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ABSTRACT OF THE DISSERTATION 

MULTISCALE MODEL OF CEREBRAL BLOOD FLOW CONTROL: APPLICATION 

TO SMALL VESSEL DISEASE AND CORTICAL SPREADING DEPRESSION 

by 

Arash Moshkforoush 

Florida International University, 2019 

Miami, Florida 

Professor Nikolaos Tsoukias, Co-Major Professor 

Professor Jorge Riera Diaz, Co-Major Professor 

 

An in-time delivery of oxygen-rich blood into areas of high metabolic demand is pivotal 

in proper functioning of the brain and neuronal health. This highly precise communication 

between neuronal activity and cerebral blood flow (CBF) is termed as neurovascular 

coupling (NVC). NVC is disrupted in major pathological conditions including Alzheimer’s 

disease, dementia, small vessel pathologies (SVD) and cortical spreading depression. 

Despite the utmost importance of NVC, its underlying mechanisms are not fully 

understood. 

This dissertation presents a multiscale mathematical modeling framework for studying 

unresolved mechanisms of NVC with major focus on K+ ions as a mediator of this process. 

To this end, models of single-cell electrophysiology are developed for endothelial (EC) 

and smooth muscle (SMC) cells of capillaries and parenchymal arterioles (PAs). Cells are 

electrically coupled, and large-scale geometrically-accurate models of microvascular 

networks are constructed. The change in membrane potential (Vm) of PAs in response to 



vii 

 

K+ stimulus at different locations of the network are studied under normal and pathological 

conditions, specifically during SVD and cortical spreading depression. Lastly, the effect of 

Vm-dependent changes in PA diameter on the regulation of CBF and hematocrit in the 

network is analyzed.  

Model simulations predict that capillary inward rectifying potassium channels (Kir) enable 

these cells to sense neuronally-induced changes in extracellular potassium concentrations 

([K+]o) and conduct hyperpolarizing signals over long distances to upstream PAs in an 

action potential-like regenerative fashion. Simulation results demonstrate that alterations 

in voltage-gated potassium (Kv) channel density in SVD create a “tug-of-war” dynamic 

with Kir channels in determining the Vm and myogenic tone of PA SMCs during NVC. 

Results also predict a key role of Kir channels in the experimentally observed multiphasic 

vascular response during high elevations of [K+]o associated with cortical spreading 

depression. Flow simulations indicate that PA dilation levels and the spatial spread of the 

hyperpolarizing signal along PAs greatly impact the hemodynamic response in large 

microvascular networks. 

The multiscale models presented in this study were able to accurately capture several 

experimentally observed responses during NVC and provided insights into their potential 

underlying mechanisms in health and disease. These models provide a theoretical platform 

where macroscale, tissue-level responses can be related to microscale, single-cell signaling 

pathways. These models can help advance the current understanding of mechanisms 

involved in NVC. 
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CHAPTER 1 INTRODUCTION 

1.1 THE BRAIN AND ITS BLOOD FLOW CONTROL 

The human brain comprises of approximately 1000 miles of blood vessels which actively 

supply nutrients to almost 100 billion neurons [1]. In a healthy brain, the supply of the 

oxygen-rich blood to areas of high metabolic demand is first initiated from a series of 

cerebral arteries on the surface of the brain (pial arteries), and then through parenchymal 

arterioles (PAs) which branch off perpendicularly from these vessels from the Virchow-

Robin space into the brain parenchyma. PAs deliver blood to a vast network of 

interconnected capillaries that distribute oxygen and nutrients to active regions of the brain 

[2].  

Proper brain function is hence highly dependent on a rapid and precise response of 

microcirculation to brain activity and to an efficient distribution of cerebral blood flow 

(CBF) to active regions over a lifetime. The tightly-regulated mechanism, in which 

increased neuronal activity is quickly sensed by brain vasculature and is accompanied by 

a rapid rise in local CBF, is termed as Neurovascular Coupling (NVC) or functional 

hyperemia. This process, originally discovered in the late nineteenth century by Roy and 

Sherrington [3], is essential in the prevention of the development of ischemic regions in 

the brain due to limited energy reserves of neurons and their long-term survival being 

heavily dependent on blood supply. NVC involves an orchestrated activity of a large group 

of cells in the brain, including neurons, astrocytes, endothelial cells (ECs), smooth muscle 
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cells (SMCs), pericytes, and extracellular components, which are collectively referred to 

as a neurovascular unit (NVU) [4]. 

Recent years have witnessed a growing body of research indicating compromised NVC, 

and the resultant CBF dysregulation, in major clinical and neurodegenerative conditions 

including Alzheimer’s disease, stroke, hypertension, dementia, and cortical spreading 

depression, among others [5-9]. The abovementioned neurodegenerative disorders are 

among the most severe health problems and pose significant economic burden on society. 

For instance, studies show substantial increase in the prevalence of dementia over the age 

of 65 [10, 11], with a staggering projected number of ~120 million people affected by the 

disease in 2050 [12]. Several studies in literature indicate the strong correlation between 

cardiovascular risk factors to dementia and cognitive decline [13, 14]. Additionally, above 

40% of vascular dementia cases are attributed to currently untreated Small Vessel Disease 

(SVD) pathologies [15, 16]. These findings point to a strong role of microcirculation in 

neuronal health, and their importance in the prevention of cognitive decline. 

1.2 WIDELY ACCEPTED MECHANISMS OF NEUROVASCULAR 

COUPLING (NVC) 

Despite the utmost importance of NVC, its exact underlying mechanisms are still debated 

in the scientific community, even a century after its discovery. Astrocytes, neurons, 

interneurons, and pericytes have been shown to be involved in NVC [17-23]. The widely 

accepted mechanism of NVC is that the glutamate release in response to neuronal activity 

engages metabotropic glutamate receptors (mGluR) in astrocytes and N-methyl-D-

aspartate receptors (NMDAR) in neurons, initiating cellular pathways leading to the release 
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of vasodilatory agents targeting smooth muscle cells (SMCs) of PAs and pial arteries [17]. 

More specifically, activation of mGluR in astrocytes results in a rise in intracellular 

calcium concentration [Ca2+]i in the soma through the activation of inositol triphosphate 

receptors (IP3Rs) on the endoplasmic reticulum (ER). The raised calcium level generates 

arachidonic acid (AA) from phospholipase A2 (PLA2), which can then convert to 

prostaglandins (PG) via COX pathway, or epoxyeicosatrienoic acid (EET) by P450 

epoxygenase, all of which can relax SMCs of PAs and pial arteries [17].  

Additionally, a raised calcium level in the soma initiates a calcium wave that propagates 

towards astrocytic endfeet, where it activates large-conductance calcium-activated 

potassium channels (BKCa), and releases potassium ions (K+) into the perivascular space. 

The resultant elevation in local [K+]o, will, in turn, activate inward rectifying potassium 

channels (Kir) in SMCs of PAs, causing hyperpolarization of these cells. SMC 

hyperpolarization inactivates voltage-gated calcium channels, which in turn reduces the 

activity of actin-myosin cross-bridge cycle and leads to the dilation of the vessel and the 

subsequent increase in CBF [17, 24]. In neurons, activation of NMDA receptors results in 

the elevation of [Ca2+]i, which can generate nitric oxide (NO) through activation of 

neuronal nitric oxide synthase (nNOS). NO will generate cyclic guanosine monophosphate 

(cGMP) to relax SMCs of PAs. The raised calcium levels in neurons might also result in 

the relaxation of SMCs through the generation of PG via activation of PLA2 and AA [17].  
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1.3  NEW FINDINGS, CHALLENGES, AND ADDITIONAL MECHANISMS OF 

NVC 

Studies over the last decade, however, started to cast doubt on the validity of above-

mentioned mechanisms by questioning the extent of the involvement of astrocytes in the 

hyperemic response following neuronal activity, as well as the lone contribution of SMCs 

in NVC [19, 25-28]. In particular, McCaslin and colleagues showed that astrocytes closely 

encase capillaries and PAs, but they are not detected around pial arteries on the surface of 

the cortex, limiting their ability to directly influence SMCs of pial arteries [25]. Other 

studies demonstrated that the calcium rise in astrocytes initiated after the observed diameter 

increase in the feeding arterioles and pial arteries, raising questions on their involvement 

in the initiation phase of hyperemic response [26, 28].  

Lind and colleagues, however, provided strong evidence that astrocytes in deeper cortical 

areas, mainly around the capillaries, demonstrated fast Ca2+ responses to a stimulus that 

preceded observed vasodilations, suggesting the potential involvement of mechanisms 

initiating vasodilatory signal from deep within the cortex [22]. Chen et al., and Uhlirova et 

al. also showed that hyperemic response following somatosensory stimulus, is initiated 

from the brain parenchyma at the capillary level, and is followed by vasodilation in PAs 

and pial arteries [19, 29]. Using a light-dye technique (LD) to selectively disrupt the 

function of endothelial cells, Chen and colleagues demonstrated that stimulus-evoked 

hyperemic response is significantly halted in post LD areas in vivo, providing compelling 

evidence of active involvement of vascular endothelium in NVC [19]. These studies point 

to the existence of additional mechanisms through which a hyperpolarizing/vasodilatory 
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signal is initiated from deeper areas of the cortex and is transmitted rapidly upstream to 

dilate PAs and surface pial arteries. 

1.4  CAPILLARY-MEDIATED NVC 

Adding to this picture, Longden et al. provided evidence that in addition to SMCs and ECs 

of PAs, capillary endothelial cells (cECs) isolated from the mouse somatosensory cortex, 

express functional Kir channels (Kir2.1 subunit) [30]. These channels are a group of seven 

subfamilies (Kir1-7), which in total have 15 distinct subunits [31]. Kir channels are formed 

as tetramers of their homo or hetero subunits. This family of potassium channels are called 

inward rectifiers since their outward current is decreased with the depolarization of the cell 

membrane positive to the Nernst equilibrium potential of potassium ions (EK), reportedly 

due to the blockade of the channel pore with intracellular cations such as Mg2+, as well as 

polyamines [32, 33]. Increasing the external K+ concentration around the Kir channel 

removes the internal block of cations owing to the increased electrostatic forces and results 

in the increase in the conductance of the channel [34]. Hence why, Kir channels are termed 

“ideal sensors” of changes in extracellular K+ concentration ([K+]) and are reported to have 

key involvement in NVC [35-40].  

Another feature of Kir channels is the presence of a negative slope conductance over the 

physiological range of membrane potentials (Vm) positive to EK, which results in an 

increase in channel conductance with hyperpolarization, enabling them to amplify an 

incoming hyperpolarizing signal [41]. Since neurons are in close proximity to ECs of a 

highly dense capillary network [42, 43], the abovementioned finding turns cECs into ideal 

candidates for sensing changes in [K+]o resulting from neuronal activity and, conducting a 
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Kir-mediated hyperpolarizing signal upstream to PAs and pial arteries to regulate CBF 

[44]. Similarly, since K+ ions are released in the repolarization phase of each neuronal 

action potential, which leads to the fluctuations in [K+]o in the extracellular space, the 

abovementioned finding places K+ ions as a one of the most important mediators of NVC.  

Both in vivo, as well as in an intact capillary parenchymal arteriole ex vivo preparation, 

Longden et al. [30] showed significant hyperpolarization and dilation of the PA following 

modest increases of [K+]o from ~3 mM at resting states to ~10 mM at a distal capillary site. 

The stimulus-evoked dilation was significantly diminished in EC-specific-knockout (EC 

Kir2.1-/-) mice or following the application of barium (Ba2+), a specific Kir channel blocker. 

Also, ECKir2.1-/- mice exhibited significantly reduced hyperemic response during whisker 

stimulation. More recently, the same group under a series of in vivo and ex vivo experiments 

identified the ATP-dependent plasma membrane phosphatidylinositol 4,5-bisphosphate 

(PIP2) as a key regulator of the activity of Kir2.1 channels in cECs. They observed that 

physiological PIP2 levels maintain the activity of Kir2.1 channels in cECs. The authors 

demonstrated that putative NVC mediators, including prostaglandin E2 (PGE2), can 

regulate the fidelity of capillary to arteriolar signaling during NVC through activation of 

Gq-protein-coupled receptor (GqPCRs) dependent pathways that result in the hydrolysis of 

PIP2 into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) [45, 46].  

1.5  DISRUPTION OF NVC IN SMALL VESSEL PATHOLOGIES 

Aside from Kir channels, other K+ channel subtypes are also present in brain PAs and pial 

arteries. These channels include voltage-gated K+ (Kv), large conductance Ca2+-activated 

K+ (BKCa), and ATP-sensitive K+ (KATP) channels [47]. Interestingly, in contrast to 
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surface pial arteries, in PA SMCs only Kir and Kv channels appear to be active under 

physiological conditions, as the application KATP agonist cromakalim failed to dilate PAs 

and the blockade of BKCa channels with paxilline did not change arteriolar diameter in 

murine animal models [47-50]. Kv channels are a large family of 12 subfamilies (Kv1-

KV12), with Kv1.2/1.5 being dominant in PAs, which share a common homo- or hetero-

meric assembly of four pore forming α-subunits and auxiliary β-subunits [51]. These 

channels play a crucial role in opposing pressure-induced constrictions in vascular SMCs, 

and consequently determine the vessel tone and along with Kir channels control the 

diameter of PAs and CBF [47]. The number of functional Kv channels in arteriolar SMCs 

is altered in small vessel pathologies. Most notably it is significantly increased in cerebral 

autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL) and is substantially reduced in subarachnoid hemorrhage (SAH). These 

alterations have a profound effect on the interplay between Kv and Kir channels in 

determining the Vm of arteriolar myocytes and subsequently the regulation of CBF in K+-

induced NVC [52]. 

1.6  NEUROVASCULAR UNCOUPLING IN CORTICAL SPREADING 

DEPRESSION 

While modest elevations in [K+]o (up to 20 mM), levels reached during normal NVC, is 

accompanied by arteriolar SMC hyperpolarization mainly owing to the effect of Kir 

channels and the sodium-potassium (NaK) pump [47], further increases in [K+]o under 

pathological conditions such as cortical spreading depression can result in the 

depolarization of cells and vasoconstriction [53, 54]. First discovered by Leao in mid-
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1940’s, cortical spreading depression is a slow wave (~3-5 mm/min) of sustained, near-

complete neuronal and glial depolarization, lasting approximately for one to two minutes, 

which silences the synaptic activity in the cortex for an extended period of time (up to 15 

minutes) [54-57]. Although primarily linked to migraine aura, cortical spreading 

depression has also been ascribed to other neurovascular disorders including ischemic 

stroke, traumatic brain injury and SAH [56, 58]. Cortical spreading depression is 

characterized by a massive shift of transmembrane ionic and water balances, increased 

neurotransmitter release, elevation of vasoactive agents such as NO and AA metabolites, 

and reduced oxygen and glucose levels across the cortex, all of which result in significant 

alterations in cortical perfusion and the disruption of NVC [9, 54, 56, 59, 60]. Most notably, 

[K+]o is reported to reach ~30-60 mM, or even in some cases to as high as ~80 mM [54, 

55]. This massive efflux of K+ ions to the extracellular space is countered by the influx of 

Na+, Cl-, and Ca2+ ions, resulting in the hypotonicity of the extracellular solution compared 

to the intracellular space and consequently swelling of cells. Cell swelling, and the 

subsequent shrinkage of the extracellular space, can result in even further increases in ionic 

extracellular concentrations [55]. 

The multitude of vasoactive agents concurrently released during cortical spreading 

depression, coupled with the high degree of heterogeneity among cell types in different 

species, makes the understanding and prediction of the vascular response during the 

cortical spreading depression extremely challenging. Combining optical intrinsic 

microscopy with electrophysiological recordings, Brennan and colleagues observed a 

multiphasic response of cortical surface arterioles during cortical spreading depression in 
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anesthetized rats, i.e. vessels dilated before and after the wavefront, while they underwent 

constriction upon the arrival of the wave [53]. Intriguingly, they observed that the vascular 

response was initiated before the arrival of the wave and propagated with significantly 

higher velocities than the wavefront itself. Additionally, dilation of the vessels did not 

follow the path of the wave; rather, it followed the tortuous path of the vessels and it 

propagated to areas beyond the reach of the cortical spreading depression wavefront. 

Vascular responses in different species during this phenomenon have also revealed a 

complex and, although not always the same, in most cases multiphasic patterns [55]. 

Collectively, these results provide compelling evidence for the existence of distinct 

conduction of vasodilatory signal along the brain microcirculation, which could in 

principle have a profound effect on cortical spreading depression-related pathologies, and 

the neurovascular uncoupling during this phenomenon.  

1.7  MATHEMATICAL MODELING OF NVC 

All examples presented above, point to an unparalleled perplexity of CBF 

regulation/dysregulation in normally functioning brain and under pathological conditions. 

The multitude of coexistent cellular pathways, large variability within different animal 

species, structural complexity and inaccessibility of cerebral microcirculation for 

experimental studies make mathematical modeling a powerful and essential tool to gain 

insights into CBF control. Over the past few decades, different aspects of NVC has been 

the subject of extensive research in the modeling community. There is a great body of 

literature on mathematical modeling of an NVU with major emphasis on neuronal and glial 

compartments [61-68]. There are also several studies based on compartmental Balloon and 
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Windkessel models on analyzing the hemodynamic response, and the observed blood 

oxygenation level-dependent (BOLD) signal from functional magnetic resonance imaging 

(fMRI) data in humans and different animal species [69-79]. 

Although the abovementioned modeling studies, among many others (which will be 

discussed more in detail in the following chapters), have significantly advanced our 

understanding of the underlying mechanisms involved in NVC, majority of the available 

models rely on the mesoscale compartmental modeling of the phenomenon, in which the 

combined effect of a large group of cells is modeled as a single compartment. For instance, 

all SMCs of the PA wall is treated as a single SMC compartment with mesoscale properties. 

Despite numerous merits associated with compartmental models in NVC, such as the 

ability to incorporate multiple cell types and making inference on large scale simulations 

with a low computational expense, these models fail to predict/analyze how localized 

changes at the microscale (single-cell) level can affect the macroscale (tissue) level 

responses. Most importantly, recent findings of capillary mediated NVC [30] raises several 

important questions (e.g. how signals generated at localized areas around the capillaries 

can hyperpolarize PAs hundreds of microns away without the signal getting dissipated in 

the vast network of connected cECs, or how capillary level stimulation is compared with 

PA level stimulation in the conducted responses in vasculature and the resultant CBF 

regulation) that requires one to take complicated geometrical features of the brain 

vasculature and the conduction of electrical signals along interconnected vessels and cell 

types into account.  
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1.8  OVERVIEW OF THIS DISSERTATION 

The NVC process has primarily been attributed to the direct effect of vasoactive agents, 

derived from neurons and/or astrocytes, on the arteriolar SMCs [17]. Recent studies, 

however, have challenged the involvement of astrocytes in this process and the role of 

SMCs as the sole sensor of neuronal activity in the vasculature [26, 28]. A delayed rise in 

the astrocytic calcium levels, compared to the dilation of nearby PAs, have been observed, 

questioning whether astrocytic signals are fast enough to drive the onset of the hyperemic 

response [26]. On the other hand, calcium mobilization appears to be faster in astrocytes 

located in deeper regions [22] and retrograde signaling may allow signals initiated deeper 

in the brain to be transmitted to upstream feeding arterioles and surface arteries [19, 29]. 

Furthermore, the role of capillaries in NVC has been for the most part ignored. The robust 

expression of Kir2.1 channels in these cell types may enable capillaries to sense 

neuronally-induced potassium release into the perivascular space, either directly from 

neurons or through the activity of astrocytes, and transmit vasodilatory signals to dilate 

upstream PAs. 

The aim of this dissertation is to utilize mathematical modeling along with recent 

experimental data to investigate the role of capillaries in NVC. The identification of a novel 

mechanism underlying the hyperemic response will provide a paradigm shift in our 

understanding of how blood flow is controlled in the brain. A capillary-mediated NVC may 

enable a more refined regional blood flow regulation and change our perspective on how 

local is blood flow control in the brain. It can potentially reconcile desperate findings 

regarding the involvement of astrocytes in NVC, by shifting the focus from the astrocyte-
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to-arteriole to the astrocyte-to-capillary communication. Most importantly, delineating a 

major signaling mechanism underlying functional hyperemia will improve our 

understanding of brain function in health and under pathological conditions and provide a 

theoretical framework for developing targeted therapeutic strategies.  

As such, the work presented in this dissertation seeks to provide a multiscale mathematical 

modeling framework which builds on prior work by our group and others in the field to 

bridge the gap between our understanding of the microscale signaling and macroscopic 

tissue-level functional responses in NVC in actual reconstructed brain vascular networks. 

Our central focus is on pathways involving K+ ions in both normally functioning brain as 

well as in the presence of diseased conditions, including CADASIL, SAH, and cortical 

spreading depression. To this end, the dissertation is organized as follows: 

In CHAPTER 2, through a series of mathematical models with increasing level of detail 

and complexity, we study capillary mediated NVC with the major focus on the dual role 

of Kir channels as sensors of neuronal activity and amplifiers of the electrical signal. We 

conduct our study by modeling a single cEC response to neuronal activity (through an 

elevation in [K+]o) and identify how local changes in the Vm of these cells can be 

propagated in a network of gap-connected cECs and PA ECs and SMCs in realistic large-

scale microvascular networks. We further identify the key determinants of the system 

which regulate the fidelity and the extent of the conducted responses from cECs to 

upstream PAs.  

In CHAPTER 3, we develop a detailed model of a PA SMC to study how changes in the 

Kv channel density in SVD, particularly in CADASIL and SAH, affects the arteriolar 
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myocyte resting Vm and the myogenic tone. We also analyze how opposing influences of 

the NVC-associated modest elevations in [K+]o on Kv and Kir channels creates a “tug of 

war” between these channels in determining the resting Vm and the response of the cell to 

a potassium challenge under control and diseased scenarios.  

To study the abovementioned multiphasic vascular response during the propagation of the 

cortical spreading depression wave, in CHAPTER 4, we develop a novel current source 

density analysis technique, the “waveCSD” method, which is specifically designed to 

estimate propagating current sources in the cortex, as in the case of cortical spreading 

depression, from their local field potential (LFP) reflections. We utilize the method to 

estimate transmembrane current sources, their shape and spatial extent, during the cortical 

spreading depression from in vivo LFP recordings using microelectrode arrays in rats. The 

reconstructed wavefront will be used in the subsequent chapter to estimate the spatial 

profile of released K+ ions during this phenomenon.  

In CHAPTER 5, we use mathematical models developed in earlier chapters alongside the 

estimate of the shape and the extent of cortical spreading depression wavefront to predict 

the underlying cellular mechanisms of the vascular response during extremely high 

elevations in [K+]o in this phenomenon. To this end, we first study the response of a long 

series of representative cells, electrically connected through gap junctions, subject to a 

wave of high [K+]o. We take the diffusion of K+ ions in the extracellular space as well as 

the buffering of these ions by astrocytes into account in our simulations. We then perform 

simulations in large scale microvascular reconstructions, to investigate how massive 
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increases in [K+]o can give rise to distinct vascular patterns observed by Brennan and 

coworkers [53], in a network of interconnected capillaries, PAs, and parenchymal venules. 

In CHAPTER 6, using a detailed model of blood flow control, we analyze how vasodilation 

levels observed in response to arteriolar hyperpolarization in previous chapters can change 

the transient and steady-state distribution of blood flow and hematocrit in the reconstructed 

brain microvascular network. In these simulations, we take the interaction between 

individual red blood cells with the inner walls of rigid capillary vessels, and the non-

continuum nature of blood when flowing through narrow vessels into effect. These 

simulations provide a platform where cell level electrophysiological simulations can be 

connected to tissue level blood perfusion. Lastly, in CHAPTER 7, we discuss several 

potential avenues of further development of the multiscale modeling approach presented 

and propose experimental procedures for testing the observed model predictions.  
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CHAPTER 2 COMPUTATIONAL MODELING OF CAPILLARY-MEDIATED 

NEUROVASCULAR COUPLING 

The content of this chapter is to be submitted as Moshkforoush A, Ashenagar B, Mirza 

A, Nelson MT, Tsoukias M. “Computational Modeling of Capillary Mediated 

Neurovascular Coupling: The Dual Role of Kir Channels as Sensors of Neuronal Activity 

and Amplifiers of Electrical Signals” 

2.1  INTRODUCTION 

Neural activity leads to a rapid increase in local cerebral blood flow by dilating penetrating 

(parenchymal) arterioles (PAs) and surface (pial) arteries. The process which underlies this 

functional hyperemia is referred to as neurovascular coupling (NVC) and allows blood 

supply to match metabolic demands in the brain [80]. NVC is essential for normal brain 

function and is disrupted in neurodegenerative disorders and stroke [5]. Functional 

hyperemia also constitutes the physiological basis for functional neuroimaging techniques 

that are widely used to probe brain function [81]. 

Despite significant research efforts, how neural activity is sensed by the vasculature is far 

from being fully understood and the communicating cells and chemical messengers 

involved are still under debate. It is now recognized that neurovascular coupling 

mechanisms involve a variety of mediators (including NO, Arachidonic Acid metabolites 

and K+ ions) that are released from neurons, interneurons, or glial cells [17, 18, 36, 82-84]. 

An emerging paradigm is that astrocytes are the bridges between neurons and the 
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vasculature to mediate much of the hyperemic response. Glutamate released by active 

neurons engages metabotropic glutamate receptors (mGluRs), initiating a Ca2+ signal that 

reaches the astrocytic endfeet and releases vasoactive substances, including K+, into the 

perivascular space [17]. An increase in extracellular potassium concentration ([K+]o), can 

activate vascular inward rectifying potassium (Kir) channels resulting in vessel 

hyperpolarization, dilation, and the subsequent increase in cerebral blood flow (CBF) [17, 

24].  

The arteriolar smooth muscle has been considered the primary target of NVC mediators. 

Recent studies, however, put the endothelial layer at center stage in NVC. Data suggest 

that retrograde vasodilatory signals, initiated from deep within the cortex, ascend through 

the endothelial layer to dilate surface arteries [19, 22, 25-28, 44, 85]. Moreover, evidence 

of coupling between neuronal activity and the vasculature at the capillary level has been 

presented [86]. We have recently proposed that brain capillaries act as a neuronal activity-

sensing network and initiate electrical (hyperpolarizing) signals that ascend to dilate 

upstream arterioles and increase CBF [30]. In support of this proposition, we have shown 

that local K+ release at distal capillary sites evokes significant Kir2.1-dependent 

hyperpolarization and dilation of the feeding PA, and that hyperemic responses are 

significantly compromised in EC-specific Kir2.1 knockout mice (EC Kir2.1-/-). Thus, data 

suggest extracellular K+ as a critical mediator for capillary-level NVC and the Kir2.1 

channel as the key molecular player for sensing neuronal activity-dependent elevations in 

[K+]o and translating them into retrograde hyperpolarizing signals.  
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This study utilizes a mathematical framework to investigate the underlying mechanisms 

that enable capillaries to sense neuronal-induced changes in [K+]o and transmit vasodilatory 

signals to upstream PAs. We first examine the membrane potential (Vm) dynamics of single 

capillary endothelial cells (cECs) and analyze the interplay of Kir with the transient 

receptor potential vanilloid 4 (TRPV4) channel and the Na+-K+-ATPase pump (NaK). We 

then form capillary segments by coupling cECs in series via incorporations of gap junctions 

and examine the biophysical determinants of conducted hyperpolarization in capillaries. 

Lastly, we examine under what conditions capillary initiated signals can reach upstream 

feeding arterioles in simulated microvascular networks and investigate mechanisms and 

parameters that regulate the fidelity of the response. 

2.2 METHODS 

We construct a series of mathematical models to investigate electrical signaling in the brain 

microcirculation. Patch clamp studies in freshly isolated mouse cerebral cECs revealed the 

presence of functional Kir2.1 and TRPV4 in these cells, but in contrast to ECs from all 

other vascular beds examined up to this date, the absence of small (SK) and intermediate 

(IK) conductance calcium-activated K+ channels [85]. We, thus, examine the role of these 

channels in capillary electrophysiology by constructing a series of models with increasing 

detail and complexity.  

2.2.1 Models of cEC electrophysiology 

A minimal model of cEC electrophysiology (Model A, Figure 2-1) entails an explicit 

mathematical description for the Kir current (IKir), while all other transmembrane currents 
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are lumped into a non-specific linear background current (Ibg) with a lumped conductance, 

Gbg: 

IKir = 
G̅Kir[K

+]o
0.5 (Vm − EK)

1 + exp (
(Vm − V0.5 )

k
)
 Equation 2-1 

Ibg = Gbg(Vm − Ebg) Equation 2-2 

where Ebg is the reversal potential for Ibg; EK is the Nernst potential for K+ ions; and V0.5 

and k are parameters that describe a sigmoidal inhibition of Kir with membrane 

depolarization (i.e. Vm for half maximal inactivation and the steepness factor, respectively). 

The Boltzmann-type formula (Equation 2-1) captures the IKir’s inward rectification and the 

negative slope conductance as Vm approaches more depolarized potentials. (i.e. the 

inhibition of IKir as Vm depolarizes yields the characteristic N-shaped relationship depicted 

in Figure 2-2B). The channel’s conductance increases with [K+]o (GKir = ḠKir√[K+]o) [87, 

88]. The assumed ohmic behavior of Ibg is validated against a detailed EC 

electrophysiology model (Figure 2-1D and Appendix A2). Using a standard Hodgkin-

Huxley type formalism, the time-dependent changes in Vm are predicted from Equation 

2-3: 

Cm
dVm
dt

+  Ibg +  IKir = 0 Equation 2-3 

where Cm is the membrane capacitance. Cm, G̅Kir, and Gbg were determined from patch data 

in freshly isolated mouse cerebral cECs, and Ebg is approximated as the resting Vm (~-

30mV). Kir current-voltage data have been satisfactorily fitted with a k value of ~7mV; 

however, there is a high degree of ambiguity in literature regarding the value of V0.5, with 
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data suggesting that it drifts with EK and may vary between EK and EK+40mV [36, 89, 90]. 

In all simulations performed in this study, we assume a control value of (EK+25mV) for 

V0.5, and we examine the effect of varying V0.5 in Appendix B2.  

 
Figure 2-1 Mathematical models of a single cEC. (A) Minimal model of cEC (Model A) includes a 

description for Kir (IKir) while the rest of transmembrane currents are lumped into a nonspecific background 

current (Ibg). (B) Model B examines the effect of stochastic opening of TRPV4 on Vm dynamics by separating 

the TRPV4 current (ITRPV4) from the lumped background current in model A. C) Model C examines the 

combined contribution of the NaK pump and TRPV4 currents in the response of a cEC to stimulus. 

Descriptions for transmembrane Na+ (INaL) and K+ (IKL) currents close the ionic mass balances and allow 

intracellular concentrations to drift as the NaK activity changes. D) Detailed cEC model (Model D) modified 

from Silva et al. [89]. The model incorporates IKir, ITRPV4, and NaK as in the minimal models and includes 

currents through non-selective cation (NSC) and Chloride (Cl) channels, PMCA pumps, the NCX exchanger 

and the NaKCl cotransport. The model also takes into account the dynamics of intracellular ionic species, 

second messenger, and major intracellular components. 

2.2.2  TRPV4 model 

To examine the contribution of TRPV4 channels to cEC dynamics, we separated the 

TRPV4 current (ITRPV4) from the lumped background current in model A (Figure 2-1B). 

Model B accounts for the stochastic opening of TRPV4 channels and the resultant transient 

depolarizing current with bursting and cooperativity kinetics as characterized in mouse 
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cECs [46]. We simulated the TRPV4 current using a three-state discrete-time Markov 

Chain model [91, 92]. The TRPV4 channel can reside in any of the following three states: 

I) blocked (intraburst short closed state), II) open, and III) shut (interburst long-closed 

state). At rest, whole-cell TRPV4 currents from cECs reveal infrequent single level channel 

openings with an open probability (time-averaged number of open channels NPo=0.038) 

[46]. In agreement with the experimental data, Model B accounts for one active TRPV4 

with bursts of stochastic openings with a mean open time (90 ms), a mean blocked time 

(33 ms), a mean shut time (4 min), and a mean burst duration (20 s) [46, 92, 93]. The Na+, 

K+ and Ca2+ currents through an open TRPV4 channel are modeled via a Goldman-

Hodgkin-Katz equation with the general form: 

ITRPV4,S (t, Vm, Si) =  PTRPV4,S
zs
2F2

RT
Vm

Si − S0e
−zsVmF
RT

1 − e
−zsVmF
RT  

 
Equation 2-4 

where ITRPV4,S is the current carried by each cation S (i.e. Ca2+, K+, Na+); Si is the 

intracellular and So the extracellular concentration of S; zs is the valence of the ion; F is the 

Faradays constant, and PTRPV4,S is the ionic permeability (PTRPV4,Ca = 2.5x10-8 cm /s and 

PTRPV4,Ca:PTRPV4,K:PTRPV4,Na = 7.1:1.4:1) [92]. The time-dependent net current (ITRPV4(t)) is 

the sum of the currents carried by each ion through an open TRPV4 channel, multiplied by 

the number of open channels at each time, NP0(t). 

