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A. Mesh Generation 

The procedure of meshing involves definition of free mesh for the matrix cube with the embedded 

inclusions (here, fibers). The periodic unit cell geometry comprises a cubic boundary with embedded 

inclusions. The meshing procedure culminates in a conformal tetrahedral mesh (with mappable nodes on 

opposite faces) in the periodic unit cell thus facilitating PBC application. A brief outline of the technique 

is mentioned herewith. The sequential process initiates with generation of a periodic surface mesh on each 

face of the cube. Thereafter, a surface mesh is generated on each inclusion followed by construction of a 

tetrahedral volume mesh inside the inclusion. Having generated the periodic surface mesh on the cube and 

the inclusion surface, a volume mesh is generated around every inclusion and the cube by inverting the 

orientation of the inclusion surface mesh triangles. The volume meshes thus generated (one inside the fiber 

and the other between the inclusion and the cube) are united to form a conformal mesh. For the generation 

of cohesive elements at the interface of the inclusions and the matrix, the coordinates of the nodes on the 

surface of the inclusions are duplicated followed by a renumbering of nodes which are further connected to 

form elements with zero thickness. Needless to mention, the shape of the cohesive element is triangular 

(with a constant thickness initially zero) for ensuring compatibility with the tetrahedral mesh of the fibers 

and matrix surrounding it. The procedure for generation of surface meshes and subsequent volume meshes 

followed by the union is illustrated in a flowchart (See Figure A.1) and described hereafter. 
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Figure A.1. Meshing procedure adopted for inclusion-matrix periodic unit cells 

The first step involving generation of surface meshes on each face of the periodic unit cell initiate with 

periodic distribution of nodes on the edges of each of the base-faces of the cube (one face per XY,XZ and 

YZ planes) which are appropriately translated to construct the opposite faces (along XY, YZ and XZ planes) 

of the cube. The second step of generating surface mesh on the inclusion surface is constructed by defining 

nodes on the lateral surface and the faces of the inclusions (for cylindrical fibers as adopted in the current 

study). The third step generates a volume tetrahedral mesh inside each inclusion with respect to the surface 

mesh. The fourth step involves renumbering of the nodes on the surface of the inclusion so as to invert the 

orientation of the triangles of the surface mesh on the inclusion with respect to the volume mesh inside the 

inclusion. With the reoriented inclusion surface mesh, a volume mesh is generated in the region between 

each inclusion and the cube. The final step ensures compatibility of the two sets of volume meshes (one set 

inside the inclusion and the other set in the region between the inclusion and the cube) at their shared 

boundary which is achieved by consecutive renumbering of nodes on the surface of the inclusion (which 

are shared by both sets of volume meshes) followed by the renumbering of nodes inside each inclusion; 

thus producing a conformal volume mesh with appropriate connectivity of nodes. The meshing procedure 

is summarized in a flowchart (See Figure A.1). Having obtained the conformal mesh, the PBC are applied 

on the unit cell. Towards that end, three sets of nodes are extracted. This is required to prevent over 

constraining of shared nodes (note that edge nodes are shared by adjacent faces while vertices are shared 

by orthogonal edges). The sets of nodes are as follows. First set: vertex nodes (8 in number for cubic cells), 

second set: edge nodes for each of the 8 edges on the cell and third set: nodes on each of the 6 faces. The 

second and third sets are further categorized as per their orientations (parallel to x, y and z directions). In a 

manner similar to the first step of mesh generation, the base-faces (along XY, XZ and YZ planes) are 
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constrained to the opposite faces for a trivial application of PBC. The constraint equations can be found in 

[1,2]. It is to be noted that definition of reference points (distinct from the geometry) facilitates the 

application of the PBC whereby the displacements can be applied on the reference points. A similar 

methodology of conformal mesh generation is adopted for the 2x2 textile weave unit cell that generates 

tetrahedral solid elements in the yarns and the surrounding matrix with a similar PBC implementation. 

B. Mesh Convergence 

The mesh convergence studies for each scale: CNT-PSS scale, GF-epoxy unit cell and 2x2 tow-matrix unit 

cell are shown in Figures B.1(a), (b) and (c) respectively.  

