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Through a review of epistemological frameworks in social sciences, history of

frameworks in statistics, as well as the current state of research, we establish

that there appears to be no consistent, quantitatively motivated model development

framework in data science, and the downstream analysis effects of various

modeling choices are not uniformly documented. Examples are provided

which illustrate that analytic choices, even if justifiable and statistically valid,

have a downstream analysis effect on model results. This study proposes

a unified model development framework that allows researchers to make

statistically motivated modeling choices within the development pipeline.

Additionally, a simulation study is used to determine empirical justification

of the proposed framework. This study tests the utility of the proposed

framework by investigating the effects of normalization on downstream analysis

results. Normalization methods are investigated by utilizing a decomposition

of the empirical risk functions, measuring effects on model bias, variance,

and irreducible error. Measurements of bias and variance are then applied

as diagnostic procedures for model pre-processing and development within

the unified framework. Findings from simulation results are included in

the proposed framework and stress-tested on benchmark datasets as well

as several applications.
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Chapter 1

Introduction

1.1 An Epistemology of Data Science

"Data Science" as a term and discipline was only popularized within the

last 10 to 15 years. The advent and use of the terminology is tied with

the increasing scale, speed, variety, and complexity of data being generated,

collected, stored, and analyzed. Depending on one’s domain expertise, data

science has taken on a variety of meanings ranging from data mining and

database management, to machine learning and algorithm development, with

a wide spectrum of potential skill sets and complexity of data in between. In

the Kennesaw State University PhD program in Analytics and Data Science,

data science is defined academically as the confluence of statistics, mathematics,

and computer science. According to Josh Wills (who lists himself as "ex-statistician"

on LinkedIn), a data scientist is a:

Person who is better at statistics than any software engineer and

better at software engineering than any statistician.

The interdisciplinary nature of data science, as well as the wide range of

domains represented among self-described data science practitioners, presents

several challenges towards applied research in the field. Without a unified

understanding of the practice of data science, how can we quantify what will

happen when we take domain specific knowledge and apply it within new



2 Chapter 1. Introduction

fields? Defining data science and its approach to scientific inquiry goes a long

way towards understanding what it actually means to be a data scientist.

Popularized in the work by David Holpert and William Macready, the No

Free Lunch (NFL) Theorem states that no single machine learning algorithm

is better than all the others on all problems (Wolpert, Macready, et al., 1997).

It is common to try multiple models and find one that works best for a

problem. The goal in data analytics and modeling is not simply to predict the

future with the best model. Instead, the goal is to use available information to

inform the decisions about possible futures and outcomes. The interdisciplinary

nature of data science has led to disparate opinions of the nature of inquiry

within the field and how best to approach model development. For example,

pioneering Microsoft computer scientist Jim Gray proposes data science as

the 4th paradigm of science inquiry: that growing big data availability, new

analytical methods, and the computing resources available to marry the two

suggest we can analyze data without hypotheses, and let algorithms find

patterns in data where science cannot (Kitchin, 2014). However, when the

objective in data science becomes to find every possible association and let

the data inform a narrative we would not have otherwise understood, we

risk finding patterns that are not always meaningful, and correlations that

are random and have no actual causal association. If you look at the clouds

long enough, you will certainly see some mythical shapes.

In contrast, in Floridi’s assessment of the epistemology of big data, he

points out that too much data presents an epistemological problem in terms

of what data to throw away, what is important, and lots of small patterns that

may or may not be valuable (Floridi, 2012). He suggests the technological

solution to this epistemological problem includes more and better techniques

and technologies, which effectively shrink “big data” back to a manageable

size. In our mind, taking the “big” problem away from “big data” brings us

back to a world where statistical theory and reasoning is the key to effective
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and valid pattern detection. With all this in mind, part of a researcher’s

potential success in data science is their ability to deduce which data is valuable,

which can be dropped, and which missing data matters, making the exercise

very similar to traditional data mining methods on a larger scale. As technology

continues to keep pace with larger and larger amounts of data, “big data”

becomes just “data”. Leaning into the statistical reasoning and mathematical

assumptions required to make valid deductions from this data remains unchanged,

regardless of the relative size of data on a day-to-day basis. What is “big”

today will not be “big” tomorrow, but bad data will always present challenges

regardless of size. The art of making data of any size or structure manageable

while balancing and understanding the underlying statistical requirements

to properly translate the data into meaningful information is the definition

of data science.

