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ABSTRACT OF THE THESIS
A HARDWARE-ASSISTED INSIDER THREAT DETECTION AND PREVENTION
FRAMEWORK
by
Kyle Denney
Florida International University, 2019
Miami, Florida

Professor A. Selcuk Uluagac, Major Professor

Today, the USB protocol is among the most widely used protocols. However, the mass-
proliferation of USB has led to a threat vector wherein USB devices are assumed innocent,
leaving computers open to an attack. Malicious USB devices can disguise themselves as
benign devices to insert malicious commands to connected end devices. A rogue device
appears benign to the average OS, requiring advanced detection schemes to identify ma-
licious devices. However, using system-level hooks, advanced threats may subvert OS-
reliant detection schemes. This thesis showcases USB-Watch, a hardware-based USB
threat detection framework. The hardware can collect live USB traffic before the data can
be altered in a corrupted OS. Behavioral analysis of USB devices allows for a general-
izable anomaly detection classifier in hardware that can detect abnormal behavior from
USB devices. The framework tested achieves an ROC AUC of 0.99 against a testbed of

live USB devices.
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1. INTRODUCTION

USB devices are among the easiest to adopt into a computing system thanks to the number
of devices which support USB protocols and the protocol’s plug-and-play nature. How-
ever, this same ease of use allows for a wide attack vector for malicious parties to steal or
modify sensitive data in computing systems [NL14]. For this reason, sensitive computing
environments (e.g., government buildings, military bases, research labs, etc.) limit the
use of USB devices in order to remove the threat of malicious USB devices [Duc18]].

Methods to detect and prevent USB-based attacks can be categorized as static analysis
or dynamic analysis. Static analysis methods detect potential malicious activity before the
USB is inserted. While there are a handful of these methods in use, they are not sufficient.
Should an attacker know which methods are implemented, they could circumvent them.
Dynamic analysis methods are needed in the case of such attacks. Dynamic analysis
methods operate once a USB device has already been inserted.

With this thesis, we utilize a hardware-based dynamic analysis framework, called
USB-Watch, to detect and prevent USB-based insider threats. This framework aims to
analyze unknown USB devices introduced to a computing environment and, through the
use of machine learning, determine the behavior of the device before it can potentially
cause harm to the computing environment.

All interconnected devices need a data protocol in which to effectively communicate.
Likewise, each device needs a piece of hardware (commonly referred to as a ‘bus’) in

which to transmit and receive communication utilizing such a data protocol. The USB-



Watch framework aims to improve upon these hardware buses to create a “smart bus”
which can determine the nature of an unknown, connected USB device communicating
with the host machine. If the hardware bus determines the USB device is malicious or
abnormal, the bus can cease communication with the device until the user prompts the
bus to reestablish communication.

Also considered in this thesis is the possibility of advanced adversaries which aim to
subvert naive machine learning approaches. Such an adversarial model is simulated using
live devices on our machine learning models. We then take the results of this simula-
tion to motivate the necessity of specializing certain anomaly detection models and avoid

generalization when an adversary can abuse this generalization to subvert detection.

1.1. Contributions

The contributions of this work are as follows:

o USB-Watch: We propose a hardware-based USB detection framework called USB-
Watch to dynamically detect and prevent USB devices from injecting malicious

keystrokes in a target computing environment.

o Lffective classification: We perform an in-depth classification and feature analysis

of typing dynamics to distinguish between benign and malicious typing dynamics

with an ROC curve of 0.89.

o Generalization of the design: We extend the initial work done with keyboard-based
devices to provide a generalized approach to detecting USB devices. With an im-

proved dataset and training model, we are able to obtain a final ROC curve of 0.99.



2. BACKGROUND INFORMATION

In this chapter, we outline important background information which is needed for the re-
mainder of this thesis. First, we overview the USB protocol and how human interface
devices (e.g., USB keyboards and mice) interact with a computer. From there, we high-
light how a malicious USB device can utilize these functionality to perform HID injection

attacks.

2.1. USB Protocol

In this thesis, we utilize a hardware-based mechanism to collect incoming USB data;
hence, we overview the basics of the USB protocol and how the operating system handles
incoming USB data.

The USB protocol operates in a master-slave fashion [Cunl7/]. First, a device connects
to a computing system via a USB host controller. The host controller (master) requests
all data from the USB device (slave). A request for data is periodically sent to the USB
device and, if the device has any, the data is placed on a USB buffer. A system interrupt is
performed, the host controller reads the data on the buffer, and the communication process
restarts from there.

Each USB transaction contains a token packet, data packet, and status packet. The
token packet establishes what type of data flow (i.e., read, write, etc.) will occur. The data
packet contains the actual USB data. The status packet reports if the prior packets were

received correctly or if the end device is currently stalled or unable to receive packets.



2.1.1. USB Human Interface Device Reports

To ease functionality for users, technology commonly referred to a “plug and play” was
developed. An unknown USB device has drivers loaded onto this device. If a computer
does not know what a device does, it requests drivers from the USB device allowing for
the device to operate.

Some of the USB devices the detection framework in this thesis attempts to distinguish
are known as human interface devices (HIDs). Human Interface Devices (HIDs) are a
subclass of USB devices which are designed for human input (e.g., keyboards, mice,
gaming controllers, etc.) [Adm18]]. Since HID functionality is built into every computer,
it does not require the installation of drivers. This is part of why we chose to examine these
devices specifically. They are already granted functionality and assumed to be benign.

To communicate, the host machine will periodically request input information from
the HID. The HID will then produce a HID report and encapsulate it in a USB packet.
The report format for a standard keyboard is shown in Figure As shown, there is a
field in a keyboard report for a total of six concurrent key presses plus any modifier keys
(i.e., SHIFT, CTRL, ALT, etc.). Note that the reserved bit is ignored in the reports. When
a user presses a key, the HID report will continuously include the key being pressed until
the user subsequently releases the key. Similarly, Figure [2.1b|shows the report format for
a standard USB mouse. The first byte describes if a button is pressed (with the remaining
5 bits reserved for no use). The next two bytes are for the X and Y axis, respectively.
Finally, the mouse wheel information is stored in the fourth byte. In this thesis, we use

these HID reports to collect data for our detection framework.
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Figure 2.1: USB Human Interface Device (HID) report examples.

DELAY }—-Wait 3 seconds before initializing attack

“ALT F2
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ENTER
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Open a Linux terminal

[STRING e Delete documents

STRING rm -r ./Documents)

Figure 2.2: Rubber Ducky attack example.

