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Research Article

Endurance exercise training in pulmonary hypertension
increases skeletal muscle electron transport chain
supercomplex assembly

Danielle J. McCullough1,2 , Nouaying Kue1, Thomas Mancini1, Alexander Vang1 ,
Richard T. Clements1,3,4 and Gaurav Choudhary1,5

1Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA; 2Edward Via College of Osteopathic Medicine, Auburn Campus, Auburn, AL,

USA; 3Department of Surgery, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence RI, USA; 4Department of Biomedical and

Pharmaceutical Sciences, University of Rhode Island College of Pharmacy, Kingston, RI, USA; 5Department of Medicine, Warren Alpert Medical School of Brown

University, Providence, RI, USA

Abstract

Pulmonary hypertension is associated with pronounced exercise intolerance (decreased V �O2 max) that can significantly impact

quality of life. The cause of exercise intolerance in pulmonary hypertension remains unclear. Mitochondrial supercomplexes are

large respiratory assemblies of individual electron transport chain complexes which can promote more efficient respiration. In this

study, we examined pulmonary hypertension and exercise-induced changes in skeletal muscle electron transport chain protein

expression and supercomplex assembly. Pulmonary arterial hypertension was induced in rats with the Sugen/Hypoxia model (10%

FiO2, three weeks). Pulmonary arterial hypertension and control rats were assigned to an exercise training protocol group or kept

sedentary for one month. Cardiac function and V �O2 max were assessed at the beginning and end of exercise training. Red

(Type 1—oxidative muscle) and white (Type 2—glycolytic muscle) gastrocnemius were assessed for changes in electron transport

chain complex protein expression and supercomplex assembly via SDS- and Blue Native-PAGE. Results showed that pulmonary

arterial hypertension caused a significant decrease in V �O2 max via treadmill testing that was improved with exercise (P< 0.01).

Decreases in cardiac output and pulmonary acceleration time due to pulmonary arterial hypertension were not improved with

exercise. Pulmonary arterial hypertension reduced expression in individual electron transport chain complex protein expression

(NDUFB8 (CI), SDHB (CII), Cox IV (CIV), but not UQCRC2 (CIII), or ATP5a (CV)) in red gastrocnemius muscle. Both red

gastrocnemius and white gastrocnemius electron transport chain expression was unaffected by exercise. However, non-denaturing

Blue Native-PAGE analysis of mitochondrial supercomplexes demonstrated increases with exercise training in pulmonary arterial

hypertension in the red gastrocnemius but not white gastrocnemius muscle. Pulmonary arterial hypertension-induced exercise

intolerance is improved with exercise and is associated with muscle type specific alteration in mitochondrial supercomplex

assembly and expression of mitochondrial electron transport chain proteins.

Keywords

exercise intolerance, supercomplexes, respirasome, right heart failure

Date received: 15 January 2020; accepted: 20 April 2020

Pulmonary Circulation 2020; 10(2) 1–11

DOI: 10.1177/2045894020925762

Introduction

Pulmonary hypertension (PH) and subsequent right heart
failure is associated with poor functional capacity and pro-
nounced exercise intolerance.1,2 Despite pharmacological
intervention to treat PH, patients still report low quality
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of life and worsening functional capacity concomitant with
dyspnea and fatigue.3–6 There are currently no pharmaco-
logic interventions to treat PH-associated exercise intoler-
ance. However, PH patients have demonstrated functional
improvements in response to exercise training (EXT).6–8 The
mechanism of PH-induced exercise intolerance as well as the
mechanism of exercise-mediated improvements are currently
not well understood.

