THE UNIVERSITY OF RHODE ISLAND

University of Rhode Island DigitalCommons@URI

Chemistry Faculty Publications

Chemistry

2020

Elephant's Toothpaste Used as a Qualitative Demonstration of Rate versus Temperature

Ben Ruekberg University of Rhode Island

David L. Freeman University of Rhode Island, dfreeman@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/chm_facpubs

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

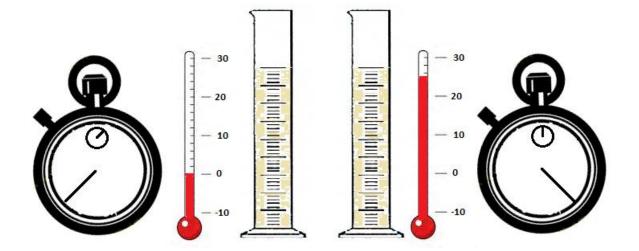
This is a pre-publication author manuscript of the final, published article.

Terms of Use

This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

Citation/Publisher Attribution

Ruekberg, B. & Freeman, D. L. (2020). Elephant's Toothpaste Used as a Qualitative Demonstration of Rate versus Temperature. *J. Chem. Educ.*, *97*(4), 1061-1067. doi: 10.1021/acs.jchemed.9b00782 Available at: https://doi.org/10.1021/acs.jchemed.9b00782


This Article is brought to you for free and open access by the Chemistry at DigitalCommons@URI. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.

Elephant's toothpaste used as a qualitative demonstration of rate vs. temperature Ben Ruekberg* and David L. Freeman University of Rhode Island Chemistry Department Kingston, RI 02881 <u>bruekberg@uri.edu</u>

ABSTRACT

The popular elephant's toothpaste demonstration can be used to demonstrate the effect of temperature on reaction rate qualitatively. Our version is designed for simplicity of execution and to require little class time. Two runs of the reaction are performed at easily achieved temperatures (ice and ambient), the latter being approximately three times as fast. The reaction behind the demonstration, the iodide-catalyzed decomposition of hydrogen peroxide (along with some complicating side-reactions), are discussed in some detail.

Graphical Abstract

KEYWORDS

Audience: High School/Introductory, First Year Undergraduate/General Chemistry Domain: Demonstrations Topic: Kinetics, Mechanism of reactions

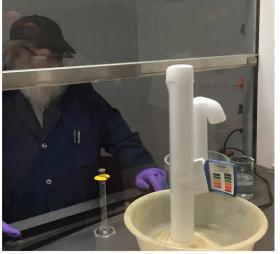
INTRODUCTION

This demonstration is intended as an easily performed qualitative demonstration of the effect of temperature on reaction rate. The effect of temperature is one aspect of reaction kinetics (an important topic in chemistry^{1, 2}) comprising the interrelated topics of collision theory,³ transition state theory,⁴ activation energy,⁵ potential-energy diagrams,⁶ the Arrhenius equation,^{7 - 9} and the Maxwell-Boltzmann distribution.^{10 - 12} The elephant's toothpaste demonstration and the iodide-catalyzed decomposition of hydrogen peroxide, which drives it, are widely used to illustrate or study a variety of topics¹³ including catalysis,^{14, 15} rate laws,^{14, 16, ¹⁷ heat of reaction,^{6, 16} and activation energy,^{14, 18, 19} among others.^{19, 20} The elephant's toothpaste demonstration can be easily adapted to illustrate the effect of temperature on reaction rate qualitatively, but vividly. The effect of temperature change on reaction rate is the subject of many experiments^{1, 2, 6, 14, 18, 21 - 36} and relatively few lecture demonstrations.^{32, 37 - 45} The demonstration described here, is designed to meet several goals:}

- Easily performed
- Suitable for a large class
- Easily seen and interpreted
- Use simple apparatus and easily achieved temperature control
- Reasonably safe

- Qualitative
- Engaging
- Performed in five minutes or less

For instructors with similar restrictions, this demonstration may be more suitable than other demonstrations which may be difficult to interpret,³⁸ use or produce hazardous materials,^{39, 41, 45} require a long time,^{39, 41} be unsuitable for a large class,^{37, 41, 43} involve complicated apparatus,³² or require precise temperature control.^{37, 40, 41}


Instructors need not go into detail about the reaction mechanism which, as discussed below, is generally oversimplified. Rather, it can be presented as the iodide-catalyzed decomposition of hydrogen peroxide into water and oxygen. The oxygen is captured in bubbles by added detergent or other surfactant, much in the way carbon dioxide is captured by detergent in the familiar vinegar-baking soda volcano.⁴⁶ The rate of the reaction is reflected in the time required for the oxygen foam to rise from the 100 mL mark to the 500 mL mark in a 500 mL graduated cylinder. One or more students can be asked to time it.

DEMONSTRATION

A 500 mL graduated cylinder, with a magnetic stir bar, is charged with 20 mL of 14 % w/w hydrogen peroxide (40 ml of 36 % hydrogen peroxide diluted to 100 mL) and 10 mL of detergent solution. The mixture is stirred for a few minutes, as it will be throughout the reaction. (The solution should be made basic and stirred rapidly, as discussed below.) Then, 20 mL of a freshly-prepared solution of potassium iodide (10 g per 100 mL) is added. It is helpful to have a tub immediately underneath the graduated cylinder to catch the foam that overflows the graduated cylinder. The use of laundry and dishwashing detergents have disadvantages. They are found to be acidic (See discussion below.), or contain dyes which may react with hydrogen peroxide, or leave stubborn residue on the glassware. A solution of 1 g of Alconox in 100 mL of solution works quite well. See Supporting Information for details.