2.1.2. USB HID Injection Attacks

A common attack with embedded USB devices we refer to as HID injection attacks [NL14].
In these attacks, the embedded device mimics a USB HID to inject malicious commands.
Two of the most common devices used to implement HID injection attacks are the Rubber
Ducky [Hak] and the BadUSB [Smil6]. Both come with a pre-defined language for a user
to easily create an attack script to embed in his/her USB device. First, the malicious actor
designs the attack s/he wants performed. The attacker determines which commands are
needed to carry out the attack, for instance opening a terminal and deleting specific files
or directories (Figure @) From there, the attacker writes a script which iterates each
HID command as text strings. To make sure the command is performed at the correct
moment, the attacker introduces delays between major events (e.g., opening terminal and
sequentially typing in command). With the script created, the malicious actor must com-
pile the malicious commands (“payload”) into an embedded USB device disguised as a

common device (e.g., flash-drive, keyboard, etc.) [Hak].



To perform the attack, the attacker must have the malicious USB device inserted into
the target computer. There are two common methods to do so: (1) a malicious insider
plugs the device into the target machine when the user walks away or (2) the malicious
device is dropped near the target premises, leading to an unwitting insider mistakenly
plugging the device into a target machine [Redl17, Burl6]. Once inserted, the device
begins performing the attack by sending a HID report with the current command in the
payload. To the computer, this HID report simply looks like it comes from benign devices.
To prevent onlooker detection, intricate attacks may wait for onlookers to disappear by
delaying for an arbitrary time or waiting for the computer to enter rest-mode. Since the
payload is embedded in a USB device, this attack is difficult to detect through normal

means, as a common anti-virus cannot simply scan the file to determine if it is malware.

2.1.3. USB Command Injection Attacks

We can further extrapolate the HID injection attack described above to any generic USB
device that is capable of sending commands via a USB interface, such as communica-
tion "dongles" (i.e., devices which enable Bluetooth, ZigBee communications). Such
a device may be infected with malicious hardware designed to send falsified or mali-
cious commands to the host computer. We call this form of attack "command injection
attacks." Through generalizing features across multiple device types, USB-Watch can de-
tect malicious activity across both HID devices and any generic USB device which inputs

commands via the USB protocol.



2.2. Machine Learning and Anomaly Detection

2.2.1. Anomaly Detection

In this thesis, we attempt to detect malicious USB devices by analyzing their typing be-
haviors. To do this, we utilize machine learning algorithms to classify benign and mali-
cious samples. Here we introduce what methodology and metrics we will be using in this

thesis to evaluate our anomaly detection model.

2.2.2. ROC Curves

Receiver operating characteristic (ROC) curves are the de-facto tool to analyze the effi-
cacy of an anomaly detection model [MRO4]. At a high level, this curve scores the model
on its ability to differentiate proper signals (true-positives) from noise (false-positives) in
the sampled data.

Any anomaly detection goal, and the overall goal of this thesis, is to maximize the rate
that true-positives are detected and minimize the rate that false-positives occur. Indeed,
it is good for a model to correctly label true-positives 100% of the time, but that result is
meaningless if the model also labels noise as positives 100% of the time. Our metric for
determining the worth of our model will be evaluating the area under the curve (AUC) of
the ROC curve produced from the classification model. An ideal model produces an AUC
of 1.00, while a model which completely fails produces an AUC of 0.00. Figure [2.3a]
shows an ROC curve where the predictive model completely fails to predict the target
class. Figure [2.3b] shows an ROC curve where the the model does little better than a
coin-flip, wherein the model guesses the predictive class 50% of the time. The ideal
model is shown in Figure where the model can predict the class everytime while

also producing no errors.
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Figure 2.3: Example ROC curves of increasing performance.

In this thesis, we prioritize our work on minimizing the rate of false-positives over
maximizing true-positive detection rates. We choose this because no one will implement

an intrusion detection model if it repeatedly claims that benign data is malicious in nature.

2.2.3. C(lassification Algorithms

To produce a model that best fits our data, we analyze a number of common machine
learning algorithms and evaluate which performs the best for prediction. We give a brief
overview of the algorithms used in this thesis including benefits and drawbacks to using
them with our data.

Support Vector Machines — Support vector machines attempt to plot the training data
in a means such that there is a split between different classed data. Through the use of a
kernel algorithm, the data is mapped to planes in high-dimensional space so that there is

good separation. Through careful pre-processing and data analysis, an SVM can be used



quite effectually to construct a generalized classifier. This entails constructing features
and choosing a kernel so that the data is easily separable.

It is beneficial to use an SVM classifier when optimizing the kernel algorithm to fit
the data is possible. This allows the classifier to avoid local minima and find the ideal
solution quickly. However, it can still be the case that the data is not separable and the
SVM will not converge in the first place.

Decision Trees — This algorithm goes through each feature and splits the data at var-
ious intervals in the data to form a tree until all the leaf nodes have 1 or 2 data points.
From there, new data is classified depending on which node it falls under in the tree. To
improve upon the optimization, decision trees use entropy and information gain to deter-
mine which feature to split on first. The features with the highest information gain will
give the most data to split upon.

Decision trees are one of the easier classification algorithms to utilize as its core con-
cept of splitting on features is easy to follow and replicate. It also allows the user to
understand what the final classification model has learned by looking at which features
the model has chosen to split on.

Random Forests — Decision trees have a tendency to overfit the data. To improve upon
that, Random Forests are an ensemble learning approach to decision trees. The idea is to
create many decision trees with slight variance in their splits. From there, the aggregate
classification from all the decision trees is used to classify new data.

The obvious advantage random forest classification has over decision trees is the abil-
ity to aggregate multiple decision trees together. As the number of trees with slight vari-
ance in splits increase, the lower there is a chance for error. However, this incolves train-
ing and fitting multiple classifiers and may not be worth it if there is little decrease in error
rate.

K-Nearest Neighbors — This algorithm maps the features to axes in Euclidean space.



From there, the data is given coordinates respective to these axes. Any new data is clas-
sified by taking a distance calculation from k neighboring points. The classes of the data
closest to the new data is summed and the class with the highest total is given to the new
data point.

k-Nearest Neighbors classification surprisingly robust given its simple design. There
is no training stage like other classification models and the algorithm can effectively clus-
ter large datasets to find patterns. However, as the dataset increases, the computational
efficiency of the algorithm starts to decrease as the algorithm must compare new data
entries with all existing points in the data set.

Naive Bayes — Naive Bayes classifiers utilize Bayes’ rule in statistics and a ’naive’
assumption that each feature extracted is conditionally independent as related to the clas-
sification. Using these two assumptions allows the classifier to predict a class for a given
entry by calculating probability of the input’s feature set given one of the classes.

The main benefit of using a Naive Bayesian classifier is that it needs significantly less
training data than other classifiers to produce a model. However, the assumption that each
feature is conditionally independent is not likely (hence ’naive’). Given that our dataset
include a number of correlated features on USB packet timings, it is unlikely they are

independent.
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3. RELATED WORK

In this chapter, we detail related work in the field of malicious USB detection. Upon
describing these works, we highlight how our work is different from or improves upon

these prior works.

