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Elephant’s toothpaste used as a qualitative demonstration of rate vs. temperature 

Ben Ruekberg* and David L. Freeman 

University of Rhode Island 

Chemistry Department 

Kingston, RI 02881 

bruekberg@uri.edu 

 

ABSTRACT 

The popular elephant’s toothpaste demonstration can be used to demonstrate the effect of 

temperature on reaction rate qualitatively.  Our version is designed for simplicity of execution 

and to require little class time.  Two runs of the reaction are performed at easily achieved 

temperatures (ice and ambient), the latter being approximately three times as fast. The 

reaction behind the demonstration, the iodide-catalyzed decomposition of hydrogen peroxide 

(along with some complicating side-reactions), are discussed in some detail. 
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KEYWORDS 

Audience: High School/Introductory, First Year Undergraduate/General Chemistry 

Domain: Demonstrations  

Topic: Kinetics, Mechanism of reactions 

 

INTRODUCTION 

This demonstration is intended as an easily performed qualitative demonstration of the effect 

of temperature on reaction rate.  The effect of temperature is one aspect of reaction kinetics 

(an important topic in chemistry1, 2) comprising the interrelated topics of collision theory,3 

transition state theory,4 activation energy,5 potential-energy diagrams,6 the Arrhenius 

equation,7 - 9 and the Maxwell-Boltzmann distribution.10 - 12  The elephant’s toothpaste 

demonstration and the iodide-catalyzed decomposition of hydrogen peroxide, which drives it, 

are widely used to illustrate or study a variety of topics13 including catalysis,14, 15 rate laws,14, 16, 

17 heat of reaction,6, 16 and activation energy,14, 18, 19 among others.19, 20  The elephant’s 

toothpaste demonstration can be easily adapted to illustrate the effect of temperature on 

reaction rate qualitatively, but vividly.  The effect of temperature change on reaction rate is the 

subject of many experiments1, 2, 6, 14, 18, 21 - 36 and relatively few lecture demonstrations.32, 37 - 45  

The demonstration described here, is designed to meet several goals:   

• Easily performed 

• Suitable for a large class 

• Easily seen and interpreted 

• Use simple apparatus and easily achieved temperature control 

• Reasonably safe 
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• Qualitative 

• Engaging  

• Performed in five minutes or less 

For instructors with similar restrictions, this demonstration may be more suitable than other 

demonstrations which may be difficult to interpret,38 use or produce hazardous materials,39, 41, 45   

require a long time,39, 41 be unsuitable for a large class,37, 41, 43 involve complicated apparatus,32 

or require precise temperature control.37, 40, 41   

Instructors need not go into detail about the reaction mechanism which, as discussed below, is 

generally oversimplified.  Rather, it can be presented as the iodide-catalyzed decomposition of 

hydrogen peroxide into water and oxygen.  The oxygen is captured in bubbles by added 

detergent or other surfactant, much in the way carbon dioxide is captured by detergent in the 

familiar vinegar-baking soda volcano.46  The rate of the reaction is reflected in the time required 

for the oxygen foam to rise from the 100 mL mark to the 500 mL mark in a 500 mL graduated 

cylinder.  One or more students can be asked to time it. 

DEMONSTRATION 

A 500 mL graduated cylinder, with a magnetic stir bar, is charged with 20 mL of 14 % w/w 

hydrogen peroxide  (40 ml of 36 % hydrogen peroxide diluted to 100 mL) and 10 mL of 

detergent solution.  The mixture is stirred for a few minutes, as it will be throughout the 

reaction. (The solution should be made basic and stirred rapidly, as discussed below.)  Then, 

20 mL of a freshly-prepared solution of potassium iodide (10 g per 100 mL) is added.  It is 

helpful to have a tub immediately underneath the graduated cylinder to catch the foam that 
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overflows the graduated cylinder.  The use of laundry and dishwashing detergents have 

disadvantages.  They are found to be acidic (See discussion below.), or contain dyes which may 

react with hydrogen peroxide, or leave stubborn residue on the glassware.  A solution of 1 g of 

Alconox in 100 mL of solution works quite well.  See Supporting Information for details. 