The current interdisciplinary state of data science suffers from an inconsistent

approach to modeling strategies, with the complexities of big data, and potentially

bad data, inadequately addressed. From a review of literature regarding the

epistemology of data science, as well as the current state of research, we find

that data science practitioners encounter several major challenges:

• Even big data does not exist in a vacuum

• What constitutes "big data" is not consistent across domains

• No Free Lunch (NFL) Theorem: no single algorithm is better than all

others on all problems

• Choice of analytic strategy, whether statistically valid or not, has effects

on the results



4 Chapter 1. Introduction

1.2 Problem Motivation

This dissertation was initially motivated by a model built for the NCAA R©

Men’s Basketball tournament bracket prediction. The likelihood of predicting

a perfect NCAA basketball tournament bracket with no prior knowledge

is 1 in 9.2 quintillion. However, the odds increase somewhat to one in 2.4

trillion (Schwartz, 2015) if we take into account some basic knowledge of

the game, such as adjusting probability based on seeding. Another study

calculated the odds at one in 128 billion (Schwartz, 2015). In any case, the

odds are not favorable. Current and previous work in this area show slight

improvements each year to the model prediction but some suspect there to

be a "ceiling" in terms of model improvement for this problem. Many models

ranging from ranking methodologies to machine learning methods reach an

upper limit for game prediction of approximately 75% accuracy (percent of

tournament games predicted correctly), with similar results found in other

sports such as soccer, American football, NCAA football, and the NBA (Shi,

Moorthy, and Zimmermann, 2013). The NCAA bracket problem was added

as a Kaggle Competition in 2014 and, since then, many individuals and teams

have attempted to squeeze every bit of information out of the available data

to “solve” the problem. The problem has attracted such interest that billionaire

philanthropist Warren Buffet offered $1 billion to anyone who builds a perfect

bracket. Game play data for every regular season and tournament game

going back to 1985 is readily available, as well as a variety of external ratings

systems and engineered statistics. In the Kaggle competition, log-loss is

used for model evaluation and ranking. Winning entries since the start of

the Kaggle competition have only ranged from log-loss scores between 0.46

to 0.53 with little improvement seen each year (“Google Cloud NCAA ML

Competition”, 2020). In fact, in Round 1 of the 2020 NCAA Kaggle tournament,

before it was discontinued due to COVID-19, Kaggle moderators started
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automatically removing any posted log-loss scores less than 0.2, and suggested

in the competition discussion board that any scores less than 0.46 (a model

as good as the winning round 2 submission from the previous 5 years) were

likely suffering from data leakage and/or model overfitting. In spite of increased

availability of data and improved technologies, there has been very little

improvement to the bracket prediction results, regardless of model evaluation

metrics used.

With limited formal knowledge of basketball, engagement in this competition

required application of domain expertise from unrelated fields. However,

this is a situation where naivety can be an advantage and allows the data to

more "purely" inform the model, as in Jim Gray’s proposal of a 4th scientific

paradigm. The advantage of this approach is that it avoids over-engineering

the problem. Many existing solutions to the NCAA bracket problem utilized

feature engineering, often influenced by the researchers knowledge of the

game, in order to reach a more “perfect” prediction. The seeds provided

by the NCAA ranking system already offer good predictive power, but their

predictive power diminishes in later tournament rounds as the difference in

quality of the teams diminishes. This is where domain knowledge (in this

case, specific knowledge of college basketball and the NCAA tournament)

can provide an advantage, with savvy modelers engineering features out

of existing data to more precisely distinguish between the quality of teams,

especially in later rounds of the tournament. However, these models tend to

miss upsets (games where a lower seeded team beats a higher seed), particularly

in the first round of 64, even if they are better at predicting more closely

matched games in later rounds. Other models focused specifically on predicting

the upsets and engineered the models around that problem. For example,

some models predict where the seeding goes wrong by generating an upset

probability for each game. In games where the upset probability is greater

than some threshold (selected through domain knowledge), the higher-seeded
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team is predicted to lose. While there is some success with this method,

there is also evidence of over-prediction of upsets which ultimately reduces

the accuracy of these models to below seeding baseline (Bryan, Steinke, and

Wilkins, 2006). Creating models that predict every nuance of the game resulted

in overfitting and poor generalization to new data, i.e. new tournament data.

