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ABSTRACT OF THE DISSERTATION

NON-INTRUSIVE AFFECTIVE ASSESSMENT IN THE CIRCUMPLEX

MODEL FROM PUPIL DIAMETER AND FACIAL EXPRESSION

MONITORING

by

Sudarat Tangnimitchok

Florida International University, 2019

Miami, Florida

Professor Armando Barreto, Major Professor

Automatic methods for affective assessment seek to enable computer systems to

recognize the affective state of their users. This dissertation proposes a system that

uses non-intrusive measurements of the users pupil diameter and facial expression

to characterize his /her affective state in the Circumplex Model of Affect. This

affective characterization is achieved by estimating the affective arousal and valence

of the users affective state.

In the proposed system the pupil diameter signal is obtained from a desktop eye

gaze tracker, while the face expression components, called Facial Animation Param-

eters (FAPs) are obtained from a Microsoft Kinect module, which also captures the

face surface as a cloud of points. Both types of data are recorded 10 times per sec-

ond. This dissertation implemented pre-processing methods and fixture extraction

approaches that yield a reduced number of features representative of discrete 10-

second recordings, to estimate the level of affective arousal and the type of affective

valence experienced by the user in those intervals.

The dissertation uses a machine learning approach, specifically Support Vector

Machines (SVMs), to act as a model that will yield estimations of valence and

arousal from the features derived from the data recorded.
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Pupil diameter and facial expression recordings were collected from 50 subjects

who volunteered to participate in an FIU IRB-approved experiment to capture their

reactions to the presentation of 70 pictures from the International Affective Picture

System (IAPS) database, which have been used in large calibration studies and

therefore have associated arousal and valence mean values. Additionally, each of

the 50 volunteers in the data collection experiment provided their own subjective

assessment of the levels of arousal and valence elicited in him / her by each picture.

This process resulted in a set of face and pupil data records, along with the expected

reaction levels of arousal and valence, i.e., the labels, for the data used to train and

test the SVM classifiers.

The trained SVM classifiers achieved 75% accuracy for valence estimation and

92% accuracy in arousal estimation, confirming the initial viability of non-intrusive

affective assessment systems based on pupil diameter and face expression monitor-

ing.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Affective Computing was first introduced by Rosalind Picard [P+95] in 1997. It

proposes that interactions between humans and computers can take place at an af-

fective level. To be more specific, it aims to enable a computer to understand its

user’s emotion and be able to respond appropriately or even sympathize with its

user’s affective state. Some might challenge the benefit of such goal, pointing out

that maybe it is not necessary for the computer to have emotional abilities since

a computer is just a tool and it is fine to keep it as a rigid tool. The argument is

logical and reasonable; however, there are some situations where human-computer

interaction at an affective level can improve the user’s experience significantly by

adding the user’s emotional information, such as frustration, interest, displeasure,

and etc., to the process implemented in the computer so it can respond in an ap-

propriate way. Here are some of the applications in which we can apply affective

computing to enhance a user’s experience.

• Lessen the User’s Frustration

Many users, over time, show a lot of frustration toward computers. ”A widely-

publicized 1999 study by Concord Communications in the U.S. found that

84% of help-desk managers surveyed said that users admitted to engaging in

violent and abusive behavior toward computers” (Quote from [Pic99]). This

fact is one of the reasons why Human-Computer Interaction (HCI) researchers

strive to lessen users’ frustration during their interaction with a computer via

1



the interface design but, unfortunately, the frustration is bound to happen in

some way or another. As an alternative way to deal with the user’s frustration,

computers should learn how to lessen the user’s frustration or displeasure. An

example to reduce the user’s frustration could make the system play relaxing

music when it detects some certain threshold of stress from its user.

• Online-Based Education

E-Learning is an innovative way of learning via electronic resources, typically

on the internet. Students can choose freely what contents to consume com-

pletely at their own pace and time. Due to the flexibility that E-learning

provides, it has become increasingly popular as time passed. However, Online

courses have one big disadvantage, which is the lack of interaction between

the teacher and the student, because it is difficult for the teacher to prop-

erly monitor his/her student reactions when the class is conducted remotely.

Hence, a good example of how affective computing system can be useful in the

addition of affective abilities to the online classroom system, where a computer

can monitor the level of student’s engagement and stress during the lectures,

especially with younger students.

• Online-Based Services

Online-Based services will undoubtedly be used by service providers in the

future. We have seen many service providers start to integrate online-based

services to give more flexible options to their customers. For instance, some

health providers now offer E-therapy, i.e., online-based health consultations,

to patients so they do not have to travel to a hospital in person, or in an

2



emergency case, the health provider can provide the advice right away, in

real-time. Another relevant example is the increasing use of online customer

service. Most recently, a new practice that many big companies have adopted

is the use of customer Service Bots, which automate their customer service

with AI chatbots 1 to solve a simple routine problem that does not involve

complicated tasks that could require human intelligence. This way of dealing

with customers provides resilience capacities for companies to deal with the sit-

uation when a lot of customers phone in at the same time. Even though an AI

chatbot is a very efficient way to provide customer support, a robot is simply a

robot. Currently, robots cannot interact at an emotional level with customers.

Incorporating affective abilities to the chatbot will enhance customer experi-

ence significantly. Besides, companies are also interested in collecting data of

customer feedback so an ability to detect the customer’s satisfaction during

the service will be highly valuable to companies for improving their services.

• Assistive Technology

Individuals suffering from autism who tend to have a social-emotional com-

municative impairment that makes it difficult to interact with other people.

Using computers or assisting technology to communicate with non-autistics

may help in easing this difficulty by allowing an autistic person to commu-

nicate non-verbally with others. Affective technology can help autistics to

identify non-autistics’ affective states which are often difficult for the autistic

person. Additionally, current intervention techniques suggest that intensive

and progressive training can help autistics to improve their social-emotional

1Artificially Intelligent chatbot
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skills and in recognizing other people’s emotion. That is why affective technol-

ogy can help to assist autistics to develop their social-emotional capabilities.

Human has strived to develop intelligent systems. However, most of the time,

the emotional aspects of intelligence are ignored, as they are seen as less critical.

However, this topic is also very important to balance the way humans interact

with computers. HCI researchers should always keep this thought in mind while

researching a better way of enhancing a user’s experience with computers.

1.2 Affective Computing

The idea of enabling a computer to generate empathy and be able to be empathetic

to its user is a very challenging goal. The difficulties associated with the actual

implementation of an affective computing system might be best appreciated if one

considers the 3 fundamental tasks that must be performed to fully animate the

performance of an affective computing system (affective computer), as outlined by

Hudlicka [Hud03]: These tasks can be described as (See Figure 1.1):

1. Affect Sensing and Recognition

2. User Affect Modeling / Machine Affect Modeling

3. Machine Affect Expression

The affective sensing and recognition tasks aim at making the machine aware

of the affective state of the human user. This will require sensing some observable

manifestations of that affective status and recognizing (or cataloging) the state, so

that, then, the machine may determine (by following some pre-programmed inter-

play guidelines) which affective state it should adopt in response, and, further, the

type of affective expression that it should present to the user. Those initial stages
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Figure 1.1: Simplified diagram showing the interaction between the key processes
in affective computing identified in [Hud03]. (Diagram reproduced from [Bar08]

of the process, however, may involve some of the major challenges that must be

overcome for the implementation of a fully-functional affective computing system.

In fact, Picard identified Sensing and recognizing emotion as one the key challenges

that must be conquered to bring the full promise of affective computing concepts

to fruition [Pic03] and this topic is what this dissertation is focusing on to improve

the emotional-perception capabilities of computers. Although the topic of affective

computing was introduced two decades ago, the progress in this field is not as ad-

vanced as compared to other fields in artificial intelligence, due to many reasons,

for example, the lack of interest or previous lack of the necessary real-time compu-

tational power. Nonetheless, recent developments in related fields, such as machine

learning, big data, and computer vision have reached a level where it is possible to

attempt the actual implementation of affective systems. Especially, correct machine

learning advances have significantly re-defined how to automate computers to learn

by themselves.
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In the pursuit of solutions for that important challenge, there have been many

approaches proposed. Specifically, a wide variety of mechanisms have been suggested

for affective sensing. Some research groups have attempted the assessment of user

affective states using streams of data that are commonly available in contemporary

computing systems, such as video from the users face, audio from the users voice

and text typed by the user on the keyboard. Zeng et al. [ZPRH09], provided an

interesting survey of relevant systems that use video and/or audio, to estimate the

users affective state. Most vision-driven approaches are based in the known changes

that occur in the geometrical features (shapes of the eye, mouth, etc.) [CHFT06] or

facial appearance features (wrinkles, bulges, etc.) [GD05] of the subject, according

to different affective states. Cowie et al. associated acoustic elements to prototypical

emotions [CDCT+01]. Some other groups explored the coordinated exploitation

of audio-visual clues for affective sensing [CDCT+01]. Liu et al. focused on the

utilization of text typed by the user for affective assessment [LLS03]. Approaches

in this area of work include Keyword Spotting (e.g., [Ell]); Lexical Affinity (e.g.,

[AOC03]); Statistical Natural Language Processing (e.g., [GSH+00]); etc.

Other groups have attempted to identify the physiological modifications that

are directly associated with the affective states and transitions in human beings,

and have proposed methods for sensing those physiological changes in ways that are

noninvasive and unobtrusive to a computer user. The reconfiguration experimented

by a human subject as a reaction to psychological stimuli is controlled by the Au-

tonomic Nervous System (ANS), which innervates many organs and structures all

over the body. The ANS can promote a state of restoration in the organism, or, if

necessary, cause it to leave such a state, favoring physiologic modifications that are

useful in responding to the external demands. In our case, the AffectiveMonitor

system , which is the focus of this dissertation, is our attempt to achieve the goal
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of empowering computers to recognize the user’s emotion analyzing his/her facial

expression and pupil diameter changes.

1.3 Research Questions and Hypotheses

Question: Will the proposed method provide a useful assessment of the users affec-

tive state, enabling it to react appropriately to it?

Hypothesis: By estimating the level of arousal and valence of the computer user via

pupil diameter and facial expression, the computer will be able to place the users

affective state in the Circumplex Model of Affect. Based on that estimation, a ma-

chine learning model could be used to synthesize an appropriate affective response

by the computer to decrease, if necessary, the users negative feelings.

1.4 Outlines

This dissertation starts by explaining the methodology as well as the necessary

background to understand the chosen approach in Chapter 2. Then the process of

data acquisition will be outlined and details on how the human-subject experiment

will be provided in Chapter 3. Chapter 5 will describe the AffectiveMonitor system

in depth, including the details of its software, all its integrated features, the modules

for data acquisition. Chapter 6 and 7 explain the method followed to build the model

to classify the affective state of the user. Subsequently, the results and performance

of the model will be reviewed in Chapter 8. Lastly, Chapter 9 will suggest future

work and possible alternative ways to utilize the data collected for this research.
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CHAPTER 2

METHODOLOGY

This chapter outlines the fundamental topics required as background knowledge

for the explanation of the approaches developed for the method we propose for

intrusive affect recognition in a computer user. The chapter starts by explaining the

model of emotion called the Circumplex Model of Affect, which can be described

briefly as a two-dimensional plot of representing arousal as a vertical axis and valence

as a horizontal axis. Accordingly, in this model of affect, the affective state can

simply be represented as a location specified by two parameters: arousal and valence.

The rest of the chapter introduces background information on the mechanisms that

might be used to determine those two parameters that characterize erg affective state

of a computer user. The description will also outline the challenges encountered in

assessing the affective parameters, and how this research sought to circumvent those

challenges.

2.1 Model of Emotion

Early on, a persons affective state was typically mapped to a discrete system with a

limited set of basic emotions and each emotion was considered independent of one

another. Nowlis [NN56] reported his investigation and concluded that he thought

there are between six to twelve monopole factors, based on the observation that

those core emotions such as anger, fear, sad, happy, and so on can be distinguished

separately by people regardless of their ethnic, age, or sex. Neurophysiologists be-

lieved that affective states can be treated as if they are each in a different dimension

because each affective state has its own unique neural pathways in the Central

Nervous System (CNS). Although theories of basic emotions were dominant in psy-

chiatric and neuroscience research, the theory itself is based on speculation rather
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than on empirical observations. For example, one might assume that the emotion

of sadness has an uncorrelated relationship with the feeling of happiness. However,

there are some situations in which this theory of discrete emotion cannot give a clear

explanation of how one feeling separates from another. For instance, the feelings

of worry and fear are somewhat different but somewhat similar, at the same time.

Thus, this theory still requires more substantial evidence to support it.

Later, Russell developed a theory that explains the affective state in more em-

pirical terms. Russell has proposed The Circumplex Model of Affect [Rus80] as a

model of the affective state of a human. The model is based on the fundamental

idea that each affective state arises from the product of the interaction between

two independent neurophysiological systems: arousal and valence. One good thing

about Russells work is that he used the statistical tool of factor analysis in various

psychological assessments he performed when he was conducting his experiments,

and the results showed consistent outcomes that strengthen the support of his hy-

pothesis. Russell had studied that English words used to refer to different type

of emotions can be placed in scales to rate the degree of pleasure-displeasure and

degree-of-arousal that they convey. He also found out that these dimensions are

bipolar and each affective state could be arranged on the circumference of a circle in

a two-dimensional space; which he named The Circumplex Model of Affect. In his

model the pleasure-displeasure dimension is placed as the horizontal axis, where its

negative pole represents displeasure and its positive pole is regarded as pleasure, On

the other hand, the degree-of-arousal dimension is positioned as the vertical axis,

where its negative pole corresponds to low in arousal and the positive pole is as-

signed to high in arousal. The arrangement of the affective states in the circumplex

model depends on the way an affective word, is projected in the circumplex model

of affect. For example, The word Bored appears to be projected near the center of
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Figure 2.1: Direct circular scaling coordinates for 28 affect words (Figure from
[Rus80])

the bipolar dimension of pleasure-displeasure (valence); and the same word appears

to be placed in a region toward the negative pole of the degree-of-arousal dimension

(arousal).

In his well-known study [Rus80] published in 1980, he proposed the placement

of 28 affective words in the circumplex model of affect as shown in Figure 2.1. The

first quadrant in includes locations with angles between 0◦and 90◦and the angles

are considered to increase in the counterclockwise direction. Each quadrant can be

briefly named according to the relationship between arousal and valence.

In this dissertation, we have chosen Russell’s Circumplex model of affect as our

hypothetical model, serving as the basis for affect characterization pursued in this

study.
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2.2 Assess the affective state

So far, we have explained the Circumplex Model of Affect where the location of each

affective state is defined by two parameters: arousal and valence. The goal to assess

the affective state of a computers user can be achieved if we can estimate these two

parameters. One way to estimate the level of arousal and the level of valence from a

computers user is to observe the changes of his/her bio-signal indicators which are

directly affected by arousal and valence. Two indicators that we selected to observe

are Pupil Diameter (PD) for arousal assessment and Facial Expression for valence

assessment.

2.2.1 Arousal Assessment by Pupil Diameter

There are have been numerous studies in the neuroscience field that produced strong

evidence for the identification of the segment of the nervous system which directly

influences our reactions to psychological stimuli (e.g., arousal). This is the Auto-

nomic Nervous System (ANS) (Figure 2.2).

The Autonomic Nervous System (ANS) coordinates the cardiovascular,

respiratory, digestive, urinary and reproductive functions according to the interac-

tion between a human being and his/her environment, without instructions or inter-

ference from the conscious mind [Riz15]. According to its structure and functional-

ity, the ANS is studied as composed of two divisions: The Sympathetic Division and

the Parasympathetic Division. The Parasympathetic Division stimulates visceral ac-

tivity and promotes a state of rest and repose in the organism, conserving energy and

fostering sedentary housekeeping activities, such as digestion [Riz15]. In contrast,

the Sympathetic Division prepares the body for heightened levels of somatic activ-

ity that may be necessary to implement a reaction to stimuli that disrupt the rest
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Figure 2.2: Autonomic Nervous System (ANS) (Picture from [Low])

and repose of the organism. When fully activated, this division produces a flight or

fight response, which readies the body for a crisis that may require sudden, intense

physical activity. An increase in sympathetic activity generally stimulates tissue

metabolism, increases alertness, and, from a global point of view, helps the body

transform into a new status, which will be better able to cope with a state of crisis.

Parts of that re-design or transformation may become apparent to the subject and

may be associated with measurable changes in physiological variables. Variations

in sympathetic and parasympathetic activation produce physiological changes that

can be monitored through corresponding variables, providing, in principle, a way to
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assess the affective shifts and states experienced by the subject. Parasympathetic

and sympathetic activations have effects that involve numerous organs or subsys-

tems, appearing with a subtle character in each of them. Therefore, one approach to

affective sensing might be based on monitoring the changes in observable variables

that are brought about by an imbalance in the sympathetic-parasympathetic equi-

librium introduced by sympathetic activation. These changes can then be matched

to the fundamental types of states for which each of these divisions of the Auto-

nomic Nervous System prepares us (The sympathetic response prepares us for fight

or flight, whereas the parasympathetic response sets us up for rest and response).