A low temperature run is performed identically, except that the graduated cylinders with the 

hydrogen peroxide and detergent mixture and with the potassium iodide solution have both 

been cooled in ice-baths for approximately 20 minutes before mixing. (The ice bath for the 

500 mL graduated cylinder, if sufficiently large, will serve to receive overflow.)  The contrast 

between the two runs is better emphasized if the low temperature run is done first, in that the 

ambient temperature run goes about three times as fast.  Both runs can be performed in five 

minutes or less total.  Each run should use different 500 mL graduated cylinders.47  The 

demonstration has been well-received by the classes of chemistry students for whom it was 

performed.  The demonstration is similar to, but more easily performed than, a previously 

published method.15  Figure 1 is a photograph taken after the demonstration.  The graduated  

Figure 1.  A photograph taken after the demonstration to lecture class 
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cylinder on the right is the low temperature run, which is completed before beginning the high 

temperature run (the large graduated cylinder on the left).  The high temperature run produced 

500 mL of foam and its overflow in the same time that low temperature run produced only its 

overflow. This shows that the high temperature run goes faster. 

HAZARDS 

If the concentrations and amounts of hydrogen peroxide, potassium iodide and Alconox called 

for in this article are used, the reaction should proceed at a safe rate.  Nonetheless, proper 

precautions are in order.  Splash goggles, a lab coat, closed shoes, and nitrile gloves should be 

worn. Demonstrators should review safety guidelines48 - 50  and Safety Data Sheets of the 

materials they use.  Hydrogen peroxide and iodine (which may be produced55, 56 ) are oxidizing 

agents, corrosive, and cause severe burns skin and eyes.  Oxygen will, and hydrogen peroxide 

and iodine may, be present in the foam, which should be treated accordingly.  Hydrogen 

peroxide may cause fire in contact with other materials and may cause cancer.  On 

decomposition, hydrogen peroxide produces oxygen which will accelerate combustion and this 

effect is important when oxygen lingers in clothing.   Iodine is toxic.  The American Conference 

of Governmental Industrial Hygienists (ACGIH) set the short term exposure limit (STEL) for 

iodine vapor at 0.1 ppm.  At 25 ⁰C, the vapor pressure of iodine is 0.305 mm Hg (4,010 ppm). 

Recalling the exothermicity of the decomposition of hydrogen peroxide, the vapor pressure of 

iodine (in mm. Hg) as a function of temperature, between 273 K and 328 K, can be summarized 

as ln[vapor pressure (mm Hg )] ≈  0.000002503 T3 − 0.002555 T2 + 0.9398 T − 120.6.51  

The demonstration should be conducted in a well-ventilated environment, such as a fume 

hood.  Contact of eyes and skin with potassium iodide should be avoided.  Potassium iodide 
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irritates mucus membranes.  Universal Indicator is flammable, and, while the SDS may not 

indicate carcinogenicity, it contains phenolphthalein which was considered sufficiently 

carcinogenic to be removed from Ex-Lax and Feen-A-Mint, OTC laxatives, in 1997.  Alconox 

causes skin irritation and severe eye irritation and damage.  The decomposition of hydrogen 

peroxide is highly exothermic and the graduated cylinder and solution become quite hot.55 Take 

care not to touch the cylinder during, or soon after, the reaction and then handle with caution. 

DISCUSSION 

Immediately before the potassium iodide solution is added and afterwards, the material should 

be stirred as rapidly as practical.  Rapid stirring ameliorates the apparent rate-retarding effect 

attributed to oxygen supersaturation.52 

It is useful to understand what is taking place in the examples instructors use.  To this end, the 

basic reaction, as well as complicating side reactions are discussed.  Although this 

demonstration comprises some imperfectly understood reactions, a reasonable examination 

follows.   