Impaired exercise tolerance in PH patients is not entirely
explained by changes in central or peripheral hemo-
dynamics,7,9 but may be associated with direct physiologic
and biochemical alterations in skeletal muscle (SkM).2,9–11

SkM abnormalities have been identified in PH patients
including reduced systemic oxygen extraction, reduced
speed and strength of contraction, alterations in signaling
cascades associated with muscle hypertrophy, and decreases
in the proportion of oxidative fiber types.2,9–13 PH patients
also exhibit decreases in mitochondrial volume and expres-
sion of electron transport chain (ETC) proteins,14 which
may contribute to reduced oxidative capacity and dimin-
ished exercise capacity (i.e. V �O2 max) in PH. In contrast,
EXT-mediated improvements in SkM oxidative capacity are
associated with increased mitochondrial biogenesis and
SkM hypertrophy.15,16

Mitochondrial ETC supercomplex (SC) (a.k.a respira-
somes) formation has recently emerged as an important
regulator of mitochondrial respiration. Mitochondrial SCs
are dynamic assemblies of individual ETC complexes con-
sisting of complex I and varying copies of complexes III and
IV in physical association to form discrete functional
respiratory units.17 SCs are thought to provide more effi-
cient respiration which should be capable of improving
mitochondrial function and potentially improving V �O2

max.18,19 Decreases in SC assembly have been demonstrated
in human diaphragm SkM in diabetes.20 In addition, EXT
has been shown to enhance SC assembly in healthy humans
in response to exercise.21

It is unknown if SkM SC assembly is altered in diseases
with chronic exercise intolerance such as heart failure and
PH, and if these changes may be reversed with EXT. In this
study, we evaluated exercise intolerance and the effect of
chronic EXT in a rat model of pulmonary arterial hyperten-
sion (PAH). Rats were subjected to three weeks normoxia or
SU5416 treatmentþ hypoxia (three weeks 10% FiO2; PAH)

followed by one month with or without EXT. We evaluated
changes in V �O2 max, SkM ETC protein expression, and
changes in SkM SC assembly in oxidative and glycolytic
SkM. PAH was associated with reduced ETC protein
expression and impaired V �O2 max. EXT-improved V �O2

max in PAH animals and was associated with increased SC
assembly.

Materials and methods

All materials were obtained from Sigma-Aldrich (St. Louis,
MO) unless otherwise noted.

Animals and experimental model of PAH

All procedures were approved by the Institutional Animal
Care and Use Committee at the Providence Veterans Affairs
Medical Center (Providence, RI) and conformed to the
Guide for the Care and Use of Laboratory Animals published
by the National Institutes of Health.

Adult male Sprague-Dawley rats (n¼ 43, �200 g; Charles
River Laboratories, Wilmington, MA) were used in this
study. Animals were randomly assigned to either a con-
trol/normotensive (CON; n¼ 23) group, or a PH (PAH;
n¼ 20) group using the chronic hypoxia model in combin-
ation with the VEGF receptor inhibitor, SU5416.22 Animals
assigned to the PAH group received SU5416 (Cayman
Chemical, Ann Arbor, MI), at a dose of 20mg/kg, subcuta-
neously, and were housed in a normobaric hypoxia chamber
(10% FiO2; Biospherix A chamberþProOx controller,
Biospherix Ltd., Parish, NY) for three weeks, and then
returned to normoxic (21% FiO2), room-air for the remain-
der of the experimental protocol. CON animals received a
subcutaneous vehicle (diluent) and were housed in nor-
moxic, room-air for the entire duration of the experimental
protocol (Fig. 1). All animals were housed in pairs at 23�C,
maintained on a 12:12-h light/dark cycle, and were provided
standard rat chow and water, ad libitum.

Echocardiography

Rats were anesthetized with isoflurane (2%/O2 balance) via
nose cone and a transthoracic echocardiography (Vevo
2100, FUJIFILM Visualsonics Inc., Toronto, Canada) was

Fig. 1. Experimental design and timeline of PAH and exercise training regimen.

2 | Exercise Training, PAH and Supercomplexes McCullough et al.



performed (blinded) with a 40MHz linear array transducer
in accordance with previously published methods.23,24

The following measurements were obtained: pulmonary
acceleration time (PAT) on pulse-wave Doppler recording
at the right ventricular (RV) outflow tract, two-
dimensional M-mode recordings from parasternal views
were used to assess left ventricular (LV) stroke volume, car-
diac output (CO), ejection fraction, and heart rate.
Echocardiography was performed at the beginning of
Week 4 (Pre) prior to habituation/exercise testing sessions,
and was repeated at the end of Week 8 (Post) following
�5 weeks of EXT or sedentary (SED) living. All echocardi-
ography was performed �48 h after the last EXT session,
when applicable. Data analysis was performed by a blinded
individual.

