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Abstract: Advanced onsite wastewater treatment systems (OWTS) use biological nitrogen removal
(BNR) to mitigate the threat that N-rich wastewater poses to coastal waterbodies and groundwater.
These systems lower the N concentration of effluent via sequential microbial nitrification and
denitrification. We used high-throughput sequencing to evaluate the structure and composition of
nitrifying and denitrifying bacterial communities in advanced N-removal OWTS, targeting the genes
encoding ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) present in effluent
from 44 advanced systems. We used QIIME2 and the phyloseq package in R to examine differences
in taxonomy and alpha and beta diversity as a function of advanced OWTS technology, occupancy
pattern (seasonal vs. year-round use), and season (June vs. September). Richness and Shannon’s
diversity index for amoA were significantly influenced by season, whereas technology influenced
nosZ diversity significantly. Season also had a strong influence on differences in beta diversity among
amoA communities, and had less influence on nosZ communities, whereas technology had a stronger
influence on nosZ communities. Nitrosospira and Nitrosomonas were the main genera of nitrifiers in
advanced N-removal OWTS, and the predominant genera of denitrifiers included Zoogloea, Thauera,
and Acidovorax. Differences in taxonomy for each gene generally mirrored those observed in diversity
patterns, highlighting the possible importance of season and technology in shaping communities of
amoA and nosZ, respectively. Knowledge gained from this study may be useful in understanding the
connections between microbial communities and OWTS performance and may help manage systems
in a way that maximizes N removal.

Keywords: onsite wastewater treatment systems; amoA; nosZ; nitrification; denitrification; biological
nitrogen removal

1. Introduction

Nitrogen pollution from wastewater poses a serious threat to surface and groundwater in coastal
watersheds. Advanced onsite wastewater treatment systems (OWTS)—designed specifically to remove
N from wastewater—are often required in areas vulnerable to excess N inputs [1]. These technologies
vary in their design, but they all have an oxic zone to facilitate nitrification and an anoxic/hypoxic zone
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for denitrification (Figure A1). Autotrophic microorganisms are primarily responsible for nitrification,
in which ammonia is first oxidized to nitrite by ammonia-oxidizing bacteria (AOB), and nitrite is then
oxidized to nitrate by nitrite-oxidizing bacteria. Several other pathways (e.g., anaerobic ammonia
oxidation (anammox)), and groups of organisms (e.g., ammonia-oxidizing archaea (AOA)) may also be
involved in nitrification [2,3]. However, AOB are believed to be primarily responsible for ammonia
oxidation in wastewater treatment settings [4]. Facultative anaerobic heterotrophic bacteria are thought
to carry out denitrification [5]. The effluent is discharged to a soil treatment area (STA), which provides
a final opportunity for treatment before it enters the surrounding environment.

Advanced N-removal OWTS are generally expected to meet certain regulatory standards.
For example, in Rhode Island, the Department of Environmental Management (RIDEM) requires that
the total N (TN) concentration in final effluent must not exceed 19 mg TN/L [6]. A similar standard is
also used in other areas, including Barnstable County, MA, USA and Suffolk County, NY, USA [7,8].

The capacity of these systems to meet effluent total N standards differs among advanced N-removal
technologies. Oakley et al. [5] found that 19 out of 20 advanced N-removal OWTS technologies were
less than 50% likely to produce effluent with <10 mg TN/L. More recently, Lancellotti et al. [9] found that
only 64 to 75% of advanced N-removal OWTS in the Greater Narragansett Bay watershed complied with
the RIDEM regulatory standard of 19 mg TN/L, with compliance rates varying among technologies.
Advanced technologies also differ in greenhouse gas (GHG) emissions, which represent the end
products of microbial activity associated with carbon and N removal [10,11]. These differences among
technologies may be associated with differences in the composition and structure of the microbial
communities that drive wastewater treatment.

The microbial communities of wastewater treatment plants (WTPs) with biological N removal
(BNR), which rely on the same processes as advanced N-removal OWTS to remove N from wastewater,
have been studied extensively in an attempt to assess the relationship between a number of variables,
including system design, geography, temperature, and other effluent properties, and N-cycling
microbial communities [4,12–16]. Similar to WTPs, microorganisms play a critical role in the N-cycling
processes facilitated by advanced N-removal OWTS. However, despite their reliance on nitrifiers
and denitrifiers, few studies have investigated these microbial communities in advanced N-removal
OWTS. In studies conducted within the Greater Narragansett Bay watershed, Brannon et al. [10]
assessed the size of nitrifying and denitrifying microbial communities in BNR WTPs and advanced
N-removal OWTS, and Wigginton et al. [17] analyzed the abundance, structure, and composition of
these communities in advanced N-removal OWTS. Both studies targeted the functional genes amoA
(encodes for ammonia monooxygenase, which carries out the first step in ammonia oxidation) and nosZ
(encodes for nitrous oxide reductase, which reduces nitrous oxide to dinitrogen gas). These studies
found that OWTS technology, component type (oxic vs. anoxic), and time of year can affect gene
abundance. Wigginton et al. [17] observed no differences in richness and Shannon’s diversity among
technologies or between zones for nitrifying or denitrifying communities. However, they did find
significant geographical and temporal differences in the structure and composition of nosZ communities.
Further investigations specifically targeting the microbial communities in advanced N-removal OWTS
may help elucidate the currently understudied mechanisms and driving factors of N removal in
these systems.

