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ABSTRACT OF THE DISSERTATION 

CAVITY NEST WEBS AS A TEMPLATE FOR STUDYING NON-TROPHIC 

INTERACTIONS IN INVASION ECOLOGY 

by 

Joshua M. Diamond 

Florida International University, 2019 

Miami, Florida 

  

Invasive exotic animals are considered destructive forces in cities for preying on and 

competing with native species.  I examined an aspect of competition from a different 

perspective, focusing on the role of Miami’s rich exotic bird assemblage in its cavity nest 

web, where a supply of woodpecker-created cavity nests limited by urbanization is the 

focal point of competition.  We located 967 nest trees with 1,864 cavities and determined 

that woodpeckers successfully nested in this tropical urban region by exploiting standing 

dead palms (snags).  Native upland forests were the most important cover type for 

woodpeckers but planted landscapes like parks and botanical gardens supported a similar 

density of nests.  Fluctuations in nest resource availability were studied following 

Hurricane Irma in 2017.  After the storm, the proportion of nests in palm snags increased 

relative to other substrates.  Compared to other substrates, palm snags persisted at 

intermediate rates after the hurricane but were the dominant type excavated by 

woodpeckers.  I monitored 750 cavities to determine species occupancy and turnover.  Of 

special interest were Miami’s many parrot species, which have been suspected of 

     Professor Michael S. Ross, Major Professor
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breeding in woodpecker nests.  I determined that two exotic parrot species commonly use 

woodpecker nests but are far less abundant than the native birds or other exotic bird 

species in the cavity nest web.  Geographic analysis of nests combined with citizen 

science data suggest the parrots are closely linked to urban areas, and do not pose a risk 

of invading the Florida Everglades.  The parrots also do not disrupt the urban cavity nest 

web, despite sharing nest preferences with similarly large-bodied birds, because of an 

offset in breeding phenology; parrots breed months later than the native birds they would 

be competing with.  Invasive European Starlings and Common Myna do pose a 

significant threat to native birds, usurping active nests from species with similar nest 

preferences.  Starlings are a well-established invasive species, but a growing population 

of mynas would exert considerable pressure on the nest web based on their nest selection 

and phenology. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Background 

Cavity nest webs are non-trophic interactions within and between species of birds that 

use hollows to roost and breed (Martin and Eadie 1999, Bednarz et al. 2004).  There is a 

clear hierarchical structure between primary cavity excavators that create holes, weak 

excavators that can modify holes, and secondary cavity users (Martin et al. 2004, Blanc 

and Walters 2008, Robles and Martin 2013, 2014).  Primary cavity excavators in North 

America are all woodpeckers.  Secondary cavity-nesting birds cannot create their own 

cavities, and are dependent upon decay processes and cavity excavators to create or 

modify suitable nest sites.  Weak excavators are birds which may expand the entrance to 

a cavity they adopt, enlarging the opening to accommodate their needs.  Some weak 

excavators may be able to enlarge the internal volume of the cavity as well.  Outside of 

North America, birds like trogons and parrots excavate cavities in softer substrates like 

termite and wasp nests (Sandoval and Barrantes 2009).  In the absence of arboreal 

termitaria and other large, soft materials like clay cliffs, weak excavators must depend on 

woodpeckers or natural decay to produce suitable cavities.  Cavity nest webs provide a 

new perspective from which to study invasion ecology (Koenig 2003), where much 

emphasis has been placed on trophic cascades caused by novel interactions.   

Cavity nest webs begin with interactions among trees, decay organisms, and avian 

excavators.  Natural weathering and fungi excavate some cavities, but the majority of 

habitable cavities are created by woodpeckers.  Woodpeckers favor different tree species 

for excavation, and prefer different habitats (Schepps et al. 1999, James et al. 2001, 
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Adkins Giese and Cuthbert 2003).  In a highly heterogeneous urban landscape, 

woodpeckers can choose from a variety of native and exotic trees.  Some woodpeckers 

have proven to be well-adapted to urban areas, while others are locally confined to 

remnant forest fragments (Morrison and Chapman 2005).   

Till recently the study of non-trophic interactions has focused on species pairs 

rather than interacting networks (Vasas and Jordán 2006).  Cavity nest webs are relatively 

unstudied non-trophic interaction networks that may include native and exotic species.  

Terrestrial birds are relatively conspicuous and therefore are ready subjects for studying 

such interactions.  The preferences woodpeckers exhibit for trees is an important 

determinant of nest web structure.  In a developed environment, urban adapted birds have 

an advantage over urban avoiders (McKinney 2006, Francis and Chadwick 2012).  Urban 

adapted birds include a suite of exotic species, including cavity-nesting taxa like 

Starlings, Mynas, Parrots, Parakeets, and Sparrows.  Cavities are a finite resource, and 

the supply of cavities fluctuates over time.  Disturbances like fire and hurricanes that 

might remove existing cavity trees from a landscape also create new snags.  Human 

activities are one of the dominant drivers of cavity flow in urban areas, through planting 

trees that will eventually die, and removing dead wood when it becomes a nuisance.    

 The persistence of snags and cavities across a disturbance-prone landscape is 

needed to determine the productivity of the nest web (Edworthy et al. 2012, Edworthy 

and Martin 2013).  Snags that persist longer can be reused for multiple seasons (Farris et 

al. 2004).  Older snags often accumulate multiple cavities or entrances (Russell et al. 

2006).  Most horticultural practices, such as pruning trees, reduce the availability of 

substrate to woodpeckers.  In addition to pruning, hurricanes are a regular disturbance, 
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killing live trees, felling snags, and removing dead branches from living hardwood trees 

that sometimes contain nests.  Woodpecker cavities are often excavated in spike tops or 

dead limbs in living trees, which are typically removed during pruning, and can also be 

destroyed in storms.  Entire snags are removed from developed areas because they are a 

hazard and a liability to the property owner.  Dead or weakened limbs that would 

otherwise be attractive to woodpeckers as nest sites are often removed from living 

broadleaved trees.  The morphology of palm trees spares most species from this 

horticultural practice.  A few horticultural practices may actually increase the longevity 

of snags, such as fertilization and pruning to maintain physical balance of weight 

distribution. 

The abundance of snags has been shown to be lower in urban and suburban areas 

than in wild landscapes (Blewett and Marzluff 2005).  Generally, densities of native 

cavity-nesting birds are lower in developed areas (DeGraaf and Wentworth 1986, 

Tilghman 1987, Tews et al. 2004).  While the availability of existing cavities is thought 

of as a limiting factor for cavity-adopting species, the availability of suitable substrates is 

the limiting factor for excavator species.  While the pattern of reduced snag availability is 

associated with a reduction in woodpecker richness in urban environments, some 

woodpeckers are dependent on other habitat factors.  Red-cockaded Woodpeckers 

(Leuconotopicus borealis) excavate cavities almost exclusively in living longleaf pines 

(Pinus palustris), although they do occur in loblolly (Pinus taeda) shortleaf (Pinus 

echinata), and slash pine (Pinus elliottii) forests at lower densities (Epting et al. 1995, 

Doster and James 1998).  In this case, the occurrence of Red-cockaded Woodpeckers was 

linked to forests with an open canopy, larger trees, and more herbaceous than woody 
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ground cover (James et al. 2001).  Anthropogenic activities like even-aged plantation 

forestry can reduce the availability of nest trees as well as suitable foraging habitat 

(Repenning and Labisky 1985, James et al. 2001).  If plantation forestry can reduce the 

substrate available to a mature forest specialist, then urbanization should reduce substrate 

to all but the most generalist species, capable of adapting to the constantly shifting land-

use mosaic of a human landscape. 

In addition to the disturbance caused by growing human populations, cavity 

nesting birds must also respond to severe natural disturbances, such as hurricanes.  My 

research area centered on Miami-Dade County, Florida, a region that was impacted by a 

hurricane during our planned study.  Hurricane Irma hit southeast Florida on September 

10th 2017, between my two field seasons spent locating and observing woodpecker nests.  

The combined effects of hurricane-related wind, rain, and debris carried by floodwaters 

can obliterate woodpecker nest trees or limbs with cavities.  If different species and 

categories of trees have differential responses to disturbance, then a shift is expected in 

woodpecker nest tree characteristics and tree species composition.  Prior studies of the 

effects of hurricane disturbance on woodpecker nest trees have been limited to the 

endangered Red-cockaded Woodpecker, and the longleaf pine forests where they breed 

(Engstrom and Evans 1990, Torres and Leberg 1996, Bainbridge et al. 2011).  The impact 

of Hurricane Irma created a unique opportunity to study the resource fluctuation in an 

urban area caused by an extreme weather event. 

My review of citizen science data and personal observations suggests that South 

Florida may have the world’s greatest richness of exotic cavity-nesting parrots, even if 

many of these species do not have a significant breeding presence (Sullivan et al. 2009).  
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All birds in this guild arrived from the exotic pet trade.  Two of the most common parrots 

in Miami are non-cavity nesting species, which use human structures or build their own 

nests.  Monk Parakeets are the most widespread and common exotic parrot in Florida 

(Pranty and Epps 2002, Epps 2007).   Monk Parakeets are unique among parrots in 

building large stick nests, although these domed structures may resemble a large cavity 

from the inside (Goodfellow 2011).  Most other parrots use tree cavities, and are 

described as weak excavators.  Lacking the chiseling ability of woodpeckers, parrots have 

strong bills which can tear weakened wood.  The breeding status of many exotic cavity-

nesting birds in Florida is not known.  The Florida Ornithological Society counts only six 

cavity-nesting exotics as established; four parrot species, plus the European Starling and 

Common Myna.  Yet, dozens of additional exotic parrots are commonly observed, 

presumably newer introductions or recent feral escapes.  Establishment of exotic birds 

depends on many factors, like propagule pressure and resource matching (Blackburn et 

al. 2009).  Since nest sites are a critical resource for reproduction, determining which 

species are finding suitable sites suggests which species become established or invasive.  

A lack of suitable nest sites may actually prevent an invasion.  Rose-ringed Parakeets are 

the most invasive cavity-nesting bird in Europe, usurping cavities primarily in developed 

areas  (Strubbe and Matthysen 2007, 2009a, 2009b, Orchan et al. 2012, Hernández-Brito 

et al. 2014, Peck et al. 2014).  Nevertheless, despite repeated introductions in urban areas 

across Florida, the Rose-ringed Parakeet has not established any known breeding 

populations. 

The competition for cavities has primarily been studied in environments with only 

one exotic competitor (but see Orchan et al. 2012 and Charter et al. 2016).  The European 
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Starling (Sturnus vulgaris) and Rose-ringed Parakeets (Psittacula krameri) have been 

studied in North America and Europe, respectively, for their impacts on native birds.  

Across each continent, these are the only two widespread invasive birds known to usurp 

tree cavities.  In both continents and other parts of the world, Mynas do so locally but do 

not have continent-wide populations (Linz et al. 2007, Peacock et al. 2007, Charter et al. 

2016).   

Non-trophic interactions among members of the cavity-nesting guild are 

suggested to be shaped by three major factors: the timing of breeding, nesting 

preferences, and the ability to excavate or widen cavities (Orchan et al. 2012).  

Communities rich in native and exotic species have more opportunities for novel species 

interactions (Hobbs et al. 2009).  Overlapping nesting phenology can cause competition 

for limited cavities (Ingold 1994, Wiebe 2003, Martin et al. 2004).  Conversely, if 

primary and weak excavators breed first, the fecundity of later-breeding secondary users 

is enhanced (Orchan et al. 2012).  The relationships between bird species in a novel 

ecosystem provides insight into what new non-trophic interactions could occur during 

biological invasions. As outlined below, this dissertation addresses production of cavities, 

persistence of nests during a hurricane, establishment success within a family of exotic 

bird species, and the effects of these novel actors on nest web structure. 

1.2 Objectives and Dissertation Organization 

This dissertation project investigates the relationships between groups of tree 

species, native woodpecker excavators, native and exotic secondary cavity nesting birds, 

and abiotic hurricane and anthropogenic disturbances. 
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Chapter 2 (currently under review by Urban Ecosystems) aims to determine 

which individual trees species and categories of tree substrate (palm trees, broadleaved 

shade trees, coniferous trees, and wood utility poles) would be used most by 

woodpeckers in this urban tropical region.  I asks what tree and nest characteristics are 

most important for woodpeckers, as well as what types of habitat cover are preferred.  

Chapter 3 (currently under review by Urban Forestry & Urban Greening) aims to 

evaluate the impact of hurricane disturbance on nest persistence, and comparing 

characteristics of nest trees that fell and trees that persisted through the storm.  I consider 

shifts in categories of tree substrate based on loss of trees to hurricane disturbance, and 

standing tree death, creating new substrate for woodpeckers  

Chapter 4 (to be submitted to Avian Research) aims to identify which species of 

exotic parrots observed and reported in our study area are actually breeding and roosting 

in tree cavities.  I describe the physical nest characteristics of the two most common 

parrot species in our study.  I aim to compare the geographic range and abundance of 

parrots to other cavity-nesting bird species, and determine if their interactions suggest a 

threat to native cavity nesting birds. 

Chapter 5 (to be submitted to Biological Invasions) aims to find the nest 

preferences and breeding phenologies of cavity nesting birds, and determine if timing of 

reproduction combined with nest characteristics determines which species will usurp 

active nesting attempts and reduce fecundity of native competitors.  I investigate 

differences between Sturnids, the family of birds including the starling and myna 

established here, and the Psittacid parrots breeding in woodpecker cavities.  I evaluate 

interactions at the guild level, including transfer of active and inactive nest cavities. 
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CHAPTER 2. PALM SNAGS ARE A CRITICAL NESTING RESOURCE FOR 

WOODPECKERS IN AN URBANIZED TROPICAL REGION 

 

2.1 Abstract 

Critical resources for birds nesting in cities can support populations in spite of the 

challenges imposed by urbanization, and the identification of such resources can shed 

light on how species are able to adapt to novel environments.  In the case of 

woodpeckers, these resources also support the conservation of secondary cavity-nesters.  

Woodpecker nesting has been well-studied in temperate regions, including within urban 

areas, but in subtropical and tropical regions, less is known.  Here we ask what types of 

trees and what habitats are used most by woodpeckers, and which species of 

woodpeckers create the most nest cavities.  We recorded information from 967 

woodpecker nest trees in the region surrounding Miami, Florida, USA, which contained a 

total of 1,864 nest cavities excavated by four woodpecker species.  Palm trees were used 

more than all other tree categories, and royal palms (Roystonea regia) were the most-used 

species overall.  Palm snags were preferentially excavated in every habitat where they 

were available and three of the four woodpecker species used palms snags over all other 

categories of trees.  Red-bellied Woodpeckers (Melanerpes carolinus) were the most 

prolific cavity excavators, creating 78.1% of holes.  Remnant patches of two native forest 

types contained the highest densities of woodpecker nest trees.  We found a higher 

density of nest trees in moderately-developed suburban areas than either rural, 

agricultural areas or in the highly-developed urban core.  We consider how these results 



13 
 

can inform conservation efforts in the developing tropics, and especially within similar 

urbanizing environments in the nearby Caribbean. 

2.2 Introduction 

Woodpeckers are globally distributed birds, absent only from Australasia, 

Antarctica, Madagascar, remote islands, and treeless environments (Mikusiński 2006; 

Ilsøe et al. 2017).  The tropics have the greatest richness of woodpecker species, as well 

as the greatest richness of imperiled woodpecker species (Mikusiński 2006; Lammertink 

2014).  Woodpeckers are considered keystone species due to their role in maintaining 

many cavity-nesting bird populations, as well as myriad other species that use tree 

cavities, by excavating holes (Martin et al. 2004; Blanc and Walters 2008; Robles and 

Martin 2013; Cockle and Martin 2015).  Despite the great threats to conservation in the 

tropics, most research on imperiled woodpeckers have focused on three temperate North 

American species, the Red-headed (Melanerpes erythrocephalus), Red-cockaded 

(Picoides borealis) and Ivory-billed Woodpeckers (Campephilus principalis) 

(Lammertink 2014).  Woodpecker conservation is needed in tropical regions, where 

deforestation and urbanization follow rapid population growth (Meyer and Turner 1992; 

Cincotta et al. 2000).  Much human population growth in Latin America and the 

Caribbean occurs in coastal or lowland regions, and half of the woodpecker species red-

listed by IUCN occur in these regions (Lammertink 2014). 

Managing expanding urban areas for woodpeckers will be a major conservation 

challenge.  As urban regions grow to cover more land area in the tropics, better policies 

are needed to conserve species within the heterogeneous matrix of developed areas, urban 

parks, and conservation lands that comprise the urban matrix.  The effects of urbanization 
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on species richness and abundance of cavity-nesting birds is a topic of some debate.  

Strong negative effects are observed in some environments (Luck and Smallbone 2010) 

and positive effects in others (Chace and Walsh 2006).  Generally, land birds are 

excellent indicators of the effects on urbanization, due to their mobility and rapid 

response to changes in the landscape (Hutto 1998; Marzluff et al. 1998; Alberti 2008).  