Accordingly, the predominance of sympathetic activity can very well be taken as an

indicator of arousal, represented on the vertical axis of Russells Circumplex Model

of Affect [Rus80]. It is, indeed, common to experience acceleration of our heart rate

(evidence of sympathetic activation) both, while we take a crucial test and when

our favorite sports team is winning a match.

Much of previous work at the FIU DSP Laboratory has focused on signal pro-

cessing methods to estimate a level of sympathetic activation using data recorded

from non-invasive physiological sensors, such as Electro-Dermal Activity (EDA),

also referred to as Galvanic Skin Response (GSR), and, most promising due to its

complete unobtrusiveness, Pupil Diameter (PD) monitoring, using infrared video

analysis (commonly used in eye gaze tracking, EGT equipment). Our approach to

assessing the level of arousal experienced by the subject is through the monitoring

of the pupil diameter, measured, in real time, by many eye gaze trackers (EGTs).

This approach, in fact, targets the estimation of sympathetic activation (and simul-

taneous parasympathetic deactivation) in the Autonomic Nervous System (ANS).

Previously, the FIU DSP Lab group has explored the monitoring of pupil diame-

ter from a computer user, utilizing an ASL-504 eye-gaze tracker, which reports the
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estimated pupil diameter in pixels (integer values), for the assessment of affective

states in the user [BZRG07]. This approach has a strong anatomical and physiologi-

cal rationale. The diameter of this circular aperture is under the control of the ANS

through two sets of muscles. The sympathetic ANS division, mediated by posterior

hypothalamic nuclei, produces enlargement of the pupil by direct stimulation of the

radial dilator muscles, which causes them to contract [SSCP04]. On the other hand,

pupil size decrease is caused by excitation of the circular pupillary constriction mus-

cles innervated by the parasympathetic fibers. The motor nucleus for these muscles

is the Edinger-Westphal nucleus located in the midbrain. Sympathetic activation

brings about pupillary dilation via two mechanisms:

(i) An active component arising from activation of radial pupillary dilator muscles

along sympathetic fibers.

(ii) A passive component involving inhibition of the Edinger-Westphal nucleus

[BrEu].

The rationale for arousal assessment on the basis of pupil diameter monitoring

is also supported by other independent experiments in which pupil diameter has

been found to increase in response to stressor stimuli. Partala and Surakka used

sounds from the International Affective Digitized Sounds (IADS) collection [LBC99]

to provide auditory affective stimulation to 30 subjects, and found that the pupil

size variations corresponded to affectively charged sounds [PS03]. In our previous

work from the FIU DSP lab group [GBA09a], it was verified that an enlargement of

the pupil diameter is observed when the subject experiences sympathetic activation

from exposure to stressor stimuli (incongruent Stroop word presentations), therefore

providing further support for the rationale of the combined system described in

this dissertation. Figure 2.3 shows some of the results obtained. In Figure 2.3,
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Figure 2.3: (From [GBA09a]) The bottom panel shows the increased in the Processed
Modified Pupil Diameter (PMPD) signal, which correspond to application of stressor
(Incongruent Stroop) stimuli, IC1, IC2 and IC3.

the elevations in the processed signal (PMPD), other than the initial transient at

the beginning of the record, are seen to correspond with the intervals labeled IC1,

IC2 and IC3, which were the intervals of the experiment when the subject was

presented with incongruent Stroop word presentations. In conclusion, the pupil

becomes dilated when a person experiences sympathetic activation (stress, aroused)

while conversely, the pupil is constricted when his /her affective state is dominated

by parasympathetic activation (peaceful, calm).

2.2.2 Valence Assessment by Facial Expression

In term of valence, psychologists define it as ”any relatively brief conscious experi-

ences characterized by intense mental activity and a high degree of pleasure or dis-
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pleasure” (Quote from [Mat01b]). the elevations in the processed signal (PMPD),

other than the initial transient at the beginning of the record, are seen to cor-

respond with the intervals labeled IC1, IC2 and IC3, which were the intervals of

the experiment when the subject was presented with incongruent Stroop word pre-

sentations. In conclusion, the pupil becomes dilated when a person experiences

sympathetic activation (stress, aroused) while conversely, the pupil is constricted

when his /her affective state is dominated by parasympathetic activation (peaceful,

calm). [Dam05]. By observing transitions in the activity of organs of the human

body, such as facial muscles, which occur as a result of emotional stimuli, we can

classify human expressions of emotion or, in this case, identify the valence of those

emotions. It has been proposed that the most basic and distinctive signs of experi-

encing emotions are the corresponding changes in facial expression. Even before we

attempt to identify a person affective state from what he/she says, we instinctively

observe another persons facial expression to determine what will be the appropri-

ate interaction toward that person. In other words, we use our eyes to observe the

changes in facial muscles that define facial expressions and then we interpret that

expression based on the patterns we have seen in previous instances. Ekman noticed

this fact and implemented the Facial Action Coding System (FACS) [EFA80], which

provides a strong foundation for later studies in the affective computing field.

The Facial Action Coding System deconstructs the anatomic components of a

facial expression into the specific Action Units (AU), and, accordingly, makes it

possible to code the facial expressions of known affective significance on the basis of

the contraction and relaxation of facial muscles. These associations can be leveraged

in recognizing affective states from facial gestures. Humans do this through their

intrinsic visual perception. For example, we may infer that a person is happy by

observing the way the corners of his/her mouth are lifted, or the shape of his/her
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Figure 2.4: Examples of Action Units (AU) from Facial Action Coding System
(FACS) (Picture from [EFA80])

eyes becomes narrower when a person smiles.

FACS provides a systematic way to encrypt the facial expression in an objective

and compact set of standard parameters. By monitoring how the behavior of Action

Units changes, corresponding to the different facial expressions, we can extract some

unique patterns that can be used to classify types of facial expression. Ekman also

suggests that the combination of the units can accurately make an inference about

which kind of emotion the face is reflecting. Additionally, there have been extensive

studies, conducted through decades, which reinforce this idea. Matsumoto et al.

[Mat01b] have compiled a listing of the AUs typically activated in expressing 8 basic

emotions (Table 2.1). In Figure 2.4, shows an example of the muscle activation

that are used to define each Action Unit (AU). For example, AU4 (a.k.a. Brow

Lowerer) represents the movement of facial muscles (Depressor Glabellae, Depressor
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Supercilli, Corrugator), where the muscles constrict to attachment points (the places

where the circular labels with the number 4 are. Notice that there are three muscles

involved, hence there are 3 circular labels with the number 4 in them). The line

extended from the circle refers to the placement of facial muscles associated with

this AU.

Table 2.1: Action Units typically activated for 8 emotions. The numbers appearing
in the table are referring to the index of Action Unit (AU) (Table is modified from
[Mat01b])

Emotion AUs from Darwin’s work AU’s from other human
experiments

Anger 4; 5; 24; 38 4; 5 or 7; 22; 23; 24
Contempt 9;10;22;41;61 or 62 12 ; 14
Disgust 10; 16; 22; 25 or 26 9 or 10; 25 or 26
Fear 1; 2; 5; 20 1; 2; 4; 5; 20; 25 or 26
Happiness 6; 12 6; 12
Joy 6; 7; 12 6; 12
Sadness 1; 15 1; 4; 15; 17
Surprise 1; 2; 5; 25 or 26 1; 2; 5; 25 or 26

Figure 2.5 summarizes the approaches that are followed in this research to char-

acterize the affective state of a computer user. The research described in this dis-

sertation pursues the assessment of the affective state of a computer user from two

types of measurements. It will seek to estimate his/her arousal level and valence level

by observing his/her pupillary response, influenced by the ANS, and by monitoring

that persons facial expression, respectively. The following chapters, will explain in

detail how this strategy was implemented practically.
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CHAPTER 3

DATA ACQUISITION

The goal of this research is to build a supervised machine learning model to

classify the computer users state of affect. One of the initial steps towards that

goal is the identification of the types of data required for this task. The target data

has to be able to reflect the changes of arousal and valence level of the user but, in

addition, it is necessary that the data acquisition process should not interfere with

the interaction between the user and the computer. Based on the Circumplex Model

of Affect, there are two parameters we have to estimate to assess a users affective

state: arousal and valence.

It is known that the pupillary response is influenced by the Autonomic Nervous

System (ANS). The pupil is dilated (larger pupil diameter) when the user is in a

high arousal state. Conversely, the diameter is constricted (smaller pupil diameter)

when the user is in a low arousal state. Therefore, we can estimate the arousal level

through the changes in the pupil diameter. Pupil diameter monitoring is also a good

choice in terms of its non-intrusiveness during data acquisition.

For the assessment of valence case, the facial expression has long been considered

a primary way for a human to observe another humans emotional changes, as well

as a fundamental way in which humans express their emotion. We tend to conclude

if the person we observe is happy if he or she is smiling and we can see that the

person is sad if he or she is crying. Emotion is defined as the complex actions of

a group of organs that are influenced by the mental activities and an associated

high degree of pleasure/displeasure [Mat01a]. In our case, the group of organs that

we are monitoring for affective valence assessment is the facial muscles. Therefore,

pleasure/displeasure, i.e., affective valence, can be approximately estimated by mon-

itoring of the subjects facial expression. The Facial Action Coding System (FACS)
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provides an empirical and systematic method to define the changes of facial muscles

by detecting which Action Units (AUs) are activated during the changes in facial

expression. In this research, the detection of facial changes is derived from changes

in the 3D coordinates of the surface of the face. The data acquisition can be per-

formed in a non-intrusive way by using the capabilities of the Kinect sensor module

developed by Microsoft [Rah17].

Having identified the user variables to be monitored (pupil diameter and facial

expression changes) the design of the data collection process plays an extremely im-

portant role to obtain appropriate data for the development of the affect recognition

system. Thus, an experiment has been set up where human subjects will be pre-

sented with images from the International Affective Picture System (IAPS)[LP05] to

elicit from them affective reactions, manifested through their involuntary changes in

pupil diameter and in their facial expressions. In addition, subjects while also report

the subjective assessment of their reactions through the Self-Assessment Manikin

(SAM)[BL94].

During the recording sessions, a Kinect sensor was used to collect the 3D facial

coordinates and the Facial Animation Parameter Units (FAPUs)[AA01] from the

subjects face, as well as an estimate of the illumination level in the area around the

eyes of the subject. Simultaneously, an Eye Gaze Tracking (EGT) system was used

to record the pupil diameter in the eyes of the subject. The self-reports of arousal

and valence marked by the subject in SAM for each IAPS image were also recorded

into the dataset for later use.

The next section provides an explanation of the International Affective Picture

System used as the stimulus for elicitation of affective responses in the subjects.
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3.1 The International Affective Picture System

The International Affective Picture System (IAPS) is a large set of color photographs

that elicit shifts in the subjects arousal and valence. IAPS contains a wide variety

of stimulus types for more than 1,000 exemplars of human experience such as joyful,

sad, fearful, attractive, angry, simple objects, scenery, etc. The idea is to present the

subject with visual stimuli to modify his/her affective state while recording his/her

reaction. The IAPS has been used across various fields of study to investigate emo-

tion and attention worldwide and it is well-known for its replication and robustness.

Pictures from IAPS are rated with arousal, pleasure, and dominance mean values,

based on reactions from men and women, which make them suitable to be used

as stimuli in this study. More in-depth information about IAPS can be found in

[LP05].

For this research, IAPS provides both the stimuli (pictures) and the labels for the

levels of arousal and valence needed for the design of a classifier under the supervised

machine learning paradigm. IAPS provides us the mean and the standard deviation

of arousal, valence, and dominance values, according to the ratings that thousands of

subjects gave to the pictures in previous characterization studies. This means that

the number of mean arousal and mean valence that comes with each picture has

already reduced the potential bias of the rating by an individual, which may react

differently based on their personal background, religion, culture, and etc. The mean

values represent how the majority of people react to each particular picture. The

IAPS documentation also provides the means and the standard deviations calculated

for separate genders which could be very useful in case we include the gender as one

of our features for training a predictive model.
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The group that has developed the IAPS database suggests that the IAPS pic-

tures should not be released to the public or be seen by the participants before the

experiment starts to preserve their usefulness as emotional stimuli.

We chose to only use the arousal and valence mean values form the IAPS

database, as the dominance parameter was not central to our approach, based on the

Circumplex Model of Affect [Rus80]. In figure 3.4a, each point shows the location

of the mean of arousal (Y-axis) and valence (X-axis) of each of the picture samples

in the IAPS database. Each picture is represented by a circle. Additionally, the ra-

dius of each circle represents the standard deviation of the arousal rating across all

participants. The tool used by the subjects who participated in the experiments per-

formed to develop the IAPS database for rating these two parameters: arousal and

valence, is called the Self-Assessment Manikin (SAM). This tool is further described

in the next section.

3.2 Self-Assessment Manikin

The Self-Assessment Manikin (SAM)[BL94] is a tool for a non-verbal, pictorial as-

sessment reporting technique that directly expresses the pleasure, arousal, and dom-

inance associated with the affective state of the subject while being exposed to a

stimulus. We mainly focus on the 2-dimensional Circumplex Model of Affect; there-

fore, dominance reactions are not considered. As demonstrated in figure 3.1, the

SAM figure varies along each scale. In the arousal scale, the left-most figure cor-

responds to the most extremely stimulated, excited, frenzied, jittery, wide-awake,

or aroused state. While the other end of the scale represents a completely relaxed,

calm, sluggish, dull, sleepy, or unaroused state. The scale ranges from 1 to 9 for the

purpose of intermediate fine-grained rating. For the pleasure (valence) assessment,
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the scale works the same way as for arousal except, in this case, the left-most figure

represents a highly happy, pleased, satisfied, contented, hopeful state; while the op-

posite end represents a very unhappy, annoyed, unsatisfied, melancholic, despaired,

bored state.

Figure 3.1: Self-Assessment Manikin (SAM) (from[LP05])

3.3 Experiment Setup

The entire data collection process is depicted in the diagram shown in figure 3.2.

This diagram describes the process handled by the AffectiveMonitor application

[TOlR+18] and indicates the list of output files obtained from the data collection

process. Kinect, running on the primary computer is responsible for obtaining 3D

facial coordinates while the TM3 Eye-Gaze Tracker device running on a secondary

desktop computer records the pupil diameter signals and sends them over to the

primary machine. These data are recorded during the experiment session and are

written out in a timely manner, for each frame, to output files. We show how the

experiment has been set up and its environment in figure 4.1.
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Figure 3.2: Bird’s eye view of the system (Data collection process)

3.3.1 Experiment Procedure

AffectiveMonitor has a separate ”Experiment” interface tab section (Figure 3.3b)

to conduct the experiment from beginning to end. The experiment takes about 35

minutes and before the experiment session begins, the subject will go through the

following protocol for the purpose calibration.

1. Listen to the brief description of what the study is for and what the participant

will be doing throughout the experiment.

2. Sign the form of consent to his / her participation in this study.

3. Go through the scanning process to adjust (customize) the shape of a 3D facial

model.

4. The experimenter adjusts the position of the subject for adequate pupil diam-

eter recording.
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5. The subject will provide general information, such as his /her gender, age, and

ethnicity, which is kept confidential and is not associated with the identity of

the subject.

6. The data recording process starts.

During the experiment, 70 pictures selected from IAPS will be shown to the

subject, one after another, until all samples are presented. For each sample, the

subject is asked to look at the picture for 6 seconds, then immediately after, rate

their affective state assessment via SAM (5 seconds). In between samples, a gray

screen is shown during the resting period. The subject is urged to stay still during

the first 6 seconds when he/she is first presented with the stimulus in order to reduce

the measurement interference that could occur during the recording process.

The experiment is conducted in a relaxed environment where the participant can

focus on looking at the pictures and providing the corresponding ratings of arousal

and valence, using the SAM tool.

3.3.2 Sample Selection

For the experiment, we selected IAPS pictures on the basis of the mean and variance

of arousal and valence that come with each picture from the IAPS repository. Our

criterion for selecting the samples is based on the study of a 12-Point Affect Circum-

plex (12-PAC) model of Core Affect [YRS11] which is also based on the Circumplex

Model of Affect. This study refined Russells framework by hypothetically dividing

the Circumplex model into twelve segments called the 12-Point Affect Circumplex

(12-PAC) structure. By finding the correlation between many previous studies and

their own, the authors report their analysis and their placement of moods on a

12- PAC structure as shown in figure 3.4b. Based on this study, we selected the
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(a) System’s environment

(b) AffectiveMonitor: Experiment Interface

Figure 3.3: An entire system including Kinect V2 (on top of the screen) and TM3
(in front of the computer) is shown in Fig. 4.1. Fig. 3.3b shows an experiment
interface of the AffectiveMonitor application
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IAPS samples that are located around desired angles of those core affects that have

more than 60% likelihood to appear in the Circumplex Model on that angle. That

behavior is characterized by the length of the solid line depicted in figure 3.4b for

each of the mood scales, based on studies conducted to quantify the level of arousal

and valence corresponding to those individual moods. Even though there are 28

moods in total plotted around a circle in Russells model, we are primarily focusing

on classifying the users affective state at a coarse scale first, before we move on to a

more fine-grained classification. So, our initial goal is to build the predictive model

that can classify the affective state into roughly 4 classes. These 4 classes could then

be related to the 4 quadrants in the Circumplex Model of Affect and interpreted

correspondingly:

1. Positive Arousal and Positive Valence (Quadrant 1)

2. Positive Arousal and Negative Valence (Quadrant 2)

3. Negative Arousal and Negative Valence (Quadrant 3)

4. Negative Arousal and Positive Valence (Quadrant 4)

Accordingly, we selected 70 IAPS samples, including pictures from each of the

four quadrants, which are associated with 10 types of mood, as shown in table

3.1. The selection is structured in a way that balances the distribution across the

circumplex model so we can build the predictive model with balanced data.