A low temperature run is performed identically, except that the graduated cylinders with the hydrogen peroxide and detergent mixture and with the potassium iodide solution have both been cooled in ice-baths for approximately 20 minutes before mixing. (The ice bath for the 500 mL graduated cylinder, if sufficiently large, will serve to receive overflow.) The contrast between the two runs is better emphasized if the low temperature run is done first, in that the ambient temperature run goes about three times as fast. Both runs can be performed in five minutes or less total. Each run should use different 500 mL graduated cylinders.⁴⁷ The demonstration has been well-received by the classes of chemistry students for whom it was performed. The demonstration is similar to, but more easily performed than, a previously published method.¹⁵ Figure 1 is a photograph taken after the demonstration. The graduated

Figure 1. A photograph taken after the demonstration to lecture class

cylinder on the right is the low temperature run, which is completed before beginning the high temperature run (the large graduated cylinder on the left). The high temperature run produced 500 mL of foam and its overflow in the same time that low temperature run produced only its overflow. This shows that the high temperature run goes faster.

HAZARDS

If the concentrations and amounts of hydrogen peroxide, potassium iodide and Alconox called for in this article are used, the reaction should proceed at a safe rate. Nonetheless, proper precautions are in order. Splash goggles, a lab coat, closed shoes, and nitrile gloves should be worn. Demonstrators should review safety guidelines^{48 - 50} and Safety Data Sheets of the materials they use. Hydrogen peroxide and iodine (which may be produced^{55, 56}) are oxidizing agents, corrosive, and cause severe burns skin and eyes. Oxygen will, and hydrogen peroxide and iodine may, be present in the foam, which should be treated accordingly. Hydrogen peroxide may cause fire in contact with other materials and may cause cancer. On decomposition, hydrogen peroxide produces oxygen which will accelerate combustion and this effect is important when oxygen lingers in clothing. Iodine is toxic. The American Conference of Governmental Industrial Hygienists (ACGIH) set the short term exposure limit (STEL) for iodine vapor at 0.1 ppm. At 25 °C, the vapor pressure of iodine is 0.305 mm Hg (4,010 ppm). Recalling the exothermicity of the decomposition of hydrogen peroxide, the vapor pressure of iodine (in mm. Hg) as a function of temperature, between 273 K and 328 K, can be summarized as $\ln[\text{vapor pressure (mm Hg)}] \approx 0.000002503 \text{ T}^3 - 0.002555 \text{ T}^2 + 0.9398 \text{ T} - 120.6^{51}$ The demonstration should be conducted in a well-ventilated environment, such as a fume hood. Contact of eyes and skin with potassium iodide should be avoided. Potassium iodide

irritates mucus membranes. Universal Indicator is flammable, and, while the SDS may not indicate carcinogenicity, it contains phenolphthalein which was considered sufficiently carcinogenic to be removed from Ex-Lax and Feen-A-Mint, OTC laxatives, in 1997. Alconox causes skin irritation and severe eye irritation and damage. The decomposition of hydrogen peroxide is highly exothermic and the graduated cylinder and solution become quite hot.⁵⁵ Take care not to touch the cylinder during, or soon after, the reaction and then handle with caution.

DISCUSSION

Immediately before the potassium iodide solution is added and afterwards, the material should be stirred as rapidly as practical. Rapid stirring ameliorates the apparent rate-retarding effect attributed to oxygen supersaturation.⁵²

It is useful to understand what is taking place in the examples instructors use. To this end, the basic reaction, as well as complicating side reactions are discussed. Although this demonstration comprises some imperfectly understood reactions, a reasonable examination follows.

The commonly-presented mechanism for the iodide-catalyzed decomposition of hydrogen peroxide is a two-step reaction (Reactions 1 and 2)^{53, 54} for an acidic solution. All materials, except oxygen, are in aqueous solution.

$$H_2O_2 + I^- + H^+ \rightarrow HOI + H_2O \tag{1}$$

 $HOI + H_2O_2 \rightarrow H_2O + O_2 + I^- + H^+$ (2)

In a basic medium, these reactions become

$$H_2O_2 + I^- \rightarrow HOI + OH^- \rightarrow OI^- + H_2O \tag{1'}$$

$$OI^{-} + H_2O_2 \rightarrow H_2O_2 + O_2_2 + I^{-}$$
 (2')

This mechanism is an oversimplification because, among other things, iodine, I_2 , is produced during the reaction,^{55, 56} something which neither of the above mechanisms explains. Nonetheless, reactions 1' and 2' suffice for instructors who follow our recommendation of performing the demonstration at pH 9.

Iodine production can be thought to arise from materials present during the reaction (Reaction 3), as well as from disproportionation of HOI (Reaction 4),⁵⁷ although the expected low concentration of HOI makes disproportionation seem unlikely.

$$I^{-} + HOI \rightarrow I_{2} + OH^{-}$$
(3)^{14, 58}

$$3 \text{ HOI} \rightarrow \text{HOIO} + I_2 + H_2 \text{O} \tag{4}^{58}$$

The presence of iodine complicates matters in two ways. First, it means the decrease of the concentration of the iodide catalyst. Since iodine and iodide can combine to form the triiodide ion ($K_{eq} \approx 700$),⁵⁹ which "does not react directly with hydrogen peroxide,"⁵⁹ the amount of iodide catalyst is further lowered. The iodine can also volatilize from the solution. Second, it may open (or widen) a bridge to the Bray-Liebhafsky oscillatory reaction. The skeleton mechanism of this reaction has been simply summarized⁶⁰ as Reactions 5 and 6.

$$I_2 + 5 H_2O_2 \rightarrow 2 IO_3^- + 2 H^+ + 4 H_2O$$
(5)