The ecology of urban woodpeckers has been studied in many temperate regions (Moulton 

and Adams 1991; Morrison and Chapman 2005; LaMontagne et al. 2015; Anderson and 

LaMontagne 2016; Tomasevic and Marzluff 2017, 2018; Figarski and Kajtoch 2018), 

where managers have identified critical resources such as the characteristics and densities 

of snags (standing dead trees), and green space requirements.  In some environments, 

specific tree taxa may be important for nesting woodpeckers, such as cactus, bamboo, 

pines, or palms (Kerpez and Smith 1990; Kratter 1998; James et al. 2001).  For example, 

resource managers in Arizona, USA have legally protected the saguaro cactus (Carnegiea 

gigantea) in part because of its importance to cavity-nesting birds (Brush et al. 1983; 

Pavek 1993).  In some tropical and subtropical regions, woodpeckers are less important 

to cavity nest webs due to availability of natural cavities (Cockle et al. 2011a; b).  

Resource managers in the tropics need more information on the ecology of urban 

woodpeckers, as well as tropical woodpeckers more broadly.  

South Florida (USA), centered on Miami-Dade County resembles other Caribbean 

cities in its size and mixture of land uses.  Its location is subtropical in latitude but 

tropical in climate given its low elevation and proximity to the warm currents flowing 

through the Straits of Florida and up the eastern US coast.  Native forest communities and 

developed areas of the county are both dominated by tropical vegetation, and the 



15 
 

environments and biota are more similar to the Caribbean than to temperate North 

America (Lee and West 2011).  In Miami, and other tropical cities, palm trees are a major 

presence in both urban forests and natural plant communities.  A study in adjacent 

Broward County, Florida found a preference among residents for non-shade trees like 

palms in urban tree distribution programs (Dawes et al. 2018).  In densely-packed urban 

environments, trees with small canopies are horticulturally preferred over spreading 

shade trees, and palms are often valued for this morphology.  Native palms are a major 

component of relict natural areas in Miami, including upland forests and wetlands, and 

produce fruits consumed by birds and mammals.  Both native and exotic palms are 

widely planted for their aesthetic properties.  Several exotic palms have escaped 

cultivation through wide use as landscape trees, such as coconut palm (Cocos nucifera) 

and queen palm (Syagrus romanzoffiana) (Florida Exotic Pest Plant Council 2017).  The 

uplands of the region were historically covered with pine rockland forest, an open, 

savanna-like community dominated by South Florida slash pine (Pinus elliottii var. 

densa) in the canopy, but containing a diverse mixture of tropical understory plants 

(Possley and Maschinski 2008; Maschinski et al. 2011; Trotta et al. 2018).  As they occur 

on the highest elevations in this hurricane and flood-prone region, pine rocklands were 

the first areas developed for permanent human settlements.  Even where they were not 

directly cleared, the condition of these forests declined greatly due to fire suppression.  

Isolated patches remain throughout the southern, less-developed portion of Miami-Dade 

County, where fire can be used more effectively for management (Diamond and Heinen 

2016).  In the absence of fire, hardwood trees grow in the understory, pine regeneration is 

stifled, and tropical hardwood hammock forest (hereafter hardwood hammocks) 
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develops.  These are closed-canopy tropical dry forests dominated by a variety of 

broadleaved trees.  Native Florida hardwood trees are primarily of West Indian origin.  

Pine trees remaining from early seral stages and understory palms are components of 

some hardwood hammocks.   

The modern landscapes of Miami-Dade County uplands are predominantly urban.  

The county itself has nearly three million residents, but much of its ca. 5,000 km2 is 

wetland occupied by national, state, or local preserves.  Most prominent is Everglades 

National Park, a Category 2 protected area, World Heritage Site, Biosphere Reserve, and 

Wetland of International Importance (Heinen 1995).  The broader Miami metropolitan 

area has over six million residents, and is the seventh most populous metropolitan area in 

the United States (United States Census Bureau 2010).  Despite high property values and 

development pressures, significant portions of urban Miami-Dade have been preserved in 

natural or semi-natural states, including county and state parks and conserved private 

forests (Alonso and Heinen 2011; Giannini and Heinen 2014).  The County’s street tree 

master plan calls for increasing tree canopy cover to a countywide average of 30% by 

2020, up from 10% in 1996 (Miami-Dade County 2007).  These actions thus provide 

habitat for woodpeckers to excavate in most terrestrial environments, and at every level 

of urban development.  The objectives of this paper are to determine (1) what tree species 

and physical attributes are important for woodpecker nesting, (2) what habitat cover types 

(including urbanized areas at different levels of development) are used most frequently 

by woodpeckers for nesting, and (3) which temperate woodpecker species are the most 

prevalent in the southernmost portion of their range?  We also consider how preferences 
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for specific types of nest trees in urban regions can help conservation efforts elsewhere in 

the tropics, especially within the Caribbean.  

 

2.3 Methods 

2.3.1 Field Methods for Locating Woodpecker Cavity Trees 

We modified the United States Forest Service protocol for locating and 

monitoring cavity-nesting birds for an urban environment (Dudley and Saab 2003).  Belt 

transects searching for snags and cavities are not possible in an urban environment, so we 

used a random walk search following whatever paths would allow us to investigate 

safely.  The metrics for comparing responses to habitat change were changed from 

comparisons of nests per unit area to nests per unit distance searched, as total area 

sampling is not possible in developed areas.  Almost all nests were located by search 

image and, during the breeding season, some nests were located by following 

woodpeckers and/or secondary-cavity nesters, or by hearing nestlings beg.  We used GPS 

tracking to determine search distances in each habitat type, and record all nest trees.  

Searches were conducted by driving, bicycling, and/or walking through various urban 

and natural habitats (Figure 2.1).  We assumed a difference in detectability in searches, 

with the highest likelihood of detection walking, intermediate by bicycle, and lowest by 

motor vehicle.  In order to avoid overly searching native upland forests by foot and 

bicycle, we selected additional sites outside of our core area to search exclusively by 

motor vehicle, such as Dagny Johnson Key Largo Hammock Botanical State Park, and a 

portion of Long Pine Key, Everglades National Park.  We searched for nests from 
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October 2016 to August 2018, encompassing two full breeding seasons.  All data was 

collected by a single observer, with the assistance of over two dozen volunteers.  

2.3.2 Study Area 

Our study region focused on Miami-Dade County.  The City of Miami Beach and 

the Village of Palmetto Bay, two urbanized municipalities within Miami-Dade County, 

had recently collected street tree inventories.  The inventories were collected by arborists 

and contain species identification of every tree that intersects the public right-of-way.  

These two tree surveys contained over 55,000 trees and are representative of the tree 

composition of the county as a whole.  We used the inventories to compare woodpecker 

nest tree species in developed areas to the overall urban forest composition.  We surveyed 

less frequently outside the County, making one visit each north to West Palm Beach, the 

northern limit of the metropolitan region, and southwest to Key West, the southernmost 

point of the continental USA.   

2.3.3 Field Methods for Recording and Monitoring Nest Trees 

We recorded data for each nest tree: tree species, habitat type, tree height, decay 

class, and diameter at breast height (DBH) were recorded (Dudley and Saab 2003).  We 

recorded 20 different habitat types in our surveys.  These included multiple native forest 

types, herbaceous wetlands, and different densities of urban development.  Key 

characteristics for each habitat are described in Appendix 1.  Habitats with less than 50 

km of distance searched were pooled for analysis as “other habitats.”  We divided tree 

species into four categories: palms, pines, hardwoods, and wooden telephone/utility poles 

(hereafter referred to as poles).  We also recorded the decay class for each snag on a scale 

from zero to ten, where decay class one appears recently dead and stable, and decay class 
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nine is disintegrating and appears unsteady and ready to fall.  Live trees were assigned a 

value of zero and not included in the analyses of snags.  Trees that had already fallen but 

had observable nest holes were assigned a value of ten and were also not included in the 

analysis of snags.  Poles were not assigned a decay class.  Snags are particularly 

important for woodpeckers, as these standing dead trees provide ample opportunities for 

cavity excavation (Drapeau et al. 2009).  By contrast, a live tree may not have any dead 

branches suitable for excavation.  For each woodpecker cavity, we recorded the height, 

entrance hole diameter, and the species of woodpecker that was the original excavator 

(e.g. Dudley and Saab (2003), using cues of cavity size and shape when direct 

observations were unavailable.   

2.3.4. Field Methods for Inspecting Woodpecker Nests 

We inspected the interior of woodpecker nest cavities using a wireless video 

camera designed for the study of cavity-nesting birds (Luneau and Noel 2010). The 

camera was mounted on a collapsible fiberglass pole capable of reaching nests up to 

approximately 15 m above the ground.  Inspections were done in non-breeding and 

breeding seasons to determine which cavities were sufficiently large and suitable for 

nesting.    

2.3.5 Data Analysis  

 We completed all statistical analyses using IBM SPSS version 20.0 and ArcMap 

GIS version 10.4.  Using univariate analysis of variance, we compared the four categories 

of tree species for mean height, mean DBH, number of woodpecker nest holes per tree, 

amount of decay, and nest height ratio, the nest height as a proportion of tree height.  We 

used chi-square tests for differences in the proportions of excavated trees that were snags 
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or living trees, and in the proportions of trees available in developed regions to the trees 

excavated by woodpeckers.  We used univariate analysis of variance to compare the four 

woodpecker excavators for tree height, tree DBH, nest height proportion of tree height, 

and nest entrance hole diameter.  We used aerial photographs in combination with field 

notes and GPS tracks to measure search distance in each habitat in ArcMap.  Mean values 

reported in the results are ± 1 standard deviation (SD).  

 

2.4 Results 

2.4.1 Woodpecker Nests by Habitat Type 

We searched more than 50 km of 13 different habitats across developed and 

wildland areas (Table 1).  The two native upland forest types, pine rocklands and 

hardwood hammocks, contained the greatest concentrations of woodpecker nest trees.  

Habitats dominated by pine trees are the major exception to the trend towards the use of 

palms.  Nests in pine rocklands were exclusively in P. elliottii var. densa trees, at a 

density of 0.38 nest trees per km searched.  Despite their importance to woodpeckers in 

these forests, pines were only 0.1%, and all coniferous trees were only 0.2%, of trees 

recorded in the two urban tree inventories.  Nest trees in hardwood hammocks were 

found every 0.34 km and were evenly split between palms and hardwoods.  Parks and 

botanical gardens also featured high concentrations of nests, 0.33 and 0.31 per km 

respectively, mostly in palm trees.  The inventories for Miami Beach and Palmetto Bay 

contained 55,101 trees: 53.6% palms, 46.2% hardwoods, and 0.2% conifers.  Within 

those developed areas, palms were 83.0% of nest trees, hardwoods were 12.2%, 

telephone poles were 3.9%, and conifers were 0.8% of nest trees. 
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2.4.2 Woodpecker Nests by Tree Category 

We recorded data on 967 nest trees throughout the study, although 17 were 

removed from some analyses due to incomplete data beyond species identification.  Of 

the nest trees in the sample, 63.1% were palms, 18.8% were hardwoods, 11.4% were 

pines, and 6.7% were poles.  Nest trees found in urban and suburban areas, and mowed 

urban parkland (excluding urban natural plant communities) accounted for 49.7% of all 

nests.  A chi-square test of independence for whether woodpecker nest tree types differed 

from the urban forest community as a whole was highly significant in favor of palms ( χ2 

(2, N = 55,565) = 230.6, p < 0.001). We recorded 26 different species of palms in total, 

and four additional nest trees were unidentified palm snags.  Nests were most common in 

the most abundant palms species:  royal palm (Roystonea regia), coconut palm (Cocos 

nucifera), and cabbage palm (Sabal palmetto).  However, we also recorded nests in rare, 

exotic palm snags in botanical gardens, such as the critically endangered Haitian endemic 

carossier palm (Attalea crassispatha).   

Royal palm plays an important role as a substrate for woodpeckers in the region 

(Table 2) and they were the most commonly excavated species in urban areas, suburban 

areas, rural areas, developed parkland, and surprisingly, tropical hardwood hammocks.  

Royal palms are uncommon in hammocks, found primarily at edges and in gaps, and we 

estimated they usually represent <1% of arborescent stems in these forests.  This was the 

most common tree species used by woodpeckers and 28.0% of all nests were found in 

royal palm alone.  In developed areas, they represented 37.1% of all excavated trees.  

Within the urban tree inventories, they were the third most common tree species, but 

represented only 6.6% of the total trees.  One quarter of all nest trees found in hardwood 
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hammocks were royal palms, but many hardwood hammocks contained no royal palms, 

or any other palm species.  We found several hammocks with no royal palms that 

contained few to no nest trees.   

The four categories of tree differed significantly in their height, DBH, decay 

class, and nest height ratio (all p < 0.001, Table 3).  Palm trees were shorter than the other 

categories of trees except for pines.  Pine trees had the lowest diameter, and often the 

excavated snags had already lost their bark and sapwood, with only a thin, decayed 

heartwood spear remaining.  Hardwood trees had the largest diameter, with a mean DBH 

double that of most other trees.  Palm trees were the least decayed category of tree.  

Cavities in hardwood trees were proportionally lower in height than in other trees.  

Between hardwoods, palms, and pines, the proportion of nests made in snags versus live 

trees differed significantly (χ2 (2, N = 780) = 106.5, p < 0.001).  Less than two thirds of 

hardwood nest trees were snags (65 of 105), compared to over 90% of those in palms 

(528 of 565) and pines (108 of 110).  Woodpecker cavities in live hardwood trees were 

most often found in dead limbs or limb stubs below canopy height.  All four categories of 

trees supported an average of about two nest holes per tree, and an ANOVA indicated no 

differences between tree categories (p = 0.866).  Likewise, the number of nest holes per 

tree did not differ among the 20 most abundant species excavated (p = 0.219).  Seven of 

these 20 species are exotic invasive trees (Florida Exotic Pest Plant Council 2017). 

2.4.3 Tree Categories across Habitat Types 

The coastal habitats, i.e., mangrove forests and coastal prairies, featured 

moderately high numbers of woodpecker nests, 0.27 and 0.23 per km, respectively.  

Mangrove forests were the only habitat in which a majority of woodpecker nests were 
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found in broadleaved trees, many in the exotic invasive hardwood Australian Pine 

(Casuarina equisetifolia) which are emergent above the mangrove canopy.  Coastal 

prairie nests were primarily in palm trees.  We found a moderate number of nest trees in 

suburban areas and campuses; both were 0.16 per km.  Nests in both environments were 

found primarily in palms.  Beaches, cypress prairie, prairie, rural, and urban 

environments all had woodpecker nest trees in relatively low numbers (≤ 0.12 per km).  

The environments in which nest trees were less common also had relatively few trees.  

Rural areas were variable, some had high concentrations of trees, but others were treeless 

agricultural lands.  Telephone poles were important nest sites for woodpeckers in prairie 

and cypress prairie environments, but palms were the main nest substrate in beaches, 

rural areas and urban environments.   

2.4.4 Role of Four Woodpecker Excavator Species 

Four woodpecker species were responsible for the creation of nest cavities.  Of 

the 1,864 cavities we recorded, 78.1% were excavated by Red-bellied Woodpeckers 

(Melanerpes carolinus), 16.0% were by Pileated Woodpeckers (Dryocopus pileatus), 

3.7% by Northern Flickers (Colaptes auratus), and 2.3% by Downy Woodpeckers 

(Picoides pubescens).  Downy Woodpeckers were the only species to largely avoid palm 

trees, favoring pines and hardwoods for excavation.  Only 16.7% of Downy Woodpecker 

nest trees were palms.  They were also the rarest of the woodpecker species recorded 

here.  The other three species used palms for over half of their cavities.  Pileated 

woodpeckers were the primary user of telephone poles, particularly in the treeless prairie 

and dwarf cypress prairie.  Telephone poles excavated in suburban landscapes were 

exclusively the work of Red-bellied Woodpeckers.  We additionally recorded only 38 
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natural cavities in our study area, none of which were used by nesting birds.  An Eastern 

Screech Owl (Megascops asio) was once observed in one natural cavity, and bees 

constructed a hive in another. 

The four woodpecker species differed significantly in their nest tree height, DBH, 

and entrance hole diameter (all p < 0.001, Table 4).  Downy and Red-bellied 

Woodpeckers used shorter trees (9.7 ± 3.3 and 9.1 ± 3.9 m) than Northern Flickers (11.7 

± 4.0 m) and Pileated Woodpeckers (12.7 ± 3.9 m).  There was no difference in the nest 

height ratio (p = 0.835).  All woodpecker species placed nests at approximately 80% the 

height of the tree, although Red-bellied Woodpeckers were more variable in their height 

selection, and at least one created a nest only a few decimeters above the ground 

(Diamond 2018).  Red-bellied Woodpecker nest trees did not differ in DBH from other 

species (30.2 ± 18 cm).  Downy Woodpecker nest trees were smaller in diameter (23.4 ± 

11.7 cm) than either Northern Flicker (32.1 ± 13.1 cm) or Pileated Woodpecker (36.8 ± 

24.9 cm) nest trees.  All four woodpecker species created different diameter entrance 

holes, with sizes roughly proportional to their body size.  Downy Woodpecker holes were 

the smallest (3.3 ± 0.6 cm), followed by Red-bellied Woodpeckers (6.4 ± 0.9 cm), 

Northern Flickers (7.9 ± 1.1 cm), and Pileated Woodpeckers (11.6 ± 2.9 cm).   