3.4 Data Acquisition

In this section, we explain the method of obtaining the measurements that are used

to generate the features used for affect classification, including, 3D facial coordinates,

pupil diameter, Facial Animation Parameters (FAPs), and illumination around the
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(a) IAPS pictures selected for our study (N)

(b) Core Affects on 12-PAC structure (from[YRS11])

Figure 3.4: Fig. 3.4a shows a plot of means of arousal and valence for images in the
IAPS repository on top of the Circumplex Model of Affect. Notice that the radius
of each plotted circle varies according to its variance. The triangular labels indicate
the images chosen for use samples in this experiment. Fig. 3.4b demonstrates
thirty mood scales which are placed within the 12-PAC structure with CIRCUM-
extension method[YRS11]. The length of the solid line from the center can be
roughly described as the maximum likelihood of placing a mood on the designated
angle

.
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Table 3.1: Selected Samples listed by Picture ID from IAPS

Pleasure Joviality Attentiveness Disgust Fear Negative Sadness Tiredness Calmness

1 1440 8499 4664 9301 9252 9007 2456 2399 5811
2 2550 8501 4604 7359 9413 9320 2095 2039 5870
3 2260 8080 4689 9940 9342 2301 2752 1604
4 2070 7600 8179 6550 9295 2141 9390 5875
5 5831 7451 8490 2981 2799 9913 1419
6 7200 2092 4574 9491 4598 9395 2000
7 2154 8300 4232 9042 9190 5410
8 2151 8200 5950 6250 2400 7325
9 5910 4626 1050 9325 2695 5725
10 8540 5972 9433 4635

eyes of the subject. All of them are recorded with the same timestamp by the

AffectiveMonitor application.

3.4.1 3D Facial Coordinates

Kinect has provided the basic software framework, called HD face [Rah17]], that is

needed to capture 3D coordinates of the surface of the face of the subject. This

framework can detect the face of the closest person in front of the Kinect sensor

and generate the persons 3D facial mesh model in real-time. Another interesting

prospect of this framework is its ability to reconstruct the persons face shape by 3D

scanning. We have integrated this framework into our AffectiveMonitor application

to benefit from all the functionality that Kinect has to offer. The mesh model can

also be represented by 3D coordinates and can be thought of as markers attached

on the subjects face so whenever the subjects facial expression changes, the markers

also move according to the corresponding facial muscle movement. By recording

frame by frame, we can observe the changes in 3D facial coordinates that occur

because of the subjects facial expression.
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(a) Facial mesh construction

(b) Re-positioning and re-orienting facial points

Figure 3.5: Fig. 3.5a shows the interface of AffectiveMonitor for mesh construction.
Fig. 5.5 displays the interface of AffectiveMonitor used for resetting the facial point
cloud to its neutral position. The interface shows the shift in position and orientation
in the Euclidean domain.
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(a) Pupil Diameter interface

(b) Cropped video

Figure 3.6: Fig. 3.6a shows the interface of AffectiveMonitor for dynamic plot-
ting of pupil diameter. Fig. 3.6b shows the cropped video used for illumination
measurement around the eyes.
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One problem that arises during the design of the experiment is the impossi-

bility to completely restrain the movement of the subjects during the experiment.

Body shifts can alter the position and orientation of the subjects face, which may

complicate their processing. To circumvent this issue, we have built a feature in

AffectiveMonitor to artificially re-position and re-orient the subjects face before

recording the values.

Fortunately, Kinect also provides the pivot point, which is the centroid of the

facial model, as well as the orientation (in quaternion format) of the face. Thus,

we can reverse the rotation and transform the point cloud to a neutral position, a

reference to the origin of the coordinate system by applying a coordinate transfor-

mation to each frame captured, on the basis of the available orientation of the face,

to revert the rotation that may have occurred during the recording.

The Quaternion Inverse of a Rotation

A quaternion is a hyper-complex number of rank 4 that fulfills certain rules. Quater-

nions were introduced by Hamilton in 1843. They are widely used to represent ori-

entations and rotations of three-dimensional objects to avoid the problem of gimbal

lock [nas]. Equation 3.1 shows the mathematical notation for a quaternion, where

q0 is the scalar part of the quaternion while q is the vector part of the quaternion.

A quaternion can also be represented by its components (q0, q1, q2, q3), where i, j,k

are the standard orthonormal basis of R3, as a 4-tuple of the real numbers, as

demonstrated in equation shown in Equation 3.2.

q = q0 + q = q0 + iq1 + jq2 + kq3 (3.1)

q = (q0, q1, q2, q3) (3.2)
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In this study, we are interested in using quaternion manipulations as a rotational

operator that has properties that are well suited for this type of application. Below

there is a brief description of how to apply the quaternion rotation operator to our

3D facial points collected with the Kinect module. For a more detailed explanation,

please refer to [Kui99]. The quaternion rotation operator (Lq) is the result of the

triple quaternion products that have a property to rotate the input vector (v) to

a resulting output vector (w) around a quaternion axis in R3. From what we de-

scribed, the operator can then be defined by the equation 3.3 where q∗ is a conjugate

of q.

w = Lq(v) = qvq∗ (3.3)

A simpler computational formula for this process is indicated in Equation 3.4:

Lq(v) = (q0
2 − q2)v + 2(q · v)q + 2q0(q × v) (3.4)

To have a better view on how to apply the quaternion rotation operator to an

existing input vector v, please observe Figure 3.7. In a very high-level explanation,

one can think of the operation in equation 3.3 To have a better view on how to apply

the quaternion rotation operator to an existing input vector v is rotated through an

angle of 2θ about q as the axis of rotation. The angle (θ), in particular, is determined

by the quaternion (q) itself. a is the component of v along the direction of q and

n is the component of v along the direction of v. In this case, m is the result of

the quaternion rotation operation applying to n (that is, Lq(n)); and since m is

the component of w, we can say that w is the vector resulting from applying the

quaternion rotation operation to v. More detail explanation can be read in [Kui99].

To apply the appropriate rotation to our application, we first have to determine

what elements in our problem represent each component in Equation 3.4. The
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Figure 3.7: Quaternion Rotation Operator Geometry. (figure from [Kui99])

intent is to rotate the facial points model to the neutral position and to ensure

that the captured face will be oriented as if the subject were looking directly to the

Kinect module. Fortunately, the Kinect library framework provides the angle and

the position of the face model in quaternion form. The information is attached to

the pivot point of the face. We can place the face in a neutral position by moving

the pivot point to the origin and adjusting its angle. The face model is composed of

a group of 3-dimensional coordinates structured in the face shape with the common

reference point (pivot point). Thus, we can consider one 3-dimensional coordinate as

a vector input that will be rotated by the quaternion rotational operator, and then

apply to the rest of 3-dimensional coordinates. To apply the quaternion rotation

operator, we first have to find v, which we can obtain by determining the vector

from that particular point to the pivot point. For q, we already have it from Kinect
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at the pivot point; nevertheless, we want to invert the rotation back to its neutral

position so we have to find the inverse of the quaternion provided by Kinect and then

we can apply that inverse quaternion to the vector input. In our implementation of

Equation 3.4. q0 is the magnitude part of q and q is its vector part.

Another matter that we have to deal with is where the origin point of the quater-

nion vector, or in other words, the magnitude of a. If a is not starting from the

origin then the rotated face model will also move in position; while our goal is to

invert the angle of the face model to be in a neutral angle in place. (see Figure 3.7).

That is why we have to transform the face models pivot point to the origin point

first before we can apply the quaternion rotation operation. See the result in Figure

5.5

3.4.2 Pupil Diameter and Illumination

To acquire pupil diameter signals, we utilize the TM3 Eye-Gaze Tracker (EGT),

which has the capability to measure the pupil diameter using the dark-pupil method.

We set the sampling interval at 0.33s and average samples in an average window of

30-sample width. The pupil diameter signals are then transferred to the primary

machine via TCP/IP, over ethernet cable. AffectMonitor has a feature to plot the

average of the pupil diameter dynamically as shown in Figure 3.6a.

Many studies have shown that the pupil diameter is under the influence of the

Autonomous Nervous System (ANS) and can be used as a marker for arousal level

[GBA09b]. Unfortunately, pupil diameter is also susceptible to the amount of light

impinging on the retina. To bypass this issue, we perform post-processing to address

the effect of the pupillary light reflex on the pupil diameter values recorded. In order

to account for this effect, the level of illumination around the eyes of ht subject
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must also be recorded as one of the output parameters. We obtain the illuminance

measurement utilizing Kinects RGB camera by cropping the video around the eye

area (Figure 3.6b) and calculating the illumination based on the cropped video. A

more detailed explanation of the approach followed to address this challenge will be

presented in Chapter 4.

Table 3.2: Facial Animation Parameter Unit (FAPU)

Description FAPU Value

IRISD0 = 3.1.y 3.3.y =
3.2.y 3.4.y

Iris diameter (by definition it
is equal to the distance be-
tween upper ad lower eyelid)
in neutral face

IRISD = IRISD0 / 1024

ES0 = 3.5.x 3.6.x Eye separation ES = ES0 / 1024
ENS0 = 3.5.y 9.15.y Eye - nose separation ENS = ENS0 / 1024
MNS0 = 9.15.y 2.2.y Mouth - nose separation MNS = MNS0 / 1024
MW0 = 8.3.x 8.4.x Mouth width MW = MW0 / 1024

3.4.3 Facial Animation Parameter

The Facial Animation Parameter (FAP) is one concept of the components in MPEG-

4 Face and Body Animation (FBA) International Standard (ISO/IEC 14496 -1 &

-2) [PF03]. It describes a standard protocol to encode the virtual representation

of human and humanoid movement, specifically around the facial region of the

body. FAPs are commonly used to describe basic actions of facial expression for a

synthetic face; for instance, in the CANDIDE model [AA01]. The ability of FAPs to

encode the primitive expression information with small memory usage makes them

interesting as an alternative method to record the subjects facial expression.
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Figure 3.8: Facial feature points and Facial Animation Parameter (FAPU)
(from[ZJZY08])

The Facial Animation Parameters (FAP) are defined by the displacement be-

tween facial feature points defined by the FBA standard (See Figure reffig:fapu)

which are measured by Facial Animation Parameter Units (FAPUs).

FAPUs are normally calculated from a neutral face and divided by 1024 so that

the unit is small enough to enable FAPs to be represented in integer numbers. The

purpose of FAPUs is to allow a consistent way to interpret FAP indices for any facial

model regardless of their shape and dimension. The description of the FAPUs and

how to calculate them are listed in Table 3.2. We decide to output 19 FAPs listed

in Table 3.3 which are actively related to basic facial expressions as desired output

from the total of 68 FAPs [ZJZY08]. Note that in Figure. 3.8, the numbering of

the facial feature points is according to FBA standard, while the index coordination

system from Kinect is in a different listing. See Table 3.3 for the correspondence
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Table 3.3: FAP Measurement with Facial Feature Points (FBA & Kinect)

FAP
index

FAP Name Distance of two
feature points
(FBA)

Distance of two
feature points
(Kinect)

FAPU

31 raise l i eyebrow Dy(4.2, 3.8) Dy(346, 210) ENS
32 raise r i eyebrow Dy(4.1, 3.11) Dy(803, 843) ENS
35 raise l o eyebrow Dy(4.6, 3.12) Dy(140, 469) ENS
36 raise r o eyebrow Dy(4.5, 3.7) Dy(758, 1117) ENS
37 squeeze l eyebrow Dx(4.4, 3.8) Dx(222, 210) ES
38 squeeze r eyebrow Dx(4.3, 3.11) Dx(849, 843) ES
19 close/open t l eyelid Dy(3.6, 3.2) Dy(241, 1104) IRSD
20 close/open t r eyelid Dy(3.5, 3.1) Dy(731, 1090) IRSD
41 lift l cheek Dy(5.4, 3.12) Dy(458, 469) ENS
42 lift r cheek Dy(5.3, 3.11) Dy(674, 117) ENS
61 stretch l nose Dy(9.14, 3.8) Dy(210, 1170) ENS
62 stretch r nose Dy(9.13, 3.11) Dy(843, 1162) ENS
59 raise/lower l cornerlip o Dy(8.4, 3.12) Dy(91, 469) MNS
60 raise/lower r cornerlip o Dy(8.3, 3.11) Dy(687, 117) MNS
53 stretch l cornerlip Dx(8.4, 9.15) Dx(91, 14) MW
54 stretch r cornerlip Dx(8.3, 9.15) Dx(687 14) MW
5 raise/lower b midlip Dy(8.2, 9.15) Dy(8, 14) MNS
4 lower t midlip Dy(8.1, 9.15) Dy(19, 14) MNS
3 open jaw Dy(8.2, 8.1) Dy(19, 8) MNS

between Kinect’s index coordination system and FBA’s coordination system.

3.5 Summary

Our goal is to collect the data suitable to train a supervised machine learning model,

to classify the affective state of the subject in the Circumplex Model of Affect. In

order to achieve that, we have to estimate two parameters: arousal and valence,

with our model. In the case of arousal, we have found strong evidence support-

ing the notion that the pupil diameter is influenced by the Autonomous Nervous

System, which is responsible for the state of arousal. In the case of valence, we

decided to estimate this parameter on the basis of the subjects facial expression
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since pleasure and displeasure are directly expressed naturally by the activity of

the facial muscles. Two data formats representing facial expression are recorded,

3D facial coordinates and Facial Animation Parameter indices and each has pros

and cons. 3D coordinates are practical because they preserve the whole information

recorded in the facial expression without losing any; while, FAPs are better with re-

spect to memory usage. Other data that are collected along during the experiment,

such as illuminance around the eye area, the distance between the subjects face and

the Kinect sensor, and FAPUs, as they are necessary for scaling adjustment and

calibration. Data are obtained in a time-stamped manner where pupil diameter,

FAPs, 3D facial coordinates, and others are captured simultaneously and recorded

together. Additionally, they are recorded in a customized output file for facilitating

the transfer of the data to the analysis phase.
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CHAPTER 4

REMOVE PUPILLARY LIGHT REFLEX

One effect that prevents the direct measurement of the Pupillary Affective Re-

sponse (PAR) from the raw pupil diameter signals is the Pupillary Light Reflex

(PLR). This chapter describes this effect and possible approaches to remove the

effect of the Pupillary Light Reflex (PLR) component from pupil diameter signals

obtained by an Eye-Gaze Tracking device (Eyetech Digital TM3) using the RGB

camera from the Kinect module as a way to measure the illuminance around the

eyes of the user. The purpose of this study is to obtain pupil diameter signals that

mainly reflect the Pupillary Affective Response (PAR) used to estimate the arousal

level in the response of a human subject to affective stimuli. One previously pro-

posed approach includes using an Adaptive Interference Canceller (AIC) technique

to filter out the Pupillary Light Reflex (PLR) from pupil diameter signals (PD). We

also present the empirical method followed to replace a stand-alone light meter with

the RGB camera from Kinect to measure illuminance.

4.1 Introduction

Previous research has shown that the pupil diameter (PD) is inherently controlled

by the Autonomic Nervous System (ANS) [GBSu][Hug95]. There is evidence that,

in constant light conditions, the pupil diameter is increased when a subject is pre-

sented with stress stimuli. The reasons behind this phenomenon lies in a mechanism

that modifies the balance between the Sympathetic and Parasympathetic divisions

of the ANS [Hug95]. This effect needs to be taken for the development of the Af-

fectiveMonitor (Figure. 4.1) for the evaluation of a computer users affective state

based on the Circumplex Model of Affect [TOlR+18].

41



It is known that pupil diameter changes are not only caused by affective re-

actions, but also by the amount of light that falls upon the retina, causing the

Pupillary Light Reflex (PLR), which can be viewed as a process to regulate the

amount of light reaching the retina [BW98]. This effect causes the contraction of

the pupil and is superimposed to the changes in pupil diameter caused by affective

responses, and, therefore, hinders our study. Thus, we seek to remove the PLR

component from the pupil diameter signals we measure. Previous work from FIU

DSP Lab research group [GBSu] has presented an approach that uses an Adaptive

Interference Canceller (AIC) to remove the PLR component from the PD signal.

That previous work utilized the AIC canceller to implement a stress detector tested

on the reactions of the subject to Incongruent Stroop Segments. The study showed

promising results in the PD-based systems performance as evaluated by the Receiver

Operating Characteristic curve (ROC). The PD-based stress detector exhibited an

area under the curve (AUROC) of 0.9331, indicating robust performance after the

PLR was removed.