To better understand the structure and composition of nitrifying and denitrifying communities
and the factors that affect these, we investigated the bacterial communities of 44 advanced N-removal
OWTS in the town of Charlestown, Rhode Island, USA. This is one of the first studies to investigate the
microbial communities of advanced N-removal OWTS. We used primers targeting the genes amoA
and nosZ and high-throughput sequencing to characterize alpha (species richness and Shannon’s
diversity index) and beta diversity and taxonomy as a function of technology, occupancy pattern,
and season. Although the presence of these genes in effluent does not guarantee gene expression,
we targeted functional genes to assess the potential for bacterial nitrification and denitrification in
advanced N-removal OWTS. We sampled final effluent from four different advanced N-removal
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technologies: Orenco Advantex® AX20 (Orenco Systems, Sutherlin, OR, USA), Orenco Advantex®

RX30 (Orenco Systems, Sutherlin, OR, USA), BioMicrobics MicroFAST® (BioMicrobics, Inc., Lenexa,
KS, USA), and Norweco Singulair® models DN, TNT, and 960 (Norweco, Norwalk, OH, USA).

We also investigated occupancy pattern as a potential source of variation in microbial communities.
Like many coastal towns in New England, Charlestown, RI has year-round residents, as well as residents
who occupy their homes only during the summer months, whose OWTS receive no wastewater inputs
for approximately eight months. This dichotomy prompted us to examine whether occupancy pattern
influences the structure and composition of OWTS microbial communities. Because they receive no
effluent inputs between September and May, the microbial communities in seasonally-used systems
may take some time to get re-established at the beginning of the summer, which may alter community
structure and composition between June and September. Finally, we expected differences in effluent
communities between June and September in year-round systems, possibly due to changes in household
demographics associated with the summer season in this area.

By narrowing the geographic range of the study systems, we expected to improve our ability to
detect differences as a function of technology, use pattern, and season that may be overshadowed
by geography, which Wigginton et al. [17] found to partially drive community differences. The sites
studied by Wigginton et al. [17] were located in six towns within the Greater Narragansett Bay
watershed, covering an area of 855 km2, nearly six-fold larger than Charlestown, which has an area of
154 km2.

2. Materials and Methods

2.1. Study Systems

We sampled final effluent (prior to dispersal to the soil treatment area (STA)) in June and
September 2017 from four different N-removal OWTS technologies in Charlestown, RI, USA: (i) Orenco
Advantex® AX20, (ii) Orenco Advantex® RX30, (iii) BioMicrobics MicroFAST®, and Norweco
Singulair® (models TNT, 960, and DN). Detailed descriptions of each technology can be found
in Appendix A. Sampling in June (early summer) and September (early fall) allowed us to identify
seasonal shifts in OWTS microbial communities. We sampled a total of 44 systems: 23 systems
served homes occupied year round, while 21 systems served seasonally-occupied homes. The specific
criteria used for determining home occupancy pattern can be found in Ross et al. [18]. All sites
were single-family homes that rely on well water as their potable water source and had an advanced
N-removal OWTS that uses a pressurized pump to discharge effluent to the STA. Sites were selected
based on adherence to these criteria and the homeowners’ willingness to participate in this study.
Table A1 has a summary of effluent properties for June and September 2017.

2.2. Sample Collection

We sampled final effluent from the Advantex systems at the recirculating splitter valve assembly,
while the FAST and Norweco systems were sampled from the STA pump basin. A grab sample was
collected into an autoclaved, 250 mL plastic bottle and stored at 4 ◦C until transported to the laboratory
(within 8 h of sampling). Within 24 h of sampling, ~100 mL of sample was vacuum filtered to pass a
sterile nitrocellulose membrane filter with a pore size of 0.45 µm (MilliporeSigma, Burlington, MA,
USA), and the filter stored in individual sterile Whirl-Pak bags (Uline, Pleasant Prairie, WI, USA) at
−80 ◦C until analysis.

