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Abstract  23 

The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a major phloem-feeding pest of 24 

agricultural crops that is also an important vector of many plant diseases. The B. tabaci 25 

Mediterranean (‘MED’) biotype is a particularly effective vector of Tomato yellow leaf curl virus 26 

(TYLCV), a devastating plant pathogen. While insecticides play an important role in the control 27 

of MED and TYLCV, little is known about how TYLCV infection affects MED susceptibility to 28 

insecticides. We conducted research addressing how MED susceptibility to flupyradifurone, the 29 

first commercially available systemic control agent derived from the butenolide class of 30 

insecticides, was affected by TYLCV infection. We first conducted bioassays determining the 31 

LC15 and LC50 for control and viruliferous MED feeding on either water- or insecticide-treated 32 

plants. We next measured several demographic parameters of control and viruliferous MED 33 

exposed to either insecticide- or water-treated plants. TYLCV infection increased MED tolerance 34 

of flupyradifurone: the LC15 and LC50 of viruliferous MED were double that of uninfected MED. 35 

Viral infection also altered MED demographic responses to flupyradifurone, but in an 36 

inconsistent manner. While the ability of TYLCV and other persistently-transmitted viruses to 37 

benefit Bemisia via manipulation of host plant defense is well-known, this appears to be the first 38 

example of virally-mediated changes in vector susceptibility to an insecticide.   39 

Key Words 40 
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Introduction 42 

The whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a major phloem-feeding 43 

pest of both field and greenhouse crops worldwide (Stansly and Naranjo 2010). Its management 44 

is complicated by the fact that B. tabaci contains over 30 phenotypically identical but genetically 45 

distinct cryptic species (Liu et al. 2012, Hadjistylli et al. 2016) that vary widely in traits such as 46 

insecticide resistance (Chen et al. 2016, Xie et al. 2017). Bemisia tabaci Mediterranean (MED) 47 

poses a particular threat to agriculture due to its invasiveness. Since its arrival in China in 2003 48 

(Chu et al. 2006), it has displaced both native and invasive B. tabaci throughout the country 49 

(Teng et al. 2010).  50 

Although Bemisia feeding can itself reduce plant growth, its primary threat to agriculture 51 

occurs via its ability to transmit a wide variety of plant viruses. MED is particularly effective at 52 

transmitting such viruses, and its invasion is often associated with plant disease outbreaks (Ning 53 

et al. 2015). The Tomato yellow leaf curl virus (TYLCV) is a particularly damaging pathogen 54 

that has caused significant damage worldwide (Jones 2003). TYLCV relies on B. tabaci as a 55 

vector to spread among plants (Fereres and Moreno 2009). As a result, Bemisia- plant-TYLCV 56 

interactions have been the subject of intense interest and researchers have confirmed the 57 

mutualistic relationship between B. tabaci and the virus. It is now known, for instance, that 58 

TYLCV can increase Bemisia fitness via its suppression of plant defense (Zhang et al. 2012, 59 

Luan et al. 2013) and that MED benefits from feeding on TYLCV-infected hosts (Pan et al. 60 

2013a, Shi et al. 2019).  61 

Insecticides play an important role in an integrated pest management approach to 62 

controlling Bemisia and viral outbreaks in agricultural systems. Because the whitefly can rapidly 63 

develop insecticide resistance, the continued development and deployment of novel compounds 64 
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is essential for effective pest control. One such compound is flupyradifurone, the first 65 

commercially available systemic control agent derived from the butenolide class of insecticides 66 

(Nauen et al. 2015). This compound, an agonist on insect nicotinic acetylcholine receptors, 67 

differs structurally from other chemicals that target these receptors. As a result, it is effective 68 

against neonicotinoid- and pymetrozine-resistant Bemisia populations (Nauen et al. 2015).  69 

A recent assessment of MED survival and TYLCV transmission found that while 70 

flupyradifurone rapidly killed MED and reduced TYLCV transmission by 85%, treatment with 71 

the neonicotinoid thiomethoxam only reduced viral transmission by 25% (Roditakis et al. 2017). 72 

Other work confirming the general efficacy of flupyradifurone against B. tabaci Middle East-73 