 $2 IO_3^{-} + 5 H_2O_2 + 2 H^+ \rightarrow I_2 + 5 O_2 + 6 H_2O$ (6)

While Reactions 5 and 6 can be seen to produce the same amount of oxygen per hydrogen peroxide as Reactions 1 and 2, they, nonetheless, introduce an alternative overall reaction and rate. Further, the mechanism of the Bray-Liebhafsky reaction is not clearly understood.⁶¹ A long list of possible reaction steps and intermediates have been suggested to be involved in the reaction,⁶¹ some involving radical species^{62 - 67} and some not. ^{57, 60, 68, 69} A radical mechanism^{63, 67} provides a pathway for iodine's participation in the Bray-Liebhafsky reaction. (Radical participation has been proposed for the iodide-peroxide reaction as well.⁷⁰) Some proposed mechanisms of the Bray-Liebhafsky reaction invoke the production of singlet oxygen.^{60, 61, 64}

The above illustrates the complexity the Bray-Liebhafsky reaction could introduce. The decomposition of hydrogen peroxide by iodine, itself, involves a complex set of reactions.⁷¹ If, indeed, molecular iodine is key to such pathways, a way to suppress iodine production before the boundaries are breached would seem worthy of investigation.

A side reaction (Reaction 7) of the iodide-catalyzed decomposition of hydrogen peroxide bears closer scrutiny. The side reaction is yet another example of a reaction that although "studied

$$2 H^{+} + H_{2}O_{2} + 2 I^{-} \rightarrow I_{2} + 2 H_{2}O$$
(7)

for at least a century the detailed reactions involved in the mechanism are still not clearly understood."⁷² Nonetheless, for a mixture of hydrogen peroxide and iodide, as in the hydrogen peroxide iodine-clock reaction,^{5, 14} it is found that at low pH, no oxygen is produced as the oxidation product (only I_3^-). "The complete *transformation* [*sic*] of iodide into iodine, [by Reaction 7]... is possible at sufficiently high concentration of hydrogen ion...."⁷³ It is clearly seen that in acid (pH 4.7) medium there is stoichiometric oxidation of I⁻ into I₃⁻ by H₂O₂ ... without

8

oxygen formation."⁷² At sufficiently high pH, oxygen is produced and the production of I_{3}^{-1} greatly reduced in that the reaction, Reaction 7, of iodide, hydrogen ion and hypoiodous acid has a rate constant of $1.3 \times 10^{10} \text{ M}^{-2} \text{s}^{-1}$.⁷² This suggests that there is a pH-dependent competition between I⁻ and H₂O₂ for the HOI (or OI⁻) formed.^{72, 74} The effect of pH on this competition is amplified by the fact that the reaction of OI⁻ with H₂O₂ (or HOO⁻ with HOI) to produce oxygen is 10^5 to 10^7 times faster than the reaction of HOI with H₂O₂.⁷² (Perrin⁷⁵ lists the pK_a of hydrogen peroxide as 12.11 – 12.23 at 0 °C, 11.92 at 10 °C, 11.81 at 20 °C, 11.34 at 35 °C and 11.21 at 50 °C and the pK_a of hypoiodous acid as 12.4 at 20 °C, 9.7 at 22 °C, and 10.64 at 25 ^oC.) This pH dependence is consistent with Wright and Reedy's data.⁷⁶ They gave ranges of time for a clock reaction to reach the starch-iodine endpoint when performed at a series of pHs. While Wright and Reedy specified that the concentrations of the reducing agent (vitamin C, 0.0005 moles), hydrogen peroxide, starch and iodine were held constant, they did not specify the temperature at which the reactions were run and the buffers, of which the same volumes were used in all of these experiments, were only identified as "commercially available." For the six pHs in the range from 4 to 9, curve-fitting of the inverse of the maxima of each time range (the lowest rates) versus pH gave the best correlation. (Since no endpoint was reached at pH 9—"At pH 9 there is no more I_3^- formation...."⁷²—, the time for pH 9 was taken as infinity, that is, a rate of zero.) This is shown in Figure 2. The increase of rate with increase of pH (for the first four points) may be attributable to the finding that $\frac{-d[H_2O_2]}{dt} \propto 1/a_{H^+}^2$, ⁵⁹ since the consumption of hydrogen peroxide, Reaction 1, is the rate-determining precursor to iodine production,⁷⁷ Reaction 3. The decrease in the rate of iodine production (in the last three points) may be attributed to the increased concentration of IO^- or HOO^- which react with H_2O_2 or HOI,

respectively, producing oxygen rather than iodine. The maximum of the plot reflects the transition of dominance between iodine and oxygen production from the hypoiodous species.

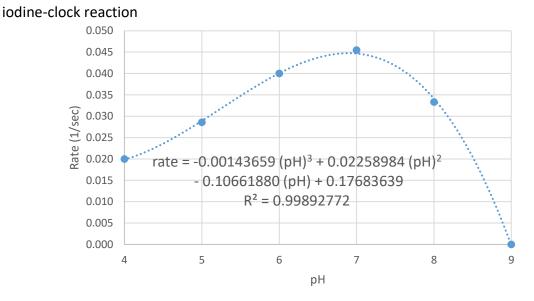
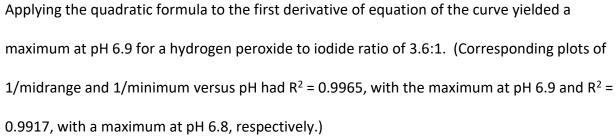



Figure 2. Rate (1/time to consume 0.0005 moles of ascorbic acid) vs pH for Wright and Reedy's