 

2.5 Discussion 

2.5.1 Importance of Palm Trees to Woodpeckers 

Palm trees are disproportionately important for woodpeckers in our study area; 

seven of the top ten excavated tree species were palms.  Palms were the most excavated 

trees across all habitat types and were even used more by woodpeckers in developed than 
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in more rural areas.  Palms were also the least decayed category of tree.  Softer wood is 

preferred by woodpeckers, indicating that palms require less decay than many other trees 

to  reach optimal hardness (Schepps et al. 1999; Lorenz et al. 2015; Gutzat and Dormann 

2018).  The structure of a palm trunk, with a tough exterior and soft, pithy core, may 

expedite cavity formation processes and thus make them more appealing to woodpeckers 

(Boyle et al. 2008).  In a study of wood density across 2456 neotropical tree species, 

palms (Arecaceae) had a mean wood density of 0.488 g/cm3 compared to a 0.645 g/cm3 

for all species (Chave et al. 2006).   

Woodpecker nests in palm snags may also persist longer in the environment 

because less-decayed snags are more resistant to disturbances (Russell et al. 2006).  In 

contrast to Boyle et al. (2008), who found holes in palms exclusively in snags, we found 

a small number of cavities in living palm trees.  These were primarily old, large royal 

palms which had dead portions of their main bole.  Still, 93.5% of woodpecker holes in 

palms were in dead snags.  We inserted a pole-mounted nest inspection camera into 

cavities in live palms, but the holes were usually too shallow, or poorly-drained to 

support nests.  Cavities in palm snags rarely contained standing water.  We inspected 750 

cavities starting before the rainy season began, and three cavities contained water, all of 

which were in live palm trees, which we never observed in palm snags (Figure 2.2).  

Woodpeckers may thus select palm snags over live palms because of better drainage as 

well as less dense wood. 

2.5.2 Substrate Availability in Urban Forest Fragments and Developed Areas  

The two native upland forest habitats, pine rockland and hardwood hammock, 

contained the highest density of nests per km searched but not all native environments 
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supported large numbers of woodpecker nests.  For example, various prairie types had 

few and/or dwarf-sized trees.  Some prairies had nest substrates only in wooden poles.  

Mowed parkland and botanical gardens contained a greater density of nests than lowland 

forests and grasslands.  Woodlots in urban and suburban areas are thought to retain a 

greater density of snags than rural areas because of a lower intensity of harvest (Mörtberg 

and Wallentinus 2000).  This pattern may not be true in developing countries, where 

concentrated poverty in urban environments can drive the complete exploitation of small 

woodlots (Makonese and Mushamba 2004).  In the absence of extractive harvest, 

woodpecker nesting peaks at intermediate levels of urban disturbance, a pattern 

frequently observed among birds (Blair 1996; Alberti 2008; Evans 2010).   

2.5.3 Distribution and Substrate Usage by Four Woodpecker Excavators  

The Red-bellied Woodpecker is present in nearly every terrestrial environment in 

South Florida and, in a study of native and exotic birds in urban Miami-Dade County, 

they were located at near-constant rates across a large gradient of development 

(Abdelrahman 2000).  Pileated Woodpecker nests were common in parks near the urban 

core that contained hardwood hammocks, especially near the coastline.  Historically, they 

were thought of as birds of undisturbed, mature forest (Hoyt 1957), but similar to what 

we observed, Pileated Woodpecker in Seattle, Washington, were found nesting in urban 

parks and other green spaces where snags were retained (Tomasevic and Marzluff 2018).  

We found Pileated Woodpecker cavities in palms along the coastal prairies of Everglades 

National Park as well as in telephone poles in the treeless prairies of the East-central 

Everglades.  Northern Flicker nests were found most often in the rural fringes of our 

study area, near the border with Everglades National Park, as well as inside the national 
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park.  Northern Flickers forage for ants on the ground, potentially leaving them 

vulnerable to feral cats, which are a common problem in Miami-Dade (Clarke and Pacin 

2002; Elchuk and Wiebe 2002; Florida Fish and Wildlife Conservation Commission 

2003).  This observation is important as it suggests Flickers were excluded from the 

urban environment not because of insufficient nest substrate, but likely other ecological 

factors. 

2.5.4 Changes from Historical Woodpecker Species Composition in the Study Area 

In addition to the four woodpecker species recorded here, four other woodpecker 

species historically nested in our study area.  Red-headed Woodpeckers are a rarity in the 

region.  We did not find any cavities excavated by Red-headed Woodpeckers in spite of 

searching four sites where occasional observations had been reported on eBird in the past 

10 years (Sullivan et al. 2009).  Hairy Woodpeckers (Picoides villosus)  are occasionally 

found at the western edge of our study area but we did not find any nests excavated by 

the species in spite of searching two sites where occasional observations (i.e. Big Cypress 

National Preserve and Fakahatchee Strand State Preserve).  Red-cockaded Woodpeckers 

are rarely found in the Western fringes of our study area.  This species is endangered and 

particularly well-studied, and it is closely linked to old-growth pine forests (Hovis and 

Labisky 1985; James et al. 2001).  We searched one site in Big Cypress National 

Preserve where Red-cockaded Woodpeckers have been observed but found no nest trees. 

Ivory-billed Woodpecker was a breeding but rare resident of hardwood hammocks in 

Miami-Dade as late as 1917 (Howell 1921); it appeared to have already been extirpated 

from this region by 1924 (Allen and Kellogg 1937) and is widely believed to be extinct 

(Jackson 2006). 
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2.5.5 Palm Snags as a Critical Resource in Urban Areas 

The results of our study indicate that palms may be an overlooked critical 

resource for the nesting of woodpeckers in urbanized tropical regions.  Consequentially, 

it should also be a critical resource to other cavity-nesting birds that depend on 

woodpeckers to excavate nests.  Woodpecker nests were critical for secondary users here, 

unlike portions of South America and Eurasia where natural cavities are plentiful (Cockle 

et al. 2011b).  Most of these cavities are in palm snags, suggesting they are an important 

link in the cavity nest web.  Leonard and Stout (2006) expressed surprise at the nesting 

relationship between woodpeckers and cabbage palms, when they had expected to find a 

nesting relationship with oaks (Quercus spp.) around Orlando, FL, based on studies 

conducted elsewhere.  Cabbage palms, which are native to south Florida, were the fourth 

most common species excavated by woodpeckers in our study. Our results indicate that 

the retention of palm snags, especially within urban regions, may be important for the 

conservation of cavity-nesting birds.  Local government policies could avoid cutting of 

snags, especially palms, on public lands where they are not a risk of falling on roads or 

buildings.  Conservation education may convince some private landowners to do the 

same. 

2.5.6 Caribbean Woodpeckers and Palm Snags 

Palms appear to be critically important for at least two imperiled woodpeckers in 

the Caribbean: Fernandina’s Flicker (Colaptes fernandinae) and the Guadeloupe 

Woodpecker (Melanerpes herminieri).  The vulnerable Fernandina’s Flicker is endemic 

to Cuba. One study found nests of this species exclusively in palm snags (Mitchell et al. 

2000).  The Guadeloupe Woodpecker is endemic to the two main islands of Guadeloupe 
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and is listed as near-threatened and declining; a study of the species’ ecology found 

coconut palm snags were their primary nest tree (Villard and Rousteau 1998).  A strategy 

suggested for providing nest substrate to Guadeloupe Woodpeckers in urban areas was 

attaching 1 meter sections of coconut palm trunks to the upper section of utility poles 

(Villard et al. 2010).  In addition to the rare woodpeckers that require conservation 

efforts, protecting the more common woodpecker species in urban areas will provide nest 

cavities to many secondary-cavity nesters.  The endemic Hispaniolan Woodpecker 

(Melanerpes striatus)  has been documented nesting from undeveloped coastlines to the 

urban center of Santo Domingo, preferring palms snags over all other trees (Short 1974) 

and the near-threatened Hispaniolan Trogon (Priotelus roseigaster) has been documented 

breeding in former Hispaniolan Woodpecker nests (Bond 1928).  In Cuba, the West 

Indian Woodpecker (Melanerpes superciliaris) and Cuban Green Woodpecker 

(Xiphidiopicus percussus) excavate nests in palms, which are used by the near-threatened 

Cuban Parrot (Amazona leucocephala) (Acosta et al. 2004). 

Protecting palm snags alone will not be enough to conserve woodpeckers in urban 

regions.  Not all woodpecker species will prefer palm snags, as our data shows.  Downy 

Woodpecker, for example, used but did not prefer palm snags, but it is a widely-

distributed temperate species and our study area is the extreme southern edge of its 

geographic range.  Palms are tropical trees, and woodpecker species richness is greatest 

in the tropics and declines rapidly in temperate latitudes (Bjorholm et al. 2005).  The use 

of palms as nest substrates may thus be expected to decline greatly in temperate versus 

tropical bird communities for similar guilds.  When specific plant-animal associations can 

be identified between woodpeckers and nest trees, conservation efforts should be made to 
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maintain them (e.g. Kratter 1998).  Our study shows that palm snags are critical resources 

for woodpeckers in one urbanized tropical area, and are likely to be important for the 

conservation of cavity-nesting birds elsewhere in the tropics, as evidenced by the few 

studies done so far in the Caribbean.  We strongly encourage more such studies. 
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2.7 Tables 

Table 2.1 Top 13 habitats sorted by declining density of nests per km searched.  We defined each habitat by their key 

characteristics, described in Appendix 1.  Other habitats consist of environments with less than 50 kilometers of search distance.  

These consist of freshwater slough, cypress strand, melaleuca prairie, melaleuca forest, pine scrub, pine-cypress forest, and salt 

marsh. 

 Tree categories   

Habitat type Hardwood Palm Pine Utility Pole 

Search distance 

(km) 

Nests per 

km 

Pine rockland   81  212.3 0.38 

Hardwood hammock 34 34 3 2 213.3 0.34 

Park 25 72 2 5 313.7 0.33 

Botanical garden 8 40   157.2 0.31 

Mangrove 34 7   150.0 0.27 

Coastal prairie 3 29   138.1 0.23 

Campus  8 2  62.9 0.16 

Suburban 34 278  14 2083.9 0.16 

Beach 2 5   57.2 0.12 

Cypress prairie    8 68.2 0.12 

Prairie 3 2 5 33 369.8 0.12 

Rural 5 73  1 732.1 0.11 

Urban  43   412.8 0.10 

Other habitats 24 14 17  182.1 0.30 
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2.8 Figures 

 

     

      

                   
                   

Figure 2.1 Search track and nests found within the core study area, Miami-Dade County, Florida. Searches were made by 
bicycle, foot, and automobile. Large clusters of woodpecker nest trees were found in urban parks and natural areas along 
the coastline.
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Figure 2.2 Woodpeckers rarely excavated holes in live palms, 93.5% of palm cavities were excavated
in snags. Woodpecker cavities in live palms were often too shallow, and poorly-drained even in the 
dryseason. The nest inspection camera is seen in the reflection of standing water during the dry season (a). 

                 

           

Snags were used more for active nesting attempts; (b) a female Red-bellied Woodpecker incubates eggs in a
palm snag two days after (a) and less than two km away.
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CHAPTER 3: URBAN WOODPECKER NEST SITE CHARACTERISTICS BEFORE 

AND AFTER A HURRICANE DISTURBANCE 

3.1 Abstract 

 The cavities that woodpeckers excavate and use for nesting are also important for 

many other cavity-nesting birds.  The availability of appropriate trees for cavity 

excavation in an urban environment is an important factor governing the abundance of 

woodpecker nest cavities.  To understand the impacts of hurricane disturbance on 

characteristics of trees used by nesting woodpeckers, we surveyed woodpecker nests in 

Southeast Florida before and after Hurricane Irma in 2017.  We used these data to 

understand which nest sites were most likely to persist after the hurricane, and compare 

nest site characteristics before and after the storm.  Woodpecker nests in dead pine trees 

(snags) fared poorly compared to nests in palm snags, live hardwoods and hardwood 

snags, and telephone poles.  In the year after Hurricane Irma, the proportion of new nests 

in palm snags increased, while the proportion of nests excavated in pines and hardwoods 

decreased.  Palms generally have softer wood, and their physical structure could make 

them more attractive to woodpeckers in the first year after a storm.  Trees excavated in 

the year after Hurricane Irma were 23% shorter than trees with nests found before the 

hurricane, but there was no difference in the diameter of excavated trees.  The decay class 

of trees and the number of woodpecker holes did not significantly impact the persistence 

rates of woodpecker nest trees.  The results of this study are relevant to the management 

of dead trees in urban areas, especially in the Caribbean and tropical regions which are 

urbanizing and vulnerable to natural disturbances like hurricanes.  Cutting urban palm 
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snags immediately following a storm removes a critical resource for woodpeckers during 

the first year of recovery. 

 

3.2 Introduction 

Woodpeckers are considered keystone species in forested environments because 

the nest cavities they create are used as breeding sites by many other species (Blanc and 

Walters 2008a, 2008b, Cornelius et al. 2008, Jusino et al. 2016).  In the coastal region of 

Southeast Florida, three woodpecker species are the primary cavity excavators.  The Red-

bellied Woodpecker (Melanerpes carolinus) is by far the most common, due to its 

presence in almost all terrestrial landscapes, including highly-developed areas and small 

urban forest patches.  Both Pileated Woodpeckers (Hylatomus pileatus) and Northern 

Flickers (Colaptes auratus) are patchy in distribution and share an affinity for wildland 

settings. 

Hurricane Irma impacted southeast Florida on 10 September 2017.  This is the 

most densely-developed part of Florida, with over six million residents in Miami, Fort 

Lauderdale, and West Palm Beach (United States Census Bureau 2010).  The combined 

effects of wind, rain, and flooding caused many woodpecker nest trees to fall.  It also 

killed many trees, some of which remained standing as snags, creating favorable substrate 

for woodpecker excavation.  This hurricane provided an opportunity to understand how 

major disturbances impact nesting sites of woodpeckers in a highly urbanized region. 

Prior studies of the effects of hurricane disturbance on woodpecker nest trees have 

been limited to the endangered Red-cockaded Woodpecker (Leuconotopicus borealis), 

which breeds in Longleaf Pine (Pinus palustris) forests of the southeastern United States 
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(Engstrom and Evans 1990, Torres and Leberg 1996, Bainbridge et al. 2011).  This 

woodpecker is unusual because it creates cavities exclusively in live trees, while most 

other woodpeckers use snags, i.e., dead trees that remain standing.  Other studies have 

surveyed the abundance of birds using point counts or similar survey data before and 

after hurricanes but did not collect data on woodpecker cavities (Cely 1991, Waide 1991, 

Wunderle et al. 1992, Wiley and Wunderle 1993, Greenberg and Lanham 2001). 

Hurricane disturbance impacts on woodpecker nests have been less-well studied 

than the effects of fire and logging.  Because they are intentional occurrences, logging 

and prescribed fire allow for planned comparisons of nesting activity before and after the 

event, as well as comparisons with nearby control plots (Brawn et al. 2001, Russell et al. 

2006, 2007, Seavy et al. 2012, Wiebe 2014).  Our study differed in its opportunistic 

nature; we were already conducting a study on woodpecker nest trees in South Florida 

prior to the hurricane’s arrival in this region.   

Our objectives were to evaluate the impact of a hurricane disturbance on nest 

persistence, and to compare characteristics of nest sites before and after the hurricane.  

Following Hurricane Irma, we expected that the storm-induced changes in the species 

composition and physical attributes of snag trees would alter the composition of trees 

excavated by woodpeckers in the following nesting season.  We also hypothesized that 

palm snags containing woodpecker nests would be more likely to fall than other 

categories of nest trees, and that the physical characteristics of new palm snags would 

make them more attractive to woodpeckers in the first nesting season following the 

hurricane.  Understanding the change in composition should aid in planning for cavity-

nesting birds when disturbances occur. We hypothesized that assessments of greater 
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decay status would be associated with more nest trees falling.  We hypothesized that 

snags would be more vulnerable to high-velocity winds if they contain a greater number 

of woodpecker holes, as these serve as points for wind to pass through the center of the 

tree.  We predicted that taller snags were more susceptible to falling, as a longer bole 

would catch more and stronger wind gusts than a small stub, and remaining and new 

snags would be shorter and wider.  Information learned from the physical attributes of 

snag survival can help managers in urban areas decide which snags pose risks to 

structures and which are most important for birds.  We considered our results in relation 

to the conservation of cavity-nesting birds in urban regions of Florida and the Caribbean. 

 

3.3 Methods 

3.3.1 Post Hurricane Surveys 

Woodpecker nests were located continuously starting 11 months prior to 

Hurricane Irma.  Nests were located throughout southeast coastal Florida.  Survey routes 

included public streets in Miami-Dade County, urban parks and natural areas, and 

wilderness areas of Everglades National Park.  Hurricane Irma impacted our study area 

on 10 September 2017, peak wind speeds during the storm were recorded around our 

study area that day.  Maximum speed of gusts were 71 kts in South Miami, 63 kts at 

Kendall Executive Airport, 62 kts at Virginia Key, and 77 kts at Florida City, adjacent to 

Everglades National Park.  We began checking the status of woodpecker nests the day 

following the storm.  We attempted to check as many nest trees as we could.  In the first 

days after the hurricane, gasoline was locally unavailable, so surveys were conducted 

exclusively by bicycle.  As various field sites became accessible, we checked on 251 nest 
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trees through 13 December 2017 (Figure 3.1).  After this time, it became too difficult to 

determine what trees had been felled by Hurricane Irma and what had been removed by 

land managers.  Following this initial survey, we resumed recording the excavation of 

new woodpecker nests for seven months, through the end of the breeding season in 

August. 