Asia Minor 1 (MEAM1) nonetheless found a few field populations with high levels of 74 

flupyradifurone tolerance (Smith et al. 2016). While increasing insecticide tolerance in its vector 75 

would clearly benefit TYLCV and similar viruses, there is no published research assessing 76 

whether viruses can provide such benefits. Alternately, TYLCV could affect MED in a manner 77 

similar to Rickettsia, which is correlated with increased Bemisia sensitivity to a range of 78 

different insecticides (Kontsedalov et al. 2008, but see Pan et al. 2013b). Understanding how 79 

TYLCV affects the flupyradifurone tolerance of its vector is important to maximize the effective 80 

use of this important insecticide.  81 

We report the results of two experiments exploring how TYLCV infection affected MED 82 

susceptibility to flupyradifurone (trade name Sivanto). We first determined the LC15 and LC50 for 83 

control and viruliferous MED feeding on plants treated with either Sivanto or distilled water. We 84 

calculated both LC15 and LC50 because chemical degradation and dilution gradually reduce 85 

insecticide concentrations following application (e.g., Roditakis et al. 2017),. We next measured 86 

several demographic parameters of control and viruliferous MED exposed to either insecticide- 87 
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or water-treated plants. Although TYLCV infection has little direct effect on MED fitness (Pan et 88 

al. 2013a, Su et al. 2015), recent work found a net downregulation of detoxification enzymes in 89 

TYLCV-infected MED (Ding et al. 2019); we hypothesized that viruliferous MED would be 90 

more sensitive to Sivanto than uninfected individuals.  91 

Materials and Methods 92 

Plants: Tomato plants (Solanum lycopersicum L, cv. Zhongza 9) were grown individually in two-93 

liter pots in a greenhouse with natural lighting and controlled temperature (26±2℃). All plants 94 

were grown in a 10:5:1 (by volume) mixture of peat moss, vermiculite, and organic 8-8-8 95 

fertilizer. TYLCV-infected plants were produced with injection of Agrobacterium tumefaciens-96 

mediated TYLCV clones (Shanghai isolate) at the 3-4 true leaf stage (Zhang et al. 2009). The 97 

plants were grown for four weeks post-injection to give them time to display infection-associated 98 

pathological symptoms. 99 

Insects: The whitefly Bemisia tabaci MED (Q) was first collected in 2009 from 100 

poinsettia, Euphorbia pulcherrima Wild. (ex Klotz.), in Beijing, China. It was reared on 101 

poinsettia. In 2015, a portion of the population (~300 adults) was transferred to the Tianjin 102 

Institute of Plant Protection and reared on cotton plants (Gossypium herbaceum L., cv DP99B) in 103 

80 mesh nylon insect cages (45×45×60 cm) under 26±2℃, 60±10% RH, 14L:10D photoperiod. 104 

A viruliferous MED population was produced by transferring ~300 whiteflies into a cage with 105 

four TYLCV-infected tomato plants; a parallel uninfected MED population was produced by 106 

transferring >300 whiteflies into a cage with four healthy tomato plants. Both viruliferous and 107 

uninfected MED were reared for two generations on their respective plants before being used for 108 

experiments. Colony purity was monitored every 2-3 generations using a DNA marker (Khasdan 109 

et al. 2005), and TYLCV infection was confirmed via PCR validation (Ghanim et al. 2007). 110 
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Flupyradifurone bioassay of viruliferous and uninfected MED: Sivanto 200SL (17.09% 111 

flupyradifurone) was provided by Bayer Crop Science (China) Company Ltd. and diluted with 112 

distilled water to five different concentrations: 200 mg[AI]kg-1, 100 mg[AI]kg-1, 50 mg[AI]kg-1, 113 

25 mg[AI]kg-1, and 12.5 mg[AI]kg-1. For each of the five concentrations and an additional 114 

distilled water control (a total of six treatments), 200 mL was added to a 500 mL plastic spray 115 

bottle. For each concentration, one spray bottle was used to spray four tomato plants that were 116 

each at the 6-7 true leaf stage; plants were sprayed until drip-off. One day after spraying, 100 117 

newly-emerged (within 24 hours) adult MED per plant were placed in clip cages attached to the 118 

abaxial side of both the third and fourth leaves of each sprayed plant. Clip cages were kept on for 119 

two days; the number of living and dead MED were then counted. This work was conducted in a 120 

climate-controlled chamber at 26±1℃ and 60±10% RH with 14L:10D photoperiod. 121 

Demographic responses of viruliferous and uninfected MED to flupyradifurone (LC15): 122 