Examination of Hansen's data for reaction rate, as measured by oxygen production, versus potassium iodide concentration (in his Figure 4 or Table 2)⁷⁸ show a downward curvature with increasing iodide concentration, rate $(atm/s) = -0.009275 [KI]^2 + 0.01583 [KI] - 0.0002203$ for [KI] = 0.100 to 0.400. The decrease in rate increase with increased iodide concentration is consistent with increasing success in competition for hypoiodous acid (or hypoiodite) by iodide as its concentration increases. Similarly, Hernando, Laueruta, Kuijl, Laurin, Sacks, and Ciolino's plot of rate versus hydrogen peroxide concentration (Figure 3)²⁰ appears to have an upward

curvature with increasing hydrogen peroxide concentration (approximately, rate (mL/second) = $0.0006 (V/V\% H_2O_2)^2 + 0.0306 (V/V\% H_2O_2) - 0.4178$), reflecting the increasing success of hydrogen peroxide in that competition.

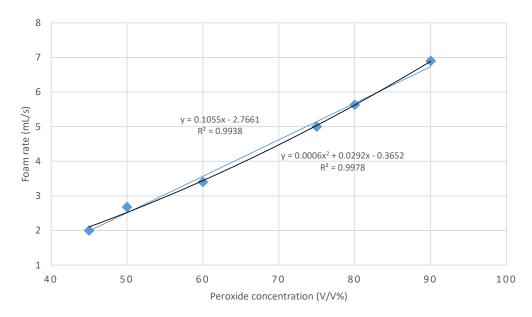


Figure 3. Comparison of linear vs. quadratic fit to rate vs. concentration data

High pH is not enough to completely obviate iodine production. Evans and Upton found that 0.4 % of the oxygen produced by iodide-catalyzed decomposition of hydrogen peroxide is singlet oxygen.⁷⁹ Kepka and Grossweiner found that singlet oxygen readily oxidizes iodide, with $\Delta F^{0} \approx -30$ kJ/mole and with a measurable rate constant.⁸⁰ The mechanism of this oxidation is discussed by Braathen, Chou, and Frei⁸¹ who found the rate constant for the formation of I_{3}^{-} to be equal to the rate constant of $O_{2}(1\Delta)$ decay which they found to be $(8.7 \pm 0.2) \times 10^{5}$ L mol⁻¹s⁻¹.

Variations in the procedure might increase student interest. The addition of universal (pH) indicator to the two solutions, which can be adjusted to pH 9 with sodium hydroxide or potassium hydroxide, **not** ammonium hydroxide (Iodine, if produced, can react with ammonia

to form "nitrogen triiodide," which is explosive.⁸²), which will obviate significant iodine production. Although running the reaction at pH 9 does not show dramatic pH change during the production of 500 mL of foam, as with thiosulfate present (as Sorum *et al.* found; see their Figure 5.)⁸³ a gradual drop in pH of about two units can be observed. The indicator will give a colored solution which may increase the visibility of the foam. (Note that the effect of thiosulfate would be to increase the induction period and cause pH fluctuation, but not ultimately interfere with iodine production.) Instructors may wish to experiment with other initial pHs. Another alternative would be to lower the hydrogen peroxide to iodide ratio and to add starch. When, toward the end of the reaction, enough hydrogen peroxide would be consumed (the iodide concentration being maintained by Reaction 2') iodide could successfully compete for hypoiodous acid to form iodine. This would result in a clock reaction-like color change. Clearly, instructors may change the foam volume difference to be timed, as well as quantities of materials to accommodate time restrictions or other exigencies.

Reactions 1 and 1' are rate determining and have different activation energies:⁷⁷ $E_{a_{k_{1'}}} = 56.07 \text{ kJ/mole}$ and $E_{a_{k_{1}}} = 43.72 \text{ kJ/mole}$. This means that the apparent E_{a} will be pH-dependent and, as a result, so will the change in rate with change in temperature. This pH-dependence may, in part, account for the differing values found for E_{a} in student laboratory experiments.^{14, 18, 19}

CONCLUSION

The Elephant's Toothpaste demonstration can be used to demonstrate the effect of temperature on reaction rate. While the mechanism of the reaction behind this demonstration

is commonly given as a two-step reaction, it cannot account for the acknowledged by-product, iodine or triiodide. The possible complexity giving rise to and, consequently, arising from the production of iodine or triiodide has been outlined, amply illustrating the desirability of giving students a simplified discussion of the mechanism, if any. Nonetheless, we feel that it is desirable that, should students ask questions, instructors be aware of this complexity and controversy and have access to relevant reference materials (sampled here). Among the complications comprised by the demonstration are the opposing effects on the (first order in hydrogen peroxide) reaction rate of diminishing reactant concentration resulting from the reaction's progress and the increase in temperature, absent temperature control, caused by the reaction's high exothermicity,^{6, 19, 55, 84, 85} $\Delta H \approx -94.6$ kJ mol⁻¹, ⁸⁵ to -98.2 kJ mol⁻¹. ⁸⁴

ASSOCIATED INFORMATION

Supporting information

Supporting information giving a description of how the demonstration can be done is available at

AUTHOR INFORMATION

Corresponding author

*E-mail: <u>bruekberg@uri.edu</u>

ORCID

David L. Freeman: 0000-0001-6945-2986

Ben Ruekberg: 0000-0003-1456-7860

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors wish to thank Andreas Nehring for advice on the order of reaction presentation.

This document is the Accepted Manuscript version of a Published Work that appeared in final

form in Journal of Chemical Education, copyright © American Chemical Society and the

Division of Chemical Education, Inc., after peer review and technical editing by the publisher.