3.3.2 Field Methods for Locating Woodpecker Cavity Trees 

Woodpecker nest trees were located using a protocol described by the United 

States Forest Service for studying cavity-nesting birds (Dudley and Saab 2003).  Most 

nest trees were located by search image, while a few were located by following the flight 

of woodpeckers or other cavity-nesting birds.  We recorded the nesting site by species, 

which were divided into four categories for analysis: palm trees, pine trees, hardwood 

trees (arborescent dicotyledons), and wood telephone/utility poles (hereafter telephone 

poles).  We note that the telephone poles in which nests were created were once living 

pine trees that after harvest were shaped and chemically treated to inhibit decay. 

3.3.3 Field Methods for Recording Nest Trees 

We initially recorded several attributes of the nest tree.  We recorded the height of 

the tree and the diameter at breast height (DBH).  We recorded the number of 

woodpecker nest cavities in a tree.  The overall decay class of the snag tree was assessed 

on a scale from 1 to 9.  A decay class 1 snag had minimal decay and appeared recently 

dead, while a class nine snag was riddled with termites, fungal conks, and was physically 

unsteady.  Live trees were given a value of zero and not included in analyses of snags.  

Trees with nests that had already fallen were assigned a value of ten and also not included 



45 
 

in analysis of snags.  No decay class was assigned to telephone poles, which were not 

included in analysis of snags.   

3.3.4 Data Analysis 

Data were analyzed using IBM SPSS version 20.0, Microsoft Excel 2016, and 

ArcMap version 10.4.  We used a chi-square test for independence to evaluate whether 

some categories of trees were more likely to persist after the hurricane, and if the 

category of trees used changed significantly before and after the storm.  We used t-tests 

to compare attributes like the number of nest holes and decay class were different 

between snags that persisted and those which fell during the hurricane. 

 

3.4 Results 

3.4.1 Tree Category and Persistence After Hurricane Disturbance 

The proportion of pine, hardwood, palm, and telephone pole nests that fell during 

Hurricane Irma differed significantly, χ2 (3, N = 251) = 32.14, P < 0.01.  Nests in pine 

trees fared poorly, with less than one third still standing after the hurricane.  These pine 

trees were exclusively found in pine rockland forests, where they were the only tree 

species excavated by woodpeckers.  Most telephone pole nests (92.9%) survived the 

storm.  Palm and hardwood nest trees remained standing at intermediate rates, 53.4% and 

65.5% respectively.  The category of tree excavated in the year after the storm changed 

significantly from nests found the previous year.  Nests in palms increased from 55.6% of 

nests to 80.7%, and all other categories decreased χ2 (3, N = 904) = 64.13, P < 0.01, 

Figure 3.2.  The proportion of new pine and hardwood trees decreased by nearly half.  

Telephone poles decreased from 8.3% to 0.3%, as only one new telephone pole was 
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found excavated the year after Hurricane Irma.  The results suggest it may take longer for 

the dense heartwood of pines and hardwoods to decay and become suitable for 

excavation than palm trees.  Palms have hard exteriors but softer interiors, and 

woodpeckers were able to excavate more freshly killed palm snags in the first year. 

3.4.2 Physical Characteristics of Nest Trees Before and After Hurricane Irma  

There was no significant difference in the number of woodpecker holes in snags 

that were still standing (2.6 ± 1.8) versus those which had fallen (2.8 ± 2.3, P = 0.52, 

Figure 3.3).  Similarly, there was no significant difference in the decay class (1-9) of 

snags that were still standing (3.4 ± 2.0) and those which had fallen (3.9 ± 2.0, P = 0.10, 

Figure 3.3).  Nests excavated in living trees were significantly more likely to survive the 

hurricane than nests in snags, χ2 (1, N = 209) = 19.51, P < 0.01.  Less than half of the 

snags remained, while only 14.3% of live trees with nests were felled by the storm.  

The physical characteristics of new nest trees changed after Hurricane Irma.  

Trees with new nests excavated during the breeding season after Hurricane Irma were 

23.0% shorter than trees found the year before the hurricane, this difference was 

significant (P < 0.01).  The DBH of trees excavated increased 4.3%, but this difference 

was not significant (P = 0.36). 

 

3.5 Discussion 

3.5.1 Characteristics of Nest Trees Persisting and Newly Excavated Snags 

Several results of the hurricane disturbance on woodpecker nests matched our 

predictions.  We had expected palm snags to be the most likely to fall in the hurricane, as 

well as be the most common snags excavated in the months immediately following the 
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storm.  Palm snags with nests survived at an intermediate proportion compared to other 

tree types, while pine snags fared worse.  As palms were also the most common snags 

excavated in the first year, they became significantly more important to woodpeckers.  

Our hypotheses regarding the physical attributes of snags were mostly incorrect.  There 

was no difference in the assessed decay class of snags that survived and snags that fell.  

Similarly, there was no difference in the number of woodpecker holes in snags that fell 

and those that survived.  There was no difference in the DBH of trees found in the years 

before or after, but we did correctly predict that new snags excavated would be shorter, as 

many were snapped by hurricane winds.  Other factors, such as the depth and compaction 

of soil, contribute to wind firmness in hurricanes (Duryea 1997).   

3.5.2 Hardwood Trees and Survival of Living Nest Trees 

Although assessed decay was not a major factor among snags, live trees with 

woodpecker cavities were much more likely to persist.  These are almost exclusively 

excavated in hardwood trees.  The culture and aesthetics of Miami leads to excessive 

pruning of hardwoods.  Homeowners often believe these practices enhance safety and 

stability, but excessive pruning actually makes the tree more vulnerable to wind 

disturbance (Duryea 1997, Miami-Dade County 2007).  Woodpecker nests in dead limbs 

of live hardwoods may be more threatened by landscaping practices than hurricanes.  

3.5.3 Pine Trees and Delayed Creation of New Pine Snags and Nests 

Nests in pine tree snags appeared to be the most vulnerable to disturbance from 

Hurricane Irma, and relatively few nests were excavated in pines the first breeding season 

after the storm.  These post-hurricane responses resemble those reported for woodpeckers 

following fire in pine forests.  In the first three years after the disturbance of a high-
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intensity forest fire in a Northwestern pine forest, woodpeckers were likely to use snags 

that were already dead before the fire and more heavily decayed, suggesting that pine 

trees required several years to decay following a disturbance event before they became 

useful to woodpeckers (Saab and Dudley 1998).  The heavy loss of pine tree nests in our 

study, nearly two thirds of the stock, suggests that these may have been particularly old 

snags.  In South Florida pine forests, the short-term effects of fire on snags showed an 

immediate decline in the number of heavily decayed snags, while fresh, lightly decayed 

snags became more abundant (Lloyd et al. 2012).  The almost complete absence of new 

nests in telephone poles likely relates to their slow decay, inhibited by preservatives.  

Hurricane Irma had almost no impact on the standing stock of telephone pole nests, but 

did nothing to accelerate the use of new telephone poles. 

3.5.3 Increase in Palm Snag Use and Excavation of New Palm Snags  

The increase in palm trees excavated after Hurricane Irma may relate to the ease 

of excavation.  Palm wood is softer than pine or tropical hardwoods, and was the 

substrate used for over 80% of all new woodpecker nests in the post-hurricane period.  In 

a study of nearly 2,500 neotropical tree species, palms had a mean wood density of 0.488 

g/cm3 compared to a mean density of 0.645 g/cm3 for all neotropical tree species (Chave 

et al. 2006).  We had expected nests in existing palm snags to fare poorly in the 

hurricane, but over half survived, an intermediate rate among tree categories.   Palms 

were already a slim majority of trees excavated before Hurricane Irma, and we noted in 

the field that many of the new palm nest snags were trees killed during the storm.  A 

study in Miami after Hurricane Andrew indicated that Coconut Palms (Cocos nucifera), 

Queen Palms (Syagrus romanzoffiana), and Royal Palms (Roystonea regia) were all 
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frequently killed and often still standing, with the upper trunk broken off (Duryea et al. 

1996).  These were three of the most common tree species excavated by woodpeckers 

both before and after Hurricane Irma.   

The structural characteristics of palm trees make them more immediately 

available for woodpecker cavities than pine trees.  Pine and hardwood trees both have 

dense heartwood at their core, surrounded by softer sapwood; woodpeckers will often not 

excavate heartwood until it is weakened by insects or fungal decay (Conner et al. 1976, 

Schepps et al. 1999, Cockle et al. 2012, Jusino et al. 2015).  Where old, large hardwoods 

have rotten centers, these hollows can be excavated only if the surrounding wood is not 

sufficiently thick or hard.  Nests in very large DBH pines and hardwoods often have a 

curve shaped woodpecker nest in the sapwood, which completely avoids the dense, 

undecayed heartwood core (Figure 3.4).  Palm trees do not share this structure, and the 

hardest wood is the outer edge of the trunk (Killmann 1983, Rich 1987).  The tough 

exterior and soft core of palms appears to speed cavity formation (Boyle et al. 2008).  

Palm snags can become hollow while maintaining structural integrity.  The lack of 

heartwood in palms could mean that they are suitable for excavation at a smaller DBH 

than pines or hardwoods.    

3.5.4 Palm Snags and Conservation Opportunities Following Hurricane Disturbance 

Palm snags in the urban areas and parks of Miami were particularly important to 

woodpeckers in the first year after the storm.  As in Hurricane Andrew, most urban 

hardwood trees which died were uprooted, while palms were more likely to remain 

standing dead as a snag (Duryea et al. 1996).  Palm trees were more likely to survive than 

other tree categories in Hurricanes Hugo, Jeanne, and Charley (Francis and Gillespie 
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1993, Duryea et al. 2007).  Many palm snags were cut during the urban clean-up 

immediately following Hurricane Irma.  However, many more snags remained within 

parks and small urban green spaces, where they were not considered a threat to roads or 

buildings.  Some palm snags may have remained uncut for aesthetic reasons; palm snags 

may not be as visually displeasing as hardwood snags.  Many palms such as Veitchia, 

Ptychosperma, Acoelorrhaphe, and Wodyetia species are planted in clusters.  Individual 

snags in the cluster may go unnoticed by landscapers, as the snag stems blend in with the 

living foliage.  Planning for the conservation of cavity-nesting birds in urban regions 

should avoid the cutting of palm snags on public property where they pose no risk to 

structures.  In Cuba, this could be important for the conservation of the vulnerable 

Fernandina’s Flickers (Colaptes fernandinae) and near-threatened Cuban Parrots 

(Amazona leucocephala) which nest in palm snags on the periphery of developed areas 

(Mitchell et al. 2000, Acosta et al. 2004).  The near-threatened Guadeloupe Woodpecker 

(Melanerpes herminieri) also depends on palm snags in an urbanized region (Villard and 

Rousteau 1998, Villard et al. 2010).  In the first year after a hurricane disturbance, palm 

snags may become disproportionately important for woodpeckers nesting in the urban 

tropics, as old nesting snags can persist through hurricane disturbance, and new palm 

snags are heavily used for nest excavation. 
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3.7 Figures 

 

    

  

  

 

  

             

            

         

            
          

           

            
         
         

  

Figure 3.1 Location of 251 woodpecker nest trees sampled before and after 
Hurricane Irma in Miami and nearby Everglades National Park. Each point 
represents one woodpecker nest tree. Points have been minimally
dispersed for visibility.
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Figure 3.2 The proportion of each nest tree category found before and after
Hurricane Irma. Nests found before the hurricane varied in age, having been 
excavated from months to years before the disturbance. Nests found the year after the 

           

       

hurricane were primarily excavated during that year. All categories except palms
declined proportionally in the year after the storm.
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Figure 3.3 Nest trees that remained standing had no significant difference in the 
number of woodpecker holes compared to trees that fell. Nest snags that 
remained standing had no significant difference in their assessed decay class from
  

  
snags that fell.
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       The Red-bellied Woodpecker eggs are approximately 2.5 cm long.

Figure 3.4 Example of a Red-bellied Woodpecker nest in a large DBH Slash Pine 
snag.The woodpecker has avoided the dense heartwood of the pine, creating a
curved nestin the softer sapwood. Smaller DBH pines may not become usable
for several years until the heartwood is sufficiently decayed for excavation. Note:
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CHAPTER 4. EXOTIC PARROTS BREEDING IN TREE CAVITIES: NESTING 

REQUIREMENTS, GEOGRAPHIC DISTRIBUTION, AND POTENTIAL IMPACTS 

ON CAVITY NESTING BIRDS IN SOUTHEAST FLORIDA 

4.1 Abstract 

 Exotic parrots have established breeding populations in southeast Florida, 

including several species that nest in tree cavities.  We aimed to determine the species 

identity, nest site requirements, relative nest abundance, geographic distribution, and 

interactions of parrots with native cavity-nesting bird species.  Several parrot species nest 

in tree cavities, Red-masked Parakeets (Psittacara erythrogenys) and Orange-winged 

Parrots (Amazona amazonica) being the most common (N = 7 and 6 nests, respectively).  

These two parrots had similar nesting requirements, but Orange-winged Parrots use nests 

with larger entrance holes, which they often enlarge.  Geographic analysis of nests 

combined with citizen science data indicates that parrots are limited to developed areas.  

The most common parrots were less abundant cavity nesters than the native birds which 

persist in Miami’s urban areas, and far less abundant than the invasive European Starling 

(Sturnus vulgaris).  Exotic parrots breeding elsewhere in the world have harmed native 

cavity-nesting birds through interference competition, but competitive interference in 

southeast Florida is minimized by the urban affinities of parrots in this region.  The 

relative abundance and geographic distribution suggest that these parrots are unlikely to 

invade adjacent wilderness areas. 
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4.2 Introduction 

Southeast Florida is a global hotspot for invasive exotic fauna of all sorts, 

including birds.  Some of these non-native species have invaded protected wilderness in 

Everglades National Park, threatening the native biota.  Other species have taken 

advantage of the sprawling urban area and its exotic tropical vegetation.  Miami-Dade 

County, Florida is the most densely developed section of the region, which continues 

north to Broward and Palm Beach Counties.  The Miami area has a well-documented 

exotic avifauna, including waterbirds, passerines, and parrots (Owre 1973; James 1997; 

Avery and Moulton 2007; Blackburn and Cassey 2007).  Parrots (Aves: Psittaciformes) 

are primarily tree-cavity nesting species.  As a member of the cavity-nesting guild, they 

compete for suitable nest cavities with a variety of native and exotic birds, including the 

woodpeckers which make the best nest sites (Martin and Eadie 1999; Cornelius et al. 

2008; Blackburn et al. 2009; Orchan et al. 2012; Menchetti and Mori 2014).  Most 

research on the role of exotic parrots in cavity nest webs has been conducted on Rose-

ringed Parakeets (Psittacula krameri) in Europe, which compete with native birds and 

mammals for nest cavities (Runde et al. 2007; Strubbe and Matthysen 2007, 2009; Czajka 

et al. 2011; Newson et al. 2011; Mori et al. 2013; Hernández-Brito et al. 2014, 2018; 

Peck et al. 2014).  This research has generally concluded that the Rose-ringed Parakeet 

have reduced populations of native species though interference competition.  This parrot 

is not a breeding resident in southeast Florida, but several other parrot species are 

participants in cavity nest webs in Miami, using woodpecker holes for reproduction. 

Previous research has identified Miami-Dade County, Florida as a critical 

research area for the establishment of exotic parrot species, in part because of their high 
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species richness in the area (Pranty and Epps 2002).  More parrot species are observed in 

Miami than have established breeding populations, several of which have not joined the 

tree cavity-nesting guild.  Some parrot species do not breed readily in southeast Florida 

but persist because of a high introduction effort.  Other parrots use nest sites other than 

the tree nests we studied.  The goals of our study were (1) to identify species of exotic 

parrots that breed in tree nest cavities, (2) to compare the nesting requirements of the 

most common parrot species, (3) to compare the abundance of parrot nests found in trees 

vs. nests of other cavity nesting birds, and (4) to determine if, based on their relative 

abundance, geographic distribution, and interactions with other cavity nesting birds, tree 

nesting parrots pose a threat to the native cavity nesting guild in natural areas outside of 

the urban matrix. 

 

4.3 Methods 

4.3.1 Study Area 

Our study area encompassed all of Miami-Dade County, Florida, as well as 

surrounding urban and natural areas in Fort Lauderdale, Everglades National Park, and 

the upper Florida Keys.  We searched urban, suburban, and rural developed areas, as well 

as pine rockland forests, tropical hardwood hammocks, recreational parklands, botanical 

gardens, coastal mangrove forests, freshwater and estuarine wetlands, and other habitat 

types found within the study region. Data collection began at the end of the 2016 

breeding bird season, and continued through two full breeding seasons until October 

2018.  We searched roughly alternating days in urban areas and natural settings, 

searching for nests up to eight hours per day.  Within urban areas, we did not expend 
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more search area in areas with parrots reported through citizen science platforms.  We did 

search for specific nest or roost trees reported or photographed by citizen scientists.  

4.3.2 Field Methods for Locating and Monitoring Nest Trees 

 We located and monitored cavity nests following the field protocol established by 

the United States Forest Service (Dudley and Saab 2003).  In order to inspect as many 

sites as possible, few locations were visited more than once every two weeks, although 

active parrot nests were visited approximately once per week.  Previous studies of parrots 

in South Florida have assessed the breeding population of various species based on 

citizen-science observational records or based on breeding observations from the ground.  