V �O2 max testing and EXT protocol

At the end of three weeks of normoxic/hypoxic living,
animals were again randomly assigned to one of four
experimental groups: (i) sedentary normotensive (control;
CON-SED; n¼ 11); (ii) sedentary pulmonary hypertensive
(PAH-SED; n¼ 9); (iii) exercise-trained normotensive
(CON-EXT; n¼ 12); or (iv) exercise-trained pulmonary
hypertensive (PAH-EXT; n¼ 11). All exercise testing and
training protocols were performed on a four-lane modular
rodent treadmill (AccuPacer, Omnitech Electronics Inc.,
Columbus, OH) equipped with individual metabolic cham-
bers and a gas analyzer system that simultaneously monitors
and records individual metabolic profiles (i.e. V �O2, respira-
tory quotient, etc.) in real-time. Prior to any exercise testing
or training, all groups were habituated to the treadmill
through a gradual increase in running intensity to a final
speed of 15m/min at a 15� incline for 10min/day. The
habituation phase occurred over a one-week period and
was used to assess running proficiency of individual animals,
while minimizing the potential for an aerobic training effect
that can occur with longer habituation periods.25,26 The
EXT protocol, and subsequent criteria for fatigue, was
designed to match the recommendations for exercise testing
in rodents as set forth by the American Physiological
Society’s Resource Book for the Design of Animal Exercise
Protocols.27 The study was designed utilizing continuous
aerobic exercise (60min/bout), not interval training.
Animals assigned to EXT performed continuous,
steady-state treadmill running at submaximal intensities
that equated to 55–60% relative V �O2 max of the PAH-
SED group (15m/min, 15� incline, five days/week for
60min/day) (Fig. 1).

A modified maximal exercise testing protocol (as
described by Bedford et al.28) was used to determine exercise
capacity (measured by maximal aerobic capacity; V �O2

max) using open-circuit spirometry (flow rate¼ 2–
3L/min), and consisted of incremental increases in speed
and/or incline every 3–5min. True V �O2 max was defined
as (i) the point at which V �O2 does not change despite

changes in work load during steady, consistent running
and (ii) a steady-state V �O2 that is sustained for a minimum
of 1min. Maximal exercise tests were performed on all rats
at the beginning of Week 5 (baseline; Pre), and were
repeated at the end of Week 8 (Post) following one month
of EXT or SED living. All V �O2 max testing was performed
�48 h after the last echocardiography/habituation/EXT ses-
sion, when applicable.

Sacrifice and tissue harvest

At the completion of the experimental protocol, rats were
euthanized with pentobarbital sodium (100mg/kg) and
heart and SkM tissues were excised, weighed, and harvested
for molecular analysis. The red gastrocnemius (RG) and
white gastrocnemius (WG) were identified by their color
and anatomic location (RG: deep and WG: superficial)
and carefully dissected and frozen for later biochemical ana-
lysis. RG and WG fiber typing has been carried out previ-
ously by multiple groups where it was demonstrated that
RG contain a higher proportion of oxidative Type I fibers
and Type IIA/D fibers (�90%) versus WG which contains
minimal Type I fibers and is predominantly glycolytic type
IIB fibers (85–90%).29,30

Western blot

Rat muscle tissue (35–50mg) was homogenized in
Radioimmunoprecipitation assay buffer (RIPA) buffer
(50mM HEPES, pH 7.5, 150mM NaCl, 5mM ethylenedia-
minetetraacetic acid (EDTA), 5mM ethelyne glycol tetraa-
cetic acid (EGTA), 20mM NaF, 20mM Naþ-
pyrophosphate, 0.5% Naþ-deoxycholate, 0.1% SDS, 1%
Triton X-100) supplemented with protease inhibitors
(ThermoFisher) and phosphatase inhibitors (Boston
BioProducts, Cambridge MA), and centrifuged at 10,000 g
for 10min at 4�C. One-dimensional electrophoresis in SDS-
PAGE was performed using 50 mg of protein. Separated pro-
teins were transferred to membranes that were processed by
immunodetection, using OXPHOS cocktail (Abcam, 1:1000)
followed by strip and reprobe for vinculin (Sigma-Aldrich,
1:3000).

