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RESEARCH Open Access

Community-based social determinants of
three measures of mortality in Rhode Island
cities and towns
Steven A. Cohen* , Julia R. Broccoli and Mary L. Greaney

Abstract

Background: Efforts to understand and address the causes of place-based health disparities have focused primarily
on understanding the social determinants of health on a large geographic level, such as the region, state, or
county. However, there is a growing need to assess and understand how place-based characteristics at smaller
geographic areas relate to of local place-based neighborhood characteristics on population health. Therefore, the
objective of this study was to evaluate the magnitude of the associations between social determinants of health
and life expectancy (LE) and related measures on the community level.

Methods: LE at birth (LE0), remaining LE at age 65 (LE65), and age-specific mortality rates (ASMR) were calculated
from mortality data (2009–2011) collected by the Rhode Island Department of Health (RIDoH) using abridged life
table methods for each RI city/town. The city/town-specific LE and ASMR were linked to data collected by the US
Census, RIDoH, the Federal Bureau of Investigation, and other databases that include information about multiple
social, environmental, and demographic determinants of health. Bivariate correlations between city/town-level LE0,
LE65, and ASMR and social determinants: demographics, household composition, income and poverty, education,
environment, food insecurity, crime, transportation, and rural-urban status were examined.

Results: LE0 (range: 75.9–83.3 years) was strongly associated with the percent of the population with a graduate/
professional degree (r = 0.687, p < 0.001), violent crime rate (r = − 0.598, p < 0.001), and per capita income
(r = 0.553, p < 0.001). Similar results were observed for ASMR: ASMR was associated with the percent of the
population with a graduate/professional degree (r = − 0.596, p < 0.001), violent crime rate (r = 0.450, p = 0.005),
and per capita income (r = − 0.533, p < 0.001). The associations between LE65 and social determinants were more
attenuated. Of note, none of the measures (LE0, LE65, or ASMR) were associated with any of the race/ethnicity
variables.

Conclusions: There are several important place-based characteristics associated with mortality (LE and ASMR)
among RI cities/towns. Additionally, some communities had unexpectedly high LE and low ASMR, despite poor
social indicators.
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Background
Place matters for population health. Evidence suggests
that one’s place of residence plays a substantial and im-
portant role in determining individual health status in the
United States and many other nations [1]. As a result,
health inequities based on geography occur [2–5]. A num-
ber of studies have demonstrated health disparities by
geography, examples include, but are not limited to, can-
cer [6], physical activity and obesity [7], health care quality
and access [8–10], and cancer screening [11, 12].
Research to understand and address the causes of

place-based health disparities has focused primarily on
social determinants of health within a large geographic
level, such as a region, state, or county [13]. Recently,
however, there has been growing interest in drilling
down to the local level and assessing health disparities at
smaller geographic areas to evaluate the influence of
place-based neighborhood and municipality characteris-
tics [14]. The reason for this is that policies, demo-
graphic characteristics, and economic conditions at the
local level potentially affect availability and quality of re-
sources, community development, and economic oppor-
tunities [15]. Increasingly, research suggests that
understanding how social determinants, including edu-
cation, wealth, crime, environmental factors, housing,
and numerous others at a smaller geographic area influ-
ence population health is critical to ameliorating health
inequities occurring within these small geographic areas
[16–23].
Life expectancy is a widely used summary measure of

population health, and represents the average lifespan
based on current death rates, and provides a global pic-
ture of population health [24]. In the United States, dif-
ferences in LE by place are substantial and have
increased over time [25]. Consider, for example, the US
county with the lowest LE (Oglala Lakota County in
South Dakota, 66.8 years) and the county with the high-
est LE (Summit County in Colorado, 86.8 years), a differ-
ence of 20 years. That stark difference in LE between
these two counties located only 400 miles from one an-
other is nearly equivalent to the difference in LE be-
tween women in Ethiopia (66.7 years) and Japan (86.8).
There is a growing body of research highlighting the