3.1. Embedded Device Threats

The rise of small, embedded devices (i.e., USB devices) brought a new attack vector
through these devices acting maliciously when inserted to a computing system [Smil6),
NL14, Mam14]]. Traditional intrusion detection systems are not suited to detect these
threats as, to the computing system, the behavior appears to come from a legitimate user.
This requires new solutions to be added to effectively detect these embedded device threat

vectors. We overview two categories of detection models: static and dynamic.

3.2. Static Detection Methods

Static analysis methods aim to analyze a potential threat by examining it before execu-
tion [MKKO7]. When detecting threats from embedded devices, static analysis methods
include: disallowing unregistered devices from communicating [SSS17], require devices
to request functionality permission [TSBT16], or simply disabling unnecessary USB

ports [SSS17]. Assuming a trusted device contains maliciously embedded circuitry [RR],

11



these static frameworks are not enough to detect and eliminate all threats from embedded

devices.

3.3. Dynamic Detection Methods

Dynamic analysis methods, on the other hand, analyze the potential threat as it is op-
erating and examines the performance behavior of the device. Dynamic analysis to-
day tends to involve the use of machine learning algorithms and classification mod-
els [Dall6, MW 18, RGC18]. In the case of malicious threat detection, this entails using
binary classification schemes to differentiate benign and malicious behavior on the sys-
tem. Current approaches for dynamic threat detection in embedded devices use software
on the host system to collect and process data. It has been shown that it is possible for
advanced threats to spoof or alter software-based collection approaches by altering OS-
level code [LBAU17]]. Transferring the dynamic analysis to hardware placed between an
unknown embedded device and the host system would ensure that the data collection is

unalterable through these means.

3.4. Differences from Existing Work

Our approach aims to develop a dynamic detection framework to detect and prevent in-
sider threats through embedded devices. Our proposed approach differs from prior work
through three distinct characteristics stemmed from the use of a hardware mechanism.
First, an advanced threat to the computing system may leave software-based detection
approaches vulnerable to spoofing. The use of a hardware mechanism between the em-
bedded device and the internal computing system ensures the capturing of raw, unaltered
behavior of the device — allowing the detection of any malicious behavior performed by

the embedded device. Second, any software-based approach to intrusion detection con-

12



sumes resources of the computing system. Segmenting the intrusion detection into dedi-
cated hardware removes computation cost that would otherwise needed to be performed
on the host machine. Finally, assuming a malicious device is embedded in an authenti-
cated USB device, the attack can bypass static systems such as [TSB™16] whereas our
dynamic approach can still detect. Hence, this work aims to provide a dynamic, hardware-

based intrusion detection framework to mitigate USB-based attacks.
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4. THREAT MODEL

In this chapter, we define the threat model which we aim to prevent with our detection
framework. We first define an attacker’s motivations through a real-world scenario. Then,

we state assumptions that effectively subvert previous work in USB detection.

4.1. Subverting Prior Works

There has been prior work in detecting malicious USB devices through the aid of clas-
sification. However, we identify two key threat vectors that can subvert prior attempts:
kernel-level USB-trace hooking and mimicry attacks. These threat vectors can cause prior
works to fail. However, we account for both of these in our work (through hardware-

assistance and feature selection, respectively).

4.1.1. Kernel-Level USB-Trace Hooking

Hooking is the process to alter the normal behavior of an operating system. This is typ-
ically done by intercepting operating system calls or events to output custom code (e.g.,
output "Hello World!" every time a device is inserted). A common method for sampling
USB-traces is through the USBmon tool. In the Linux Kernel, USB traces are sent through
a buffer which USBmon hooks into this buffer and outputs relevant trace information [Lin]

(i.e., timestamp, device ID, device bus, etc.).

14



def human_like(text):
for 1 in range(®, len(text)):
f = randon.randrange(minThreshold, maxThreshold)y _Insert a random delay between
Ww.write("DELAY %s\n" % r) sequential keystrokes
(w.wrtte( "STRING %s\n" % text[i]) )

Type next character in attack
Figure 4.1: Python script to develop Rubber Ducky mimicry attack.

Through the use of system hooks, it is possible that an attacker may maliciously alter
USBmon or other related hooks to not output specific USB device information. Should
such an attack take effect, prior work discussed in Chapter [3] becomes effectively useless
as the attacker can simply hide his USB device from detection schemes which utilize
USBmon.

With novel hardware-based mechanism called USB-Watch, we overcome this limita-
tion. Since our data is collected in hardware, it is unfeasible for an insider threat to alter
incoming USB data packets from a malicious device, thereby obtaining the true output

from a device.

4.1.2. Mimicry Attacks

Prior work in classification of malicious USB devices specify that the malicious USB
device is assumed to act distinctly different from normal human behavior (i.e., vastly
different typing patterns). Mulliner et. al. establish a simple method to prevent malicious
USB devices by adding a block for any unknown device typing faster than 80ms [MW 18]
as no human can type faster than that. This work shows it is still possible for an attacker
to develop a smarter USB device which subverts these prevention schemes. No known
work has been done at the hardware level to determine effective methods to detect a USB
device which attempts to mimic human behavior.

To show the simplicity of such an attack, we developed a malicious device which aims
to subvert prior works. The outline of this attack is described in Figure4.1] We developed

a simple Python script which writes the Rubber Ducky attack file that the attacker can use

15



to inject the payload. The script takes in the text used for the attack and implements a
delay between each typed character. The delay can have a custom lower/upper bound to
more effectively mimic human behavior. For the purposes of our analysis, we used a lower
bound delay of 100ms and an upper bound of 150ms. This ensures the USB device does
not type faster than 100ms per keystroke so that the device types slow enough to subvert
static threshold blocks. The 150ms upper bound is chosen so that the typing speed is not
too slow as to impact the attack itself (i.e. being detected by a human observer, text being
interspersed with other keystroke input).

We implemented this random delay using Python’s random number generator, which
utilizes the Mersenne Twister (MT) algorithm [Pyt]. We used this algorithm as it comes
with a variety of advantages an attacker would find beneficial: (1) MT is used in most
modern programming languages, making it ubiquitous to implement, (2) it utilizes a long

period (219937

— 1) which is beneficial to not repeat cycles, and (3) MT passes many
statistical tests of randomness (e.g., birthday spacings, random spheres, etc.). With these
3 benefits, an attacker can easily implement the mimicry attack with more than sufficient
assumptions his/her mimic can deceive simple detection schemes.

As we show later in Chapter [6] implementing this simple delay method is enough to
fool other detection works. The only possible flaw with this method is the increased pos-
sibility of interference between the malicious device and the human typing on the target
machine. However, we believe that the attack would still be able to perform properly

if done within a reasonable time frame (e.g., 30 seconds) to minimize the likelihood of

interference.

