct risk difference effects (b) disseminated risk difference effects 
(c) direct risk ratio effects (d) disseminated risk ratio effects of PrEP on cumulative 
incidence of HIV as a function of component PrEP coverage with 95% simulation intervals in 
two-stage randomized designs of a pre-exposure prophylaxis (PrEP) intervention in an 
agent-based model representing men who have sex with men, Atlanta, Georgia, 2015-2017   
 

      
(a)       (b)     

  

   
 
       (c)                                                                                               (d) 

 

        
 
  



 25 

References 
 
1. Grant RM, Anderson PL, McMahan V, Liu A, Amico KR, Mehrotra M, Hosek S, Mosquera 

C, Casapia M, Montoya O. Uptake of pre-exposure prophylaxis, sexual practices, and 
HIV incidence in men and transgender women who have sex with men: a cohort 
study. The Lancet Infectious Diseases. 2014;14(9):820-9. 

2. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, Goicochea P, Casapía 
M, Guanira-Carranza JV, Ramirez-Cardich ME. Preexposure chemoprophylaxis for HIV 
prevention in men who have sex with men. New England Journal of Medicine. 
2010;363(27):2587-99. 

3. Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, Curry SJ, 
Doubeni CA, Epling JW, Kubik M. Preexposure Prophylaxis for the Prevention of HIV 
Infection: US Preventive Services Task Force Recommendation Statement. JAMA. 
2019;321(22):2203-13. 

4. Chou R, Evans C, Hoverman A, Sun C, Dana T, Bougatsos C, Grusing S, Korthuis PT. 
Preexposure prophylaxis for the prevention of HIV infection: evidence report and 
systematic review for the US Preventive Services Task Force. JAMA. 
2019;321(22):2214-30. 

5. Elopre L, Kudroff K, Westfall AO, Overton ET, Mugavero MJ. The right people, right 
places, and right practices: disparities in PrEP access among African American men, 
women and MSM in the Deep South. Journal of Acquired Immune Deficiency Syndromes. 
2017;74(1):56. 

6. Eaton LA, Driffin DD, Bauermeister J, Smith H, Conway-Washington C. Minimal 
awareness and stalled uptake of pre-exposure prophylaxis (PrEP) among at risk, HIV-
negative, black men who have sex with men. J AIDS Patient Care STDs. 
2015;29(8):423-9. 

7. Goedel WC, Halkitis PN, Greene RE, Hickson DA, Duncan DT. HIV risk behaviors, 
perceptions, and testing and preexposure prophylaxis (PrEP) awareness/use in 
Grindr-using men who have sex with men in Atlanta, Georgia. Journal of the 
Association of Nurses in AIDS Care. 2016;27(2):133-42. 

8. Grov C, Rendina HJ, John SA, Parsons JT. Determining the roles that club drugs, 
marijuana, and heavy drinking play in PrEP medication adherence among gay and 
bisexual men: implications for treatment and research. AIDS Behavior. 2018:1-10. 

9. Garnett GP. The theoretical impact and cost-effectiveness of vaccines that protect 
against sexually transmitted infections and disease. Vaccine. 2014;32(14):1536-42. 

10. Halloran ME, Hudgens MG. Dependent happenings: a recent methodological review. 
Current Epidemiology Reports. 2016;3(4):297-305. 

11. VanderWeele TJ, Tchetgen Tchetgen, EJ. Bounding the infectiousness effect in vaccine 
trials. Epidemiology. 2011;22(5):686-693. 

12. Rubin DB. Bayesian-inference for causal effects - role of randomization. Annals of 
Statistics. 1978;6(1):34-58.  

13. Hudgens MG, Halloran ME. Toward causal inference with interference. Journal of the 
American Statistical Association. 2008;103(482):832-42. 

14. Marshall BD, Goedel WC, King MR, Singleton A, Durham DP, Chan PA, Townsend JP, 
Galvani AP. Potential effectiveness of long-acting injectable pre-exposure prophylaxis 



 26 

for HIV prevention in men who have sex with men: a modelling study. The Lancet HIV. 
2018;5(9):e498-e505. 