Yuan et. al found through literature review and their own experimentation

with a large set of features and predictive models that parsimonious feature

sets and simple algorithms tend to outperform complicated models with

many features (Yuan et al., 2015). Since relying on domain expertise of the

game resulted in overcomplicated and, generally, overfit models, it presented

an opportunity to find clues within the existing data and our assumptions

about that data. Not being burdened by possible bias from too much knowledge

of the game, and of the nuances and history of the tournament, was certainly

an advantage but it did not mean we escaped the importance of understanding

the data. Many may assume that since we have “complete” game data for

every game, the data available for the NCAA problem is representative of

the full problem space population and, therefore, statistical sample-based

assumptions are inconsequential. However, data does not exist within a

vacuum. Who decided which game statistics were important to collect and

why? Do the statistics collected in 1985 still help describe the style of play

and likelihood of success for teams in 2020? Even if statistics from 1985 are

still relevant for game play in 2020, do they predict success now with the

same amount of variability as in 1985 (i.e. consistency of the variance-covariance

matrix across time)? These questions influence how that data is interpreted

and the validity of its value in a predictive model.

Instead of relying on traditional pre-processing data normalization procedures,

we decided to leverage public health methods and apply known genetic

sequence normalization techniques to the basketball data. We used our domain

knowledge from public health to notice that the vectors of team statistics,
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rankings, and tournament performance can be viewed much like strings of

genetic data, with each game similar to a genetic sample, and winning and

losing team features viewed as expressed genes under opposing "biological"

conditions (i.e. winning teams vs. losing teams). While the connection is not

a perfect case in point, it provided enough inspiration to use domain-specific

knowledge in a seemingly unrelated and untested application. The resulting

best models we developed for the 2019 tournament utilized this genetic pre-processing

method, but it was statistically unclear why these methods worked best.

Reviewing available research regarding data normalization in the genetic

sequencing space, normalization is often study-specific or based on assumptions

of consistency (homeogeneity) within and between sample data distributions,

resulting in potential issues of study replication and inconsistent results (Evans,

Hardin, and Stoebel, 2017). For example, the assumption that the statistical

distributions of samples in a dataset are the same, and that observed variation

around data is consistent and the result of technical variation, may result in

the removal of valuable information and true biological affects if inappropriate

normalization methods are applied. In this context there appears to be no

consistent, quantitatively motivated model development framework, and the

downstream analysis effects of the various modeling choices are not uniformly

documented.

This study proposes a unified model development framework. The proposed

framework is then tested by quantifying the downstream analysis effects of

data pre-processing choices by utilizing a decomposition of the loss functions,

measuring effects on model bias, variance, and irreducible error/random

noise. In this way, measurements of bias and variance can be efficiently

applied as diagnostic procedures for model pre-processing and development.

Even when considering "big data" problems, focusing on the effects of model

development choices on the resulting downstream analysis and data structures

can allow for a more consistent approach to the model development framework,
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once again turning "big data" into just "data". Applying bias-variance decomposition

to a variety of data distributions and model types can lead towards an improved

understanding of quantitative variations within model development methods

as well as comparing results consistently between methods. Understanding

of statistical bias and variance can be used to diagnose problems with machine

learning bias and develop methods for reducing bias and variance in algorithms.

For example, this bias-variance trade-off does not always behave as expected

under distributional assumptions. Even with the availability of more advanced

models, such as neural networks, simple models still often perform well, or

even better than more complex models, in experiments (Yuan et al., 2015).

Generally, while more complex models result in decreased bias, they tend to

increase variance and, therefore, do not generalize well to new data (Singh,

2018). However, it has been found that ensemble models, although complex,

often outperform single models and this seems contradictory to the trade-off

between simplicity and accuracy. In this case, decomposition of bias-variance

for ensembles led to the understanding that while increased complexity for a

single model often increases variance, averaging multiple models will often

(but not always) lead to decreased variance (Domingos, 2000). The goal,

therefore, of understanding the effects on bias-variance decomposition of

various model development choices is to build a quantitatively motivated

model development decision framework that results in improved performance

and consistent, reproducible results across data types and domains.