ITRPV4 (t) =  NP0(t)∑ ITRPV4,S 
s

PTRPV4,S Equation 2-5 

The dynamics of cEC Vm in Model B can therefore be predicted via Equation 2-3, using 

the following Itot: 
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Itot =   Ibg +  IKir +  ITRPV4  Equation 2-6 

2.2.3 TRPV4 and NaK model  

Model C incorporates a description for the activity of the NaK pump and its dependence 

on [K+]o and intracellular sodium ([Na+]i). In this model, the lumped background current 

in model A is divided into currents carried by TRPV4, a low-affinity isoform of sodium 

potassium pump (NaK), and generic Na+ and K+ leak currents (Figure 2-1C). The leak 

currents are introduced to ensure ionic balance at physiological levels and that 

“background” currents in models C and A are equivalent. They also allow intracellular 

ionic concentrations to drift during sustained stimulations. Here, the dynamics of NaK 

pump current is modeled using two sigmoidal relationships sensitive to changes in 

intracellular Na+ and extracellular K+ concentrations, respectively (Equation 2-7). 

INaK  =  
INaK,max

(1 + e((KKo  − Ko)/mKo)) (1 + e
((KNai  − Nai)/mNai

)
)

 
Equation 2-7 

where INaK,max is the maximum NaK current; KKoand KNai are half maximal activations 

of NaK pump to extracellular K+ and intracellular Na+, respectively; and mKo and mNai
are 

sodium and potassium slope factors. Leak currents are modeled as ohmic currents with leak 

conductances for Na+, i.e. GNa, and K+ ions, i.e. GK. 

INaL  =  GNa (Vm  −  ENa)  Equation 2-8 

IKL  =  GK (Vm  −  EK) Equation 2-9 

where ENa is the reversal potential for Na+ ions. The ionic and membrane potential 

dynamics of model C can be summarized using following system of equations: 
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dKi
dt
 =  

−IKL  +  2INaK  −  IKir  −  ITRPV4,K 

zKFvol
 Equation 2-10 

dNai
dt

 =  
−INaL  −  3INaK − ITRPV4,Na

zNaFvol
 Equation 2-11 

Cm
dVm
dt

 =  −Itot Equation 2-12 

Itot  =  INaL + IKL + IKir + INaK  +  ITRPV4  Equation 2-13 

2.3  MODULATION OF TRPV4 AND KIR CURRENTS WITH PIP2 

It has recently been reported that putative NVC mediators, including prostaglandin E2 

(PGE2), activate Gq-protein-coupled receptor (GqPCRs) dependent pathways that result in 

the hydrolysis of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into 

diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Harraz et al. [45, 46] 

demonstrated that depletion of PIP2 gradually inhibits the Kir channels, and conversely, 

increases the activity of TRPV4 channels with time constants of ~5-7 minutes. In some 

simulations performed in this study, we have incorporated the effect of the dynamic 

regulation of Kir and TRPV4 through an exponential decrease in IKir, and an exponential 

increase in ITRPV4, with their respective time constants upon start of the potassium stimulus. 

2.3.1  Detailed model 

A detailed model of endothelial membrane electrophysiology, Ca2+ and ionic dynamics 

[89] was adapted to describe cerebral cEC dynamics (Model D). The model incorporates 

Kir and TRPV4 currents as described above and assumes absence of IK and SK. The Ibg is 

partitioned to currents through non-selective cation (NSC) and Chloride (Cl) channels, 

NaK and plasma membrane Ca2+-ATPase (PMCA) pumps, the Na+/Ca2+ exchanger (NCX) 
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and the Na+-K+-Cl- cotransport (NaKCl). Equations and parameters for these currents are 

described in [89] and are proportionally scaled here to provide an overall conductance at 

rest equal to Gbg. Thus, the contribution of IKir and ITRPV4 relative to all other 

transmembrane “background” currents is maintained in the detailed model (Appendix A2), 

consistent with the minimal models and experimental data. Furthermore, the detailed model 

can predict dynamic changes in intracellular ionic concentration, account for the role of 

pumps/exchanger and test simplifying assumptions in the minimal models. 

2.3.2  Multicellular models of microvascular networks  

cECs were placed in series and coupled through gap junctions to construct multicellular 

capillary networks, in silico. Current flow between adjacent cECs is estimated based on the 

electrical gradient and the cEC-to-cEC coupling resistance (Rgj). 

Igj,i = ∑
1

Rgj,i,n
(Vm,i − Vm,n)

n

 Equation 2-14 

where n is the index of cells connected to cell(i), Igj,i is the gap junctional current flowing 

from cell(i) to cell(n) with a gap junctional resistance Rgj,I,n. Rgj has not been measured in 

capillaries, we thus examine Rgj values ranging from 1MΩ to 1 GΩ and assume a control 

value of 10 or 50MΩ based on estimates for coupling resistances between ECs in arteries 

[94, 95]. Capillary networks were constructed with a geometry that approximates isolated 

ex-vivo preparations [30] or were adapted from larger reconstructed microvascular 

networks [96]. Conduction of electrical signals in PAs was accounted by considering PA 

EC and SMC membrane resistivities (Rm,EC Rm,SMC) and Kir conductances (GKir,EC 

GKir,SMC) and the myoendothelial gap junctional resistance (RME) as previously described 
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[94, 97]. Three ECs are coupled to three SMCs at each longitudinal position and for each 

EC-SMC pair, we account for a total Kir conductance (GKir,EC-SMC = GKir,EC+GKir,SMC) and 

a background conductance Gbg,EC-SMC as the inverse of the resting transmembrane 

resistance, Rm,EC-SMC. The latter is estimated from the parallel connection of Rm,EC with RME 

and Rm,SMC combined in series: 

Rm,EC−SMC =
(Rm,SMC  +  RME) Rm,EC
(Rm,SMC  +  RME + Rm,EC)

 Equation 2-15 

Each unit is coupled to adjacent EC-SMC units with a resistance, Rgj,PA. Parenchymal 

venules (PVs) are also treated same as PAs, with the difference that we assume these 

vessels lack Kir channels. All simulations have been performed in MATLAB 2018b using 

ode15s, suitalble for solving stiff initial value ordinary differential equations. Parameter 

values along with their definitions are provided in Table 2-1.  

2.4  RESULTS 

2.4.1 Kir mediates sustained cEC hyperpolarization in response to a K+ challenge 

We use a mathematical modeling approach to investigate the ability of cECs to sense an 

increase in [K+]o. A minimal model of an isolated cEC (Model A; Figure 2-1A) captures 

the Kir dynamics during a K+ challenge. A moderate increase in [K+]o opens Kir channels 

and produces a sustained hyperpolarization (Figure 2-2A). Simulations show jumps of Vm 

from a depolarized to a hyperpolarized potential when [K+]o increases past a critical 

concentration level, in agreement with an “all or none” Vm response when increasing [K+]o 

in cultured ECs [87]. The critical concentration for the hyperpolarizing Vm jump depends 

on Gbg/G̅Kir ratio, as can be observed in solid vs. dashed blue traces (corresponding to 
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solid vs. dashed green arrows in Figure 2-2 E). Decreasing [K+]o back to resting levels can 

either return the cEC to the depolarized resting potential (solid red line), or leave the cell 

at a hyperpolarized potential (dashed red line). This behavior is attributed to the presence 

of two bifurcation points, i.e. saddle-node bifurcations, yielding a system that can exhibit 

hysteresis during a K+ challenge/washout cycle and bistability within a K+ concentration 

window (Figure 2-2 B-E). Small biological variability in channel densities will yield a 

binomial distribution of hyperpolarized and depolarized isolated ECs as seen in 

experimental studies [87, 90]. 

2.4.2  cECs can have a bistable Vm  

The stability diagram in Figure 2-2 E summarizes the system’s dynamic behavior as we 

move around in the parameter space. The diagram depicts the K+ concentration window 

for bistability as the ratio of Gbg/G̅Kir changes. As [K+]o increases or Gbg/G̅Kir decreases, 

the threshold Vm (unstable steady-state; open circle in Figure 2-2 C) gets closer to the 

depolarized steady state (the solid red circle at more depolarized potentials). This lowers 

the ΔVm threshold (and the corresponding current threshold) for jumping from the 

depolarized to the hyperpolarized steady-state, while increases the ΔVm threshold for 

transition in the opposite direction. We separate the bistability region in hyperpolarization 

favoring (blue) and depolarization favoring (red) areas, based on the magnitude of ΔVm 

thresholds required for transition towards the one or the other direction (Appendix B2). 

cECs can thus be classified into one of four groups according to their Kir conductance 

relative to the total transmembrane conductance: cells that have a single depolarized 
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(yellow region) or hyperpolarized (grey region) steady-state, depolarization favoring (red 

region), or hyperpolarization favoring (blue region) bistable cells (Figure 2-2 E). 

Studies have previously provided evidence for Kir-mediated bistable membrane potentials 

in ECs and SMCs [90, 98]. We examined whether the Kir current density in cECs is 

sufficient to create a bistable system at physiological [K+]o. Figure 2-2 F shows the 

summary data for the whole cell patch clamp recordings of enzymatically isolated cECs 

from mouse brain slices [30, 45] to determine the Ba2+ sensitive (GKir) and insensitive (Gbg) 

transmembrane conductances. Current densities (G̅Kir=0.18+0.1nS/mM0.5; Gbg=0.06+0.04 

nS (n=24)) place cECs within/near the predicted bistability region at physiological [K+]o 

(Refer to Appendix B2 for the effect of model parameters on predicted Vm bistability 

window). Note that in this chapter we synonymously refer to as GKir as the Kir channel 

conductance at 3mM of [K+]o; unless stated otherwise. Dynamic regulation of GKir [45] 

and/or [K+]o, and the level of inward rectification through the action of inhibitors like 

polyamines and Mg2+ [99], can change the percentage of bistable cells in a population of 

cECs. Overall, theoretical analysis and experimental data suggest that the presence of a 

dominant Kir current in cECs can create a “bistable switch” in Vm, a characteristic of 

electrical excitability and a necessary condition for regenerative, action potential-like 

propagation of electrical signals [100]. 
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Figure 2-2 Single cEC response to modest elevations of [K+]o. (A) Simulated Vm responses (Model A) to step 

increases (blue lines) and decreases (red lines) in [K+]o show jumps between hyperpolarized and depolarized 

Vm and hysteresis. Solid and dotted traces correspond to Gbg/G̅Kir ratios of 0.7 and 0.3, respectively. (B-E) 

Stability analysis: representative IKir and (-Ibg) are depicted as a function of Vm at increasing (3, 5, 8 mM) 

[K+]o. Intersection points denote steady-states (stable: solid circles, unstable: open circle) where the total 

current is zero. (B) At low [K+]o the outward Kir current is small and the cell rests at a depolarized Vm. (C) 

Increasing [K+]o leads to a rightward and upward shift of the IKir curve as a result of the increase in GKir and 

EK. As the [K+]o increases past a critical concentration the system undergoes a saddle-node bifurcation and 

three steady-states emerge. The depolarized and hyperpolarized stable steady-states (solid red circles) are 

separated by an unstable steady state in between (threshold Vm, open circle). (D) Further increase in [K+]o 

drives the system past a second saddle-node bifurcation. The presence now of only one hyperpolarized 

steady-state will force the cell to jump to a hyperpolarized Vm close to EK. (E) Stability diagram shows the 

parameter space where bistability (depicted in C) exists. Blue/Red color maps show ΔVm thresholds in 

bistable regions favoring transitions to the hyperpolarized/depolarized state. F) Patch clamp recordings of 

isolated cECs with 6mM and 60 mM [K+]o bath concentrations (n = 24), before and after Kir inhibition with 

Ba2+, were used to determine G̅Kir=0.18+0.1nS/mM0.5 (Ba2+ sensitive) and Gbg=0.06+0.04 nS (Ba2+ 

insensitive) condutances (G) Minimal model (Model B in Figure 2-1) examines Kir-TRPV4 dynamics. 

Stochastic openings of a single TRPV4 channel yield transient depolarizations. At intermediate [K+]o, 

transient fluctuations between two polarization levels are predicted as the system crosses the saddle node 

bifurcation. Vm fluctuations are dampened at higher levels of stimulation as the TRPV4 current is not 

sufficient to transition the system to the depolarized state. (H) Minimal model (Model C in Figure 2-1) of a 

cEC examines Kir-NaK dynamics. Increasing [K+]o activates low affinity NaK pump isoforms producing 

transient hyperpolarization, [Na+]i depletion and a rebound depolarization after stimulus termination. 

Parameter values used for the simulations performed in this figure is summarized in Table 2-1. 

2.4.3  Nak pump and TRPV4 mediate transient Vm responses during A K+ challenge  

Stochastic openings of TRPV4 can produce transient depolarizations in Vm. At moderate 

levels of K+ stimulation, the TRPV4 bursting activity can drive the system past the 
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bifurcation points (i.e. transitioning a cEC from grey to yellow), producing large transient 

Vm jumps in simulations using model B and model D (Figure 2-2 G and Appendix C2, 

respectively). These results are in line with experimental data where isolated ECs and 

arterioles exhibit fluctuations between two polarization levels upon stimulation with 

intermediate K+ concentrations (~5-8 mM) [87, 98, 101]. This experimentally observed 

instability suggests a bistable system and can be reproduced in silico when accounting for 

the stochastic opening of TRPV4. The stochastic Vm fluctuations are dampened with 

further increasing [K+]o (i.e. ≥8 mM) as the TRPV4 current is not sufficient to drive the 

cell past the threshold Vm (Figure 2-2G and Appendix C2, panel D).  

A K+ challenge can also transiently increase the activity of NaK pumps (i.e. particularly of 

low K+ affinity isoforms; NaKα2, NaKα3), producing a transient hyperpolarization [102]) 

(Figure 2-2 H). In representative simulations using minimal (Model C) or detailed (Model 

D, Appendices A2 and C2) models, transient NaK-mediated hyperpolarization could be 

reproduced and was typically followed by a rebound depolarization after termination of a 

prolonged K+ stimulation (resulting from reduced pump activity due to intracellular Na+ 

depletion, Figure 2-2 H inset). The TRPV4 and NaK-induced Vm transients can facilitate 

transitions between hyperpolarized and depolarized Vm, in bistable cECs during an increase 

in [K+]o or upon its return to resting levels (Figure 2-3 C).  

2.4.4  Bistable cells amplify electrical signals and promote hyperpolarizing jumps in 

capillary segments 

Action potential (AP) firing, as described by Hodgkin-Huxley type dynamics, is due to the 

voltage dependency of the Na+ channel’s (Nav) activation gate that initially creates (i.e. 

prior to the Nav inactivation or the delayed voltage gated potassium channel (Kv) 
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activation) a bistable Vm (Appendix D2). Thus, from a dynamics point of view, Vm 

bistability allows for the “all-or-none” response in AP and the regenerative propagation of 

a depolarizing front along neurons. Similarly, Kir-induced bistability can facilitate 

excitability and regenerative propagation of electrical signals along the endothelium [100]. 

In Figure 2-3 A we formulated a model of a capillary segment by placing cECs in series 

and coupled them through gap junctions with a cell-to-cell electrical resistance, Rgj. Model 

simulations show that at low Kir current densities, a local K+ stimulus produces a small 

local hyperpolarization that spreads passively and attenuates along the capillary segment 

with a length constant of signal attenuation, λ =  √rm ri⁄  (where ri =  Rgj/LEC  and 

rm = RmLEC are the axial membrane resistivity per unit length, and LEC and Rm are the 

cEC length and membrane resistance, respectively). At high Kir densities, model predicts 

significant local hyperpolarization (stimulated cells jump close to EK) that spreads without 

attenuation (i.e. excitable/regenerative system). The latter case is possible when cECs are 

bistable and hyperpolarization favoring (i.e. blue region in Figure 2-2 E). 

The passive system resets following stimulus termination in our capillary model (Figure 

2-3 B), i.e. Vm returns to its basal value upon removal of the stimulus. Removing the 

stimulus could not reset Vm in the excitable system as the local bistable cells did not 

depolarize by the return of [K+]o to resting levels, due to hysteresis (Figure 2-2 A dotted 

line). Furthermore, as theoretical analysis in [100] indicates, an infinitely long capillary 

(i.e. capillary length (L) >> λ) with identical and bistable ECs can promote regenerative 

conduction of either a hyperpolarizing (blue ECs) or a depolarizing (red ECs) front, but not 

both at the same time. Thus, a local return to the resting depolarized Vm, cannot propagate 
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in our model capillary under the conditions of Figure 2-3 A,B. Similar to an AP, delayed 

inactivation/activation of channels may be required to depolarize the capillary back to 

resting Vm.  

2.4.5  TRPV4 and NaK can facilitate system return following stimulus termination  

Model simulations in Figure 2-3C suggest that the presence of TRPV4 channels and/or the 

activity of the NaK pump can provide a resetting mechanism for the excitable capillary 

layer in Figure 2-3 A,B. Basal TRPV4 channel activity (at levels that have been observed 

experimentally [46]), was capable of turning back the “bistable switch” in a hyperpolarized 

capillary segment (Appendix E2). The depolarizing effect of stochastic TRPV4 transients 

along the capillary segment enable depolarization to resting levels after stimulus 

termination (when the current threshold for transitioning to the depolarized Vm is reduced). 

The NaK-induced transient hyperpolarization/depolarization during stimulus 

initiation/termination (Figure 2-2 H) promotes local, stimulated bistable cells to jump to a 

hyperpolarized/depolarized potential, respectively (Appendix E2). TRPV4 and NaK 

activity can, thus, conditionally facilitate (i.e. depending on the required threshold current) 

the return of the capillary to the depolarized resting potential upon stimulates termination. 

More robust resetting can be achieved by a progressive downregulation of Kir activity 

and/or upregulation of TRPV4 upon hyperpolarization as observed experimentally during 

plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) or ATP depletion [45, 46]. 

This would slowly transition cECs from hyperpolarization favoring (blue) during stimulus 

initiation to depolarization favoring (red or yellow), enabling capillary Vm to return to 

resting potential and protect the system against a prolonged excitability (Appendix E2).  



31 

 

 
Figure 2-3 Electrical conduction in a capillary segment. cECs (Model A) where coupled in series to form a 

model of a capillary segment. (A) An array of 20 axially connected and identical cECs are stimulated at the 

left end (n=2cells) with 10 mM K+ and Vm responses are depicted at rest (dashed line) and following 

stimulation for GKir=0.2nS and 0.4nS and Rgj=10 MΩ. Bistable cECs (GKir=0.4nS; blue cECs) can produce 

significantly higher local hyperpolarization which propagates without attenuation. (B) Time course of the 

responses in (A). System resets after stimulus end when low levels of GKir are assumed (GKir=0.2nS; yellow 

cECs), but it does not when higher GKir (blue cECs) promote a hyperpolarizing jump upon stimulation. (C) 

TRPV4 and NaK (Model C) can facilitate resetting in an excitable system (GKir=0.4nS). (D-F) Level of distal 

(400µm from stimulus site) hyperpolarization (ΔVm) color-coded for a long (N=200 cells) (D, E) and a short 

(N=20 cells) (F) capillary segment. Depending on GKir and Rgj, passive conduction, facilitated 

hyperpolarization, or excitability with or without regenerative propagation of a hyperpolarizing front is 

predicted. In the long capillary segment, increasing Rgj (arrow in Figure 2-3 D) can increase distal 

hyperpolarization by promoting regenerative conduction (E). (G) Time course of the hyperpolarizing jump 

in a short, well-coupled segment upon stimulation of 2 or 4 cells at one end. (H,I) Regenerative propagation 

of the hyperpolarizing front in a long segment (N=200 cells) with Rgj of 100 MΩ (H) and 1GΩ (I). The rest 

of the parameters used for the simulations performed in this figure is summarized in Table 2-1 
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2.4.6  Weak intercellular coupling promoting regenerative electrical conduction 

Whether a K+ challenge can produce a hyperpolarizing jump (i.e. whether capillary is 

excitable) depends on the ratio of GKir/Gbg, the stimulus strength (i.e. number of cells 

stimulated), and the coupling between neighboring cECs (Figure 2-3 D,F). Interestingly, 

the minimum required GKir for excitability decrease as Rgj increases under the conditions 

of Figure 2-3 D (i.e., long segment of cECs where L>>λ). This creates a paradox where for 

a given level of stimulation and Kir activity, significant local and distal hyperpolarization 

can be achieved only if ECs are poorly coupled (green arrow in Figure 2-3 D and traces in 

Figure 2-3 E) [100]. Model predicts that electrical signals can propagate along the 

endothelium even if Rgj is in the GΩ range (compared to the Rgj in the MΩ range that 

enables robust but passive propagating responses in arteries [94, 95]). This counterintuitive 

result is attributed to the increased sensitivity of the cECs to K+ with higher Rgj (i.e. current 

loss to neighboring cells is reduced and opening of Kir channels induces a larger local 

change in Vm) that allows for local hyperpolarization above the ΔVm threshold for turning 

the bistable switch on. Once Vm passes the threshold value, the cEC jumps to a 

hyperpolarized potential and drives hyperpolarization of its neighboring cell, causing a 

domino-like effect along the capillary (regenerative conduction), analogous to the 

propagation of APs in neurons.  

2.4.7  Capillary length, coupling resistance and amplification of hyperpolarization  

Simulations in short (relative to λ) capillary segments revealed different Vm dynamics 

(Figure 2-3 F) compared to long segments (Figure 2-3 D). Significant hyperpolarization 

can be achieved with lower GKir, and Rgj in the MΩ range. Stimulation of a few cECs and 

the resulting small initial hyperpolarization is amplified by the opening of Kir channels 
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along the length of the isolated and relatively well-coupled capillary segment. This Kir-

mediated amplification, results in higher levels of hyperpolarization (facilitated 

hyperpolarization) as has been documented in experiments [103] and the fidelity of the 

response increases with the increase in Kir density/activity. Further increase in GKir above 

a threshold value (but below what is required for regenerative conduction in Figure 2-3 D) 

promotes a hyperpolarizing jump in Vm, upon K+ stimulation. This Kir-mediated segment 

excitability differs from the regenerative conduction described above by the absence of a 

propagating hyperpolarizing front, i.e. the last cEC jumps to the hyperpolarize Vm before 

the stimulated cECs (crossover of the red-green traces in Figure 2-3 G), and by its 

dependence on capillary size. Stimulation of a sufficient number of cECs may allow such 

a spatially-confined excitability in a capillary network (Figure 2-5). Thus, depending on 

length, stimulus strength and channel densities, stimulation of a capillary segment may 

result in a) a relatively small local Vm change that propagates passively and dissipate with 

distance (passive system), b) a more pronounced local and distal hyperpolarization as the 

conducted signal is facilitated/amplified by the opening of Kir channels in neighboring 

cells (facilitated conduction), or c) a segment excitability with or without the regenerative 

propagation of a hyperpolarizing front. 

2.4.8  Conduction velocity  

In a capillary with passive characteristics (i.e. constant Rm), the conduction velocity (𝑣) is 

determined by the ratio of λ to the characteristic time constant τ = CmRm (i.e. 𝑣 is in the 

order of 
𝜆

𝜏
=

𝐿𝐸𝐶

𝐶𝑚√𝑟𝑖𝑟𝑚
 ) which governs the response time of a distal cell upon local 

stimulation. In Figure 2-3 G-I we examine the conduction velocity in capillary segments 
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under conditions that promote the opening of distal Kir channels (i.e. non-passive 

conductions). In short capillary segments (L=200 μm; Rgj=10MΩ; 
𝜆

𝜏
 = 6mm/s; 𝜏 = 130 ms), 

distal cells respond fast upon K+ stimulation (Figure 2-3 G) and detectable Vm changes are 

predicted at the distal end within tens of milliseconds, which is close to the estimated 
𝜆

𝜏
 

ratio. Even though cECs in the short and well coupled capillary segment respond nearly 

simultaneously to the potassium-stimulus, the system reaches its steady-state value with a 

delay of more than a second (i.e., the rate of Vm change is drastically slower than what 

would have been predicted under passive conditions ( 𝜏  = 130 ms)). This delay is 

significantly reduced, however, when more cells are stimulated (compare 2 vs. 4 cell 

stimulation in Figure 2-3 G). This behavior suggests that the response dynamics of distal 

cECs are not limited by the charging of membrane capacitance, but rather by the rate of 

progressive Kir channel recruitment as Vm hyperpolarizes. Experimental data in small 

isolated capillary networks (Figure 2-4 A) demonstrate such characteristics, which can 

potentially provide evidence for a Kir-mediated amplification of the propagating electrical 

signal. 

In long capillary segments (L=4000 μm; Rgj=100MΩ-1GΩ; 
𝜆

𝜏
 = 2-0.6 mm/s), distal cells 

will respond with a delay, reflecting the delayed arrival of the hyperpolarizing front, 

followed by a fast transition to a hyperpolarized Vm (Figure 2-3 H,I). The conduction 

velocity of the hyperpolarizing front is 𝑣≈ 40 cECs/s or ≈ 0.8 mm/s for Rgj of 1GΩ (Figure 

2-3 I) and increases to 120 cECs/s, ≈2.4 mm/s, if Rgj=100 MΩ (Figure 2-3 H). The latter is 

still three orders of magnitude less than typical conduction velocities in unmyelinated 
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neuronal axons, owing to approximately three orders of magnitude larger rm and ri of 

capillary segment to those of axons. 

2.4.9  Evidence for regenerative hyperpolarization in the brain microcirculation - 

an inverted sustained action potential  

We have recently provided ample evidence that elevation of K+ around capillaries transmits 

electrical signals to upstream arterioles [30]. Picospritzing 10 mM K+ onto a few capillary 

ends in an ex vivo preparation of a PA with attached capillaries (Cap-PA) (Figure 2-4 A 

inset) caused significant hyperpolarization (up to 30 mV) and maximal dilation of the PA 

hundreds of microns away from the stimulus site (Figure 2-4 A). However, the magnitude 

of outward Kir current in cECs (often below the limit of detection in patch clamp 

experiments) suggests that K+ stimulation of a few cECs can only generate up to a few pico 

amperes of hyperpolarizing current. By comparison, equivalent conducted responses in 

small arterioles typically require several nano amperes of stimulating current [94, 104, 

105]. This disparity in stimulatory current requirement cannot be explained by differences 

in size or the number of cells between arteries and capillaries. How does the stimulation of 

a few cECs produce robust dilations in upstream feeding arteries?  

We formulated a model capillary-PA network that resembles the Cap-PA preparation 

(Figure 2-4 A inset) and examined the effect of increasing [K+]o on cECs located on one 

end of the capillary branch (~15% of total cECs in the network). Simulations assume a 

heterogeneous population of cECs with variable number of active Kir channels to account 

for biological variability. As the mean GKir increases, the majority of the cell population 

shifts from yellow, to red, to blue (as shown in the respective pie charts in panels C-E). A 

heterogeneous capillary network behaves passively when most cells are yellow and 
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remains insensitive to K+ stimulation (Figure 2-4 C). This response is comparable to that 

of a capillary network without Kir channels (EC Kir-/-) which is locally stimulated with an 

equivalent current injection (Figure 2-4 B). Thus, model predicts a limited 

hyperpolarization of the feeding PA (black traces) under passive conditions, significantly 

below the observed 20-30 mV arteriolar response in the experiments. The effect from an 

equivalent local stimulation in vivo is expected to be even lower if current disperses in both 

upstream and downstream directions and to every connected side branch. Thus, comparison 

of ex vivo and in silico data suggests the presence of an amplification mechanism of the 

capillary-initiated electrical signaling, intrinsic to the microvascular network. 

 
Figure 2-4 Ex vivo Capillary-PA preparation. (A) Experimental data showing smooth muscle Vm recording 

in an isolated and pressurized PA with the capillary network attached (inset) when 10 mM K+ is picospritzed 

onto the capillary ends. (B-E) Model simulation in a corresponding microvascular network (inset) that 

contains 45 cECs and a 300 µm PA consisting of 45 coupled EC-SMC units (15 longitudinal ECs with a 3 
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by 3 connection between ECs and SMCs, i.e. each PA EC is connected to 3 SMCs and vice versa). Each cEC 

is represented with Model C. A localized region is simulated by injecting 4pA of current in (B) (to simulate 

the response of the system during EC Kir-/-), or via application of 10mM K+ on 7 cECs in (C-E) at one end 

of the network (highlighted in the figure inset). In panels (C-E) the mean cEC GKir is progressively increased 

from 0.2, to 0.4 and 0.6 nS, respectively. In simulations performed for panel (E), the activity of Kir and 

TRPV4 of cECs is dynamically regulated upon the start of K+ stimulation (gradual decrease in Kir and 

gradual increase in TRPV4 with a time constant of 6 minutes, simulating the effect of PIP2 depletion on cEC 

activity [46]). (F-G) summary data for the predicted level of PA hyperpolarization (at ~120 µm away from 

the capillary PA junction) during a K+ challenge in a relatively well-coupled (Rgj = 10 MΩ) and a poorly-

coupled network (Rgj = 1 GΩ), shown as mean±std. As the mean GKir in cECs increases a progressive increase 

in the level of PA hyperpolarization is predicted before a hyperpolarizing jump to voltages close to EK. For 

each mean cEC GKir level, 30 simulations are performed with standard deviation of 0.2 nS. (F) Leftmost trace 

(n = 15 cECs (~30%) stimulated; Gbg,PA = 0.2 nS and GKir,PA = 0.65 nS); middle trace (n = 7 cECs (~15%) 

stimulated; Gbg,PA = 0.2 nS and GKir,PA = 0.65 nS); rightmost trace (n = 7 cECs stimulated; Gbg,PA = 0.3 nS 

and GKir,PA = 0.65 nS). In all simulations of this panel, Rgj = 10 MΩ. Pie charts indicate the relative distribution 

of cECs based on the classification in Figure 2-2.E (G) Left trace (n = 7 cECs stimulated; Gbg,PA = 0.2 nS and 

GKir,PA = 0.65 nS); right trace (n = 7 cECs stimulated; Gbg,PA = 0.2 nS and GKir,PA = 2.5 nS). In all simulations 

of this panel Rgj = 1 GΩ. The rest of the parameters for the simulations in this figure are the same as in Table 

2-1. 

When a higher Kir density is assumed (mean GKir =0.5 nS), the majority of cECs become 

bistable, and the K+ challenge produces a local hyperpolarization that is amplified by cECs 

along the capillary network (Figure 2-4 D,E). A network containing mostly bistable and 

hyperpolarization favoring (i.e. blue) cECs (Figure 2-4 E), produces significant local 

response upon stimulation (Vm jumps close to EK) and the predicted level of EC 

hyperpolarization in the upstream PA is comparable to the experimentally observed SMC 

responses in Figure 2-4 A. Furthermore, the Vm traces in Figure 2-4 E can account for the 

slow increase in Vm hyperpolarization observed in Figure 2-4 A, as Kir channels are 

progressively recruited. Additionally, consistent with the observations in Figure 2-4 A, the 

return of the system to its resting Vm in Figure 2-4 is delayed as the bistable system can 

stay at a hyperpolarize potential following stimulus termination until activity of a sufficient 

number of Kir channels is reached blow the threshold (upon PIP2 depletion) for turning 

the “bistable switch” off. At Kir activity levels, below the requirement for excitability, 

amplification of hyperpolarization (facilitated conduction) and a passive return (i.e. 
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without the need of NaK, TRPV4 or dynamic changes in channel conductances) to resting 

levels following stimulus termination is observed (Figure 2-4 D).  

Figure 2-4 F,G present summary data from simulations using the Cap-PA model as mean 

GKir varies from 0-1.2 nS. In a relatively well-coupled network (Rgj=10MΩ, Figure 2-4 F), 

sufficient Kir activity (GKir =0.8 nS) promotes a Vm jump to values close to EK upon K+ 

stimulation (10mM). As the leakiness of the PA increases, or the number of stimulated 

cells decreases, higher Kir activity is required to promote significant PA hyperpolarization 

through network excitability. In a poorly coupled network (Figure 2-4 G, Rgj = Rgj,PA = 1 

GΩ), K+ stimulation of distal cECs can promote PA hyperpolarization when sufficient Kir 

densities allow for regenerative conduction along the capillary network and the PA. 

Collectively, simulation results suggest that even with conservative estimates for critical 

parameter values (Rgj=10MΩ , n=15cells (30% of total cEC stimulated), rm,PA=5GΩcm) 

the observed PA SMC hyperpolarization in the experiments (up to 30 mV) cannot be 

explained unless the capillary initiated signal is significantly amplified by bistable ECs as 

it is conducted towards the PA.  

2.4.10  Binary vs graded responses of capillary modules to K+ stimulus 

Simulations using realistic angioarchitectures allow us to relate ex vivo data to in vivo 

function. We used a small segment of an in vivo capillary network reconstruction from the 

vibrissa primary sensory cortex of a mouse (adapted from [96]) with its feeding PA and a 

draining parenchymal venule (PV) to examine how neuronal signals are integrated in the 

capillary network to produce hyperpolarization (dilation) of the feeding arteriole (Figure 

2-5 A). Simulations assume a heterogeneous population of cECs with variable number of 
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active Kir channels to account for biological variability and we examine the effect of 

increasing the mean GKir in the capillary network to probe the system’s ability to 

dynamically regulate Kir activity (i.e. through PIP2/ATP depletion [46]). Simulations in 

Figure 2-5 A show that stimulating a small number of cECs (~10-14% of total cECs, 

highlighted in white) with 10 mM K+ can hyperpolarize the feeding PA. Similar to the 

simulations of the ex vivo Cap-PA preparation in Figure 2-4 when the mean cEC GKir is 

small (i.e. 0.1nS; yellow cECs), a passive capillary network is insensitive to K+ stimulation. 