2.3. Sample Processing

Genomic DNA was extracted from each membrane filter using the PowerWater DNA Isolation
Kit (MoBio Laboratories, Waltham, MA, USA). Gene fragments for nosZ and amoA were amplified
using polymerase chain reaction (PCR) in a single, 50 µL reaction using the primer pairs nosZ 1F
and nosZ 1662R, and amoA 1F and amoA 862R [12,17]. Reactions for nosZ amplification contained
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1.25 µL of extracted DNA template, 25 µL of BIO-X-ACTTM Short Mix (Bioline, Taunton, MA, USA),
21.75 µL of water, and 1 µL of nosZ forward and reverse primers. Thermocycler conditions for nosZ
amplification were as follows: an initial denaturation at 94 ◦C for 4 min, followed by 35 cycles of
94 ◦C for 1 min, 61 ◦C for 1 min, and 72 ◦C for 1 min, with a final extension at 72 ◦C for 10 min.
Reactions for amoA amplification contained 1.25 µL of extracted DNA template, 25 µL of MyFiTM

Mix (Thomas Scientific, Swedesboro, NJ, USA), 21.25 µL of water, and 1.25 µL of amoA forward and
reverse primers. Thermocycler conditions for amoA amplification were as follows: 4 min at 94 ◦C,
35 amplification cycles (each 60 s at 94 ◦C, 60 s annealing at 58 ◦C, and 60 s 72 ◦C), and a final extension
at 72 ◦C for 5 min. After quality checking the PCR products on an ethidium bromide agarose gel,
products were sequenced using an Illumina MiSeq Next Generation Sequencer at the University
of Rhode Island Genetic Sequencing Center (Kingston, RI, USA) [17]. Additional details of DNA
extraction, PCR methods, and sample metadata can be found in Appendix A.

2.4. Downstream Analysis and Statistics

We used QIIME 2 (version 2019.10) for downstream sequence analysis, as outlined in Cox et al. [17].
After demultiplexing and quality filtering the raw forward and reverse reads using the q2-demux
plugin, we identified and removed the primer sequences for nosZ and amoA, so that the individual
gene amplicons could be analyzed. We then joined, filtered, and denoised the reads for each amplicon
with the q2-dada2 plugin. Finally, we removed chimeras and generated unique amplicon sequence
variants (ASVs). We used the number of unique ASVs as a proxy for species richness.

To assign sequence taxonomy, we followed the methods outlined in Cox et al. [19]. We created
reference databases for nosZ and amoA by downloading all FASTA sequences and associated accession
numbers from the NCBI nucleotide database for each gene. Sequence files were converted to
‘DNAFASTAFormat’ and imported into QIIME 2. We used Entrez Direct (E-utilities on Command
Line) to obtain taxonomy strings for each accession number and formatted the strings to be imported
into QIIME 2. We used the q2-feature-classifier to extract reference reads matching our PCR primer
sequences, and then used a Bayesian probability approach to train the feature classifier to identify the
appropriate taxonomy. Finally, we used the classify-sklearn command from the q2-feature-classifier
plugin to assign taxonomy to each sequenced read. In the few situations where the classifier identified
a genus that is known to not contain the gene analyzed, we removed those ASVs from our analysis.

We used the phyloseq package in R (version 3.6.2) [20] to rarefy data to the lowest sequencing depth
for each gene (914 sequences for nosZ and 163 sequences for amoA) and to calculate species richness
and Shannon’s diversity. We used a one-way ANOVA on ranks to assess differences in species richness
(based on unique ASVs) and Shannon’s diversity index among OWTS technologies for amoA, and a
one-way ANOVA to assess these differences for nosZ [20]. Because we did not have sufficient replication
of occupancy patterns for two of the technologies in the study, we grouped systems within a technology
without regard for occupancy pattern by system when assessing differences among technologies (and
subsequently grouped technologies when assessing differences between occupancy patterns). We used
a Mann–Whitney U test to assess differences in richness and Shannon’s diversity as a function of
occupancy pattern and season for amoA, for which data could not be normalized, and a paired t-test to
assess these differences for nosZ, for which data were normally distributed. Differences in beta diversity
as a function of technology, occupancy pattern, and season were determined based on Bray–Curtis
dissimilarity values and cluster analysis using Ward’s cluster method with the vegan package in R [20].
Significant clustering, as a function of technology, occupancy pattern, and/or season, was identified
using nonparametric permutational multivariate ANOVAs (PERMANOVAs) on Bray–Curtis distance
matrices using the Adonis function (with 999 permutations for each correlation) [17,19,20].
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3. Results and Discussion