4.1.3. Subverting Anomaly Detection

There arises an issue in classification when mimicry attacks are introduced. If a mimic

is able to replicate features of a target class, then the classifier will incorrectly label the

16



mimic as that target class. Here, we provide a general proof to showcase this issue fol-
lowed by details on how this specifically impacts an anomaly detection model.

An inherent problem with using anomaly detection (or any machine-learning ap-
proach) comes from the possibility of an adversary who attempts to deceive the machine
learning model [XCL™17]. We specifically look at an adversary model for an anomaly
detection model in this work due to the adversary’s ability to infer features and behav-
iors of an anomaly detection model over a more granular, multi-class machine-learning
model.

Let us assume there is an anomaly detection model (M). M has a feature set X with
features (x1,x3,...x;). The anomaly detection model uses X to identify patterns in sampled
data (D) and anomalous data (A) such that D = D' and D # A. With patterns identified,
the model can then identify new sampled data Y and apply it to the normal or anomalous
class.

If an adversary were to know (or infer) X, he/she may construct malicious data (M)
such that the data confuses the model to mistakenly classify M. In the case of this work, an
adversary may build a malicious USB device which, when inserted, appears as a benign
device to a machine learning model. For example, a device can be built which has typing
dynamics similar to a human, therefore confusing an anomaly detection model designed
to distinguish human and machine typing dynamics.

Therefore, when constructing machine learning models for threat prevention, we must
consider the weaknesses in the model an adversary may exploit (e.g., ability to falsify
features, low-specificity between classes, etc.). In Chapter [6] we show the feasibility of

constructing such an adversary and steps done to mitigate this threat.
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S. ARCHITECTURE

In this chapter, we define the ultimate USB-Watch architecture framework and how it can
be applied in the full realization. We explain the steps taken to build a USB host controller

with smart functionality to adequately determine if USB devices are benign or malicious.

5.1. Architecture Overview

As stated, the ultimate goal is a USB host controller with smart functionality. The host
controller should be able to differentiate between normal USB performance a potential
USB-based attack. If the host controller identifies a potential attack, communication be-
tween the device and host computer is severed.

For the USB Watch hardware to understand normal behavior, a machine learning tech-
nique can be utilized to teach a model the difference between benign and malicious USB
device behaviors. Samples from both malicious and benign USB devices can be used to
train and fit a model, such that it accurately distinguishes the two types of behavior.

The final model can be placed on the USB Watch hardware so that when a USB device
is inserted it can properly infer the device’s intent. If the hardware determines the device
i1s malicious, it can cease communication with the device before an attack can occur. The

hardware would be capable of retraining in a live setting to fit user needs.
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5.2. Implementation

In this section, we discuss the implementation of the proposed detection framework. We
start with a custom-built hardware tool which we use to collect USB data. Then, we
discuss components of the classifier: what pre-processing was required on unlabeled data,
the features extracted, and what algorithms were tested for classification. Finally, we
discuss how these two components work together to detect and classify malicious USB
behavior in a live system.

The overall architecture for the detection framework is described in Figure[5.1a] First,
a USB device is inserted into a hardware mechanism located between the device and the
host computer. Through the hardware module, the USB device establishes a connection
to the host OS as normal. When the USB device communicates with the host machine,
the raw USB signals are both sent to the host machine and collected for analyzing if
the device is a potential threat (1). In (2), the hardware processes the USB packets to
further extract relevant information (e.g., packet timestamps, keys being pressed, mouse
movements, etc.). With the captured USB packets, the hardware can extract behavioral
features which can be used to identify if the device is acting maliciously (3). Finally, the
features are sent to a machine-learning classifier which determines the behavior of the
unknown USB device (i.e., benign vs. malicious) (4). If the classifier deems the USB

device as acting maliciously, it terminates the device’s connection to the host machine.

5.2.1. Data Collection

We utilize a hardware-based mechanism between the USB-port and the computer to col-
lect USB traffic. Basically, the hardware provides similar functionality to a software-
based USB sniffer. For the testbed, we used a field-programmable gate array (FPGA)

board to emulate a modified USB-host controller capable of detecting malicious USB de-
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Figure 5.1: USB-Watch architecture (a) and implemented testbed for evaluation of USB-
Watch (b).

vices. First, an unknown USB device is connected to the FPGA board which is further
connected to the user’s machine. From there, normal USB traffic flows from the USB de-
vice through the FPGA and into the user’s machine. Utilizing a hardware mechanism such
as this provides two distinct advantages. First, the hardware cannot be spoofed as it col-
lects data at the USB physical layer. As discussed, it is possible to subvert or tamper data
collected by software sniffers. However, we collect data from the physical layer signals
created by the USB device, which is not susceptible to OS-level obfuscation means. Ad-
ditionally, by using a separated piece of hardware for data collection and pre-processing,
an entire segment of computation is removed that would be normally performed on the

host computer — saving resources for classification and detection.

5.2.2. Pre-Processing

The data pre-processor takes incoming binary information from the data collection about
the connected USB device. USB packets are analyzed and relevant information about the
device (e.g., device ID, frequency of packets sent, the data of each packet) is gathered for

further analysis. For the purposes of this work, we analyze two common human interface
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devices (keyboard and mouse) in Chapter [6] for further behavioral analysis, but we also

demonstrate that analysis can be done on any USB-based device in Chapter 7]

5.2.3. Feature Extraction

Once the USB packets are collected, further analysis is done to construct features which
can be used to determine the behavior of an unknown USB device. In this work, we
demonstrate this by creating a command time-based feature set which, when generalized,
can be applied to any number of USB devices.

The feature set is created by demonstrating reasonable variance in device behaviors
in its uses. For instance, with keyboards, it has been shown that every user has a uniquely
distinguishable typing behavior [MRO7]. This fact can be used to create a feature set
aimed to classify specific users on a machine and only permit authorized entities from
using a keyboard on the host machine. To show variance in the USB-watch framework,
we demonstrate:

1. Device Type — The device type is simply whatever function the device is intended
to form. For instance, a keyboard or mouse would be classified as such.

2. Packet Size — A packet is a collection of data sent by a device. Packet size is the
size, in bits, of that data collection. Packet size is standard by the type of device. This
feature is included in this classifier to protect potential buffer-overflow style attacks that
a device may use by sending incorrect packet sizes.

3. Command Transition Time (CTT) - The command transition time (CTT) is calcu-
lated for every command (i) by taking the difference of the time stamp (#;) of the command
prior (t;_1). Since there is no prior command to compare for the first sampled command,

ctty s given a value of 0. The equation for extracting the CTT feature is provided below.

ctt; =1t; —ti_q, (5.1)
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4. Duration Held (D) - This feature defines how long a command was held. To obtain
this, we scan the incoming USB packets for the first instance of a specific command.
Then, we scan all sequential USB packets until the command is removed from the report.
The difference in time stamps between the packet with the command removed and initial

packet gives the duration the command was held. The equation is provided below.

di = IReleased — IStart (52)

Note that this feature does not apply to all command types. For instance, duration
held makes sense for a keyboard or mouse where buttons may be pressed down. However,
commands such as mouse movement or devices establishing communication do not have
a command duration. For these command types, we set the duration held to a normalized
average value so it does not impact the performance of the machine learning model.