As the mean GKir (and the percentage of bistable cECs) increases, so does the sensitivity 

of the microvasculature to local K+ stimulation. In a relatively well-coupled network 

(Rgj=50MΩ), graded increases in PA hyperpolarization are predicted as the number of 

stimulated cECs increases (Figure 2-5 A, mean GKir=0.4 and 0.5 nS). Above a mean GKir 

threshold (>0.5nS; where majority of cECs are blue), a highly sensitive capillary module 

allows maximum hyperpolarization when a sufficient number of cells are stimulated, and 

the module operates in a binary (on/off) mode. Summary results for the model network in 

A are presented in Figure 2-5 B. Depending on the level of Kir activity, the microvascular 

network can exhibit graded or “all-or-none” responses as the number of stimulated cells 

increase, and for a given stimulatory scenario, modulation of GKir can regulate the fidelity 

of the response. In larger microvascular networks in vivo, graded responses can be achieved 

at the arteriole level by summation of binary inputs from multiple activated capillary 

network regions (Appendix F2). 
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Figure 2-5 Binary and graded hyperpolarization of PAs in vivo. (A) Predicted Vm hyperpolarization (color 

coded) in a capillary network reconstruction from the vibrissa primary sensory cortex of a mouse (adapted 

from [96]) with its feeding PA and draining venule, stimulated with 10 mM of [K+]o (stimulated cells are 

highlighted with white circles). A heterogeneous population of cECs with different Kir densities is assumed 

(normal distribution of cEC GKir with standard deviation of 0.2 nS). Simulations for different mean cEC GKir, 

and different number of randomly selected cECs (as the percentage of total in the network) are presented. At 

low levels of GKir (0.1 nS, first column) system is relatively insensitive to potassium stimulus and the number 

of stimulated cells. Increasing the mean GKir level (0.3 and 0.4 nS, second and third columns) place more 

cECs in the bistable region, and hence the PA hyperpolarization is enhanced in a graded fashion with the 

increase in stimulation strength. Further increase in the cEC mean GKir will make the capillary network highly 

sensitive to potassium stimulus (fourth column, GKir = 0.6 nS, majority of cells are hyperpolarization 

favoring), and a threshold number of stimulated cells will result in a hyperpolarization jump in the entire 

capillary network which in turn increases the level of PA hyperpolarization along the network (B) Summary 

data for the mean PA hyperpolarization in the network presented in (A) upon 10 mM [K+]o stimulation of 

varying percentages of stimulated cECs for Rgj = 50 MΩ (30 trials). Pie charts show the distribution of cECs 

at mean GKir levels of 0.1, 0.4, 0.5 and 0.6 nS, respectively. Grouped bar charts (shown as mean±std) show 

graded and binary responses in PA hyperpolarization as the number of stimulated cells increase for different 

values of mean GKir. (C) schematic of the network used for the simulations in panels A and B where cECs 

are in gray, PAs are in red, and PVs are in blue. For all simulations performed in this figure, each cEC is 

modeled using Model A, and PVs are assumed to have the same Gbg and Rgj as PAs, but lack Kir channels. 

2.4.11  Retrograde electrical signaling through capillaries and PAs  

We used larger realistic microvascular network adaptations to test whether a focal 

stimulation deep in the cortex can be conducted to the surface microcirculation for robust 
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dilation and CBF increase. We examined if such propagation of electrical activity could be 

effectively carried through the PA and/or the capillary network. In simulations in Figure 

2-6 A we stimulate a PA segment (100 µm in length), located in cortical layer IV or layer 

VI, with 10mM K+. Under control conditions, we assume a relatively low Kir activity in 

the capillaries and in PAs (i.e GKir,PA=0.65nS, GKir=0.3nS), the model predicts only a few 

mV of arteriolar hyperpolarization. Robust hyperpolarization of the PA and its feeding 

surface arteries require higher PA Kir densities to amplify the local stimulatory signal. The 

fidelity of local K+ stimulation and the efficiency of electrical conduction along the PA 

were significantly affected by the level cEC coupling in surrounding capillaries; this is 

attributed to the dissipation of the electrical signal at capillary branching points that 

increases as Rgj decreases. Results also demonstrate dependence on the location of focal 

stimulation. A higher capillary density in the deeper layers of the cortex leads to attenuated 

hyperpolarization and less efficient electrical conduction when the PA is stimulated in layer 

VI vs in layer IV (Figure 2-6 B). Despite the inhibitory effect of a capillary network with 

low Kir activity (GKir=0.3nS) on the retrograde signaling through the PA, conditions could 

be identified (GKir,PA=2.4nS; Rgj=100MΩ) that would promote PA excitability and 

significant hyperpolarization of the feeding surface arteries. Overall, simulation results 

suggest that significant upstream hyperpolarization upon focal PA stimulation requires 

sufficient Kir channel density to amplify the stimulatory current and a high coupling 

resistance at branching capillaries to limit the dissipation of the conducting current towards 

the capillary network. Simulations show that exposing surrounding cECs to K+, in addition 

to a direct stimulation of the PA segment, can increase the local stimulatory current and as 

a result, increase PA hyperpolarization (Figure 2-6 C). 



42 

 

 
Figure 2-6 Parenchymal arteriole vs. Capillary stimulation in vivo. A 1000x500x500 µm3 network, 

reconstructed from [96], containing approximately 3000 cECs, feeding PAs and draining PVs is utilized to 

show the effect of capillary vs parenchymal arteriole potassium stimulation on the propagation of the 

vasodilatory signal along the feeding PA, towards the surface arteries. Each cEC is modeled using Model A. 

(A) Color coded figures show the level of hyperpolarization reached to the PA as a function of GKir,PA, Rgj 

in capillaries, location of stimulus, and co-stimulation of PA with the surrounding capillaries in response to 

a localized potassium challenge (10 mM [K+]o). (B) Summary plots comparing the average level of PA 

hyperpolarization when a 100 µm of PAs is stimulated in layer IV vs layer VI, as a function of GKir,PA and 

Rgj. (C) Summary plots comparing the average level of PA hyperpolarization when in addition to the PA, 

the surrounding 100 µm3 capillary region in layer VI is also stimulated with increased extracellular 

potassium. In all simulation performed in this figure, cEC GKir = 0.3 nS and Rgj,PA = 10 MΩ. PVs are 

assumed to have the same Gbg and Rgj as PAs, but lack Kir channels. The rest of the parameters used in this 

simulation is summarized in Table 2-1.  

Conduction through capillaries may provide an alternative/parallel pathway for 

communicating neuronal activity to the vasculature and elicit retrograde electrical 

signaling in the brain. Sufficient cEC Kir activity (GKir=1.2nS) can promote regenerative 

propagation of electrical signals though the capillary network (Figure 2-7) and upstream to 

the PAs and PVs. In this representative simulation, cECs are stimulated with 10mM K+ and 

resulting local hyperpolarization ascends through the capillary network at a speed of 0.2 

mm/s (Figure 2-7). The relative slow velocity of electrical propagation reflects the weak 
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cEC coupling (Rgj= 500MΩ) assumed in the simulation. cEC hyperpolarization disperses 

and hyperpolarizes nearby PAs and surface arteries to increase local CBF. Simulations in 

Figure 2-7 also indicate that when a region with high level of cEC GKir is surrounded by 

capillaries with lower GKir (0.3 nS), the conducted hyperpolarization along the 

microvasculature can be spatially confined (Figure 2-7 top view). Thus, model predicts that 

spatially-confined electrical signals may ascend through capillaries, with conduction 

velocities that can differ based on the level of cEC coupling (propagation velocity is 

inversely proportional to Rgj).  

 
Figure 2-7 Retrograde vasodilatory signaling from capillaries to PAs in vivo. The same network as the one 

used in Figure 2-6 is utilized to identify requirements of the system to conduct a potassium-induced capillary-

initiated vasodilatory signal from deep layers of the cortex towards the surface arteries. Each cEC is modeled 

using Model A. A 100 µm3 of cECs (highlighted in purple in the top left panel) is stimulated with 10 mM of 

K+. Simulations are performed for 4 seconds with Rgj = 500 MΩ (potassium stimulation onset is at one second 

into the simulation). The Kir density is increased in a region surrounding the PA (GKir = 1.2 nS), and the rest 

of the cECs have the control GKir = 0.3 nS. The progression of the hyperpolarizing wavefront is shown with 

increments of 0.5s in color coded panels, where the retrograde vasodilatory signal is confined in the 

“sensitized” region. The rightmost panel shows the top view of the network after 4 seconds, where the 

hyperpolarizing front has reached close to the surface vasculature. Significant levels of hyperpolarization can 

be observed in the PA as the hyperpolarizing wave propagates upstream towards the surface vessels. Rgj,PA = 

10 MΩ. PVs are assumed to have the same Gbg and Rgj as PAs, but lack Kir channels. The rest of parameters 

are as stated in Table 2-1. 
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2.5  DISCUSSION 

cECs in the brain have been extensively studied in the context of the blood-brain barrier; 

yet, very little is known about their electrophysiological properties. The high capillary 

density in the brain allows for a close proximity of cECs to every neuron; thus, uniquely 

positions them to probe neuronal activity. However, whether the capillary endothelium is 

capable of sensing neuronal activity and transmitting signals to cause upstream 

vasodilation—a question with profound implications for global NVC mechanisms—has 

received little research attention. Recent experimental evidence suggest that capillaries 

may act as a sensory web to detect neuronal activity through Kir channel-mediated sensing 

of local elevations in [K+]o. These changes can be communicated by a hyperpolarizing 

electrical signal from capillaries to PAs through the endothelial layer. Together with direct 

activation of arteriolar (SMC and EC) Kir channels by extracellular K+ from astrocytes 

and/or neurons, the capillary-initiated electrical signals can produce stable vasodilation and 

hyperemia. Model analysis, in this study, elucidates the biophysical determinants of K+ 

sensing by cECs and the parameters/mechanisms that regulate retrograde electrical signal 

transmission from capillaries to upstream feeding arteries in the brain. 

2.5.1  Kir2.1 channel: an exquisite sensor of K+ 

Activation of Kir2.1 family members by Vm and [K+]o has been well characterized, and 

likely reflects unblock of the channels by internal polyamines [106-108]. As [K+]o 

increases, the current-voltage relationship shifts in an upward and rightward direction 

(Figure 2-2 B-D) due to an increase in the GKir, EK, and V0.5 (Equation 2-2). Consequently, 

the Kir activity at resting Vm increases. For example, at resting conditions (Vm ≈ -30 mV), 
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increasing [K+]o from 3 mM to 10 mM, causes an approximately 100-fold increase in Kir 

chord conductance (from ~0.0006 nS to ~0.07nS at -30mV). This value is almost 10 times 

lower than the maximum chord conductance at 10 mM (~0.6nS), which yields to a small 

(sub-picoampere) increase in the outward current. The K+-induced Kir opening, however, 

can be self-amplifying since the cell hyperpolarizes in response to the increased IKir, which 

can further increase activity due to the channel’s negative slope conductance. Mathematical 

analysis (Figure 2-2) quantifies this effect and shows how small increases in [K+]o can exert 

a powerful hyperpolarizing effect as a result of a bifurcation that promotes a 

hyperpolarizing jump when a threshold [K+]o is crossed. Thus, Kir channel acts essentially 

as an “on-off” switch to rapidly and profoundly hyperpolarize the cell membrane in 

capillaries and arterioles when extracellular K+ increases.  

2.5.2  Kir-mediated control of microvascular Vm 

ECs are classified as electrically non-excitable cells; however, studies have often revealed 

non-typical Vm dynamics: Two resting potentials have been observed in cultured EC 

monolayers [109, 110], and isolated ECs [111] may exhibit spontaneous transitions 

between a hyperpolarized and a depolarized potential when bath K+ increases [111-113]. 

Similarly, all or none responses to increasing [K+]o [87] and spontaneous transitions 

between two polarization levels ([102] and Fabrice Debartrand, unpublished data) have 

been documented in isolated PAs, and evidence for Vm bistability in cerebral SMCs and 

arterioles have also been presented [90]. Although the presence of Kir current is a 

prerequisite for these responses, the underlying mechanisms and physiological relevance 

have not been elucidated. Model simulations performed in this study show how bistable 
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cells can amplify incoming electrical signals and under certain conditions promote 

excitability and regenerative conduction (Figure 2-3 F,Figure 2-5 to Figure 2-7). 

2.5.3  Are ECs capable of carrying APs? 

The inward rectification of the Kir by channel pore blockers provide the characteristic N-

shaped current-voltage relationship (Figure 2-2 B) that resembles, albeit inverted, the Vm-

dependence of the Nav activation gate in neuronal APs (Appendix D2). The nonlinear 

dependence on voltage allows for the creation of bistable systems in capillaries and neurons 

that can promote hyperpolarizing and depolarizing jumps, respectively, upon threshold 

excitation (Figure 2-2 and Appendix D2). Model simulations demonstrate that AP-like 

electrical responses are possible in capillaries when there is sufficient Kir activity to make 

the majority of cECs bistable (Figure 2-3). Experiments have provided evidence of 

bistability in different types of ECs [87] and an elaborate machinery exist to modulate Kir 

activity (i.e. regulation by [K+]o, PIP2/ATP) [45, 46] and thus adjust/regulate the percentage 

of bistable cECs. Compared to neurons, capillaries form a low intensity system with 

transmembrane current densities in the order of 0.1 pA/pF, almost 1000-fold lower that 

typical current densities in mammalian axons [114]. Higher membrane (rm=30MΩcm) and 

axial (ri=5-500GΩ/cm for Rgj=10MΩ-1GΩ) resistances yield much lower conduction 

velocities (under passive or regenerative conditions) in capillaries (mm/s) compared to 

neurons (m/s) (Figure 2-3).  

2.5.4  Evidence for Kir-mediated amplification of electrical signaling 

K+ stimulation of a few cECs can yield robust Kir-mediated hyperpolarization and dilation 

of the feeding PA several hundred microns away in an ex vivo preparation and in vivo [30]. 
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The levels of evoked hyperpolarization are remarkable when one considers the small 

outward Kir currents recorded in isolated cECs [30] and the small number of cECs 

stimulated in the experiment in Figure 2-4 A. Model analysis consolidates experimental 

data in isolated cECs with integrated responses in capillary networks and shows that the 

evoked arteriolar hyperpolarization cannot be explained by a passive electrical spread from 

the stimulated capillary segment to the PA (Figure 2-4 B,C). We thus, propose that the 

significant arteriolar hyperpolarization in the ex vivo Cap-PA preparation and in in vivo 

data [30], suggests amplification of electrical signals in the cerebral microcirculation. 

Simulations reveal a significant potential of Kir channels for amplifying conducted 

electrical signals, thus providing the means to induce significant upstream dilations in 

response to small local stimulatory currents (Figure 2-4 to Figure 2-7). 

2.5.5  Analog versus digital mode of microvascular network hyperpolarization 

Simulations show that progressive increase in the Kir activity can transition a capillary 

segment (Figure 2-3) or a microcirculatory region (Figure 2-5) from insensitive to K+ 

stimuli (passive system) to one of intermediate sensitivity with responses graded to the 

level of stimulation (facilitated conduction), and to a sensitive and binary (on/off) sensory 

web (excitable with/without propagating front). Thus, dynamic modulation of Kir by [K+]o 

or PIP2 can regulate system’s fidelity/sensitivity and the ability to work in a digital or 

analog fashion. Binary responses in capillary regions can be integrated to hyperpolarize 

feeding arteries at levels that increase as more regions are stimulated. Under this scenario 

the blood flow response can be graded by the number of activated regions (Appendix F2). 
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2.5.6  Excitability and AP-like propagation  

Parametric analysis in models depicting capillary segments or networks revealed 

conditions that can promote hyperpolarizing jumps upon stimulation and excitability, 

spatially-confined, without the presence of a propagating hyperpolarizing front. Conditions 

that promote excitability were identified in short, well-coupled capillary segments after 

local stimulation (Figure 2-3 F), and in isolated networks (Figure 2-5 A) and larger vascular 

architectures (Appendix F2) when a small percentage of distributed cECs were stimulated. 

Experimental data provide evidence for capillary excitability in isolated ex vivo 

microvascular networks stimulated locally by 10mM K+ (Figure 2-4). Model shows how 

these hyperpolarizing jumps can be achieved with lower Kir densities than what is required 

for regenerative conduction and how they could reset following stimulus termination by 

basal levels of TRPV4 and NaK pump activity (Figure 2-3 C).  

Higher Kir density can promote regenerative conduction of electrical signal and translate 

sub-pico or pico amperes of stimulatory signal to robust dilatory responses several hundred 

microns away. This condition would provide maximum sensitivity to the capillary network 

and the ability to modulate flow based on requirements almost at the single neuron level, 

as local stimulation of few cECs can affect feeding PA Vm. Capillary network operation 

under this mode, requires high GKir and an active mechanism for network resetting 

following stimulus termination. Furthermore, as the electrical signal can travel without 

attenuation in the highly interconnected brain capillary network, a mechanism should exist 

for spatial confinement. In representative model simulations, robust resetting could be 

achieved by dynamic downregulation of Kir and/or upregulation of TRPV4 activity 
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following the hyperpolarizing jump (Figure 2-4 E). Additionally, the propagating 

hyperpolarization front could be restricted to “sensitized” capillaries/arterioles with high 

Kir activity when surrounded by vascular segments with non-regenerative characteristics 

(i.e. lower GKir) (Figure 2-7). Thus, excitability with (Figure 2-7) or without (Appendix 

F2) an AP-like propagation can be spatially confined in the capillary network, and an on/off 

regulation of electrical activity in microscale volumes is predicated when there is sufficient 

Kir density in the network. 

2.5.7  PA vs capillary mediated retrograde electrical signaling  

Experimental evidence suggests an important role of conduction in functional hyperemia 

[19]. Although propagating hyperpolarization and vasodilation along the penetrating and 

surface arteries have attracted the initial focus of investigations, recent evidence shows the 

importance of electrical propagation along the capillary network [30, 37, 45, 46]. 

Simulations using realistic representation of the microvascular geometry provide a way to 

test the physiological relevance of conduction in PAs and capillaries under different 

scenarios. 

Model simulation performed in this study suggest that conduction along PAs can be 

significantly inhibited by current losses to branching capillaries, particularly in the deeper 

layers of the cortex where the PAs are surrounded by a dense capillary network (i.e. layer 

VI vs layer IV of the cortex) (Figure 2-6 B). Model predicts that a similar level of electrical 

coupling between ECs in the capillaries as in the PAs (i.e. Rgj=Rgj,PA=10MΩ), can have a 

detrimental effect on electrical signal propagation along the PAs (Figure 2-6 B). For 

weakly coupled cECs, however, stimulation of a PA and the resulting local 
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hyperpolarization can reach the surface microcirculation. Model simulations also predicted 

conditions where the retrograde signaling can ascend through the capillary network rather 

than the PA (Figure 2-7). A localized stimulation of the capillary network deep in the cortex 

can ascend and promote significant hyperpolarization of the surface microcirculation when 

sufficient Kir density is present and can be spatially confined if capillaries are bounded by 

a non-excitable region.  
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Table 2-1- Model parameters 

Parameter Description Control value Range  Reference 

Capillary 

𝐆𝐊𝐢𝐫 Kir constant 0.18+0.1(nS/mM0.5) 
[0.05 – 0.7] 

(nS/mM0.5) 
[30, 45, 46] 

GKir Maximum Kir conductace 0.3+0.2 (nS) [0.1 – 1.2] (nS) G̅Kir√[K
+]o 

V0.5 
Voltage at half maximal 

inactivation of Kir current 
EK+25 (mV) EK - EK+40 (mV) [36, 89, 90] 

K Slope factor of Kir current 7 (mV)  [89] 

Rgj Gap junctional resistance 10 (MΩ) 10(MΩ) - 1 (GΩ) Model Estimate 

LEC Length of capillary EC 20 (um)  [30] 

rm 
Membrane resistivity per 

unit length 
333 GΩ µm  LEC/Gbg 

ri 
Axial resistivity per unit 

length 
0.5 (MΩ/µm)  Rgj/LEC 

Cm Membrane capacitance 8pF  [30, 45, 46] 

Parenchymal Arteriole 

Rm,EC EC membrane resistance 12GΩ  [94, 95] 

Rm,SMC SMC membrane resistance 6GΩ  [36, 97] 

RME 
Myoendothelial junction 

resistance 
1GΩ  [97] 

Rgj,PA 
PA gap junctional 

resistance 
10 (MΩ) 

1(MΩ) - 50 

(MΩ) 
 

Gbg,EC-SMC 

Lumped Background 

conductance of an EC-

SMC unit 

0.2 (nS) 0.1 - 0.3 (nS) 

(Rm,SMC + RME+Rm,EC)

(Rm,SMC + RME) Rm,EC

[94] 

GKir,EC-SMC 
Kir conductance of an EC-

SMC unit 
0.65 (nS) 0.5 -1.5 (nS) 

GKir,EC+GKir,SMC 

[30, 36] 

V0.5 
Voltage at half maximal 

inactivation of Kir current 
EK+25 (mV) EK - EK+40 (mV) [36, 89, 90] 

K Slope factor of Kir current 7 (mV)  [94] 

ncirc 
Number of ECs in the 

circumferential direction 
3 ECs  Model Estimate 

rm,PA 
PA membrane resistivity 

per unit length 
55 GΩ µm  

LEC,PA/(ncirc 

Gbg,EC,SMC) 

ri,PA 
PA axial resistivity per unit 

length 
0.1 (MΩ/µm)  

Rgj,PA/(ncirc 

LEC,PA) 

TRPV4 

PTRPV4,K 
TRPV4 channel 

permeability to K+ ions 
0.5x10-8 cm/s  [92] 

PTRPV4,Na 
TRPV4 channel 

permeability to Na+ ions 
0.35x10-8 cm/s  [92] 

NaK 

𝐈𝐍𝐚𝐊,𝐦𝐚𝐱 
maximum NaK pump 

current 
29 pA  [89] 

𝐊𝐊𝐨  
Half maximal activation of 

NaK pump to [K+]o 
4.5 mM  [115] 

𝐦𝐊𝐨  [K+]o slope factor 1 mM  [89] 

𝐊𝐍𝐚𝐢  
Half maximal activation of 

NaK pump to [Na+]i 
14.5 mM  [115] 

𝐦𝐍𝐚𝐢  [Na+]i slope factor 3.5 mM  Model Estimate 
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APPENDIX A2. VALIDATION OF MINIMAL MODELS OF CEC AGAINST A 

DETAILED MODEL OF CAPILLARY ELECTROPHYSIOLOGY 

 
Figure A2- 1 Detailed model of EC electrophysiology [89] was adapted to account for the dynamics of 

isolated brain cECs (panel D), and to test the simplifying assumptions in the minimal models of cEC in Figure 

2-1 A-C. The Kir current is modified to values obtained from patch clamp recordings [30], small and 

intermediate conductance potassium currents are removed, and the rest of the membrane currents (equivalent 

to the Ibg in the minimal model of Figure 2-1) are scaled such that the total membrane resistance/conductance 

matches that of experimental recordings. Stochastic TRPV4 channels are also included in the model with the 

characteristics of the channel as described in [46] (refer to the Methods section). Panels A-C show the 

temporal dynamics of Vm upon potassium stimulation in minimal models of cEC including a Kir current as 

well as a linear non-specific ohmic background current (model A), a background and TRPV4 current (model 

B), and NaK and the respective Na and K leak currents (model C). The response of the detailed model of 

cEC to potassium challenge (10 mM) is shown in panel D. The inset shows the traces of the Kir current (blue 

trace), as well as the summation of the rest of transmembrane currents (denoted as Ibg, orange trace) in the 

detailed model during a step increase in the Vm from -120 to 0 mV, at [K+]o = 3 mM under a voltage clamp 

condition. As can be observed, lumped transmembrane currents in the detailed model (excluding the Kir 

current) shows almost a linear trend with Vm, which validates the ohmic assumption of the Ibg in the minimal 

cEC model in Figure 2-1A (notice the linear fit in the dotted black line). The detailed model shows similar 

response to the potassium stimulus to the combination of the minimal models in A-C, i.e., the transient 

TRPV4-dependent depolarizations, the transient hyperpolarization due to the increased activity of NaK pump 

upon start of the potassium stimulus, and the sustained hyperpolarization to potassium challenge as a result 

of activation of the Kir current. 
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APPENDIX B2: BISTABILITY OF CECS 

 
Figure B2- 1 Effect of IKir dependent parameters on the bistability of a single minimal model of cEC (panel 

A inset) (A) shaded regions show the relative positioning of IKir and Ibg (shown as mean±std) of an isolated 

cEC (inset), based on data from patch clamp recordings of isolated cECs from the mouse brain [30] 

(G̅Kir=0.18+0.1nS/mM0.5; Gbg=0.06±0.04 (n=24)), assuming half maximal inactivation of the Kir current 

(V0.5) to be 25 mV positive to EK (V0.5 = EK + ΔVKir ; ΔVKir = 25 mV). Experimental data place cECs 

mostly within or close to the bistable region; however, according to the graph all four regions of Figure 2-1 

E can be possible. (B) Stability diagrams of a single cEC (model A) are depicted with varying values of V0.5 

= EK + ΔVKir. As V0.5 becomes more depolarized compared to EK (i.e. ΔVKir becomes more positive), 

the [K+]o range at which cEC shows bistability decreases, and the system shows bistable behavior at higher 

ranges of Gbg/G̅Kir. Also, reducing ΔVKir shrinks the bistable region, i.e., there is a narrower range of 

Gbg/G̅Kir where cEC shows bistability in Vm in response to a given [Ko]+ concentration. Blue regions 

indicate hyperpolarizing favoring, and red regions indicate depolarizing favoring cECs. Colorbars show the 

Vm threshold above which a bistable cEC jumps to hyperpolarized/depolarized potentials during 

elevation/washout of [K+]o. (C) The current threshold required for the bistable cEC to jump to 

hyperpolarized/depolarized potentials as a function of Gbg/G̅Kir at resting potassium concentration ([Ko]+ = 

3 mM). Figure inset shows the total transmembrane current in model A (IKir + Ibg), and circles indicate the 

steady states of the system where total current is zero. Solid circles indicate stable steady states, and the open 

circle shows the unstable steady state. The current threshold for regenerative 

hyperpolarization/depolarization is shown in blue/red, respectively. (D) The voltage threshold required for 

the bistable cEC to jump to hyperpolarized/depolarized potentials at [Ko]+ = 3 mM as a function of Gbg/G̅Kir. 

The voltage threshold for regenerative hyperpolarization/depolarization are shown in blue/red, respectively, 

in figure inset. 

  



54 

 

APPENDIX C2. TRANSIENT STOCHASTIC TRPV4-MEDIATED 

DEPOLARIZATIONS IN A DETAILED MODEL OF cEC 

ELECTROPHYSIOLOGY DURING POTASSIUM CHALLENGE 

 
Figure C2- 1Transient stochastic TRPV4-mediated depolarizations in the detailed model of cEC (Figure 2-1, 

model D) at different levels of [K+]o concentrations. (A) Temporal dynamics of Vm of the detailed cEC 

model to elevation of [K+]o show very similar responses compared to the minimal model of cECs in Figure 

2-2G. (B-D) Traces show the Kir current (blue trace), as well as the summation of the rest of transmembrane 

currents (denoted as Ibg; orange trace) in the detailed cEC model during step increases in Vm, ranging from 

-120 to 0 mV, at [K+]o = 3 mM (B), [K+]o = 6 mM (C), [K+]o = 9 mM under a voltage clamp condition (D). 

It can be observed that the lumped transmembrane currents in the detailed model do indeed show almost a 

linear trend with changes in Vm, which validates the ohmic assumption of the Ibg in the minimal cEC model 

in Figure 2-1A. The stochastic opening of a single TRPV4 channel provides a transient depolarizing current 

which can change the relative conductance of the Kir to bg currents (yellow traces show the change in the bg 

current during a burst of the TRPV4 channel). As can be observed in panel (C), at intermediate levels of 

potassium stimulation, stochastic activity of TRPV4 channels can transition the cell from the hyperpolarized 

state to the depolarized state (from gray to yellow areas in Figure 2-1E crossing a saddle node bifurcation), 

which results in large deflections in the Vm trace in panel (A). These transient depolarizations cannot change 

the state of the cell at low (B) or high (C) potassium concentrations; hence why Vm traces in (A) show 

dampened depolarizing transitions at 3 and 8 mM of [K+]o. 
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APPENDIX D2. KIR VS NAV MEDIATED BISTABILITY 

 
Figure D2- 1 Comparison of Kir-mediated bistability in cECs to Nav-dependent bistability during an AP in 

neurons. (A) the steady state voltage gated sodium current [the blue trace: INav = g̅Namss
3 h0(Vm − ENa); 

where g̅Na is the maximum sodium channel conductance, mss is the voltage dependent steady state profile of 

sodium channel activation gate, h0 is the fraction of open sodium channel inactivation gate at time zero, and 

ENa is the reversal potential of sodium ions] can form a bistable system with the summation of potassium 

and leak currents [the orange trace: IK = g̅Kn0
4(Vm − EK) ; ILeak = g̅Leak(Vm − ELeak); equivalent to Ibg 

in cEC model A, where g̅K and g̅Leak are maximum conductance of potassium and leak channels respectively, 

n0 is the fraction of open potassium channel activation gates at time zero, and EK and ELeak are the reversal 

potential of potassium ions and the leak current, respectively], prior to the delayed activation of potassium 

currents in a typical Hodgkin-Huxely model of an action potential. Solid circles indicate the stable steady 

states of the neuron, one at hyperpolarized potentials around resting membrane potential of neurons ≈-70 

mV, and the other at depolarized voltages ≈40 mV, the maximum level of Vm during the depolarization phase 

of an action potential. The open circle indicates the unstable steady state, the threshold Vm above which an 

AP can be fired. (B) A bistable cEC represented in model A, shows bistability in the membrane potential 

attributed to the nonlinear dynamics of the Kir relative to the bg current. Comparison of panels (A) and (B) 

show similar, albeit inverted, nonlinear dynamics. Also, it is notable that the typical currents for generations 

of an AP are several orders of magnitude larger than those of cECs, even though the magnitude of ΔVm 

threshold for the bistable transition is much smaller compared to cECs.  
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APPENDIX E2. POTENTIAL RESETTING MECHANISMS AFTER 

TERMINATION OF K+ STIMULUS IN REGENERATIVE cEC LAYERS. 

 
Figure E2- 1 Basal stochastic TRPV4 activity can provide a resetting mechanism after removal of the 

stimulus in a regenerative layer of connected cECs (Model B). Simulations (temporal Vm traces on the top 

left) are shown for 20 bistable cECs connected via gap junctions (Rgj = 10 MΩ), where the first 3 cells (green 

traces) from one end of the capillary segment are stimulated by increasing [K+]o from 3 to 10 mM. The 

TRPV4 current in each cEC is modeled using a three-state discrete-time Markov Chain model [91, 92]. The 

channel can reside in any of the following three states: I) blocked (intraburst short closed state), II) open, and 

III) shut (interburst long closed state) (Figure inset). The TRPV4 currents (left box) show infrequent single 

level channel openings with an open probability (time-averaged number of open channels) of NPo≈ 0.04 

[46]. In agreement with the experimental data, simulated currents account for one active TRPV4 with bursts 

of stochastic openings with a mean open time (90 ms), a mean blocked time (33 ms), a mean shut time (4 

min), and a mean burst duration (20 s). Once a sufficient number of spontaneous, stochastic transients of the 

TRPV4 channels randomly coincide, they provide enough depolarizing current (intermediate jumps in the 

voltage trace) to reset the system after removal of the stimulus from the hyperpolarized state to resting 

membrane potentials. 
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Figure E2- 2NaK pump activity during a K+ challenge in a layer of gap connected cECs can provide initial 

transient hyperpolarization and a resetting mechanism after the removal of the stimulus. 20 bistable cECs 

(Model C) are connected via gap junctions (Rgj = 10 MΩ) and the first 3 cells (green traces) from one end 

are stimulated by increasing [K+]o from 3 to 10 mM. The temporal changes of Vm in the layer is shown in 

panel (A). Upon the start of the K+ stimulus, the black bar, transient activation of NaK pump in the stimulated 

cells results in the elevation of intracellular [K+]i and reduction of intracellular [Na+]i (panels (B) and (C)). 