The commonly-presented mechanism for the iodide-catalyzed decomposition of hydrogen 

peroxide is a two-step reaction (Reactions 1 and 2)53, 54 for an acidic solution.  All materials, 

except oxygen, are in aqueous solution. 

H2O2  + I-  + H+  →  HOI  +  H2O       (1) 

HOI  +  H2O2  →  H2O  +  O2  +  I-  +  H+       (2) 

In a basic medium, these reactions become 
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H2O2  + I- →  HOI  +  OH-  → OI-  +  H2O      (1') 

OI- + H2O2 →  H2O  +  O2  +  I-          (2') 

This mechanism is an oversimplification because, among other things, iodine, I2, is produced 

during the reaction,55, 56 something which neither of the above mechanisms explains.  

Nonetheless, reactions 1’ and 2’ suffice for instructors who follow our recommendation of 

performing the demonstration at pH 9.   

Iodine production can be thought to arise from materials present during the reaction (Reaction 

3), as well as from disproportionation of HOI (Reaction 4),57 although the expected low 

concentration of HOI makes disproportionation seem unlikely.    

I-  +  HOI →  I2  +  OH-         (3) 14, 58 

3 HOI → HOIO + I2 + H2O        (4) 58 

The presence of iodine complicates matters in two ways.  First, it means the decrease of the 

concentration of the iodide catalyst.  Since iodine and iodide can combine to form the triiodide 

ion (Keq ≈ 700),59 which “does not react directly with hydrogen peroxide,”59 the amount of 

iodide catalyst is further lowered.   The iodine can also volatilize from the solution.  Second, it 

may open (or widen) a bridge to the Bray-Liebhafsky oscillatory reaction.  The skeleton 

mechanism of this reaction has been simply summarized60 as Reactions 5 and 6. 

I2  + 5 H2O2  → 2 IO3
-  +  2 H+  + 4 H2O       (5) 

2 IO3
-  + 5 H2O2  +  2 H+  →  I2  +  5 O2  + 6 H2O     (6)            
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While Reactions 5 and 6 can be seen to produce the same amount of oxygen per hydrogen 

peroxide as Reactions 1 and 2, they, nonetheless, introduce an alternative overall reaction and 

rate.  Further, the mechanism of the Bray-Liebhafsky reaction is not clearly understood.61  A 

long list of possible reaction steps and intermediates have been suggested to be involved in the 

reaction,61 some involving radical species62 - 67 and some not. 57, 60, 68, 69  A radical mechanism63, 

67   provides a pathway for iodine’s participation in the Bray-Liebhafsky reaction.  (Radical 

participation has been proposed for the iodide-peroxide reaction as well.70)  Some proposed 

mechanisms of the Bray-Liebhafsky reaction invoke the production of singlet oxygen.60, 61, 64  

The above illustrates the complexity the Bray-Liebhafsky reaction could introduce.  The 

decomposition of hydrogen peroxide by iodine, itself, involves a complex set of reactions.71  If, 

indeed, molecular iodine is key to such pathways, a way to suppress iodine production before 

the boundaries are breached would seem worthy of investigation.   

A side reaction (Reaction 7) of the iodide-catalyzed decomposition of hydrogen peroxide bears 

closer scrutiny.  The side reaction is yet another example of a reaction that although “studied  

2 H+  +   H2O2  + 2 I−   →   I2  +  2 H2O       (7) 

for at least a century the detailed reactions involved in the mechanism are still not clearly 

understood.”72  Nonetheless, for a mixture of hydrogen peroxide and iodide, as in the hydrogen 

peroxide iodine-clock reaction,5, 14 it is found that at low pH, no oxygen is produced as the 

oxidation product (only I3
-).  “The complete transformation [sic] of iodide into iodine, [by 