5. Command Frequency (F) - This feature is defined simply as how often a command
occurs over a sliding window of time. For instance, clicking the left-click button multiple
times would report a high command frequency.

Note that this feature also does not apply to all command types. Getting a command
frequency for a keyboard device would entail keeping track of what is being typed by the
user of the keyboard — something we do not consider in this work. To relieve this, we
simply leave command frequency to O for devices where this feature is not applicable.

Standardized Features - Since we analyze multiple device types with widely variant
behaviors, we normalize features defined above. This is done by taking the mean ()
and standard deviation (o) of a feature vector (X = < xy, xp, ...>). Each value in the

normalized feature vector is then calculated through the standardization equation:

lxil| = (xi—u) /0. (5.3)

Standardizing the features allows USB-Watch to still identify malicious behavior across

multiple device types. Not standardizing them would result in USB-Watch requiring a dif-
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ferent classification model for every device type analyzed. We can subvert this through
standardization to get a generalized sense of malicious activity in the features USB-Watch

uses.

5.2.4. Classification

The extracted features are then placed into a anomaly detection classifier to determine
if the device is benign or potentially malicious. If the device is considered an anomaly,
communication between the USB device and the host system is discontinued — preventing
a potential attack from occurring.

During data collection, we sampled benign and malicious devices using the FPGA
board and labeled the samples as such. To train the anomaly detection model, we used
90% of the collected benign data so that the model can understand how normal USB
devices should behave. To test the model, the remaining 10% of benign data and all
samples of malicious data were fed to the model. The model would be able to identify
which of the samples are anomalous. If the model is working correctly, it should flag
those anomalous samples as potential malicious and cut off communication from them.
The best performing model was chosen to conduct live testing. We discuss the results of
the model performance in Chapter [ below.

For practicality, this model was constructed in software, using Python machine learn-
ing libraries (Sci-Kit Learn). The best performing model was re-written into hardware
logic (VHDL). The hardware logic was then placed onto the FPGA board to test the
model on live performance. We plugged in a sample of benign and malicious USB de-
vices (e.g., keyboards, mice, etc.) into the FPGA board to test (1) if the model works
and (2) if there are any performance overhead costs from introducing a piece of hardware
between the USB device and host computer. The results of this testing are discussed in

Section[6l
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6. Performance Evaluation

This section aims to evaluate the proposed framework model on a live test bed. First,
we evaluate the prototype hardware device used in this work by showing the overhead
introduced into the system. Then, we aim to establish a final classification model to
evaluate against other works. Feature analysis is performed on the proposed feature set
of typing dynamics. Once a feature ranking is obtained, model selection is performed on
a sample of classification algorithms (e.g., Decision Tree, Random Forest, Naive Bayes,
k-nearest neighbors, and support vector machine). With the best overall model chosen, a
comparative analysis is performed where the proposed USB-Watch detection framework
and prior works are tested against real-world attack scenarios to evaluate which detection

framework performs the best.

6.1. Attack Implementation

As mentioned in Section 4] this work considers the possibility that a malicious USB de-
vice may intentionally mimic human-like typing dynamics so as to appear human to an
onlooker. To show the simplicity of such an attack, we developed a malicious device
which aims to subvert prior works. We developed a simple Python script which writes
the Rubber Ducky attack file that the attacker can use to inject the payload. The script
takes in the text used for the attack and implements a delay between each typed charac-
ter. The delay can have a custom lower/upper bound to more effectively mimic human

behavior. For the purposes of our analysis, we used a lower bound delay of 100ms and
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an upper bound of 150ms. This ensures the USB device does not type faster than 100ms
per keystroke so that the device types slow enough to subvert static threshold blocks. The
150ms upper bound is chosen so that the typing speed is not too slow as to impact the
attack itself (i.e. being detected by a human observer, text being interspersed with other
keystroke input).

We implement this random delay using Python’s random number generator [Pyt],
which utilizes the Mersenne Twister (MT) algorithm. We use this algorithm as it comes
with a variety of advantages an attacker would find beneficial: (1) MT is used in most
modern programming languages, making it ubiquitous to implement, (2) it utilizes a long
period (2'9%37 — 1) which is beneficial to not repeat cycles, and (3) MT passes many sta-
tistical tests of randomness (e.g., birthday spacings, random spheres, etc.). With these 3
benefits, an attacker can easily implement the mimicry attack with more than sufficient

assumptions his/her mimic can deceive simple detection schemes.

6.2. Testbed and Data Acquisition

To perform our evaluations, we used a combination of a Zynq ZedBoard and a USB3300
evaluation board for a hardware data collector as shown in Figure [5.1b] We tested both
benign and malicious key presses with several hundred keystrokes collected for our sam-
ples. We collected 180 total samples from both varying users and a malicious device
(90 samples for each class) performing an equal variation of three behaviors: (1) typing
as fast as possible for 30 seconds, (2) typing a predefined paragraph as fast as possible,
and (3) typing the predefined paragraph while trying to limit typing errors. Behaviors
(1) and (2), represent anomalous human behavior so that the model does not incorrectly
label a human as a malicious actor. Behavior (3) captures normal human typing behaviors
and malicious devices attempting to mimic human behavior. While a 1:1 ratio of benign

and malicious samples is not completely representative of real-life scenarios (malicious
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to benign data ratio would be considerable lower in real-life setups), we challenge our

classifier with added malicious data for training and evaluation purposes.

6.3. Feature Analysis

An analysis of each proposed feature is performed in order to obtain information on how
well each feature provides information to a classifier. With this, any unnecessary feature
can be removed to minimize both classification time and model overfit. To do so, features
were run through a recursive feature elimination which produces ranks of which features
to prioritize. We detail which features were removed/prioritized as well as provide analy-
sis to back up these findings below. The only feature removed was normalized key press
duration. All of the malicious devices we tested simply send a single HID report of which
ever character is next in the sequence. There is no known ability to enforce a key to be
held down. This means that the duration the key is pressed is simply how frequent the
device is polled. When the feature is standardized, it loses all relevant information if
compared with the original key press duration. This is due to there being very little stan-
dard deviation between malicious sampled packets which all produced a duration of about
2ms. When standardized, the malicious key press duration lies squarely in the middle of
a standardized benign key press, which is difficult to produce meaningful information.
The remaining features are: duration, KTT, and normalized KTT. The most information
gained comes from duration as, through analysis, it is shown that existing devices used to
inject malicious keystrokes cannot alter the duration a key is held.