1.2.1 Principles of Ethical Data Science

It is also important to point out that a unified model development framework

lends itself to an improved ethical application of data science. For example,

students at the Analytics and Data Science Institute at Kennesaw State University

developed Principles of Ethical Data Science. These principles include:
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1. Principle of responsible data collection and sourcing

2. Principle of protection

3. Principle of transparency and reproducibility

4. Principle of foresight

5. Principle of competence

With a unified framework for predictive model development within the data

science community, there can be a consistent, quantitatively motivated treatment

of analytic problems which, at minimum, leads to improved transparency

of the transformation of data into products (principle of transparency and

reproducibility). Even when more complex and advanced algorithms are

considered unexplainable "black boxes", a well documented, explainable,

and reproducible model development framework leads to improved confidence

that the data used in these complex algorithms is well understood, statistically

valid, appropriate for the modeling goal, and treated consistently by practitioners

from diverse domains. Rather than risk "garbage-in, garbage-out", improvements

to the efficiency of data consumption can be made.

The rest of this dissertation is organized as follows. Chapter 2 reviews

relevant work presenting the case for a model development framework in

data science, proposes a unified framework, and addresses details of one

specific aspect of the proposed framework, i.e. data normalization. Chapter 3

presents details of the risk function decompositions to be used for an empirical

study of the downstream analysis effects of normalization and selected model

choices. Additional details are provided for a selection of models to be empirically

tested including generalized linear models, decision tree, random forest, support

vector machines, gradient boosting regression, and neural networks. Chapter

4 provides details on the bootstrap simulation methods to be used for quantifying

the downstream analysis effects of the normalization methods and selected
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models. Chapter 5 documents the empirical results of the simulation study

as well as results on a selection of benchmark datasets from the UCI Machine

Learning Library. Findings from simulation results and benchmark datasets

are used as diagnostic decision points within the proposed framework, and

the resulting framework is then used on updated analyses of two existing

studies, i.e NCAA bracket prediction and commercial credit risk scoring.

Finally, in Chapter 6 there is a discussion of the generalized results, limitations

of the study, suggestions for future research, and framework application

within the context of suggested Principles of Ethical Data Science.
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Chapter 2

Literature Review

2.1 Introduction: The Case for a Model Development

Framework

In fields of social science, theoretical frameworks are common, and often

required, elements of academic research. When the goal of scientific inquiry

is to formulate and test theories to explain or predict phenomena, and challenge

or extend existing knowledge, theoretical frameworks provide the structure

for supporting these theories (“Organizing Your Social Sciences Research

Paper: Theoretical Framework”, 2020). “A strong theoretical framework

gives research a sound scientific basis, demonstrates understanding of existing

knowledge on the topic, and allows the reader to evaluate the guiding assumptions

of the research. It gives research direction, allowing one to convincingly

interpret, explain and generalize from the research findings (Vinz, 2019).”

Frameworks provide (“Organizing Your Social Sciences Research Paper: Theoretical

Framework”, 2020):

• Means by which new research data can be interpreted and coded for

future use

• Response to new problems that have no previously identified solutions

strategy
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• Means for identifying and defining research problems

• Means for prescribing or evaluating solutions to research problems

• Ways of discerning certain facts among the accumulated knowledge

that are important and which facts are not

• Means of giving old data new interpretations and new meaning

• Means by which to identify important new issues and prescribe the

most critical research questions that need to be answered to maximize

understanding of the issue

• Means of providing members of a professional discipline with a common

language and a frame of reference for defining the boundaries of their

profession

• Means to guide and inform research so that it can, in turn, guide research

efforts and improve professional practice

As an example, study frameworks in biological anthropology have allowed

reanalysis of existing data and scientific findings under modern analytic methods.

Clarence Gravlee (2003) uses modern analysis frameworks in biological anthropology

to reanalyze a classic dataset, Franz Boas’s landmark study ‘Changes in Bodily

Form of Descendants of Immigrants.’ The classic study was a crucial piece

in turning the tide against early-20th century scientific racism by concluding

that “cranial form changed in response to environmental influences within a

single generation of European immigrants to the United States,” providing

analytic contradiction to the existing ideas of biological determinism. The

study was highly controversial at the time in its conclusions and Boas responded

to critics of the study by publishing the raw dataset. Gravlee, nearly a century

later, used modern analytical methods to reevaluate Boas’s hypotheses regarding

human biological plasticity (the effects of the environment on human bodily
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form). Using the original data and hypotheses under modern analytic frameworks,

Gravlee’s study supports Boas’ original findings with more precise understanding

of the influence of environment and lifestyle on cranial form, specifically

allowing for more granularity in the effects of time elapsed from immigration

(Figure 2.1).