Data from the above-mentioned experiment was used to calculate the LC15 for viruliferous MED. 123 

a solution of this concentration was sprayed on healthy tomato plants at the 6-7 true leaf stage 124 

until drip-off. Another group of healthy tomato plants was sprayed to drip-off with distilled 125 

water. After 24 hours, approximately 100 newly emerged (within one day) viruliferous or 126 

uninfected MED were attached in separate clip cages to the abaxial side of the third and fourth 127 

leaves of either a Sivanto-treated or control plant. This produced four treatments: TYLCV 128 

(uninfected, viruliferous) crossed with insecticide (dH2O, Sivanto). This work were conducted in 129 

a climate-controlled chamber at 26±1℃ and 60±10% RH with 14L:10D photoperiod. Clip cages 130 

were removed after two days and the living and dead adult MED collected and counted. 131 

Female adult longevity and first-week fecundity: Thirty female MED from each of the 132 

four treatments (=120 total) were placed individually in clip cages. Each cage was then clipped 133 
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on the abaxial side of a middle leaf of an unsprayed healthy tomato plant (6-7 true leaf stage). A 134 

total of two MED were clipped onto each plant, one per leaf, and both MED on a given plant had 135 

the same infection status (i.e., they were both either uninfected or viruliferous). The clip cages 136 

were checked each day for MED mortality; after one week, all surviving adults were individually 137 

transferred to new unsprayed healthy tomato plants and the number of eggs laid during the first 138 

week counted. 139 

Egg-to-adult survival and developmental time: Five pairs of newly-emerged MED 140 

(within one day; 1:1 sex ratio) from a given treatment were placed into a single clip cage and 141 

clipped onto the abaxial side of a middle leaf of an unsprayed healthy tomato plant (6-7 true leaf 142 

stage). Only one clip cage was attached to each plant. This was replicated 10 times in each of the 143 

four treatments, for a total of 40 replicates. After one day, each clip cage was opened and the 144 

adults were removed, leaving only the eggs and nymphs. Each clip cage was then inspected daily 145 

and the number of nymphs and adults recorded. Daily inspections continued until the last nymph 146 

had either entered adulthood or died.  147 

Statistical analysis: Probit parameter estimation of the concentration-mortality response 148 

for viruliferous and uninfected MED in the six concentrations were calculated using POLO-PC 149 

(Russell et al. 1977, LeOra 1987). These parameters included LC15 and LC50 values expressed in 150 

mg[AI]kg-1 and their corresponding 95% confidence limit (CL) along with the slopes of the 151 

probit regressions. Between-treatment differences in the mortality of viruliferous and uninfected 152 

MED were calculated using 95% CLs; LC15 or LC50 values for viruliferous and uninfected MED 153 

were considered significantly different if their corresponding 95% CLs did not overlap. 154 

Data on each of the demographic responses was analyzed using two-way ANOVA to 155 

assess the main effects of TYLCV (uninfected, viruliferous) and insecticide (dH2O, Sivanto) as 156 
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well as their interaction. When one or more main effects or their interaction was significant at p 157 

= 0.05, Tukeys’ HSD was used for means separation tests. Data on adult longevity and survival 158 

was sqrt transformed before analysis. All analyses were conducted using JMP 9.0.0 (SAS 2010). 159 

Results 160 

Viruliferous MED were more tolerant of Sivanto than uninfected MED (Table 1). The 161 

LC15 of viruliferous MED was more than twice that of uninfected MED (11.8 versus 5.8, 162 

respectively), and the LC50 of viruliferous MED was almost twice as high (31.3 versus 17.3). 163 

The 95% CLs of viruliferous and uninfected MED did not overlap, meaning that the two groups 164 

differed significantly in both their LC15 and LC50 values (Table 1). 165 

Exposure to Sivanto (at LC15 concentration determined for viruliferous MED) marginally 166 

increased adult female longevity (Fig. 1A), increased first-week fecundity (Fig. 1B) and 167 

decreased egg-adult development time (Fig. 1C) in both MED groups (Table 2). In contrast, the 168 

only significant main effect of TYLCV was a 28% decrease in first-week fecundity (Fig. 1B). 169 