As shown in Figure|[6.1] this inability to modify the key press duration is what leads to
our classification model being so successful. Even when our malicious device produced
a human-like key transition times, it was unable to mimic human behavior for key press
duration. We assume this behavior occurs from malicious USB devices loading the USB

buffer with new information as soon as it is requested and then moving on to the next
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Figure 6.1: Keypress duration (s) from benign and malicious samples.

instruction in the payload. There is no known mechanism in these devices to simulate a
keystroke being pressed. Even if an attacker gave a sequence of repeated characters, the
USB host controller will read the characters as individual keystrokes. This fact allows us
to successfully classify USB-based mimicry attacks that other classification models fail
to predict.

However, we cannot simply classify on this feature alone as there are a few overlaps
in duration when a human releases a key faster than 2ms. If we classify on this feature
alone, this would produce a false-positive in the model. Therefore, we include the KTT

and normalized KTT features for better classification scores.

6.4. Classification Algorithms

With features selected, an analysis of classification models is performed. The models cho-
sen are: Decision Trees, Random Forest Ensembles, k-Nearest Neighbors, Naive Bayes,
and Support Vector Machines. The best performing model in all criteria is chosen at the
end.

To train the classification model, we used a 10-fold cross-validation approach on 90%
of the collected benign samples. This is done so that the classification models may under-
stand what is expected of USB device behavior. To test the model, the remaining 10% of
the benign samples and all malicious samples were used. The classification model label

the benign samples as such and the malicious samples and anomalous.
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An initial parameter optimization was done to ensure well-performing models using
the various machine-learning algorithms. For kNN, a k-size of 3 was used and no weights
were put on the data points. For the Decision Tree and Random Forest classifiers, a tree-
depth of 4 was established using entropy for information gain. 10 decision trees (default
value) were used in the random forest (further evaluation in this section details why this
parameter had little effect on the final model). A linear-kernel is used for the Support
Vector Machine model using the hinge loss function. Finally, the Complement Naive
Bayes algorithm was implemented for the Naive Bayes classifier due to the unbalanced
nature of our dataset (i.e., vastly more benign samples than malicious).

The metrics used to evaluate the models are: accuracy, precision, recall, fit time, and
score time. The first three metrics characterize how well the classifier predicts the target
class. Good models correctly predict the target class (True-Postives (7p)) and differentiate
from other classes (True-Negatives (7y)). Conversely, poor models falsely classify the
target incorrectly (False-Negatives (Fy)) or classify other data as the target class (False-
Positives (Fp)). Accuracy is defined as the number of correct classifications over the total
number of classifications. The addition of precision and recall give a sense of how often
a classification model incorrectly classifies data as the target class (precision) and how
often the target class goes undetected by the model (recall). The other two metrics fif time
and score time tell how fast a classification model performs. Fit time is defined as the
time it takes to construct a model given the set of training data. Similarly, score time is
how long it takes the constructed model to predict new data.

The first metric analyzed was the accuracy of the classification models. To analyze
this, a 10-fold cross-validation, replicated 100 times, was conducted on each of the five
tested classifiers. The results are shown in Figure [6.2a] Figure first compares the
overall score of each model in cross validation. As shown, the Decision Tree, Random

Forest, k-Nearest Neighbor, and Naive Bayes classifiers performed the best overall with
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Figure 6.2: Model evaluations for decision tree, random forest, naive bayes, k-nearest
neighbor, and support vector machine classifiers.

near perfect scores. The SVM classifier performs quite poorly at a rate of 0.6. As for
the performance of the SVM classifier, the results relate back to the sample data. The
data was intentionally constructed to produce overlaps in both benign (typing as fast as
possible) and malicious (mimicked human behavior) samples. Therefore, the SVM cannot
successfully converge all of the data on a single dimension. From there, the precision and
recall of the classifiers was analyzed. To do this, newly generated test samples with
similar behaviors as the training samples were collected. Each classifier attempted to
classify the test data and returned the probability to predict either malicious or benign
behavior. Precision and recall are calculated by taking the percentage of false-positives
(human typing classified as a malicious actor) and false-negatives (malicious actor going
undetected in the model). These precision and recall scores were calculated over a range
of classification thresholds then plotted in Figure [6.2b]

As stated in our motivation, we prioritize classification models which produce a high
precision first, as we do not want models believing normal behavior is malicious. As
shown, the Decision Tree and Random Forest classifiers produce high results where as
the kNN, Naive Bayes, and SVM classifiers produce quite poor results. For the latter
classifiers, as the models try to capture all malicious devices, the model inevitably treats

human behavior as malicious.
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Figure compares the time to fit and time to score the data the remaining models.
The higher the bar, the more time it takes to fit/score. As shown, the Random Forest takes
considerably longer to fit the data, but comparable time to score new data. This makes
sense as a Random Forest ensemble creates many Decision Trees with slight variances in
which data to split on — meaning that there is a linear increase in complexity to train on
data compared to a Decision Tree. When considering all the evaluation metrics (accuracy,
precision/recall, computation time), the Decision Tree is finally chosen for the classifica-
tion model. This is chosen because while normally a Random Forest model removes bias
and overfitting that comes from decision trees, this does not appear to be the case in fit-
ting the sample data. Indeed, the two models perform comparably in accuracy, precision,
and recall. However, the Random Forest model takes considerably longer to fit/score the
data, so we choose instead to go with the Decision Tree. To test the viability of the De-
cision Tree model, a Receiver Operating Characteristic (ROC) curve is constructed. The
ROC curve scores the model on its ability to differentiate proper signals (true-positives)
from noise (false-positives) in the sampled data. Figure [6.3a] shows the ROC curve of
the proposed USB-Watch classifier. Note the dashed line shows a hypothetical model
which simply guesses the output class. Any line above the diagonal indicates a predictive
model which can properly infer the correct class from the input data — the higher the curve
meaning a better classification model. As shown, the ROC area under the curve (AUC) of
USB-Watch is 0.89, which indicates that the proposed framework produces near-excellent

prediction results [MRO4].

6.5. Comparative Analysis

In this section, the viability of the proposed USB-Watch framework is discussed. An

analysis is performed to compare USB-Watch against other works. Here, we construct a
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Figure 6.3: Performance analysis of the final USB-Watch model.

test suite of increasingly complex attack scenarios and simulate them against USB-Watch
and other frameworks.

With the final detection model created, we need to show how effective it is. Here,
simulated frameworks of prior works are created and tested against increasingly complex
attack models to compare prior work with USB-Watch. We start by describing the frame-
works evaluated, then detail the attack models, and conclude with results of how each

framework performs against the attack models.