This project differed by inspecting all tree cavities found in the region, not just cavities 

where we expected to find breeding parrots.  Ground-based visual surveys of cavities 

have been demonstrated to detect a low proportion of active secondary-cavity nesting 

bird nests (Ouellet-Lapointe et al. 2012).  It may also describe parrot pairs exploring or 

roosting in tree cavities as suspected breeders, without evidence of eggs or nestlings.  We 

inspected all tree cavities to accurately record the status of active parrot nests and to 

provide a comparison to the nests of other cavity-nesting birds.  We recorded several 

attributes for each nest tree, including tree species, diameter at breast height (DBH), tree 

height, and decay class.  Decay class was estimated for snags on a scale from one to nine 

where decay class one appeared recently dead and stable, and a decay class nine appears 

unsteady and ready to fall.  Decay class was not estimated for other surveyed cavity 

nesting sites, i.e., live trees and utility poles.  We inspected the interior of tree nest 

cavities using a wireless video camera designed for the study of cavity-nesting birds 

(Figure 4.1) (Luneau and Noel 2010).  We used two wireless cavity inspection cameras to 
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record still images and videos inside nests (Treetop Peeper version 3.2 and 3.3).  The 

cameras were mounted on a collapsible fiberglass pole capable of reaching up to 15 m 

(Crain telescoping measuring rod, model 90182).  The pole was used to measure the 

height of nest trees and entrance holes.  Cavity inspection images were used to estimate 

the internal diameter and internal depth of nests.  

4.3.3 Data Analysis 

 We completed all statistical analyses using IBM SPSS version 20.0 and 

geographic analysis in ArcMap GIS version 10.4.  We used t-tests to compare mean 

attributes of Red-masked Parakeet and Orange-winged Parrot nests.  We recorded the 

location of all nest trees with a portable GPS unit (Garmin GPSmap 62s).  We mapped 

nearly 4,000 citizen science observations reported to eBird from 2016-2018 for 

geographic range analysis, corresponding to the duration of our field study.  We 

constructed range maps for exotic parrots in our study area by drawing minimum convex 

polygons around reported observations.  Our polygons include at least 96% of 

observations of each parrot in the study area, removing errant observations outside of the 

core range of each species. 

 

4.4 Results 

4.4.1 Active Nesting Attempts and Other Records of Parrots 

We recorded the use of tree cavities by seven species of parrots in our study area.  

Of these, we observed active breeding attempts by four species, the Orange-winged 

Parrot, Red-masked Parakeet, Nanday Parakeet (Aratinga nenday), and Blue-and-yellow 

Macaw (Ara ararauna).  We observed tree cavity use, but could not confirm active 
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breeding attempts by the Blue-crowned Parakeet (Thectocercus acuticaudatus), Scarlet-

fronted Parakeet (Psittacara wagleri), and the Chestnut-fronted Macaw (Ara severus).   

We recorded 23 cavity nest sites used by parrots during our study period (Table 

4.1).  All nest sites were excavated by woodpeckers, although parrots had enlarged one 

third of cavity entrances.  Some nest trees had broken tops which were open from above, 

but all contained woodpecker holes, which were observed as the primary entrances and 

exits of the nest.  Of thirteen active parrot cavity nests found (Table 2), only five were 

initially observed from the ground.  The remaining eight nests were surprises upon 

inserting the nest camera, suggesting the importance of cavity nest video inspections for 

assessing breeding populations of parrots.  Nearly all cavity nest sites (91.2%) were in 

palm trees, 87.5% in the royal palm (Roystonea regia).  The remaining nest sites were 

made in wood utility poles, formerly pine trees, shaped and treated to inhibit decay.  

Across our study region, palm trees were particularly important to cavity-nesting birds, 

and 63.1% of 967 trees excavated by woodpeckers were palms.  In developed areas, 

where parrots are most common, 83.0% of excavated trees were palms.  The royal palm 

is the most common tree excavated by woodpeckers in the region, representing 28.0% of 

all woodpecker nest trees.  Only 2.4% of nest trees were used by parrots.   

4.4.2 Use and Enlargement of Woodpecker Cavities 

Two-thirds of the nest trees used by parrots were excavated by Red-bellied 

Woodpeckers (Melanerpes carolinus), and one third were excavated by Pileated 

Woodpeckers (Dryocopus pileatus).  The Red-bellied Woodpecker is the main excavator 

of cavities of this region, creating 78.1% of all cavities (n = 1864).  The Pileated 

Woodpecker only excavated 16.0% of nests in this region, many of which were outside of 
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the urban matrix where parrots are most often observed.  Active breeding attempts of 

Pileated Woodpeckers were more common in Everglades National Park and the 

surrounding rural areas.  The parrot species observed in the region are almost never 

reported within Everglades National Park or other major conservation areas and are 

restricted almost exclusively to the developed matrix.  Pileated Woodpecker cavities 

excavated in urban parks and botanical gardens were the most likely to be used by 

parrots.  The Northern Flicker (Colaptes auratus) excavated few cavities within the 

breeding ranges of parrots, and cavities excavated by Downy Woodpeckers (Picoides 

pubescens) were uncommon and too small for parrots.  Parrots used cavities excavated by 

Red-bellied Woodpeckers primarily in more densely developed areas where Pileated 

Woodpecker cavities are less common.  Parrots enlarged Red-bellied Woodpecker 

entrance holes 53.3% of the time, but only enlarged a Pileated Woodpecker hole in one of 

eight cases. 

4.4.3 Comparison of Orange-winged Parrot and Red-masked Parakeet Nest Cavities 

Nests of Orange-winged Parrots and Red-masked Parakeets, the most numerous 

parrot species breeding in tree cavities, were similar in most attributes.  The height of 

trees used for nesting by Orange-winged Parrots (10.4 ± 4.4 m) was not significantly 

different from Red-masked Parakeets (11.1 ± 4.0 m, t11 = -0.3, P = 0.764).  The DBH of 

trees used for nesting was not significantly different (34.7 ± 5.2 cm vs 36.9 ± 4.6 cm, t11 

= -0.8, P = 0.434).  The decay class of the tree used for nesting (score assessed 1-9) was 

not significantly different (2.2 ± 0.8 vs 3.7 ± 1.5, t10 = -1.6, P = 0.133).  The height of the 

nest entrance hole above the ground surface was not significantly different (8.8 ± 3.2 m 

vs 9.3 ± 4.5 m, t11 = -0.3, P = 0.752).  Diameters of nest entrance holes used by the 
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Orange-winged Parrot were larger than entrance holes used by the Red-masked Parakeet 

(13.4 ± 3.6 cm vs 8.7 ± 2.0 cm, t11 = 3.0, P < 0.05).  The Orange-winged Parrot nested in 

cavities excavated by the larger Pileated Woodpecker or enlarged cavities excavated by 

Red-bellied Woodpeckers.  The Red-masked Parakeet was able to nest in some Red-

bellied Woodpecker cavities without enlarging the entrance hole.  The internal depth of 

nest cavities were not significantly different (181.0 ± 72.9 cm vs 131.7 ± 93.8 cm, t9 = 

1.0, P = 0.363).  The internal diameters of nest cavities were not significantly different 

(35.8 cm ± 3.6 cm vs 33.8 ± 6.9 cm, t9 = 0.6, P = 0.583).   

4.4.4 Interactions Between Parrots and Other Bird Species 

Our methods were not designed to calculate a population estimate for parrot 

species in Miami, but in the same set of trees we recorded the number of other cavity-

nesting birds breeding attempts for comparison.  We observed one active nest each of 

Blue-and-yellow Macaw and Nanday Parakeet, six Orange-winged Parrot nests, and 

seven Red-masked Parakeet nests.  We found thirteen active nests each for Pileated 

Woodpecker and Northern Flicker, and 183 active Red-bellied Woodpecker nests.  We 

recorded 44 Eastern Screech Owl nests, making this the only common secondary-cavity 

nesting bird in the study region.  We also observed two Great-crested Flycatcher nests, 

the only other native secondary-cavity nester.  We found 337 European Starling nests, 

and eleven Common Myna nests.   

The interactions between parrots and other cavity-nesting birds near nest cavities 

suggests minimal interaction with native birds.  Interspecific interactions were recorded 

at seven of 23 parrot nest trees.  The most hostile interactions were between Blue-

crowned Parakeets and European Starlings (Sturnus vulgaris).  A pair of Blue-crowned 
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Parakeets removed starling nest material from a cavity in downtown Miami, and 

aggressive vocal interactions and supplanting flights were recorded at another cavity 

nearby.  Other parrots had minimal interaction with starlings.  At various times, a 

Pileated Woodpecker roosted in a very large royal palm snag, sharing the roost with a 

Scarlet-fronted Parakeet and Nanday Parakeet.  The central hollow of this tree was 

estimated to be 7 m deep.  Other parrots shared snags with other species sequentially.  An 

Orange-winged Parrot nested in an old Pileated Woodpecker nest in 2017, and in late 

March 2018 was observed inside the snag once prior to its breeding season.  By the 

following visit in April, an Eastern Screech Owl had laid eggs in the nest, which was 

followed by a Red-bellied Woodpecker breeding in June.  Another snag was sequentially 

used first by the Pileated Woodpecker and Red-bellied Woodpecker simultaneously, 

excavating multiple holes before the 2018 breeding season.  No woodpeckers attempted 

to nest in this tree, instead an Eastern Screech Owl first used a Pileated Woodpecker hole 

as a roost, followed by a European Starling nesting attempt in a Red-bellied Woodpecker 

hole.  A pair of Red-masked Parakeet was seen using another Pileated Woodpecker hole 

in the tree later in the season, but no eggs were observed. 

The most sustained interaction between parrots and native birds started in mid-

June of 2018, in a suburban neighborhood near Miami.  A Red-bellied Woodpecker 

excavated two nests, in two royal palm snags, 3 m apart.  By the end of June, the Red-

bellied Woodpecker and a Red-masked Parakeet were each nesting in the adjacent snags 

simultaneously.  Although the Red-masked Parakeet took one woodpecker nest, the 

woodpecker was able to breed successfully.  The two species appeared to share alarm 

calls upon observers approaching the nest snags.  Adult parrots and woodpeckers would 
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perch on an adjacent tree together while nest inspections were conducted.  Both nests 

successfully fledged offspring. 

4.4.5 Geographic Range Analysis 

We created polygons to encompass citizen science observations of each parrot 

species in the region (Figure 4.2).  The locations of nest and roost trees that we found 

closely matched the geographic ranges of these species we assessed from citizen-science 

data.  For example, we found one tree used as a roost by the Scarlet-fronted Parakeet in 

Virginia Gardens, Florida.  Nearly all sightings of this species have been made in 

Virginia Gardens and adjacent municipalities.  We found three trees used by Blue-

crowned Parakeets in Downtown Miami and Miami Beach.  Most of the sightings of this 

species have occurred in Miami Beach, and other adjacent urban islands like Key 

Biscayne, as well as a broader area of Broward County, Florida.  One Blue-and-yellow 

Macaw nest was observed in Palmetto Bay, within the narrow range of this species, 

which corresponds to the range of the population described from 2003-2009 (Pranty et al. 

2010).  We did not find any nest or roost trees outside the range of any species reported 

on eBird.  Parrots were geographically limited to developed regions, with few/no 

observations of most species in major conservation areas.  Parrot nest trees were found 

primarily in urban and suburban areas without complete cover of native vegetation.  

When parrots were found in natural or semi-natural settings, these were conservation 

areas embedded within an urban matrix, in close proximity to development. 
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 The species composition of exotic parrots breeding in Miami has changed over 

time. In the early 1990s, the Red-masked Parakeet, Nanday Parakeet, and Orange- 

winged Parrot were noted in Florida, but considered unlikely to persist as breeding 

populations (James 1997). Currently, the Red-masked Parakeet and Orange-winged 

Parrot are the most successful cavity-nesting parrots in Miami, while the Nanday 

Parakeet has the broadest breeding range of cavity-nesters. Budgerigars were once the 

most common parrot in Florida, but disappeared following boom-and-bust population 

cycles (Pranty 2001).

4.5.2 Availability of Woodpecker Nests in the Urban Environment

 Tree cavities, both naturally occurring and excavated by woodpeckers, can be rare 

and limiting in developed areas (Tilghman 1987; Blewett and Marzluff 2005; 

LaMontagne et al. 2015). Holes formed by natural decay are rare in Miami due to 

arboriculture and hurricanes. Woodpecker cavities in Miami are common, but low cavity 

supply leads to interference competition. Exotic Rose-ringed Parakeets (Psittacula

krameri) have been cited for outcompeting native cavity-nesting birds in European cities 

(Strubbe and Matthysen 2009; Newson et al. 2011; Hernández-Brito et al. 2014).

Similarly, exotic parrots in Hawaii have displaced native birds from nest cavities (Runde 

et al. 2007). We did not find evidence in our study of cavity limitation constraining 

reproduction of parrots, or parrots competing with native birds for nest sites.

4.5.3 Importance of Woodpecker Nests in Palm Snags to Parrots

 Parrot nesting in tree cavities in Miami appears strongly linked to palm snags. All 

palm snags we recorded contained woodpecker holes, but many parrots are considered

weak excavators, and can create entrance holes in soft substrates like termitaria or heavily

4.5 Discussion

4.5.1 Species Composition of Parrots and Historical Distribution
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decayed palm wood (Goodfellow 2011).  Arboreal termitaria are not present in Miami, 

making palm snags the most suitable substrate to excavate or enlarge a cavity entrance.  

Where Pileated Woodpeckers occur in Miami, they create nest cavities that are sufficient 

for larger exotic parrots without any secondary enlargement.  Pileated Woodpeckers have 

been demonstrated to use suburban areas, where a significant portion of forest cover and 

snags are available in public green spaces and yards (Tomasevic and Marzluff 2018).  

While their disproportionately high use by parrots suggests that cavities created by 

Pileated Woodpeckers are preferred, Red-bellied Woodpecker cavities are also useable 

when excavated in the soft wood of palm trees, where they can be enlarged by parrots.   

Palm snags have been reported as important nest sites for the same suite of parrot 

species worldwide.  Pranty et al. (2010) note that Blue-and-yellow Macaws in Miami 

nested primarily in royal palm snags but also fan palm (Borassus spp) snags.  In Peru, 

Blue-and-yellow Macaws nested primarily in palm snags with long stems, 

morphologically similar to royal palms (Brightsmith 2005; Renton and Brightsmith 

2009).  In Florida, 57.1% of 49 identified Nanday Parakeet nest sites were in palm snags 

(Pranty and Lovell 2011).  In Southern California, which shares many of the same exotic 

parrot species, most parrot nest trees are palms (Garrett 1997).  Other parrot species are 

reported to breed in palm snags in their native ranges (Berkunsky et al. 2014; Dahlin et 

al. 2018). 

4.5.4 Nest Fate, Predators, and Poachers 

In most cases, when parrot eggs disappeared, we were not able to ascertain a 

cause.  In one case, the cavity entrance had scratch marks and enlargement suggesting 

predation by a raccoon (Table 2).  We observed several cavities where Eastern Rat 
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Snakes (Pantherophis alleghaniensis) and Corn Snakes (Pantherophis guttatus) had 

predated passerine nests, which left no visible sign of the predation event afterwards.  In 

each case when at least one egg hatched, at least one nestling fledged.  All total nest 

failures occurred during the incubation phase.  A nest was considered successful if at 

least one nestling fledged.  We did not record any instances of suspected poaching of 

exotic parrots, but it has been suggested that poaching has contributed to the decline of 

Blue-and-yellow Macaws in Miami, which are particularly valuable in the pet trade.  This 

species has the highest retail price of parrots present in Miami, with a mean price of 

nearly $900 USD in 1988 (Wright et al. 2001), and advertised prices of ranging from 

$1000-4000 USD in 2018. 

4.5.5 Geographic Range Analysis 

The Nanday Parakeet is known to be a more common breeding resident further 

north on the southeast coast of Florida, and in the Tampa Bay region (Pranty and Lovell 

2011).  We incidentally noticed a pair of Nanday Parakeets using a Pileated Woodpecker 

cavity in a utility pole in Bradenton during our study period and included the observation 

in our study.  We were successfully able to inspect one Nanday Parakeet nest in a royal 

palm at Hugh Taylor Birch State Park in Fort Lauderdale.  Ten years prior to this 

inspection, Pranty and Lovell (2011) reported a nesting attempt of Nanday Parakeets at 

the same park, in a palm tree.  The main breeding population of this species appears to 

have shifted from Broward to Palm Beach County.  At the time of that report, only one of 

12 Nanday Parakeet nesting attempts in southeast Florida occurred in Palm Beach 

County.  During the two years of our study, 73.5% of Nanday Parakeet observations in 

southeast Florida were in Palm Beach County.  The Nanday Parakeet is the most 
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widespread cavity-nesting parrot in Florida, observed in over one quarter of Florida’s 

counties. 

 The geographic ranges of all parrots in Miami suggest an urban/suburban habitat 

association.  No parrot species appears to have established a breeding presence within the 

major natural areas adjacent to urban southeast Florida.  We inspected nest cavities at 

several locations within Everglades National Park, Big Cypress National Preserve, 

Fakahatchee Strand Preserve State Park, and Crocodile Lakes National Wildlife Refuge, 

but did not find parrots nesting at any of these locations.  Urban areas may have more 

food resources for parrots, including fruiting shade trees like exotic Ficus spp., and many 

fruit trees cultivated for human consumption, like mangos, starfruit, loquat, and tamarind.  