utility of employing LE to document health inequities,
and to determine and understand what health disparities
also occur at fine geographic levels that are smaller units
than county, state, or nation. These include the city or
town (municipality), census tract, and neighborhood
levels [26–30]. Differences at this more granular level
may be masked when LE or other health-related metrics
are calculated on a larger level, such as the county or
state level [31, 32], geographic levels on which most
spatial research has been conducted. Nonetheless, no
studies to date have quantified LE at a fine geographic

level (e.g. sub-county) for a large geographic area and
systematically assessed potential associations between LE
and social determinants within that fine geographic level.
To that end, the aims of this exploratory study were to:
(1.) estimate LE and related measures of population
health in all Rhode Island (RI) municipalities; (2.) com-
pare and contrast life expectancy LE at birth with other
population health measures; and (3.) explore associations
between key measures of population health (LE and
mortality) and an array of social determinants.

Methods
Outcome measures: life expectancy and age-standardized
mortality rates
LE for this study was calculated using methods adapted
from the CDC’s methodology for calculating LE on a
small geographic scale [33]. All de-identified death re-
cords for 2009, 2010, and 2011 from the RI Department
of Health Center for Vital Records were geocoded to
each of the 39 RI cities and towns (“municipality”). All
deaths during this same time period were summed to
create tables of total deaths in each RI municipality by
5-year age groups. These data were then paired with de-
tailed population counts for each of the 5-year age
groups for all RI municipalities and then used to obtain
age-specific death rates using population data from the
2010 US Decennial Census. From this information, LE at
birth (LE0) and at age 65 (LE65) were calculated with as-
sociated standard errors and 95% confidence intervals
for each municipality. In total, 13% of the 663 cells had
zero deaths. In these cases, the RI age-specific death rate
was used to calculate LE. As a result, the calculated LEs
for these municipalities may be slightly biased toward
the mean LE [34, 35]. Age-standardized mortality rates
(ASMRs) for each RI municipality also were derived
using the calculated age-specific death rates with the
same substitution method applied for cells with zero
death counts.

Exposure measures: social determinants of health
A set of 55 social determinants of health and related
measures was obtained from the most recent (2010) US
Decennial Census and American Community Survey
and other sources (e.g. RI Kids Count, Youth Risk Be-
havior Surveillance System, the Federal Bureau of Inves-
tigation) to create a database of 89 social determinants
that included measures of education, income and wealth,
poverty, green space, crime, demographics, housing,
household composition, rural/urban characteristics, en-
vironment, food insecurity, land use, transportation,
commuting, and age distribution. A detailed list of all
examined determinants is provided in the Results
section.
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Data analysis
Descriptive statistics were obtained for the three main
summary measures of population health—LE at birth
(LE0), LE at age 65, (LE65), and ASMR—and for each of
the social determinants for each RI municipality, includ-
ing means, standard deviations, minima, and maxima for
all continuous and discrete variables, and frequency dis-
tributions for all categorical variables. Shapefiles for all
municipalities were obtained and downloaded for use in
mapping from the RI Geographic Information System
[36]. Using geographic information systems (GIS) soft-
ware, detailed choropleth maps of LE0, LE65, ASMR,
and the examined social determinants for all RI munici-
palities were created.
Pearson and Spearman correlations were used to esti-

mate the bivariate associations between the three out-
come measures (LE0, LE65, and ASMR) and the
examined social determinants. Rank order variables (e.g.
school ranking, etc.) had identical Pearson and Spear-
man correlation values. Linear regression models were
constructed to estimate associations and determine
which factors are predictive of LE0, LE65, and ASMR
using forward stepwise methods. Model assumptions for
linear regression were checked for the statistical “best”
model for each of the outcome measures. Resultant as-
sociations between the health outcomes (LE0, LE65, and
ASMR) and the social determinants were then examined
using meta-regression [37], employing permutation tests
and bootstrapping to adjust the p-values for multiplicity
[38]. Although there is possible geo-spatial autocorrel-
ation, for purposes of modeling, each municipality was
considered to be independent of the other municipalities
[39]. IBM SPSS version 26 (Armonk, NY) and SAS ver-
sion 9.4 (Cary, NC) were used for all data management
and analysis. ArcGIS version 10.1 (Redlands, WA) was
used for all mapping and geospatial analysis. SPSS and
Microsoft Excel were used for graphing. Statistical sig-
nificance was set at alpha < 0.05. This study was ap-
proved by the University of Rhode Island Institutional
Review Board (protocol #1259971–2).