There are also other physiological signals that can act as indicators of arousal

changes, such as the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP),

the Heart Rate (HR). However, the pupil diameter is more suitable to estimate the

arousal level and assess the affective state of a computer user because it can be

observed non-intrusively, which is critical due to the nature of the study itself. In this

kind of experiment, it is highly desirable that the subject remain at his/her normal

state as much as possible, without any unnecessary distracting factors. This issue is

also the reason why we chose to use the RGB camera from Kinect, which is already a

part of the AffectiveMonitor system [TOlR+18]], to measure the illumination around

the subjects eye. Previously, a light meter was used to obtain illuminance signals

to play the role of the required noise reference in the AIC algorithm. The light
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Figure 4.1: An entire system including Kinect V2 (on top of the screen) and TM3
(in front of the computer)

meter requires the placement of a sensor at the desired area where we would like to

measure the illumination and it causes some distraction to the subject during the

experiment.

In the following sections, we will discuss the AIC strategy in detail and describe

how we obtain the illuminance signals around the eye area of the subjects face using

images from the RGB camera as a mean to measure the illumination.
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Figure 4.2: Diagram of Adaptive Interference Canceller (AIC) (from [GBSu])

4.2 Methodology

4.2.1 Adaptive Interference Canceller

The Adaptive Interference Canceller (AIC) is a system that is often used in Digital

Signal Processing (DSP) to remove an unwanted interference component that pol-

lutes a signal of interest [SK88]. The best way to explain how the system work is to

walk through its diagram (Figure 4.2). The concept here is to measure the signal of

interest s(k) that is corrupted with an uncorrelated noise z(k) as the primary input

signal d(k). The reference input signal r(k) is a signal that is correlated with the

corrupting noise z(k) but uncorrelated with our target signal s(k). The adaptive

algorithm, the Least Mean Square (LMS), in this case, will adjust the parameters in

an Adaptive Transversal Filter (ATF) to bring the reference input signal r(k) to be

as close as possible to the interference signal z(k) in order to bring the error e(k),

down to a minimum value (in a mean squares sense). By doing so, we can obtain

our signal of interest, i.e.,the filtered signal ŝ(k), with the attenuated interference

signal. In order to apply the theory to our application, we can think of the pupil

diameter signal (PD) obtained from the TM3 Eye-Gaze Tracker as the primary in-
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put signal d(k) while the measured illumination around the subject’s eye area, from

the RGB camera (Kinect) is used as the reference input signal r(k). After the fil-

tering process, we expect to obtain the output signal e(k) that mainly contains the

Pupillary Affective Response (PAR) component without the Pupillary Light reflex

(PLR), which is removed by the adaptive filter.

Figure 4.3: Diagram showing the process of finding correlation between Kinect and
LUX meter signals

4.2.2 Kinect as LUX meter

As explained earlier, in the introduction section, the studies related to the evalu-

ation of affective state require the subject to be in his/her normal condition as much

as possible to minimize extraneous stimulation or distractions. We chose to utilize

the RGB camera (Kinect) for an illumination measurement since Kinect is already

a part in our system [TOlR+18]. To explain the approach followed to achieve this,

will first define a few terms used throughout the description of the process.

Luminance : Measured in candela per square meter is the parameter perceived

by humans as the brightness of a light source.

RGB camera : Captures the incoming light rays and turns them into electri-

cal signals enabling many pieces of electronic equipment to act as light detectors.

The incoming color and brightness of an image are converted to numbers, preserv-
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ing those characteristics of the image and breaking it up into millions of pixels,

depending on the camera resolution.

For the purpose of eliminating the unwanted PLR factor from the pupil diameter

signal using the RGB camera, we only compute the pixel values around the eye area,

using a cropping rectangle image that always has its center between the left and the

right eyes (Figure. 4.4).

Figure 4.4: Cropped video used to compute luminance around the eye area

The pixel values in an image from the RGB camera are proportional to the

luminance, because the light sensors convert the intensity of light falling upon them

to electrical signals whose strength depends on the brightness of the received light.

That is why an RGB camera can act as a luminance meter [HE11]. Equation 4.1 is

used to calculate the luminance from RGB values in the image, according to a color

model based on human physiological characteristics [AMu]. Note that, R is Red, B

is Blue, and G is green.

Y ′ = 0.299R′ + 0.587G′ + 0.114B′ (4.1)
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However, the sensitivity of the sensors may be different for different RGB cam-

eras. The relationship shown above may vary depending on the camera specifica-

tions. For this reason, we need to find out if the luminance values measured via

our implementation followed the same trends as the luminance values measured us-

ing a luminance meter. To verify this hypothesis, we performed simultaneous light

measurements in our experimental setup using the RGB camera from Kinect and a

stand-alone LUX meter (Extech 401036 Datalogging Light Meter), while introduc-

ing strong illumination changes. Subsequently, after some processing, we computed

the correlation between the two signals. If our hypothesis is correct, the luminance

values obtained from Kinect should have a high correlation with the luminance

value measured from the lux meter. A summary diagram of how we confirm our

hypothesis is shown in Fig. 4.3

Table 4.1: Correlation Coefficient between Kinect and LUX meter

Kinect LUX meter

Kinect 1.00000 0.922234
LUX meter 0.922234 1.00000

We can notice that the plots in Fig. 4.5a are not synchronized because of the

different delays in the measurement systems. To circumvent this problem, we per-

formed a correlation analysis to determine the delay time and then re-align the two

signals. After the aligning process, now we can calculate the correlation between

the two signals. Figure 4.5b shows the plot of luminance after the preprocessing

and shifting of one signal to align it with the other. Then we computed the cor-

relation between these signals. The correlation coefficients of illuminance signals

measured from Kinect and the LUX meter are shown in Table 4.1. The pairs of

measurements are shown in a scatter plot in Fig. 4.6, which also includes a ”best
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(a) Data before pre-processing

(b) Data after pre-processing

Figure 4.5: Pre-processing of luminance signals obtained from LUX meter (blue)
and Kinect (red)
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Figure 4.6: Scatter plot and correlation (m=8, b=-386)

fit” line. The result indicates strong correlation between the two signals, confirming

that our hypothesis is correct and that we can use the luminance signal from our

implementation as the reference input r(k) (see Figure 4.2) to filter out the PLR

from the pupil diameter measured signal.

4.2.3 Removing the Pupillary Light Reflex

As we have explained, we use an adaptive interference canceller (AIC) to filter out

the Pupillary Light Response (PLR) and obtain a result, an output signal, contain-

ing only the Pupillary Affective Response (PAR). The first step is to pre-process

the pupil diameter signal (PD); for instance, substituting missing samples due to

eye blinks with an average value of the samples recorded in the neighborhood of
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the missing samples, and normalizing the pupil diameter as well as the illuminance

signal before the filtering process. The signals we record are pupil diameter values

obtained from the TM3 Eye-Gaze Tracking device from both left and right eyes

containing about 7000 samples recorded at a sampling rate of 1 sample/sec. The

illuminance signals are recorded using the RGB-camera (Kinect) at the same sam-

pling rate. An example plot of pupil diameter signals after pre-processing along

with the illuminance signal is shown in Figure 4.7.

The adaptive interference canceller (AIC) development follows the theory and

practice from [TJ18] in order to implement an LMS adaptive filter. Both recorded

pupil diameter signals that are impacted by the pupillary light response (d(k)) and

the illuminance signal (r(k)) are normalized before they are processed by the LMS

adaptive filter. There are two hyperparameters that affect the performance of the

adaptive filter. They are the length of the delay line (L) and the learning rate

(mu). The longer the delay line is, the slower and smoother the modified reference

input signal (y(k)) becomes. In this case, we would like y(k) to imitate the PLR

component in the primary input (d(k)) as much as possible so the output signal

(e(k)) is only left with the PAR after y(k) is subtracted from d(k). The learning

rate (mu) determines how fast the filter can adapt to its target. Setting the right

learning rate (mu) is critical here since if it is set too low, the filter could have a

degraded performance; while the system might be unstable if it is set too high. In

our study, we set the delay line length (L) at 10 and the learning rate at 50. We

will discuss our results in the next section.
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Figure 4.7: Plots from top to bottom: Pupil Diameter (Left), Pupil Diame-
ter(Right), Illuminance

4.3 Result

An example of the results obtained with the AIC is shown Figure 4.8, which consists

of two plots. The first one (Figure 4.8a) shows signals d(k), r(k), y(k), and e(k),

respectively, from top panel to bottom panel. Figure 4.8b shows some of these same

signals superimposed for an easier visualization. Here each signal is shown in a

different line style. The primary input signal (d(k)) is represented in solid black

line at the top part of the graph; this signal is the left pupil diameter signal. Our

output signal (e(k)) is also in solid black line but located at the bottom of the graph.

The reference signal (r(k)), illuminance, is shown here in light color and, lastly, the

modified reference signal (y(k)) is plotted in dotted line. It is possible to observe, in

this figure, how each signal behaves based on the nature of the pupillary response.

The basic idea is that when the illuminance is low, the pupil diameter is increased

in order to adjust the amount of light that reaches the retina. That is why when

the reference signal is lower, the pupil diameter signal is shifted upward.
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The purpose of the implementation of the adaptive filter is to eliminate this

effect and shift the pupil diameter down to the baseline when the interference from

pupillary light response produced by illumination changes occur. In Figure 4.8b,

we observe that the output signal behaves as we expected. In these instances, the

output signal in the plot did shift down to the base line while still preserving the

PAR information. Hence, the LMS filter seems to be removing the influence of the

pupillary light response from the pupil diameter signal.

In this chapter, we described the processing of images from an RGB-camera for

substitution of a LUX meter to measure the illuminance around the eyes of the

subject. Our testing showed a correlation of 0.922 between the illuminance signals

obtained by the LUX meter and the Kinect camera.

We then used the illuminance signal obtained through the RGB camera in Kinect

as the noise reference signal in an adaptive interference canceller. In the canceller

architecture the measured pupil diameter signal is the primary input and comprises

both, the pupillary light response (interference) and the pupillary affective response

(signal of interest). The behavior of the results obtained from the adaptive inter-

ference canceller seem to indicate that canceller is, in effect, compensating for pupil

diameter signal shifts that are clearly occurring in response to illumination changes.
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(a) Signals plotted separately

(b) Signals plotted in one graph

Figure 4.8: Plot of signals processed in removing PLR using AIC
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CHAPTER 5

THE AFFECTIVE ASSESSMENT SYSTEM

This chapter describes the implementation of the affective assessment system

developed through this research, which has been named AffectiveMonitor. This

is the system used to visualize, collect, and analyze the data used in this study.

Chapter 2 explained that we target the estimation of two parameters (arousal and

valence) to assess the affective state of the user based on the Circumplex Model of

Affect introduced by Russell. For this purpose, the system collects two types of data

having a direct relationship to arousal and valence, which are the pupillary response

and the facial expression, respectively. These data are collected in order to train a

predictive model that will identify the users affective state while he/she is interacting

with a computer. For those purposes, the system developed seeks to acquire the

facial expression and the pupil diameter data in a natural way that will not interfere

or distract the user during his /her ordinary interaction with a computer. The

AffectiveMonitor system, described in the following sections, was developed with

those considerations in mind. The system consists of three elements which are a

Kinect module, a TM3 Eye-gaze Tracking Device, and the AffectiveMonitor Software

Application.

5.1 Kinect

Kinect is a product developed by Microsoft as a result of their interest in creating an

alternative type of game controller for their Xbox console game station via a natural

user interface. We can consider Kinect, basically, as a motion sensing input device.

Beyond its intended gaming application, Kinect has also attracted significant atten-

tion from the research and development community. This low=price, powerful sensor

device has opened new opportunities for human-computer interaction research. Mi-
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crosoft has produced a couple of generations of Kinect including the first generation

Kinect 360, Kinect for Window, Kinect for Xbox One, and Azure Kinect. In our

study, we chose to work with Kinect for Xbox One which is the third generation

of hardware and software for the gaming console. It includes a color video camera

(RGB), a time-of-flight (TOF) depth sensor, an Infrared Camera, a Microphone ar-

ray, and the corresponding Software Development Kit (SDK). The combination of

an RGB camera and a depth sensor, which is referred to as an RGB-D camera, yield

both a color image and a depth map, which are used to generate a 3-dimensional

map of Kinects vicinity. In particular, the HD face framework, available from the

SDK, can generate a 3-dimensional representation of objects of interest, e.g., is the

face of a computer user, in a meshes object. Furthermore, Kinect also supports

the implementation of a facial recognition task, which means that after the users

face has been scanned properly, Kinect will generate a meshes object that has been

tailored to more specifically represent the individual users face shape. The meshes

object is the collection of many triangles that are structured and aligned together to

correspond with the shape of the 3-dimensional object. Each triangle has a position

based on the locations of its vertices, which are part of the 3-dimensional points

cloud collected by the RGB-D camera. We can yield the 3-dimensional points cloud

of the meshes object of the users face from HD face framework as well. There are

1374 3-dimensional points that represent the facial meshes object as shown in Figure

5.1

According to the limited documentation provided by Microsoft, these 3-dimensional

points are stored and indexed in a specific order, and only a selected list of indices

that corresponds to the critical anatomical landmarks is published. (The list of

indices and their description are shown in Table 5.1.)
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Figure 5.1: HD Face vertices from a detected face [Rah17]

Although the HD face framework provides the developer with vital building

blocks, the framework only provides the necessary features just for the developer

to get started in developing an actual project. We have integrated the HD face

framework to AffectiveMonitor software application to benefit from all that the

Kinects framework can offer.

5.2 TM3 Eye-gaze Tracking Device

The EyeGaze Tracker used in this study is the TM3 EyeGaze Tracker (TM3 EGT)

device from EyeTech Digital Systems Inc. This is a compact desktop EGT system,

suitable for the monitoring of a computer user seated at a desk. The system consists

of a high definition camera, infrared sources, and its software environment. It is

capable of tracking both eyes in real time and it can be used with any windows-
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Table 5.1: List of indexes of 3-dimensional points and their description provided by
HD face framework

Key Index
HighDetailFacePoints LefteyeInnercorner 210
HighDetailFacePoints LefteyeOutercorner 469
HighDetailFacePoints LefteyeMidtop 241
HighDetailFacePoints LefteyeMidbottom 1104
HighDetailFacePoints RighteyeInnercorner 843
HighDetailFacePoints RighteyeOutercorner 1117
HighDetailFacePoints RighteyeMidtop 731
HighDetailFacePoints RighteyeMidbottom 1090
HighDetailFacePoints LefteyebrowInner 346
HighDetailFacePoints LefteyebrowOuter 140
HighDetailFacePoints LefteyebrowCenter 222
HighDetailFacePoints RighteyebrowInner 803
HighDetailFacePoints RighteyebrowOuter 758
HighDetailFacePoints RighteyebrowCenter 849
HighDetailFacePoints MouthLeftcorner 91
HighDetailFacePoints MouthRightcorner 687
HighDetailFacePoints MouthUpperlipMidtop 19
HighDetailFacePoints MouthUpperlipMidbottom 1072
HighDetailFacePoints MouthLowerlipMidtop 10
HighDetailFacePoints MouthLowerlipMidbottom 8
HighDetailFacePoints NoseTip 18
HighDetailFacePoints NoseBottom 14
HighDetailFacePoints NoseBottomleft 156
HighDetailFacePoints NoseBottomright 783
HighDetailFacePoints NoseTop 24
HighDetailFacePoints NoseTopleft 151
HighDetailFacePoints NoseTopright 772
HighDetailFacePoints ForeheadCenter 28
HighDetailFacePoints LeftcheekCenter 412
HighDetailFacePoints RightcheekCenter 933
HighDetailFacePoints Leftcheekbone 458
HighDetailFacePoints Rightcheekbone 674
HighDetailFacePoints ChinCenter 4
HighDetailFacePoints LowerjawLeftend 1307
HighDetailFacePoints LowerjawRightend 1327

based communication software. More details regarding the technical specification of

the device can be found in [COG11].
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In this study, we used the Software Development Kit provided by EyeTech Dig-

ital, called Quicklink2 as a base to develop the secondary side of AffectiveMonitor.

Quicklink2 is written in C++ and builds upon the OpenCV library, which is a pop-

ular C++ library for computer vision and image processing applications. But since

our AffectiveMonitor system is written in the C# language, we preferred to develop

the secondary side software of AffectiveMonitor to be written in C# as well. For-

tunately, there is a Quicklink2 Microsoft .NET wrapper written in C# available to

use as an open-source for the developer community. This wrapper was written by

Justin Weaver. The author has provided all the necessary information for running

the application in his website [Jus09]. We have used his wrapper in developing the

secondary side of AffectiveMonitor, which includes a number of custom features,

such as sending pupil diameter samples to the primary side.