Reaction 7]… is possible at sufficiently high concentration of hydrogen ion….”73  It is clearly seen 

that in acid (pH 4.7) medium there is stoichiometric oxidation of I- into I3
− by H2O2 … without 
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oxygen formation.”72  At sufficiently high pH, oxygen is produced and the production of I3
- 

greatly reduced in that the reaction, Reaction 7, of iodide, hydrogen ion and hypoiodous acid 

has a rate constant of 1.3 × 1010 M-2s-1.72  This suggests that there is a pH-dependent 

competition between I- and H2O2 for the HOI (or OI-) formed.72, 74   The effect of pH on this 

competition is amplified by the fact that the reaction of OI- with H2O2 (or HOO- with HOI) to 

produce oxygen is 105 to 107 times faster than the reaction of HOI with H2O2.72 (Perrin75 lists the 

pKa of hydrogen peroxide as 12.11 – 12.23 at 0 ⁰C, 11.92 at 10 ⁰C, 11.81 at 20 ⁰C, 11.34 at 35 ⁰C 

and 11.21 at 50 ⁰C and the pKa of hypoiodous acid as 12.4 at 20 ⁰C, 9.7 at 22 ⁰C, and 10.64 at 25 

⁰C.)  This pH dependence is consistent with Wright and Reedy’s data.76 They gave ranges of 

time for a clock reaction to reach the starch-iodine endpoint when performed at a series of pHs.  

While Wright and Reedy specified that the concentrations of the reducing agent (vitamin C, 

0.0005 moles), hydrogen peroxide, starch and iodine were held constant, they did not specify 

the temperature at which the reactions were run and the buffers, of which the same volumes 

were used in all of these experiments, were only identified as “commercially available.”  For the 

six pHs in the range from 4 to 9, curve-fitting of the inverse of the maxima of each time range 

(the lowest rates) versus pH gave the best correlation.  (Since no endpoint was reached at pH 

9—“At pH 9 there is no more  I3
− formation….”72—, the time for pH 9 was taken as infinity, that 

is, a rate of zero.)  This is shown in Figure 2. The increase of rate with increase of pH (for the 

first four points) may be attributable to the finding that 
−d[H2O2]

dt 
 ∝  1 aH+

2⁄  ,59 since the 

consumption of hydrogen peroxide, Reaction 1, is the rate-determining precursor to iodine 

production,77 Reaction 3.  The decrease in the rate of iodine production (in the last three points) 

may be attributed to the increased concentration of IO- or HOO- which react with H2O2 or HOI, 
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rate = -0.00143659 (pH)3 + 0.02258984 (pH)2

- 0.10661880 (pH) + 0.17683639
R² = 0.99892772
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respectively, producing oxygen rather than iodine.  The maximum of the plot reflects the 

transition of dominance between iodine and oxygen production from the hypoiodous species.   

Figure 2.  Rate (1/time to consume 0.0005 moles of ascorbic acid) vs pH for Wright and Reedy’s 

iodine-clock reaction 

 

 

 

 

 

Applying the quadratic formula to the first derivative of equation of the curve yielded a 

maximum at pH 6.9 for a hydrogen peroxide to iodide ratio of 3.6:1.  (Corresponding plots of 

1/midrange and 1/minimum versus pH had R2 = 0.9965, with the maximum at pH 6.9 and R2 = 

0.9917, with a maximum at pH 6.8, respectively.)  

Examination of Hansen’s data for reaction rate, as measured by oxygen production, versus 

potassium iodide concentration (in his Figure 4 or Table 2)78 show a downward curvature with 

increasing iodide concentration, rate (atm/s) = -0.009275 [KI]2 + 0.01583 [KI] – 0.0002203 for 

[KI] = 0.100 to 0.400.   The decrease in rate increase with increased iodide concentration is 

consistent with increasing success in competition for hypoiodous acid (or hypoiodite) by iodide 

as its concentration increases.  Similarly, Hernando, Laueruta, Kuijl, Laurin, Sacks, and Ciolino’s 

plot of rate versus hydrogen peroxide concentration (Figure 3)20 appears to have an upward 
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y = 0.1055x - 2.7661
R² = 0.9938

y = 0.0006x2 + 0.0292x - 0.3652
R² = 0.9978
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curvature with increasing hydrogen peroxide concentration (approximately, rate (mL/second) = 

0.0006 (V/V% H2O2)2 + 0.0306 (V/V % H2O2) - 0.4178), reflecting the increasing success of 

hydrogen peroxide in that competition. 