Results
Information on LE0, LE65, and ASMR for all RI munici-
palities can be found in Table 1. The average LE0 in RI
was 79.92 years, with a standard deviation of 1.60. There
was a 7.3-year difference between the town with the
highest LE0 (Barrington, 83.13 years) and the lowest LE0
(Woonsocket, 75.85 years). Barrington also had the low-
est ASMR (722.0 per 100,000), while the highest ASMR
(1127.6 per 100,000) was found in Woonsocket. New
Shoreham had the highest LE65 (21.92 years), while
Richmond had the lowest LE65 (17.59 years).
Descriptive statistics for the major population health

measures and examined social determinants can be

found in Table 2. There was a wide range of values for
several demographic variables, including population
density, which ranged from 91 people per square mile in
Foster to 16,172 people per square mile in Central Falls.
Likewise, the percent of population that is Hispanic/La-
tino/a ranged from 0.3% in Glocester to 87.4% in Central
Falls. Descriptive statistics for crime, economic, educa-
tion, environmental and recreational, and retirement-
based measures are also provided in Table 2. The eco-
nomic variable “median home value”, cannot exceed the
maximum of $1000,000 as measured by the US Census,
found in New Shoreham, so the actual value in New
Shoreham may be higher. The percent of family house-
holds headed by females alone ranged from 3.4% in New
Shoreham to 21.7% in Providence. Maps for key popula-
tion health measures and social determinants are located
in the Supplementary Material).
The bivariate associations among the three primary

measures of population health (LE0, LE65, and ASMR)
were moderate to strong; the Pearson correlation be-
tween LE0 and LE65 was 0.578 (p < 0.001). There were
several outliers of note (see Fig. 1, Panel A), including
New Shoreham and Richmond. Although New Shore-
ham has the second-lowest LE0 in RI (76.8 years), it had
the highest LE65 (21.9 years). Richmond had the lowest
LE65 (17.6 years), and was ranked 33rd highest out of all
39 RI municipalities for LE0 (78.4 years). The Pearson
correlation between LE0 and ASMR was − 0.872 (p <
0.001), and between LE65 and ASMR was − 0.863
(p < 0.001) (Fig. 1, Panels B and C).
Correlations between LE0, LE65, and ASMR and each

of the exposure measures are shown in Fig. 2. In this fig-
ure, the measures are categorical, and ranked within cat-
egory by magnitude and direction of correlation
(smallest to largest) between the measure and LE0. For
the demographic variables, the percent of family house-
holds headed by a single female was negatively associ-
ated with LE0 (r = − 0.332, p = 0.039), and positively
correlated with the percent of population aged 65+
(r = 0.330, p = 0.040), the percent of family households
headed by a married couple (r = 0.394, p = 0.013), and
the Black/White Index of Dissimilarity, a measure of
segregation (r = 0.675, p < 0.001). For example, a city or
town with an index of dissimilarity of 0.55 indicates that
55% of White people would need to move to another
census tract within that city or town to distribute Whites
and Blacks evenly across all census tracts in that city or
town. Similar results, but in the opposite direction, were
found for these measures and ASMR. People per hous-
ing unit was negatively correlated with LE65 (r = −
0.439, p = 0.005). LE0 and ASMR were significantly asso-
ciated with the six examined education variables, but the
associations between LE65 and ASMR were only signifi-
cant for the percent of adults with at least a bachelor’s
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degree (r = 0.512, p = 0.001) and with a graduate degree
(r = 0.467, p = 0.003).
The results of this analysis examining economic fac-

tors were more varied. Percent unemployed was strongly

and negatively associated with LE0 (r = − 0.572, p <
0.001), but was not significantly associated with either
LE65 or ASMR. Percent of population on public assist-
ance, median rent, and median household income were

Table 1 Rhode Island cities/towns, life expectancy (LE), and age-standardized mortality rates (ASMR)