Figure 5.2: Difference of the illuminator’s placement between bright pupil effect and
dark pupil effect (Picture from [Tob15])

TTM3 EGT uses the Dark pupil effect to track the pupil diameter center and the

corneal reflection. There are two main approaches for identifying and tracking the
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center of the pupil in infrared video-based EGT systems. In the bright pupil effect

method, an illuminator is located near the optical axis of the camera, which causes

the pupil to appear brighter than the rest of the video frame. In contrast, the dark

pupil effect uses an illuminator placed away from the optical axis of the camera,

which results in the pupil having a darker shade than the rest of the frame (See Fig-

ure 5.2). Both methods have been used successfully by the different manufacturers

of eye gaze tracking equipment.

5.3 AffectiveMonitor Software Application

The idea pursued in this project, namely to combine two types of observed data,

the pupil diameter (arousal) and embedded information in the 3-D facial expression

(valence), to assess the affective state of a computers user is a novel approach to

affective assessment. Accordingly, there are not many available off-the-shelf digital

tools for researchers in this field. Some tools are available separately and offer

challenges in their integration. In order to circumvent these problems, an integrated

custom software application was developed for this research, that connects with both

Kinect and TM3 EGT device and is useful to collect and to visualize the obtained

data. We called this software AffectiveMonitor. It consists of two parts, a part that

connects with Kinect (which we call the Primary Side), and another that connects

with TM3 EGT device (Secondary Side).

5.3.1 Primary Side

The primary side of the AffectiveMonitor interfaces with the Kinect module. This

part is responsible for translating the data from the hardware device (Kinect in this

case) into files that can be used for the development of the predictive model and
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its application. It is also responsible to provide the investigators with the ability to

interact with the data captured by Kinect. It makes use of the software framework

(libraries) provided by the Kinects developer team. These have been integrated

into the AffectiveMonitor system to do designated tasks. Other responsibilities of

the primary side are the embedding of the the facial expression, the reception of

the pupil diameter data from the secondary side of AffectiveMonitor, storage of the

data in appropriate formats, measurement of the illumination around the eyes of

a computers user, data visualization for verification purposes, and the step-by-step

implementation of the protocol designed for the experimenting sessions. Figure 5.3

shows the first appearance of the AffectiveMonitor (Primary side). Please notice

that there are tabs located at the top of the window. They allow the use of each

one of the modes of the AffectiveMonitor. The following subsections will explain

in detail, the uses and the functionalities of each mode in the AffectiveMonitor

application.

Home

The best way to describe how AffectiveMonitor works might be to describe the

functionality of the components presenting in each mode along with their layout

pictures. Figure 5.3 shows the default mode of AffectiveMonitor. The purpose of

this page is to show the interaction with Kinect. This page includes visualizing

the detected face and its meshes object, collecting Facial Animation Parameters

(FAPs), observing animation units provided by the Kinect library framework, and

displaying the facial cloud of points of the face object. On the left side, it shows

a 3-dimensional facial mesh, which we will refer to as the face model in the rest of

this dissertation. Initially, space is empty, before a face has been detected.
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Figure 5.3: AffectiveMonitor in its default tab which is the first page to show when
AffectiveMonitor is first opened. On the left side shows the 3-dimensional face model
in its initial state. On the right side is the FAP info panel that will display the FAP
unit values collected after the FAP unit are measured.

Everything starts when Kinect finds the presence of the users face in front of its

sensor. From there, it will start representing the movement of the facial muscles of

the user, as detected, to the face model. This results in a mirroring behavior between

the users face and the face model displayed in the application. Kinect also provides

the feature where we can adjust the face model to morph more specifically to the

face shape of the user it is detecting. This process requires the scan of the users face

in order to achieve the enhanced similarity in the face model. We have integrated

this feature to increase the accuracy of the data that we to collect. The scanning

process can be activated after the Start Building Face button is clicked. First, the

user is asked to look straight forward, then he/she is asked to tilt his/her face to

the right, tilt his/her face to the left, and finally tilt his/her face up to complete the

scanning process. The text area below the face model is used to indicate the status

of the face model process. It will display one of the following messages:
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(i) Initial state (No face detected)

(ii) Default state (Face detected, Before calibration)

(iii) Building state (Face detected, Under calibration)

(iv) Complete state (Face detected, After calibration)

On the right side of the window, one of three display modes can be. The first one

is the Facial Animation Parameter Unit (FAPU) which we have explained in Chapter

3. We can obtain FAPUs of individual users by clicking the Tared button below the

FAPU panel on the right side of the window. On the moment the button is clicked,

the FAPU parameters will be captured so before we collect FAPUs, we have to ask

the user to make a neutral face. The second one is the Animation Units (AUs). AUs

are calculated based on the changes in the shape of the face model [Rah17]. AUs

are provided by the Kinect framework and they are used in animation production

as a convenient way of animators to map the captured facial expressions of a person

to the facial expression of their 3-dimensional animated characters. We display AUs

in dynamic bar charts as shown in Figure 5.4b on the right side of the window.

This way of visualizing the data enables us to gain some insight into observing the

typical bar graph profiles that accompany specific facial expressions displayed by

the user. AUs are determined based on the principles of the Facial Action Coding

System (FACS) [EFA80] and they have 16 units in total. Lastly, the third form of

information we yield from Kinect is the actual facial point cloud, which is just an

alternative way to display the face object. This can be seen in Figure 5.4a, where

the face model is displayed as points, instead of a mesh, on the right side of the

window. For this research, we also implemented a custom way to access the index of

Kinect facial points. The default color of the points is lime green. However, in this

custom display, a specific index may be typed in the input textbox (below the face

62



(a) AffectiveMonitor on its home tab. The face model is in the complete on the left
side of the window. While on the right side, the facial points cloud is shown with the
number input box to display the selected point corresponding to the index input number
in different color (pink)

(b) AffectiveMonitor on its home tab. The face model is in the complete state after the
calibration process. On the right side of the window, shows the plot of animation units
(AU) provided by Kinect library framework

Figure 5.4: AffectiveMonitor: Kinect Interactive Mode
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points model), and the corresponding specific landmark point will appear in pink.

We created this because we needed a way to verify that the indices that we select

to observe are at the right location on the face model (since the Kinect developers

provide a very limited amount of documentation). Finally, on the bottom right of

the window is where the result of our predictive model will be displayed.

Position and Orientation

An obstacle that emerged in trying to embed the facial point cloud to FAP vectors,

was that the position and the orientation of the face model are not constant, because

the subject may move his/her face during recording. Fortunately, Kinect doesnt

track only the changes in facial muscles, but also the position and the orientation

of the users face. The FAP vectors are measured in a fixed direction between two

selected points either in the x-axis, y-axis, or z-axis. Therefore, it was necessary to

develop a solution to account for the fact that in our position and the orientation of

the face model could be different in every frame. The approach we used to solve this

problem is to always re-orient the face model to be in a neutral position (orientation)

and translate the face model to the origin before we calculate the FAP vectors. We

describe how we apply the Quaternion Rotation Operation to rotate the face model

and translate the face model back to the desired position in Chapter 3. To verify

if our implementation is correctly rotating and translating the face model, we have

included the Position and Orientation mode in AffectiveMonitor. The purpose of

this tab is to enable us to observe the face point model that we captured before

and after the re-orienting and re-positioning process. Figure 5.5 5 demonstrates the

Quaternion tab which includes the window to display the face point model on the

left side. The right side is where all the buttons to apply the process are located.

The first button on top is labeled Capture whose name implies its functionality.
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(a) Before re-positioning and re-oriented process

(b) After re-positioning and re-oriented process

Figure 5.5: AffectiveMonitor on its quaternion tab. The face points model of one
frame is captured after the ”Capture” button is clicked. Also the angle (in euler)
and the position (cartesian domain) of the face points model are displayed on the
right side of the window. The point in red represents the pivot point of the model.
Those in pink color are the selected points for obtaining FAP vector
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When the Capture button is clicked, the face point model of one frame is captured

and displayed on the canvas on the left side of the window. The second button

Reset Orientation and Rotate are for applying the re-orienting and re-positioning

processes to the face points model. After clicking the Rotate button, the position

and the orientation of the face points model are reset to the neutral position. The

default color of the face points model is in lime-green color. Those that are in pink

color are the points that will be used to calculate the FAP vector. There is also

one red point that is displayed in the canvas. We call this point in red a pivot

point. This point is an important point to apply the re-positioning and re-orienting

processes because it contains information about the position and the orientation of

the face point model. The pivot point is determined by the centroid of the face

model. The other points in the model are referenced to this point. This means

that, if the pivot point is moved to another position, all the points in the face model

can be reconstructed by referring the pivot point as the origin. We also display

the position (cartesian domain) and the orientation (in Euler unit) below the set of

buttons for debugging purposes.

Pupil Diameter

Another parameter that we monitor in order to estimate the arousal level of the user

is the pupil diameter signal. In our system, pupil diameter signals are received from

the secondary side of AffectiveMonitor application (which will be discussed in the

latter part of this chapter) and we would like to observe the signal in real-time. That

is why this pupil diameter mode was created. Here, we implemented a dynamic plot

of the pupil diameter signal to monitor its behavior as it correlates to the changes

in arousal of the user. On the right side of the window placed the buttons used to

connect the primary side and the secondary side of AffectiveMonitor together via
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Figure 5.6: AffectiveMonitor in its pupil diameter tab. The first row of plots shows
the pupil diameter signals received from AffectiveMonitor (Secondary side). The
bottom row plot shows the illumination signal obtained from RGB-camera. On the
bottom right of the window shows the panel displaying the pupil diameters of left
and right eyes as well as the average between two eyes.

the TCP/IP protocol. To observe the pupil diameter signals both sides of Affcetive

Monitor need to communicate. The primary side can send the connection request

clicking the button Connect on the top right of the window. If the connection is

established successfully, the pupil diameter signals that are being received every 33

milliseconds will be plotted in the top panel of the graph. The Interchange button

is used to send a single request asking the secondary side to send one sample of

pupil diameter back to the primary side. This feature is very useful for checking the

establishment of the connection and for debugging. The bottom panel is used to

plots the illumination signal (This will be discussed later, in the explanation of the

in Illumination tab). The plot of the illumination signal was placed here because

we want to observe how the pupil diameter of the user responds to the changes in

illumination signal as we already know that the pupillary light reflex (PLR) is one

of the factors that affect the pupillary response. These plots are real-time dynamic
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plots that are very useful to observe the behavior of the pupil diameter signal.

Figure 5.7: AffectiveMonitor in its illumination tab. At the center of the window
shows the video of the are of interest (around a user’s eye) where the illuminance
value will be calculated based on this video obtained by Kinect’s RGB-camera.

Illumination

As we mentioned earlier that Pupillary Light Reflex (PLR) is one of the factors

that influence the changes in the pupil diameter signals. Changes in the amount

of light reaching the subjects retinas will tend to introduce pupil diameter changes

that are separate from those induced by affective responses. Even if the ambient

illumination is kept constant, the brightness of different images displayed in the

computer system can introduce those PLR responses. Previous research has used

an actual light sensor, attached to the subject near his /her eyes, to measure the level

of illumination present, in order to attempt to compensate for its effects. However,

this unnatural fact will directly affect the users mood in one way or another. To

avoid this problem, we chose to utilize an RGB-camera (as the one included in

Kinect) to obtain an indirect measurement of the illumination around the subjects
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eyes. The details of the approach followed to accomplish that goal are explained in

chapter 4. In this tab, AffectiveMonitor displays the video of the area of interest

(around the users eyes) in grayscale (black and white). The button START below

the video is clicked to start the illumination signal measuring process. The plot of

the signals is shown in the pupil diameter tab for the monitoring purposes.

Figure 5.8: AffectiveMonitor in its experiment tab.

Experiment

In experiment tab (Figure 5.8), is used to initiate the execution that drives the

experimental protocol designed for this research, as described in Chapter 3. On the

left side of the window, the IAPS pictures are shown. We can choose the set of

IAPS pictures that will be displayed sequentially by clicking on the dropdown menu

and selecting the desired set of pictures, followed by a click of the Load button to

load all the pictures. If none of the picture sets is selected, the default set will be

loaded. The top right of the window is where the information from the test subject

is collected. The Subject Info panel includes the test subjects number, gender, age,
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and ethnicity (Notice that the subjects name is not recorded). After the SAVE

button is clicked, the program will automatically generate the folder whose name

corresponds with the test subjects number and all the files that will be recorded.

Below the Subject Info panel is where the SAM ratings are entered by the subject.

Here, the user is asked to rate their arousal and valence in response to each IAPS

picture displayed, using the SAM tool, immediately after each picture is displayed.

The START button is clicked to start the experiment. When the experiment starts,

70 pictures are shown one after one with a gray screen in between to provide a

resting period.

5.3.2 Secondary Side

The secondary side of the software application of AffectiveMonitor system has simi-

lar purposes as the primary side, but it is focused on the acquisition and transmission

of the data from the TM3 Eye Gaze Tracker. The secondary side has three main

applications that we use in our study. First, it can display the video captured from

the TM3 EGT devices high-definition infrared camera so we can adjust the position

and the angle of the camera to aim the field of view of the camera at the area around

the eyes of the user. Second, it translates the pupil diameter signals from the TM3

EGT device into the format that is appropriate for transmission to the primary

side and for storage. Lastly, it sends the pupil diameter signal as per request from

the AffectiveMonitor primary side. The following subsections describe the software

implementation of the AffectiveMonitor secondary side, which has two modes of

operation: Video capture and EyeGazeInfo capture.
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Figure 5.9: AffectiveMonitor secondary side on Video capture application.

Video Capture

In this application, the window is just a simple video player where the view of the

camera from the TM3 EGT is shown. The position and the angle of the camera

have to be set properly in order for the device to detect the pupil diameter. Another

factor that affects the pupil diameter detection application is the focus of the camera

which we can adjust on the camera itself. First, the video will display the whole

face of the user. Then, after the position, angle, and focus are adjusted properly,

the device will display only the cropped video of the area around the eyes of the

user, indicating that the pupil diameter is detected. Figure 5.9 demonstrates the

video after the proper adjustment is done successfully.

EyeGazeInfo Capture

After we are certain that the camera is adjusted properly, the EyeGazeInfo capture

application can be started. Figure 5.10 portrays the window panel of the application.

The panel at the top part of the window exhibits all the information that TM3

EGT captures from the users eye; nonetheless, the only parameters that will be

transmitted to the primary side are the pupil diameters from both left and right

eyes. The bottom panel is where the log of the status of the application is shown.
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To start receiving the request from the primary side of the AffectiveMonitor, we can

click the Listen button at bottom-right in the top panel of the window.

Figure 5.10: AffectiveMonitor secondary side on EyeGazeInfo capture application.

5.4 Summary

AffectiveMonitor is the custom data acquisition and processing system developed

for this research. The system is suited to interact with the data capture from a

Kinect module and the TM3 EGT. There are three elements in the system: Facial

expressions capture, pupil diameter signal capture, and data interactive application.

The reason behind our decision to separately develop the primary side and the

secondary side instead of one complete application running in a single computer

is for keeping the independence between these two devices. Development of the

software that controls each device separately can help in dealing with conflicts in

operating systems versions and port types required by the individual devices. For

example, in our case, Kinect requires a USB3 port and Window 10 in order to run
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efficiently; while the TM3 EGT device runs in Windows 7 and needs a firewire port

to connect to a computer.
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CHAPTER 6

FEATURE EXTRACTION

It is known that the success of a predictive model depends to a large extent on

the use of distinctive and meaningful features as its inputs. Therefore, the process

of extracting those meaningful features from the signals collected for this research

is a critical stage of its development. In order to ease the training of a predictive

model and achieve a good result in accuracy, the feature extraction process is really

essential. It plays an important role to present the classifier model with useful

features. This helps accelerate the training process and eases the problem of having

a limited amount of data.

In this research, the two types of data involved are pupil diameter signal and

facial action parameter vectors as described in Chapter 3. This chapter discusses

in detail the pre-processing and feature extraction performed on each one of these

types of data.

6.1 Pupil Diameter signal

At first glance, the pupil diameter signal records that we obtained all have similar

trends that can be observed by looking at the overlapping plot of all the 70 PD

signals obtained from one test subject (for example, in Figure 6.1). A first peak is

apparent during the first 2 seconds of a typical record. Then the signal descends

rapidly, until it reaches a minimum point, and then bounces back, approaching an

approximately steady level.

The behavior of the signal can be explained better by taking several factors into

consideration. Refer to the diagram in Figure 6.4, which indicates that a resting

screen in gray is shown before the presentation before each IAPS picture is shown.
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These resting periods are meant to give some resting time for the test subject

and also for the purpose of bringing the pupil diameter to its neutral state where the

illuminance from the screen is low and does not force a decrease of the pupil diameter.

The moment an IAPS picture is shown, the sudden increase of the illumination

from the screen causes the pupil to constrict, causing the recorded signal to rapidly

descend before bouncing back after the pupil starts to the illumination level of that

picture. One factor that plays a significant role here to cause the pupil to dilate

is the arousal reaction from seeing the stimulus picture. The more stimulating the

picture is, causing more arousal, the faster the pupil dilates. This notable feature

appears as well in a similar study [BMEL08].

To make it more systematic and easier for us to refer to each part of the PD

signals components, we have proposed a custom nomenclature that will be used

throughout this work.