Mitochondrial DNA

Total cellular DNA was isolated from the soleus muscle
using DNeasy Blood and Tissue kit (Qiagen, Valencia,
CA). A master mix was prepared, which composed of
12.5mL SYBR Green PCR Master Mix (BioRad), 8.5 mL
nuclease free H2O, and 2 mL of 1:1 Forward:Reverse
primer per reaction. Mitochondrial DNA primers and
Actin primers were prepared in different master mix solu-
tions, but ran on the same PCR plate. Using a 96-well PCR
plate, each well was loaded with 23 mL of the master mix
followed by the addition of 2 mL of isolated DNA (3 ng/mL).
Extracted DNA was used to measure relative mitochondrial

Pulmonary Circulation Volume 10 Number 2 | 3



DNA content by PCR analysis31 (StepOnePlus; Applied
Biosystems, Foster City, CA) using the following primers
for mt-cytb: Forward 5’-CCT CCC ATT CAT TAT CGC
CGC CCT TGC-3’; Reverse 5’-GTC TGG GTC TCC TAG
TAG GTC TGG GAA-3’, and was normalized to Actin,
Forward 5’-GTC CAG CCC AGC CCT TCA GCA G-3’;
Reverse 5’-CCG GAC CGG GCC GTA TAT GGA G-3’.
To quantify the mitochondrial DNA content, nuclear DNA
was used to determine �CT¼ (nucDNA CT – mtDNA CT),
and relative mitochondrial DNA was determined by equa-
tion 2� 2(�CT)

.
31

Blue Native PAGE

Approximately 50mg ofmuscle tissue wasminced and placed
in 1mL mitochondria isolation buffer (MIB: 0.28M sucrose,
10mM HEPES, pH 7.4, 2mM EDTA) supplemented with
protease and phosphatase inhibitors. Tissue was homoge-
nized in MIB with a Dounce homogenizer, using 10 strokes
each of loose and tight pestles. Homogenates were subjected
to a 5min, 2000 g spin to pellet nuclei and the resulting super-
natant was subjected to 13,000 g spin followed by two washes
in 1mLMIB.Mitochondrial pellets were suspended in 100 mL
MIBand subjected to bicinchoninic acid, (BCA)protein assay
(Pierce). Equal amounts of mitochondrial protein �30 mg
were solubilized in 60 mL 1� native-PAGE sample buffer
(Invitrogen) supplemented with 1% Digitonin (Invitrogen).
Following solubilization, a second BCA assay was performed
and equal amounts of protein (�10 mg) in 1� sample buffer
with 0.25% Coomassie G250 were loaded on Invitrogen 4–
16% NativePAGE gels. Gels were run for 1 h at 150V fol-
lowed by 250V for 2.5 h. Gels were blotted to nitrocellulose
membranes and probed for complex IV (Cox IV; Abcam),
complex I (Ndufa9; Abcam), and complex III (UQCRFS1;
Abcam), in that orderwith stripping in betweenwith standard
SDS/mercaptoethanol stripping buffer.

Statistical analyses

All data are presented as mean� SEM and a threshold of
significance was set at P� 0.05. Unless otherwise stated, a
Two-Way ANOVA with Student–Neuman–Keuls post-hoc
test was used to determine significance using GraphPad
Prism 6.01 (GraphPad Software, La Jolla, CA).