The TYLCV*Sivanto interaction was marginally significant (P = 0.067 – 0.085) for three of the 170 

four variables: Sivanto had a greater impact on the first-week fecundity and egg-adult 171 

development time of uninfected MED than viruliferous MED (Fig. 1B, 1C), but increased the 172 

adult female lifespan of viruliferous MED more than for uninfected MED (Fig. 1A). Survival 173 

from egg to adult (Fig. 1D) was not affected by either main effect or their interaction (Table 2).   174 

Discussion 175 

Contrary to expectations, we found that TYLCV did not increase MED vulnerability to 176 

flupyradifurone. Instead, both the LC15 and LC50 values for viruliferous MED were significantly 177 

higher than those of uninfected MED (Table 1). In three of the four demographic variables, there 178 

was also a marginally significant interaction between Sivanto and TYLCV: Sivanto tended to 179 
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increase adult longevity only in viruliferous MED and first-week fecundity only in uninfected 180 

MED, and tended to decrease egg-adult development time only in uninfected MED (Fig. 181 

1A,B,C). While the ability of TYLCV and other persistently-transmitted viruses to benefit 182 

Bemisia via manipulation of host plant defense is well-known, this appears to be the first 183 

example of virally-mediated changes in vector susceptibility to an insecticide.   184 

While our results were surprising, there have been other reports of microorganism-185 

mediated changes in insecticide susceptibility (Pietri and Liang 2018). Gut symbionts in both the 186 

cigarette beetle Lasioderna serricorne (Shen and Dowd 1991) and the apple fly Rhagoletis 187 

pomonella (Lauzon et al. 2003) are involved with the detoxification of natural and synthetic 188 

toxins. In contrast, the symbiotic microorganism Rickettsia increased Bemisia sensitivity to a 189 

range of different insecticides (Kontsedalov et al. 2008, but see Pan et al. 2013b); later research 190 

linked increases in Bemisia symbiont diversity and density to greater insecticide susceptibility 191 

(Ghanim and Kontsedalov 2009). Similar results have been reported in the psyllid Diaphorina 192 

citri, where infection with Candidatus Liberibacter asiaticus increased its vulnerability to several 193 

insecticides (Tiwari et al. 2011). A recent review (Pietri and Liang 2018) suggested these 194 

variable results may partially reflect symbiont-specific effects on both host detoxification 195 

enzymes and their immune/stress response. A transcriptomic analysis of gene regulation in 196 

TYLCV-infected MED found that while TYLCV generally downregulated detoxification 197 

enzymes, genes involved in both stress and immune responses were upregulated (Ding et al. 198 

2019). It seems likely that some of these upregulated genes alter MED susceptibility to 199 

flupyradifurone. 200 

The negative impact of flupyradifurone revealed in the LC15 and LC50 bioassays appears 201 

at odds with its equivocal effect on various aspects of MED demography. MED that survived one 202 
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day of flupyradifurone exposure had slightly higher female longevity, higher first-week 203 

fecundity, and a shorter egg-adult development time than MED in the control treatment. These 204 

‘benefits’ of flupyradifurone are almost certainly an experiment artifact: a day of insecticide 205 

exposure removed the weakest and/or most susceptible MED from the population that was 206 

subsequently used for our demographic work. They may also reflect hormesis, a phenomenon in 207 

which sublethal dosages of insecticide improve fecundity or provide other benefits to the 208 

targeted insects (Cutler 2012). It is also worth noting that both uninfected and viruliferous MED 209 

were exposed to flupyradifurone at the LC15 concentration determined for viruliferous MED. 210 

Because the LC15 value for uninfected MED was lower than for viruliferous MED, this 211 

flupyradifurone concentration was more lethal to the uninfected population than to the 212 

viruliferous one. Higher rates of exposure-related mortality in our uninfected group may have 213 

had the unintended effect of minimizing differences between the uninfected and viruliferous 214 

groups. It should also be noted that the recommended label rate of flupyradifurone, 150 mg/l, 215 

was substantially higher than the concentrations we used; we chose to work with lower 216 

concentrations in order to assess MED that survive initial exposure. The effect of TYLCV on 217 

MED insecticide tolerance may be reduced or eliminated at these higher concentrations. 218 