6.1.1 PQR features

We have separated the typical pupil diameter behavior into three separate sections

and designated three important landmarks which we have labeled as points P, Q,

and R. P is the point where the peak is located followed by point Q where the pupil

starts to dilate and then comes point R which is located 10 samples after point

Q. The advantage of separating this behavior into three sections is that we can

then observe how each section is affected by different levels of arousal. To further

characterize the response, we extract three more parameters defined on the basis of

the P, Q, and R points. These parameters are ∆PQ, mQR, and ∆QR, and they are

calculated as shown in Equation 6.1 where ∆PQ is the vertical difference between

point P and Q, mQR is the slope from point Q to R, and ∆PQ is the vertical

76



difference between point Q and R.

∆PQ = Py −Qy (6.1a)

mQR =
Ry −Qy

t
(6.1b)

∆QR = Ry −Qy (6.1c)

Figure 6.2: Diagram showing components of Pupil Diameter signal with denotations

6.1.2 Influence of arousal on PQR feature

Reviewing the data collected, the feature that is influenced by an arousal level

the most is mQR where the slope is larger in positive value when arousal is high.

Otherwise, the slope is near zero or may even become a negative value. This is
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(a) Pupil Diameter Signal when test subject is aroused

(b) Pupil Diameter Signal when test subject is not aroused

Figure 6.3: Demonstration of PD signals with each of them are marked the position
of point P, Q, and R
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reasonable given that the more stimulated a test subject becomes, the faster the

speed of the pupil dilation; which causes the mQR to have a sharp upturn behavior.

While, in the low arousal case, the mQR tends to have a slope value near zero. This

distinct behavior of these two parameters makes them suitable to use as features for

the predictive model.

6.1.3 Preprocessing Pupil Diameter Signal

In spite of efforts made during the experimental sessions to minimize the insertion

of noise and artifacts in the data collected, these unwanted signal components still

appear in the recorded signals. They may be caused by the test subjects movement,

glitches from the device, or eye blinking. That is why we need to pass the data

through a preprocessing pipeline to obtain data that is still usable.

In this section, we will describe the process of preprocessing of the Pupil Diameter

signal including the detection of artifact and invalid data points and the explanation

of the criteria to discard corrupted samples. We will also summarize how we extract

PQR features to serve as inputs to the predictive model.

Merging Pupil Diameter signals from left and right eyes

The preprocessing the pupil diameter signal (PD) starts by discarding invalid data

points. It is well established that, generally, the pupil diameters from both eyes

are roughly equal and follow the same trends when they are constricted or dilated,

influenced by many possible factors [Duc]. Often times, the eye-gaze tracker device

losts track of one of the PD signal from either of the eyes. So, it is a reasonable

approach to merge the left PD signal and the right PD signal together to obtain
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a more stable signal. The side that has the higher value is selected as part of the

merged PD signal as shown in Equation 6.2

PDmerge(n) = max(PDleft(n), PDright(n)) (6.2)

Cropping the Interval of Interest

One record of the pupil diameter signal was obtained from the scenario where a test

subject is presented with a picture from IAPS and then proceeds to rate its valence

and arousal in response to the picture. All these actions happened within the total

picture presentation time interval of 10 seconds (followed by 5 seconds rest with a

gray screen) before the next IAPS picture is shown, as indicated Figure 6.4. Data are

collected every 0.1 seconds so, in each record of a picture presentation( 10 seconds) ,

100 values of a PD signal are recorded. During this 1second interval the test subjects

were asked to stand still as much as possible for the first 5 seconds and then they

were asked to rate SAM rating in the remaining 5 seconds. In consequence, the last

half of the record is when the test subjects were focused on rating their affective

responses, looking and clicking on the SAM tool. Because of this, the analysis will

not be performed in the last half of the 10-second interval. Instead, the analysis is

performed on a cropped interval which includes from the 0th to the 39th samples

which can be roughly estimated as the first 4 seconds after the IAPS picture is

shown. We have found that our selected range contains the information that we

seek and this choice is consistent with other related studies [BMEL08].

Artifact Identification and Linear Interpolation

Eye blink artifacts occur frequently in the recording of PD signals, when the Eye-

Gaze tracker loses track of the pupil diameter while the eyelids down. Mariska
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Figure 6.4: Scenario on how samples are presented to test subjects

[KSS18] has proposed a good practice on how to preprocess the pupil diameter

signal which we have adopted for the identification of the artifacts. The common

nature of artifacts is the abrupt change of the absolute pupil diameter size that is

out of proportion to the adjacent data points. We call data points that exhibit this

kind of behavior Dilation speed outliers. To define which portions of the record may

be outliers, a normal dilation speed is needed to be postulated, in order to determine

when disproportionate changes occur, implying an outlier. One cannot assume that

the dilation speed throughout the complete record will be constant. Therefore, a

normalized dilation speed, which is the maximum dilation speed at each sample

relative to its preceding or succeeding samples, is used instead. The dilation speed

can be calculated using Equation 6.3 where d′[i] is the dilation speed at each sample

and d[i] is the pupil diameter corresponding to the time stamp t[i].

d′[i] = max

(∣∣∣∣d[i]− d[i− 1]

t[i]− t[i− 1]

∣∣∣∣ , ∣∣∣∣d[i+ 1]− d[i]

t[i+ 1]− t[i]

∣∣∣∣) (6.3)
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Then we proceed to calculate the Median Absolute Deviation (MAD) which will

be used as a metric to detect the dilation speed outliers. MAD and the corresponding

threshold value can be calculated using Equation 6.4 and Equation 6.5

MAD = median (|d′[i]−median(d′)|) (6.4)

Threshold = median(d′) + (n ·MAD) (6.5)

The constant n is a control parameter that needs to be adjusted according to each

application. Samples that have a dilation speed that is higher than the threshold

will be considered outliers and should be discarded from the rest of the samples.

After the removal of the invalid samples, the recorded PD signals are now left

with empty spaces that need to be padded to make use of the rest of the record,

which still holds valuable information. However, records that have more than 25%

of invalid data will be discarded. For the padding process, we choose to use the

linear interpolation [Bre12] between the last sample before the invalid range occurs

and the first valid sample after the invalid range. Figure 6.5 illustrates how each of

these steps is applied to the PD signals.

Scale Normalization

Before we identify the location of the landmark points P, Q, and R, we have nor-

malized the scale of the signals using the Minmax normalization method where the

minimum value and the maximum value are obtained from the same test subject.

This way, we can compare the changes in behavior at the normalized scale and elim-

inate the effect of pupil size changes due to subtle movements from a test subject.

Equation 6.6 is the normalization equation used.
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(a) Raw PD signal

(b) PD signal after artifact removal is applied

(c) PD signal after padded with Linear interpolation method

Figure 6.5: Demonstration of PD signal in each step of the preprocess method.
Figure 6.5a shows raw PD signal with the glitch. Figure 6.5b shows PD signals
after the MAD filter is applied and the glitches are removed. Fig. 6.5c shows PD
signal after getting padded by Linear Interpolation method.
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PDnorm(n) =
PD(n)−min(PDper sbj(n))

max(PDper sbj(n))−min(PDper sbj(n))
(6.6)

Extracting PQR Features

After we obtained the preprocessed PD signal, each frame of PD signals resulting

from the viewing of an IAPS picture is analyzed to identify the points P, Q, and

R. As we described earlier, P is located at the peak of the overshoot so we simply

identify point P at the maximum value in the first one-second interval (10 PD values)

from the beginning of the data frame. Next, we can locate point Q by observing

the first sequence after point P that changes its slope direction from descending to

ascending. We achieve that by first applying the differentiation to the PD signal

to obtain the trend of the slope. Subsequently, we apply the threshold at zero and

convert the resulting differentiated PD signal into a binary signal where 0 indicates a

downward turn and 1 indicates an upward turn. Then we just grasp the first sample

index that turns to 1 after the location of P point and designates that index as the

Q point. R is defined by simply locating the tenth sample after point Q, just to

observe how the pupil changes after the initial onset of the record pass. Figure 6.6

summarizes the process of identification of the points that define this PQR complex.

Also Figure 6.3a and Figure 6.3b shows the resulting plots of this algorithm.

The next necessary task is to obtain the features described in Section 6.1.1.

Applying Equation 6.1 to PQR complex found, will yield the values of the desired

features (∆PQ, mQR, ∆QR).

The diagram showing the whole preprocessing process for the Pupil Diameter

signal is shown in Figure 6.9 which displays a birds-eye view of the process, as it

was just described.
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Figure 6.6: Diagram showing the process of identifying PQR complex

Illumination Compensation

Previous chapters have already explained the need to account for the effect of Il-

lumination on the pupillary response. We have discussed extensively in Chapters

3 and 4 a previously proposed approach to address this issue. However, when that

previous approach was attempted on PD data contained in the short recordings

that correspond to each IAPS picture presentation, it was found that an alternative

strategy was necessary. Instead of using the Adaptive Noise Canceller to compen-

sate for illumination changes in the PD signal directly (as a whole), we now were

more interested in how the illumination affects the PQR feature components. In the

similar study, led by Bradley [BMEL08], the authors present a comparison of PD

response signals obtained when IAPS pictures with different levels of illuminance

were presented to subjects, as shown in Figure 6.7. We notice that this figure is

consistent with the characterization of the PD response as proposed at the begin-

ning of this chapter: Higher luminance causes the initial PD interval to drop lower

than moderate and low luminance. This minimum in the PD signal is the point we

have identified as Q in the PQR complex. Conversely, point Q can be expected to

be in a higher position when the IAPS picture we present to test subject has lower

luminance than others.
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Therefore, the position of the Q point is very important, because it affects the

value of all the features extracted from the PQR complex. For example, if point

Q is shifted down in the y-axis due to high luminance scenario, mQR will get a

sharper slope. Therefore, we propose that, by compensating the position of Q we

can enhance the detectability of the high arousal effect presented in mQR in low

luminance cases, while reducing the possibility of mistaking the effect caused by

high luminance with the effect caused by arousal in the case of a high luminance

case. Consequently, based on the value of measured luminance for each IAPS picture

sample, we compensate the location of point Q using Equation 6.7, where Q′y is the

adjusted vertical level of the point Q, Qy is the original vertical level of point Q

(before adjusting), α is the adjusting scale for fine tuning, Illummax is the maximum

average luminance of all IAPS pictures used in the experiment, and Illumsample is

the average luminance on the particular IAPS picture presented during the recording

of the PD signal being considered.

Q′y = Qy −
(

∆QR

α
× Illummax

Illumsample

)
(6.7)

The idea here is to shift the position of Q up and down based on the average

luminance measured from each of the IAPS pictures. If the luminance of a particular

IAPS picture is low in comparison to the value of the maximum luminance of all

IAPS pictures used in the experiment, then the position of point Q in the y-axis

will be shifted down. Equation 6.7 is designed in a way that point Q will always

shift down when compensated; however, the compensated value will be different

based on the average luminance of each IAPS picture sample. The parameter α

is for controlling the range of compensation. For instance, if α is set to 2 then

the maximum compensated value ( the range that point Q will be shifted down)

will be half of ∆QR. By tuning hyperparameter, α, one can control the effect of
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illumination compensation on the dataset. Subsequently, after the position of point

Q in the y-axis is adjusted, all PQR feature values are re-calculated. Figure 6.8

shows the sup-process followed for illumination compensation.

Figure 6.7: Comparison of PD signals affected by different level of Illumination.
Picture from [BMEL08]

Figure 6.8: Diagram showing process of Illumination compensation

Figure 6.9 demonstrate the pipeline of the whole process of preprocessing of the

pupil diameter signal. Our goal as to obtain PQR features (∆PQ, mQR, and ∆QR)

is achieved at this point.
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Figure 6.9: Diagram showing the pipeline of Pupil Diameter signal preprocessing
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6.2 Facial Action Parameter Vector (FAP Vector)

In this section, we turn our attention to the type of data that we collected to estimate

the valence parameter. First, we will discuss the nature of the FAP vector signal

and discuss the kind of features we want to extract from it.

In Chapter 3 we have already explained in detail the definition of each FAP

measurement. All the FAP measurements are listed in Table 3.3. As a summary, we

recall that each FAP vector is the measurement of the difference between two points

of a group of designated facial points which we consider as important landmarks

to encode the facial expression information in an efficient way that also has an

advantage in terms of the memory management. When a unique facial expression

occurs, for example, a smile, those facial points are moved based on the contraction of

specific facial muscles and the effect of that transition is reflected in each FAP vector.

Here, we are focusing on the behavior of FAP vectors regarding the movement of

facial muscles and we categorize those responses into three categories.

• Shrink (decrease in value, denoted as -1)

• No movement (no change, denoted as 0)

• Extend (increase in value, denoted as 1)

Shrink means that two facial points are getting closer to each other while Extend

implies the opposite, and, for the case when there are no distinct changes we will

conclude that there is no movement, in that FAP vector. By systematizing the

observations it this way, we can more easily study the modifications in FAP vectors.

Furthermore, we can map groups of FAP vector responses to each action unit (AU)

(described in Chapter 2) in order to consider which action units are activated during

the emergence of a specific facial expression. Consider Table 6.1, which shows the
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relationship between FAP indices and AUs. An example that illustrates the use of

this table to identify the activation of AUs is found in the first row of Table 6.1.

This row contains AU1, which is a unit describing the raising of the inner brow. To

regard AU1 as activated, both FAP indexes 31 and 32 have to be in the extending

state; otherwise, AU1 is not activated. The entries in the Signal Index column are

simply labels that are used to identify the different FAP traces in multi-trace plots.

The purpose of the encoding presented above is to facilitate the mapping of

facial expressions to the valence scale. There is not a direct connection (like the one

between pupil diameter and arousal). Therefore, investigate associations between

the kinds of facial expression and the valence scale. In Chapter 2, we have already

introduced Russells Circumplex Model of Affect (Figure 2.1) which includes the

placement of some basic emotions on its circular graphical representation. This

provides us with a rough idea of where those facial expressions should be on the

valence scale. In Chapter 2, we introduced the relationship between Action Units

(AUs) and facial expression (refer to Table 2.1) and because we already have a way

to convert our FAP vectors to AUs, we now have a way to imply the position of a

facial expression in the valence scale, based on the behavior of FAP vectors.

That is why the features that we will extract from FAP vectors will be the

activation response of AUs based on the behavior of the FAP vectors. Next, we will

describe how we arrive from the raw FAP vectors to the AUs activation response.

6.2.1 Preprocessing Facial Action Parameter Signal

Just as the PD signals required some pre-processing manipulations, the facial ex-

pression data generated by Kinect also requires pre-processing.
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Table 6.1: Relationship between Action Unit (AU), Facial Action Parameter (FAP)
and Signal Index

AU AU description Signal Index FAP Index Shrink Extend
AU1 Inner brow raiser 0 31 1

1 32 1
AU2 Outbrow raiser 2 35 1

3 36 1
AU4 Brow lower 0 31 -1

1 32 -1
4 37 -1
5 38 -1

AU5 Upper lid raiser 6 19 1
7 20 1

AU6 Cheek raiser 6 19 -1
7 20 -1
8 41 -1
9 42 -1

AU9 Nose wrinkler 10 61 -1
11 62 -1

AU10 Upper lip raiser 12 59 -1
13 60 -1

AU12 Lip corner puller 12 59 -1
13 60 -1
14 53 1
15 54 1

AU15 Lip corner depressor 12 59 1
13 60 1

AU16 Lower lip depressor 16 5 -1
18 16 -1

AU20 Lip stretcher 14 53 -1
15 54 1
16 5 -1

AU23 Lip tighter 14 53 -1
15 54 -1

AU26 Jaw drop 18 3 1
16 5 1

Conversion form FAP vectors to FAP units

As we mentioned in Chapter 3, we have measured the FAPU parameters on each

test subject before we started the experiment session. The purpose of this unit is to
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eliminate the distortions caused by the inconsistent facial size among test subjects.

The raw FAP signals then are divided by FAP units as described in Table 3.2.

Cropping the Interval of Interest

Similar to the PD signal case, the interval of interest for feature extraction from the

facial expression data is only the first 60 sequences (6 seconds) of the record. We

have isolated the signals only from that interval, for analysis.

Eliminating Impulsive noise

Examples of the raw facial expression data (evolution of the 19 FAPs through the

presentation of an IAPS picture) can be observed in Figure 6.10. It can be noticed

that the signals are severely corrupted by impulsive noise. Accordingly, we decided

to apply a Savitzky-Golay filter which is a digital filter that is well- known of its

smoothing property [S+11]. The filter works by connecting two adjacent samples

together with a polynomial curve. This helps smooth the signal without significant

distortion on the original trend of the signal. Fortunately, there is an available

toolbox for the Savitzky-Golay filter in the Scipy package [Bre12]. We have applied

this smoothing filter to reduce the impulsive noise in the FAP data.