Results

EXT does not improve hemodynamics in PAH but
does improve V �O2 max

The experimental protocol to initiate PAH and subsequent
EXT are shown in Fig. 1. Development of PAH in rats was
confirmed with echocardiography by decreased PAT and
CO (Fig. 2a and b, respectively), as well as the development
of RV hypertrophy as shown by Fulton Index (RV/LVþ S)
(Fig. 2c). There were no changes in LV:body weight (BW)

ratios (not shown) or changes in body weight (Fig. 2d). EXT
did not have any effect on PAH-mediated decreases in PAT,
CO, or increases in RV hypertrophy (Fig. 2a–c). Differences
in hemodynamic parameters before and after EXT are
shown in supplementary Table 1.

Sedentary PAH animals had reduced V �O2 max com-
pared to the sedentary normoxic control group (Fig. 3). In
the exercise groups, EXT (60% V �O2 max of PAH animals
at one week) resulted in significantly higher V �O2 max in
PAHþEXT animals (Fig. 3), despite no associated changes
in central hemodynamics (Fig. 2).

PAH alters SkM ETC protein expression specifically in
Type I oxidative muscle

We examined both oxidative and glycolytic muscle types
and assessed expression of mitochondrial DNA and ETC
complex subunit expression in RG and WG muscle to deter-
mine if changes in mitochondrial biogenesis or ETC protein
expression could explain changes in improved V �O2 max in
PH animals. Representative immunoblots are shown
in Fig. 4a. There were significant decreases with PAH in
expression of complex I, II, and IV representative subunits
(Fig. 4b, c, and e) as determined by Two-Way ANOVA, but
no effect on complexes III and V (Fig. 4d and f). There was a
main effect of EXT only in expression of the complex IV
subunit MTCO1 (Fig. 4e). There was no effect of EXT in
any of the other complex subunits. There were no changes
in mitochondrial DNA with PAH or EXT (Fig. 4g).
Predominantly glycolytic WG muscle did not have any
changes in mitochondrial DNA or any of the ETC complex
proteins (Fig. 5a–g).

EXT enhances mitochondrial SCs in PAH

In contrast to minimal changes observed in ETC
protein expression, we found that EXT robustly increases
mitochondrial ETC SC assembly in oxidative SkM in
rats with PAH. A representative Blue Native (BN)-
PAGE for complexes I, III, and IV is shown in Fig. 6a. The
boxed region shows the area quantitated as SCs which was
normalized versus the entire Cox IV signal. There was an
effect of EXT as determined by Two-Way ANOVA in com-
plex I (Fig. 6b), complex III (Fig. 6c), and complex IV (Fig.
6d). There was no effect of PAH. There were significant
changes in SC assembly incorporating complexes I and III
in the PAHþEXT animals compared with PAH alone and
a strong trend for increased SC assembly incorporating com-
plex IV (P¼ .06) (Two-Way ANOVA, SNK post hoc test).
There were no observable changes in SC assembly either due
to PAH or EXT in WG muscle (Fig. 7a–d).

Discussion

In the present study, we have demonstrated that PAH in a
preclinical rat model is associated with exercise intolerance

4 | Exercise Training, PAH and Supercomplexes McCullough et al.



associated with decreases in expression of specific mitochon-
drial ETC protein subunit expression in predominantly oxi-
dative RG SkM. EXT improved V �O2 max as determined
by metabolic treadmill testing. While EXT did not improve

hemodynamics, it significantly increased the proportion of
ETC subunits in SC assemblies without affecting individual
subunit expression.

It has been increasingly recognized that exercise intoler-
ance associated with heart failure is attributable to meta-
bolic and biochemical alterations in the SkM.10–12,32,33

Numerous studies associated with left heart failure have
demonstrated that there are SkM-specific changes that are
independent of blood flow, oxygen delivery, and cardiac
function.9,33–35 Importantly, EXT can improve symptoms
associated with exercise intolerance in PH including increas-
ing V �O2 max and six-minute walk distance, but these
improvements also appear to be independent of improved
blood flow, cardiac function, and CO.6,7 SkM-specific alter-
ations in mitochondrial function have been previously
explored in various types of left heart failure in both patients
and animal models. Factors associated with left heart fail-
ure-induced exercise intolerance and reduced V �O2 max
include altered fiber type distribution, mitochondrial
volume and cristae structure, increased reactive oxygen spe-
cies (ROS), and reduced antioxidant capacity, reduced res-
piration, and alterations in mitochondrial fission and fusion
dynamics.15,36–41 Exercise intolerance associated with right
heart failure has been less well studied, but similar alter-
ations have been described. In human and animal studies,