3.1. amoA: Species Richness and Diversity

Species richness (the number of ASVs) for amoA across technologies, occupancy patterns,
and seasons (n = 55) ranged from 3 to 33 ASVs, with a median of 25 (Figure 1). Richness was
significantly different between seasons, with higher species richness in September than in June
(Figure 1). In contrast, there were no significant differences in richness among technologies or between
occupancy patterns. The median value of Shannon’s diversity index across all samples was 2.81
(range of 0.27—3.25). As was the case for richness, diversity indices in September were significantly
higher than in June (Figure 1). There were no significant differences in Shannon’s diversity index as a
function of technology or occupancy pattern.
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Figure 1. Median values of Shannon’s diversity index and species richness for amoA genes in effluent
from advanced N-removal OWTS in June (n = 13) and September (n = 42) across all technologies and
occupancy patterns. Box whiskers extend 1.5 × the interquartile range beyond the edges of the box and
the dots represent outliers beyond 1.5 × the interquartile range.

When we assessed differences in amoA beta diversity, e.g., differences in diversity across
communities, samples clustered significantly only by season (33% variation explained) (Figure 2),
indicating that nitrifying microbial communities in June are more similar to one another than to those in
September. This seasonal shift was apparent in OWTS nitrifying communities regardless of occupancy
pattern or technology.
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Figure 2. Principal coordinate analysis based on Bray–Curtis dissimilarity distances for amoA
communities across all advanced N-removal OWTS technologies and occupancy patterns (n = 55).

The relationship between season and amoA diversity in wastewater treatment appears to differ
at different system scales. For example, Wigginton et al. [17] analyzed effluent from 38 advanced
N-removal OWTS in the Greater Narragansett Bay Watershed and found no differences in species
richness or Shannon’s diversity indices for amoA among June, August, and September samples.
In contrast, Siripong and Rittman [13] used amoA to assess shifts in nitrifying communities in seven
WTPs as a function of season, solids retention time, and type of influent wastewater (residential versus
industrial). Season was the only variable found to influence the nitrifying communities significantly.
They observed a shift in the dominance of nitrifying species (Nitrosospira spp. and Nitrosomonas spp.)
found in the summer and winter months and suggested that season has a significant effect on selecting
for certain nitrifiers. Our results also suggest that season partly drives differences in the richness and
diversity of amoA communities in advanced N-removal OWTS. Changes in household demographics
and/or activity between the beginning and end of the summer may consistently alter the structure of
amoA communities in advanced OWTS. Charlestown is an active summer tourist destination, and the
influx of individuals who do not normally reside in Charlestown, including visitors and residents
returning home from college, may contribute novel species to OWTS microbial communities, increasing
species richness and diversity [17].

The lack of significant differences in alpha and beta diversity among technologies suggests
that nitrifying communities are consistent despite differences in treatment train design and specific
configuration for N removal (i.e., textile filters vs. aerobic treatment units). Furthermore, despite the
period of non-use that seasonally-used systems experience prior to June, similarities in community
structure observed in both seasonal and year-round systems, as well as the temporal clustering observed
regardless of occupancy pattern, suggest that the amoA communities of advanced N-removal OWTS
do not experience a lag when system operation resumes in early summer. Ross et al. [18] assessed the
performance of 50 advanced N-removal OWTS in Charlestown, RI, and found no significant differences
in performance between seasonal and year-round systems. The consistent metrics of alpha and beta
diversity exhibited by the microbial communities of both OWTS occupancy patterns may translate into
robust capacity for wastewater treatment.

3.2. nosZ: Species Richness and Diversity

Species richness across technologies, occupancy patterns, and seasons ranged from 4 to 85 ASVs,
with a median of 35 (n = 65) (Figure 3). Richness differed significantly among technologies and was
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significantly higher in RX30 systems than all other technologies, and was higher in AX20 than FAST
systems. Species richness did not differ based on season or occupancy pattern. Shannon’s diversity
index values across all samples (n = 65) ranged from 0.03 to 3.27, with a median of 1.98 (Figure 3).
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Figure 3. Shannon’s diversity index and species richness for nosZ genes for different advanced
N-removal OWTS technologies across all occupancy patterns and seasons. AX20 = Orenco Advantex®

AX20 (n = 43); FAST = BioMicrobics MicroFAST® (n = 4); NOR = Norweco Singulair® (n = 7); RX30 =

Orenco Advantex® RX30 (n = 11). Description of box-and-whisker plots can be found in Figure 1.