The trend is the opposite for unstimulated cells. The transient initial hyperpolarization due to the effect of 

NaK pump, can help facilitate the regenerative conduction of hyperpolarizing signals even if cECs are not 

completely in the hyperpolarizing favoring regions of Figure 2-1 E. Consequently, regeneration of the 

capillary network can happen at lower levels of Kir density, which in turn makes the resetting of the system 

to resting Vm values after stimulus termination easier (panel (A)). INaK,max = 29 pA; KKo = 4.5 mM; KNai 

= 14.5 mM; mKo = 1 mM; mNa = 3.5 mM; 𝐺̅𝐾𝑖𝑟  = 0.18 nS/mM0.5. 
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Figure E2- 3Basal TRPV4 and NaK pump activity cannot guarantee resetting the regenerative 

hyperpolarization in a layer of cECs after the removal of the stimulus. 20 bistable cECs (Models B and C) 

are connected via gap junctions (Rgj = 10 MΩ) and the first 3 cells (green traces) from one end are stimulated 

by increasing [K+]o from 3 to 10 mM. The temporal changes of Vm in the layer in panels A and B show 

some example simulations where TRPV4 (A) or NaK (B) activity were not sufficient to reset the system after 

removal of the potassium stimulation. Parameters are similar to those in Figure E2-2, except for increased 

𝐺̅𝐾𝑖𝑟  = 0.3 nS/mM0.5. Regulation of TRPV4 and Kir activity upon prolonged K+ stimulations can provide a 

more robust resetting mechanism of regenerative hyperpolarization after the removal of the stimulus. The 

temporal changes of Vm in the layer in panels C and D show that the increase in the activity of TRPV4 and 

gradual suppression of Kir activity, can provide a robust resetting mechanism for the hyperpolarized cEC 

layer. Depending on the time constant of PIP2 dependent regulation of Kir/TRPV4 currents, cells can reset 

instantaneously (C), or with some delays after the removal of K+ stimulus (D). 
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APPENDIX F2. Analog versus digital mode of microvascular network 

hyperpolarization 

 

 
Figure F2- 1 Integration of binary capillary modules in the hyperpolarization of upstream parenchymal 

arterioles. Top row shows the predicted Vm hyperpolarization (color coded) in a capillary network 

reconstruction from the vibrissa primary sensory cortex of mouse (adapted from [96]) containing 

approximately 1000 cECs, in response to stimulation of different regions of cECs (20, 40, and 60 cECs) with 

10 mM of [K+]o. Each cEC is modeled with Model A (Figure 2-1). PAs, parenchymal venules, and capillaries 

are depicted as red, blue and gray, respectively (bottom panels). Simulations show that at cEC GKir = 0.5 nS 

(at 3 mM of [K+]o), stimulation of the capillary regions results in a localized hyperpolarization jump in the 

capillaries (i.e. binary regions), which can progressively added to increase the transmitted current to the 

nearby PA (top row from left to right). The parameters used for the simulations of this figure are summarized 

in Table 2-1. 
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CHAPTER 3 DISRUPTION OF NVC IN SMALL VESSEL PATHOLOGIES: A 

THEORETICAL ANALYSIS 

The content of this chapter (with slight modifications) is published in Microcirculation as 

Koide M, Moshkforoush A, Tsoukias NM, Hill‐Eubanks DC, Wellman GC, Nelson 

MT, Dabertrand F. “The Yin and Yang of KV Channels in Cerebral Small Vessel 

Pathologies” [52].  

3.1  INTRODUCTION 

Small vessel disease (SVD) is a group of currently untreated pathologies associated with 

the dysfunction of small cerebral vessels in brain that have been shown to be directly 

involved in major neurological conditions including stroke, dementia, and cognitive 

decline [7, 116]. Over the past few decades, major progress has been made in determining 

the underlying molecular mechanisms involved in some members of this family 

(particularly cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CADASIL), and subarachnoid hemorrhage (SAH)), indicating an 

alteration in the number of functional voltage-gated potassium (Kv) channels in smooth 

muscle cells (SMCs) of parenchymal arterioles (PAs) [117-123].  

Kv channels form a family of 12 isoforms (Kv1 – Kv12) which share a common structure 

of an assembly of four pore-forming α subunits and auxiliary β subunits [51, 124]. Under 

physiological conditions, these channels have a crucial role in determining the myogenic 

tone of vascular SMCs [120, 125, 126], and act as the major opposing influence on 
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pressure-induced constrictions [127]. The involvement of different subtypes of Kv1 

channels, predominantly Kv1.2 and Kv1.5, in tone regulation of cerebral vasculature was 

observed in multiple animal species. These include isolated pressurized parenchymal 

arterioles and cortical brain slices of the rat [128], small rat cerebral arteries [129], terminal 

arterioles from rabbit cerebral circulation [130], precapillary arterioles of the murine 

cerebral circulation [131], and parenchymal arterioles (PAs) of the mice [120]. Similarly, 

Kv2 currents, primarily Kv2.1 subfamily, and their role in counteracting myogenic 

constriction in rat and mice cerebral arteries, has been reported in literature [132-134]. 

Other groups also provided compelling evidence supporting the contribution of different 

subtypes of Kv7 subfamily in myogenic control of VSMCs in cerebral circulation [135, 

136]. 

Interestingly, the two aforementioned SVD pathologies, i.e. CADASIL and SAH, show 

opposite alterations in the density of Kv channels in PA SMCs, predominantly Kv1.2 and 

1.5 subtypes. In SAH, significant decrease in the number of Kv channels (~48 %) is 

observed, which has resulted in an increased vascular tone and a reduced cerebral blood 

flow (CBF) [121, 123]. Conversely, CADASIL mouse models showed a marked increase 

(~57 %) in the density of Kv channels and exhibited reduced levels of vasoconstriction 

[118, 120, 125]. Also, these studies reported that the gating characteristics of Kv channels 

in PA SMCs were not significantly affected in the diseased animal models, which points 

to the sole contribution of the Kv channel density, and not its gating dynamics, on the 

abnormalities observed in these SVD pathologies. 
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Along with Kv channels, the expression of three other members of K+ channels, namely 

large conductance calcium activated potassium channel (BKCa), inward rectifying 

potassium (Kir), and ATP-sensitive potassium (KATP), in the arteriolar SMC has been 

well-documented in literature [127, 137-139]. However, in contrast to SMCs of many other 

vascular beds, application of KATP agonist cromakalim in PAs, as well as blockade of BKCa 

channels paxilline did not affect the arteriolar tone under physiological conditions [48, 49, 

140, 141]. On the other hand, Kir channels are expressed in both endothelial (EC) and 

SMCs of PAs [36-38, 142]. Although chemical inhibition, with Ba2+, or genetic ablation 

of these channels does not affect the resting diameter of PAs [37], small elevations of 

extracellular K+ concentrations ([K+]o) has caused near maximal dilations in these vessels 

[37, 127]. As also discussed in CHAPTER 2, this phenomenon is due to the synergistic 

effect of Kir channels being [K+]o sensors and the self-amplification of their outward 

current upon hyperpolarization.  

Taken together, these observations point to the importance of the interplay between Kv and 

Kir channels in the regulation of CBF and its potential contribution in the abnormalities 

observed during CADASIL and SAH. In this chapter, we use mathematical modeling to 

understand how the “Yin and Yang” of Kv channels in SAH and CADASIL, i.e., down and 

up regulation of these channels, affect the regulation of the SMC tone, and in combination 

with Kir channels the response of the cell to neuronally induced elevations in [K+]o during 

NVC.  
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3.2 IMPACT OF KV CHANNEL DENSITY ON THE REGULATION OF THE 

MYOGENIC TONE IN BRAIN PARENCHYMAL ARTERIOLES 

In a normally functioning brain, arteries and arterioles are partially constricted. This pre-

constricted state of vessels is largely due to the influence of the intravascular pressure, the 

regulation of which allows the vessel to further constrict or dilate. This response is known 

is the myogenic tone and is essential in the CBF autoregulation [137, 143]. Here we focus 

on the role of Kv1 channels (predominantly Kv1.2/1.5 subtypes) in the regulation of PA 

SMC tone under normal conditions (control (CTL)), and in the presence of CADASIL and 

SAH. Figure 3-2 shows the voltage current relationship of Kv channels, fitted using a 

Boltzmann-type equation, under control and diseased states. As can be observed, the 

outward K+ currents are significantly affected with the increase (CADASIL) and decrease 

(SAH) in the channel density, relative to CTL conditions. The difference is more 

pronounced at physiological (Figure inset) and more depolarized range of membrane 

potentials (Vm). 

 
Figure 3-1 KV current density in PA SMCs of normal and diseased animal models at steady state. Current 

densities are fitted using a linear equation IKv =
1

Cm
m̅GKv(Vm − EK) with a Boltzmann-type activation term m̅ =



64 

 

 
1

1+exp (−(
Vm − VKv,0.5

kkv
))

, from experimental data [120] and Koide & Wellman unpublished data. Cm is the 

membrane capacitance; Vm is the membrane potential; GKv is the whole-cell conductance of KV channels; EK 

is the reversal potential for K+. At physiological membrane potentials pA differences in KV currents are 

predicted (Figure inset). Model parameters: (Gkv = 1.6 [nS]; VKv,0.5 = 6 [mV]; kkv = 14 [mV] for control; Gkv 

= 0.8 [nS]; VKv,0.5 = 6 [mV]; kkv = 14 [mV] for SAH; and Gkv = 3.2 [nS]; VKv,0.5 = 2.6 [mV]; kkv = 15.8 [mV] 

for CADASIL model; Cm = 12.8 [pF]; [K+]i = 150 [mM]; [K+]o = 3 [mM]). 

The relationship between PA SMCs Vm and the corresponding myogenic tone for CTL, 

CADASIL and SAH animal models (taken from experimental recordings in [120, 144]) is 

shown in Figure 3-2 A. At low intravascular pressure values (≤10 mmHg), Vm values did 

not change among the three groups. Under increased pressures (40 mmHg), however, Vm 

was significantly affected, i.e. compared to CTL groups CADASIL models were more 

hyperpolarized while SAH showed more depolarized membrane potentials. We used a 

detailed model of a PA SMC (Figure 3-2 B) to investigate whether the observed differences 

in Vm among groups can be attributed to the alterations in the Kv channel density. We 

adapted the detailed model SMC electrophysiology, originally developed by our group for 

the dynamics of SMCs in mesenteric arteries [145], by incorporating Kv currents of Figure 

3-1, and adjusting the rest of membrane currents such that the Vm and calcium dynamics 

match the experimental recordings of [120, 146]. The model takes into account the 

important contributors of SMC membrane and intracellular dynamics, including Kv, Kir, 

BKCa, KATP, voltage-dependent-calcium (VDCC) and non-selective cation (NSC) 

currents, as well as plasma membrane calcium (PMCA) and Na+/K+ ATPase. The model 

also accounts for the detailed dynamics of intracellular species and second messengers. 

We simulate the increases in intraluminal pressure as the percentage increase in the sodium 

permeability (PNa) of stretch-activated NSC current on the PA SMC membrane. As can be 

observed in Figure 3-2 C, at low activation of NSC channels, or equivalently at low 
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intraluminal pressures, model simulations predict negligible difference of Vm and 

intracellular calcium concentration ([Ca2+]i) among CTL and diseased (CADASIL and 

SAH) groups, reflecting minimal contribution of Kv channels in the total transmembrane 

current. On the contrary, during increased intravascular pressure, i.e. increased NSC 

current, model simulations predict varying degrees of the Kv channel opening, and an 

apparent difference in Vm and Ca2+ dynamics among different groups. Simulations 

highlight the inhibitory role of Kv channel activation on the myogenic response of the cell. 

More specifically, more Kv density in CADASIL results in a greater negative feedback, 

which translates to more hyperpolarized Vm compared to CTL, resulting in less activity of 

VDCC channels, lower [Ca2+]i levels and subsequently less myogenic tone. Conversely, 

less negative feedback in SAH in response to lower number of active Kv channels results 

in more depolarized Vm, higher [Ca2+]i levels, and more myogenic tone. Consistent with 

observation from control and diseased animal models, simulations predict a profound role 

of Kv channels in the regulations of the myogenic tone of arterioles, and consequently in 

the control of CBF.  
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Figure 3-2 Vm and myogenic tone relation in normal and diseased animal models. (A) Membrane potential 

and myogenic tone for CTL (black triangles: mice from [120] and black circles: rats from [144]), CADASIL, 

(blue triangles) and SAH (red circles) at different values of intraluminal pressure. (B) A detailed model of 

SMC electrophysiology, adapted from [145], was modified by incorporating the KV current of Figure 3-2, 

while other transmembrane currents were adjusted to produce resting Vm and Ca2+ concentration in agreement 

with experimental data [120, 146].(C) Increased intravascular pressure was simulated by depolarizing SMC 

membrane through an elevated Na+ permeability (PNa). Model simulations, in agreement with the 

corresponding experiments in (A), show differences between CADASIL, SAH, and CTL animals in Vm 

(bottom panel) and Ca2+ (top panel) as pressure increases. [Parameters as in reference (102) except: 

PVDCC=6.3x10-5 cm/s; PNaNSC=1.23x10-6 cm/s; IP̅MCA=8.58 pA; IN̅aK=7.76 pA/pF; GKir = 0.5 nS/(mM)0.5; 

GNa,leak=0.12 nS; Cm = 12.8 pF ]. 

3.3  IMPACT OF SMALL VESSEL PATHOLOGIES ON THE INTERPLAY 

BETWEEN KV AND KIR CHANNELS DURING NVC 

As mentioned above, and also discussed in great depth in CHAPTER 2, Kir channels have 

a pivotal role in NVC. Here we use a representative PA SMC Kir current (obtained from 

fitting the experimental recording in [36]) to probe the interplay between the Kir and Kv 

channels during model increases in [K+]o associated with NVC. A rise in [K+]o causes a 

rightward and upward shift in the current-voltage relationship of Kir currents (Figure 3-3 
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A, left inset), due to the increase in the channel conductance, as well as the shift in EK to 

more depolarized potentials [147]. In contrast, a modest increase in [K+]o decreases the 

outward current of Kv channels owing to the reduced K+ chemical gradient (Figure 3-3 A, 

right inset). Additionally, Vm hyperpolarization in response to the activation of Kir 

channels in expected to further reduce Kv channel open probability (Figure 3-1). Thus, the 

opposing responses of these channels to model elevations of [K+]o creates a “tug-of-war” 

dynamic that ultimately determines PA diameter during NVC. Under normal conditions, 

the influence of Kir currents to modest elevations of [K+]o overcomes those of Kv currents, 

which leads to SMC Vm hyperpolarization and subsequent increase in the CBF.  

Experimental evidence, however, indicates an impaired NVC in animal models with 

CADASIL and SAH [118, 122, 148, 149]. To assess if the alteration in the Kv channel 

density in these pathologies is responsible for the observed impairment in NVC, we used 

the PA SMC model to predict the response of the system to increases in [K+]o (from 3 to 8 

mM) for CTL and diseased models. The combined current-voltage curves of the 

representative Kir current and the three models of Kv currents in Figure 3-1, are shown for 

resting and elevated potassium concentrations (Figure 3-3 A) (solid lines are combined Kv 

and Kir currents at rest, and dashed lines are during the potassium stimulus). The relative 

magnitude of the aforementioned opposing influences at a given [K+]o level, i.e. the 

dynamic “tug-of-war” between Kv and Kir currents, predicts a voltage window where the 

Kir influence outweighs that of Kv (the shaded regions in Figure 3-3 A), i.e., the “Kir 

window”. Within this Vm range, hyperpolarization can be achieved during potassium 

challenge; while, outside of the window, potassium stimulus would likely result in a 
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depolarization of the cells since the influence of Kv is more pronounced than Kir. Figure 

3-3 A illustrates that the increase in Kv channel density (from SAH to CADASIL) reduces 

the size of the Kir window and will shift the window to more hyperpolarized potentials; 

hence, reducing the ability of the cell to hyperpolarize during potassium stimulus. The 

corresponding response of the Vm of PA SMC to potassium challenge is depicted in Figure 

3-3 B. Consistent with predictions in Figure 3-3 A and Figure 3-2 A, CADASIL model 

shows a more hyperpolarized resting Vm compared to CTL and SAH (since Kir window is 

shifted to the left). The level of hyperpolarization during the potassium challenge is 

increased from CADASIL to CTL, to SAH models (notice that the Kir window is more 

extended in SAH, compared to CTL, and CADASIL in Figure 3-3 A). 

Model simulations for SAH, the red region in Figure 3-3 A, predicts an extended Kir 

window compared to CTL models owing to a decreased Kv density. Although this result 

is consistent with the observations that isolated PAs from SAH animals dilate in response 

to K+ increase [149], evidence suggest an inversion of NVC in SAH models where 

vasoconstriction is observed, in both brain slices and in vivo, during neuronal activation 

[148-150]. This inversion, however, is postulated to be the results of an increase in basal 

[K+]o. Elevations in basal [K+]o leads to a more depolarized SMC EK, due to the reduced 

K+ chemical gradient, which most likely positions the Vm of the SMC outside of the Kir 

window. Thus, under these conditions the cell is expected to depolarize, which 

consequently results in enhanced Ca2+ entry through VDCCs and vasodilation [148-150].  
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Figure 3-3 Interplay between Kv with Kir currents in determining Vm dynamics at rest and during a potassium 

challenge. (A) Combined contribution of Kir and Kv currents in healthy and diseased models during rest and 

[K+]o stimulus. Solid lines: the sum of the two currents at rest, and dashed lines during elevation of [K+]o 

from 3 to 8 mM. The shaded regions show the range of voltages where Kir influence dominates the Kv 

current, i.e. the Vm window where the K+ challenge will result in hyperpolarization. As KV current density 

increases (from SAH, red lines; to CTL black lines; to CADASIL, blue lines) the window shrinks in size and 

shifts to more hyperpolarized potentials. (B) Representative simulations using the model of PA SMCs from 

Figure 3-3 to increases in [K+]o. Compared to SAH and CTL models, the change in membrane potential is 

less for CADASIL as a result of the more hyperpolarized resting Vm prior to the K+ challenge. [GKir = 0.76 

[nS/(mM)0.5]; kKir = 7 [mV]; VKir,0.5= EK+12 [mV]. 

3.4  CONCLUSION 

Consistent with experimental data, model simulations presented here corroborated the 

importance of Kv channels in regulating the resting Vm and myogenic tone of PAs. Model 

results successfully predicted how the changes in the density of Kv channels can 

profoundly impact the dynamics of Vm and intracellular calcium. With the help of model 

simulations, we identified a potential “tug-of-war” dynamic between the activity of Kir and 

Kv channels, which can determine conditions where K+ stimulation would result in either 

hyperpolarization or depolarization of PA SMCs. Model simulations suggest that Kv 

upregulation in CADASIL narrows the Vm window where Kir can overcome the 
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counteracting effect of Kv channels, which consistent with experimental data, results in 

more hyperpolarized Vm and reduced level of hyperpolarization. In SAH, a more extended 

Kir window was predicted, which led to more depolarized resting Vm in increased 

hyperpolarization level during modest elevation in [K+]o.  

In CADASIL, the decreased myogenic tone and more hyperpolarized resting membrane 

potentials compared to control animal models resulted in the attenuation of 

vasoconstriction. On the contrary, due to the elevated myogenic tone and more depolarized 

membrane potentials, animal models in SAH showed increased vasoconstriction and 

decreased CBF compared to control. Simulations performed in this chapter provided a 

plausible mechanistic understanding of these experimentally observed alterations in the 

myogenic tone and resting membrane potential of PA SMCs during small vessel 

pathologies. Simulation results indicated that the interplay between the Kir and Kv 

channels is critical in the myogenic tone and the response of the cell to modest elevations 

in [K+]o. Simulations predict that restoring Kir to Kv current balance can be a prospective 

therapeutic strategy in the treatment/prevention of small vessel disease, particularly in the 

case of CADASIL and SAH. 
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CHAPTER 4 A NEW CURRENT SOURCE DENSITY ANALYSIS METHOD 

FOR PROPAGATING SOURCES IN THE BRAIN: APPLICATION TO 

CORTICAL SPREADING DEPRESSION 

The content of this chapter is published in Journal of Neuroscience Methods as 

Moshkforoush A, Valdes-Hernandez PA, Rivera-Espada DE, Mori Y, Riera J. 

“waveCSD: A method for estimating transmembrane currents originated from propagating 

neuronal activity in the neocortex: Application to study cortical spreading depression” 

[151]. 

4.1 INTRODUCTION 

Development of high-resolution, multi-contact microelectrode arrays (MEA), have 

revolutionized methods for estimation of transmembrane currents from their extracellular 

local field potential (LFP) reflections. This estimation procedure is known as current source 

density (CSD) analysis. CSD analysis methods have recently been expanded to 

multidimensional domains (2D - [152, 153], 3D - [153-156]); however, the most widely 

used application is to determine CSDs associated with neocortical columns using linear 

arrays [153, 157-161]. For a detailed review of CSD analysis methods and their 

applications, refer to [162]. 

Methods developed for neocortical CSD analysis using linear arrays assume that CSDs 

vary only as a function of cortical depth (𝑧-axis) and that their tangential (𝑥-𝑦) extension 

can be either infinite [159] or confined to a circular disk of a predefined radius around the 
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electrodes–the inverse CSD method (iCSD [161]) and the kernel CSD (kCSD) method 

[153]. The layer-based and columnar organization of the mammalian neocortex is the 

physiological foundation for the tangential (laminar) symmetry in the aforementioned 

methods for CSD analysis. This assumption is suitable for most experimental paradigms 

where neuronal activations are expected to localize in specific functional structures of 

neocortex, and CSD analysis results have significantly aided in the determination of 

neuronal circuit organization in sensorial [155, 163], motor [164, 165] and cognitive [166] 

cortical regions. 

However, in several experimental conditions, neuronal activity propagates continuously 

along large areas of the neocortical sheet. Alpha-rhythm waves are reported to originate in 

the occipital regions and propagate progressively to frontal regions at a velocity of ~30 

cm/s [167-169]. Global traveling waves are also reported in studies using scalp EEG [170-

173], as well as in studies with direction measurements using optical imaging techniques 

[174]. Cortical spreading depression, a well-studied phenomenon associated with migraine 

aura, is another example where an electro-diffusional wave propagates along the cortical 

mantle at a reported velocity of 3-5 mm/min [175, 176]. These examples along with recent 

discoveries of traveling waves in visual perception [177] and sensorimotor integration 

[178], call for the development of novel CSD analysis methods accounting for the 

propagating nature of neuronal activity. For more information about cortical travelling 

waves refer to [179]. 

In this study, we used two mathematical constructs to develop a new method (waveCSD) 

for CSD analysis of experimental applications where a planar CSD wave is propagating 
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along the neocortex with a constant velocity. Similar to the iCSD method, our waveCSD 

method works based on the inversion of the electrostatic forward model of LFP generation. 

First, we expand the planar wave in cubic spline bases and assume compact support in the 

direction of propagation. Second, to account for the ill-conditioning of the forward problem 

discrete kernel, we use Tikhonov regularization scheme. The use of regularization 

techniques has been shown to significantly improve the reconstruction accuracy, especially 

in the presence of noise in the voltage data [153]. Using simulations, we evaluate the 

sensitivity of waveCSD to the observation noise, the electrode spatial resolution, and the 

uncertainties in the knowledge of the planar wave velocity. We also compare the 

reconstruction accuracy of waveCSD with spline-iCSD [161], and kCSD [153] methods 

adapted to the reconstruction of CSDs emerging from the propagation of neuronal activity. 

Finally, we apply the waveCSD method to determine neocortical transmembrane ionic 

currents associated with cortical spreading depression in rats. 

4.2 MATERIALS AND METHODS 

4.2.1 CSD analysis of a planar wave of neocortical neuronal activity (waveCSD 

method) 

Assuming constant and isotropic tissue conductivity, the relationship between the current 

source density in the brain, denoted by 𝐶 , and the generated LFPs, denoted by 𝑉 , is 

determined by the Poisson equation [159, 180]: 

𝜎∆𝑉 =  −𝐶 Equation 4-1 

Assuming an infinite medium, the solution to Equation 4-1 at an electrode position 𝑟𝑒⃗⃗  =

[𝑥𝑒 𝑦𝑒 𝑧𝑒] is provided by: 
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𝑉𝑒(𝑡) =  
1

4𝜋𝜎
∭

𝐶(𝑥, 𝑦, 𝑧, 𝑡)

√(𝑥 − 𝑥𝑒)
2 + (𝑦 − 𝑦𝑒)

2 + (𝑧 − 𝑧𝑒)
2
𝑑𝑥𝑑𝑦𝑑𝑧 Equation 4-2 

Here, we propose a method for simulating an experimental setup in which a wave of 

neuronal activity, originated in a location (𝑟0⃗⃗  ⃗), is moving tangentially along the cortex with 

a constant velocity 𝑣, and a linear probe is perpendicularly inserted into the neocortex along 

the 𝑧 direction to record the resultant LFP. We assume that 𝑟0⃗⃗  ⃗ is far enough from the 

electrode array to render the propagating wave planar. In this model, the propagation 

direction is along the 𝑥 -axis, thereby allowing us to drop the 𝑦  -dependency of 𝐶  in 

Equation 4-2: 

𝑉𝑒(𝑡) =
1

4𝜋𝜎
∬𝐾𝑒(𝑥, 𝑧) 𝐶(𝑥, 𝑧, 𝑡)𝑑𝑥𝑑𝑧 Equation 4-3 

𝐾𝑒(𝑥, 𝑧) = ∫
𝑑𝑦

√(𝑥 − 𝑥𝑒)
2 + (𝑦 − 𝑦𝑒)

2 + (𝑧 − 𝑧𝑒)
2

𝑦𝑓

𝑦𝑠

= log [
1

(𝑦𝑒 − 𝑦) + √(𝑥 − 𝑥𝑒)
2 + (𝑦 − 𝑦𝑒)

2 + (𝑧 − 𝑧𝑒)
2
]|

𝑦𝑠

𝑦𝑓

 
Equation 4-4 

where 𝑦𝑓 = −𝑦𝑠 = 𝛼  are the limits of the cortex in the 𝑦  direction assuming 𝑦0 = 0 . 

Since the propagation velocity is assumed constant, the CSD profile at any 𝑥 location can 

be written using the d’Alembert’s formula: 

𝐶(𝑥, 𝑧, 𝑡) = 𝐶(𝑥 − 𝑣𝑡, 𝑧) Equation 4-5 

Note that we only study propagation of the wave towards the electrodes. Assuming that the 

CSD has a spatial compact support in the 𝑥 direction at any given time instance 𝑡, the 𝑥 

integration in Equation 4-3 can be simplified to: 
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𝑉𝑒(𝑡) =
1

4𝜋𝜎
∬ 𝐾𝑒(𝑥, 𝑧)

𝑥𝑓(𝑡)

𝑥𝑠(𝑡)

𝐶(𝑥 − 𝑣𝑡, 𝑡)𝑑𝑥𝑑𝑧 Equation 4-6 

where 

𝑥𝑠(𝑡) =  𝑥0 + 𝑣𝑡   

𝑥𝑓(𝑡) =  𝑥𝑠(𝑡) + 𝐿
 Equation 4-7 

𝑥0 is the 𝑥 location of the wave at time 𝑡0 = 0 (here we set 𝑥0 = 0), and 𝐿 is the assumed 

length of the wave in the 𝑥 direction, whose shape will be defined using cubic splines. 

Using a change of variables (i.e. 𝜏 = 𝑥 − 𝑣𝑡), Equation 4-6 can be reorganized into: 

𝑉𝑒(𝑡) =
1

4𝜋𝜎
∬ 𝐾𝑒(𝑣𝑡 + 𝜏, 𝑧)𝐶(𝜏, 𝑧)𝑑𝜏𝑑𝑧

𝐿

0

 Equation 4-8 

Upon discretizing 𝐶(𝜏, 𝑧) in a two-dimensional rectangular grid for 𝜏 and 𝑧 via bicubic 

splines, the linearized version of Equation 4-8, for each time instance 𝑡, is written as 

follows: 

𝐯 = 𝐐𝐜 +  𝝃 Equation 4-9 

where 𝐯 = [𝛗𝑇(t0) … 𝛗𝑇(t𝑛)]
𝑇,   𝛗(t𝑖) = [𝑉1(t𝑖) … 𝑉𝑛𝑒(t𝑖)]

𝑇 and 𝐜 is a column 

vector of the CSD values to be determined at the grid points (here we assume 𝑛𝜏 and 𝑛𝑧 

points in the 𝜏 and 𝑧 directions, respectively). The derivation of Equation 4-8 and elements 

of 𝐐  is outlined in Appendices A4 and B4. We have added Gaussian noise 

𝝃~𝑁(𝟎𝑛𝑒×1, 𝜎𝑛
2𝐈𝑛𝑒), where 𝑛𝑒is the number of electrodes, to Equation 4-9 to account for 

uncorrelated instrumental noise in the recordings with standard deviation 𝜎𝑛 . In the 

simulations of this chapter, we quantify 𝜎𝑛 as percentages of the maximum absolute value 

of the LFP. 
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The inverse problem associated with Equation 4-9, i.e. estimating 𝐜 given 𝐯, is both ill-

posed and ill-conditioned. Thus, we use the Tikhonov regularization scheme [181] for 

estimation of current sources 𝐜̂: 

𝐜̂ = (𝐐T𝐐 + λ2𝚪T𝚪)−1𝐐T𝐯 Equation 4-10 

where 𝚪 = 𝐈𝑛𝑒  is the Tikhonov matrix and λ  is the optimal regularization parameter, 

determined via generalized cross-validation (GCV) method [182] through minimization of 

the following evaluation function (𝐸(𝜆)): 

E(λ) =  
‖𝑷(𝜆)𝐯‖𝟐

𝑡𝑟(𝑷(𝜆))𝟐
 Equation 4-11 

where 𝑷(𝜆) is the projection matrix defined as: 

𝑷(𝜆) =  𝐈 − 𝐐(𝐐T𝐐+ λ2𝐈)−1𝐐T Equation 4-12 

The estimation of other model parameters, i.e. 𝑣 and 𝛼, from the LFP data is also done 

using Equation 4-12. More specifically, a wide range of 𝑣 and 𝛼 values will be chosen for 

a given LFP recording. For any pair of 𝑣 and 𝛼 values, i.e., (𝑣𝑖 , 𝛼𝑗), the corresponding 𝐐 

matrix will be calculated and the regularization parameter λ𝑖𝑗 will be estimated. The pair 

which has the lowest GCV score, i.e., 𝐸𝑖𝑗(𝜆𝑖𝑗), will be chosen as the optimal model 

parameters. In this chapter, we denote the CSD profile reconstructed using the waveCSD 

method as 𝐜𝑤𝑎𝑣𝑒CSD. 

4.2.2 CSD analysis of a propagating wave using iCSD and kCSD methods 

iCSD [161] is the pioneering method which utilized the inverse problem of Equation 4-2 

for the CSD analysis of LFP recordings using multielectrode arrays with various 
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configurations. In the original article by Pettersen et al. [161], three model-based iCSD 

methods (i.e., step-, delta-, and spline-iCSD) were proposed and applied to the LFP data 

from linear (laminar) probes. The authors also developed iCSD methods for off-center 

electrode placements. In this study, all comparisons will be made with the spline-iCSD 

method centered at the electrodes. The assumption in this method is that the CSD is 

constant in the tangential direction and is confined to a cylinder of a predefined diameter—

usually the size of a cortical column—around the electrodes. Potworowski and coworkers 

[153] further generalized the iCSD method to kCSD method, a non-parametric CSD 

analysis methodology which utilizes reproducing kernel Hilbert spaces for the 

reconstruction of current source densities which can be applied to various configuration of 

recording electrodes. Major improvements in the kCSD method compared to iCSD are: I) 

incorporation of regularization algorithms to improve the reconstruction accuracy in the 

presence of observation noise in voltage data, and II) estimation of model parameters using 

k-fold cross-validation algorithm from the LFP recordings. The kCSD method also 

assumes that current sources are confined in a cylinder, and that the tangential extension 

of the sources are either defined using a step function, or a Gaussian profile. Here, we use 

the Gaussian profile of current sources in the 1D kCSD method for all comparative 

simulations.  

Throughout this chapter, we refer to spline-iCSD and 1D kCSD as iCSD and kCSD, 

respectively. Application of either iCSD or kCSD method to LFP gives a temporal 

distribution of the variation of CSDs along the 𝑧 direction, here denoted as 𝐜𝑖𝐶𝑆𝐷
𝑡 (𝑡, 𝑧) and 

𝐜𝑘𝐶𝑆𝐷
𝑡 (𝑡, 𝑧), respectively. Neither method is intended to account for propagating CSD 
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waves originating far from the electrodes and covering large-scale neocortical distances. 

Hence, to be able to interpret the solution of iCSD and kCSD methods as a wave of length 

𝐿 propagating towards the electrode with a constant velocity 𝑣, these temporal maps should 

be converted to spatial propagating profiles, denoted as 𝐜𝑖𝐶𝑆𝐷
𝑠 (𝑥, 𝑧)  and 𝐜𝑘𝐶𝑆𝐷

𝑠 (𝑥, 𝑧) , 

respectively. This conversion, which allows for the comparison of accuracy of 

reconstruction of iCSD and kCSD with waveCSD, is done using a linear transformation of 

the 𝐜𝑖𝐶𝑆𝐷/𝑘𝐶𝑆𝐷
𝑡  profile as follows: 

 𝐜𝑖𝐶𝑆𝐷/𝑘𝐶𝑆𝐷
𝑠 (𝑥, 𝑧) =  𝐜𝑖𝐶𝑆𝐷/𝑘𝐶𝑆𝐷

𝑡 (𝑥𝑒 − 𝑣𝑡, 𝑧)           

𝑡 ∊ [(𝑥𝑒 − 𝐿) 𝑣⁄ , 𝑥𝑒 𝑣⁄ ]                           
 Equation 4-13 

The up and running version of the iCSD method (CSDPlotter) can be downloaded from 

(http://web.eng.fiu.edu/jrieradi/CSDPlotter/). 