Exotic parrots in Florida have been documented feeding on fruits, flowers, and seeds of 

these and many other native and exotic trees common to the urban environment, 

including gumbo limbo, sea grape, black olive, Australian pine, and various palms (Epps 

2007).  Additionally, backyard enthusiasts have attracted parrots to feeding stations.  

Although a diverse mix of trees are present in hardwood hammock forests, Miami’s 

urban forest may have advantages over the Florida’s native tropical dry forests.  

Hardwood hammocks are naturally patchy in distribution, while Miami’s urban savanna 

forms a nearly continuous, if sparse, canopy (Gobster 1994).  The urban forest contains 

many of the native tree species, as well as hundreds of additional exotic species.  The 

large variety of trees in a tropical city provide resources asynchronously, ensuring an 

adequate food supply.   
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 Parrots in Miami do not appear to pose a threat of invading intact natural areas. 

Parrots have been present in the periphery of these natural systems for decades with no 

sign of a nascent invasion. Breeding attempts are widespread but less common than most 

native or exotic birds. They are particularly less numerous than European Starlings, the 

dominant exotic usurper of nest cavities. They are also less common than the

woodpeckers, which excavate sufficient cavities in an urban region to prevent nest site

limitation. Other imperiled hole-nesting native birds found in temperate peninsular 

Florida such as Red-cockaded Woodpecker (Leuconotopicus borealis), Brown-headed 

Nuthatch (Sitta pusilla), and Eastern Bluebird (Sialia sialis), are absent in Miami limiting 

the potential impacts of parrots on native birds (Blanc and Walters 2008). The biotic 

resistance from nest competition in urban Miami is low, allowing small populations of 

parrots to persist without interacting with most native species.

4.5.6 Assessment of Threat to Cavity Nest Webs of the Florida Everglades
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4.7 Tables 

Table 4.1 Characteristics of trees and cavities used by parrots. Characteristics of 23 trees and cavities with observations of parrot 

activity during our study period.  Trees are numbered in the order they were first recorded.  RBWO = Red-bellied Woodpecker, PIWO 

= Pileated Woodpecker, BYMA = Blue-and-yellow Macaw, OWPA = Orange-winged Parrot, RMPA = Red-masked Parakeet, BCPA 

= Blue-crowned Parakeet, CFMA = Chestnut-fronted Macaw, SFPA = Scarlet-fronted Parakeet, NAPA = Nanday Parakeet. 

  



77 
 

Nest 

Tree 

Location Habitat Tree 

Species 

Original 

Excavator 

Tree 

height 

(m) 

DBH 

(cm) 

Decay 

Class 

Nest 

height 

(m) 

Nest 

diameter 

(cm) 

Nest hole 

enlarged? 

Internal 

depth 

(cm) 

Internal 

Diameter 

(cm) 

Parrot 

species 

observed 

1 Palmetto Bay Freshwater 

Slough 

Royal Palm PIWO 13.5 40 2 12.5 14 No Unknown BYMA 

2 Coral Gables Botanical 

Garden 

Royal Palm PIWO 13 31 1 8 15 No 220 32 OWPA 

3 Coral Gables Botanical 

Garden 

Royal Palm PIWO 7 30 6 5 11 No 105 26 RMPA 

4 Miami Urban Royal Palm RBWO 9.5 46 3 9 10 Yes 275 35 BCPA 

5 Miami Urban Royal Palm RBWO 24 55 1 11 8 No 25 38 BCPA 

6 South Miami Suburban Royal Palm RBWO 9 38 2 8 12 Yes 185 40 OWPA 

7 South Miami Suburban Royal Palm RBWO 19 39 1 18 10 Yes 165 37 CFMA 

8 Miami Beach Park Sabal Palm RBWO 10 23 1 7.7 7 No 45 19 BCPA 

9 Virginia Gardens Suburban Royal Palm PIWO 15 39 3 13 10 No 700 35 SFPA, 

NAPA 

10 North Miami 

Beach 

Urban Royal Palm RBWO 18 39 3 15 12 Yes 85 38 OWPA 

11 North Miami 

Beach 

Urban Royal Palm RBWO 16 33 4 15.5 6 No Unknown BCPA 

12 Coral Gables Urban Royal Palm RBWO 10 36 2 8 7 No 115 38 RMPA 

13 Bradenton Suburban Utility Pole PIWO 16 27 N/A 13 10.5 No Unknown NAPA 

14 Coral Gables Park Utility Pole PIWO 7 27 N/A 7 20 Yes Unknown OWPA 

15 Coral Gables Botanical 

Garden 

Royal Palm PIWO 15 34 3 12 12 No 95 28 RMPA 

16 South Miami Park Royal Palm RBWO 15 40 2 10 10 Yes 125 33 CFMA 

17 North Miami 

Beach 

Urban Royal Palm RBWO 17.5 41 3 17 8 Yes Unknown RMPA 

18 Pinecrest Suburban Royal Palm RBWO 8.9 40 2 8.8 11 Yes 140 32 OWPA 

19 Ft. Lauderdale Hammock Royal Palm PIWO 12.7 39 2 12.2 9 No 130 33 NAPA 

20 Olympia Heights Suburban Royal Palm RBWO 10.8 42 5 9.1 7 No 320 34 RMPA 

21 South Miami Suburban Royal Palm RBWO 10.9 41 2 10.8 8 No 90 45 RMPA 

22 Coral Terrace Suburban Royal Palm RBWO 6.3 34 3 3.4 8 No 65 32 RMPA 

23 North Miami Urban Royal Palm RBWO 6.2 33 3 5.8 10.5 Yes 275 37 OWPA 
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Table 4.2 Active nesting attempts of parrots in tree cavities.  Numbering of nest trees follows Table 1.  BYMA = Blue-and-yellow 

Macaw, OWPA = Orange-winged Parrot, RMPA = Red-masked Parakeet 

Nest Tree Parrot species Egg laying 

date 

Number of 

eggs 
Hatch date Fledge date Result 

1 BYMA 28-Jun-16 Unknown 28-Jul-16 31-Oct-16 2 fledged 

2 OWPA 20-Apr-17 2 
  

2 eggs failed, egg fragments observed 

2 OWPA 06-May-17 2 29-May-17 14-Aug-17 2 fledged 

3 RMPA 
    

No eggs found but repeated visits by pair during Spring 2017 

6 OWPA 06-Apr-17 4 01-May-17 05-Jul-17 2 fledged 

10 OWPA 01-May-17 3 
  

3 eggs failed, eggs missing, probable raccoon predation based on 

scratches and enlargement 

12 RMPA 06-Jun-17 1 
  

1 egg failed, egg missing 

18 OWPA 20-May-18 2 
  

2 eggs failed, eggs missing 

19 NAPA 24-May-18 3 17-Jun-18 10-Aug-18 1 fledged 

20 RMPA 17-Jun-18 3 10-Jul-18 17-Aug-18 3 fledged 

21 RMPA 08-Jun-18 Unknown 01-Jul-18 14-Aug-18 2 fledged 

22 RMPA 16-Jun-18 2 09-Jul-18 20-Aug-18 Unclear - internal cavity shape may have allowed near-fledglings 

to hide, probable success 

23 OWPA 02-May-18 Unknown 27-May-18 05-Aug-18 3 fledged 
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4.8 Figures 

 

    

   

 

            
            

         

            
             

         

            
            

        

Figure 4.1 Parrots nesting in tree cavities. Orange-winged Parrot incubating eggs (a) 
and near fledglings (b). Nanday Parakeet eggs visible behind tail feathers (c) and 
near fledgling (d). Red-masked Parakeet guarding eggs (e) and near-
fledglings(f).
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Figure 4.2 Geographic ranges of cavity-nesting parrots, and observed nest trees. 
Numbering of nest trees follows Table 1. Nest trees have been dispersed minimally 
for display purposes. Geographic ranges are drawn to encompass at least 96% of
observations of each species, ignoring distant outliers. All cavities used arefound 

             
within the core geographic range of each species.
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CHAPTER 5. CAVITY NEST WEB DISRUPTION DEPENDS ON HOLE 

PREFERENCE AND REPRODUCTIVE PHENOLOGY: THE CASE OF EXOTIC 

STURNIDS AND PSITTACIDS IN A TROPICAL CITY 

 

5.1 Abstract 

 Multiple exotic hole nesting bird species can be present in a tropical city, but they 

may not impact the native cavity nest web equally.  We investigated the nest preferences 

and breeding phenologies of the hole nesting guild in the tropical urban region 

surrounding Miami, Florida, USA, where  native woodpeckers and secondary cavity 

nesters compete with exotic starlings, mynas, and parrots for a limited supply of holes.  

We asked if the timing of reproduction determines which exotic species will usurp 

cavities from native birds with similar nest preferences.  Competition between starlings 

and Miami’s woodpecker species is well documented, but we predicted that a recently-

arrived Sturnid competitor and introduced Psittacids would also be active in nest 

usurpation.  We found that a small population of Common Mynas usurped nests, but 

parrots bred later than expected, avoiding competition with birds sharing similar hole 

preferences.  Our results demonstrate how analysis of cavity preferences and reproductive 

timing can be used to evaluate threats to a cavity nest web posed by multiple alien 

competitors.  The results of our investigation suggest the need for control efforts of 

Common Myna, a small, geographically restricted population still in the establishment 

phase of invasion in our study region, because of its fairly-earned global reputation as a 

destructive influence on native cavity nest webs.   
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5.2 Introduction 

Cavity nesting birds are connected by their shared use of tree hollows for 

reproduction.  Cavity nest webs are the network linking trees, decay fungi, and animals 

including birds (Martin and Eadie 1999, Martin et al. 2004, Cockle et al. 2012).  Within 

the guild of birds nesting in tree cavities, there is a hierarchy in the network among 

primary excavators (who create nests), weak excavators (who can modify nests), and 

secondary users (who depend on hole nests but are not capable of creating or 

substantially modifying them) (Wiebe et al. 2007, Blanc and Walters 2008a, Orchan et al. 

2012).  In North American forests, a high proportion of suitable nests used by non-

excavator species are created by woodpeckers (Cockle et al. 2011).  This pattern has been 

shown to be the consistent in both temperate northern Florida (Blanc and Walters 2008b) 

and the urban and tropical portion of southeast Florida (Diamond et al., in press).  In 

these environments, suitable cavities formed by natural decay are particularly rare, and 

nearly all suitable cavities are excavated by woodpeckers.  Woodpeckers are the primary 

cavity excavator in most terrestrial environments, but in Florida, they effectively create 

all tree cavities suitable for avian reproduction.  This effect is forestalled in urban 

environments by landscaping practices that reduce the substrate suitable for cavity 

excavation, forcing competition for a smaller number of remaining woodpecker nests 

(Morrison and Chapman 2005, Davis et al. 2013, LaMontagne et al. 2015).   

We studied the usurpation of cavity nest in the tropical urban region of Miami, 

Florida, USA.  This focal region has three woodpecker species that excavate cavities 

large enough for secondary cavity-nesting birds: Red-bellied Woodpeckers (Melanerpes 

carolinus), Pileated Woodpeckers (Dryocopus pileatus), and Northern Flickers (Colaptes 
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auratus).  Downy Woodpeckers (Picoides pubescens), an occasional breeder in the area, 

create cavities too small for other birds.  Only one native secondary cavity user, the 

Eastern Screech Owl (Megascops asio) is a common breeder in the urban environment.  

The Great-crested Flycatcher (Myiarchus crinitus) is an uncommon breeder, particularly 

within the core urban area.   

Miami and the greater South Florida region is a hotspot for invasive exotic 

species, including birds (Owre 1973, Forys and Allen 1999, Pranty and Epps 2002, 

Blackburn and Cassey 2007, Blackburn et al. 2009).  The native woodpeckers and owls 

must compete for nests with two exotic Sturnid (Passeriformes: Sturnidae) species, and at 

least two common exotic Psittacids (Psittaciformes: Psittacidae).  Across North America, 

woodpecker cavities are the holes most used by secondary cavity nesters, and the pattern 

is true regardless of climate across the continent (Cockle et al. 2011).  The conditions of 

natural and woodpecker-excavated nests in Florida are the reverse of that in Australia, 

where no woodpecker species are present and all nest cavities suitable for birds and 

marsupials are formed by natural decay (Gibbons and Lindenmayer 2000).  Australia has 

the same Sturnids present as exotic invasive species, but there they do not compete with 

any primary excavators for nest cavities (Pell and Tidemann 1997, Harper et al. 2005, 

Lowe et al. 2011).  The Common Myna is a recent invader in Miami, arriving in the 

1980s and continuing to grow in population and range (Pranty 2007).  The Psittacids 

breeding in Miami are primarily in the subfamily Arinae of Central and South American 

origin (Epps 2007).  In their native range, they compete with both primary excavators and 

other weak excavators and secondary users for nest cavities (Brightsmith 2005a, 2005b, 
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Cornelius et al. 2008).  However, particularly in South America, the secondary users are 

less dependent on woodpeckers due to abundant natural cavities (Cockle et al. 2011).   

The Miami area offers an opportunity to observe Sturnids, Psittacids, 

woodpeckers, and an owl competing over a limited number of woodpecker-excavated 

cavities.  We investigated the nest preferences and breeding phenologies of the cavity-

nesting birds in Miami.  We asked if the timing of reproduction determines which exotic 

species will usurp cavities from native birds with similar nest preferences.  We predicted 

that exotics nesting at the peak of the breeding season would show the strongest 

competitive interactions, disrupting species with which they share nesting requirements 

and habitat.  This led to further, literature-based predictions about how individual exotic 

species would interact with their competitors.  For instance, we expected that closely-

related European Starlings and Common Mynas would be very similar in nest 

requirements and phenology, leading to nest usurpations between them and any birds that 

shared their nest preferences (Pell and Tidemann 1997, Orchan et al. 2012).  We also 

expected that one or more exotic parrots would be early or peak-season breeders, based 

on their long incubation and fledgling periods, and their phenology elsewhere in the 

northern hemisphere (Strubbe and Matthysen 2009, Czajka et al. 2011, Luna et al. 2017). 

 

5.3 Methods 

5.3.1 Study area 

This study was conducted in and around Miami-Dade County, Florida, USA.  Our 

core study area consisted of a major city, and numerous suburban communities, 

continuing into Everglades National Park along the primary public access road (Figure 
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5.1).  This region is tropical, despite being considerably north of the Tropic of Cancer, as 

the winter temperature is moderated by the Gulf Stream, allowing frost-intolerant plants 

to thrive.  The climate is classified as tropical savanna (Duever et al. 1994). The core of 

our study area was almost entirely within Miami-Dade County, Florida.  This focal area 

extended from Fort Lauderdale in Broward County, south to Miami Beach, then 

southwest through downtown Miami, Coconut Grove, Coral Gables, South Miami, 

Kendall/West Kendall, Richmond Heights, Cutler Bay, the Redlands, Homestead, and 

Florida City.  It continued in approximately the same direction southwest along Main 

Park Road in Everglades National Park, all the way to the road’s terminus at Flamingo, in 

Monroe County, Florida. 

Several single visits were also made to humid subtropical sites in Palm Beach 

County, Florida. There, at the northern extent of the study area, the climate transitions 

from tropical savanna to humid subtropical. Additionally, several single visits were made 

to sites west of Miami: Big Cypress National Preserve, Shark Valley in Everglades 

National Park, and Fakahatchee Strand State Preserve.  South of our core study area, we 

also conducted single-visit surveys along the mainline Florida Keys: Key Largo, 

Islamorada, Big Pine Key, and Key West, Florida.  These islands are the southernmost 

portion of the mainland United States, and the southern range limit for many temperate 

American bird species.   

  Our study region was characterized by a broad variety of terrestrial 

environments, a range of human development from agricultural communities to a 

densely-built urban center, relict natural areas within the urban matrix, and some remote 
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wilderness in the national park.  All of our study region reflects some level of human 

interference, as even in protected parkland we surveyed along publicly accessible routes.    

5.3.2 Field Methods for Recording and Monitoring Nest Trees 

Our study methods were focused on locating and surveying as many nest cavities 

as possible within the greater study region, and executing repeated inspections of nests 

within the core study area to determine occupancy and turnover.  The methods for 

locating and monitoring these nests was based on United States Forest Service protocols 

(Dudley and Saab 2003).  We modified these field methods, which were initially created 

to study cavity-nesting birds in the mountainous forested areas of the western United 

States, to suit the flat, tropical, and highly-urbanized region surround Miami, Florida, 

USA.  In traditional non-urban ecosystems, belt transects are used to completely search a 

relatively homogeneous study unit, usually hundreds of hectares per site.  This type of 

survey is not possible in the urban environment, which are a patchwork of owned 

properties and disparate management practices.  We instead performed a random walk 

survey, using multiple transportation methods.  Rather than expressing densities of snags, 

cavities, and birds on an areal basis, we expressed density on a per-distance-searched 

basis, determined by carrying a GPS unit and recording search tracks.  The primary 

method used for initial searches was a bicycle survey, as this transportation method allow 

for rapid access and close inspection of potential nest sites.  As a search image was 

developed for rapidly locating nest cavities, we were able to efficiently survey large 

distances in the urban matrix, finding 30 or more nest trees per day when searching a new 

area.  Driving surveys were conducted less often but allowed for long-distance searches 

into Palm Beach County and the Florida Keys.  On bicycle surveys, nest inspection 



 

88 
 

required a return visit with a motor vehicle to use an elevated video inspection system.  