We observed significant differences in diversity among technologies, with values for AX20
systems significantly higher than those for FAST and Norweco systems, and values for RX30 systems
significantly higher than those for the other three technologies. In contrast, diversity did not differ
significantly based on occupancy pattern or season. Finally, when we assessed differences in beta
diversity of nosZ communities based on technology, occupancy pattern, and season, samples clustered
significantly by technology (8.2% variation explained) and season (3.0% variation explained) (Figure 4),
indicating that nosZ communities are influenced by these two factors.

Unlike amoA communities, which were only influenced by season, nosZ communities appear
to respond to differences in both technology and season. Differences in alpha and beta diversity
among technologies suggest that some aspect of treatment train design significantly influences nosZ
communities in advanced N-removal OWTS. In contrast, Wigginton et al. [17] did not observe
differences in nosZ richness or diversity among technologies. However, they did observe differences in
nosZ community structure among geographical locations, which may have occluded any differences
among technologies.

Jaranowska et al. [14] observed trends in species richness similar to ours in the nosZ communities of
nine Polish N-removal BNR WTPs that represented a broad range of design characteristics. They found
that the community structure of nosZ was significantly influenced by facility design; namely, nosZ
species richness was highest for WTPs with separate denitrification tanks compared to all other design
schemes. Although BNR WTPs and advanced N-removal OWTS differ in design, size, flow, and the
number of people served, the BNR processes they promote are the same, suggesting that the comparison
may be instructive. In our study, AX20 and RX30 systems—which had significantly higher Shannon’s
diversity than FAST and Norweco systems—rely on a textile filter and recirculation for nitrification and
subsequent denitrification of effluent, with these processes taking place in different tanks. In contrast,
FAST and Norweco systems rely on submerged fixed activated sludge and intermittent cycles of
suspended growth aeration, respectively, for N removal. The compartmentalization of nitrification
and denitrification, in conjunction with highly porous media, and recirculation of wastewater in AX20
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and RX30 systems, may increase microbial habitat available as well as the likelihood of novel species
being introduced throughout the system, thus promoting more diverse nosZ communities.Water 2020, 12, x FOR PEER REVIEW 8 of 17 
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Figure 4. Principal coordinate analysis based on Bray–Curtis dissimilarity distances for nosZ communities
in effluent from different advanced N-removal OWTS technologies across occupancy patterns (n = 65).
AX20 = Orenco Advantex® AX20; FAST = BioMicrobics MicroFAST®; NOR = Norweco Singulair®;
RX30 = Orenco Advantex® RX30.

The higher diversity and species richness exhibited by RX30 systems compared to all other
technologies also suggests that specific design differences may help shape nosZ communities. Although
RX30 and AX20 both rely on textile filters for nitrification, the orientation of those filters differs: RX30s
utilize horizontal racks of lightweight, absorbent textile pieces, while AX20s use vertical hanging textile
sheets. Because the textile filters in RX30s can become saturated due to their horizontal orientation,
the manufacturer developed the AX20 systems, in which water trickles freely down the vertically
hanging sheets by gravity, preventing saturation. Although textile filters are designed to establish oxic
conditions and promote nitrification, Wigginton et al. [17] found that denitrifiers were ubiquitously
distributed in both nitrifying and denitrifying components of advanced OWTS treatment trains,
likely due to their nature as facultative anaerobes. Thus, differences in the nitrification component of
AX20s and RX30s may promote differences in nosZ community richness. Visual inspections conducted
during the course of our research indicates that liquid and organic materials often accumulate to a
greater extent in RX30 textile filters than in AX20 textile filters. A higher concentration and diversity
of organic substrates may augment the opportunity for different denitrifying species to establish
themselves, as more niches become available within the substrates.
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System age may also drive the higher Shannon diversity and species richness observed in
RX30s relative to AX20s. Although both technologies had higher nosZ diversity than the other two
technologies, the median age of AX20s (6.8 years) was lower than that of the RX30s (11.3 years). Changes
in microbial diversity over time have been observed in many natural environments, as communities
increase in diversity until they reach a point of stability [21]. Increased time of OWTS operation
may provide a greater opportunity for new and/or different niches with unique nosZ communities to
develop—possibly through the increased accumulation of liquid and organic substrate in RX30 textile
filters—ultimately increasing species richness in these systems.

The nosZ samples clustered significantly by season, mirroring the results in Wigginton et al. [17].
Although less of the temporal variation was explained for nosZ communities (3.0%) than for amoA
communities (33%), the significant clustering suggests that time of year has some influence on nosZ
communities. Similar to amoA, differences in demographics and increased tourism activity may
introduce different and novel species to OWTS, causing the shift observed in OWTS denitrifiers
between June and September. The consistent clustering of samples by season regardless of occupancy
pattern suggests that, similar to amoA communities, communities of nosZ in seasonal OWTS require
little time for re-establishment once system use resumes at the beginning of the summer.