Discarding Invalid Samples

In some instances, Kinect lost track of the face of a test subject resulting in the

recording a constant FAP value during that face-loss interval. We have regarded

these occurrences as missing part of the sample. We have discarded the samples

that have more than 25% of the FAP data missing.
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Figure 6.10: Plots of each raw FAP vector signal

Scale Normalization

Each of the FAP vectors is measured from different parts of the face. As different

subjects may have faces that vary in the size of some of their dimensions (e.g.,

broad faces vs. narrow faces) the FAP values need to be normalized. Feeding

features without standard normalization to a machine learning process might create

some biases in the model. To avoid this issue, we have performed the standard

normalization, where the mean offset of the FAP vectors is removed they are scaled

to unit variance. This is a useful way for a statistician to compare values from

different units on the same scale, as suggested in [PVG+11].
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After the pre-processing steps mentioned, the feature extraction process can be

applied to the FAP vector signals. The description of the feature extraction process

in the following sections will make reference to observations made on plots of FAP

vector signals on the same graph identified by signal index (refer to Table 6.1) in the

plot legend. In order for the reader to see the different response from FAP vectors

corresponding to several types of facial expression, we have included the plots of

FAP vector signals for a variety of types of facial expressions, such as surprise,

laugh, disgust, anger, fear, etc. All these plots can be found in Figures 6.11, 6.12,

and 6.13.

Identifying the Temporal Occurrence of Facial Expressions

The behavior that we found from studying the data collected is that a facial expres-

sion evolves in time through three states: onset, peak, and retreat. Most of the time

the expression lasts between 2 to 4 seconds and its occurrence is marked by visible

correlations between FAP vectors. The simplest behavior that we use for the first

detection of an occurrence of facial expressions is when several of the FAP vectors

change with the same, simultaneous trend. To detect these instances we used the

peak finding python library from [Neg18] However, several preliminary steps were

performed before we applied the peak finding algorithm. First, the absolute value

of all the FAP vector signals is taken, since the algorithm can only detect positive

peaks. Second, we sum all FAP vector signals together to amplify the size of coor-

dinated changes. Then, we apply the peak finding algorithm. This algorithm uses

an attribute named threshold which is the parameter used to impose a normalized

threshold (ranges between 0 to 1). The peaks that are not higher than the threshold

will not be counted as peaks. For example, if the threshold attribute is set to 0.5,

peaks that have a value in the normalized scale below 0.5 will be discarded. We have
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(a) FAP vector signal corresponding to sad expression

(b) FAP vector signal corresponding to no expression

Figure 6.11: Plots of FAP vectors after removing noise and standard normalization
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(a) FAP vector signal corresponding to laugh expression

(b) FAP vector signal corresponding to disgust expression

Figure 6.12: Plots of FAP vectors after removing noise and standard normalization
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(a) FAP vector signal corresponding to fear expression

(b) FAP vector signal corresponding to surprise expression

Figure 6.13: Plots of FAP vectors after removing noise and standard normalization
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(a) Potential facial expression moments

(b) Selected facial expression moment

Figure 6.14: Demonstration of facial expression moment selective process. Figure
6.14a shows the result of the first screen to find the potential facial expression
moments. Figure 6.14b shows the selected facial expression moment corresponding
to the applied criteria.
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set this threshold to 0.6 in our case. In some cases, no peaks are detected. This sce-

nario is interpreted as corresponding to a calmed (neutral) facial expression, which

implies that there is no response from the test subject to the stimulus and that

he/she did not change his/her facial expression significantly. It is very important

to be able to identify when a calm” reaction occurs because this reaction implies

the center position on the valence scale. The diagram of the processing sequence

for facial expression location is shown in Figure 6.15. The results of these steps are

lists of facial expression locations or indications that there were no facial expressions

detected. An example of the results from the pre-processing sequence is shown in

Figure 6.14a.

Select Facial Expression Moment

If more than one potential facial expressions are located within a single record the

feature extraction process will focus on just the first reaction from the test subject

after viewing the stimulus picture, as this is expected to be the spontaneous reaction

to the stimulus. This is also why we only analyzed the signal during the first six

seconds of each record. From the observation of numerous FAP vector plots it was

estimated that signal deflections that represent legitimate face expressions usually

have a base length in the range of 2 to 4 seconds. In contrast, signal deflections that

exhibit shorter base lengths happen to be glitches produced by sudden movements

of test subjects. Signal deflections with higher peak value are desirable as well,

because they indicate an extensive movement of facial muscles. Combining those

two desirable attributes together, we propose the Expression Detection Parameter

(EDP) defined in Equation 6.8. When this parameter is high, it is likely that the

corresponding peak is a facial expression in response to the stimulus. The base

length and peak height attributes of the peaks found are provided by the PeakUtils
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Figure 6.15: Diagram showing process of identifying facial expression moments

100



library [Neg18], and the algorithm selects peak with the highest Expression Detec-

tion Parameter.

ExpressDetectionParameter =
base length

peak height
(6.8)

Extracting Direction Vectors

In this step, we will extract the state of each of the FAP vectors, as stated earlier

in Section 6.2. The peak-finding process described above was applied to the sum

of all the FAP vector signals, just for the purpose of locating the key deflection of

the signals in time. However, for the identification of which FAP signals exhibit

significant deflections in the selected interval, the peak-finding algorithm must be

applied to each of the FAP signals individually. This will identify the FAPs that

truly became activated, and it will also show those FAPs that might have remained

inactive. For example, FAP index 3 (Jaw drop) might not change in the surprise

expression if a person does not open his/her mouth during the time when the facial

expression occurs. By performing this additional step, we can identify the state of

each FAP vector more accurately.

The direction vectors that are obtained next are identical to FAP vectors, except

that they contain the state of FAP vectors at the peak of the facial expression. The

value of direction vector can only be 1 (FAP vector extended), 0 (no change in the

FAP vector), and -1 (FAP vector shrunk). This value is obtained by determining

what type of peak occurs during a window of length 20, centered around the location

of the facial expression moment, determined by the previous step. If the peak is a

positive peak, we set the value to 1. If the peak is a negative peak, we set the value

to -1. Finally, if no peak is detected, we set the value to 0. Figure 6.16 shows an

101



example of the stem plot of the direction vector for the 19 FAP vectors. Once the

direction vector is composed, the corresponding AU vector can be formulated.

Figure 6.16: Stem plot of Direction Vectors

Generating AU vectors

AU vectors are generated according to the information contained in Table 6.1. As

discussed in Section 6.2. AU vectors contain the state of Action Units (AUs) which

can be 0 (not activated), or 1 (activated). Each of these vectors is conformed as 1

row and 13 columns, since we only observe the 13 AUs listed in Table 6.1. These

AU vectors, derived from the corresponding FAP vectors, will be used as features

for estimating valence trough a predictive model.
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Figure 6.17: Diagram showing the process of extracting Direction vectors
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6.3 Summary

In this chapter, we have explained the manipulations used to pre-process the data

from both sensors in the system, which including noise removal and normalization.

We also discussed the observations made as the data were visualized and how these

observations helped us in defining additional pre-processing steps. Furthermore, we

discussed how we extract features which we think are important features that will

enhance the predictive models performance.
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CHAPTER 7

PREDICTIVE MODEL

This chapter describes the approached followed to develop a predictive model

that can estimate the arousal and valence experienced by a subject from the fea-

tures described in Chapter 6. The data available for the development of the model

we obtained from 50subjects who volunteered to participate in this study. Each

participant was presented with 70 picture samples from the IAPS database and was

asked to rate his/her arousal and valence levels according to the scales of the SAM

tool. Thus, overall, there were 3,500 samples of pupil diameter and facial expression

records (in the form of FAP vectors), and with the corresponding subjective SAM

ratings of arousal and valence.

Figure 7.7 shows a bird-eye view of the whole process of building the predictive

model for this study. Before the process followed for model building is explained,

a brief overview of the machine learning approach selected, the Support Vector

Machine (SVM), will be included. Then the specifications of the model used, as well

as details pertaining to the assignment of features labels, will be discussed. Towards

the end of the chapter, we will explain how we tuned the models hyperparameters

to enhance its performance.

7.1 Model Architecture

In chapter 2, we have discussed the Circumplex Model of Affect introduced by

Russell. In this model, the affective state of a subject can be estimated by obtaining

approximate values of the corresponding arousal and valence. In pursuit of that

goal, we propose to use tow cascaded classifiers. The first part of the model has

the role of estimating the valence parameter from the FAP vectors before sending

its estimated valence to the second part of the model which is the arousal-valence
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classifier. This second classifier takes features from the pupil diameter signals and

the initial estimated valence as inputs to classify the affective state (valence-arousal

levels) of the user. Figure 7.7 shows the diagram of the architecture of the predictive

model used in this study.

There are two reasons behind the decision to design the model architecture in

that particular way. First, separating the model into two parts will enable each part

of the model to focus on the input features that actually matter as our hypothesis

suggests: the facial expression as the indicator of the pleasure or displeasure (i.e.,

valence); and pupil diameter for identification of high or low arousal level. It is

known that the pupil diameter signal cannot appropriately differentiate how happy

or sad a user is. Therefore, it seems appropriate to not use it to drive the part of

the system that is meant to identify the valence of the affective state (as it could

act as a confounding factor, in that context).

However, it has been proposed that there is a level of correlation between the

valence and the arousal of many affective states experienced by humans. As shown

in Figure 3.4a, the 2-dimensional plot of the mean of arousal and valence ratings

for each IAPS picture from the IAPS repository shows a very noticeable V-shape

distribution across the plot. This suggests that high valence, both pleasure and

displeasure, tends to appear with high arousal. However, prior knowledge of the

arousal level would still leave the possibility of two likely levels of valence, in that

V-shape. Thus, estimating valence first, and feeding the estimated valence to the

second classifier to estimate arousal seemed to be an advantageous approach.
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Figure 7.1: Illustration of Support Vector Machine and its element

7.2 Support Vector Machine (SVM)

In this study, we have chosen the Support Vector Machine (SVM) as the classifier

model due to its simple, yet powerful method to classify the tabular type data. A

brief review of Support Vector Machines is provided below.

Support Vector Machine (SVM) [MBD+90] is a supervised machine learning

model that is based on the idea of generating a separating hyperplane to discrimi-

nate the classes in the dataset. Data patterns belonging to different classes fall on

the different side of the hyperplane. The hyperplane itself can be regarded as linear
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discrimination boundary in two-dimensions and as a hyperplane in higher dimen-

sions. It is defined by the support vectors, which are data points that are closest to

the hyperplane (a vector is another way to regard a data point). By controlling the

regularization parameter (often referred to as C), which is the parameter to con-

trol the trade-off between margin and training error, we can control how much we

want the model to avoid misclassifying each training example. If the value of C is

set high, then the smaller-margin hyperplane will be a sought for the optimization

of the model during training, and this can lead to the problem of overfitting. If

overfitting is allowed, the model has a very high accuracy for the training data but

achieves a lower accuracy for test cases not used during training. Another important

characteristic of SVMs is their use of kernels, used to overcome SVM limitations in

classifying data that are non-linearly separable in their native dimensionality. In

those cases, a kernel, which is usually a mathematical function, such as Gaussian,

Polynomial, Sigmoid, etc., is applied to map the data into a higher dimension, where

it might now be possible to separate the classes with a hyperplane. SVM is still a

popular machine learning approach, and it is used across many disciplines of research

due to its robustness, high speed of training and simplicity of deployment.

7.3 Target Labels

The goal of the is study is to be able to assess the affective state of the user in

the Circumplex Model of Affect. In order to achieve that goal, we have to estimate

arousal and valence parameters (See Figure 2.5 for a visualization of this fact).

Because the scales in the Circumplex Model of Affect and in the SAM tool are

different, we have to convert the SAM scale (which ranges from 1 to 9) to the range

where the scale is compatible with the circumplex model, having its center is at the
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origin point. We then define the conversion equation as shown in Equation 7.1. The

parameter A scale is the scaling factor to control the range of the new scale which

we set it to 1 at default. Applying this conversion, the maximum range of the SAM

rating scale is mapped to the interval -4.5 to 4.5, with its center at the origin point.

Furthermore, to make this as simple as possible, we divide the area of the cir-

cumplex model into 4 quadrants and assign 4 labels to the quadrants, based on the

value of arousal and valence, as shown in Figure 7.2.

The target label now will be converted again, one last time, to be either 0 or 1.

If the target value is lower than zero then the target value is set to 0. In the other

hand, if the target value is higher or equal to zero, it will be set to 1. Altogether, four

labels which are HV (High Valence or 1), LV (Low Valence or 0), HA (High Arousal

or 1), and LA (Low valence or 0) will serve as a target labels for the classification

task.

Target Scaled = A scale× (SAM Scale− 5)

4
(7.1)

7.4 Input Features

The two types of input features used to train the valence classifier and the arousal-

valence classifier are presented here. These features will be explained visualized, to

help understand them in a more intuitive way.

7.4.1 Features for the Classification of Valence

The main features that we use to feed into the valence-classifier are AU vectors

(explained in Chapter 6). We discussed previously in Chapter 3 the guidelines used

to select a subset of IAPS pictures as stimuli. As listed in Table 3.1, we defined the
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Figure 7.2: Four labels are used to mark the area of each quadrant in the Circum-
plex model of Affect. (HV=High Valence, LV=Low Valence, HA=High Arousal,
LA=Low Arousal)

list of IAPS pictures to use to span 10 types of mood. Half of the samples are for

the purpose of evoking displeasure (low valence) and the other half is for stimulating

pleasure (high valence). The plot of the histogram of the labels of samples used to

train the valence predictive model is displayed in 7.3. This figure shows that the

two classes are balanced in the dataset chosen.

An observation that reinforces the appropriateness of the use of AUs for valence

classification through predictive models should be mentioned here. One can refer

to Table 2.1 (in Chapter 2) as a guide to map the relationship between AUs and

emotion. Some AUs, such as AU9 (Nose wrinkler), can be highly indicative of dis-

gust, directly. This is because the activation of AU9 is always linked to displeasure.

Conversely, there are some AUs that can be mapped directly to pleasure(positive

valence). Thus, AU vectors are well suited to be used as features to classify pleasure

and displeasure.
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Figure 7.3: Histogram plot of samples’ label (HV=1,LV=2)

7.4.2 Features for the Classification of Arousal

In the case of arousal, it is fortunate that there is a direct connection such that

the pupillary response is proportional to the arousal level. However, the pupillary

affective response is not the only factor that influences pupillary response. That is

why we need to extract features that can distinguish the influence of the pupillary

affect response without significant interference from the pupillary light reflex. In

Chapter 6, we already discussed that we will use as classification features the at-

tributes that we have discovered through our observation of the PD data. To prove

that our features are suited to this task, we plotted the scatter plot matrix between

the three features that we extract, which are ∆PQ, mQR, and ∆QR, in Figure 7.4.

Notice that points marked in light blue are labeled as LA (Low Arousal) and those

in dark blue are labeled as HA (High Arousal). The two classes are aggregated in

their own clusters, but one can see that they are linearly separable in the projections
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drawn. This type of problem is well suited for the use of an SVM as the classification

algorithm.

Figure 7.4: Scatter plot matrix between ∆PQ, mQR, and ∆QR

7.5 Data Selection

The selection of the data used for model training is one of the most important steps

in building a predictive model. The model will learn according to the data provided
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to it during training, and this, therefore, has the potential to significantly impact

the performance of the model.

In this respect, our data set presents ambiguity in the labels or target values

(both for arousal and valence) that should be considered associated with each stim-

ulus picture. We have, actually, two values of arousal and two values of valence that

could be used as targets for each IAPS pictures. In each case, one is the mean value

of the attribute provided along with the picture in the IAPS repository. The other

one is the mean we have calculated from all the individual self-assessments marked

(in the SAM tool) by our 50 subjects for that attribute of a given picture.

This kind of ambiguity is particularly worrisome for the arousal attribute, as it

encodes the level of intensity in which the subjects experience emotion as a result

of viewing an IAPS picture. Accordingly, we investigated this ambiguity further,

comparing the two sets of arousal label values for all the 70 IAPS pictures displayed

to the experimental subjects. The plot comparing between those two sets is shown

in Figure 7.5a. In the figure, we observe that the two arousal labels for some pictures

are far apart from each other, while for some pictures both arousal label values are

similar.

To avoid this ambiguity issue, we have chosen to train the model with data

obtained from the presentation of pictures that have both their arousal labels in

close proximity. Figure 7.5b shows the plots comparing both arousal labels for the

subset of pictures chosen. While this reduces the size of the training set, the decision

was made with the aim to provide a consistent training set for the development of

the predictive model, removing possible ambiguities that could act as confounding

factors.
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(a) All samples

(b) Selected samples

Figure 7.5: Plots of average SAM rating obtained in our study compare to the one
from IAPS repository
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7.6 Machine Learning Pipelines

The implementation programming code for the development of the predictive model

was written in Python. We supported the development with the use of several

popular 3rd party libraries for data science projects, such as Pandas, Numpy, Scipy,

etc. In the implementation of the machine learning model and its pipeline, we used

the Python library called Sklearn [PVG+11] which is well-known and widely used

in both academia and industry. The specific model used for this study is developed

with the Support Vector Classifier (SVC) toolbox which is part of the Sklearn library.

Figure 7.6: Machine learning pipelines for both valence and arousal classifiers

Our machine learning pipeline is summarized in the form of a diagram, shown in

Figure 7.6. The data were subdivided into training and testing portions randomly.