4.2.3 Reconstruction accuracy measures 

Using simulations, we compare the reconstruction accuracy between waveCSD, iCSD and 

kCSD methods. A known CSD profile (𝐜ground−truth) of length 𝐿, propagating towards the 

electrodes at a constant velocity 𝑣, was used to generate simulated LFP data using the 

forward model of Equation 4-8. At any desired Gaussian noise level, 50 distributions of 

the noisy simulated LFP were constructed (random number generator seeding was shuffled 

to assure different noise distributions in each trial), and source reconstruction was 

performed using all three methods for all trials. It should be noted that noise filtering in the 

iCSD method is achieved by applying a Gaussian spatial filter on the estimated CSD from 

unfiltered LFP recordings [161]. The model parameters for iCSD (the diameter of the 

cylinder (𝑑)), and kCSD (the cylinder radius (𝑅) and thickness (ℎ) of the Gaussians) 

http://web.eng.fiu.edu/jrieradi/CSDPlotter/
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methods were selected using the following approach: Firstly, k-fold cross-validation 

algorithm implemented in the kCSD method is applied to the LFP data to choose optimal 

𝑅 and ℎ. Secondly, since both iCSD and kCSD methods work under the same assumption 

that current sources are confined in a cylinder, and that parameter estimation is not included 

in the original iCSD method, 𝑑 in the iCSD method was chosen same as that of kCSD 

method, i.e., 𝑑 =  2𝑅. The effect of changing 𝑑 in the reconstruction using iCSD method 

was also separately studied. We calculate the accuracy of a given method by comparing its 

reconstructed profile, 𝐜𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = {𝐜𝑤𝑎𝑣𝑒𝐶𝑆𝐷 , 𝐜𝑖𝐶𝑆𝐷
𝑠 , 𝐜𝑘𝐶𝑆𝐷

𝑠 }, with 𝒄𝑔𝑟𝑜𝑢𝑛𝑑−𝑡𝑟𝑢𝑡ℎ, using 

the Relative Difference Measure (RDM) and the Magnitude (MAG) ratio. The RDM 

primarily quantifies differences in shape between the profiles, while MAG quantifies their 

relative magnitude [183].  

𝑹𝑫𝑴(𝐜𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 , 𝐜ground−truth) =  ‖
𝐜𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑
‖𝐜𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑‖

− 
𝐜ground−truth

‖𝐜ground−truth‖
‖  ∊ [0,2] Equation 4-14 

𝑴𝑨𝑮(𝐜𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 , 𝐜ground−truth) =  ‖
𝐜𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑
𝐜ground−truth

‖ Equation 4-15 

The condition where RDM = 0 and MAG= 1 indicates identical profiles and optimal 

accuracy. 

4.2.4 Recording LFP data during cortical spreading depression 

A total of five rats were used in this study to record LFPs using an A1x32 linear probe 

during cortical spreading depression. All procedures were conducted in agreement with the 

Institutional Animal Care and Use Committee at Florida International University (IACUC 

15-014). 
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4.2.4.1 Animal preparation and cortical spreading depression induction 

A mixture of 5% isoflurane and pure oxygen was supplied to a hermetically sealed box (1 

L/min, 14.7 psi) to induce anesthesia in rats. For each rat, the scalp was shaved, and the rat 

was fixed to a stereotaxy (Narishige, Japan). The isoflurane level was reduced to 1.75-

2.50% to stabilize the breathing rate to 50-55 breaths per minute. The scalp and the 

underlying connective tissue were removed to set the positions for the burr holes (for 

reference and ground electrodes), and the craniotomies (for cortical spreading depression 

induction and probe insertion). Burr holes were made approximately 1 mm posterior to 

lambda and the reference and ground electrodes were placed in direct contact with the 

intracranial spinal fluid. The two craniotomies, one 2mm anterior and the other 4 mm 

posterior to Bregma, were positioned on the right hemisphere approximately 2 mm lateral 

from the midline. The posterior craniotomy was used for induction of cortical spreading 

depression, and the anterior craniotomy was used for LFP recording using the linear 

(A1x32) probe. The probe was perpendicularly inserted approximately 1.7 mm into the 

neocortex using a micromanipulator control system (MPC-200/ROE 200/MPC-385/MPC-

325 Sutter Instruments). The accurate positioning and depth of probe penetration was 

histologically verified postmortem. The cortical spreading depression events were induced 

via topical application of ~20-40 l of 1M solution of potassium acetate (CH3CO2K) in 

distilled water (Milli-Q, Millipore Corp.). The leakage of CH3CO2K to the recording 

craniotomy was prevented using a dental cement barrier between the two craniotomies. 

The concentration of isoflurane anesthesia was reduced (0.25–0.5%, 1 L/min pure O2, 14.7 

psi), and was supplemented with intraperitoneally-administered Dexmedetomidine 

hydrochloride (Dexdomitor, 0.25 mg/kg), to ensure that the spontaneous cortical brain 
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activity was minimally compromised The efficacy of this approach was previously tested 

and verified by our group [184]. Throughout the recording, rat physiology (i.e. body 

temperature (~37 °C) and respiration rate (~28 breaths per minute) was constantly 

monitored using the PowerLab 8/35 data acquisition device and the LabChart software 

(ADInstruments). The rat’s body temperature was kept at the desired range using a heating 

pad (TPZ-0510EA, Texas Scientific Instruments, LLC) with a water-circulating pump 

(TP700, Texas Scientific Instruments, LLC). 

4.2.4.2 Intracranial recordings  

Two recordings, 30 minutes each, were performed for each rat. At the end of the first 

recording, the posterior craniotomy was washed with saline and dried before the start of 

the second recording. The spontaneous brain activity was recorded for 5 minutes before 

the CH3CO2K solution was administered to the posterior craniotomy. The LFPs were 

recorded with a PZ5 AC amplifier at 25 kHz (Tucker & Davis Technologies, TDT). The 

amplifier was connected to a signal processing unit (RZ2, TDT) by an optical fiber, and to 

a preamplifier by a coaxial cable. The OpenEx software (TDT) was used for recordings. 

The raw data was notch-filtered in MATLAB to remove the 60Hz artifacts, and a low-

frequency (1–170 Hz) Butterworth IIR bandpass filter was used to extract the LFPs from 

the raw data.  

4.2.5 𝐜𝒘𝒂𝒗𝒆𝑪𝑺𝑫 associated with cortical spreading depression 

CSD analysis was performed on LFPs obtained from rats during cortical spreading 

depression using the waveCSD method. In order to check if individual CSD reconstructions 

exhibit a consistent and reproducible pattern across rats, the grand average CSD profile 
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was obtained after nonlinear coregistration of the reconstructed CSDs. This was done 

through warping the reconstruction using a landmark-based nonlinear registration method 

based on the Approximate Thin Plate Splines (TPS) transformation outlined in [185]. For 

each individual, each landmark was chosen to represent a particular feature of visible 

contrast of the CSD reconstruction common to all individuals. Besides, their topological 

order was preserved across individuals to avoid folding of the transformations, i.e. negative 

values of their Jacobian. Since the TPS transformations are infinitely differentiable and no 

folding occurs, we ensure they capture the inter-individual diffeomorphic variability of rat 

neocortex expected in a group of normal rats. 

4.2.6 Statistical analysis 

Results are shown as mean±std, unless stated otherwise. The normality of the distribution 

of the accuracy measures (RDM and MAG) across methods (i.e. waveCSD, iCSD, and 

kCSD) at different noise levels is tested using the Kolmogorov-Smirnov (KS) test. Since 

all distributions failed the KS test (data not shown here), a BoxCox transformation [186] 

is applied to the difference of the RDM and MAG measures across methods and a paired 

t-test is used to analyze if the difference is significant.  

4.3 RESULTS 

4.3.1 Application of waveCSD, iCSD, and kCSD emthods to neocortical planar 

waves of neuronal activity  

To study the accuracy of waveCSD method in the reconstruction of propagating current 

sources compared to iCSD and kCSD methods, an arbitrary ground-truth profile waveform 

of CSDs (Figure 4-1, top left panel) was assumed to propagate towards a 16-electrode 



83 

 

laminar probe, positioned 6 mm away, with a constant velocity of 4 mm/min. This 

waveform, containing non-compensated, oblique sink and source current densities, was 

used in all simulations performed in this chapter, unless stated otherwise. Comparative 

simulations for two other ground-truth profile examples are also provided in Appendix C. 

4. 

 
Figure 4-1 Comparison of the accuracy of waveCSD, iCSD, and kCSD methods in the reconstruction of LFPs 

generated from a ground-truth waveform. A) A ground-truth waveform (the CSD profile, top left) is assumed 

to be generated 6 mm away from an A1x16 probe, inserted perpendicularly in the cortex with an inter-

electrode spacing of 100 μm. The first electrode is assumed to be 100 μm deep in the brain tissue. Here, the 
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waveform propagates towards the electrodes at a constant velocity of 4 mm/min. The resultant LFPs are 

shown in the top right panel (black → most superficial electrode, and red → deepest electrode in the probe). 

B) Model parameter estimation for kCSD method using k-fold cross-validation technique as described in 

[153]. The left panel shows cross-validation error for a wide range of R and h values, and the inset confirms 

that the selected parameters (the red dot) coincide with the global minimum of cross-validation error values. 

The estimated diameter (2R) for the kCSD method is used for source reconstruction in the iCSD method 

shown in panel C. C) Source reconstruction using iCSD, kCSD and waveCSD methods without the presence 

of noise in the LFP data. (iCSD- RDM: 0.47, MAG: 0.67; kCSD- 0.47, MAG: 0.88, waveCSD- RDM: 0.01, 

MAG: 0.99). Both RDM and MAG measures confirm that the waveCSD method provides more accurate 

CSD reconstruction among all methods (i.e. RDM closer to zero and MAG closer to 1 in the waveCSD 

method). For comparison purposes, colorbar ranges and labels are the same as in 1 A left panel. Parameters: 

waveCSD method- The temporal resolution of the 𝐐 matrix is 1 [s]. nτ = 40; nz = 30; L = 3 [mm]; σ = 0.3 

[S/mm]; α= 3.5 [mm]. kCSD method- R = 2.2 [mm]; h = 0.44 [mm]; number of sources (nSrc) = 320. iCSD 

method- d = 4.4 [mm].  

The resultant forward solution to Equation 4-6 (i.e. the LFP distributions in the electrodes) 

is depicted in Figure 4-1 A top right panel. As described in Section 4.2.3 and illustrated in 

Figure 4-2 B, optimal model parameters of the kCSD method were estimated from the LFP 

data via k-fold cross-validation technique and are used for the source reconstruction using 

both kCSD and iCSD models. All methods were utilized to reconstruct the waveform from 

the LFP data without the presence of noise (Figure 4-1 C). The RDM and MAG measures 

indicate that waveCSD was more accurate than iCSD, and kCSD. Additionally, results 

indicate that while RDM measure of both kCSD and iCSD were identical for the given 

waveform (RDM – 0.47), kCSD performed better in terms of MAG measure in comparison 

with iCSD (iCSD- MAG: 0.67; kCSD – MAG: 0.88). 

Figure 4-2 shows that waveCSD outperforms iCSD and kCSD for a wide range of 

observation noise in the LFP data (Figure 4-2). As illustrated in Figure 4-2 A, although 

increasing for all methods, the RDM measure is lower for waveCSD than for iCSD and 

kCSD. We tested if this difference was statistically significant. Since the normality of the 

distribution of the RDM measure across trials failed the Kolmogorov-Smirnov (KS) test, 

we applied the BoxCox transformation to the difference between the RDM values of the 
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waveCSD method with iCSD and kCSD methods. A paired t-test rejected the null 

hypothesis of zero difference for all noise levels with p≈0. With this negligible p-value we 

decided there was no need for any further statistical analysis in the following simulations. 

On the other hand, Figure 4-2 B depicts the MAG measures for waveCSD decreases with 

increasing noise levels, while it increases for both iCSD and kCSD. For the given CSD 

example waveform at levels of noise below 10%, waveCSD is more accurate (i.e., MAG~1) 

than iCSD and kCSD. In the interval ~10-20%, MAG values intersect, being close to 1 for 

all methods. In this interval, the MAG values for iCSD and kCSD are closer to 1 around 

the 20% noise level, compared to waveCSD. At higher noise levels, all methods diverge 

from the optimal MAG value. Two examples of source reconstruction using all three 

methods are provided in Figure 4-2 C and Figure 4-2 D for 10% and 30% noise levels, 

respectively. These examples further confirm that the inclusion of regularization 

techniques in both kCSD and waveCSD methods improves the quality of source 

reconstruction compared to iCSD method, particularly at higher percentages of noise in the 

data. For all the simulations in Figure 4-2, the wave velocity was fixed to 4 mm/min.  
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Figure 4-2Effect of observation noise on reconstruction accuracy of waveCSD compared to iCSD and kCSD. 

Accuracy of reconstruction of all methods are compared for different values of Gaussian observation noise 

(as percent of the maximum LFP signal) added to the LFP data shown in Figure 4-1, top right panel. A) RDM 

values for all three methods across 50 realizations of the observations are shown as mean±std for each noise 

level. Noise reduction in the iCSD method was performed by applying a Gaussian spatial filter on the 

reconstructed CSD from unfiltered LFP recordings (Gaussian filter sigma: σgf = 0.1 [mm]) Results indicate 

that at all noise levels waveCSD method outperforms iCSD and kCSD methods (RDM values closer to zero 

in waveCSD). B) MAG values for all three methods across 50 realizations of the observations are shown as 

mean±std for each noise level. Results show a decreasing trend in the MAG measure for waveCSD method 

as the noise level increases, while both iCSD and kCSD methods show the opposite trend. Two examples of 

the average reconstructed CSD profile using all three methods are provided in panels C and D for 10 and 

30% noise levels, respectively. Parameters are as stated in Figure 4-1. 

Figure 4-3 shows the comparison of the accuracy of the methods in CSD reconstruction at 

a range of known velocity values (between 3 to 8 mm/min) at 10% noise level. For the 

waveCSD method, the 𝐐 matrix corresponding to each known velocity was computed and 

the CSD was reconstructed. For each velocity value, optimal parameters for kCSD and 
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iCSD models were selected as described in Section 4.2.3. The MAG measure remains 

almost unchanged with wave velocity in all methods (Figure 4-3 A). The RDM measure 

exhibits a similar behavior in kCSD and iCSD methods, while it slightly increases with 

velocity in the waveCSD method (Figure 4-3 B). For the given waveform, waveCSD shows 

better performance in both RDM and MAG measures compared to kCSD and iCSD. 

Examples provided in panels C and D show source reconstruction for each method at 4 and 

7 mm/min, respectively. 

 
Figure 4-3 Effect of waveform velocity on the reconstruction accuracy of waveCSD, kCSD and iCSD 

methods. The accuracy of methods, as measured by RDM and MAG, are compared as a function of the 

known velocity of the ground-truth waveform presented in Figure 1 A, top left panel. 10% Gaussian noise 

was added to the LFP data, and optimal parameters of kCSD and iCSD methods were selected for each 

velocity value as explained in Section 4.2.3. RDM and MAG values are shown as mean±std across 50 

realizations of the observation noise. Noise reduction in the iCSD method was performed by applying a 

Gaussian spatial filter on the reconstructed CSD from unfiltered LFP recordings (Gaussian filter sigma: σgf 
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= 0.1 [mm]). A) kCSD and iCSD show no change in the RDM value at different velocities, while waveCSD 

RDM increases slightly with the increase in wave velocity. B) All MAG traces remain almost unchanged 

across different velocity values. Two examples of the average reconstructed CSD profile using all three 

methods are provided in panels C and D for 3 and 7 mm/min wave velocity, respectively. Parameters are as 

stated in Figure 4-1. 

As mentioned earlier, in simulations shown in Figure 4-1 to Figure 4-3, the parameter 𝑑 in 

iCSD method was selected based on the optimal radius (R) of kCSD, obtained from k-fold 

cross-validation technique. Since model parameter selection algorithms are not 

implemented for iCSD, in Figure 4-4 we demonstrate the changes in RDM and MAG of 

iCSD method as a function of different values of 𝑑. For comparison purposes, we also 

show the constant traces of these measures for waveCSD—by definition independent from 

𝑑. For iCSD both measures decrease with the diameter increase, relatively faster for MAG 

than for RDM (RDM from ~0.85 to ~0.8, MAG from ~4.5 to ~1.4, for 𝑑 values from 300 

to 700 μm), a trend that persisted for even extremely large values of 𝑑 (as RDM→0.77 and 

MAG→0.70 for 𝑑 → +∞). In this limit, in spite of MAG measure indicating a similar 

performance of both methods, waveCSD still outperforms iCSD with regards to RDM. 
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Figure 4-4 Dependency of CSD reconstruction accuracy to the diameter of the designated cylinder used in 

the iCSD method. The top panel shows that both RDM and MAG values in the iCSD method decrease as a 

function of d. However, the changes are more drastic for the MAG measure (MAG: ~4.5 → ~1.5; RDM: 

~0.85 → ~0.75, for d: 300 →700 μm). A limit case of d → ∞ is also provided in the bottom panel. Noise 

reduction in the iCSD method was performed by applying a Gaussian spatial filter on the reconstructed CSD 

from unfiltered LFP recordings (Gaussian filter sigma: σgf = 0.1 [mm]). waveCSD method is independent of 

d, thereby both measures are constant throughout. v = 4 mm/min, and 10% noise is added to the LFP data. 

The rest of the parameters are as stated in Figure 4-1. 

4.3.2 Robustness of the waveCSD method to noise and MEA resolution 

Figure 4-5 shows the robustness of the reconstructed CSD profile using the waveCSD 

method to the presence of noise and to the number of electrodes used in the probe. For each 

noise level, electrode number and velocity value, the average of MAG and RDM across 50 

CSD reconstruction trials is shown. Figure 4-5 A and 5B show the accuracy of 

reconstruction at different ranges of propagation velocity and varying noise levels. Figure 
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4-5 A and Figure 4-5 B show that at any known velocity value, increasing the noise level 

reduces the accuracy of the source reconstruction (RDM away from 0, and MAG away 

from 1). Similarly, at any given noise level, increasing the velocity of the waveform 

decreases the reconstruction accuracy. Figure 4-5 C and Figure 4-5 D demonstrate a case 

in which a constant velocity of 4 mm/min is used for all simulations, and the source 

reconstruction accuracy is analyzed with respect to the number of electrodes in the probe. 

As can be observed in both panels, at any electrode resolution, increasing the noise level 

increases the error of reconstruction. Meanwhile, at any given noise percentage, increasing 

the resolution of the recording results in increased reconstruction accuracy. 
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Figure 4-5 Robustness of the CSD analysis using waveCSD method to noise and electrode resolution. A-B) 

RDM and MAG measures are shown for 𝐜𝑤𝑎𝑣𝑒CSD from the LFP data in Figure 4-1 A right panel, for a range 

of known velocities and different noise levels. The colorbar for the MAG measure is inverted compared to 

RDM (blue colored regions indicate desirable RDM and MAG values; red regions indicate areas with high 

error in reconstruction). At any given velocity, increase in the noise level decreases the accuracy of the 

reconstruction (RDM away from zero, and MAG away from one) and vice versa. C-D) RDM and MAG 

measures are shown as a function of electrode resolution at different noise levels for the average reconstructed 

CSD profile (𝐜𝑤𝑎𝑣𝑒CSD) of the LFP data of the ground-truth waveform. At any electrode resolution, increase 

in the noise level decreases the accuracy of reconstruction, whereas at any given noise, increasing the number 

of recording electrodes, increases the reconstruction accuracy. Parameters are as described in Figure 4-1 

except nτ = 30 and nz = 10. 

4.3.3 Errors associated with uncertainties in the knowledge of wave velocity in 

waveCSD method 

So far, we have assumed that one has an accurate knowledge of the velocity of the 

propagating wave. However, the velocity measurement might not be highly accurate. We 

performed the following procedure to evaluate the effect of assuming incorrect values of 

the velocities in the waveCSD reconstruction. The ground-truth CSD waveform (as shown 

in Figure 4-6 A, left panel) was assumed to propagate with a velocity of 5 mm/min. The 

resultant LFPs (shown in Figure 4-6 A, right panel) was calculated using Equation 4-6 with 

10% noise. Then, a set of CSDs (Figure 4-6 B) were estimated using 𝐐  matrices 

corresponding to inaccurate velocities ranging from 4 to 6 mm/min. As observed in panel 

B, the most noticeable difference in the reconstructed profiles is the change in the location 

of the CSDs predominantly in the 𝑥 direction. This observation is verified when RDM and 

MAG measures are compared before and after a linear co-registration of the reconstructed 

profiles through translation along the 𝑥 axis (Figure 4-6 C and Figure 4-6 D, respectively). 

Results in both Figure 4-6 C and Figure 4-6 D show that if reconstruction is performed 

using the 𝐐 matrix with an assumed accurate velocity (Figure 4-6 B, middle box), the 

reconstruction error is minimal (Notice the RDM in Figure 4-6 C). Figure 4-6 C also shows 

that while the RDM measure is significantly affected by estimations assuming inaccurate 



92 

 

velocities; the MAG measure does not significantly change. These results indicate that in 

spite of lack of precise knowledge of the velocity of the propagating wave, the waveCSD 

method can still provide CSD reconstruction with high accuracy, given the consideration 

that the location of the CSDs might be shifted mainly in the 𝑥 direction. 

 
Figure 4-6 Reconstruction accuracy under uncertainties in the knowledge of velocity of the waveform in the 

waveCSD method. A) Under 10% noise, LFPs (right panel, red traces: unnoisy, blue traces: noisy) from an 

A1x16 probe were simulated assuming a ground-truth CSD waveform (left panel) propagating with at v = 5 

mm/min towards the electrodes. B) The noisy simulated LFPs were used to estimate the CSD using the 

waveCSD method assuming a range of wave velocities from 4 to 6 mm/min. Profiles show a monotonic shift 

in the position of CSDs relative to the error in the assumed velocity. C) RDM and MAG measures for the 

reconstructed profiles using velocity values are shown as mean±std. If the actual velocity is used for the 

reconstruction (highlighted box in panel B), the accuracy is maximal. Note that the RDM measure is 

significantly dependent on the velocity error, while the MAG measure does not significantly change. D) Both 

RDM and MAG are almost unchanged after linear coregistration of reconstructed profiles in panel B along 

the x axis. Parameters used in simulations: temporal resolution of the 𝐐 matrices: 1 [s]; nτ = 20; nz = 10. 

Rest of the parameters are as described in Figure 4-1. 
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4.3.4 Parameter estimation in waveCSD method using GCV from the LFP data 

As explained in Section 4.2.1, the main parameters of the waveCSD method, i.e., 𝛼 and 𝑣, 

are estimated from the LFP data using generalized cross-validation technique. To test the 

accuracy of parameter estimation, a ground-truth CSD waveform shown in Figure 4-7A 

left panel is assumed to be generated 6 mm away from an A1x16 probe and propagate 

towards the electrodes at 5 mm/min. The actual 𝛼 used for the generation of LFPs (Figure 

4-7 A right panel) was set to 3 mm. The waveform is generated by superposition of 10 

Gaussian profiles with random amplitude, spread, and angle using the methodology 

described in [153]. A wide range of 𝛼 and 𝑣 values were selected (𝛼 ∊ [1,5]; 𝑣 ∊ [3,7]), 

and for each pair of parameter values, the corresponding Q matrix was calculated. Using 

these matrices, source reconstruction was performed on the LFP data without observation 

noise, and the pair which minimized the GCV score was selected as the optimal parameter 

set (red dot in Figure 4-7 B panels). As can be observed in the figure, the method 

successfully found actual parameter values in the absence of noise. Moreover, the optimal 

parameter set also coincided with optimal RDM and MAG measures. The same procedure 

was repeated for a wide range of noise levels in the LFP data (Figure 4-7 C). For each 

percentage of noise and for each parameter pair, 50 realizations of the noisy LFP were 

reconstructed. Figure 4-7 C confirms the successful parameter estimation even at high 

levels of observation noise in the LFP data. 
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Figure 4-7 waveCSD model parameter estimation from the LFP data using GCV technique. A) A ground-

truth profile was generated via superposition of 10 Gaussian profiles with random amplitude, spread, and 

angle (left panel). The resultant LFP profile (right panel) were generated from a A1x16 electrode assuming 

the waveform was generated 6 mm away from the electrodes and propagated towards the probe with a 

velocity of 5 mm/min (black → most superficial electrode, and red → deepest electrode in the probe). The 

limits of the cortex in the y direction (i.e. yf  =  −ys  =  α) was set to be from [-3, 3] [mm]. B) For a wide 

range of velocity and α values the corresponding Q matrices were calculated (blue dots) and the parameter 

pair which minimized the GCV score was selected as the optimal set (the red dot). RDM and MAG measures 

are also shown for each parameter pair. In all simulations in the panel no noise was added to the LFP data. 

C) Parameter estimation was performed in the presence of varying percentages of the observation noise in 

the LFP data. For each noise level and each parameter set, 50 realizations of the noisy data were 

reconstructed. Data is shown is mean±std, and the actual values of velocity and α are shown in red dashed 

lines. 

4.3.5 Transmembrane current sources during cortical spreading depression 

LFP recordings from five rats were used to reconstruct the transmembrane CSDs during 

cortical spreading depression. Figure 4-8 A shows the LFP data from one rat recorded using 
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an A1x32 probe. To solely account for the distribution of CSDs during a cortical spreading 

depression event, CSD analysis was performed after removing the natural resting-state 

brain activity and the silencing period (i.e. regions before and after the highlighted box in 

Figure 4-8 A). LFP data was down-sampled to the temporal resolution of the 𝐐 matrix used 

for the reconstruction (Figure 4-8 A inset). The reconstructed CSD profile of Figure 4-8 A 

inset is shown in Figure 4-8 B. The corresponding 𝐐 matrix for the reconstruction was 

computed based on an assumed velocity of 3 mm/min, a value commonly reported in 

literature for the velocity of the moving wave during cortical spreading depression [175, 

187, 188]. Note that we have already addressed the potential errors that are introduced in 

the reconstruction if this choice of velocity is not accurate (see Figure 4-6). 

 
Figure 4-8 CSD analysis of LFPs recorded during cortical spreading depression in rats using the waveCSD 

method. A) The LFP recordings of one rat using an A1x32 probe during cortical spreading depression is 
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shown in the left panel. The resting brain activity and silencing period after the event were excluded in the 

source reconstruction using the waveCSD method (right panel). LFP data was resampled to the temporal 

resolution of the 𝐐 matrix used for the CSD analysis (i.e., 0.2 [s]). The resampled data is shown using a color 

gradient from black to red (black → most superficial electrode, and red → deepest electrode in the probe). B) 

Reconstructed CSD profile of the resampled LFP data in panel A inset using the waveCSD method. C) Heat 

maps of the resampled LFP and the simulated LFP (resulting from forward modeling of the profile in the 

panel B using Equation 4-8) are demonstrated. Please note that panels B and C have different x-axes. For the 

reconstructed waveCSD model (panel B), the x-axis represents space, along the propagating direction. For 

the LFP heat maps (panel C), the x-axis represents time. D) Simulated LFP is superimposed onto the original 

resampled LFP. The insets demonstrate the electrodes with the best and the worst reconstruction determined 

based on the sum of square of the errors between the original and the reconstructed trace. Parameters used 

for the computation of the 𝐐 matrix for CSD analysis of the data: nτ = 30; nz = 20; L = 1 [mm]; temporal 

resolutions: 0.2 [s]. The rest of parameters are as described in Figure 4-1. 

Figure 4-8 D shows the extent to which the data (Figure 4-8 A inset) can be fitted by the 

forward model in Equation 4-8 using the estimated CSD obtained in Figure 4-8 B. To that 

end, the “simulated” LFP was computed from the estimated CSD and was superimposed 

onto the original LFP. Figure 4-8 D insets show the electrodes with best and worst LFP 

reconstruction, as determined by the sum of square of errors between the original LFP trace 

and the reconstructed trace. The LFP heat maps, i.e., the temporal voltage profile, of the 

resampled LFP in Figure 4-8 A inset and the simulated LFP are compared in Figure 4-8 C.  

Figure 4-8 A demonstrates the grand average CSD profile across rats after nonlinear 

diffeomorphic coregistration of the reconstructed CSDs (data from five rats; see Section 

4.2.4). The average CSD profile suggests a complex, multipolar configuration of current 

sources in different layers of the cortex during cortical spreading depression. The accurate 

probe positioning and penetration depth were verified via histology, postmortem (Figure 

4-9 B). The schematic in Figure 4-9 C illustrates major layer-specific cellular populations 

in the neocortex. 
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Figure 4-9 Average profile of transmembrane current sources during cortical spreading depression in rats 

after nonlinear coregistration of the reconstructed profiles. A) The grand average transmembrane CSD profile 

across five rats during cortical spreading depression using the waveCSD method is depicted. The averaging 

was performed after application of a landmark-based nonlinear diffeomorphic coregistration to individual 

reconstructed current sources. B) The histology image showing the accurate positioning and the desired 

penetration depth of the probe in the rat neocortex. C) The schematic representing major cellular substrates 

across different layers (i.e., Supra-Granular, Granular, and Infra-Granular) of the rat neocortex, e.g. excitatory 

pyramidal cells (layer II/III – black, layer V – brown and layer VI – blue), excitatory spiny stellate cells 

(yellow), inhibitory interneurons (basket cells – blue/black and Martinotti cells – red/blue), and layer II/III 

glia cells (green). 

4.4 DISCUSSION 

CSD analysis of electrical signals in the brain has been revolutionized owing to the 

progress in development of high resolution MEAs for the spatiotemporal signal acquisition 

in different experimental settings. To date, CSD analysis methods utilizing LFP recordings 

from linear probes do not take the propagation of neuronal activity along the cortical sheet 

into account. In this study, we provide a theoretical framework for the reconstruction of 

propagating CSDs with the assumption that these waves are planar and have a constant 

velocity. An immediate application of the waveCSD method is the CSD analysis of 

transmembrane currents during a cortical spreading depression event. 
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4.4.1 Comparison of waveCSD, kCSD, and iCSD methods in the CSD analysis of 

propagating neuronal activity 

The iCSD method developed by Pettersen et al. [161] has shown high level of accuracy in 

a variety of applications and has been one of the most widely-used CSD analysis techniques 

in the past decade [152, 161, 162]. The development of kCSD method, which provided a 

kernel-based methodology, further overcame main deficiencies of the iCSD method 

through incorporation of regularizing techniques to improve reconstruction quality, as well 

as inclusion of cross-validation algorithms to estimate optimal parameters given a data set. 

However, the assumptions in these methods do not account for propagation of neuronal 

activity along the neocortex in CSD reconstruction. Thus, if these methods are used for 

CSD analysis of conditions where such propagations are involved, the interpretations have 

to be drawn with care and results might not necessarily be highly accurate. It should be 

noted that in this chapter, iCSD is synonymously referred to spline-iCSD method for 

laminar probes described in [161], and not the inverse current source density analysis 

method in general. In the case of CSD analysis of a propagating neocortical wave, the 

following key assumptions of the iCSD and kCSD methods are violated: 

Firstly, when the wave of neuronal activity approaches the probe, current sources far from 

the electrodes contribute to the LFP data. Hence, the assumption that only current sources 

near the electrodes, i.e. inside the designated cylinder, contribute to the LFP data is not 

valid. Consequently, the choice of 𝑑  in the analysis of CSDs emerging from the 

propagation of neuronal activity using the iCSD or kCSD methods can significantly affect 

the accuracy of the reconstruction. In particular, the lower the value of 𝑑, the higher the 

magnitude of reconstructed CSDs to account for the contribution of far current sources (see 
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Figure 4-4 for the iCSD method). As shown in Figure 4-1, Figure C4- 1 and Figure C4- 2, 

the cross-validation algorithm in kCSD method selected significantly higher diameter of 

current sources around the probe compared to the typical value of a cortical column in the 

barrel cortex (~500 [µm]), primarily used in the iCSD method for reconstruction of the 

sources. Even though these choices of parameters improved the reconstruction accuracy 

(compare Figure 4-1 and Figure 4-4); still, the reconstructed CSD profiles are far from the 

ground-truth waveforms (Figure 4-1, Figure C4- 1 and Figure C4- 2). This indicates that if 

model assumptions are not in line with the physiology of the phenomenon, e.g., a planer 

wave in this study, the reconstruction error can be significant. 

It is also noteworthy that several studies [189-194] cast doubt on the traditional assumption 

that LFPs are generated within hundreds of micrometers from the recording electrode [190, 

195, 196], by providing evidence on the spatial reach of the LFPs in the order of several 

millimeters. Additionally, the contribution of current sources to the LFP data is highly 

dependent on correlation. Thus, in physiological phenomena where the spatial activity is 

highly correlated, distant sources do indeed contribute to the LFP data [194], which is 

surely the case for cortical spreading depression. 