³ Dunford, H.B. Collision and Transition State Theory Approaches to Acid-Base Catalysis. *J. Chem. Educ.* **1975**, *52* (*9*), 578 – 580; DOI: 10.1021/ed052p578

¹ Macey, A.; Gurguis, N.; Tebboth, M.; Shah, P.S.; Chesi, C.; Shah, U.V.; Brechtelsbauer, C. Teaching reaction kinetics with chemiluminescence. *Education for Chemical Engineers*, **2018**, *22*, 53 – 60; DOI: 10.1016/j.ece.2017.12.001 ² Sattar, S. A Unified Kinetics and Equilibrium Experiment: Rate Law, Activation Energy, and Equilibrium Constant

for Dissociation of Ferroin. J. Chem. Educ. 2011, 88 (4) 457 – 460: DOI: 10.1021/ed100797s

⁴ Laidler, K.J. Just What is a Transition State?. J. Chem. Educ. 1988, 65 (6), 540 - 542

⁵ Laidler, K.J.; King, M.C. The Development of Transition-State Theory. *J. Phys. Chem.* **1983**, *87* (15), 2657 – 2664; DOI: 10.1021/j100238a002

⁶ Tatsuoka, T.; Koga, N. Energy Diagram for the Catalytic Decomposition of Hydrogen Peroxide. *J. Chem. Educ.* **2013**, *90* (5), 633 – 636; DOI:10.1021/ed400002t

⁷ Logan, S.R. The Origin and Status of the Arrhenius Equation. *J. Chem. Educ.* **1982**, *59* (4) 279 – 281; DOI: 10.1021/ed059p279

⁸ Laidler, K.J The development of the Arrhenius Equation. *J. Chem. Educ.* **1984**, *61* (*6*), 494 – 498; DOI: 10.1021/ed061p94

⁹ Hulett, J.R. DEVIATIONS FROM THE ARRHENIUS EQUATION. *Quart. Rev. Chem. Soc.* {London} **1964**, *18*, 227 - 242

¹⁰ Russell, D.K. The Boltzmann Distribution. *J. Chem. Educ.* **1996**, *73* (4), 229 – 300; DOI: 10.1021/ed073p299

¹¹ Eno, L. Deriving the Boltzmann Energy Distribution. *Chem. Educator* **2007**, *12* (4), 215 – 218; DOI: 10.1333/s00897072040a

¹² Peckham, G.D.; McNaught, I.J. Application of Maxwell-Boltzmann Distribution Diagrams. *J. Chem. Educ.* **1992**, *69* (7), 554 – 558; DOI: 10.1021/ed069p554

¹³ Eldridge, E.S. Using Elephant's Toothpaste as an Engaging and Flexible Curriculum Alignment Project *J. Chem. Educ.* **2015**, *92* (*8*), 1406 – 1408; DOI: 10.1021/acs.jchemed.5b00037

¹⁴ Copper, C.L.; Koubek, E. A Kinetics Experiment to Demonstrate the Role of a Catalyst in a Chemical *Reaction J. Chem. Educ.* **1998**, *75* (1) 87 – 89; DOI: 10.1021/ed075p87

¹⁵ Conklin, Jr., A.R.; Kessinger, A.; Haworth, D.T. Demonstration of the Catalytic Decomposition of Hydrogen Peroxide *J. Chem. Educ.* **1996**, *73* (*9*), 838; DOI: 10.1021/ed073p838

¹⁶ Nyasulu, F.; Barlag, R. Thermokinetics: Iodide-Catalyzed Decomposition Kinetics of Hydrogen Peroxide *J. Chem. Educ.* **2009**, *86* (*10*), 1231 – 1233; DOI: 10.1021/ed086p1231

¹⁸ Sattsanagi, P.D. A Microscale Approach to Chemical Kinetics in the General Chemistry Laboratory: The Potassium Iodide Hydrogen Peroxide Iodine–Clock Reaction *J. Chem. Educ.* **2011**, *88* (*2*), 184 – 188; DOI: 10.1021/ed100140w ¹⁹ Sweeney, W.; Lee, J.; Abid, N.; DeMeo, S. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide *J. Chem. Educ.* **2014**, *91* (*8*), 1216 – 1219; DOI: 10.1021/ed500116g

²⁰ Hernando, F.; Laperuta, S.; van Kuijl, J.; Laurin, N.; Sacks, F.; Ciolino, A. Another Twist of the Foam: An Effective Test Considering a Quantitative Approach to "Elephant's Toothpaste" *J. Chem. Educ.* **2017**, *94* (7), 907 – 910; DOI: 10.1021/acs.jchemed.7b00040

²¹ Sweeney, W.; Lee, J.; Abid, N.: DeMeo, S. Efficient Method for the Determination of the Activation Energy of the Iodine-Catalyzed Decomposition of Hydrogen Peroxide. *J. Chem. Educ.* **2014**, *91* (*8*), 1216 – 1219; DOI: 10.1021/ed500116g

²² Bauer, J.; Tomišić, V.; Vrkljan, P.B.A. The Effect of Temperature and Ionic Strength on the oxidation of Iodide by Iron(III): A Clock Reaction Kinetic Study. *J. Chem. Educ.* **2012**, *89* (4), 540 – 544; DOI: 10.1021/ed2002972

²³ Carpenter, Y.; Phillips, H.A.; Jakubinek, M.B. Clock Reaction: Outreach Attraction. J. Chem. Educ. 2010, 87 (9), 945 – 947; DOI: 10.1021/ed100298e

²⁴ Yperman, J.; Guedens, W.J. New Highlights on Analyzing First-Order Kinetic Data of the Peroxodisulfate-Iodide System at Different Temperatures. J. Chem. Educ. **2006**, 83 (4), 641 – 643; DOI: 10.1021/ed083p641