Driving and walking surveys were both conducted with the nest inspection system, 

allowing for direct inspections on the first instance a nest cavity became evident.  We 

assumed a difference in detectability in searches, assuming walking provides the highest 

detectability of nests because of the slow speed.  Since walking was the main method 

used to search native upland forests, we compensated by adding additional vehicle-only 

surveys along forest roads slightly outside the core study area, in portions of Everglades 

National Park and the Florida Keys.  Driving was assumed to be the least effective for 

surveys, because of higher speed.  We attempted driving surveys only in areas where we 

could safely drive slowly enough to use our search image to locate nests without 

obstructing traffic.  Even at slower speeds, usually 25-35 mph, this is considerably faster 

than our search speed by bicycle. We accounted for the difference in detectability by 

adding additional driving surveys to upland forest ecosystems types where the primary 

search method had been walking, and adding additional walking surveys to rural areas, 

wherever conditions where safe to do so.   We surveyed the nest cavities in the core study 

area repeatedly over two breeding seasons, in 2017 and 2018.   

5.3.3 Field Methods for Recording and Inspecting Cavity Nests 

Nest inspections were conducted with an elevated video inspection using a 

custom-built camera for studying cavity-nesting birds (TreeTop Peeper Wireless Cavity 

Inspection Camera version 3.1) attached to a telescoping pole capable of inspecting nests 

15 m above the ground surface (Luneau and Noel 2010).  Inspecting the interior of 

cavities is important because ground-based surveys can be sufficient for accurately 

determining use by woodpeckers, but detects only about half of secondary cavity users 
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(Ouellet-Lapointe et al. 2012).  We determined the original excavator of each 

woodpecker cavity, recording whether we observed the woodpecker excavate the cavity 

or inferred woodpecker identity by the characteristics of the cavity.  The low richness of 

woodpeckers (n = 4) in this environment allows for easy inference because of the 

differences in size and shape of the cavities they create.  We determined whether each 

cavity was new (excavated during that season) or old (excavated > 12 months prior).  The 

wood color around the cavity entrances change considerably over seasons, and other 

clues like woodchips at the base of the tree indicated a recent excavation.  As a newly 

initiated study, ours did not have data available on the age of existing older nests, but we 

inquired about nest ages with a variety of park rangers, homeowners, and local residents 

while examining nests.  The oldest snags in the area’s pine forests dated to Hurricane 

Andrew (1992), but most other snags were relatively recent.  At each nest tree, we 

recorded species and diameter at breast height (DBH) of the tree, and made note of the 

health and relative decay of the live or dead tree (snag).  We recorded additional 

attributes for each nesting hole: the height of the entrance above the ground, the diameter 

of the entrance, the internal diameter of the nest, and the depth of the cavity.  We 

determined the latter two measurements by examining the video footage, which we were 

able to compare to the size of known objects in the nest  In addition to eggs, characteristic 

leaves and objects were found in nests; Swietenia mahogani (mahogany) leaves were 

common in European Starling nests, candy wrappers and other trash were indicative of 

Common Mynas. 

Upon locating an active nest cavity, we monitored the nest for the duration of the 

field season, as frequently as time permitted but no more than once every three to four 
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days, to minimize disturbance as specified by US Forest Service protocols (Dudley and 

Saab 2003).  These protocols allow for daily inspections as a nest approaches fledgling 

stage, and we increased the frequency of our visits as possible.  We always made 

behavioral observations before conducting direct nest inspections, allowing us to record a 

variety of interspecific interactions such as supplanting flights, aggressive vocal 

interactions, and usurpation attempts.  It also helped avoid direct physical contact 

between birds and the nest inspection camera.  Behavioral cues were helpful in 

determining the nesting stage.  Nest fate was determined at the last observation using the 

knowledge of species life history and the individual nest history.  Nests failed due to 

multiple causes, often usurpation by competing species, but also predation by 

Pantherophis snakes, raccoons, and other unknown causes.  We focused our attention on 

nest usurpation as well as other interactions between bird species.  Not all nest turnover 

was considered to be nest usurpation.  For instance, we also observed sequential use by 

multiple species, which can be detrimental to species that raise multiple broods, but not 

nearly as consequential as hijacking an active nesting attempt. 

5.3.4 Data Analysis 

We mapped all data in ArcMap GIS (Version 10.2.2). Statistical analysis was 

conducted in IBM SPSS (Version 20).  We performed one-way ANOVA on each nest 

tree characteristic (nest height, DBH, entrance hole diameter, cavity interior depth, and 

cavity interior diameter) to determine which differed significantly among species.  When 

nest tree characteristics differed significantly among species, we used a Tukey post hoc 

test to identify subsets which were significantly different from each other.  We performed 

a hierarchical cluster analysis, producing a dendrogram based on statistically significant 
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nest cavity and tree characteristics, following Martin et al. (2004).  We visually mapped 

the nest trees and birds to create a cavity nest web, highlighting the frequency of resource 

transfer between species.  To compare the phenologies of different species, we calculated 

the proportion of weekly active nests, starting in the third week in February.  We plotted 

this weekly proportion and fitted a third order polynomial trendline to the data in Excel, 

allowing for a visual comparison of reproductive phenologies.  We separated records of 

all nest usurpations between species that were present in 4 nests or more, and created a 

chart to visualize hostile nest turnover in our core area during 2017 and 2018.  Mean 

values reported in the results section are ±1 standard deviation.  

 This project was approved by the Institutional Animal Care and Use Committee 

(IACUC-16-066).  At no point in this study did we touch or handle any vertebrate 

specimen, living or dead. 

 

5.4 Results 

5.4.1 Cavity Suitability and Occupancy 

 Over two field seasons, we located woodpecker nests in 967 trees, which included 

a total of 1,864 excavated cavities.  We constructed a cavity nest web, highlighting the 

hierarchical flow of nests (Figure 5.2).  We were able to monitor 330 trees containing 750 

cavities at least four times during a season, and these were used to determine suitability 

and occupancy rates. We recorded 344 obviously incomplete cavities among these nest 

trees but did not include them in the analysis of cavities.  536 (71.5%) of cavity entrances 

observed from the ground were suitable for occupation.  Between two field seasons, 370 

(69.0%) of the suitable cavities were used for at least one nesting attempt. Of the 195 
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unsuitable cavities 111 (56.9%) were too shallow or otherwise incomplete excavations 

which appeared to be complete from ground level.  The next largest portion of unsuitable 

cavities, 73 (37.4%), had no floor, connecting down to one or more lower entrances.  

Eight unsuitable cavities (4.1%) were so heavily decayed or broken inside that they did 

not appear suitable, even for species that bring considerable secondary nest material.  

Additionally, three unsuitable cavities (1.5%) contained standing water during the 

breeding season.  The camera couldn’t be inserted in 19 cavities among the 750 we 

attempted to continuously monitor, usually because the angle of the nest entrance or the 

dense cover of woody vines that prevented the telescoping pole and camera from 

achieving the correct angle.  We observed these cavities visually from the ground and did 

not observe animal activity.  In addition to the 750 cavities we regularly monitored there 

were additional holes where we were unable to insert the camera but were able to 

determine occupancy by observing behavior, such as direct feeding of nestlings.  

5.4.2 Cavity Nest Characteristics 

We tested for species differences in nest characteristics, and one-way ANOVA 

indicated that nest height, entrance hole diameter, internal cavity depth, and internal 

diameter all differed significantly among species at p < 0.001, but tree DBH did not (p = 

0.077).  For each characteristic that differed significantly among species, we used the 

Tukey post hoc test to identify homogeneous subsets; in Figure 5.3, species means within 

a subset did not differ. 

Post hoc tests for nest height showed two subsets.  The Pileated Woodpecker used 

holes farther above the ground than the starling, myna, owl, and Red-bellied 

Woodpecker, while nest height in the other members of its group, i.e., the Orange-winged 
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Parrot, Red-masked Parakeet, and Northern Flicker, did not significantly differ from that 

of other birds.  Post hoc tests for entrance hole diameter suggests three subsets, with the 

Orange-winged Parrot using larger holes than other birds except the Pileated 

Woodpecker.  The smallest four birds were not significantly different from the parakeet 

and owl in this regard.  With respect to the internal dimensions of the cavities, both 

Psittacid species used hollows with considerably more internal space than all other birds.  

Their cavities were deeper than those of other birds, and their internal diameter was wider 

than others as well; the exception was the Pileated Woodpecker, which was 

indistinguishable from the Red-masked Parakeet in cavity depth.  As these parrots are 

weak excavators, they are known to enlarge cavities, and we observed them enlarging 

Red-bellied Woodpecker entrance holes.  They may also enlarge cavities internally.  All 

of the Psittacid nests we were able to inspect were in palm snags, which have softer wood 

than other tropical trees (Chave et al. 2006).  The soft palm wood may allow parrots to 

enlarge cavities that are otherwise too small.  However, we were not able to determine 

anything visually distinct about the floor or walls of the larger cavities used by parrots to 

prove they enlarged the internal volume. 

We classified species based on their nest cavity preferences, producing a 

dendrogram with several clusters of bird species (Figure 5.4).  The primary division is 

between birds of small-medium body size and large birds.  The first cluster consists of 

Orange-winged Parrot, Red-masked Parakeet, and Pileated Woodpecker, the three largest 

birds in our system, which require taller nests, larger entrance holes, or deeper cavities.  

The other primary cluster is composed of the five smaller birds.  A secondary cluster of 

the smallest birds in the system (European Starling, Common Myna, and Red-bellied 
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Woodpecker) shows great similarity in nest preference.  Other things being equal, these 

species would therefore be expected to compete and usurp nests from one another.  The 

Northern Flicker was classified just outside of this cluster, using slightly larger entrances 

cavities that it excavates and slightly taller trees.  The Eastern Screech Owl is 

intermediate in size, and cluster analysis indicated it was closer to the small birds than the 

large birds in its nesting preferences.   

5.4.3 Overlap of phenology and nest usurpation   

Graphical analysis of breeding phenology overlap separated birds into three 

groups (Figure 5.5). The Pileated Woodpecker and Eastern Screech Owl were the earliest 

breeders in this system.  They initiated nests as early as February and their interaction 

with other species is minimized by the early conclusion to their nesting cycle.  

Conversely, the two common exotic Psittacids hardly participated in hostile nest-web 

interactions due to breeding late in the season, at a time when all early breeding species 

have effectively terminated nesting.  The parrots share preferences for cavity 

characteristics with the early breeders, particularly the Pileated Woodpecker (Figure 5.4).  

Despite the strong overlap in nest preferences, as well as a breeding habitat overlap in 

and around urban forest fragments, we found no direct interactions between parrots and 

Pileated Woodpeckers.  Both Psittacids did enlarge the cavities of Red-bellied 

Woodpeckers but did not usurp any active cavities to do so.   

 The birds nesting in the peak season experienced the most numerous nest 

usurpations (Figure 5.6).  The greatest number of these interactions were between 

European Starlings and Red-bellied Woodpeckers.  These were the two most common 

breeders in our system, but they also shared similar nest preferences and overlapped 
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substantially in breeding.  The starlings began egg laying slightly before Red-bellied 

Woodpeckers, but their breeding activity declined before the woodpeckers finished.  Half 

of all starling nests were active in late April and early May.  The European Starling and 

Red-bellied Woodpecker were the two species that frequently raised multiple clutches, 

extending their breeding across the entire peak season.  As a result, both species had a 

maximum of approximately 50% of total nests active during any single week.  European 

Starling breeding activity peaked during the second two weeks of May, with 50.5% of all 

nests active.  Red-bellied Woodpeckers peaked exactly one month later, with 52.7% 

active during the second week of June.  From the second week in May to the second 

week in June, starling activity had declined dramatically from 50.5% of nests active to 

24.7% active.  The Common Myna followed a similar breeding season as the starling, but 

with a slightly more concentrated season: 75% nests were active in late April.   Most 

usurpation of Red-bellied Woodpecker nests by starlings occurred in mid-April to mid-

May, during the early-peak breeding season.  Later in the season, Red-bellied 

Woodpecker nests rarely failed due to usurpation.  Overall, 17 of the 93 Red-bellied 

Woodpecker nesting attempts we continuously monitored were usurped by European 

Starlings, while Red-bellied Woodpeckers usurped five cavities from European Starlings.  

In at least four of these five instances, we are sure the woodpecker was recapturing a hole 

recently usurped by starlings.  Many new Red-bellied Woodpecker holes were taken, 

though not usurped directly from actively-nesting woodpeckers.  Out of 260 freshly-

excavated Red-bellied Woodpecker nests, 129 (49.6%) were used by starlings at some 

point during the season.  The Red-bellied Woodpecker lost the most total active nests to 
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starling usurpation, but the Northern Flicker lost a greater proportion of their active nests.  

Four of ten Northern Flicker nests we monitored were usurped by starlings.      

 Common myna nests were roughly as common as parrot nests, but they usurped 

more cavities because they bred during the peak season, using the same cavities as Red-

bellied Woodpeckers, Northern Flickers, and European Starlings.  Although mynas did 

not usurp any active Northern Flicker nests, we did record the taking of a freshly-

excavated cavity, and aggressive supplanting flights by mynas against a solitary flicker.  

We observed six instances of mynas taking freshly-excavated Red-bellied Woodpecker 

holes, as well as additional aggressive interactions between mynas and Red-bellied 

Woodpeckers.  The mynas appear to pose a disruptive threat to the local cavity nest web. 

 

5.5 Discussion 

5.5.1 Cavity Occupancy and Nest Characteristics 

Continuous monitoring of 330 nest trees with 536 distinct and suitable cavities 

has revealed a cavity nest web with limited slack: 69% of suitable cavities were occupied 

at some point.  With over two thirds of apparently suitable cavities used, the Miami area 

is fairly typical of urban regions where ideal nesting sites are limited (Blewett and 

Marzluff 2005, Morrison and Chapman 2005, LaMontagne et al. 2015, Tomasevic and 

Marzluff 2017, Evans et al. 2018).   Beyond Miami’s low vacancy rate, other evidence 

for cavity limitation included conspecific brood parasitism by European Starlings 

(Romagnano et al. 1990, Eadie et al. 1998, Pilz et al. 2005).  We found up to nine 

eggs/nestlings at once in European Starling nests, and other suspected conspecific 

parasitic breeding when egg counts increased > 1 per day.  Conspecific brood parasitism 
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is possible without nest limitation, but it is additional anecdotal evidence supporting the 

low vacancy rate we observed.  We were able to exclude over two hundred cavities 

regularly surveyed as unsuitable, but it is possible that birds have preferences that we 

were unable to detect, such as affinities for a particular microclimate (Lõhmus and Remm 

2005, Camprodon et al. 2008, Clement and Castleberry 2013).  We discounted cavities 

due to shallow interiors and standing water, but 166 cavities appeared indistinguishable 

on nest camera video from some cavities attracting competition from multiple species.  

Currently we can only speculate about microclimate in the cavities, and how it may differ 

depending on the nest location in sun or shade, but the landscape position of snags didn’t 

indicate any obvious relationship with productivity.  A thermometer attached to camera 

probes could provide some data on future inspections of nest cavities, and long-term 

emplacement of climate recorders could explain daily cycles of temperature and 

humidity, which are certain to vary over the course a breeding season. 

The physical attributes of cavity size appear to correspond with overall body size 

of these birds.  Cluster analysis of cavity usage divided groups of birds by their size, but 

in isolation this classification did not predict competition between birds.  Pileated 

Woodpeckers were not in competition with the Orange-winged Parrots or Red-masked 

Parakeets with whom they share similar cavity nest characteristics.  Instead, the species 

which usurped active Pileated Woodpecker nests shared more in phenology than nest 

characteristics.  Inactive Pileated Woodpecker cavities, especially older ones, were used 

by the parrots.  The use of large, older cavities by the largest secondary users mirrors the 

relationships between cavity nesting birds in British Columbia, where large-bodied non-

excavators used cavities that were 3-16 years old, at the period of lowest overall 
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occupancy rates by the excavating species and therefore lowest competition (Edworthy et 

al. 2018).  Internal cavity dimensions tend to increase (especially in live trees) due to 

secondary enlargement and weathering of natural elements, and become more suitable to 

large-bodied birds over time (Edworthy and Martin 2014).  Pileated Woodpeckers very 

rarely reuse nests for breeding in subsequent years, so any further occupation by 

Psittacids is unlikely to impact this woodpecker species (Bull and Jackson 2011).  The 

lack of nest reuse by Pileated Woodpeckers may help avoid nest web interactions if 

potential competitors have discovered their nest locations during the previous year.   

5.5.2 Phenology, nest usurpation, and management of exotic birds 

Several birds were involved in usurping nests, particularly the Sturnids.  These 

birds shared nest characteristics and phenology with the two medium-sized woodpeckers, 

and were recorded in other aggressive interactions with the woodpeckers.  The 

relationship between Sturnids and native woodpeckers sharing similar cavity 

characteristics is common in other parts of North America, where starlings are a deeply-

entrenched competitor.  In British Columbia, competition between starlings and Northern 

Flickers was found to be high at the beginning of the breeding season, and declined 

rapidly thereafter (Wiebe 2003).  Delaying reproduction resulted in lower fecundity 

except when ¾ or more nests are usurped.  Our sample size for Northern Flicker nests (n 

= 10) was comparatively low, but 40% of nests were usurped by starlings, suggesting a 

serious conservation threat to a woodpecker that is relatively uncommon in this region.  