Secondly, in the case of a propagating neocortical wave of neuronal activity towards the 

linear probe, CSDs cannot be assumed constant in the tangential direction, i.e. there is no 

tangential symmetry of the current sources around the electrodes. Both iCSD and kCSD 

methods provide the distribution of CSDs as though they were tangentially symmetric 

around the probe within the designated cylinder, which does not describe the actual 

phenomenon. 
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Since the assumptions in the derivation of waveCSD method are particular to phenomena 

involving a planar wave of neuronal activity, the accuracy of the reconstruction is higher 

than those of kCSD and iCSD methods in simulations performed in this chapter (see Figure 

4-1 to Figure 4-4, Figure C4- 1 and Figure C4- 2). Hence, even though the application of 

kCSD or iCSD methods provides valuable information about the distribution of CSDs in a 

variety of experimental paradigms, they must be cautiously used and interpreted if they are 

used to analyze currents originating from propagating neuronal activity. It should be noted 

that the same reasoning is applied to waveCSD method, where one should expect lower 

accuracy compared to kCSD or iCSD methods if waveCSD is applied for experimental 

paradigms where neuronal activity is static and of cylindrical symmetry. Similarly, 

waveCSD method is expected to have high reconstruction errors if the propagating wave 

does not have the same characteristics (e.g., constant velocity and planar symmetry) as 

ones assumed in model derivation. Hence, the applicability of waveCSD has to be 

evaluated for each particular experimental situation. The waveCSD method, as it stands, is 

expected to yield higher reconstruction accuracy when applied to global brain traveling 

waves, e.g., those related to brain rhythms [167, 169-171, 173], sensory-evoked activity  or 

spreading depression waves, as compared to more local spiral waves in the brain [197]. 

4.4.2 CSD analysis of cortical spreading depression 

In an early study, Wadman et al. [198] performed a CSD analysis of the sustained DC shifts 

attributed to spreading depression in CA1 and dentate gyrus of the rat hippocampus using 

the traditional CSD analysis method [159]. The spreading depression was induced by 

repetitive electric stimulation of different afferent pathways. The results of the study 
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indicated a large current sink in the proximal regions of the apical dendrites and major 

current sources in the deep layers where the cell soma resides. Authors reported changes 

in the polarity of CSDs both with time and along the depth of hippocampus. Another study 

by [199] also used the traditional CSD analysis method to obtain current source densities 

in CA1 of rats during spreading depression induced by electrical stimulation of 

hippocampal ipsilateral CA3 region. The temporal CSD profile of spreading depression 

showed a rapid (> 0.5 s), high intensity, current source and sink sequence at the front of 

the wave. More recently, using the same CSD analysis methodology, [200] observed 

similar intense, rapid outward-inward current sequences at the wavefront, followed by 

more spread current sources and sinks, in KCl-evoked spreading depression in the barrel 

cortex of rats. 

The temporal and spatial changes in the polarity of CSDs were also observed in our study 

despite differences in the brain region of interest, spreading depression induction method, 

and the CSD analysis methodology (see Figure 4-8 A and Figure 4-9 A). The average 

profile of the transmembrane currents during cortical spreading depression (Figure 4-9 A) 

indicates that the overall shape of the reconstructed CSD is consistent across all the rats 

used in this experiment. The magnitude of currents appears to be significantly larger at 

deeper layers (Infra-Granular). Additionally, the change in the polarity of CSDs is more 

drastic in deeper layers (Infra-Granular) in comparison with superficial (Supra-Granular) 

and middle layers (Granular).  

Under the set of assumptions used in the derivation of the waveCSD method (see Section 

4.2.1), the first current sources which emerge during a cortical spreading depression event 
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appear to be at the Supra-Granular layer. Subsequently, the transmembrane currents seem 

to originate in the Granular region and propagate towards the Supra-Granular and Infra-

Granular layers. This can be viewed as the noticeable shift in the relative position of the 

CSDs across the depth of the cortex in Figure 4-9 A. The knowledge of distribution of the 

transmembrane currents during a cortical spreading depression event can provide important 

insights into understanding mechanisms underlying this complex phenomenon. Detailed 

analysis of such mechanisms, however, is beyond the scope of the present study. 

4.4.3 Improvement in the waveCSD method and future directions 

The waveCSD method assumes that the propagation velocity of the wave of neuronal 

activity is constant across all layers of the neocortex. This assumption is not valid in all 

experimental paradigms. In cortical spreading depression, for instance, Basarsky et al. 

[201] reported that the propagation of the depolarization wave is significantly faster in the 

outmost layers of rat cortical slices. In another study, Richter and Lehmenkuhler [202] 

provided evidence for the existence of a barrier for the genesis and propagation of 

spreading depression along the depth of the cortex. These results were in agreement with 

early studies by Leão and Morison [203] and Leão [204] indicating that cortical spreading 

depression genesis and duration is layer sensitive. A recent study by our group 

(unpublished data) also revealed that the propagation velocity of cortical spreading 

depression in rats changes along the depth of the cortex.  

All these evidence, along with the variability in the reported propagation velocity of the 

cortical spreading depression in previous studies [175], indicate that an avenue for 
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improvement in the waveCSD method is the incorporation of depth-dependency in the 

tangential propagation velocity (i.e. 𝑣 as a function of 𝑧). 

The observations presented in Figure 4-6 corroborate the idea that the mismatch in the 

actual versus accounted velocity value in the waveCSD method results in a shift in the 

position of the reconstructed CSDs, predominantly in the 𝑥 direction. Thus, the use of a 

constant velocity for CSD analysis of a cortical spreading depression event might explain 

relative positioning of CSDs across cortical layers as shown in Figure 4-8 and Figure 4-9.  

The waveCSD method assumes the propagation of a single wave of neuronal activity 

towards the electrodes. Evidence in literature point to the co-existence of multiple distinct 

waves during spreading depression (e.g., calcium waves propagating along and across 

layers in hippocampal organ cultures [205], as well as in mouse neocortical slices [206]). 

Thus, a more general and realistic approach for the CSD analysis of such multi-mechanistic 

phenomena using the waveCSD method is to incorporate multiple waves approaching the 

electrodes along different cortical lamina. However, it is important to note that the 

waveCSD method is a general investigative tool which encompasses a variety of 

applications and is not restricted to cortical spreading depression. Hence, incorporation of 

the above-mentioned modifications was not the focus of the current study.  

Similar to other methods for CSD analysis, waveCSD only takes the Ohmic currents into 

account in the reconstruction of CSDs from their respective LFP reflections. However, 

there has been a growing controversy in recent years on the potential role of diffusive 

currents and the extent of their importance on the recorded extracellular potentials [156, 
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162, 207-210]. A recent theoretical study by Halnes and colleagues [211] suggests that 

diffusive currents can indeed have comparable influences on the extracellular potentials in 

the vicinity of a small population of active neurons in the cortex in the range of frequencies 

up to 10 Hz. Additionally, theoretical research groups have also demonstrated that the 

magnitude of diffusive currents in both intra- and extra-cellular space can be comparable 

to Ohmic currents in the presence of steep concentration gradients in the ionic substrates 

[211, 212]. Cortical spreading depression is a clear-cut example of a neurological condition 

where such steep changes in the ionic concentrations is observed [213-216]. Hence, another 

future direction of the current research is to incorporate the diffusive currents in the 

derivation of the waveCSD method. 

4.5 CONCLUSIONS 

To our knowledge, the method outlined in this study is the first to account for the 

propagation of neocortical neuronal activity in the reconstruction of CSDs from their LFP 

reflections. Robustness of the method to the presence of observation noise, and the 

uncertainties in the knowledge of propagation velocity, was verified in different sets of 

simulations. Using simulations, the waveCSD method showed higher reconstruction 

accuracy compared to the iCSD method in the CSD analysis of transmembrane currents 

originating from propagating neuronal activity. In this study, we utilized the waveCSD 

method to provide a novel profile of the distribution of transmembrane CSDs during a 

cortical spreading depression event. As discussed earlier, the waveCSD method is far from 

ideal and several factors can enhance the reliability of the method in the analysis of CSDs 

in different experimental settings. However, since the waveCSD method is specifically 
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designed for the CSD analysis of propagating neuronal waves in the cortex, we believe that 

the combination of this method with theoretical models as ones developed in [217], has the 

potential to provide a theoretical platform to unravel the underlying mechanisms of several 

neurological phenomena involving the propagation of neuronal activity. 

APPENDIX A4. DISCRETIZATION OF THE waveCSD FORWARD PROBLEM 

 
Figure A4- 1 Discretization of a rectangular grid of size nx x ny 

Throughout this Appendix, with some modifications, we base our derivations on the 

methodology outlined in [152] and [154]. Before providing the detailed derivation of the 

discretized version of Equation 4-8 in the main document, we provide an introduction on 

bicubic spline in two dimensions.  

Assume a rectangular grid shown in Figure A4- 1, where 𝑖 ranges from 1 to 𝑛𝑥 , and 𝑗 

ranges from 1 to 𝑛𝑦  (𝑛𝑥  and 𝑛𝑦  are the number of nodes in the 𝑥  and 𝑦  directions, 

respectively). To interpolate 𝑓(𝑥, 𝑦) using bicubic splines in the rectangular grid shown in 

Figure A4- 1, we first recap the derivation of cubic splines in a single direction:  
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Assume a set of 𝑛 data points (𝑥𝑖, 𝑓(𝑥𝑖)) at regularly spaced grid points: 𝑥1 < 𝑥2 < ⋯ <

𝑥𝑛. The cubic spline 𝑆(𝑥) is defined as: 

𝑆(𝑥) =  

{
 
 

 
 
𝑆1(𝑥)    𝑥1 ≤ 𝑥 ≤ 𝑥2  
⋮                                  

𝑆𝑖(𝑥)    𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1     
⋮                                  

𝑆𝑛(𝑥)    𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛

 Equation A4- 1 

where 𝑆(𝑥)  ∈ 𝐶2 𝑖𝑛 [𝑥1, 𝑥𝑛]  satisfying 𝑆(𝑥𝑖) = 𝑓(𝑥𝑖) , and each 𝑆𝑖(𝑥)  is a cubic 

polynomial. For 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1, from [218] one can write: 

𝑆𝑖(𝑥) =  𝑃1(𝑥)𝑓(𝑥𝑖) + 𝑃2(𝑥)𝑓(𝑥𝑖+1) + 𝑃3(𝑥)𝑓
′′(𝑥𝑖) + 𝑃4(𝑥)𝑓

′′(𝑥𝑖+1) Equation A4- 2 

where   

𝑃1(𝑥) =  
𝑥𝑖+1 − 𝑥

ℎ𝑥
;  𝑃2(𝑥) =  1 − 𝑃1(𝑥); 𝑃3(𝑥) =  

1

6
(𝑃1

3(𝑥) − 𝑃1(𝑥))ℎ𝑥
2;  𝑃4(𝑥)

=  
1

6
(𝑃2

3(𝑥) − 𝑃2(𝑥))ℎ𝑥
2; 

Equation A4- 3 

and 𝑓′′(𝑥𝑖) =  ∑ 𝐺𝑖,𝑘
𝑥𝑛𝑥

𝑘=1 𝑓(𝑥𝑘) Equation A4- 4 

𝐺𝑥 is a square matrix of length 𝑛, whose matrix product with the vectorized function values 

at the nodes, will provide the second derivative estimation of 𝑓(𝑥) at the grid points. This 

matrix can be computed assuming different types of boundary conditions, including 

“natural”, “not-a-knot”, and “clamped”. Details of the derivation of the 𝐺  matrix is 

provided in Appendix B4. ℎ𝑥 is the increment size in the 𝑥 direction (for simplicity, here 

we assume equi-spaced grid points). 

The interpolating bicubic spline function 𝑆𝑏(𝑥, 𝑦) of a two-dimensional function 𝑓(𝑥, 𝑦) 

in a box of the grid, defined as the domain 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1 ∩ 𝑦𝑗 ≤ 𝑦 ≤ 𝑦𝑗+1 (the highlighted 
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box in Figure A4- 1) is obtained by applying the above method in both dimensions. We 

first apply the cubic spline in the 𝑥 direction: 

𝑆𝑏(𝑥, 𝑦) =  𝑃1(𝑥)𝑓(𝑥𝑖 , 𝑦) + 𝑃2(𝑥)𝑓(𝑥𝑖+1, 𝑦) + 𝑃3(𝑥)𝑓𝑥𝑥(𝑥𝑖 , 𝑦) +  𝑃4(𝑥)𝑓𝑥𝑥(𝑥𝑖+1, 𝑦) Equation A4- 5 

where 𝑓𝑥𝑥(𝑥𝑖 , 𝑦) =  ∑ 𝐺𝑖,𝑘
𝑥𝑛𝑥

𝑘=1 𝑓(𝑥𝑘, 𝑦). 𝑓𝑥𝑥 is the partial second derivative of function 𝑓 in 

the 𝑥 direction. Now, for 𝑦𝑗 ≤ 𝑦 ≤ 𝑦𝑗+1, we apply the cubic spline in the 𝑦 direction:  

𝑆𝑏(𝑥, 𝑦) =  𝑃1(𝑥)[𝑃1(𝑦)𝑓(𝑥𝑖 , 𝑦𝑗) + 𝑃2(𝑦)𝑓(𝑥𝑖 , 𝑦𝑗+1) + 𝑃3(𝑦)𝑓𝑦𝑦(𝑥𝑖 , 𝑦𝑗)

+ 𝑃4(𝑦)𝑓𝑦𝑦(𝑥𝑖 , 𝑦𝑗+1)] +  

𝑃2(𝑥)[𝑃1(𝑦)𝑓(𝑥𝑖+1, 𝑦𝑗) + 𝑃2(𝑦)𝑓(𝑥𝑖+1, 𝑦𝑗+1) + 𝑃3(𝑦)𝑓𝑦𝑦(𝑥𝑖+1, 𝑦𝑗)

+ 𝑃4(𝑦)𝑓𝑦𝑦(𝑥𝑖+1, 𝑦𝑗+1)] +  

𝑃3(𝑥)[𝑃1(𝑦)𝑓𝑥𝑥(𝑥𝑖 , 𝑦𝑗) + 𝑃2(𝑦)𝑓𝑥𝑥(𝑥𝑖 , 𝑦𝑗+1) + 𝑃3(𝑦)𝑓𝑥𝑥𝑦𝑦(𝑥𝑖 , 𝑦𝑗)

+ 𝑃4(𝑦)𝑓𝑥𝑥𝑦𝑦(𝑥𝑖 , 𝑦𝑗+1)]  

+  𝑃4(𝑥)[𝑃1(𝑦)𝑓𝑥𝑥(𝑥𝑖+1, 𝑦𝑗) + 𝑃2(𝑦)𝑓𝑥𝑥(𝑥𝑖+1, 𝑦𝑗+1)

+ 𝑃3(𝑦)𝑓𝑥𝑥𝑦𝑦(𝑥𝑖+1, 𝑦𝑗) + 𝑃4(𝑦)𝑓𝑥𝑥𝑦𝑦(𝑥𝑖+1, 𝑦𝑗+1)] 

Equation A4- 6 

where 

𝑓𝑦𝑦(𝑥, 𝑦𝑗) =  ∑𝐺𝑗,𝑙
𝑦
𝑓(𝑥, 𝑦𝑙)

𝑛𝑦

𝑙=1

;   𝑓𝑥𝑥𝑦𝑦(𝑥𝑖 , 𝑦𝑗) = ∑∑𝐺𝑖,𝑘
𝑥 𝐺𝑗,𝑙

𝑦

𝑛𝑦

𝑙=1

𝑓(𝑥𝑘 , 𝑦𝑙)

𝑛𝑥

𝑘=1

 Equation A4- 7 

Definitions of 𝐺𝑦 , 𝑃(𝑦) , and ℎ𝑦  are the same as those described for 𝑥 , but in the 𝑦 

direction. Hence, 𝑆𝑏(𝑥, 𝑦) can be written as: 

𝑆𝑏(𝑥, 𝑦) = ∑ 𝐴𝛼𝛽𝑏𝑃𝛼,𝑏(𝑥)𝑃𝛽,𝑏(𝑦)

4

𝛼,𝛽=1

 Equation A4- 8 

where 𝐴𝛼𝛽𝑏 are the elements of the following matrix: 
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𝑨𝑏

=

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑓(𝑥𝑖 , 𝑦𝑗) 𝑓(𝑥𝑖 , 𝑦𝑗+1)

𝑓(𝑥𝑖+1, 𝑦𝑗) 𝑓(𝑥𝑖+1, 𝑦𝑗+1)

   ∑𝐺𝑗,𝑙
𝑦

𝑛𝑦

𝑙=1

𝑓(𝑥𝑖 , 𝑦𝑙) ∑𝐺𝑗+1,𝑙
𝑦

𝑛𝑦

𝑙=1

𝑓(𝑥𝑖 , 𝑦𝑙)

   ∑𝐺𝑗,𝑙
𝑦

𝑛𝑦

𝑙=1

𝑓(𝑥𝑖+1, 𝑦𝑙) ∑𝐺𝑗+1,𝑙
𝑦

𝑛𝑦

𝑙=1

𝑓(𝑥𝑖+1, 𝑦𝑙)

∑𝐺𝑖,𝑘
𝑥

𝑛𝑥

𝑘=1

𝑓(𝑥𝑘 , 𝑦𝑗) ∑𝐺𝑖,𝑘
𝑥

𝑛𝑥

𝑘=1

𝑓(𝑥𝑘 , 𝑦𝑗+1)

∑𝐺𝑖+1,𝑘
𝑥

𝑛𝑥

𝑘=1

𝑓(𝑥𝑘 , 𝑦𝑗) ∑𝐺𝑖+1,𝑘
𝑥

𝑛𝑥

𝑘=1

𝑓(𝑥𝑘 , 𝑦𝑗+1)

   ∑∑𝐺𝑖,𝑘
𝑥 𝐺𝑗,𝑙

𝑦

𝑛𝑦

𝑙=1

𝑓(𝑥𝑘 , 𝑦𝑙)

𝑛𝑥

𝑘=1

∑∑𝐺𝑖,𝑘
𝑥 𝐺𝑗+1,𝑙

𝑦

𝑛𝑦

𝑙=1

𝑓(𝑥𝑘 , 𝑦𝑙)

𝑛𝑥

𝑘=1

   ∑∑𝐺𝑖+1,𝑘
𝑥 𝐺𝑗,𝑙

𝑦

𝑛𝑦

𝑙=1

𝑓(𝑥𝑘 , 𝑦𝑙)

𝑛𝑥

𝑘=1

∑∑𝐺𝑖+1,𝑘
𝑥 𝐺𝑗+1,𝑙

𝑦

𝑛𝑦

𝑙=1

𝑓(𝑥𝑘 , 𝑦𝑙)

𝑛𝑥

𝑘=1 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

Equation 

A4- 9 

Noting that each element of 𝐴𝑏 is a linear combination of the values of the function in all 

the 𝑛𝑝 points in the grid, {𝑓𝑝}𝑝=1,…,𝑛𝑝
, Equation A4- 9 takes the form: 

𝑆𝑏(𝑥, 𝑦) = ∑ ∑ 𝐸𝛼𝛽𝑏𝑝𝑓𝑝𝑃𝛼,𝑏(𝑥)𝑃𝛽,𝑏(𝑦)
𝑛𝑝
𝑝=1

4
𝛼,𝛽=1   Equation A4- 10 

where 𝐸𝛼𝛽𝑏𝑝  is the coefficient standing by the base {𝑃𝛼,𝑏(𝑥)𝑃𝛽,𝑏(𝑦)}  in the box 𝑏 , 

assuming that only a unit current source is placed at the point 𝑝 in the rectangular grid and 

the rest of the grid points take the value of zero. The interpolation of the function 𝑓(𝑥, 𝑦) 

over the entire domain is therefore achieved from 𝑆𝑏(𝑥, 𝑦)  for different boxes in the 

domain: 

𝑓(𝑥, 𝑦) =  {

     𝑆1(𝑥, 𝑦)        (𝑥, 𝑦) ∈ 𝑏1     
⋮                             

𝑆𝑛𝑏(𝑥, 𝑦)        (𝑥, 𝑦) ∈ 𝑏𝑛𝑏

 Equation A4- 11 

where 𝑛𝑏 = (𝑛𝑥 − 1)(𝑛𝑦 − 1) is the total number of boxes in the grid. Now, using this 

introduction, we derive the discretized form of Equation A4- 11 in the main text, rewritten 

below: 

𝑉𝑒(𝑡) =
1

4𝜋𝜎
∬ 𝐾𝑒(𝑣𝑡 + 𝜏, 𝑧)𝐶(𝜏, 𝑧)𝑑𝜏𝑑𝑧

𝐿

0

 Equation A4- 12 
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To do so, we discretize the (𝜏, 𝑧) space into a set of n𝜏 and n𝑧 grid points in the 𝜏 and z 

directions, respectively. Here, we use “clamped” boundary condition for bicubic splines in 

both dimensions (i.e. zero derivatives for the boundaries of the domain), since this choice 

of boundary condition provided the best fit among the other choices including “natural” 

and “not-a-knot” (data not shown). The final discretized equation can be represented as: 

𝐯 = 𝐐𝐜,  Equation A4- 13 

where 

𝐯 = [𝐯𝑇(t0) … 𝐯𝑇(t𝑛)]
𝑇 Equation A4- 14 

𝐯(t𝑖) = [𝑉1(t𝑖) … 𝑉𝑛𝑒(t𝑖)]
𝑇 Equation A4- 15 

𝐜 = [𝐶1 … 𝐶𝑛𝑝]
𝑇
 Equation A4- 16 

𝑛𝑝 = n𝜏n𝑧 is the total number of points in the grid; 𝐯 and 𝐜 are as described in the main 

text. The 𝐐 matrix is as defined as follows:  

𝐐 = [

𝐐(t1)
⋮

𝐐(t𝑛𝑡)
] , 𝐐(t𝑖) = [

Q11(t𝑖) … Q1𝑛𝑝(t𝑖)

⋮ ⋱ ⋮
Q𝑛𝑒1(t𝑖) … Q𝑛𝑒𝑛𝑝(t𝑖)

] Equation A4- 17 

Q𝑒𝑝(t𝑖) =
1

4𝜋𝜎
∑ ∬ 𝐾𝑒(𝑣t𝑖 + 𝜏, 𝑧)𝐵𝑝,𝑏(𝜏, 𝑧)𝑑𝜏𝑑𝑧𝑏𝑏 , Equation A4- 18 

𝐵𝑝,𝑏(𝜏, 𝑧) = ∑ 𝐸𝛼𝛽𝑏𝑝𝑃𝛼,𝑏(𝜏)𝑃𝛽,𝑏(𝑧)
𝛼,𝛽

 Equation A4- 19 

where the integration is over box 𝑏 (total (𝑛𝜏 − 1)(𝑛𝑧 − 1) boxes in the grid), 𝑛𝑡 is the 

total number of time points in the simulation, and 𝑛𝑒 is the number of electrodes in the 

probe. The rest of the parameters and functions are as described earlier, but for 𝜏 and 𝑧. 
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APPENDIX B4. DERIVATION OF THE G MATRIX FOR DIFFERENT 

BOUNDARY CONDITIONS 

The formula stated in Equation A4- 2 guarantees 𝑆(𝑥)  ∈ 𝐶2 𝑖𝑛 [𝑥1, 𝑥𝑛] . The only 

downside to this formula is that one does not have the knowledge of the second derivative 

values of the function at grid points. However, since 𝑆(𝑥)  ∈ 𝐶2 𝑖𝑛 [𝑥1, 𝑥𝑛], the following 

system provides (𝑛 − 2) equations relating the second order derivatives at the interior grid 

points to the function values at the nodes. 

𝑆𝑖−1
′ (𝑥𝑖) =  𝑆𝑖

′(𝑥𝑖)     𝑖 = 2,… , 𝑛 − 1 Equation B4- 1 

which yields: 

ℎ𝑥𝑓
′′(𝑥𝑖−1) + 4ℎ𝑥𝑓

′′(𝑥𝑖) + ℎ𝑥𝑓
′′(𝑥𝑖+1)

=  
6

ℎ𝑥
𝑓(𝑥𝑖−1) − 

12

ℎ𝑥
𝑓(𝑥𝑖) +  

6

ℎ𝑥
𝑓(𝑥𝑖+1) 

𝑖 = 2,… , 𝑛 − 1 Equation B4- 2 

To complete the system of 𝑛 equations and 𝑛 unknowns, two additional equations for the 

second derivatives on the first and last grid points are required. Derivation of these two 

equations depend on the choice the boundary condition for the domain. Popular choices of 

boundary conditions are “natural”, “clamped”, and “not-a-knot”. Here we provide the 𝐺 

matrix for each of these types of splines. For simplicity, here we have assumed uniform 

distribution of the grid points in the domain, however, the methodology can easily be 

expanded for non-uniform distributions. 
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Natural Spline 

In “natural” spline, the second derivative of the function at first and last nodes are assumed 

to be zero. Hence, the following system of 𝑛 equations and 𝑛 unknowns can find second 

derivative values of the function based on the values of the function at the nodes. 

{
 

 
𝑓′′(𝑥1) = 0                                                                                                                                                       

ℎ𝑥𝑓
′′(𝑥𝑖−1) + 4ℎ𝑥𝑓

′′(𝑥𝑖) + ℎ𝑥𝑓
′′(𝑥𝑖+1) =  

6

ℎ𝑥
𝑓(𝑥𝑖−1) − 

12

ℎ𝑥
𝑓(𝑥𝑖) + 

6

ℎ𝑥
𝑓(𝑥𝑖+1) 

𝑓′′(𝑥𝑛) = 0                                                                                                                                                     

 Equation B4- 3 

The system of Equation B4- 3 can be written in the matrix format: 

𝑻𝑛𝑎𝑡𝒇
′′ = 𝑫𝑛𝑎𝑡𝒇 Equation B4- 4 

where 𝒇′′ = [𝑓′′(𝑥1), 𝑓
′′(𝑥2), … , 𝑓

′′(𝑥n)]
𝑇 ; 𝒇 = [𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛)]

𝑇 ; and 𝑻 and 𝑫 

are sparse square matrices of length 𝑛 as follows: 

𝑻𝑛𝑎𝑡 = 

[
 
 
 
 
 
 
 
1
0 4ℎ𝑥 ℎ𝑥

ℎ𝑥 4ℎ𝑥 ℎ𝑥
ℎ𝑥 4ℎ𝑥 ℎ𝑥

⋱ ⋱ ⋱
ℎ𝑥 4ℎ𝑥 0

0 1 ]
 
 
 
 
 
 
 

 Equation B4- 5 

and  

𝑫𝑛𝑎𝑡 = 
1

ℎ𝑥

[
 
 
 
 
 
 
0 0
6 −12 6

6 −12 6
6 −12 6

⋱ ⋱ ⋱
6 −12 6

0 0 ]
 
 
 
 
 
 

 Equation B4- 6 

The 𝑮 matrix for “natural” spline (𝑮𝑛𝑎𝑡) can then be simply computed from 𝑻𝑛𝑎𝑡 and 𝑫𝑛𝑎𝑡 

matrices: 
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𝑮𝑛𝑎𝑡 = 𝑻𝑛𝑎𝑡
−1𝑫𝑛𝑎𝑡  Equation B4- 7 

Clamped Spline 

In “clamped” spline, the derivative of the function at the ends of the domain is assumed to 

be clamped to specified values (i.e. 𝑓′(𝑥1) = 𝑎; 𝑓′(𝑥1) = 𝑏). Without loss of generality, 

here we assume 𝑎 =  𝑏 =  0. The system of equations can thus be written as follows: 

{
  
 

  
 2ℎ𝑥𝑓

′′(𝑥1) + ℎ𝑥𝑓
′′(𝑥2) =  

−6

ℎ𝑥
𝑓(𝑥1) + 

6

ℎ𝑥
𝑓(𝑥2)                                                       

ℎ𝑥𝑓
′′(𝑥𝑖−1) + 4ℎ𝑥𝑓

′′(𝑥𝑖) + ℎ𝑥𝑓
′′(𝑥𝑖+1) =  

6

ℎ𝑥
𝑓(𝑥𝑖−1) −  

12

ℎ𝑥
𝑓(𝑥𝑖) + 

6

ℎ𝑥
𝑓(𝑥𝑖+1)

ℎ𝑥𝑓
′′(𝑥𝑛−1) + 2ℎ𝑥𝑓

′′(𝑥𝑛) =  
6

ℎ𝑥
𝑓(𝑥𝑛) +  

6

ℎ𝑥
𝑓(𝑥2)                                                      

 Equation B4- 8 

Hence, 𝑻𝑐𝑙𝑎𝑚𝑝 and 𝑫𝑐𝑙𝑎𝑚𝑝 matrices can be derived as follows: 

𝑻𝑐𝑙𝑎𝑚𝑝 = ℎ𝑥

[
 
 
 
 
 
 
2 1
1 4 1

1 4 1
1 4 1

⋱ ⋱ ⋱
1 4 1

1 2 ]
 
 
 
 
 
 

 Equation B4- 9 

and 

𝑫𝑐𝑙𝑎𝑚𝑝 = 
1

ℎ𝑥

[
 
 
 
 
 
 
−6 6
6 −12 6

6 −12 6
6 −12 6

⋱ ⋱ ⋱
6 −12 6

6 −6]
 
 
 
 
 
 

 Equation B4- 10 

and similarly,  

𝑮𝑐𝑙𝑎𝑚𝑝 = 𝑻𝑐𝑙𝑎𝑚𝑝
−1𝑫𝑐𝑙𝑎𝑚𝑝 Equation B4- 11 
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Not-a-knot Spline 

In “not-a-knot” spline, the third derivate of the function is assumed to continuous at 𝑥2 and 

𝑥𝑛−1. The system of equations can thus be written as follows: 

{
 

 
ℎ𝑥𝑓

′′(𝑥1) − 2ℎ𝑥𝑓
′′(𝑥2) + ℎ𝑥𝑓

′′(𝑥3) =  0                                                                    

ℎ𝑥𝑓
′′(𝑥𝑖−1) + 4ℎ𝑥𝑓

′′(𝑥𝑖) + ℎ𝑥𝑓
′′(𝑥𝑖+1) =  

6

ℎ𝑥
𝑓(𝑥𝑖−1) −  

12

ℎ𝑥
𝑓(𝑥𝑖) + 

6

ℎ𝑥
𝑓(𝑥𝑖+1)

ℎ𝑥𝑓
′′(𝑥𝑛−2) − 2ℎ𝑥𝑓

′′(𝑥𝑛−1) + ℎ𝑥𝑓
′′(𝑥𝑛) =  0                                                           

 Equation B4- 12 

Hence, 𝑻𝑛𝑘𝑛𝑜𝑡 and 𝑫𝑛𝑘𝑛𝑜𝑡 matrices can be derived as follows: 

𝑻𝑛𝑘𝑛𝑜𝑡 = ℎ𝑥

[
 
 
 
 
 
 
1 −2 1
1 4 1

1 4 1
1 4 1

⋱ ⋱ ⋱
1 4 1
1 −2 1 ]

 
 
 
 
 
 

 Equation B4- 13 

and 

𝑫𝑛𝑘𝑛𝑜𝑡 = 
1

ℎ𝑥

[
 
 
 
 
 
 
0 0
6 −12 6

6 −12 6
6 −12 6

⋱ ⋱ ⋱
6 −12 6

0 0 ]
 
 
 
 
 
 

 Equation B4- 14 

and similarly,  

𝑮𝑛𝑘𝑛𝑜𝑡 = 𝑻𝑛𝑘𝑛𝑜𝑡
−1𝑫𝑛𝑘𝑛𝑜𝑡. Equation B4- 15 
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APPENDIX C4. COMPARISON OF WAVECSD WITH ICSD AND KCSD 

METHODS IN EXAMPLE GAUSSIAN GROUND-TRUTH WAVEFORMS 

 
Figure C4- 1 Comparison of the accuracy of waveCSD, iCSD, and kCSD methods in the reconstruction of 

LFPs generated from a ground-truth waveform. A) A ground-truth waveform (the CSD profile, top left) is 

assumed to be generated 6 mm away from an A1x16 probe, inserted perpendicularly in the cortex with an 

inter-electrode spacing of 100 μm. The first electrode is assumed to be 100 μm deep in the brain tissue. Here, 

the waveform propagates towards the electrodes at a constant velocity of 4 mm/min. The resultant LFPs are 

shown in the top right panel (black → most superficial electrode, and red → deepest electrode in the probe). 

B) Model parameter estimation for kCSD method using k-fold cross-validation technique as described in 

[153]. The left panel shows cross-validation error for a wide range of R and h values, and the inset confirms 

that the selected parameters (the red dot) coincide with the global minimum of cross-validation error values. 