3.3. amoA: Taxonomy

We observed a total of 241 unique ASVs for amoA across all samples (n = 55) (Figure 5), 88 (37%)
of which could be matched with a known genus. Of these, the most common genera (based on the
number of ASVs) were Nitrosospira (78) and Nitrosomonas (8). The dominance of unidentified bacteria
containing amoA suggests that more research is required in order to describe a large portion of the
nitrifying community in OWTS. Three ASVs were not matched with any sequences deposited in the
NCBI database, suggesting the presence of three previously undescribed bacterial strains capable of
ammonium oxidation.Water 2020, 12, x FOR PEER REVIEW 10 of 17 
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Figure 5. Relative abundance of amoA genera based on rarefied abundance. Sample labels indicate
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technology (A = AX20, R = RX30, F = FAST, Nn/Nt/Nd = Norweco), and sampling month (_J = June;
_S = September).

We identified the 20 most abundant amoA ASVs, based on relative abundance across all technologies,
occupancy patterns, and seasons (Table 1). Although many of the ASVs were present in effluent
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samples from all technologies, occupancy patterns, and seasons, the most obvious differences were
between seasons, with five of the most abundant ASVs present only in September samples. This pattern
mirrors the increases in alpha and beta diversity observed in September samples, and is likely also due
to shifts in household demographics between the beginning and end of the summer.

Table 1. Top 20 most abundant amoA ASVs identified across all advanced N-removal OWTS technologies,
occupancy patterns, and season. AX20 = Orenco Advantex® AX20 (n = 37); RX30 = Orenco Advantex®

RX30 (n = 8); FAST = BioMicrobics MicroFAST® (n = 5); NOR = Norweco Singulair® (n = 5).
U.A. = unassigned; x = ASV present in at least one sample within a category.

Genus
Technology Occupancy Pattern Season

AX20 RX30 FAST NOR Year Round Seasonal June September

U.A. Nitrosomonadaceae x x x x x x x x
U.A. Bacteria x x x x x x x x
Nitrosospira x x x x x x x

U.A. Bacteria x x x x x x x x
Nitrosospira x x x x x x x x
Nitrosospira x x x x x x x x
Nitrosospira x x x x x x x
Nitrosospira x x x x x x x

U.A. Nitrosomonadales x x x x x x
Nitrosospira x x x x x x x x

U. A. Bacteria x x x x x x x x
Nitrosospira x x x x x x x x
Nitrosospira x x x x x x x x
Nitrosospira x x x x x x
Nitrosospira x x x x x x x
Nitrosospira x x x x x x x x

U.A. Bacteria x x x x x x x
U.A. Bacteria x x x x x x x x
U.A. Bacteria x x x x x x x
U.A. Bacteria x x x x

Other groups of organisms may play a role in nitrification in wastewater treatment. For example,
Wigginton et al. [22] assessed amoA communities in a BNR WTP and nine advanced N-removal OWTS
in the Greater Narragansett Bay Watershed and observed relatively low abundances of Nitrospira in the
advanced N-removal OWTS. Several other studies have also found Nitrospira in aquatic environments
with low concentrations of ammonium [23,24]. Limpiyakorn et al. [25] assessed the abundance of AOA
and AOB in seven WTPs in Thailand, and found significantly greater abundances of AOA in effluent
with lower concentrations of ammonium (0.2–3.0 mg N/L), while AOB dominated effluent high in
ammonium (5–29 mg N/L). Because the ammonium concentration in our systems in this study tends to
be higher than that in WTP (Table A1), AOB are likely to play a more important role in nitrification
than other groups of ammonia-oxidizers.

Although Wigginton et al. [17] observed a higher number of ASVs (711) in samples from 38
advanced N-removal OWTS, they also identified Nitrosospira and Nitrosomonas as two of the most
common genera present in effluent. Both genera have also been observed in BNR WTPs throughout
the world [4,22,26,27]. Wigginton et al. [22] also found Nitrosomonas and Nitrosospira to be the most
prevalent genera across both settings. Nitrosospira is most commonly found in soil environments,
which suggests that these bacteria are likely introduced to OWTS through soil that enters treatment
train components during the initial system installation as well as during periodic maintenance
inspections [22,28]. The overlap in prevalent nitrifiers observed in OWTS between systems in the
Wigginton et al. [17,22] studies and those in our systems suggests that certain genera dominate the
nitrification process in N-removal OWTS. The presence of these genera in different advanced OWTS
technologies and in BNR WTPs at broad geographic scales suggests that systems designed for N
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removal support taxonomically consistent nitrifying communities, regardless of system design, scale,
or geographical location.