The Red-bellied Woodpecker fared better, with only 18.3% of active nests usurped by 

starlings.  Flickers in British Columbia had lower rates of active nest usurpations by 

starlings, ranging from 4.1-9.1% (Wiebe 2003).  Many excavated cavities were taken by 
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starlings, but we do not believe these displaced active nesting attempts ongoing by 

woodpeckers or other species.  In Mississippi, 52% of nest cavities newly excavated by 

Red-bellied Woodpecker were taken by starlings (Ingold 1989).  We found almost the 

same results in Miami, where 49.6% of freshly excavated Red-bellied Woodpecker 

cavities were occupied by starlings at some point.  Similar results of this competition 

were observed in Ohio, where 39% of new Red-bellied Woodpecker holes were taken by 

starlings (Ingold 1994). 

In tropical Florida, long breeding seasons allow for delayed reproduction by Red-

bellied Woodpeckers without any obvious decline in clutch size or fecundity.  The 

breeding season for cavity-nesting birds is approximately twice as long in Miami, Florida 

as in British Colombia (Wiebe 2003).  In temperate climates, the delay of reproduction 

incurs serious fitness costs and reduction of fecundity (Ingold 1996).  The European 

Starling and Red-bellied Woodpecker were the two species that frequently raised 

multiple clutches, extending their breeding across the entire peak season.  The breeding 

season for these two birds effectively spanned the transition between tropical Florida’s 

dry and rainy seasons.  As the two most common species, with the greatest number of 

competitive interspecific interactions, the difference of one month in their peak breeding 

may reduce usurpations.  Nest usurpations occurred primarily in April and May, with no 

starlings recorded usurping Red-bellied Woodpecker nest after 16 May.  We monitored 

Red-bellied Woodpecker nesting attempts that continued five weeks past the last starling 

nest.  In northern latitudes, early egg-laying should be favored because of shorter 

breeding seasons (Wiebe 2003).  In tropical Florida, temperature alone is unlikely to 
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restrict breeding, but phenology may be related to shifting food resource availability 

across the rainy and dry seasons.   

This analysis of the cavity nest webs indicates that Common Mynas could 

represent a significant threat to native birds if their populations increase. The myna shows 

behavioral dominance in its relationship with interspecific competitors.  Mynas usurped 

nests from Red-bellied Woodpeckers and starlings, and we recorded aggressive 

interactions with flickers.  None of these birds successfully usurped a cavity held by 

mynas.  In a list of the world’s most destructive invasive species, only three birds were 

listed, including the starling and myna (Lowe et al. 2000).   The European Starling is so 

firmly established in North America that complete eradication is impossible.  The Myna 

was first established in South Florida in the early 1980s, and the growing population has 

expanded in range for several decades (Pranty 2007).  Common mynas have the potential 

to invade large portions of North America, and this could have devastating effects on 

cavity-nesting birds.  Since a large proportion of Northern Flicker nests are failing due to 

starling usurpation, there is concern that if mynas became as common as starlings, 

Sturnid competition for nest cavities could eradicate breeding populations of flickers 

entirely.  The effects on Red-bellied Woodpeckers could be less severe because of their 

longer breeding season.  Starlings are too numerous and widespread to eradicate but 

continuous control efforts could be beneficial to native birds in an environment where 

woodpecker holes are plentiful, but about half of the dominant woodpecker’s new holes 

are taken by starlings each year.  Both Sturnid species are vulnerable to trapping using 

live lures (Campbell et al. 2012). 
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The breeding season of the exotic Psittacids in Miami was largely a surprise, and 

provides new information for managers of urban natural areas in Miami.  The ideal 

comparison would have been phenology data on the native, extinct Carolina Parakeet.  

There is no data on their breeding phenology, and relatively minimal information on their 

reproduction overall (McKinley 1978, Saikku 1990, Snyder 2004).  In South America, 

Psittacids have varying reproductive phenologies, with some smaller species breeding 

earlier than the larger ones (Brightsmith 2005a).  In Miami, the larger Orange-winged 

Parrot breeding season peaked four weeks before the smaller Red-masked Parakeet.  Data 

from exotic Rose-ringed Parakeets in Europe and the Middle East indicated these parrots 

are early breeders (Strubbe and Matthysen 2009, Czajka et al. 2011, Orchan et al. 2012, 

Luna et al. 2017).  In our study area, Orange-winged Parrots and Red-masked Parakeets 

bred too late to interact with the birds sharing similar cavity preferences.  The ability of 

these parrots to enlarge cavities also increases the pool of potential nest cavities available 

to them.  Older nest cavities may have softer, more decayed wood, which they can more 

easily tear and enlarge, reducing opportunities to compete with other cavity excavators.  

The exotic Psittacids in Miami do not pose a direct threat to Pileated Woodpeckers or 

Eastern Screech Owls through non-trophic nest interactions.  We did not record any 

direct evidence that a growing population of these Psittacids would cause nest 

competition with any native species.   

If managers seek to protect native cavity-nesting birds from invasive competitors, 

control efforts should instead be directed towards Sturnids.  These birds have an 

established track record of destructive invasions in North America, Australia, Africa, and 

Pacific islands (Harper et al. 2005, Peacock et al. 2007, Blackburn et al. 2009, Sodhi et 
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al. 2011).  There is some evidence from Australia that myna impacts may be more limited 

to urban areas and structures, and therefore not threatening conservation of native fauna 

in relict natural areas (Lowe et al. 2011). In Miami, starlings have already penetrated the 

wilderness of Everglades National Park, ejecting Northern Flicker and Red-bellied 

Woodpecker eggs, and we found mynas nesting just kilometers east of the park boundary.  

The incipient invasion of Common Myna is still in a phase where complete eradication is 

possible.  With a locally small myna population, eradication of birds and closing of the 

introduction pathway is still possible, before a species is widespread and abundant, and 

population control and impact mitigation are the only options (Grarock et al. 2013).  

Locally, if myna populations grow like the starling population did, Northern Flickers 

could be extirpated from the study region.  Further north in Peninsular Florida, there are 

additional native woodpeckers and secondary cavity nesting birds which can be impacted 

(McComb et al. 1986, Land et al. 1989, Gault et al. 2004, Blanc and Walters 2008b).  The 

myna represents an additional conservation threat to the threatened Red-cockaded 

Woodpecker, and the declining Red-headed Woodpecker as its invasion expands beyond 

South Florida.   
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Figure 5.1 Study region, showing search routes and nest trees found. The core study 
area encompassed Miami-Dade, County, Florida, but individual nest surveys were 
made south to the Florida Keys, north to West Palm Beach, and west
to Fakahatchee Strand State Preserve. Survey routes followed a random 
walk where driving, bicycling, and walking was safely allowed.
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Figure 5.2 Cavity nest web diagram highlighting the hierarchical flow of nests from creation through subsequent use. For 
each tree category, n indicates the total number of cavities excavated within the substrate. For primary
excavators,weak excavators, and secondary cavity users, n indicates the number of active nests. For
primary excavators, e indicates the number of cavities attributed to each woodpecker. Line weight in the nest web 
indicates the relative frequency of cavity creation or transfer. Within primary excavators and secondary
cavity users,arrow direction indicates nest movement between species, for example from the Red-bellied Woodpecker
to NorthernFlicker. The alpha codes for the birds used are as follows: EASO = Eastern Screech Owl. COMY =
CommonMyna. DOWO = DownyWoodpecker. EUST European Starling. GCFL = Great-crested Flycatcher. OWPA
= Orange-winged Parrot.RMPA = Red-masked Parakeet.PIWO = Pileated Woodpecker.RBWO = Redbellied 
Woodpecker. NOFL = Northern Flicker.
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Figure 5.3 Nest tree and hole characteristics of birds breeding in Miami 
woodpecker cavities, A) nest height, B) entrance hole diameter, C) internal 
nest diameter, and D) cavity depth. For each characteristic tested, birds are 
listed in increasing mean, ± 1
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standard deviation. Lettered brackets indicate subsets identified by the post-hoc Tukey 
HSD test. All characteristics differed significantly except for DBH (F = 1.845, p
= 0.077), which was excluded from the subsequent hierarchical cluster analysis. The 
alpha codes for the birds used are as follows: EASO = Eastern Screech Owl. COMY
= Common Myna. EUST = European Starling. OWPA = Orange-winged Parrot. RMPA 

         

    

= Red-masked Parakeet. PIWO = Pileated Woodpecker. RBWO = Red-bellied 

    
Woodpecker. NOFL = Northern Flicker
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Figure 5.4 The analysis of nest cavity preferences showed several clusters of bird
species. The primary division is between birds of small-medium body size and large
birds. The first cluster consists of Orange-winged Parrot, Red-masked Parakeet, and 
Pileated Woodpecker, the three largest birds in our system, which will require larger 
entrance sizes or deeper cavities. The other cluster is composed of the five smaller birds. 
The European Starling, Common Myna, and Red-bellied Woodpecker are the smallest 
birds in the system and the most similar innestpreferences. This cluster also includes the 
Northern Flicker and Eastern Screech Owl, intermediate sized birds. The alpha codes 
for the birds used are as follows: EASO = Eastern Screech Owl. COMY = Common
Myna. EUST = European Starling. OWPA = Orange-winged Parrot. RMPA = Red- 
masked Parakeet. PIWO = Pileated Woodpecker. RBWO = Red-bellied Woodpecker. 
NOFL = Northern Flicker.
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Figure 5.5 Breeding phenologies of eight cavity nesting bird species in Miami-Dade County, Florida, during 2017-2018
breeding season, following analysis in Orchan et al. (2012). Points represent the weekly proportion of active nesting
attempts per species, and trendlines follow a third order polynomial curve. Time indicated on the X axis is weeks
starting the 3rd week in February. Visual analysis separates birds into early, peak, and late season breeders. Pileated
Woodpecker and Eastern Screech Owl breed first. The peak season includes Northern Flicker, Common Myna,
European Starling, and Red-bellied Woodpecker, although this last species has the longest season, extending into the
late period.The two Psittacid species breed last. The alpha codes for the birds used are as follows: EASO = Eastern Screech
Owl. COMY = Common Myna. EUST = European Starling. OWPA = Orange-winged Parrot. RMPA = Red-masked
Parakeet. Woodpecker PIWO = Pileated Woodpecker. RBWO = Red-bellied NOFL = Northern Flicker.
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Figure 5.6 Usurpations of active nests in a cavity nest web, n = 370 cavities used for 
1+ nesting attempt, out of n = 536 suitable cavities monitored continuously over
two breeding seasons. Arrows indicate the direction of usurpation, towards
the losing species. Arrow thickness reflects the number of usurpations. Species are 
arranged by season, according to breeding phenology. In the absence of phenology 
data, bees were placed in the early season. Both usurpations of active bird nests by 
bees occurred in the first six weeks of monitoring; other new hives were found in
cavities in the early season. Psittacids were not involved in active nest usurpations.
The alpha codes for the birds used are as follows: EASO = Eastern Screech Owl. 
COMY = Common Myna.
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CHAPTER 6. SUMMARY AND CONCLUSIONS 

  

The study of cavity nest web disruption in Miami begins with a survey of 

woodpeckers, and their nest substrate.  The human development activities and planted 

communities of tropical Miami have created an urban forest where half of trees are 

arborescent palms.  Within the surveyed urban environments, woodpeckers used 83% 

palms as substrate compared to the 53.6% palms in the landscape.  In the broader matrix 

of suburbs, relict forests, and disturbed areas, woodpeckers have a wider mixture of 

hardwood trees, coniferous trees, palm trees, and utility poles to choose from.  In the 

entire region, 63.1% of nests were excavated in palms, more than the other three 

categories combined.  We located 967 nest trees with 1,864 cavities and determined that 

woodpeckers preferentially used palm snags in any habitat cover type where they were 

available.  The relict upland forests preserved in the urban matrix had the highest 

concentration of woodpecker cavities found, but not significantly more than parks and 

botanical gardens.   

My research revealed a particular nesting relationship between the most common 

woodpecker and the most common nest tree species.  The most common woodpecker was 

the Red-bellied Woodpecker, which was widespread in all terrestrial landscapes, creating 

78.1% of all cavities.  The royal palm was the most common nest tree, representing over 

¼ of all woodpecker nest trees found in our study.  The royal palm grows larger than 

most common palms; it is present in natural areas and is one of the most widely planted 

landscaping plants.  Pileated Woodpeckers also excavated many royal palms, allowing 

the large woodpecker historically categorized as a mature-forest specialist to breed in 
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habitat islands of urban forest fragments surrounded by intensive urbanization.  Natural 

decay cavities suitable for secondary cavity users are virtually nonexistent in this 

environment, so providing substrate for woodpeckers is critical for bird conservation 

locally.  Collectively, palms were disproportionately important to woodpecker in Miami, 

and could be equally important for woodpeckers in other Caribbean urban regions.  

The value of standing dead palms (snags) in urban areas was highlighted by a 

hurricane that occurred between my field seasons.  Hurricane Irma made landfall 

southwest of my core study area, bringing the most substantial winds and rain of our 

study period.  The hurricane felled snags and broke limbs off of trees that supported 

woodpecker nests.  I checked on trees immediately afterwards, and used these data to 

understand which nest sites were most likely to persist after the hurricane, and compare 

nest site characteristics before and after the storm.  The storm affected some nest 

substrate types more than others.  Utility poles, which are pine trees shaped and 

chemically treated to inhibit decay and buried for stability, lost few cavities to the 

hurricane.  Nests in pine snags fared particularly poorly, with the highest rate of snag 

loss, and fewest new snags excavated in the first year following the storm.  This resulted 

in a reduction in nest availability in the plots surveyed.  Nests in palms and hardwoods 

persisted at intermediate rates, but following the storm even more of the new cavities 

were excavated in palms.  The soft wood of the palms that already attracts woodpeckers 

under background conditions becomes a more valuable resource when a major 

disturbance reduces the existing resource supply.  Trees excavated the year following the 

hurricane were 23% shorter than trees with nests found before the hurricane, but other 

attributes of the trees and nests were unchanged.  In urban areas, palm snags can be a 
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valuable resource for cavity nesting birds, especially immediately after a major 

disturbance, when the substrate provides ample opportunities for excavation. 

Active monitoring of nest cavities was conducted to determine nest occupancy 

and turnover.  I monitored 750 cavities to determine species occupancy and turnover.  Of 

special interest were Miami’s many parrot species, which have been suspected of 

breeding in woodpecker nests.  While not all parrots are tree-cavity nesting species, based 

on published accounts in the native ranges of parrots, I expected quite a few of the dozens 

of parrots observed in Miami to have an active breeding population in woodpecker holes.  

For some species, like the Mitred Parakeet, I determined that they avoid the tree cavities 

they use in their native range by nesting in anthropogenic structures, avoiding the cavity 

nest web altogether.  I found significant breeding populations of two parrots, the Orange-

winged Parrot and the Red-masked Parakeet, using woodpecker cavities.  Geographic 

analysis of nests combined with citizen-science data indicate that these parrots are 

completely restricted to developed areas and the relict natural areas within the urban 

matrix, not spreading into the Florida Everglades or other protected wilderness in South 

Florida.  Exotic parrots breeding elsewhere in the world have harmed native cavity-

nesting birds through interference competition, but competitive interference in southeast 

Florida is minimized by the urban affinities of parrots in this region.  The most common 

parrots observed are the Mitred Parakeet and Monk Parakeet, neither of which have 

entered the woodpecker cavity nest web. 

Multiple exotic birds can be present within the cavity nest web and not evenly 

impact the native birds.  Native woodpeckers must compete with both native secondary 

cavity users, as well as exotic competitors.  Eastern Screech Owls were the only native 
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secondary user to have a significant breeding presence in this region.  Several species 

have been extirpated by habitat loss, such as the Brown-headed Nuthatch and Eastern 

Bluebird.  The Great-crested Flycatcher is almost extirpated, with only one failed nest 

found by cavity inspection.  The exotic secondary cavity nesters included four species: 

two Sturnids and two parrots.  The parrots are actually weak cavity excavators, meaning 

they can enlarge a cavity entrance or make other modifications.  The well-established 

European Starling is joined in Miami by the Common Myna, a more recent invader 

which has been globally vilified for its cavity nest web interactions.  I asked if the timing 

of reproduction determines which exotic species will usurp cavities from native birds 

with similar nest preferences.  The starling is well known for usurping woodpecker 

cavities.  Starlings were the most common bird in the study and usurped 18.3% of active 

Red-bellied Woodpecker nests.  A small population of Common Mynas also usurped 

woodpecker nests, including the locally declining Northern Flicker.  I expected parrots to 

usurp active cavities based on the breeding phenology of Rose-ringed Parakeets studied 

as an invasive species in Europe.  However, parrots in Miami bred months later than 

expected, thus avoiding competition with birds that share similar cavity preferences.   

Hole preferences alone were not enough to predict cavity usurpation, as parrots 

would have been expected to usurp cavities from Pileated Woodpeckers and owls, which 

finished breeding before parrots began.  Sturnids bred during the peak of the season, 

setting up usurpations from Red-bellied Woodpeckers and Northern Flickers.  The results 

of our investigation suggest possible benefits from trapping and removal of Common 

Myna, which are still in the establishment phase of invasion in our study region.  A 

growing population of mynas could exert considerable pressure on cavity nest webs.  The 
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mynas have a fierce reputation as global invaders and cavity usurpers, and are breeding at 

the edge of a protected wilderness.  Control efforts would be most effective against this 

small, geographically-restricted population in Miami.  
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