City/Town Name County LE at birth (LE0) LE at age 65 (LE65) ASMR* Rank LE at birth Rank LE 65 Rank of ASMR

Barrington Bristol 83.13 21.34 722.01 1 3 1

Bristol Bristol 80.94 20.18 852.95 12 15 15

Burrillville Providence 77.33 18.22 1052.02 37 37 37

Central Falls Providence 78.26 20.06 970.74 35 19 33

Charlestown Washington 80.75 20.41 844.02 14 14 13

Coventry Kent 79.31 18.73 963.18 27 35 32

Cranston Providence 81.32 20.64 819.72 8 10 9

Cumberland Providence 81.50 20.79 799.52 5 8 4

East Greenwich Kent 82.17 20.83 782.78 3 7 3

East Providence Providence 79.61 19.72 920.91 22 25 25

Exeter Washington 79.59 20.17 897.68 23 16 20

Foster Providence 79.14 21.16 813.75 28 4 8

Glocester Providence 80.09 20.02 848.50 18 22 14

Hopkinton Washington 78.90 19.70 916.36 30 26 23

Jamestown Newport 80.83 20.89 893.34 13 6 17

Johnston Providence 79.40 19.53 939.39 25 30 28

Lincoln Providence 81.26 20.15 835.33 10 17 12

Little Compton Newport 81.32 21.02 812.48 8 5 7

Middletown Newport 80.26 19.66 893.38 17 28 18

Narragansett Washington 82.00 20.52 799.92 4 13 5

New Shoreham Washington 76.76 21.92 897.65 38 1 19

Newport Newport 79.52 19.97 917.56 24 23 24

North Kingstown Washington 80.34 19.45 945.22 15 31 29

North Providence Providence 79.91 20.58 872.42 20 12 16

North Smithfield Providence 79.40 19.67 927.55 25 27 27

Pawtucket Providence 78.94 19.75 946.90 29 24 30

Portsmouth Newport 82.93 21.46 727.48 2 2 2

Providence Providence 78.37 19.38 973.77 34 32 34

Richmond Washington 78.43 17.59 1072.26 33 39 38

Scituate Providence 81.43 20.64 807.14 6 10 6

Smithfield Providence 80.34 19.25 923.54 15 34 26

South Kingstown Washington 81.34 20.07 833.63 7 18 11

Tiverton Newport 81.16 20.72 830.02 11 9 10

Warren Bristol 79.94 20.05 906.42 19 21 22

Warwick Kent 78.89 19.31 959.59 31 33 31

West Greenwich Kent 78.65 18.44 1029.60 32 36 36

West Warwick Kent 77.79 19.56 985.23 36 29 35

Westerly Washington 79.64 20.06 901.35 21 19 21

Woonsocket Providence 75.85 18.19 1127.58 39 38 39

Note: ASMR Age-standardized mortality rate
*Per 100,000
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Table 2 Descriptive statistics for all variables examined