6.5.1. Static Detection Models

There has been prior work to prevent malicious USB devices from being authenticated to
operate on a computer [TSB™16]. However, this approach does not guarantee mitigation
of all attack vectors. It has been shown that malicious actors can embed malicious circuits
within larger devices [RR]. Assume a malicious device in embedded within a trusted USB
device and waits for specific keyphrases (e.g., wait for a user to type ’confidential’, then
execute an attack to collect the last typed document). To the computer, the device is still an
authenticated device and is trustworthy — even when the embedded circuit is conducting
the attack. USB-Watch would be able to detect this attack as it is a dynamic approach to

detecting USB attacks.
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6.5.2. Dynamic Detection Models

Here, we describe the dynamic detection models we recreated for evaluation. Each model
is created using the same data and tested against the same attacks which are described in
the section below.

Prior 1 — This framework blocks USB keyboard packets which do not exceed a min-
imum key transition time threshold. We use the same threshold as described in US-
Block [MW18]] of 80m:s.

Prior 2 — A One-Class SVM is used for this model and is trained using K7'T and
|KTT|| features, similar to USBeSafe [Dall6].

USB-Watch 1 — This is our proposed classification model. However, we replace
the hardware-based data collector with software-based tools used in other works (e.g.,
usbmon [Linl).

USB-Watch 2 — This is our final proposed framework with the fully hardware-based

detection scheme.

6.5.3. Attack Models

The frameworks were tested against a number of attacks with increased sophistication.
Each attack model is described below. For each attack, the payload attempts to delete
the user’s Documents folder through the use of keyboard commands. Additionally, to
increase sophistication, each subsequent attack model implements all the methods intro-
duced in prior attack models (i.e. Attack 3 has all the subversion features of Attack 1 and
2).

Attack 1 — This is a simple keystroke injection attack. Once plugged in, the USB
device immediately executes the payload and types it as fast as possible. This attack is

used as a baseline to demonstrate all the frameworks operate correctly.
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Prior 1 [MW18] Prior 2 [Dallé] USB-Watch1 USB-Watch 2
Attack 1 v’ v’ v’ v’
Attack 2 v’ v’ v’ v
Attack 3 X v’ v’ v’
Attack 4 X X v’ v’
Attack 5 X X X v’

Table 6.1: Each detection framework’s ability to detect different attacks.

Attack 2 — To subvert human detection, this attack waits for 1 minute before executing
the payload. Again, the payload is typed as fast as possible.

Attack 3 — This attack attempts to mimic human typing dynamics by implementing a
static delay of 100ms between each typed character.

Attack 4 — This attack uses random delays between an interval of 100ms and 150ms
for each typed character.

Attack 5 — Here, we assume that the target computer is subject to an advanced threat
which falsifies usbmon outputs. A rootkit introduces a system hook to the system which
removes any USB packet which matches a Rubber Ducky or BadUSB vendor ID from

displaying in usbmon.

6.5.4. Results

With the attack models and frameworks defined, we evaluate each attack model against
each detection framework. Since each attack model increases in sophistication from the
prior, we detail which attack causes the detection model to fail. Table [6.1] provides the
complete results of our findings.

Prior 1 — This framework fails after Attack 3 is introduced. Since the KTT threshold
should not falsely claim human typing is malicious, the attacker can make an educated

guess as to what delay he/she should implement in their device as to surpass the threshold
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check. In the test results, the minimum delay of 100ms exceeds the KTT check of 80m:s,
so the malicious device is allowed to operate.

Prior 2 — The classifier based on KTT also begins to weaken at Attack 3, but since
Attack 3 has a static KTT, the classifier still performs relatively well. However, with
Attack 4 introducing a random delay interval, the classifier begins to classify the attack
as human in nature.

USB-Watch 1 — This model performs well against all mimicry attacks. This is due to
the fact that all known USB injection attacks cannot mimic human key press duration.
However, once the rootkit is introduced in Attack 5, the detection framework is simply
unable to collect data from the attack and therefore cannot even begin to classify the
attack.

USB-Watch 2 — Our final proposed framework performs well against all of the sim-
ulated attack models. It properly classifies Attacks 1-4 like USB-Watch 1. However,
because the hardware mechanism is used to collect/analyze the raw USB signals from
the malicious device, this model can properly classify Attack 5 even when the operating

system on the host machine is corrupted.

6.6. Discussion

In this section, we discuss key findings of USB-Watch and how the proposed framework
may be implemented in real-world scenarios. From there, benefits and limitations of the
framework are elaborated.

The final USB-Watch classification model uses a binary decision tree classifier to
distinguish between human (benign) and machine (malicious) typing behaviors. To do
so, a feature set of keystroke transition time (i.e., time between sequential keystrokes)
and keypress duration (i.e., time an individual key is held) is used. Current USB de-

vices which mimic human typing are not able to emulate a human-like keypress duration,
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which allows for the classification model to have a high accuracy and precision. We fur-
ther show that mimicking human typing dynamics or altering kernel modules may cause
other dynamic detection frameworks to fail. However, USB-Watch is able to detect these
advanced threats due to its feature set and hardware mechanism respectively.

This work describes the methodology to implement a USB-Watch hardware imple-
mentation to detect keyboard-based USB attacks, but the overall USB-Watch framework
is designed to be generalized. By collecting generic USB device behaviors, one can train
the decision tree model to understand device class ’signatures’. Since USB devices broad-
cast what kind of device they are, the decision tree can first split on which device class
(e.g., mouse, keyboard, flash storage, etc.) the unknown USB device is, then analyze the
timing-based behaviors defined by the features in this work. The classifier can then deter-
mine if the device is rogue dependent on the behaviors defined by known devices of that
device class.

When considering the amount of keystrokes needed to confidently identify a mali-
cious actor, we calculated the confidence interval of our model’s ability to determine if
the device is malicious. A simple attack to open a terminal and delete sensitive docu-
ments takes 40 keystrokes. Given our model’s perfomance, it can be 90% confident of
the attacker in 40 keystrokes or less — meaning it can identify the attacker before they can
finish the attack.

Since USB-Watch is enacted in a hardware mechanism between an unknown USB
device and the host system, latency will be introduced. On average, the additional latency
introduced per keystroke is 6ms per keystroke — an overall low latency. This latency is
largely due to the USB-Watch hardware acting as a second USB host controller between
the USB device and the host OS. In a final realization of USB-Watch, the actual USB
host controller of the host system would have the functionality of USB-Watch, further

reducing the latency.
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Benefits: The proposed USB-Watch architecture utilizes a hardware mechanism to
dynamically collect and process incoming USB traffic which provides two distinct ben-
efits. First, the use of a segmented piece of hardware ensures that the architecture is
operating system independent. If a device supports the USB protocol and has a USB host
controller, USB-Watch will work on the system. Second, data collection and processing
take up computation time with any security mechanism on a computing device. Detach-
ing these processes to a segmented hardware like USB-Watch frees up resources on the
host machine. This provides a lightweight solution to detection and minimizes overhead
on the host system. With the low cost of simple FPGA circuitry (<$20 USD for a simple
programmable logic board), this solution can easily be implemented when fabricating a
computer with minimal increase in price per unit.