Figure 3.  Comparison of linear vs. quadratic fit to rate vs. concentration data 

 

 

 

 

 

 

High pH is not enough to completely obviate iodine production.  Evans and Upton found that 

0.4 % of the oxygen produced by iodide-catalyzed decomposition of hydrogen peroxide is 

singlet oxygen.79  Kepka and Grossweiner found that singlet oxygen readily oxidizes iodide, with 

ΔF0 ≈ -30 kJ/mole and with a measurable rate constant.80 The mechanism of this oxidation is 

discussed by Braathen, Chou, and Frei81 who found the rate constant for the formation of I3
− to 

be equal to the rate constant of O2( ∆1  ) decay which they found to be (8.7 ± 0.2) ×

105L mol−1s−1. 

Variations in the procedure might increase student interest.  The addition of universal (pH) 

indicator to the two solutions, which can be adjusted to pH 9 with sodium hydroxide or 

potassium hydroxide, not ammonium hydroxide (Iodine, if produced, can react with ammonia 
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to form “nitrogen triiodide,” which is explosive.82), which will obviate significant iodine 

production.  Although running the reaction at pH 9 does not show dramatic pH change during 

the production of 500 mL of foam, as with thiosulfate present (as Sorum et al. found; see their 

Figure 5.)83 a gradual drop in pH of about two units can be observed.  The indicator will give a 

colored solution which may increase the visibility of the foam.  (Note that the effect of 

thiosulfate would be to increase the induction period and cause pH fluctuation, but not 

ultimately interfere with iodine production.)   Instructors may wish to experiment with other 

initial pHs.  Another alternative would be to lower the hydrogen peroxide to iodide ratio and to 

add starch.  When, toward the end of the reaction, enough hydrogen peroxide would be 

consumed (the iodide concentration being maintained by Reaction 2’) iodide could successfully 

compete for hypoiodous acid to form iodine.  This would result in a clock reaction-like color 

change.  Clearly, instructors may change the foam volume difference to be timed, as well as 

quantities of materials to accommodate time restrictions or other exigencies.  

Reactions 1 and 1’ are rate determining and have different activation energies:77 Eak
1′

=

56.07 kJ/mole and Eak1
= 43.72 kJ/mole.  This means that the apparent Ea will be pH-

dependent and, as a result, so will the change in rate with change in temperature.  This pH-

dependence may, in part, account for the differing values found for Ea in student laboratory 

experiments.14, 18, 19 

CONCLUSION 

The Elephant’s Toothpaste demonstration can be used to demonstrate the effect of 

temperature on reaction rate.  While the mechanism of the reaction behind this demonstration 
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is commonly given as a two-step reaction, it cannot account for the acknowledged by-product, 

iodine or triiodide.  The possible complexity giving rise to and, consequently, arising from the 

production of iodine or triiodide has been outlined, amply illustrating the desirability of giving 

students a simplified discussion of the mechanism, if any.  Nonetheless, we feel that it is 

desirable that, should students ask questions, instructors be aware of this complexity and 

controversy and have access to relevant reference materials (sampled here).  Among the 

complications comprised by the demonstration are the opposing effects on the (first order in 

hydrogen peroxide) reaction rate of diminishing reactant concentration resulting from the 

reaction’s progress and the increase in temperature, absent temperature control, caused by the 

reaction’s high exothermicity,6, 19, 55, 84, 85  ΔH ≈ -94.6 kJ mol-1, 85  to  -98.2 kJ mol-1. 84    
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