²⁵ Barreto, J.C.; Brown, D.; Dubetz, T.; Kakareka, J.; Alberte, R.S. A Spectrophotometric Determination of the Energy of Activation (E_a) for a Complexation Reaction: The Kinetics of Formation of a Cr(III)/EDTA Complex. *Chem*. *Educator* **2005**, *10*, 196 – 199; DOI: 10.1333/s00897050903a

²⁶ Strolzberg, R.J. Identifying Variables Affecting the Oxidation of Ascorbic Acid in Orange Juice Using Derivative Ultraviolet Spectrophotometry. *Chem. Educator* **2003**, *8*, 260 – 265; DOI: 10.1333/s00897030705a

²⁷ Eagle, C.T.; Dearman, B.M.; Goodman, A.B. Chemistry for Breakfast: Approaching Kinetics and Uncovering Everyday Chemistry by Cooking Eggs. *Chem. Educator* **2003**, *8*, 122 – 124; DOI: 10.1333/s00897030674a
 ²⁸ Johnson, K.A.; Kroa, B.A.; Yourey, T. Factors Affecting Reaction Kinetics of Glucose Oxidase. *J. Chem. Educ.* **2002**, *79* (1), 74 – 76; DOI: 10.1021/ed079p74

²⁹ McClussky, C.L.; Roser, C.E. Lightstick Kinetics. *J. Chem. Educ.* **1999**, *76* (*11*), 1514 – 1515; DOI: 10.1021/ed076p1514

³⁰ Journal's Editorial Staff. The Effects of Temperature on Lightsticks. J. Chem. Educ. **1999**, 76 (1), 40a; DOI: 10.1021/ed076p40a

³¹ Bindel, T.H. Lightstick Magic. J. Chem. Educ. **1996**, 73 (4), 356 – 358; DOI: 10.1021/ed073p356

³² Erwin, D.K.; Simple and inexpensive kinetics: A student laboratory experiment and demonstration. *J. Chem. Educ.* **1992**, *69* (*11*), 926 – 927; DOI: 10.1021/ed069p926

³³ Garver, E.E. Two Easy Chemical Rate Experiments. J. Chem. Educ. 1990, 67 (2), 183; DOI: 10.1021/ed067p183.1
 ³⁴ Salvador, F.; Gonzalez, J.L.; Tel, L.M. Non-Isothermic Chemical Kinetics in the Undergraduate Laboratory:
 Arrhenius parameters from experiments with hyperbolic temperature variation. J. Chem. Educ. 1984, 61 (10), 921 –

922; DOI: 10.1021/ed061p921

³⁵ Schram, A.C. The Hydrolysis of p-Nitrophenyl beta-glucoside: An undergraduate experiment on the effect of temperature on rate. *J. Chem. Educ.* **1979**, *56* (5), 351 – 352; DOI: 10.1021/ed056p351

³⁶ Connick, R.E. Chemical Kinetics in Laboratory and Classroom. J. Chem. Educ. 1963, 40 (11), 587 – 589; DOI: 10.1021/ed040p587

³⁷ Weinberg, R.B. The Purple Flask: A Novel Reformulation of the Blue Bottle Reaction. *J. Chem. Educ.* DOI: 10.1021/acs.jchemed.9b00627

³⁸ Bilash II, B.; Gross, G.R.; Koob, J.K. The Effect of Temperature on Rate. In *A Demo A Day*; Flinn Scientific, Inc.: Batavia, IL, 2010; p. 172.

³⁹ Bolmes, Jr., L.H. A Demonstration Illustrating the Factors Determining Rates of Chemical Reactions. *J. Chem. Educ.* **1991**, *68* (6), 501; DOI: 10.1021/ed068p501

⁴⁰ Steffel, M.J. Reduction of Permanganate: A Kinetics Demonstration for General Chemistry. *J. Chem. Educ.* **1990**, *67* (7), 598 – 599; DOI: 10.1021/ed067p598.3

¹⁷ Nyasulu, F.; Barlag, R. Thermokinetics: Iodide-Catalyzed Decomposition Kinetics of Hydrogen Peroxide; An Integrated Rate Approach *Chem. Educator* **2020**, *15*, 168 – 170; DOI: 10.1333/s00897102235a

⁴¹ Summerlin, L.R.; Borgford, C.L.; Ealy, J.B. Kinetics and Equilibrium. In *Chemical Demonstrations*, 2nd Ed. American Chemical Society: Washington, D.C., 1988; Vol. 2, pp. 141 – 142, 152 -153, 158 – 159.

⁴² Gupta, Y.K.: Mishra, S.K. A Demonstration of the Effect of Temperature on Reaction Rate. *J. Chem. Educ.* **1984**, *61* (*8*) 744; DOI: 10.1021/ed061p744.1

⁴³ Boring, W.C.; McMillan, E.T. A Safe and Simple Demonstration of the Effect of Temperature on Reaction Rate. *J. Chem. Educ.* **1983**, *60* (5), 414; DOI: 10.1021/ed060p414

⁴⁴ Siwon, J. EFFECT OF TEMPERATURE ON REACTION RATE. *J. Chem. Educ.* **1972**, *49* (2), A85; DOI: 10.1021/ed049pA85.2

⁴⁵ Ruda, P.T. A Versatile Kinetics Demonstration. *J. Chem. Educ.* **1978**, *55* (*10*), 652; DOI: 10.1021/ed055p652.1
 ⁴⁶ Fesmire, G.; Glass, A. A Homemade Volcano Erupts with Hands-On Science Learning Science Activities 1988, 25 (4), 8 – 10; DOI: 10.1080/00368121.1988.10112981