Measure Mean SD Min Max Number missing

Population Health

Life expectancy at birth (LE0) 79.92 1.60 75.85 83.13 0

Remaining life expectancy at age 65 (LE65) 19.99 0.93 17.59 21.92 0

Age-standardized mortality rate (ASMR) 896.5 89.2 722.0 1127.6 0

Demographics

% White 90.9 10.0 49.1 99.5 0

% Black 3.0 4.1 0.0 17.5 0

% American Indian/Native Hawaiian 0.3 0.4 0.0 1.6 0

% Asian 1.7 1.6 0.0 6.4 0

% Other race 2.2 4.7 0.0 24.3 0

% Multiracial 1.8 1.1 0.0 5.0 0

% Hispanic/Latino/a 8.3 18.2 0.3 87.4 0

Black-White Index of Dissimilarity 41.8 15.9 9.7 72.2 5

% of population aged 16+ 81.7 2.9 74.6 87.0 0

% of population aged 65+ 15.5 3.4 8.7 22.7 0

% foreign born 7.7 7.9 1.6 41.8 0

Population density (people per square mile) 2085 3199 91 16,172 0

% of population considered “rural 27.6 36.9 0.0 100.0 0

People per housing unit 2.2 0.4 0.6 2.7 0

% of households headed by married couple 52.4 10.4 29.5 72.0 0

% of family households headed by single female 10.4 4.0 3.4 21.7 0

Education

% of adults with less than 9th grade education 4.9 5.5 0.0 30.8 0

% of adults with less than high school education 12.6 8.6 2.3 48.2 0

% of adults with at least a high school education 87.4 8.6 51.7 97.7 0

% of adults with at least a bachelor’s degree 34.3 12.8 7.4 63.4 0

% of adults with a graduate degree 13.5 6.6 2.0 30.7 0

Economics

Median household income ($) 85,605 21,406 40,526 140,772 0

Median home value ($) 310,062 140,488 167,600 1,000,000 0

Median rent ($) 965 178 731 1403 0

Poverty rate 5.9 5.4 0.6 24.6 0

% on public assistance 7.1 6.8 0.0 30.7 0

% unemployed 0.1 0.0 0.0 0.1 0

Gini index 0.43 0.04 0.34 0.53 0

Mean commute time (minutes) 24.2 4.4 8.9 35.7 0

Crime rates (per 1000)

All violent crimes 1.45 1.76 0.00 7.33 2

Murder and non-negligent manslaughter 0.01 0.02 0.00 0.10 2

Forcible rape 0.16 0.18 0.00 0.72 2

Robbery 0.32 0.56 0.00 2.43 2

Aggravated assault 0.95 1.07 0.00 4.13 2

All property crimes 19.75 9.20 4.31 44.84 2

Burglary 4.06 2.46 1.23 10.84 2
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all significantly associated with LE0, LE65, and ASMR.
Poverty rate was associated with LE0 (r = − 0.389, p =
0.014) and ASMR (r = 0.418, p = 0.008), but not with
LE65 (r = − 0.245, p = 0.113). LE65, however, was signifi-
cantly associated with median home value (r = 0.527,
p = 0.001) while LE0 and ASMR were not. LE0 and
ASMR were significantly associated with all of the seven
examined individual crime rate measures, as well as
overall violent crime and property crime rates, while
LE65 was not significantly associated with any of these
measures.
Fast food and convenience stores per square mile was

significantly associated with decreased LE0 (r = − 0.348,
p = 0.030), while the percent of total area of the city or
town comprised of water (lakes, ponds, bay, ocean, etc.)
was significantly associated with both LE65 (r = 0.525,
p = 0.001) and ASMR (r = − 0.356, p = 0.026), but not
with LE0 (r = − 0.251, p = 0.122). Mean per capita retire-
ment income was the only retirement measure that was
significantly associated with LE0, LE65, and ASMR.
For LE0, three social determinants remained signifi-

cant in the forward stepwise linear regression model
(Table 3): increasing percentages of adults with at least a
bachelor’s degree (beta = 0.11, p < 0.001), percentage of
the population aged 65+ (beta = 0.23, p = 0.001), and
percentage of multigenerational households (beta = 0.43,
p = 0.024) were all significant predictors of LE0, and
remained so in the meta-regression models. Only me-
dian rent (beta = 0.003, p = 0.001) remained significantly
associated with LE65, but was not significant in the

meta-regression model. Median rent also was signifi-
cantly associated with ASMR, and with five other social
determinants: percentage of adults with a graduate de-
gree, percentage of population aged 65+, average com-
muting time (minutes), percentage foreign born, and
percentage on public assistance, although percent 65+,
commuting time, and median rent were not significant
in the meta-regression models. The model parameters
explained 70.9, 28.7, and 78.2% of the variability in LE0,
LE65, and ASMR, respectively.