Then for each training session, we execute a 10-fold cross validation strategy to

obtain a robust assessment of the performance of the model. Cross-validation is

a common practice that has proved to help enhance the robustness of the model

when dealing with a small dataset [MBD+90]. For tuning the hyperparameters of

the learning process, we have conducted a grid search strategy and used accuracy

and F1 score as metrics to choose the best model.
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7.7 Summary

This chapter has explained the process followed for building the predictive model

for this study, allowing the reader to develop a more intuitive understanding of how

the model learns from the extracted features.
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CHAPTER 8

RESULT AND DISCUSSION

This chapter presents the performance achieved by the predictive model. We will

first show the performance of the valence classifier and arousal classifier when they

are trained separately, and finally, the results obtained by the combined classifier.

Additionally, we will compare the accuracy results of the models when illumina-

tion compensation is applied to cases in which illumination compensation was not

applied.

Later in the chapter, we will discuss the significance and implications of the

results along with the difficulties and limitations encountered along with the devel-

opment of this system.

8.1 Result

Our hypothesis, which can be recalled from chapter 2, is that monitoring of the

pupil diameter and facial expressions would enable the estimation of the valence

and the arousal parameters in the Circumplex Model of Affect. In this study, we

implemented a predictive model to determine the quadrant of the circumplex model

in which the affective status of the subject is located. Each quadrant is marked

based on their arousal and valence characteristics with four types of labels: HV

(High Valence or 1), LV (Low Valence or 0), HA (High Arousal or 1), and LA (Low

Arousal or 0). This was shown in Figure 7.2 (Chapter 7).

8.1.1 Valence Classifier

For estimating valence, we sought to classify between pleasure (HV) and displeasure

(LV) based on the subjects facial expression. The proposed classifier SVM obtained
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75% accuracy. Table 8.1 shows the confusion matrix of the valence classifier and

Figure 8.1. displays its receiver operating characteristic (ROC).

Table 8.1: Confusion Matrix of Valence Classifier

Predicted:
HV

Predicted:
LV

Actual:
HV

487 127

Actual:
LV

250 606

Figure 8.1: ROC plot of Arousal classifier

8.1.2 Arousal Classifier

In the case of arousal, the two classes that we try to classify is HA (High Arousal

or 1) and LA (Low Arousal or 0). The results we obtained here are from training

the arousal classifier without the valence feature. Table 8.2 shows the result of
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84% accuracy without applying the illumination compensation method while the

accuracy when illumination compensation was applied achieves 90% accuracy. The

confusion matrices for both instances are shown in Tables 8.2 and 8.3. Their ROC

plots can be observed in Figures 8.2a and 8.2b respectively.

Table 8.2: Confusion Matrix of Arousal classifier without illumination compensation

Predicted:
HA

Predicted:
LA

Actual:
HA

448 92

Actual:
LA

85 468

Table 8.3: Confusion Matrix of Arousal classifier with illumination compensation

Predicted:
HA

Predicted:
LA

Actual:
HA

446 51

Actual:
LA

43 457

8.1.3 Combined Classifier

The combined classifier uses the result from the valence classifier, which is used as

an input, along with the PQR features, to estimate the corresponding arousal level,

therefore yielding the combined estimates of valence and arousal, which place the

affective state of the subject in the Circumplex model. The accuracy of arousal

estimations in the combined classifier with and without illumination compensation

applied is 87% and 92%, respectively. The confusion matrices can be found in Tables

8.4 and 8.5, and the corresponding ROC plots appear in Figures 8.3a and 8.3b.
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(a) ROC plot of Valence classifier without illumination compensation

(b) ROC plot of Arousal classifier with illumination compensation

Figure 8.2: Receiver operating characteristic (ROC)
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(a) ROC plot of combined classifier without illumination compensation

(b) ROC plot of combined classifier with illumination compensation

Figure 8.3: Receiver operating characteristic (ROC)
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Table 8.4: Confusion Matrix of Combined classifier without illumination compensa-
tion

Predicted:
HA

Predicted:
LA

Actual:
HA

55 6

Actual:
LA

8 40

Table 8.5: Confusion Matrix of Combined classifier with illumination compensation

Predicted:
HA

Predicted:
LA

Actual:
HA

48 2

Actual:
LA

6 44

8.2 Discussion

The results shown above confirm that it is viable to monitor the facial expression and

pupil diameter of a subject to estimate the valence and arousal of a computer user,

reaching an accuracy of 75% in valence and 92% in arousal. To better evaluate the

performance of the approach proposed, it should be compared with other similar

studies in this field of research. The 2015 paper A survey on Human Emotion

Recognition approaches [VV15] provides a summary of similar developments in the

field.

8.2.1 Results Comparison

In terms of valence classification, we can refer to Table 8.7, reproduced from [VV15].

Several approaches reported high accuracy in recognizing as many as 6 classes.

Our approach resulted in a 75% accuracy for classifying two classes. However,

several of the other methods reported are based on more complex sensing modalities
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and have heavier computational power requirements, which may complicate their

deployment to everyday computer use applications. In that regard, our approach has

the advantage of reducing the computational and memory requirements by encoding

facial expressions into FAP vectors. Furthermore, none of those works used the self-

reports through the SAM tool to define the labels for classification, relying on the

characterizations provided in the stimuli databases (e.g., the IAPS database) for the

definition of labels.

Taking that into account, the accuracy achieved in this study is a promising

initial step in the direction of implementing affective valence sensing on the bases

of very affordable, off-the-shelf instrumentation (e.g., the commercially available

Kinect module), which may be more practical for broad adoption in the future.

In terms of arousal, we will refer to Table 8.8 provided by [VV15]. One study that

is similar to ours is the study to classify the arousal level based on pupil diameter by

P. Ren [RBGA12], which has 83.16% of accuracy. However, it should be noted that

the study explored a narrower set of subject reactions, eliciting only two reactions

in response to congruent and incongruent Stroop word presentations. In our study,

we implement a novel approach to includes the (previously estimated) valence as

one of the feature inputs to recognize the arousal level and achieves 92% accuracy

as a result. This indicates an improvement in arousal recognition, achieved with the

approach proposed in this dissertation

For convenience, we have summarized the accuracy results from the proposed

system in Table 8.6.

Another factor that played an important role in the level achieved for arousal

recognition in this study is illumination compensation. Its impact on the definition

of the PQR features and on the performance of the model are discussed in the next

section.

125



Table 8.6: Comparison of Model’s accuracy in all cases

Illumination Compensation Accuracy
Valence n/a 0.75
Arousal No 0.84
Arousal Yes 0.90
Combine No 0.87
Combine Yes 0.92
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8.2.2 Influence of Illumination Compensation

In addition to the modification of the pupil diameter in response to affective stimuli,

illumination is known to significantly influence the aperture of the pupil. We have

discussed how we compensate the illumination effect in Chapter 6 and now we

will highlight the impact of that compensation on the performance of the classifier.

Table 8.6 demonstrates how affect estimation results are significantly improved after

applying the illumination compensation algorithm. We also plot the scatter matrix

of PQR features before and after the compensation technique (See Figures 8.4 and

8.5). Comparing the two plots, we can see that the data clusters formed by the

two classes are more separable after the illumination compensation technique is

applied. This confirmed that our technique for compensating the illumination factor

is fulfilling its purpose.

8.2.3 Challenges and Limitation

As the field of affective recognition continues to evolve, the process of proposing

new approaches needs to be based on a number of assumptions which may only be

verified partially during the experimental work of the research efforts. It is only

after the completion of the experimental work and the analysis of the data collected

that the assumptions can be revisited and reconsidered.

The discovery of unexpected factors that have been encountered along the way

is part of the learning process. We have next listed all such factors that we have

discovered in this section, in the hope that the future studies can use this as a

guideline for areas where assumptions need to be carefully considered.
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Figure 8.4: Scatter plot of PQR features without applying illumination compensa-
tion technique
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Figure 8.5: Scatter plot of PQR features applied by illumination compensation
technique
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Human Factor

The emotional mechanisms experienced by human beings are complex and frequently

modulated by highly individual factors. This makes it difficult to attach a definitive

label to the levels arousal or valence that can be expected as the response of a given

experimental subject to the presentation of a pictorial stimulus (e,g., a picture from

the IAPS database). As we have described, there are discrepancies between the plot

of the expected arousal responses obtained as the means of arousal in the IAPS

repository and the plot drawn from the averaged arousal rankings of the 50partic-

ipants in our experiment (see Figure 7.5a). The plots show that these two sets of

expected arousal responses are frequently not consistent with each other. There

are many factors behind this observed effect. One factor that may be contributing

to the discrepancy observed may relate to the different gender ratios in the sub-

ject populations that generated those arousal mean values. Participants of different

genders may exhibit heightened arousal in response to different pictorial themes.

Also, we observed that the self-awareness of each participant regarding the level of

arousal reached may vary from individual to individual, which could cause further

ambiguity in the definition of arousal labels for the pictures. Another factor possibly

contributing the difficulty in establishing robust arousal labels might be the impact

of the cultural background of the individuals on their reaction to the images used.

These were some of the main reasons why the decision was made to only use IAPS

images that had consistency in their expected arousal levels as defined from both

information sources.

Depth Intolerance

Although our experimental subjects were asked to remain as still as possible, position

shifts and adjustments were frequently observed through the experiment (which
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Figure 8.6: Plot of one sample of pupil diameter signal that is corrupted by the test
subject’s movement

lasted about 45 minutes). These movements introduced artifacts and scaling factors

in both the pupil diameter and the face surface that caused some parts of the

recorded signals to be discarded. For example, one sample of pupil diameter signal

is shown in Figure 8.6. The artifacts introduced in this pupil diameter record,

for example, resulted in having to discard it, because the relative sizes of ∆QR and

∆PQ in the sample are abnormal, likely due to the introduction of depth variations.

Device Limitation

The eye-gaze tracker device used in this study is attractive because of its portability

and size. However, it does not offer very high resolution in the pupil diameter
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measurements that are obtained from it. This may have been part of the reason

for the presence of noise in the pupil diameter signals recorded. As described in

Chapter 6, digital signal processing techniques were utilized to try to minimize the

impact of that noise in the feature extraction process, but those are no substitute

for a cleaner original signal, which would be highly desirable.

Ethical Limitation

We relied on the expectation that the stimulus pictures from the IAPS database

would effectively elicit perceivable emotional responses in our experimental subjects.

However, in deciding which subset of the IAPS images to use for the experiment

the desire to potentially use images with the highest arousal mean values within

the database, to provide powerful stimuli and prospectively elicit strong responses,

had to be counterbalanced by the commitment to the safety and well being of the

experimental subjects. Accordingly, this study did not use some images that had

high arousal levels in the IAPS database but could have resulted too shocking for

our experimental subjects (for example, headless body). Preserving this level of

moderation in the strength of the stimuli may have resulted in an inability to fully

explore the spectrum of emotional reactions of the subjects, but that was a conscious

decision made for the reasons stated above.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

This final chapter will provide a retrospective summary of the development of this

project, emphasizing the conclusions that can be reached on the basis of the ex-

perimental results and their analysis. This chapter will also reflect on suggestions

for future development and improvement that emerge from the outcomes of this

dissertation.

9.1 Conclusion

The motivation for the research reported in this dissertation was the definition of

an unobtrusive approach for the assessment of the affective status of a computer

user. The Circumplex Model of Affect, with its dimensions of arousal and valence,

was chosen as the frame of reference for the estimation of the users affective state.

Further, it was decided that the affective assessment of the user would be attempted

on the basis of information extracted from the pupil diameter, monitored with an

eye-gaze tracker and the facial expression, monitored using a Kinect module. The

information obtained from the user would be processed following a machine learn-

ing approach to yield estimates of the affective arousal and affective valence levels

experienced by the computer user.

The pupil diameter is known to be an indicator of arousal in humans since the

pupil size is influenced by Autonomic Nervous System (ANS) which controls the

arousal level. Unfortunately, the pupillary response is also affected by the pupillary

light reflex which is the bodys mechanism to regulate the amount of light that

reaches the retina. To address this issue, specific modifications, controlled by the
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estimated illumination level, were inserted in the feature extraction process applied

to the measured pupil diameter signal.

As it is speculated that the pupil diameter is not reflective of the valence of

the affective state of the subject, it was necessary to extract this parameter from

the users facial expression, monitored using the Kinect module. In particular, this

dissertation proposed the embedding of the facial expression information into Facial

Animation Parameter (FAP) vectors to detect the activation of Action Units (AU)

that can be used as features for affective valence estimation. The FAP vectors have

the added attribute to be face-size independent, as they are unitless.

In the pursuit of the goal mentioned above, the AffectiveMonitor system was

developed, which involves to hardware sub-systems (Primary Side and Secondary

Side) and the software that controls both of the sub-systems. The AffectiveMonitor

system controls both instruments used for data acquisition (eye gaze tracker and

Kinect module) and performs all the pre-processing and feature extraction tasks,

following the procedures detailed in this dissertation. Furthermore, this system has

multiple modes of operation. One of its modes allows the recording of features

derived from pupil diameter and facial expression measurements gathered while

experimental subjects are presented with pictures from the International Affective

Picture Systems (IAPS) database that are meant to shift the viewers affective state

to arousal and valence levels assessed in previous experiments performed by the IAPS

developers. This mode of the AffectiveMonitor system was used to collect data for

the development of the machine learning predictive model for affective assessment.

The contribution of this research work extends beyond the development of the

AffectiveMonitor platform into the adaptation of techniques and algorithms to ac-

commodate the processing challenges encountered in the pursuit of the affective

assessment goal.
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It was found, for example, that in multiple instances there are significant discrep-

ancies between the mean values of arousal and valence published with each IAPS

image and the averages obtained through self-reporting by the 50 experimental sub-

jects enrolled in the data collection process completed for this dissertation (with

FIU Institutional Review Board approval). It was then necessary to set discard

data collected from presentation of images with large discrepancies in their arousal

mean levels.

Similarly, an alternative procedure for illumination compensation (embedded in

the feature extraction stage) had to be devised when it became apparent that the

illumination compensation process used in previous research from the FIU DSP

Laboratory was not practical for application to data collected in short intervals (10

seconds) as recommended by the authors of the IAPS database.

This research also addressed the challenge of locating the changes in pupil di-

ameter and in facial expression to specific intervals within the 10-second recording

window that followed the presentation of each one of the IAPS images to the sub-

jects. The automated procedure devised for this purpose was necessary to account

for the variable latency at which facial expression changes occur for different sub-

jects.

The machine learning model developed as a result of this dissertation used the

Support Vector Machine (SVM) architecture in a cascade configuration which esti-

mates the affective valence first, based on Kinect data and supplements the assess-

ment with an estimation of the arousal level in a second step. 10-fold cross validation

processes yielded estimation accuracies of 75% for the assessment of valence level

and 92% for the assessment of arousal level.

It was also observed that the inclusion of the illumination compensation in the

feature extraction process for the pupil diameter signals played, as expected, an
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important role in enhancing the arousal accuracy recognition by compensating the

effect from the Pupillary Light Reflex (PLR).

Overall, this work has completed the development of the hardware and software

integration of a novel non-intrusive system for the automated assessment of a com-

puter users affective state (in terms of valence and arousal), using an off-the-shelf

portable eye tracking module and a standard Microsoft Kinect module. The de-

velopment and verification of this original system created on the basis of ordinary

off-the-shelf sensors has provided a new avenue for the prospective development of

affective sensing systems that could be practically deployed to ordinary computer

setups, as they will not involve intrusive interactions with the users or the require-

ment for highly specialized and elaborate sensing instruments that are not usually

available to the ordinary computer user.

9.2 Future Work

In its current state, the system developed in this study, classifies the affective arousal

and valence of the user to place it in one of the quadrants of the Circumplex Model

of Affect. Future developments will likely pursue the classification of each one of

the attributes (arousal and valence) with a finer granularity, to be able to locate the

affective state of the computer user to more specific regions within the circumplex

model (see Figure 9.1).

As the potential benefits of Deep Learning approaches in machine learning so-

lutions become better understood, it is tempting to envision the development of an

affective assessment system like the one developed in this dissertation along the lines

of Deep Learning principles. In particular, this would imply that the first layers of

the Deep Learning system could, to some extent, define, in a data-driven fashion
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Figure 9.1: Fine-scale regions in the Circumplex model of affect

the best feature extraction approach, operating directly on aggregates of raw data

or only lightly-reduced data. This prospect, however, has to be considered in the

context of the much larger amounts of training data that are usually necessary to

build Deep Learning models. In the arena of affective assessment this amounts to a

daunting data collection process that would probably have to involve large numbers

of human subjects completing very specific experimental protocols.

Lastly, it may be of interest to explore the monitoring of the pupil diameter

signal through the use of compact and affordable eye gaze tracking models that

are now emerging in the market as a consequence of the significant advances in

high-definition digital camera modules. Some of those devices could be considered

to propose an even less specialized and costly set of instruments for an affective

assessment system. However, the affordability and compactness of the modules

chosen should always be secondary to the need to have high resolution and low

noise levels in pupil diameter signals collected.
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