Pesticides can indirectly control insect-vectored plant diseases via their impact on vector 219 

density. This control may be lessened, however, if vectors feeding on pesticide-sprayed plants 220 

survive long enough to transmit TYLCV and other viruses. Viruliferous Bemisia efficiently 221 

transmit TYLCV to uninfected plants. Less than two minutes of Bemisia salivation is necessary 222 

to infect a healthy tomato plant (Jiang et al. 2000). As a result, thiamethoxam and other 223 

insecticides that do not quickly kill Bemisia may prove inefficient at decreasing TYLCV 224 
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transmission (Roditakis et al. 2017). Flupyradifurone has a higher knockdown rate than 225 

thiamethoxam and is more effective at reducing TYLCV transmission (Roditakis et al. 2017). 226 

Research assessing the impact of flupyradifurone on Bemisia feeding behavior is 227 

necessary to understand the mechanism(s) underlying its effect on viral transmission. Aphids 228 

feeding on thiamethoxam-treated plants, for example, spend less time in the sieve element phase 229 

required for viral transmission to an uninfected plant (Cho et al. 2011, Stamm et al. 2013). 230 

Although TYLCV increased MED tolerance to flupyradifurone (Table 1), it might still change 231 

MED feeding behavior in ways that make this pesticide effective at reducing or eliminating viral 232 

transmission. Alternately, TYLCV-linked increases in flupyradifurone tolerance may provide 233 

viruliferous MED an advantage over uninfected individuals in pesticide-treated fields. If so, 234 

insecticide application could, under some conditions, favor viral outbreaks in agricultural 235 

systems (Pan et al. 2015).   236 

In summary, our work found that infection with TYLCV altered the susceptibility of 237 

Bemisia tabaci MED to flupyradifurone. While the mechanism underlying our results is 238 

unknown, our findings suggest that viral infection may be capable of changing population-level 239 

responses to current management practices. Even for novel insecticides, such interactions 240 

highlight how work exploring pesticide impacts on each part of the vector-virus-plant interaction 241 

can contribute to the development of effective strategies to control MED and TYLCV.   242 
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Table 1: Median lethal concentration (LC15 and LC50) of flupyradifurone (Sivanto) to uninfected 346 

and viruliferous MED. LC15 and LC50 followed by different upper-case letters indicate that 347 

uninfected and viruliferous MED are significantly different based on overlap of 95% CLs. 348 

Treatment N 

Slope ± 

SE 

LC15(mg[AI]kg-1)   

(95% CL) 

LC50(mg[AI]kg-1)    

(95% CL) X2 (df) 

P 

value 

Uninfected 478 

3.64 ± 

0.39 5.78 (3.72-7.82) A 

17.33 (14.08-20.48) 

A 

1.61 

(3) 0.66 

Viruliferous 476 

4.07 ± 

0.36 

11.75 (8.91-14.44) 

B 

31.33 (27.22-35.82) 

B 2.4 (3) 0.49 

 349 

 350 

Table 2: Results of ANOVA assessing the impact of TYLCV infection, Sivanto exposure, and 351 

their interaction on MED demographic variables.  352 

 
Female longevity 

(d) 

First week fecundity  

(# eggs) 

Egg-adult 

developmental time 

(d) 

Egg-adult survival 

(%)  

Treatment F df P F df P F df P F df P 

TYLCV† 0.43 1,101 0.513 15.71 1,101 <0.001 0.86 1,18 0.364 1.03 1,18 0.324 

Sivanto 3.55 1,101 0.063 10.24 1,101 0.002 7.26 1,18 0.015 0.31 1,18 0.586 

TYLCV*Sivanto 3.43 1,101 0.067 3.18 1,101 0.078 3.34 1,18 0.085 0.97 1,18 0.338 

†Tomato yellow leaf curl virus           
  353 
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Figure Legends 354 

Figure 1. Bemisia tabaci MED feeding on Lycopersicon esculentum. Mean ± SE values for the 355 

demographic variables A) Female longevity (days); B) Eggs per female over one week; C) Egg-356 

adult development time (days); and D) Egg-adult survival (%). Light gray bars: uninfected MED; 357 

dark gray bars: viruliferous MED. Unstriped bars (S-): plants sprayed with distilled water; 358 

striped bars (S+): plants sprayed with 11.75 mg[AI]kg-1 Sivanto (LC15 for viruliferous MED). 359 

Different upper-case letters above bars indicate significant differences (Tukeys’ HSD with α = 360 

0.05); in figure 1D, there were no significant between-treatment differences.  361 
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Figure 1. 362 
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