3.4. nosZ: Taxonomy

We observed a total of 1307 unique ASVs for nosZ across all samples (n = 65) (Figure 6), of which
222 (17%) could be matched with a known genus. As was the case for amoA, most nosZ ASVs were
classified as unknown bacterial species. Of those that could be matched to a genus, the most common
genera (based on the number of ASVs) were Zoogloea (57), Thauera (35), and Acidovorax (34).Water 2020, 12, x FOR PEER REVIEW 12 of 17 
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Figure 6. Relative abundance of nosZ genera based on rarefied abundance. Sample labels indicate
the study location (C = Charlestown), occupancy pattern (Y = year round; S = seasonal), site number,
technology (A = AX20, R = RX30, F = FAST, Nn/Nt/Nd = Norweco), and sampling month (_J = June;
_S = September).

We identified the 20 most abundant nosZ ASVs, based on relative abundance across all technologies,
occupancy patterns, and seasons (Table 2). Several of the top ASVs were found in at least one sample
from all technologies, occupancy patterns, and seasons. All of the top ASVs were found in samples
of both occupancy patterns and seasons; the only taxonomy differences we observed were among
technologies. This pattern mirrors the variation in alpha and beta diversity observed among technologies
and is likely driven by differences in treatment train design.

Thauera, which has been highlighted for its functional importance in denitrification in WTPs [29,30],
was the only genus with a high relative abundance in both our study and in Wigginton et al. [17].
Three other genera (Aeromonas, Azospirillum, and Sinorhizobium) observed in Wigginton et al. [17] were
also present in at least one of our samples.
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Table 2. Top 20 most abundant nosZ ASVs identified across all advanced N-removal OWTS technologies,
occupancy patterns, and season. AX20 = Orenco Advantex® AX20 (n = 42); RX30 = Orenco Advantex®

RX30 (n = 13); FAST = BioMicrobics MicroFAST® (n = 4); NOR = Norweco Singulair® (n = 7).
U.A. = unassigned; x = ASV present in at least one sample within a category.

Genus
Technology Occupancy Pattern Season

AX20 RX30 FAST NOR Year Round Seasonal June September

U.A. Bacteria x x x x x x x x
U.A. Bacteria x x x x x x x x
U.A. Bacteria x x x x x x

Thauera x x x x x x
Zoogloea x x x x x x x
Thauera x x x x x x x x
Thauera x x x x x x x x

U.A. Bacteria x x x x x x x
U.A. Bacteria x x x x x x x x
U.A. Bacteria x x x x x x
U.A. Bacteria x x x x x x x
U.A. Bacteria x x x x x x
U.A. Bacteria x x x x x x x x

Zoogloea x x x x x x x x
U.A. Bacteria x x x x x x x

Zoogloea x x x x x
U.A. Bacteria x x x x x x x
U.A. Bacteria x x x x x x x x
U.A. Bacteria x x x x x

Acidovorax x x x x x x x x

Two of the most common genera present in our samples, Zoogloea and Acidovorax, have not
been identified previously in N-removal OWTS [10,17,22]. Zoogloea spp. assist with the formation
of flocculated materials in activated sludge in WTPs [31], and thus may be involved in the
formation of biofilms and flocs in advanced N-removal OWTS. A high abundance of Acidovorax
has also been observed in the bacterial communities of activated sludge in WTPs with BNR [32,33].
Although Acidovorax spp. and Zoogloea spp. are present in WTPs, their capacity for denitrification was
not identified until recently [34]. These two species may play an important role in denitrification in
advanced N-removal OWTS.

4. Conclusions

Our study expands current understanding of the structure and composition of nitrifying and
denitrifying microbial communities in advanced N-removal OWTS, suggesting that technology and
season vary in how they affect these communities. While nitrifying communities were largely
influenced by season, possibly due to changes in household demographics, the structure of denitrifying
communities varied significantly among technologies, suggesting that denitrifiers are influenced by
differences in treatment train design. The taxonomic trends observed for amoA and nosZ reflected those
observed in species richness and diversity, with seasonal differences observed for amoA, and technology
differences for nosZ. Conversely, home occupancy pattern does not appear to influence bacterial
nitrifying/denitrifying communities in OWTS, suggesting a robust capacity for wastewater treatment
in seasonally-used OWTS despite long periods of non-use.

The large number of organisms that could not be matched with a known genus for either gene
highlights the need for more in-depth assessment of the composition of OWTS microbial communities.
Furthermore, the relationship between the structure and composition of nitrifying and denitrifying
communities and the concentration of N in effluent may help elucidate how season and technology
affect N removal by advanced N-removal OWTS.
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Figure A1. Diagram of components and treatment processes of advanced N-removal OWTS, as illustrated
in Ross et al. [35]; BOD refers to biochemical oxygen demand; TSS refers to total suspended solids.
Components are shown separately for clarity but can also exist within one multicompartment tank.