Discussion
Education and crime were consistent correlates of both
LE0 and ASMR, although several other social determi-
nants were associated with these measures. Social deter-
minants, in general, explained a substantial portion of
the variability in LE0 and ASMR, but explained substan-
tially less variability in LE65. Study findings validate pre-
vious research showing that population health is
associated with a variety of social determinants, includ-
ing education, wealth, crime, and household compos-
ition. Although the same age-specific mortality rates
were used to calculate LE0 and ASMR, there are some
discrepancies between the two measures of population
health, as there also were differences with respect to the
social determinants that were closely correlated with
each determinant. These differences could be due to
slight differences in how these variables are calculated.
LE0 is affected more by variability in mortality rates at
younger ages than ASMR, which weights age-specific

Table 2 Descriptive statistics for all variables examined (Continued)

Measure Mean SD Min Max Number missing

Larceny 14.42 6.64 2.46 33.46 2

Motor vehicle theft 1.28 1.55 0.00 6.54 2

Arson 0.14 0.14 0.00 0.49 2

Environmental and recreational factors

Number of Superfund sites 0.3 0.6 0 2 0

Median age of housing structures 48.3 12.2 24.0 74.0 0

% of households without plumbing 1.2 0.9 0.0 3.6 0

% of land area used for public recreation 16.9 8.8 4.3 42.6 0

Miles of bike lanes per 50 road miles 1.5 1.4 0.0 4.5 0

% living near farmers market 50.2 32.9 0.0 99.6 0

Fast food and convenience stores per square mile 4.3 7.4 0.1 37.2 0

% of population living in food desert 31.9 28.0 0.0 100.0 0

% of total area comprised of water 20.8 23.8 1.1 91.7 0

Retirement

% of grandparental caregivers who are male 36.6 11.3 0.0 59.3 1

% of grandparents responsible for grandchildren 29.8 20.8 0.0 78.0 1

% of grandparents living in poverty 7.7 17.1 0.0 100.0 1

Mean per capita retirement income ($) 24,985 6387 16,111 42,238 0

Cohen et al. Archives of Public Health           (2020) 78:56 Page 6 of 11



Fig. 1 Associations between LE0 and LE65 (Panel a), LE0 and ASMR (Panel b) and LE65 and ASMR (Panel c)
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Fig. 2 Pearson correlation between LE0, LE65, and ASMR and each of the social determinants examined. The magnitude and direction of the
correlation is shown by color: red and pink indicate positive correlations, while blue indicates negative correlations. The darker the color, the
stronger the correlation. Boldface = significant at p < 0.05

Table 3 Model parameter estimates (and 95% confidence intervals) and model fit statistics for three population health outcomes
from forward stepwise regression

Beta (95% CI) P-value* P-value** R2 Adjusted R2

LE0 0.709 0.680

% of adults with at least a bachelor’s degree 0.11 (0.08, 0.15) < 0.001 0.001

% of population aged 65+ 0.23 (0.10, 0.35) 0.001 0.018

% multigenerational households 0.43 (0.06, 0.80) 0.024 0.039

Constant 71.63 (68.53, 74.72)

LE65 0.287 0.265

Median rent ($) 0.003 (0.001, 0.005) 0.001 0.073

Constant 16.92 (15.19, 18.64)

ASMR 0.782 0.734

% of adults with a graduate degree −5.92 (−10.62, −1.22) 0.015 0.020

% of population aged 65+ −12.39 (−21.21, −3.57) 0.008 0.107

Commuting time (minutes) −10.39 (−16.09, −4.70) 0.001 0.068

% foreign born −8.51 (−12.35, −4.67) < 0.001 0.002

% on public assistance 7.72 (2.16, 13.29) 0.008 0.008

Median rent −0.20 (−0.38, −0.01) 0.043 0.734

Constant 1635.44 (1308.57, 1962.31)

Note: LE = life expectancy
*From linear regression
**From meta-regression using linear modeling
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mortality based on the standard used, in this case, the RI
state population. However, correlations between LE0
and ASMR were stronger than correlations between LE0
and LE65 and between ASMR and LE65.
At the national level, the association between education