For the CNT-PSS unit cell, Figure B.1(a) shows the effect of element size on the homogenized stress-strain 

behavior. The sizes of the elements are chosen with respect to the mean fiber diameter. In order to capture 

the geometry of the fiber, the size of the elements are chosen below 0.8Rf (where Rf is the radius of the 

fiber). From Figure B.1(a), it can be observed that choosing an element size below 0.2Rf causes insignificant 

change in results. The corresponding number of elements are 1642270. 

 

For the glass fiber-PSS matrix unit cell, Figure B.1(b) shows the variation of computed effective properties 

with the number of elements. An element size is chosen to adequately represent the geometry (upper limit 

being 0.8Rf). From Figure B.1(b), it can be observed that the optimum number of elements lies beyond 

3x105. Thus, the chosen element size is 0.25Rf  that generates 331836 elements. 

For the 2x2 weave unit cell, Figure B.1(c) shows the homogenized stress-strain behavior for the 2x2 weave 

unit cell with different number of elements (Nelem). The chosen element size for the mesh is governed by 

the thickness of the unit cell (note that each yarn is 0.12mm thick). The matrix pockets between adjacent 

tows and the regions of crossovers govern the minimum element size. The mesh convergence study (see 

Figure B.1(c)) shows the optimum element size as 0.022 mm that generates 2223642 elements. Further 

refinement increases computational burden without significantly affecting results. 



 

Figure B.1. Mesh convergence studies for (a) CNT-PSS unit cell [stress-strain response for different 

element sizes wrt Rf: mean radius of fiber] (b) Glass fiber-PSS unit cell [computed effective properties vs 

number of elements] and (c) 2x2 weave unit cell [stress-strain response for Nelem: number of elements] 

C. RVE size sensitivity study for CNT-PSS nanocomposite 

In order to generate a representative unit cell for the CNTs randomly dispersed in PSS, an RVE size 

sensitivity study for the same is carried out. This ensures that the RVE sizes are large enough for adequate 

representation of features. It is to be noted that the volume fraction of the fibers being fixed at 0.038, a 

larger RVE size accommodates a higher number of inclusions to achieve that fixed volume fraction. 

Additionally, the volume fraction of CNTs in the study is adopted as per the experimental procedure and is 

higher than the percolating volume threshold of 0.028. Towards establishing the adequate RVE size, ten 

RVEs are generated for every RVE size. Thereafter, uniaxial tension simulations are carried out along each 

of the orthogonal directions to calculate the homogenized Young’s modulus for every combination. Figure 

C.1 shows the variation of the predicted properties with RVE size (edge length of cubic RVE). It can be 

observed that the fluctuations represented by error bars are high for RVEs of smaller sizes which eventually 

die out with a sufficiently large RVE size. Additionally, the directional properties converge for RVE sizes 

>= 300nm. Thus, the chosen RVE size is 300nm for adequately capturing the isotropic behavior of the 

CNT-PSS nanocomposite. The chosen size invokes a trade-off between computational expense and 

prediction efficiency. 
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Figure C.1 Influence of RVE size on the predicted E11, E22 and E33 along orthogonal directions for 

CNT-PSS nanocomposite 

D. Software and Tools 

The FE solver ABAQUS™ is used to carry out the computations. Custom pre-processors are coded in 

Python to generate RVEs for CNT-PSS and GF-PSS unit cells. Python API with FreeCAD is used to 

generate the geometries in Parasolid format which can be imported to ABAQUS CAE. A python 2.7 script 

in ABAQUS imports the geometry, inserts boundary triangles, generates volume meshes for every part and 

implements cohesive interactions. Constraints enforcing PBC and ties are generated as well. The generated 

odb are analyzed by a post-processor coded in Python. For the 2x2 textile, TexGen© GUI (powered by 

Python 2.7) is used to generate a 2x2 weave unit cell which is exported as a volume mesh with periodic 

conditions. The element positions and orientations (also exported from TexGen) are used to define local 

material orientations (note that warp and weft yarns are orthogonal to each other while the fiber bundle has 

distinct axial, transverse and out-of-plane material properties). Constraints and suitable BCs are thereafter 

implemented. The simulations are run from ABAQUS Command and the generated odb are analyzed. The 

material models for ABAQUS are coded in FORTRAN as user defined subroutines. The interpolation maps 

for translating mechanical responses to strain-induced electrical property inputs are generated in MATLAB. 

This facilitates an multi-physics based implementation of piezoresistive behavior. 
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