Appendix A.1. Technology Descriptions

Technology descriptions for the Orenco Advantex® AX20 and RX30, BioMicrobics FAST®,
and Norweco Singular® systems are described in Ross et al. [18]. The Orenco Advantex® AX20
and RX30 systems both utilize a timed-dosed textile media filter. The textile filters serve as an
oxic environment, which allows nitrification to occur. The AX20 system contains vertically hanging
textile sheets, while the RX30 system’s textile filter consists of horizontally packed textile “coupons”.
Denitrification occurs in the processing tank of both AX20 and RX30 systems, from which wastewater is
dosed to the textile filters and recirculated throughout the systems multiple times to optimize N-removal
potential. The processing tank also functions as a primary treatment area in which sedimentation
processes promote separation of solids in the wastewater. The BioMicrobics MicroFAST® system is
socially dosed rather than time dosed, and utilizes submerged fixed-film activated sludge in order to
treat wastewater. The FAST system consists of two compartments; the first compartment facilitates
primary treatment, while the second compartment facilitates both nitrification and denitrification.
Nitrification occurs when air is forced into the ridged corrugated plastic block media insert within the
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second compartment of the tank and creates an oxic environment. Nitrified effluent moves upward
through a corrugated plastic block media insert and splashes onto a trough, allowing the effluent to
be transferred into an adjacent area where denitrification takes place. The three Norweco Singular®

models (TNT, 960, and DN) are also socially-dosed systems that utilize suspended growth technology
to treat wastewater. The Norweco systems consist of a three-compartment tank, the first of which
facilitates primary treatment. Nitrification and denitrification occur in the second compartment,
which is intermittently aerated. Intermittent aeration causes the compartment to alternate between
serving as an oxic and an anoxic environment, thus promoting both nitrification and denitrification.
The third compartment of the Norweco systems is a clarification chamber, which promotes solids
removal from the effluent.

Appendix A.2. DNA Extraction and PCR

We followed the protocol in Wigginton et al. [17] for DNA extraction and PCR analysis methods
for nosZ, and Wigginton et al. [22] for amoA methods. After filtering effluent samples, we extracted
DNA from filters using PowerWater DNA Isolation Kits (MoBio Laboratories, Carlsbad, CA, USA) and
stored samples at −80 ◦C until PCR analysis. We amplified nosZ fragments in single, 50 µL reactions
containing 1.25 µL of extracted DNA template, 25 µL of BIO-X-ACTTM Short Mix (Bioline, Taunton,
MA, USA), 21.75 µL of water, and 1 µL of nosZ forward and reverse primers. Thermocycler conditions
for nosZ amplification were as follows: an initial denaturation at 94 ◦C for 4 min, followed by 35 cycles
of 94 ◦C for 1 min, 61 ◦C for 1 min, and 72 ◦C for 1 min, with a final extension at 72 ◦C for 10 min.
We amplified amoA fragments in single, 50 µL reactions containing 1.25 µL of extracted DNA template,
25 µL of MyFiTM Mix (Thomas Scientific, Swedesboro, NJ, USA), 21.25 µL of water, and 1.25 µL of
amoA forward and reverse primers. Thermocycler conditions for amoA amplification were as follows:
4 min at 94 ◦C, 35 amplification cycles (each 60 s at 94 ◦C, 60 s annealing at 58 ◦C, and 60 s 72 ◦C), and a
final extension at 72 ◦C for 5 min. After PCR, we quality checked the amplicons on a 1% ethidium
bromide agarose gel and sent samples that produced a single band of the correct size to the University
of Rhode Island’s Genetic Sequencing Center.

Table A1. Summary statistics of advanced treated wastewater parameters measured in each season,
across all technologies and occupancy patterns. Units are mg/L except for pH and temperature (◦C).
Adapted from Ross et al. [18].

Parameter
June September

n Min Median Max n Min Median Max

pH 45 3.8 7.0 8.1 45 4.7 6.9 7.8
Temperature 45 12.6 16.1 20.9 44 18.9 21.2 25.4

BOD5 20 0 0 54 20 0 0 76
Dissolved

oxygen 45 1.1 6.8 9.9 44 0 5.8 8.7

Ammonium-N 42 0 0 41.6 38 0 0.1 51.6
Nitrate-N 43 0 8.4 32.8 40 0.1 9.4 25.3

Total N 43 3.6 18.7 60.9 41 0.6 11.9 52.0
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