The estimated diameter (2R) for the kCSD method is used for source reconstruction in the iCSD method 

shown in panel C. C) Source reconstruction using iCSD, kCSD and waveCSD methods without the presence 

of noise in the LFP data. (iCSD- RDM: 0.62, MAG: 0.18; kCSD- 0.62, MAG: 0.33, waveCSD- RDM: 0.01, 

MAG: 0.99). Both RDM and MAG measures confirm that the waveCSD method provides more accurate 

CSD reconstruction among all methods (i.e. RDM closer to zero and MAG closer to 1 in the waveCSD 

method). For better visualization, colorbar ranges are different in figures. Parameters: waveCSD method- 

same as Figure 4-1. kCSD method- R = 1.6 [mm]; h = 0.14. D) mean±std for RDM and MAG of 50 realization 

of the noisy LFP data at each noise level for all three methods. Noise reduction in the iCSD method was 

performed by applying a Gaussian spatial filter on the reconstructed CSD from unfiltered LFP recordings 

(Gaussian filter sigma: σgf = 0.1 [mm]). 
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Figure C4- 2 Comparison of the accuracy of waveCSD, iCSD, and kCSD methods in the reconstruction of 

LFPs generated from a ground-truth waveform. A) A ground-truth waveform (the CSD profile, top left) is 

assumed to be generated 6 mm away from an A1x16 probe, inserted perpendicularly in the cortex with an 

inter-electrode spacing of 100 μm. The first electrode is assumed to be 100 μm deep in the brain tissue. Here, 

the waveform propagates towards the electrodes at a constant velocity of 4 mm/min. The waveform is 

generated by superposition of 10 random Gaussian sources with random amplitude, spread, and angles. The 

resultant LFPs are shown in the top right panel (black → most superficial electrode, and red → deepest 

electrode in the probe). B) Model parameter estimation for kCSD method using k-fold cross-validation 

technique as described in [153]. The left panel shows cross-validation error for a wide range of R and h 

values, and the inset confirms that the selected parameters (the red dot) coincide with the global minimum of 

cross-validation error values. The estimated diameter (2R) for the kCSD method is used for source 

reconstruction in the iCSD method shown in panel C. C) Source reconstruction using iCSD, kCSD and 

waveCSD methods without the presence of noise in the LFP data. For comparison purposes, colorbar ranges 

and labels are the same as in C1 A left panel. (iCSD- RDM: 0.64, MAG: 0.54; kCSD- 0.66, MAG: 0.72, 

waveCSD- RDM: 0.05, MAG: 0.99). Both RDM and MAG measures confirm that the waveCSD method 

provides more accurate CSD reconstruction among all methods (i.e. RDM closer to zero and MAG closer to 

1 in the waveCSD method). Parameters: waveCSD method- same as Figure 4-1. kCSD method- R = 2.2 

[mm]; h = 0.35. D) mean±std for RDM and MAG of 50 realization of the noisy LFP data at each noise level 

for all three methods. Noise reduction in the iCSD method was performed by applying a Gaussian spatial 

filter on the reconstructed CSD from unfiltered LFP recordings (Gaussian filter sigma: σgf = 0.1 [mm]). 
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CHAPTER 5 A COMPUTATIONAL ANALYSIS OF THE VASCULAR 

RESPONSE IN CORTICAL SPREADING DEPRESSION 

5.1 INTRODUCTION 

As discussed in previous chapters, cortical spreading depression (SD) is a slow wave of 

neuronal and glial depolarization which results in the cessation of neuronal activity over 

an extended period of time [54, 55]. Since its original discovery over 70 years ago by Leao 

[57] in the rabbit cortex, several research studies have revealed the association of this 

phenomenon to major neurological disorders including migraine aura, ischemic stroke, 

traumatic brain injury and SAH [56, 58]. SD has been shown to greatly disturb ionic and 

water balances along its path, and is characterized by global release of vasoactive 

substances and neurotransmitters [54]. Potassium concentrations in the extracellular space, 

for instance, reach to supra-physiological values (~30 to 60 mM from ~3mM at resting 

levels), which as described in previous chapters can significantly impact the vascular tone 

and CBF [55]. During different phases of this wave phenomenon, the levels of ATP, 

glucose, lactate, and pH in the brain tissue is also significantly affected. Several studies 

have demonstrated a mismatch in the metabolic demands and the delivery of oxygen and 

nutrients to the tissue with huge implications on the disruption of normal NVC and blood 

perfusion [9, 54, 55, 59, 60].  

SD involves a variety of mechanisms and cell types. These include neurons, astrocytes, 

extracellular space, cells in the vascular wall, diffusion and uptake of released 

neurotransmitters and vasoactive substances [55]. Despite its significance, our knowledge 
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of the underlying mechanisms of this phenomenon is still far from ideal and an inclusive 

understanding of the pathways involved is yet to be achieved. The complexity of SD, as 

well as the potential feedback and feedforward mechanisms between the involved cell 

types and perceived pathways, makes studying this subject and the design of proper 

experiments even more challenging. In parallel to experimental studies, mathematical 

modeling can be of great assistance in demystifying different aspects of this phenomenon 

by providing a platform for investigating different cellular pathways and mechanisms 

without the confounding effect of others. Hence, different aspects of SD have attracted the 

attention the modeling community over the past few decades.  

Using discrete and continuum models, several research groups have focused on neuronal 

and glial interactions during SD. For instance, Tuckwell and Miura [219], provided a 

simplified continuum model of SD accounting for the dynamics of potassium and calcium 

in the intra and extracellular space of neurons to study the importance of extracellular 

signaling pathways in the propagation of the spreading depression. Shapiro [220], extended 

the Tuckwell and Miura model by incorporating gap junctions between neurons and 

astrocytes, and accounted for cell swelling and osmotic forces to identify propagation 

mechanisms during SD. In a model of gap connected cells, Bennett and colleagues [221] 

investigated the role of NMDA and glutamate release during in neuronal and astrocytic 

communications and their role in the propagation of spreading waves in the cortex. There 

are also studies on the mechanisms of the initiation of SD on detailed models of a single 

neuron embedded in the extracellular space [222, 223]. More detailed compartmental 

models have also been developed in recent years, which account for detailed dynamics of 
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neurons and astrocytes as well as gap junctions in the propagation of spreading depression 

wave in the cortex [217, 224]. A comprehensive review of the mathematical models of SD 

is available in refs. [225, 226].  

Although neurons and glial cells have understandably garnered a great deal of attention in 

the computational modeling studies of SD, not until very recently by the work of Chang et 

al. [227] did researchers start to investigate the role of the vascular response in the 

dynamics of this phenomenon. Authors demonstrated an important role and contribution 

of vasodilation and vasoconstriction in the regulation of the SD propagation dynamics and 

its recovery. The work demonstrated how the combined interactions between neurons, 

astrocytes, and vasculature can result in the disruption of NVC during SD. This study, 

however, did not address the underlying mechanisms of observed multiphasic vasodilation 

and constriction in literature [53, 55], and used diameter of the vessel as a predefined 

function of [K+]o.  

Given the importance of cerebral and intracerebral vessel dynamics in the regulation of 

CBF, and the presence of ample experimental evidence indicating distinct vascular patterns 

and large variability within animal species during SD [53, 55], understanding the 

underlying cellular mechanisms of these responses can undoubtedly advance our 

knowledge of the phenomenon. In this chapter, we seek to investigate how elevations of 

[K+]o and the propagation of the spreading wave in the cortex can result in vasoconstriction 

and vasodilation in different phases of the wave propagation. We use transmembrane 

current reconstructions estimated in CHAPTER 4 as an indicator of the spatial extent of 

the SD wavefront and will account for the diffusion of the K+ ions in the extracellular 
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space, considering the effect of K+ uptake by the astrocytes. We study the response of a 

segment of electrically connected cells, as well as the reconstructed microvascular network 

used in CHAPTER 1, to a propagating wave of high [K+]o. 

5.2 [K+]O PROFILE DURING CORTICAL SPREADING DEPRESSION 

The released K+ into the extracellular space is partially taken up by astrocytes, mainly 

through the activity of inward rectifying potassium (Kir4.1) channels, which serve as a K+ 

buffer or siphon to transfer these ions from highly concentrated regions to areas of low 

concentration [228, 229]. Another important consideration in the diffusion of K+ ions in 

the extracellular space is that the high cellular density in the brain tissue slows down the 

diffusion rate of K+ compared to its free diffusion in an infinite aqueous solution. This 

restrictive effect of the microenvironment, which was originally introduced by Nicholson 

and Philips [230, 231], is termed as the tortuosity factor and is estimated to lessens the 

diffusion rate of K+ in the rat brain microenvironment ~2.5 folds [226, 230, 231]. 

Therefore, the effective diffusion coefficient of K+ in the extracellular space, Deff, is ~2.5 

times smaller than the diffusion coefficient of K+ in an aqueous medium, D = 2.1 × 10-9 

m2/s at ambient temperature [232]. 

Assuming a constant K+ diffusivity in the extracellular space, and that the SD wave 

propagation is only in the x direction, the spatiotemporal profile of [K+]o in front the SD 

wavefront can be captured using the second Fick’s law of diffusion, Equation 5-1:  

∂[K+]o
∂t

 =  Deff  
∂2[K+]o
∂x2

 −  m[K+]o Equation 5-1 
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where m = 8.0 × 10-3 s-1 [227, 233] is the potassium buffering rate in astrocytes. The 

boundary conditions of Equation 5-1 are assumed to be the potassium concentration at the 

wavefront at x = 0, (~60 mM), and resting [K+]o concentrations (~3mM) at large distances 

in front of the wave (x→∞). It is noteworthy that the typical conduction velocities of 

electrical signals inside the endothelium is in the order of mm/s [97] (refer to CHAPTER 

2), almost two orders of magnitude larger than the typical velocity of the SD, i.e. in the 

order of mm/min [55]. Since in this chapter we are interested in analyzing the conduction 

of electrical signals along the brain vasculature, we can safely assume that at each time 

instance during the propagation of the spreading wave, the vascular response has reached 

to its steady state profile, i.e. the quasi-steady state approach. Therefore, instead of solving 

the partial differential equation of Equation 5-1, we assume that the steady state profile of 

[K+]o is propagated along the vascular network with the velocity of the spreading 

depression wave. 

Figure 5-1 A shows the steady state solution of Equation 5-1 with boundary conditions 

stated earlier. The solution is an exponential decay of [K+]o with a length constant of √
𝐷𝑒𝑓𝑓

𝑚
 

~ 300 µm. Additionally, based on our analysis in CHAPTER 4, we choose a spatial extent 

of ~200 µm for the wavefront, during which [K+]o is at its maximum concentration 

(60mM). We also assume a symmetrical profile in the diffusion of K+ to the left and right 

of the SD wavefront (Figure 5-1 B). This spatial profile of [K+]o will be utilized in 

subsequent simulations, to predict the response of vessels to a wave of SD.  
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Figure 5-1 Profile of K+ ions in the extracellular space during cortical spreading depression. (A) Steady state 

solution of Equation 5-1, showing the diffusion profile of K+ ions in the extracellular space in front of the 

SD wavefront. [K+]o is assumed to be 60 mM at the wavefront and 3 mM at large distances in front of the 

wave (x→∞). The diffusion profile follows an exponential decay with the length constant of 300 µm. (B) An 

instance of the [K+]o profile along the length of the vessel assuming that the SD wavefront is at the origin in 

the x direction. The profile assumes the duration of the wave to be ~200 µm. [K+]o decays exponentially 

before and after the wave based on the profile in panel (A).  

5.3 RESPONSE OF BRAIN VASCULATURE TO A WAVE OF HIGH [K+]O  

A single layer of representative endothelial cells is constructed by electrically connecting 

cells through gap junctions. Each cell is modeled using a minimal modelling approach 

discussed in CHAPTER 2, where the cell contains a Kir current and the rest of membrane 

currents are lumped into a non-specific linear background current (Ibg), with the lumped 

conductance Gbg. As discussed in detail in CHAPTER 2, the dynamics of the membrane 

potential of the system can be studied using the following set of equations:  

Cm,i
dVm,i
dt

= − Ibg,i − IKir,i  −  Igj,i           i = 1, … , N Equation 5-2 

Igj,i = ∑
1

Rgj,i,n
(Vm,i − Vm,n)

n

 Equation 5-3 

IKir = 
G̅Kir[K

+]o
0.5 (Vm − EK)

1 + exp (
(Vm − V0.5 )

k
)
 

Equation 5-4 
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Ibg = Gbg(Vm − Ebg) Equation 5-5 

Where definitions of the parameters are the same as in CHAPTER 2. Figure 5-2 A 

demonstrates the steady state response of the cell layer when a static spatial profile of [K+]o 

in Figure 5-1 B is imposed on cells. Cells shown in blue were exposed to 60 mM of [K+]o, 

corresponding to the SD wavefront (approximately 10 cells or ~200µm, assuming a length 

of 20 µm for each cell), and cells in gray were subjected to the exponential decay of K+ 

ions before and after the wave, see Figure 5-1 B. The temporal evolution of the membrane 

potential of cells is depicted in Figure 5-2 B. For the simulations performed in this figure, 

the GKir to Gbg ratio of cells was chosen in the yellow region (Figure 5-2 B inset), which as 

discussed in CHAPTER 2, promotes passive conduction of the electrical signal along the 

length of the vessel.  

 
Figure 5-2- Response of a segment of endothelial cells to elevations of [K+]o during SD. An array of 200 

identical cells are connected via gap junctions and are subjected to the stationary [K+]o profile of Figure 5-1 
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B. Each cell is assumed to be 20 µm in length. (A) steady state response of the system to elevations in [K+]o 

during SD. The blue circle denote cells on the wavefront (with the spatial extent of 200 µm and [K+]o = 60 

mM), and gray cells are subjected to the exponential decay of [K+]o before and after the wave (Figure 5-1 B). 

The black dashed line shows the resting Vm of cells before the elevation of [K+]o. (B)Temporal response of 

the cells to the [K+]o profile of Figure 5-1 B. The blue, red, and gray traces correspond to the cells highlighted 

in panel (A). The right figure inset show that each cell is modeled with a Kir and a bg current. The left figure 

inset shows the relative position of the Kir and bg conductance at rest for the simulations in this figure (the 

yellow region). (C) I_V curves of Kir and bg currents at rest, and upon application of 60 mM [K+]o. The red 

dot shows the stable steady state of the system at resting conditions ([K+]o = 3 mM) (D) a Magnified region 

of panel (C), indicating the steady state of the system at rest and upon [K+]o = 60 mM. Red dot is the stable 

steady state at rest, and the yellow dot is the stable steady state upon potassium stimulation. Parameters used 

for the simulations in this figure: G̅Kir = 0.2 nS/mM0.5, Gbg = 0.06 nS, Ebg = -30 mV, [K+]i = 150 mM, V0.5 

= EK + 25 mV, Cm = 8 pF, Rgj = 50 MΩ.  

Interestingly, results show that while high elevations of [K+]o at the wavefront causes 

depolarization of the vessel, which result in vasoconstriction, regions immediately before 

and after the wavefront will undergo hyperpolarization, or vasodilation. Under the 

conditions assumed for these simulations, the changes in the membrane potential of cells 

exponentially decrease as cells are farther away from the wavefront (notice the decay of 

the signal after the peak hyperpolarization). The voltage current relationship of IKir and Ibg 

is shown in panel C under both extreme cases of [K+]o, i.e. at rest (3 mM; the blue curve) 

and under high elevations during SD (60 mM; the orange curve). As can be observed in 

panel D (the magnified version of panel C), under resting conditions, the only steady state 

of the system is at ~-30 mV (the red circle; intersection between Ikir and -Ibg). Upon 

elevation of [K+]o to 60 mM, however, Kir current is shifted way to more depolarized 

potentials (due to the change in EK from ~-100 mV at rest to ~-22 mV during high 

potassium), and the new steady state of the system is highlighted as the yellow circle. Since 

the new steady state is more depolarized than the original steady state, the cell will undergo 

depolarization in response to potassium stimulation. Also evident is the increase in the Kir 

current amplitude owing to the dependence of the single channel conductance on [K+]o 

(Equation 5-4, refer to CHAPTER 2). As the [K+]o for the rest of the cells (gray cells) are 
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between the wavefront and resting conditions, the Kir and bg relationship of these cells 

will therefore fall between two extreme cases shown in Figure 5-2 C. Therefore, depending 

on the level of potassium stimulus, cells can either depolarize or hyperpolarize. 

Similar simulations are performed in Figure 5-3 with the difference that the Kir to bg ratio 

of these cells are chosen such that cells promote regenerative conduction of electrical 

signals (the blue region in Figure 5-3 A inset; refer to CHAPTER 2 for the comparison of 

passive vs. regenerative cells). The [K+]o profile is identical to that in Figure 5-2. While 

similar to the earlier results, cells at the wavefront (blue circles) show depolarization of 

membrane potential (equivalent to vasoconstriction), cells before and after the wavefront 

showed massive levels of hyperpolarization, which persisted even in cells far away from 

the wavefront (Figure 5-3A). These results suggest that the hyperpolarization of cells 

adjacent to the SD wavefront initiated a hyperpolarizing wave that regeneratively 

propagated along the vessel length in both directions. This regenerative conduction of the 

signal was possible since cells have higher Kir current densities compared to the 

simulations in Figure 5-2 (the blue region in Figure 5-3 A inset). Kir and bg current curves 

shown in Figure 5-3 C,D show that cells are bistable and hyperpolarizing favoring with 

two stable steady states at rest, and one during high [K+]o. Results indicate that cells before 

and after the wavefront pass the Vm threshold required for the hyperpolarization jump 

(saddle-node bifurcation) to their hyperpolarized state.  
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Figure 5-3- Response of a segment of endothelial cells to elevations of [K+]o during SD. An array of 200 

identical cells are connected via gap junctions and are subjected to the stationary [K+]o profile of Figure 5-1 

B. Each cell is assumed to be 20 µm in length. (A) Steady state response of the system to elevations in [K+]o 

during SD. The blue circle denote cells on the wavefront (with the spatial extent of 200 µm and [K+]o = 60 

mM), and gray cells are subjected to the exponential decay of [K+]o before and after the wave (Figure 5-1 B). 

The black dashed line shows the resting Vm of cells before the elevation of [K+]o. (B)Temporal response of 

the cells to the [K+]o profile of Figure 5-1 B. The blue, red, and gray traces correspond to the cells highlighted 

in panel (A). The right figure inset show that each cell is modeled with a Kir and a bg current. The left figure 

inset shows the relative position of the Kir and bg conductance at rest for the simulations in this figure (the 

blue region). (C) I_V curves of Kir and bg currents at rest, and upon application of 60 mM [K+]o. The red 

dots show the stable steady states of the system at resting conditions ([K+]o = 3 mM), and the white dot 

indicate the unstable steady state. (D) a Magnified region of panel (C), indicating the steady state of the 

system at rest and upon [K+]o = 60 mM. Red dot is the stable steady state at rest, and the yellow dot is the 

stable steady state upon potassium stimulation. Parameters used for the simulations in this figure: 𝐺̅𝐾𝑖𝑟  = 0.4 

nS/mM0.5, Gbg = 0.06 nS, Ebg = -30 mV, [K+]i = 150 mM, 𝑉0.5 = EK + 25 mV, Cm = 8 pF, Rgj = 50 MΩ.  

To simulate the response of the vessel segment to a wave of SD, the steady state profile of 

Figure 5-1 B is propagated along the vessel. The vessel response is shown at four 

representative time instances of the wavefront location in Figure 5-4. In both panels of this 

figure, the same distribution of cell membrane potentials in Figure 5-2 and Figure 5-3 were 
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observed at each location of the wavefront. Interestingly, if one considers a fixed location 

along the vessel (the red dashed line, for instance), both panels indicate that the vessel 

undergoes dilation before the arrival of the wave (cells are hyperpolarized), constriction 

upon the arrival (depolarization of the cells), and again dilation when the wave has passed 

(cells become hyperpolarized). Model simulations predict that if cells are regenerative and 

hyperpolarizing favoring (Figure 5-4 B), the hyperpolarization after the passage of the 

wave will continue for a long time, since cells have undergone regenerative conduction of 

hyperpolarization. As discussed in great depth in CHAPTER 2, additional mechanisms, 

e.g., activity of the sodium potassium pump or delayed activation of depolarizing currents, 

might be needed for the system to recover. This finding might suggest an explanation for 

the observed long post SD hyper perfusion in experiments [53, 55]. Conversely, if cells are 

passive (Figure 5-2 A), the hyperpolarization level reduces as the wave propagates to more 

distant areas, and cells will eventually return to their resting Vm (or equivalently, to their 

resting diameter) after shorter time durations.  
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Figure 5-4 Response of a segment of endothelial cells to a propagating wave of high [K+]o during SD.(A) 

The conditions of the simulations in this panel is identical to those of Figure 5-2 (where cells are in the yellow 

(passive) regions) with the difference that the [K+]o profile is propagated along the vessel with a velocity of 

3 mm/min (corresponding to the velocity of the SD). At four representative time instances, the voltage profile 

of the cells is plotted where the resting Vm is shown as the black dashed line. The propagation is assumed to 

be from left to right. (B) same procedure as in panel (A) is repeated for the conditions in Figure 5-3 (where 

cells are in the blue (regenerative) region). Both panels show that the at each time instance, the profile of the 

membrane potential of cells is almost identical to the steady state responses shown in Figure 5-2 and Figure 

5-3. At a fixed location along the vessel, e.g. the red dashed line, as the wave propagates from left to right, 

the vessel undergoes hyperpolarization before the wavefront (i.e. dilation), depolarization upon the wave 

arrival (i.e. constriction), and again hyperpolarization after the passage of the wave (i.e. dilation).  

Simulations in a large reconstructed network from the somatosensory cortex of rats 

(reconstructed from [96]), consisting of interconnected brain capillaries, parenchymal 

arterioles, and parenchymal venules (Figure 5-5 B), also revealed similar results to those 

in previous figures when cells were exposed to a wave of high [K+]o (Figure 5-5). Each 

arteriolar cell is modeled as three ECs coupled to three SMCs at each longitudinal position. 

Each PA EC-SMC unit has an effective leak conductance, reflecting a net transmembrane 
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resistance (Gbg,PA=1/Rm,EC-SMC; where Rm,EC-SMC is the membrane resistance of the PA EC-

SMC unit), and a total Kir conductance (G̅Kir,PA = G̅Kir,EC +G̅Kir,SMC). Each unit is coupled 

to adjacent EC-SMC units with a resistance, Rgj,PA. The definitions of the parameters are 

the same as CHAPTER 2.  

In these simulations, we assumed that the propagation of SD is solely in the x direction, 

and presumed SD as a planar wave (Figure 5-5 B; the highlighted purple region shows the 

duration of the wavefront). Hence, the [K+]o profile is constant in the y direction, and along 

the x direction it is identical to the profile shown in Figure 5-1 B. Results show that vessels 

undergo hyperpolarization or depolarization regardless of their arrangement compared to 

the direction of SD wave propagation (Figure 5-5 A), which points to the existence of 

mechanisms involving the conduction of electrical signals along the vessels during SD. 

Although in these simulations we are bounded by the physical limits of the network under 

analysis, the resultant membrane potential profiles before, during, and after the wavefront 

is almost identical to the representative single endothelial layer in Figure 5-2 and Figure 

5-3 (notice hyperpolarization before and after the wavefront in the top view of Figure 5-5 

C and in voltage traces in Figure 5-5 D). These results are in keepings with the observation 

of Brennan et al. [53] in rats for the existence of a triphasic response (dilation, constriction, 

and dilation), during the propagation of SD.  
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Figure 5-5 Response of a large network of brain vasculature (reconstructed from [96]) to the stationary profile 

of high [K+]o during SD. (A) The steady state response of the system when the stationary profile of [K+]o in 

Figure 5-1 B is imposed on the cells. (B) The structure and size of the network. Capillaries are demonstrated 

as gray, PAs as red, and PVs as blue. The highlighted purple dots show the SD wavefront (~200 µm in 

dimension). The wave is assumed to propagate only in the x direction and is assumed to be planar. (C) Top 

view of the response of the steady state response of the system shown in panel (A). (D) Temporal distribution 

of the membrane potential of cells (colors match panel (B)), in response to the stationary [K+]o profile. 

Parameters for the capillaries are as stated in Figure 5-2, for PA: G̅Kir,PA = 0.4 nS/mM0.5, Gbg = 0.2 nS, Ebg = 

-30 mV, V0.5 = EK + 25 mV, and Rgj,PA = 50 MΩ, for PV: G̅Kir,PV = 0 nS/mM0.5, Gbg = 0.2 nS, Ebg = -30 mV, 

and Rgj,PV = 50 MΩ. 

5.4 DISCUSSION 

Several studies in literature show massive changes in the hemodynamic response of 

different animal species during and after the propagation of SD [55]. These changes have 

been classified into a combination of a varying degree of four distinct vasomotor 

components (depending on the type of species, vessel type, and the SD order). These phases 

include: I) the initial local hypoperfusion or vasoconstriction coincident with the start of 

the DC shift in the local field potentials, II) a peak hyperemia following the initial 
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vasoconstriction, III) a late smaller hyperemia with lower levels of CBF increase compared 

to the peak hyperemia, and in some cases IV) a delayed post-SD vasoconstriction and 

oligemia [234]. In a pioneering study, Brennan et al [53], using simultaneous recordings of 

the optical reflectance changes during SD along with the electrophysiological recordings 

of local field potentials in rats, also observed a vasodilation phase prior to the arrival of the 

wave, which was followed by the local hypoperfusion, and at later stages by vasodilation. 

The results shown in model simulations performed in this chapter were in agreement with 

these observations (Figure 5-2 to Figure 5-5) and provided a potential mechanism for the 

observed multiphasic vascular response during SD.  

Although we specifically focused on the role of increases in [K+]o as the major vasoactive 

component in an overly simplified model of propagating SD, a large number of other 

vasoactive substances, including AA metabolites, prostaglandins and NO, are also released 

during SD [54, 55]. The competing effects of these mediators may provide an explanation 

for the observed variability in the vascular and hemodynamic responses in literature. For 

instance, the known vasodilatory effect of NO, or other vasodilatory AA metabolites [17], 

can create a tug of war with the vasoconstrictive effect of high levels of [K+]o during the 

initial phases of SD propagation, which can determine the state of the vessel, as well as the 

degree of the change in CBF. Other factors, for instance cell swelling and resultant 

shrinkage in the extracellular space [54, 55], may result in the activation of mechano-

sensitive channels, e.g. non selective cation channels in different vascular beds, which can 

further change the response of the vasculature in SD. Also, since membrane potential of 

cells undergo large changes during SD, voltage-gated K+ and most importantly Ca2+ 
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channels may also play a significant role in determining the vessel dynamics. Inclusion of 

these pathways, however, was beyond the scope of the work presented in this chapter and 

will be a subject of future investigations. 

Results presented here predict the pivotal role of Kir channels in the observed multiphasic 

response of vasculature during SD-associated high elevations of [K+]o (Figure 5-2 to Figure 

5-5). Results explain how massive increases in [K+]o change the relative positioning of the 

Kir curve with respect to the bg current (Figure 5-2 and Figure 5-3, panels C,D). This 

causes the depolarization of cells at the SD wavefront, as well as cells immediately adjacent 

to it. Also, model simulations show that since cells in both sides of the wavefront receive 

sub-maximal levels of [K+]o, due to the diffusion of the K+ in the extracellular space, Kir 

channels can initiate and conduct a hyperpolarizing (vasodilatory) signal which is 

propagated along the vessel (Figure 5-2 and Figure 5-3). The spatial extent of this 

propagation depended on relative Kir density in the cells (compared to the bg current) 

(compare Figure 5-2 and Figure 5-3) and the degree of potassium buffering in the medium. 

These results, along with simulations in Figure 5-5, corroborated the observations of 

Brennan et al. [53], that the conducted responses in vasculature did not follow the path of 

the SD wave; rather, they propagated along the path of the vessel. Also, in agreement with 

experimental observations that the conducted responses never skipped a vessel along it 

path, our simulations show that hyperpolarization or depolarization of the membrane 

potential propagated in all vessels of the region affected by the wavefront as well as in the 

neighboring areas (Figure 5-5).  
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Overall, although undoubtedly simplified, model simulations performed in this chapter 

reiterate the importance of the dynamics of K+ ions and channels, in particular inward 

rectifying potassium, in the regulation of the vascular tone and CBF. Model simulations 

predict a key role of Kir channels in the multiphasic responses of brain vasculature during 

various phases of SD. 

  



133 

 

CHAPTER 6 HEMODYNAMIC RESPONSE DURING NEUROVASCULAR 

COUPLING 

The content of this chapter is to be submitted as Moshkforoush A, Ashenagar B, Mirza 

A, Tsoukias M. “Multiscale Model of Cerebral Blood Flow Control”. 

In previous chapters we investigated different mechanisms of NVC under normal and 

diseased conditions. We analyzed the role of capillaries as sensors of neuronally-induced 

increases in [K+]o and studied how signals from different regions of the brain can result in 

upstream propagation of electrical signals that dilate feeding arterioles. Also, we specified 

how the myogenic tone of PAs can be dysregulated under the presence of pathological 

conditions or upon changes in the extracellular milieu. The work presented in this chapter 

aims to understand how changes in the diameter of parenchymal arterioles affect the 

hemodynamic response, i.e., distribution of blood flow and hematocrit, in different regions 

of complex brain microvascular networks.  

6.1 INTRODUCTION 

Under physiological conditions, CBF is actively regulated to deliver oxygen-rich red blood 

cells to different brain regions to meet changing tissue demands. Blood flow is also a means 

of removing by-products of cerebral metabolism [235]. Structural complexity of 

microvascular networks poses significant experimental challenges on performing detailed 

in vivo studies on hemodynamics and obtaining reliable measurements of blood flow [236]. 

Thus, in recent years mathematical modeling has emerged as a powerful tool to gain insight 
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into intricacies of blood flow control in complex vascular networks, and a number of 

detailed models have been developed [237-247].  

Several factors need to be considered when performing simulations of blood flow in 

microvascular networks. These factors arise due to: 1) complex topological organization 

of dense capillary beds, 2) interactions between individual red blood cells and the inner 

walls of rigid vessels, and 3) the non-continuum nature of blood when flowing through 

narrow vessels [238-240, 248]. Red blood cells mainly flow towards the centerline of the 

vessel. This phenomenon, known as the Fåhræus effect, causes the formation of a cell-free 

layer (plasma rich) near the vessel wall and affects blood flow resistance and viscosity 

[249]. Experimental findings by Fåhræus and Lindqvist [250] suggested that the apparent 

viscosity of blood heavily depends on the diameter of the vessel. At diameters less than 

300 µm, blood viscosity decreases with diameter, a phenomenon termed as the Fåhræus–

Lindqvist effect. This trend continues down to diameters of ~6 µm, where the apparent 

viscosity reaches its minimum [242]. Below this diameter, however, apparent viscosity 

steeply increases. Another important observation of blood flowing through vascular 

networks is unequal partitioning of red blood cells at bifurcations [251], which is termed 

as the “phase separation” effect. This uneven distribution of red blood cells at vessel 

bifurcations depends on the relative diameter of daughter branches and the fraction of blood 

flow entering each branch.  

In simulations performed in this chapter we utilized previously developed empirical models 

[242, 251], which capture the abovementioned phenomena, to study the response of the 

microvascular network to dilations in the feeding PA. We first examine statistical features 
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of the network under study, such as the distribution of lengths, diameters, and vascular 

resistance. We then perform steady-state simulations of volumetric flow rate and discharge 

hematocrit (HD) surrounding the feeding arteriole at various levels of arteriolar dilation, as 

well as at different pressure gradients. Next, we analyzed the transit times of possible paths 

that a red blood cell can take from entering the network through the inlet of the feeding PA 

and exiting through a draining PV. Lastly, we performed transient simulations to examine 

the hemodynamic response to a time-dependent profile of dilation for the feeding arteriole.  

6.2 METHODS 

6.2.1 Model development 

The microvascular network was represented using principles of graph theory, with vessel 

junctions corresponding to nodes and vessel segments corresponding to edges. The 

network was treated as a directed graph, where the edge directions were defined based on 

the direction of blood flow. The procedure used for preparing the network for simulations 

was as follows: 1) raw vectorized data of the upper cortex of mice were obtained from 

Kleinfeld, et al. [96] that provided lengths, radii, and vessel connectivity (we performed 

simulations on the same network used in chapters 2 and 5), 2) an in-house algorithm was 

developed to extract the adjacency matrix from the data, which is a square matrix of zeros 

and ones indicating node connectivity, 3) a directed graph was formed using the adjacency 

matrix, with direction of the edge indicating the direction of the flow, and 4) self-loops and 

stranded components were removed from the graph network.  
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Volumetric flow rate in vessels was computed using the continuity equation which ensures 

conservation of flow at each vessel junction with the assumption that blood flow through 

each vessel segment follows the Hagen–Poiseuille law. This implies:  

∑ Qij
N
j = 0  Equation 6-1 

Qij =
(Pi − Pj)

L

πr4

8ηvivo
 Equation 6-2 

where N is the number of nodes connected to the ith node, Qij is the volumetric flow rate, L 

is the vessel length, r is the vessel radius, (Pi − Pj) is the pressure drop between nodes i 

and j, and ηvivo is the in vivo viscosity of blood: 

6.2.2 Fåhræus–Lindqvist effect 

Mathematical formulations that account for the Fåhræus–Lindqvist effect are based on 

previous work by Pries and coworkers [238-240]. The in vitro viscosity (ηvitro) is obtained 

with the following equation: 

ηvitro = 1 + (η0.45 − 1) (
(1 − HD)

C − 1

(1 − 0.45)C − 1
) Equation 6-3 

where η0.45 is the apparent blood viscosity with a discharge hematocrit (HD) of 0.45 in 

(mmHg ∙ s): 

η0.45 = 220e
−1.3D + 3.2 − 2.44e−0.06D

0.645
 Equation 6-4 

and the dimensionless factor C is defined as:  

C = (0.8 + e−0.075D) (−1 +
1

1+10−11D12
) +

1

1+10−11D12
  Equation 6-5 

The in vivo viscosity, ηvivo, is calculated according to the following equation: 

https://en.wikipedia.org/wiki/Hagen%E2%80%93Poiseuille_equation
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ηvivo = ηvitro (
D

Deff
)
4

  Equation 6-6 

where D is the outer diameter of the vessel and Deff is the effective vessel diameter taking 

into account the endothelial subsurface layer (ESL), calculated based on detailed 

derivations available in [248]. 