FIGURE 2.1: Gravlee’s assessment of elapsed time from
immigration to birth on cephalic index (Gravlee, Bernard, and

Leonard, 2003)

Extending the use of frameworks to the field of data science, one can

find a precedence for such frameworks in the history of statistics. In his

work, ’The Teaching of Statistics’ (1940), Harold Hotelling argued for the

establishment of statistics as its own field. Hotelling argued that statistics

has a large enough body of techniques that it should be taught in its own

department. However, since those techniques are embedded in mathematical

knowledge, Hotelling suggested that statistics departments should be affiliated

with math departments. At that point in time in the field of mathematical

statistics, statistics was so embedded in mathematics and the technical aspects

of mathematics that many academics were writing papers that focused on

derivations and proofs, rather than applications. Hotelling’s paper became a

key point in the history of statistics as its own field, separate from mathematics,

and the creation of academic departments of statistics. John Tukey further

distinguished statistics as its own field, and set the precedent for frameworks

of inquiry in the field, in ’The Future of Data Analysis’ (1962). Tukey established
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"data analysis" as the term for what applied statisticians do and distinguished

it from theoretical statistics. Tukey reasoned that statistics should contribute

more to data analysis by applying existing strategies to solve data analysis

problems, rather than provide new techniques. He discussed existing, non-novel

statistical techniques that had not yet been applied to data analysis. Examples

where mathematical statistics methods had not yet been applied to complex

data analysis problems included: dealing with “spotty” data (missingness,

outliers, etc), multiple response data, data generated by stochastic process,

data heterogeneous in precision, etc. An example of one of Tukey’s frameworks

for statistical analysis is Tukey’s Ladder of Transformations, Figure 2.2, which

gives an orderly way of re-expressing skewed data using power transformations

to approximate normal distributions and reveal linear relationships (Tukey,

1977).

FIGURE 2.2: Most commonly used transformations. Moving
up the ladder (right) reduces negative skew. Moving down the

ladder (left) reduces positive skew

In the ensuing decades since Tukey established "data analysis" as a practice

of applied statistics, growing big data availability, new analytical methods,

and the computing resources available to marry the two (as in Jim Gray’s

4th Paradigm of Science Inquiry (Kitchin, 2014)) have led to the need for

updated frameworks to address these more complex problems. Data science,

and predictive modeling in general, lacks a unifying theoretical framework

for consistently formulating and testing theories. As with Kitchin (Kitchin,

2014), there are others that claim availability of big data presents a unique
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mode of conducting analytical studies outside of the requirements of traditional

sample-based statistics. Mayer-Schonberger and Cukier (2013) claim that big

data science research is a new mode of science with its own epistemology

and norms where “data can become so big as to encompass all the available

data on a phenomenon of interest”. This claim contributes to debates over

whether sampling is unnecessary since researchers can have “all” the data,

resulting in the reduction, or even elimination, of bias and error. However,

Leonelli (Leonelli, 2014) counters these points from the view of biological

sciences, specifically pointing out that very few data within experimental

biology are formatted in ways that make them compatible with datasets from

other sources. Biological data are also difficult to integrate into a new research

context due to lack of standardization in their format and production techniques,

as well as an absence of stable reference materials. Curators of biological

databases have strong influence on the data journey due to the need to select,

format, and classify data to comply with multiple standards and the needs

of diverse communities involved in biological research. As a result, big data

collections in biology are still small, biased samples. Finally, Lowrie (2017)

makes the case that the inescapably applied nature of data science still warrants

its own framework for gaining new knowledge in the field, arguing there are

two ends of the spectrum of inquiry in data science: exploration of concrete

domains of applied tasks, and the inquiry into the nature and functioning of

the algorithms used in these explorations. Many areas of research, such as

simulation studies, development of new computing architectures, and data

security research, fall along this spectrum and are often tied together. For

example, data scientists maintain relationships with real world applied tasks

to ensure continued access to novel data that then leads to new problem

spaces to explore and solve.