Limitations: As shown in Figure the occasional overlap in keypress duration
exists between a malicious device and normal human typing behavior. However, an ad-
versary may easily mimic this behavior and subvert the model. Given that, it is possible
for this model to weaken and potentially fail. We therefore suggest that the classification
model be trained based on the user’s specific typing behaviors. We note that it is unre-
alistic for an attacker to truly mimic a target’s exact typing behaviors as that entails the
attacker using advanced threats to obtain (e.g., keylogging software). Nonetheless, our

proposed system is built against such a keylogger to begin with.
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7. GENERALIZING THE FRAMEWORK

Here, we analyze the results of implementing the USB-Watch framework. First, we ana-
lyze the performance of the anomaly detection classifier on a multitude of varying USB
devices, both benign and malicious. We score the model on common machine learning
metrics (e.g., accuracy, precision, recall, etc.) to get a sense of how well the framework
performs. From there, we test the USB-Watch hardware in a live testbed to analyze per-

formance metrics and discuss any added overhead to the final system.

7.1. Anomaly Detection Model Performance

To perform our evaluations, we used a combination of a Zynq ZedBoard and a USB3300
evaluation board for a hardware data collector as shown in Figure [5.1b] The process
to construct a machine learning model is to (1) collect sample data from an available
dataset and simulated attackers with real RubberDucky devices plugged into the Zed-
Board, (2) train and test various models in Python from the available data, (3) choose the
best performing model through performance metrics, and (4) program the Python model

in hardware logic (i.e., VHDL) to place on the ZedBoard for validation in a real testbed.

7.1.1. Data Collection

To train and test the model, a number of public datasets and live-captured USB samples

were used. The data collected is described in detail below.
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A public keyboard sample dataset comes from Carnegie Mellon [KM] which contains
400 samples from 51 users each of their typing behaviors. From there, we collected
samples from a RubberDucky USB device acting both as a simple, static typing behavior,
and an advanced model which mimics one of the users sampled in the dataset. The latter
is done to attempt and fool our anomaly detection model.

Additionally, we collected data from other live USB devices. USB mouse samples
were collected over normal use. The device list includes: USB keyboards, USB mice, and
dongles used to enable connection with BlueTooth and ZigBee devices over USB. This
was done to showcase the varability of the USB-Watch hardware over multiple device
types.

With the USB data collected, the features defined in Chapter[5.2] were used to create a
signature of each device class (e.g., keyboard, mouse, BlueTooth dongle, ZigBee dongle).
The collected data was processed to fit the defined features and then standardized to get
a sense of normal behavior from the device. This creates a device class signature which

can be used by the classifier to understand how a normal USB device should behave.

7.1.2. Classification Performance

With the device signatures created, the benign data was used to train the anomaly detec-
tion classifier. The classification algorithm used for this work is a decision tree classifier
and is established as a binary classifier (i.e., benign or not benign USB device behavior).
This algorithm goes through each feature and splits the data at various intervals in the
data to form a tree until all the leaf nodes have 1 or 2 data points. From there, new data
is classified depending on which node it falls under in the tree. This is ideal for the type
of data we are using in this work as the features have a point to split where normal and
abnormal behavior appear (e.g., a human-like keyboard should have typing speed above

a certain threshold — anything faster is abnormal).
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To train the classification model, we used a 10-fold cross-validation approach on 90%
of the collected benign samples. This is done so that the classification models may under-
stand what is expected of USB device behavior. To test the model, the remaining 10% of
the benign samples and all malicious samples were used. Ideally, the classification model
should label the benign samples as such and the malicious samples and anomalous.

With the model created, evaluation of the model can be performed. To test the validity
of the anomaly detection model, the receiver operating characteristic (ROC) curve was
calculated for each USB device analyzed and the accumulative data as a whole. The
ROC curve scores the model on its ability to differentiate proper signals (true-positives)
from noise (false-positives) in the sampled data. Figure shows the ROC curve of
the proposed USB-Watch classifier. Note the dashed line shows a hypothetical model
which simply guesses the output class. Any line above the diagonal indicates a predictive
model which can properly infer the correct class from the input data — the higher the curve
meaning a better classification model.

Figure shows an ROC curve for each evaluated USB device type (e.g., keyboard,
mice, and communication dongles) from the collected samples. Additionally, the ROC
curve was collected from a random collection of the overall sample set. As shown, the
model performs quite well when trying to distinguish benign vs. malicious USB behavior
from the collected samples — each performing with an AUC of over .90, which indicates

an excellent model [MRO4]].

7.1.3. Hardware Latency Analysis

Our proposed architecture utilizes hardware to detect and prevent malicious USB de-
vices from injecting malicious commands to the host computer. Therefore, there is added

latency since all USB traffic must go through an additional step before reaching the oper-
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Figure 7.1: Performance analysis of the final USB-Watch model.

ating system. Here, we analyze the additional latency introduced in the system and show
its minimal effects on overall performance.

To test for added latency, we created a benign Rubber Ducky script which typed 1000
characters with a delay of 100ms between each character. We plugged this device into
both (1) a normal computer system and (2) a computer system with our USB-watch
hardware placed between it and the Rubber Ducky device. When the Rubber Ducky
is inserted, we time how long it takes to complete the script. This process is performed
30 times for each system and then the results are all averaged. The results are shown
in Figure As shown, the average time to complete the script for the normal and
USB-Watch systems were 113s and 119s respectively. When considering each individual
keystroke, that adds an increased latency of about 6ms per keystroke. This makes sense
as the only increased latency the Rubber Ducky device sees is the USB-Watch hardware
copying the USB packet during transit before sending the packet to the host OS — all other

analysis is done concurrently by the hardware.
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8. CONLCUSION

In this thesis, we use a model to dynamically analyze USB device behavior, using an
anomaly detection classifier. Since this framework was created in hardware, we were
able to accurately identify abnormal behaviors with an aggregate ROC AUC score of 0.99
from the collected data, even when the attacker uses advanced threats that may be able to
circumvent currently established static and dynamic analysis methods used in software.

We show in this thesis that USB-Watch framework can be used to replicate a smart
USB host controller. When a USB device is inserted into the USB-Watch framework, it
can infer the behavior of the device and prevent malicious actions. This is done with the
introduction of minimal performance overhead.

More work can be done to improve the USB-Watch framework. First, future work can
be done to improve the dynamic detection model, teaching it to infer more information
about the USB devices being plugged in (i.e., what is the device, what user is using the
device, etc.) based on the security needs of the user. Second, further static analysis
methods can be introduced to the USB-Watch framework, as dynamic methods cannot
cover all potential threats. Merging both dynamic and static analysis into the USB Watch
framework would create a truly smart USB host controller that can prevent malicious

USB behavior.
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