Fig. 2. Exercise training is not associated with improvements in right heart function, cardiac output, or RV hypertrophy. (a) Pulmonary accel-

eration time (PAT) and (b) cardiac output measured echocardiographically in sedentary animals (SED) or with 30 days exercise training (EXT)

with (PAH) or without (CON) SUH-induced PAH. n¼ 5–11. (c) Heart weights showing RV hypertrophy (RV/LVþ S) in PAH groups and (d) no

effect of EXT or PAH on body weights. n¼ 8–11 *P<.05 Two-Way ANOVA SNK post-hoc test.

PAH: pulmonary arterial hypertension; CON: control; RV: right ventricular.

Fig. 3. PAH results in reduced V �O2 max which is improved with

EXT. Metabolic treadmill testing was performed at the conclusion of

the study following six weeks exercise training (EXT) or sedentary

living (SED). Sedentary animals with PAH (SED-PAH) had decreased

V �O2 max which was improved in the PAHþ EXT group (n¼ 6–7),

P<.05 Two-Way ANOVA, SNK post-hoc test.

CON: control; PAH: pulmonary arterial hypertension.
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these include impaired respiration, alterations in ETC
expression, and muscle atrophy.10,11,14,42

We have found that exercise induced a robust increase in
formation of mitochondrial SCs in PAH animals, which was
associated with enhanced V �O2 max despite no changes in
CO. Mitochondrial SC formation and function has only
recently emerged as an important regulatory mechanism of
ETC function and activity. Dynamic regulation of SC
assembly is thought to allow enhanced respiration by pro-
moting increased electron flux and subsequently greater
ATP generation, while limiting inefficiency and ROS pro-
duction.19,43 Reductions in SC assembly that correlate with
SkM function have previously been described in the dia-
phragm of diabetic patients.20 Also, EXT has been asso-
ciated with increased SC assembly in humans.21 To our

knowledge, this is the first description of EXT-induced
SkM SC formation in an experimental PAH model.
Furthermore, we have found that EXT-induced changes in
V �O2 max are unlikely to be mediated by gross expression
changes in ETC complex proteins. In our study, we did not
observe any EXT-mediated changes in representative ETC
protein expression, mtDNA, or expression of the ATPase
subunit ATP5a. These data suggest that there were no mito-
chondrial ETC expression changes or biogenesis that could
explain the EXT-induced improvement in V �O2 max, and
that the observed EXT-mediated improvements are more
likely due to enhanced SC assembly. One limitation of our
study is that we did not directly assess changes in mitochon-
drial respiration in isolated muscle fibers and rely solely on
V �O2 max measurements. However, previous studies have

Fig. 4. PAH alters ETC protein expression in Red Gastrocnemius (RG) muscle which is unaffected by exercise training. (a) Western blot analysis

of mitochondrial ETC protein subunits in RG whole tissue lysate. Representative blots are shown of NDUFB8 (complex 1), SDHB (complex II),

UQCRC2 (complex III), MTCO1 (Complex IV), ATP5a (complex V), and vinculin. Blots were loaded with equal amount of whole lysate protein.

(b–f) Quantification of western blots in (a) normalized to vinculin. (b) NDUFB8 and (c) SDHB were reduced in the SED-PAH group compared to

SED-CON. There was no effect of EXT. UQCRC2 (d) was unaffected by PAH or EXT. MTCO1 (e) was reduced with PAH and improved with

EXT as shown by main effects with Two-Way ANOVA; however, no groups were significantly different in post-hoc analysis. (f) ATP5a was

unchanged by PAH or EXT. (g) mtDNA was assessed with qRT-PCR and there were no changes between groups. n¼ 6–10. *P<.05, Two-Way

ANOVA, SNK post hoc analysis.