⁴⁷ Eliason, R.; McMahon, T.; Schoffstall, A. M. Temperature Effect on Reaction Rates. *J. Chem. Educ.* **1981**, *58* (4), 354;DOI: 10.1021/ed058p354.1

⁴⁸ <u>https://www.acs.org/content/dam/acsorg/education/students/highschool/chemistryclubs/chemclub-demo-guidelines.pdf</u>, accessed 2/14/2020

⁴⁹ <u>http://www.divched.org/content/safety-guidelines-chemical-demonstrations</u>, accessed 2/14/2020
 ⁵⁰ http://static.nsta.org/pdfs/MinimumSafetyPracticesAndRegulations.pdf, accessed 2/14/2020

⁵¹ Baxter, G.P.; Hickey, C.H.; Holmes, W.C. THE VAPOR PRESSURE OF IODINE *J. Amer. Chem. Soc.* **1906**, *29* (*2*), 127 – 136; DOI:10.1021/ja01956a004

⁵² Kender, C.K.; Robinson, R.A. THE TEMPERATURE COEFFICIENT OF THE DECOMPOSITION OF HYDROGEN PEROXIDE IN THE PRESENCE OF POTASSIUM IODIDE *Trans. Faraday Soc.* **1933**, *29*, 1300 – 1305; DOI:10.1039/TF9332901300

⁵³ Dalmázio, I.; Moura, F.C.C.; Araújo, M.H.; Alves, T.M.A.; Lago, R.M.; de Lima, G.F.; Duarte, H.A.; Augusti, R. The Iodide-Catalyzed Decomposition of Hydrogen Peroxide; Mechanistic Details of an Old Reaction as Revealed by Electrospray Ionization Mass Spectroscopy Monitoring *J. Braz. Chem. Soc.* **2008**, *19* (*6*), 1105 – 1110; DOI: 10.1590/S0103-50532008000600008

⁵⁴ Teggins, J.; Mahaffy, C. Kinetics Studies Using a Washing Bottle *J. Chem. Educ.* **1997**, *74* (5), 566; DOI: 10.1021/ed074p566

⁵⁵ Kelter, P. Are Our Demonstration-Based Workshops Doing More Harm Than Good? *J. Chem. Educ.* **1994**, *71* (2), 109 – 110; DOI: 10.1021/ed71p109

⁵⁶ Liebhafsky, H. A. The catalytic decomposition of hydrogen peroxide by the iodine-iodide couple at 25° *J. Amer. Chem. Soc.* **1932**, *54* (5), 1792 – 1806; DOI: 10.1021/ja01344a011

⁵⁷ Urbansky, E.T.; Cooper, B.T.; Margerum, D.W. Disproportionation Kinetics of Hypoiodous acid As Catalyzed and Suppressed by Acetic Acid-Acetate Buffer *Inorg. Chem.* **1997**, *36* (*7*), 1338 – 1344; DOI: 10.1021/ic960745z

⁵⁸ McAlpine, R.K. The Rate of Oxidation of Iodide Ion by Hydrogen Peroxide *J. Chem. Educ.* **1945**, *22* (*8*), 387 – 390; **DOI:** 10.1021/ed022p387

⁵⁹ Liebhafsky, H. A. The catalytic decomposition of hydrogen peroxide by the iodine-iodide couple II and III. the rate of oxidation in neutral, and in acid, solution of hydrogen peroxide by iodine *J. Amer. Chem. Soc.* **1932**, *54* (*9*), 3499 – 3503; DOI: 10.1021/ja01348a003

⁶⁰ Olexová, A.; Mrákavová, M.; Melicherčik, M.; Treindl,L. Oscillatory System I⁻, H₂O₂, HClO₄: The Modified Form of the Bray-Liebhafsky Reaction *J. Phys. Chem. A* **2010**, *114* (*26*), 7026 – 7029; DOI: 10.1021/jp1024284

⁶¹ Stanković, B.; Anić, S. SHORT REVIEW IN THE MODELS OF BRAY-LIEBHAFSKY OSCILLATORY REACTION *Scientific Review* **2013**, *S2*, 89 – 112; <u>http://afrodita.rcub.bg.ac.rs/~nds/304-</u>

<u>Scientific%20Review%20Special%20Issue%20Milutin%20Malnkovic.pdf</u>, checked 2/14/2020.

⁶² Stanisavljev, D.R.; Milenković, M.C.; Mojović, M.D.; Popović-Bijelić, A.D. A Potential Source of Free Radicals in Iodine-Based Chemical Oscillators *J. Phys.Chem. A* **2011**, *115* (*11*), 2247 – 2249; DOI: 10.1021/jp200837u

⁶³ Stanisavljev, D.R.; Milenković, M.C.; Mojović, M.D.; Popović-Bijelić, A.D Oxygen Centered Radical in Iodine Chemical Oscillators *J. Phys.Chem. A* **2011**, *115*, 7955 – 7958; DOI: 10.1021/jp203601w

⁶⁴ Stanisavljev, D.R.; Milenković, M.C.; Mojović, M.D.; Popović-Bijelić, A.D. Radicals in the Bray-Liebhafsky Oscillatory Reaction *J. Phys.Chem. A* **2013**, *117* (*16*), 3292 – 3295; DOI: 10.1021/jp402381b

⁶⁵ Sharma, K.R.; Noyes, R.M. Oscillations in Chemical Systems. 13. A Detailed Molecular Mechanism for the Bray-Liebhafsky Reation of Iodate and Hydrogen Peroxide *J. Amer. Chem. Soc.* **1976**, *98* (*15*), 4345 – 4361; DOI: 10.1021/ja00431a001