and LE0 is well documented, with several studies finding
substantial differences between those with higher education
compared to those with less education [25, 40, 41]. Further-
more, one study found that temporal improvements in LE
occurred only in more educated population subgroups [42].
The present study’s correlational findings extends prior re-
search by highlighting that the education-LE association ex-
ists at a finer geographic level. Many other findings from
the present study corroborate prior research on other social
determinants, including food insecurity [43], income and
wealth [44–46], and crime [47, 48]. Conversely, study find-
ings suggest that, although there were no associations be-
tween any of the demographic characteristics (e.g. percent
Black, percent Asian, etc.) and LE or ASMR, higher levels
of Black-White isolation as measured by the Black-White
Index of Dissimilarity, were associated with higher LE0 and
lower ASMR. This finding counters the preponderance of
evidence suggesting that higher residential segregation
worsens population health [49–52]. The differences identi-
fied in this study may be due to the estimation of LE and
ASMR, which was for the entire population of each RI city
or town, irrespective of race/ethnicity. Similar methods
have been used in prior studies [53, 54]. Nonetheless, fur-
ther research is needed to understand the possible reasons
for this contradictory finding.
The interpretation of study results should be consid-

ered in the context of several important limitations.
First, these are cross-sectional data; therefore causality
cannot be inferred. Second, study results refer to mortal-
ity data from the 2009–2011 timeframe. Patterns of
mortality, as well as social determinants, may have chan-
ged somewhat between this timeframe and the present.
Although more recent mortality data are available from
the Rhode Island Department of Health, data from this
period were used to correspond closest to the timing of
the 2010 US Census data, which was one of the main
data sources of social determinants. The 2010 Census is
the most recent decennial census, and population data
used from the decennial census is more accurate than
more recent inter-censal estimates [55]. Third, although
55 social determinants were examined in this correl-
ational analysis, the list of examined social determinants
and population health measures (LE0, LE65, and ASMR)
are not exhaustive. There are numerous other summary
measures of population health, including specific health
conditions, healthcare services utilization, and general
health indices, that can be assessed, if available, in future
studies. Next, spatial autocorrelation is another potential
limitation. In this study, each RI municipality was

considered to be an independent observation. How-
ever, municipalities that are close together may have
more in common with each other than those that are
further apart. Similarly, study findings are valid only
on the geographic level analyzed in this analysis—the
municipality level. Findings may be different if ana-
lyzed on smaller (e.g. census tract, block group) or
larger (e.g. county) scales. Furthermore, small-area
LE calculations are subject to substantial error [30,
56, 57]. In the calculation of LE and ASMR, many of
the cells (13%) used contained a death count of zero.
The state age-specific death rates were used as sub-
stitutes for cells with zero death count, which would
bias the results toward the mean. Minor changes in
the number of deaths, particularly for cities and
towns with low death counts in the younger ages,
can have a sizeable impact on the calculation of LE
and ASMR. Lastly, the small sample size of RI Island
municipalities (n = 39) limits the overall power of the
study, especially with respect to multivariable
analyses.
Despite these limitations, this exploratory study has

several important strengths. This study is among the
first to explore municipal-level social determinants of
three measures of population health in a state across an
entire state. In RI, as is the case with other northeastern
states, local governance is conducted at the municipality
(city or town) level. Therefore, study findings can be
used at the local governance level to potentially imple-
ment policies and programs designed to improve popu-
lation health and living conditions to reduce geographic
disparities in health. Although not all social determi-
nants of health could be obtained for this study, such as
literacy, healthcare access, adverse childhood experi-
ences, and others, the list of examined determinants rep-
resents a wide breadth of topics and measures, many of
which are potentially modifiable. The study results could
be used by policymakers, researchers, and the general
public, to become informed about RI communities, as
well as used as a template for analysis of social determi-
nants of population health in other states and regions, as
well. Furthermore, this study, like other studies [6, 8–12,
16–29, 40] also demonstrates that social determinants
explain a substantial amount of the variability in popula-
tion health across geographies.

Conclusions
Addressing the root causes of social determinants such
as poverty, education, crime, and inequality that pro-
mote or deteriorate population health, is integral to im-
proving population health and reducing critical health
disparities [58]. This exploratory study highlights the
geographic disparities in population health occurring in
RI, and supports the preponderance of evidence
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suggesting that social determinants are associated with
population health across the lifespan. Understanding and
addressing key upstream drivers of population health
and living conditions, especially those that are poten-
tially modifiable through evidence-based policies, pro-
grams, and interventions, are critical to promoting
health across all demographic groups.
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