15. Goedel WC, King MR, Lurie MN, Nunn AS, Chan PA, Marshall BD. Effect of racial 
inequities in pre-exposure prophylaxis use on racial disparities in HIV incidence 
among men who have sex with men: a modeling study. Journal of Acquired Immune 
Deficiency Syndromes. 2018;79(3):323-9. 

16. Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized 
trial is not available. American Journal of Epidemiology. 2016;183(8):758-64. 

17. Halloran ME, Auranen K, Baird S, Basta NE, Bellan SE, Brookmeyer R, Cooper BS, 
DeGruttola V, Hughes JP, Lessler J. Simulations for designing and interpreting 
intervention trials in infectious diseases. BMC medicine. 2017;15(1):223. 

18. Halloran ME, Struchiner C. Study designs for dependent happenings. Epidemiology. 
1991:331-8. 

19. Cutrell A, Donnell D, Dunn DT, Glidden DV, Grobler A, Hanscom B, Stancil BS, Meyer 
RD, Wang R, Cuffe RL. HIV prevention trial design in an era of effective pre-exposure 
prophylaxis. HIV Clinical Trials. 2017;18(5-6):177-88. 

20. Sullivan PS, Rosenberg ES, Sanchez TH, Kelley CF, Luisi N, Cooper HL, Diclemente RJ, 
Wingood GM, Frew PM, Salazar LF. Explaining racial disparities in HIV incidence in 
black and white men who have sex with men in Atlanta, GA: A prospective 
observational cohort study. Annals of Epidemiology. 2015;25(6):445-54. 

21. Fauci AS, Redfield RR, Sigounas G, Weahkee MD, Giroir BP. Ending the HIV epidemic: a 
plan for the United States. JAMA. 2019;321(9):844-5. 

22. Gantenberg JR, King M, Montgomery MC, Galárraga O, Prosperi M, Chan PA, et al. 
(2019) Correction: Improving the impact of HIV pre-exposure prophylaxis 
implementation in small urban centers among men who have sex with men: An agent-
based modelling study. PLoS ONE. 14(12): e0226218. 

23. Hernández-Romieu AC, Sullivan PS, Rothenberg R, Grey J, Luisi N, Kelley CF, 
Rosenberg ES. Heterogeneity of HIV prevalence among the sexual networks of Black 
and White MSM in Atlanta: illuminating a mechanism for increased HIV risk for young 
Black MSM. Sexually Transmitted Diseases. 2015;42(9):505. 

24. Goodreau SM, Rosenberg ES, Jenness SM, Luisi N, Stansfield SE, Millett GA, Sullivan PS. 
Sources of racial disparities in HIV prevalence in men who have sex with men in 
Atlanta, GA, USA: a modelling study. The Lancet HIV. 2017;4(7):e311-e20. 

25. Wall KM, Stephenson R, Sullivan PS. Frequency of sexual activity with most recent 
male partner among young, Internet-using men who have sex with men in the United 
States. Journal of Homosexuality. 2013;60(10):1520-38. 

26. Amirkhanian YA, Kelly JA, Kabakchieva E, Kirsanova AV, Vassileva S, Takacs J, 
DiFranceisco WJ, McAuliffe TL, Khoursine RA, Mocsonaki L. A randomized social 
network HIV prevention trial with young men who have sex with men in Russia and 
Bulgaria. AIDS. 2005;19(16):1897-905. 

27. Hoffman IF, Latkin CA, Kukhareva PV, Malov SV, Batluk JV, Shaboltas AV, Skochilov RV, 
Sokolov NV, Verevochkin SV, Hudgens MG. A peer-educator network HIV prevention 
intervention among injection drug users: results of a randomized controlled trial in St. 
Petersburg, Russia. AIDS and Behavior. 2013;17(7):2510-20. 

28. Patel P, Borkowf CB, Brooks JT, Lasry A, Lansky A, Mermin J. Estimating per-act HIV 
transmission risk: a systematic review. AIDS. 2014;28(10):1509. 