6.2.3 Phase separation 

At bifurcations, red blood cells are split unequally between two daughter vessels. The 

fractional erythrocyte flow (FQE) in a daughter branch is a function of the fraction of blood 

flow (FQB) entering in that branch: 

logit FQE = A + B logit (
FQB − X0
1 − 2X0

) Equation 6-7 

where A, B, and X0 are parameters reported by Pries et al. [238] obtained from linear fitting 

of experimental data, and are given by: 

A =
−6.96 ln

Dα
Dβ

Df
   Equation 6-8 

B =
1+6.98(1−HD)

Df
  Equation 6-9 

X0 =
0.4

Df
  Equation 6-10 

The X0  parameter is the minimum FQB  required for erythrocytes to enter the daughter 

branch. If FQB is below X0, no erythrocytes will enter the daughter vessel, making FQE =

0. 
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6.2.4 Nth
 Degree Junctions 

The implemented phase separation model was formulated assuming that one feeding vessel 

bifurcates into two daughter vessels, representing a 3rd degree junction in graph theory 

terminology. In the network used for our simulations, junction degrees of greater than three 

exist and, therefore, require special consideration. To overcome this limitation, the phase 

separation model was extended by identifying three cases. The first case is when one 

feeding vessel splits into exactly two daughter vessels. In this case, the original phase 

separation model was used. The second case is where multiple feeding vessels converge 

into a single daughter vessel. For this scenario, blood flow entering the daughter vessels is 

the sum of all feeding vessel flows, given by: 

Q = Qf1 + Qf2 +⋯Qfn  Equation 6-11 

where Qfi is the volumetric blood flow rate in the ith feeding vessel. The resultant diameter 

of the equivalent feeding vessel, Df, is assumed to be the mean diameter of all feeding 

vessels and the resultant HD  is assumed to be a weighted average of the discharge 

hematocrits of each feeding vessel based on their flow rates:  

HD =
Qf1Hf1 + Qf2Hf2 +⋯ QfnHfn

Qf1 + Qf2 +⋯ Qfn
 Equation 6-12 

where Hfi is the HD in the ith vessel. The third case is when there is only one feeding vessel, 

but more than two daughter vessels are connected to it. In this case, the HD of the feeding 

vessel is divided among the daughter vessels based on the relative diameter of each branch. 
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6.3 TRANSIENT BLOOD FLOW 

Mathematical derivations describing time-dependent changes in HD were based, with some 

modification, on the work outlined in [252]. Assuming the vessel segment as a straight tube 

with a constant diameter, the balance of the tube hematocrit (HT) can be described as:  

∂HT

∂t
+

∂Vrbc

∂ξ
= 0   Equation 6-13 

where Vrbc is the velocity of red blood cells and ξ is the distance along the centerline of the 

vessel. Based on the Fåhræus effect, HD is the ratio of the velocity of red blood cells to 

blood velocity (Vb): 

HD =
Vrbc
Vb

 
Equation 6-14 

Vrbc = HDVb   Equation 6-15 

Assuming constant blood velocity along ξ in each segment, substituting Vrbc = HDVb into 

Equation 6-13 yields: 

∂HT

∂t
+ Vb

∂HD

∂ξ
= 0   Equation 6-16 

The ratio between HT and HD  is defined with the following parametric equation developed 

by Pries et al [242]: 

χ ≡
HT
HD

= HD + (1 − HD)(1 + 1.7e
−0.415D − 0.6e−0.011D) Equation 6-17 

Substituting HT in Equation 6-17 with Equation 6-16, and applying chain rule to the first 

derivatives we obtain: 
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χ
∂HD
∂t

+ HD
dχ

dt
+ Vb

∂HD
∂ξ

= 0 Equation 6-18 

The expansion of Equation 6-18 will yield the following transport equation for the 

evolution of HD in each segment of the vascular network: 

(χ + HD
dχ

dHD
)
∂HD
∂t

+ Vb
∂HD
∂ξ

= 0 Equation 6-19 

Equation 6-19 was solved numerically using a first order forward finite difference 

approximation for ∂HD/ ∂t and a first order backward finite difference approximation for 

∂HD/ ∂ξ . The initial condition for simulations was HD = 0.45  for all vessels in the 

network. We assumed inlet node pressure of 50 mmHg for the feeding arteriole, and 0 

mmHg for outlet nodes of the draining venules (Figure 6-1D). To ensure convergence of 

the transient simulations, spatial and temporal discretization of the network vessels were 

chosen to meet the Courant–Friedrichs–Lewy condition [253]. In the case of Equation 

6-19, the Courant Number (C) used in this model is given by:  

C = Vb
∆t

∆x
≤ Cmax Equation 6-20 

where Cmax = 1, Vb is the velocity of blood, and ∆x and ∆t are the spatial and temporal 

discretization, respectively. All simulations were performed using MATLAB 2018b on a 

personal computer. 
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6.4 RESULTS 

6.4.1 Statistical Properties of the Microvascular Network 

Figure 6-1 shows some relevant statistics of the network under study. Network geometry 

is provided in Figure 6-1A, with segments colored according to the vessel type, i.e., 

capillaries (grey), arterioles (red), and venules (blue). In all simulations performed in this 

chapter, we define a vessel as a segment starting from one junction node (node with degree 

higher than two) to another. Figure 6-1 B and C show histograms of the distribution of 

lengths and vessel diameters in the network. Both distributions are left-skewed, indicating 

a large number of capillary segments with smaller diameter and lengths compared to PAs 

and PVs. Diameters and lengths of vessel segments are plotted against each other (Figure 

6-1 D) and colored based on vessel type. Distribution of capillary diameters is concentrated 

at values below ~5 µm, while the arteriole and venule diameters exhibit greater variability. 

The relationship between vascular resistance with vessel diameter and length is shown in 

Figure 6-1 E and Figure 6-1 F. Specifically, Figure 6-1 E shows a non-linear relationship 

between vessel diameter and resistance with colors indicating vessels with approximately 

same length, and Figure 6-1 F shows that vascular resistance is linearly dependent on vessel 

length with colors assigned by grouping vessels by diameter. These relationships are in 

agreement with the Hagen-Poiseuille law (Equation 6-2). 
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Figure 6-1 Statistical features of the microvascular network. A) microvascular network geometry with vessels 

colored by type: capillaries (grey), arterioles (red), venules (blue). B,C) histogram plots of the distribution of 

vessel lengths and diameters, respectively. The network consists of ~3400 capillary, ~140 venules, and ~30 

arteriolar segments. D) scatter plot of the vessel diameters and lengths colored based on vessel type: 

capillaries (grey), arterioles (red), venules (blue). E) Scatter plot of the vascular resistance vs. vessel diameter 

with points colored based on grouping vessels by length. F) Scatter plot of the vascular resistance vs. vessel 

length with points colored based on grouping vessels by diameter.  

6.5 STEADY-STATE BLOOD FLOW AND DISCHARGE HEMATOCRIT 

Steady-state profiles of Q and HD in the microvascular network is shown in Figure 6-2. We 

assumed a single inlet node (red arrow) at the tip of the feeding arteriole, surrounded by 

draining venules with outlet nodes (white arrows located at the top) (Figure 6-2 A). Inlet 

and outlet pressure were assumed to be 50 and 0 mmHg, respectively. The steady state 

flow distribution shows highest values in the arterioles and venules (Figure 6-2 A), 

potentially owing to the strong dependence of vascular resistance to vessel diameter. HD 

was highest within the draining venule closest to the inlet node (dark red regions in Figure 

6-2 B). Distributions of Q (Figure 6-2 C-E) and HD (Figure 6-2 F-H) are shown for each 

vessel type. HD in the capillaries (Figure 6-2 F) was widely distributed with ~50% of the 

capillary vessels having a HD of <0.1, whereas distributions in the arterioles and venules 
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are closer to 0.45 percent HD. Q values between vessel types are substantially different, 

mainly due to the strong dependence of flow resistance to vessel length and diameter, with 

highest flow rates in the arterioles and lowest in the capillary segments. 

 
Figure 6-2 Steady state distribution of volumetric blood flow rate (Q) and discharge hematocrit (HD). Steady 

state Q and HD simulations were performed in the microvascular network in panel A, with red arrow 

indicating the inlet (P = 50 mmHg) and white arrows indicating outlet nodes (P = 0 mmHg). A) Steady state 

Q distribution color-coded on geometry B) Steady state HD distribution color-coded on geometry. C-E) 

Histograms showing the distributions of Q for each vessel type: capillaries (grey), arterioles (red), venules 

(blue). F-H) Histograms showing the distributions of HD for each vessel type: capillaries (grey), arterioles 

(red), venules (blue). 

6.5.1 Effect of Arteriole Dilation and inlet pressure on network hemodynamics 

In Figure 6-3, we provide the steady state response of the system to various levels of 

dilation in the feeding PA with the constant inlet pressure. To quantify this effect, we 

placed hypothetical concentric cylinders with increasing diameters around the feeding 

arteriole and computed mean and standard deviation of Q within each cylinder and reported 

the results for capillaries in Figure 6-3 A and for the larger diameter arterioles and venules 
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in Figure 6-3 B. Both panels show decline of mean blood flow in the vasculature with 

increasing distance from the feeding arteriole. At each specific distance, increasing the 

dilation level elevates the mean blood flow in the network. The percent change in Q within 

the network is shown at four levels of arteriolar dilation color-coded on the geometry 

(Figure 6-3 C-F). Dilation of 0% represents the baseline corresponding to the steady-state 

Q profile shown in Figure 6-2 A. Results exhibit a trend of increasing flow rate as the 

dilation percentage increases. Interestingly, in these simulations dilation of the feeding 

arteriole resulted in higher levels of flow rate within the deeper layers of the network.  

 
Figure 6-3- Effect of parenchymal arteriole dilation on the steady-state flow distribution in the network. 

Steady-state flow simulations were performed at four levels of feeding arteriole dilation (0, 10, 25, 50%). 

With each dilation percentage used in the simulations, the mean and standard deviation of the blood flow rate 

was computed within concentric cylindrical regions around the feeding parenchymal arterioles. Results are 

shown for flow rate in capillaries (A) and combined flow of the arterioles and venules (B). C-F) The 

microvascular is shown colored based on percent change in flow from the baseline, with baseline 

corresponding to the profile shown in Figure 6-2A, for 0, 10, 25 and 50% dilation in the feeding PA. 

Mean flow rates were also calculated at various inlet pressures (Figure 6-4) with a constant 

diameter of the feeding arteriole (panel A for capillaries, and panel B for arteriole and 
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venules). Similar patterns to results in Figure 6-3 were also observed in these simulations. 

Increasing the inlet pressure increased the mean Q in the network, showing a decreasing 

pattern with increasing distance from the feeding arteriole. It is noteworthy that changes in 

the mean Q in response to pressure gradients used in these simulations were higher that the 

differences shown in Figure 6-3 resulting from dilation of the PA.  

 
Figure 6-4- Effect of increasing parenchymal arteriole inlet pressure on the steady-state flow distribution in 

the network. Mean and standard deviation of steady state volumetric blood flow is shown for capillaries (A) 

and PAs and PVs (B) in concentric cylindrical regions with increasing diameter around the feeding PA, for 

25, 50, 75, and 100 mmHg of PA inlet pressure. 

6.6 EFFECT OF THE EXTENT OF UPSTREAM VASODILATION ON 

NETWORK HEMODYNAMICS 

As discussed in CHAPTER 2, neuronally-induced local hyperpolarization initiated from 

deep layers of the cortex might passively propagate along the PAs and attenuate with 

distance (Figure 2-6). We also provided the potential existence of regenerative mechanisms 

of signal conduction where the hyperpolarizing signal can be conducted over long distances 

along the PA with minimal or no loss. Thus, it is important to investigate how the length 

constant of the spread of vasodilatory signals, or equivalently the spatial extent of arteriolar 
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dilation, can change the hemodynamic response of the network. To evaluate this effect, we 

assumed maximal dilation of the feeding arteriole at the bottom of the network (50% 

increase in the diameter) which tapers off exponentially upstream the PA with a given 

length constant (λ).  

Figure 6-5 demonstrates the dependency of the percentage change in the mean volume flow 

rate in the network to the length constant of arteriolar dilation at a constant inlet pressure 

(50 mmHg) for all simulations. Interestingly, mean flow in the system shows a strong 

dependence to λ, showing a sigmoidal relationship (the red fitted curve). This dependence 

might signify the importance of potential regenerative-like mechanisms which allows the 

spread of the hyperpolarizing signals over long distances towards surface pial arteries and 

subsequently result in higher changes in Q in the tissue region. 

 
Figure 6-5 Effect of the extent of arteriolar dilation on the mean percentage change of blood flow in the 

network. Steady state flow simulations were performed on the network shown in Figure 6-2A, where the PA 

was dilated 50% at the bottom of the network and the dilation tapered off with a length constant of λ along 

the PA. For all simulations the inlet pressure was assumed to be 50 mmHg. The resultant percent change in 

the mean volumetric flow rate in the network is plotted against varying λ values (black dots). Results are 

fitted using a sigmoidal fit (red line: f(x) = 0.4 /(0.01 + exp(-x)), with R2 = 0.98) 
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6.7 TRANSIT TIMES OF ERYTHROCYTES IN MICROVASCULAR 

NETWORKS 

Heterogeneity in microvascular network structures greatly contributes to transit times of 

red blood cells along the microvasculature. In the network used in this chapter, we define 

transit time as the time it takes for a red blood cell entering the inlet (from the feeding PA) 

to exit from one of the outlets (tip of the venules). We developed an algorithm to track the 

movement of a red blood cell flowing in the network, with red blood cell flow rate (Qrbc =

QHD) of each branch over Qrbc of the feeding vessel as the probability of the red blood cell 

entering the branch. Consequently, if the feeding vessel is connected to only one branch, 

the red blood cell is forced to flow through the connecting vessel. At vessel bifurcations, 

however, the red blood cell will enter one of the daughter vessels based on the 

aforementioned probability distribution. 

Using this algorithm, we simulated 10,000 paths a red blood cell would take in the network, 

and showed the distribution of the corresponding transit times in Figure 6-6 A. Figure 6-6 

B shows the cumulative proportion of transit times shown in Figure 6-6A, indicating that 

in almost 80% of cases the red blood cell would be flushed out of the system in a matter of 

few seconds. Figure 6-6 C illustrates the strong positive correlation of the total transit time 

to the number of bifurcations a red blood cell flew through along its path (Pearson 

correlation coefficient = 0.71 (the red line), p-value = 4 x 10-154). Figure 6-6 D shows the 

distribution of total number of bifurcations, and capillary generations for all simulated 

paths. On average, red blood cells passed through ~10 capillary generations before leaving 

the system from one of the outlets of the network. Some example paths and their 
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corresponding transit times are shown in (Figure 6-6 E-H), with arrows indicating inlet 

(red) and outlet (blue) of the network. 

 

Figure 6-6- Red blood cell transit times. An algorithm was developed to track the path of a red blood cell 

from the inlet of the network to any of the outlets (refer to Figure 6-2 for positions of inlets and outlets). At 

each bifurcation the red blood cell randomly chooses a daughter branch over another according to the 

probability based on relative Qrbc. 10,000 potential paths were generated, and their distributions are shown in 

panel (A). Panel (B) shows the cumulative proportion distribution of the resident times of paths generated in 

(A). C) Path transit times as a function of number of bifurcations along the simulated paths of red blood cells 

in (A) and (B). The red line shows positive correlation of transit times to number of bifurcations (Pearson 

correlation coefficient = 0.71 (the red line), p-value = 4 x 10-154). D) histogram of the distribution of total 

bifurcations (gray) and number of capillary generations from 10,000 simulated paths of red blood cells. 

Panels (E-F) show example simulated paths with red arrow showing the inlet and blue arrow showing the 

outlet. The respective transit time and the number of bifurcations along the path is shown below the graphs. 

6.8 TRANSIENT BLOOD FLOW IN RESPONSE TO ARTERIOLAR 

DILATION 

A transient profile of dilation with a time constant of one second for both increase and 

decrease of the diameter is assumed for transient flow simulations (Figure 6-7 A). This 

profile was chosen to mimic the arteriolar dilations observed in the ex vivo Cap-PA 

preparations in [30] in response to local increases in [K+]o around capillaries. The 
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numerical procedure outlined in the methods section was utilized to compute the evolution 

of HD and Q over time. Figure 6-7 B shows five different time instances of the network 

colored based on percent change from the flow rates prior to dilation (Figure 6-2A). Time 

frames show the change in flow rate at rest (2 seconds), during the rise in diameter (5 

seconds), the plateau phase (12 seconds), recline in diameter (15 seconds), and return to 

the original diameter (20 seconds). Results show how flow distribution in the network 

would evolve upon the temporal changes in the PA diameter. Similar to steady-state results 

shown in Figure 6-3, the increase in flow was more concentrated in the lower regions of 

the network. Also, comparison of the plateau phase of the diameter increase (at 12 seconds) 

during transient simulations with the equivalent steady state profile of Figure 6-3 F 

suggests that the flow distribution reaches its steady state within few seconds of the 

stabilization in the arteriolar diameter. This finding corroborates the observations in Figure 

6-6 that most simulated random paths of red blood cells along the network had a total transit 

time in the order of few seconds (the time required for red blood cells to be flushed out of 

the system). The validity of these observations, however, remains to be tested in 

experimental studies. 
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Figure 6-7 – Transient simulations of blood flow in the microvascular network. The transient blood flow of 

the same vascular network of Figure 6-2 A is simulated assuming the PA diameter follows the pattern shown 

in panel (A). The inlet pressure is assumed to be 50 mmHg. Panel (B) shows color-coded changes in the flow 

distribution with respect to baseline (2 seconds), during the rise (5 seconds), plateau (12 seconds), recline (15 

seconds), and upon return to baseline (20 seconds). 

6.9 DISCUSSION 

The primary aim of this chapter was to relate NVC mechanisms discussed earlier with the 

distribution of blood flow and hematocrit to different regions of brain microvasculature. 

As discussed in great depth in previous chapters, changes in Vm of PA SMCs is the major 

determinant of the myogenic tone and the diameter of these vessels. We studied how 

hyperpolarizing signals can be initiated from various locations along the brain vasculature 

and identified molecular determinants of the extent of the conducted responses to upstream 

PAs. We also identified how pathological conditions including small vessel disease and 

cortical spreading depression can significantly affect the resting Vm, and the vascular 

response to neuronally-induced stimuli. Although at the current stage our flow models are 

not directly coupled to models of cell electrophysiology in previous chapters, here we 
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analyzed the effect of a varying levels of PA dilation and pressures on blood flow and 

hematocrit distribution in the network. This modeling platform serves as our initial effort 

in providing a multiscale mathematical modeling framework for NVC where macroscopic 

tissue-level responses of the system under normal or pathological conditions can be related 

to microscopic cell-level electrophysiological activity.  

6.9.1 Flow pattern in response to increases in PA diameter and inlet pressure 

In both steady state (Figure 6-3) and transient (Figure 6-7) simulations, arteriolar dilation 

was shown to increase the blood flow in the microvascular network under study. Similar 

results, although more pronounced, was observed when the inlet pressure was increased 

under a constant diameter (Figure 6-4). This increase in flow attenuated with distance from 

the feeding arteriole, indicating the reduction of volumetric flow rate at the bifurcations of 

smaller diameter capillary segments as well as the reduction of pressure gradient farther 

away from the PA. A notable feature illustrated in simulations is the higher flow rates 

towards the lower layers of the network; rather than a uniform increase all throughout the 

depth of the network. This result might be due to: 1) an uneven distribution of capillaries 

along the depth of the network, 2) higher numbers of branch points at the lower portions 

of the PA arteriole, or 3) the downward direction of flow resulting from the assumed 

boundary conditions (Figure 6-2 A). One has to bear in mind that these potential 

explanations are all related to the structural nature of the specific network under study, and 

a decisive conclusion can only be made upon a large number of simulations on a variety of 

vascular structures.  
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6.9.2 Distributions of Hematocrit and Plasma due to Phase Separation Laws 

As can be observed in Figure 6-2 F, a wide distribution of HD is predicted in the dense 

capillary network, potentially due to the difference in the diameter of capillary segments at 

bifurcations according to phase separation principles. An important consequence of this 

phase separation effect is the high number of low-hematocrit capillary regions (Figure 6-2 

B and Figure 6-2 F), which may lead to the presence of hypoxic regions in the tissue 

surrounding it. It is important to note that this predicted distribution of HD can also be 

attributed to the equations used for capturing phase separation. For instance, recently, 

Gould et al. [237] provided a comparative study on mathematical models of blood flow 

control in large vascular networks and demonstrated that with some modifications in these 

equations, more uniform distributions of HD and oxygen transport can be predicted. 

Although authors claim that distributions obtained from their model are closer to 

experimental recordings compared to those of widely used Pries and Secomb models [238-

240], the validity of the these propositions need to be tested in more comprehensive 

experimental studies. 

6.9.3 Limitations and future directions 

As shown in simulations performed in this chapter, the structural complexity of 

microvascular networks greatly influences the spatiotemporal characteristics of observed 

hemodynamic responses. For this reason, studying a single unique network is inadequate 

if the goal is to gain a robust and widely applicable understanding of the hemodynamic 

response. Also, structural properties may greatly vary among different animal species, as 

well as within different regions of the brain. Therefore, simulation results in this chapter 
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may not necessarily serve as a global representation of the hemodynamic response during 

NVC. Nevertheless, the platform provided in this chapter can be utilized to study 

microvascular networks from different species upon availability of experimental data. 

Due to high technological requirements necessary for obtaining detailed microvascular 

structures with high resolution, a number of groups have recently resorted to statistical 

approaches, primarily based on principles of Voronoi algorithms, to simulate large network 

structures possessing the same statistical properties as one found in different species [254-

257]. The combination of detailed mathematical models, like the one developed in this 

chapter, with these approaches can yield extremely useful information in advancing our 

knowledge of the hemodynamic response during NVC.  

Another important factor that can greatly change the distribution of blood flow within brain 

vascular networks during NVC is the activity of pericytes. The unique structure of these 

cell types, i.e., long processes wrapped around capillaries at vessel bifurcations, allow them 

to preferentially restrict blood flow into one branch and redistribute red blood cells to 

regions with high metabolic demands [6]. These cell types are shown to be actively 

involved during NVC in normally functioning brain and also in its disruption under 

pathologies [6, 17]. Thus, more detailed mathematical models can be developed in the 

future where the electrophysiological signaling in different cell types involved in NVC, is 

coupled with the flow and hemodynamic models presented in this study. 

Simulations performed in this chapter aim to investigate the dilatory and pressure 

requirements for physiologically relevant increases in the blood flow in the 

microvasculature. Model simulations indicated that to observe relevant increases in blood 
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perfusion in response to a stimulation deep within the cortex, the vasodilatory signal must 

propagate several hundred microns upstream the PAs (Fig. 6-5). Robust expression of 

Kir2.1 channels in the microvascular endothelium allow transmitting dilatory signals over 

such distances (CHAPTER 2) by enabling regenerative, long-range conduction of 

electrical signals. Thus, neuronally-induced hyperpolarizing (vasodilatory) signals 

initiated at the capillary level can reach and propagate into upstream arterioles at distances 

that can induce significant increases in local blood supply. Predicted blood flow 

distribution in a geometrically accurate microvascular network highlight the importance of 

endothelial-mediated signaling for the regulation of the supply of blood and nutrients to 

regions of high metabolic demand and corroborate the physiological relevance of electrical 

responses in CHAPTER 2. 
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CHAPTER 7 CONCLUDING REMARKS 

Proper brain function heavily relies on an in-time delivery of nutrients and oxygen in 

response to elevations in neuronal activity. In a normally functioning brain, this moment-

to-moment communication between neurons and vasculature, termed as functional 

hyperemia or neurovascular coupling (NVC) [3], is achieved through an organized activity 

of a wide range of inter- and intra-cellular mechanisms, collectively known as a 

neurovascular unit (NVU) [4]. Disruption of NVC, in response to dysfunction of any or a 

combination of the components of a NVU, has been observed in a variety of neurological 

disorders including Alzheimer’s disease, stroke, hypertension, dementia, and cortical 

spreading depression [5-9].  

The work presented in this dissertation provided a novel multiscale mathematical modeling 

platform for NVC and cerebral blood flow (CBF) control under normal and diseased states 

with the major focus on the role of K+ ions in this process. In CHAPTER 2, we investigated 

how capillary endothelial cells (cECs) can sense local activity of neurons and translate this 

activity into a retrograde vasodilatory signal that can propagate to upstream parenchymal 

arterioles (PAs) and regulate the dynamics of CBF. We identified inward rectifying 

potassium (Kir) channels expressed in cECs as the molecular cornerstone of this capillary-

mediated NVC. We postulated that high expression of these channels in cECs can promote 

a regenerative mode of conduction of electrical signals that can transmit neuronally-

induced local hyperpolarization over long distances with minimal or no loss. 
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In CHAPTER 3, our mathematical models predicted the key role of up- and down-

regulation of voltage-gated potassium (Kv) channels in the disruption of NVC in animal 

models with small vessel disease (SVD). We identified a “tug-of-war” dynamic between 

Kir and Kv channels in determining the membrane potential (Vm) and myogenic tone of 

PA smooth muscle cells (SMCs) in response to NVC-associated modest elevations of 

[K+]o. Consistent with experimental data, our modeling studies predicted that increased Kv 

channel densities in CADASIL animal models would result in a more hyperpolarized 

resting Vm, and lower myogenic tone compared to control animals; while, conversely, 

decreased Kv levels in SAH would depolarize resting Vm and increase the myogenic tone 

of PA SMCs.  

CHAPTER 4 and CHAPTER 5 focused on understanding the effect of unphysiological 

elevations in [K+]o during cortical spreading depression on the response of brain 

vasculature during this phenomenon. Using our newly developed current source density 

analysis method, presented in CHAPTER 4, for the first time, we provided an estimate of 

transmembrane current sources during cortical spreading depression in rats. Using this 

estimate as an indicator of the extent and duration of the cortical depression wavefront, in 

CHAPTER 5 we provided a potential mechanism underlying the observed multiphasic 

responses in vasculature during this phenomenon [53]. Our model simulations predicted 

that the nonlinearities in the current-voltage relationship of Kir channels result in the 

depolarization of vascular cells at the wavefront (at high levels of [K+]o), while before and 

after the wave (during the decay of [K+]o), these channels conduct a hyperpolarizing signal 

along the vessel  
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Lastly, in CHAPTER 6, we provided a detailed mathematical modeling framework to 

observe how Vm- dependent changes in the PA diameter, affects the distribution of blood 

flow and hematocrit along the vessels in a large interconnected brain vascular network. 

This model, along with the electrophysiological models developed in previous chapters 

provide a theoretical platform where the effect of neuronally-induced stimuli at different 

locations along the brain vasculature and their corresponding changes in CBF can be 

studied in normal and diseased conditions.  

Overall, simulations performed in this dissertation identified the subcellular requirements 

of the microvasculature to sense elevated neuronal activity in deep regions of the brain, 

through the increase in [K+]o, and transmit vasodilatory signals towards PAs and surface 

vessels to increase CBF. We demonstrated how Kir channels expressed in capillary 

endothelial cells may give rise to an action potential-like mode of signal conduction along 

the microvasculature, a finding that can have significant implications on the general 

understanding of NVC and potential bottom-up signaling pathways in this process. We 

demonstrated how dynamics of Kir channels, and their interplay with other major ionic 

channels in the membrane, can provide a mechanistic explanation of the response of the 

vasculature under pathological conditions, in particular small vessel disease and cortical 

spreading depression.  

7.1 FUTURE DIRECTIONS  

7.1.1 Mathematical Modeling 

Several aspects of this modeling framework can be expanded in the future. For instance, 

here we primarily focused on the role of K+ ions in NVC under healthy and diseased 
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conditions. However, as discussed in previous chapters, NVC involves a variety of other 

known mediators such as AA metabolites, PGs, and NO [17]. Therefore, an avenue for 

further exploration is the inclusion of detailed mathematical models of cell 

electrophysiology, i.e., cECs (upon new available experimental data on the characterization 

of ion channels and intracellular dynamics), ECs and SMCs of PAs, and accounting for the 

effect of these vasoactive agents on their respective target channels. For example, as has 

been shown in previous modeling studies, the effect of NO as an important vasodilator can 

be accounted by its direct influence on PA SMC large conductance potassium (BKCa), 

sodium-calcium exchanger (NCX), calcium-activated chloride (ClCa), and sodium-

potassium-chloride (NaKCl) cotransporter channels [258] . These models can be extremely 

useful in analyzing the relative contributions of parallel pathways involved in NVC, as well 

as the potential direct or indirect influences they might have on one another. One has to 

bear in mind, however, that even though these inclusions might provide important insights 

into understanding NVC, increasing the level of complexity of models can also impede 

meaningful interpretations of model predictions. Thus, model expansion should be done 

with care, and should mainly be based on the particular mechanism under study.  

In our current model, the levels of dilation in the PA during NVC is determined based on 

observed values reported in experimental studies in literature. Also, there is currently no 

feedback mechanism between our cell electrophysiology and blood flow models. As shown 

in previous studies for other vascular beds, the vessel biomechanics and the diameter can 

be directly modeled based on the Ca2+ dynamics of SMCs and the activity of actin-myosin 

cross-bridge cycle [259, 260]. Also, it is well-established in literature that flow-induced 
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changes in the transluminal pressure can feedback on PA SMC Ca2+ dynamics through the 

activation of non-selective cation (NSC) channels [261, 262], which can have important 

consequences in the regulation of vessel tone. Therefore, an important aspect to the be 

added to the current model is the incorporation of detailed Ca2+ dynamics in the PA SMCs, 

and inclusion of the biomechanics model of the vessel wall relating the flow-related 

transluminal pressure to Ca2+ in these cells.  

Another future direction for the current modeling framework is the inclusion of a model of 

oxygen transport along the microvascular network and inside the tissue region containing 

it. This addition to the model will provide a comprehensive mathematical modeling base 

where the effect of microscopic, cell-level signaling pathways on macroscopic changes in 

tissue perfusion and oxygenation can be analyzed. Several modeling groups have used 

finite element (FEM) and finite difference (FDM) methods to simulate dynamics of oxygen 

transport inside blood vessels and in the surrounding tissue in complex structures [263-

267]. More recently, Secomb and colleagues also provided less computationally expensive 

approaches based on analytical solutions to oxygen diffusion equation using principals of 

Green’s functions, where vessel segments are treated as point sources and tissue 

consumption is modeled as sinks of oxygen [268-270]. Using the combination of these 

approaches, and models developed in this dissertation, a wide variety of phenomena can 

be studies in brain vasculature. Vascular oxygen responses can also be translated into blood 

oxygen level dependent (BOLD) signals, which provide a theoretical paradigm for bottom-

up modeling of functional magnetic resonance (fMRI) data.  
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7.1.2 Proposed experimental studies 

Mathematical models developed in this dissertation provided interesting predictions on the 

underlying mechanisms of NVC that can be subjects of several future experimental studies. 

For example, simulations suggest that expression of Kir2.1 channels in cECs can result in 

bistability of membrane potential (Vm) in response to elevations in [K+]o, i.e., the ability of 

single cECs to exist in two distinct membrane potential values (one at more depolarized 

potentials, and the other at more hyperpolarized voltages). This theoretical prediction can 

be tested experimentally by recording Vm of single isolated cECs using microelectrodes 

during step increases of the bath potassium concentration from resting levels (~3 mM) to 

levels reached during NVC (~10 mM). Based on the theoretical analysis presented in 

CHAPTER 2, the prediction would be a gradual hyperpolarization of single cECs before a 

massive jump of the membrane potential to more hyperpolarized potentials near the Nernst 

equilibrium potential of potassium ions (EK). Additionally, simulation results predicted the 

presence of a hysteresis in the response of single cells to step changes in [K+] (Fig. 2-2A). 

If this prediction is true, the transition of single cECs from hyperpolarized to depolarized 

Vm during step decreases in bath potassium concentration will happen at a different [K+] 

compared to the reverse direction. The transition points will indicate the [K+] window for 

bistability.  

Another important observation of the models presented in this dissertation is the existence 

of an action potential-like mode of conduction of hyperpolarizing signals along cECs to 

upstream PAs, owing to the presence of strong Kir channels in these cells. Several 

experimental studies can be conducted to test the validity and extent of this model 
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prediction. For instance, experiments can be performed on brain slice preparations where 

electrical signals are initiated at the capillary site and the conduction of the signal can be 

tracked along the capillary and PA segments. Signal initiation at the capillary end can be 

done via picospritzing a K+ ionophore, e.g. valinomycin, or current injection with 

microelectrodes, to allow hyperpolarization of cells even in the absence of Kir channels, 

i.e., in Kir-/- mice. Another method for initiation of signals in cECs is to use focal light 

stimulation in slices obtained from optogenetically-enabled mice, where only cECs can be 

stimulated. Optogenetics is an avant-garde approach which genetically targets specific cell 

types with high degree of specificity and high levels of spatial and temporal resolution 

[271]. The resultant changes in the Vm along capillaries and arterioles can be monitored 

either using microelectrodes at different locations along the PAs, or via imaging the 

changes in the fluoresce level of voltage sensitive dyes (VSDs), e.g. Di-8-ANEPPS. Based 

on the prediction from our mathematical models, an “all-or-none” response in PAs is 

predicted when stimulation of capillary increases above a threshold value. Additionally, 

we expect the loss of this regenerative signaling upon reduction of the activity of Kir 

channels, either chemically via application of Ba2+ or PGE2, or through genetically 

knocking out of Kir channels.  
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