CON-SED: sedentary normotensive; CON-EXT: exercise-trained normotensive; PAH-SED: sedentary pulmonary hypertensive; PAH-EXT: exer-

cise-trained pulmonary hypertensive; PAH: pulmonary arterial hypertension; EXT: exercise training.

6 | Exercise Training, PAH and Supercomplexes McCullough et al.



shown that limiting SC formation in mouse SkM reduces
oxygen consumption and respiratory capacity,44 and that
exercise-induced SC levels correlate with mitochondrial O2

consumption in human SkM.21 Overall, our data suggests
that improved respiration due to increased SC formation
may be able to overcome PAH-induced SkM deficiencies
such as reduced ETC protein expression, thus leading to
improvements in V �O2 max. These data may also indicate
that modulation of SC assembly may be one of the beneficial
mechanisms associated with symptom-limited rehabilitation
in PAH patients. Strategies to improve SC formation includ-
ing exercise and possible pharmacologic manipulation may
lead to potential novel therapies for exercise intolerance.

The exact mechanism of SC assembly is unknown and is
an intense area of investigation. Multiple factors have been
identified that may promote SC assembly, these include

cristae structural components such as cardiolipin, and pos-
sible assembly factors including Cox7RP (Cox7a2L)44,45 and
rcf1/HIG2A (yeast and mammal homologs),46 although
their role as dedicated SC assembly factors in different
models is controversial. Compelling evidence comes from
studies demonstrating that Cox7RP KO mice have pro-
nounced exercise intolerance.44 Future studies will need to
assess the mechanism of SC assembly and if altered expres-
sion of known SC assembly factors may play a role in EXT-
induced SC assembly, as well as if overexpression can lead
to similar improvements as exercise in PAH.

The mechanism of decreased V �O2 max in the PAH
model is also unclear and likely multifactorial. We observed
consistent decreases in SC formation in PAH animals; how-
ever, this did not reach statistical significance. Our data on
expression of specific ETC complex subunits would support

Fig. 5. Neither PAH or EXT alters ETC protein expression in White Gastrocnemius (WG) muscle. (a) Western blot analysis of mitochondrial

ETC protein subunits in WG whole tissue lysate. Representative blots are shown of NDUFB8 (complex 1), SDHB (complex II), UQCRC2

(complex III), MTCO1 (complex IV), ATP5a (complex V), and vinculin. Blots were loaded with equal amount of whole lysate protein. (b–f)

Quantification of western blots in A normalized to vinculin. (b) NDUFB8, (c) SDHB, (d) UQCRC2, (e) COX IV, and (f) ATP5A showed no changes

between groups and were unaffected by either PAH or EXT. (g) mtDNA was assessed with qRT-PCR and there were no changes between groups.

n¼ 6. *P<.05, Two-Way ANOVA, SNK post hoc analysis.

CON-SED: sedentary normotensive; CON-EXT: exercise-trained normotensive; PAH-SED: sedentary pulmonary hypertensive; PAH-EXT:

exercise-trained pulmonary hypertensive.
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a role for decreased expression of ETC proteins contributing
to impaired V �O2 max at least in the oxidative RG muscle.
PAH resulted in decreases in complex I, II, and IV, but
although EXT resulted in elevations in expression, there
were no significant differences from PAH alone. It is also
possible muscle atrophy and mitochondrial structural alter-
ations may play a role in reduced V �O2 max. In addition,
we cannot rule out a contributing component of EXT-
induced changes in expression of specific ETC proteins
that were not measured in this study.

The changes observed in ETC protein expression and SC
assembly were only present in oxidative RG muscle. There
were no changes in the glycolytic, mainly Type II WG,
muscle. The lack of EXT-induced changes in WG muscle
may be explained by the aerobic EXT regimen which should
have greater effect on oxidative muscle types, resulting in
minimal changes in WG. However, we were still able to
detect significant amounts of assembled mitochondrial SCs
in WG muscle despite the significantly lower mitochondrial
content. It is unknown why PAH-induced right heart failure
specifically causes SC assembly derangements in the