 27 

29. Rendina HJ, Moody RL, Ventuneac A, Grov C, Parsons JT. Aggregate and event-level 
associations between substance use and sexual behavior among gay and bisexual 
men: Comparing retrospective and prospective data. Drug and Alcohol Dependence. 
2015;154:199-207. 

30. Anderson PL, Glidden DV, Liu A, Buchbinder S, Lama JR, Guanira JV, McMahan V, 
Bushman LR, Casapía M, Montoya-Herrera O. Emtricitabine-tenofovir concentrations 
and pre-exposure prophylaxis efficacy in men who have sex with men. Science 
Translational Medicine. 2012;4(151):151ra25-ra25. 

31. Bangsberg DR, Perry S, Charlebois ED, Clark RA, Roberston M, Zolopa AR, Moss A. 
Non-adherence to highly active antiretroviral therapy predicts progression to AIDS. 
AIDS. 2001;15(9):1181-3. 

32. Egger M, May M, Chêne G, Phillips AN, Ledergerber B, Dabis F, Costagliola D, Monforte 
ADA, De Wolf F, Reiss P. Prognosis of HIV-1-infected patients starting highly active 
antiretroviral therapy: a collaborative analysis of prospective studies. The Lancet. 
2002;360(9327):119-29. 

33. Halloran ME, Hudgens MG. Estimating population effects of vaccination using large, 
routinely collected data. Statistics in Medicine. 2018;37(2):294-301. 

34. Sobel ME. What do randomized studies of housing mobility demonstrate? Causal 
inference in the face of interference. Journal of the American Statistical Association. 
2006;101(476):1398-407. 

35. Ogburn EL, VanderWeele TJ. Causal diagrams for interference. Statistical Science. 
2014;29(4):559-78. 

36. Westreich D, Cole SR. Invited commentary: positivity in practice. American Journal of 
Epidemiology. 2010;171(6):674-7. 

37. Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & 
Hall/CRC. 

38. Basse G, Feller A. Analyzing two-stage experiments in the presence of interference. 
Journal of the American Statistical Association. 2018;113(521):41-55. 

39. Pearl J. Brief Report: On the Consistency Rule in Causal Inference:" Axiom, Definition, 
Assumption, or Theorem?". Epidemiology. 2010:872-5. 

40. VanderWeele TJ. Concerning the consistency assumption in causal inference. 
Epidemiology. 2009;20(6):880-3. 

41. Cole SR, Frangakis CE. The consistency statement in causal inference: a definition or 
an assumption? Epidemiology. 2009;20(1):3-5. 

42. Jenness SM, Goodreau SM, Rosenberg E, Beylerian EN, Hoover KW, Smith DK, Sullivan 
P. Impact of the Centers for Disease Control's HIV preexposure prophylaxis guidelines 
for men who have sex with men in the United States. The Journal of Infectious Diseases. 
2016;214(12):1800-7. 

43. Thomson KA, Baeten JM, Mugo NR, Bekker L-G, Celum CL, Heffron R. Tenofovir-based 
oral PrEP prevents HIV infection among women. Current Opinion in HIV/AIDS 
Behavior. 2016;11(1):18. 

44. Buchanan AL, Vermund SH, Friedman SR, Spiegelman D. Assessing Individual and 
Disseminated Effects in Network-Randomized Studies. American Journal of 
Epidemiology, 2018; 187(11), 2449-2459. 

45. Marshall BD, Galea S. Formalizing the role of agent-based modeling in causal inference 
and epidemiology. American Journal of Epidemiology. 2014;181(2):92-9. 



 28 

 
46. Murray EJ, Robins JM, Seage GR, Freedberg KA, Hernán MA. A comparison of agent-

based models and the parametric g-formula for causal inference. American Journal of 
Epidemiology. 2017; 186(2): 131-142. 

 


	Disseminated Effects in Agent Based Models: A Potential Outcomes Framework and Application to Inform Pre-Exposure Prophylaxis Coverage Levels for HIV Prevention
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use
	Authors

	tmp.1605038236.pdf.nwdYs