⁶⁶ Treindl, L.; Noyes, R.M. A New Explanation of the Oscillations in the Bray-Liebhafsky Reaction *J. Phys. Chem.* **1993**, *97* (*43*), 11354 – 11362; DOI: 10.1021/j100145a039

⁶⁷ Liebhafsky, H.A.; Wu, L.S. Reactions involving Hydrogen Peroxide, Iodine, and Iodate Ion. V. Introduction to the Oscillatory Decomposition of Hydrogen Peroxide *J. Amer. Chem. Soc.* **1974**, *96* (*23*), 7180 – 7187; DOI: 10.1021/ja00830a003

⁶⁸ Kolar-Anić, L.; Schmitz, G. Mechanism of the Bray-Liebhafsky Reaction *J. Chem. Soc. Faraday Trans.* **1992**, *88* (16), 2343 – 2349; DOI: 10.1039/FT9928802343

⁶⁹ Schmitz, G. Iodine oxidation by hydrogen peroxide in acidic solution, Bray-Liebhafsky reaction and other related reactions *Phys. Chem. Chem. Phys.*, **2010**, *12*, 6605 – 6615; DOI: 10.1039/b927432d

⁷⁰ Milenković, M.C.; Stanisavljev, D.R. Role of Free Radicals in Modeling the Iodide-Peroxide Reaction Mechanism *J. Phys. Chem. A* **2012**, *116* (*23*), 5541 – 5548; DOI: 10.1021/jp303732u

⁷¹ Matsuzaki, I.; Simic, R.; Liebhafsky, H.A. The Mechanism of Decomposition of Hydrogen Peroxide by Iodine in Acid Solutions. The Rates of Associated Reactions *Bull. Chem. Soc. Jpn.* **1972**, *45*, 3367 – 3371; DOI: 10.1246/bcsj.45.3367

⁷² Kessi-Rabia, M.; Gardès-Albert, M.; Julien, R.; Ferradini, C. Effect of pH on the system I⁻/I₃⁻/H₂O₂. Application to iodine hydrolysis *J. Chim. Phys.* **1995**, *92*, 1104 – 1123; DOI: 10.1051/jcp/1995921104

⁷³ Bray, W.C.; Liebhafsky, H.A. Reactions involving hydrogen peroxide, iodine and iodate ion. I. Introduction *J. Amer. Chem. Soc.* **1931**, *53* (1), 38 – 44; **DOI**: 10.1021/ja01352a006

⁷⁴ Abel, E. Über das Reaktionensspiel zwischen Wasserstoffsuperoxyd, Jod und Jodion Z.

Physikalische Chem. **1928**, *136U* (*1*), *161 – 182*; DOI: https://doi.org/10.1515/zpch-1928-13612

⁷⁵ Perrin, D. D. *Ionization constants of inorganic acid and bases*, 2nd Ed; IUPAC Chemical Data Series No. 29; Pergamon Press: New York, 1982; pp. 50, 56 - 57

⁷⁶ Wright, S. W.; Reedy, P. Vitamin C Clock Reaction *J. Chem. Educ.* **2002**, *79* (1), 41 – 43; DOI: 10.1021/ed079p41 ⁷⁷ Liebhafsky, H.A.; Mohammad, A. The Kinetics of the Reduction, in Acid Solution, of Hydrogen Peroxide by Iodide Ion *J. Am. Chem. Soc.* **1933**, *55* (10), 3977–3986; DOI: 10.1021/ja01337a010

⁷⁸ Hansen, J.C. The Iodide-Catalyzed Decomposition of Hydrogen Peroxide: A Simple Computer-Interfaced Kinetics Experiment for General Chemistry *J. Chem. Educ.* **1996**, *73* (*8*), 728 – 732 DOI: 10.1021/ed073p728

⁷⁹ Evans, D.F.; Upton, M.W. Studies of Singlet Oxygen in Aqueous Solution. Part 4. The 'Spontaneous' and Catalyzed Decomposition of Hydrogen Peroxide *J. Chem. Soc. Dalton Trans.* **1985**, 2525 – 2529; DOI: 10.1039/DT9850002525
 ⁸⁰ Kepka, A.G.; Grossweiner, L.I. PHOTODYNAMIC INTERACTION OF LYSOZYME BY EOSIN *Photochem. Photobio.* **1973**, 18 (1), 49 – 61; DOI: 10.1111/j.1751-1097.1973.tb06392.x

⁸¹ Braathen, G.; Cou, P.-T.; Frei, H. Time-resolved Reaction of O₂(¹Δ) with I⁻ in Aqueous Solution *J. Phys. Chem.* **1988**, *92* (*23*), 6610 – 6615; DOI: 10.1021/j100334a026

⁸² Silberrad, O. IX.—The Constitution of Nitrogen Iodide. *J. Chem. Soc., Trans.* **1905**, *87*, 55 – 66; DOI: 10.1021/jp0567873

⁸³ Sorum, C.H.; Charlton, F.S.; Neptune, J.A.; Edwards, J.O. pH Change as an Index of Reaction Mechanism *J. Amer. Chem. Soc.*, **1952**, *74*(*1*), 219 – 221, DOI: 10.1021/ja01121a056

⁸⁴ Cybulskis, V.J.; Ribeiro, F.H.; Gounder, R. Using a Hands-On Hydrogen Peroxide Decomposition Activity To Teach Catalysis Concepts to K-12 Students *J. Chem. Educ.* 2016, *93* (8), 1406 – 1410 DOI: 10.1021/acs.jchemed.5b00946
 ⁸⁵ Marzzacco, C.J. The Enthalpy of Decomposition of Hydrogen Peroxide *J. Chem. Educ.* 1999, *76* (11), 1517 – 1518; DOI: 10.1021/ed076p1517