oxidative muscle type. These signaling differences and
underlying mechanisms in the two muscle types will need
to be explored in future studies. It is noteworthy that exer-
cise alone in our model resulted in minimal changes to ETC
protein expression and SC assembly in control animals. The
endurance EXT regimen was designed to achieve 60% of the
initial V �O2 max of the PAH animals in both control and
PAH-EXT groups. The initial V �O2 max was considerably
lower in PAH animals, therefore control animals had a
lower targeted V �O2 during exercise in comparison to
their maximum. Therefore, this training regimen in control
animals may not have elicited any changes in mitochondrial
expression or SC assembly. Future studies will need to deter-
mine if higher intensity EXT is associated with increased SC
assembly and the associated mechanism in healthy controls.

A limitation of the current study is that changes in micro-
circulatory function in the SkM were not investigated.
Exercise intolerance in PAH has been attributed to both
an underlying global metabolic disorder affecting the mus-
cles as well as microcirculatory perfusion alterations poten-
tially related to central hemodynamic impairments.2,47,48

Fig. 6. EXT increases formation of mitochondrial supercomplexes in oxidative RG muscle. (a) Representative BN-PAGE of isolated mito-

chondria solubilized with 1% Digitonin probed for NDUFB8 (complex I), UQCRFS1 (complex III), and Cox IV (complex IV). (b–d) Densitometric

quantification of the boxed region in A normalized to the entire lane of complex IV. (b) NDUFB8 showed significant incorporation of SCs in EXT

vs SED groups (c) UQCRFS1 demonstrated a significant increase in SC incorporation in PAH-EXT vs PAH-SED (P¼.05). (d) Cox IV showed

significant increase in SC assembly in PAH-EXT vs PAH-SED (P<.05). n¼ 4–5, *P<.05 Two-Way ANOVA, SNK post-hoc test.

CON-SED: sedentary normotensive; CON-EXT: exercise-trained normotensive; PAH-SED: sedentary pulmonary hypertensive; PAH-EXT:

exercise-trained pulmonary hypertensive; PAH: pulmonary arterial hypertension; EXT: exercise training.
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Decreased capillary density or rarefaction has been docu-
mented in the SkM of animal models of PAH as well as
patients.2,48,49 In addition, the VEGFR inhibitor SU5416
required to initiate PAH may reduce angiogenic responses.
The interplay between vascular impairments and altered
mitochondrial and muscle function is complex and both
likely contribute to exercise intolerance. There has been
documented evidence of both mitochondrial alterations as
well as reduced capillary density in PAH,2,14,50,51 and capil-
lary density is correlated with muscle function in numerous
disease states. In addition, EXT is associated with increased
angiogenic responses,52 and it is unknown if this is linked to
improved VO2 max in our model. However, exercise is also
known to stimulate mitochondrial biogenesis. It is currently
not clear if microcirculatory alterations in PAH are the
cause of reduced mitochondrial density and metabolic
changes in SkM. Moreover, mitochondrial biogenesis sig-
naling through peroxisome proliferator-activated receptor
gamma coactivator 1-a (PGC-1a) in SkM is linked to
increased angiogenic responses suggesting that a common
pathway may regulate both mitochondrial function and per-
fusion.53 In our study, it is unclear if capillary rarefaction
may initiate or be secondary to mitochondrial changes or if
these muscle alterations have independent etiologies.
Notably, our observed improvements in exercise tolerance

were not linked to improvements in RV function such as CO
and PAT. Nevertheless, our data clearly demonstrates
altered mitochondrial ETC expression and SC assembly
are associated with PAH and exercise. Determining the
causative factors for these alterations and any potential
role of vascular remodeling will need to be a focus of
future research.

In summary, we have found that endurance EXT
improves exercise intolerance in an animal model of PAH
without affecting severity of PAH as shown by PAT and
CO. PAH-mediated decreases in V �O2 max are associated
with reduced ETC protein expression but these changes are
unaffected by EXT. In contrast EXT increases assembly of
mitochondrial SCs. Therefore, EXT and/or approaches to
increase SC assembly may be appropriate therapeutic stra-
tegies to improve quality of life in PH patients.
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