Popularized in the work by David Holpert and William Macready, the No

Free Lunch (NFL) Theorem states that no single machine learning algorithm
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is better than all the others on all problems (Wolpert, Macready, et al., 1997).

Other researchers have tried multiple models to find one that works best for

a problem. In fact, studies by Carp (2012a,2012b) illustrate effects on research

findings in functional MRI (fMRI) studies due to variations in analytic strategy,

with increased model flexibility leading to higher rates of false positive results.

Wagenmakers, et. al. (2012) point out that many studies in psychology

do not commit to an analysis method before seeing the data, with some

researchers fine-tuning their analysis to the data, proposing that researchers

"preregister their studies and indicate in advance the analyses they intend to

conduct” in order to be considered as “confirmatory” research, rather than as

"exploratory". A study published in May 2020 expands on Carp’s findings,

noting that fMRI analyses conducted on the same data by seventy different

laboratories produced a wide range of results (Botvinik-Nezer et al., 2020).

This particular study highlighted the fact that fMRI analysis requires several

stages of pre-processing and analysis to determine which areas of the brain

show activity. They found that the choice of pre-processing pipeline led

to widely varied results. Among the seventy study teams, no two teams

selected the same pipeline. Figure 2.3 illustrates the potential implications of

varying pipeline choices in neuroimaging.

Perhaps the most illustrative lack of research consistency is the study by

Silberzahn, et. al. (2018) which recruited 29 independent research teams with

61 analysts to address the question, “Are soccer referees more likely to give

red cards to dark-skin-toned players than to light-skin-toned players?” The

research teams represented 13 countries, a variety of disciplines, and a range

of expertise and academic degrees. Using the same dataset and research

question, the 29 teams utilized 29 unique analytical modeling approaches

resulting in 21 unique combinations of covariates, 20 teams with significant

positive results, and odds ratios ranging from 0.89 to 2.93, as in Figure 2.4.

To say the least, analytic choices, even if justifiable and statistically valid,
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FIGURE 2.3: Researchers process neuroimaging data using a
wide variety of pipelines, which can produce varying results.
In this simplified example, the pipeline has three steps: spatial
smoothing of the images to reduce noise, which in this example
is done to three different degrees; statistical modelling, which
in this example can be performed in one of two ways; and
‘thresholding’ of statistical tests associated with these models
to determine the level at which neuronal activity in each brain
region is deemed to be significant, which in this example is set
to two different values. Making different choices for each step
leads to a different end point — the red dots represent how
activation moves throughout the brain depending on which

pipeline is used (Botvinik-Nezer et al., 2020).

have a downstream effect on model results. There appears to be no unified,

quantitatively motivated model development framework for making these

analytic choices.

The goal of this research is to propose a unified model development framework

that allows researchers to make statistically motivated variable preparation

and model selection choices within the development pipeline. The model

development framework can be generally divided into three phases: data

discovery, variable preparation, and modeling. Within each of these phases

there are steps in the model development that encompass a wide range of

data management, data mining, and data analysis techniques, including data

ingestion, sample selection, data cleaning and imputation, feature reduction,

feature engineering, normalization, model development, and model validation.

An example of a model development framework is illustrated below in Figure

2.5 and is adapted from Davenport and Harris, 2017. We propose that analyzing

the downstream effects of modeling approaches within each of these steps
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FIGURE 2.4: From ’Many Analysts, One Data Set: Making
Transparent How Variations in Analytic Choices Affect Results’

(Silberzahn et al., 2018)

should be an important goal of the data science community in order to make

better informed, statistically motivated modeling choices in the future. The

downstream effects of some techniques within the model development process

have been addressed with prior research to varying degrees but more work in

this area is required to complete a more unified model development framework.

2.1.1 Data Collection and Sample Selection

Data collection and sample selection are important steps in the model development

process that can affect model interpretation and evaluation. A particularly

relevant area where data collection has led to biased results has been found

in facial recognition models where bias occurs due to a lack of diversity in the

training data (Vincent, 2018). For time series models, we might consider the
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FIGURE 2.5: Example model development framework, adapted
from Davenport and Harris, 2017

effects of time intervals for data collection on prediction results. Accuracy

of traffic prediction models relies heavily on the data collection time interval,

but it has been common for studies to arbitrarily select time intervals without

consideration of the impact on prediction results. Different applications of

traffic prediction models require different time intervals. For example, traffic

speed prediction calculated using large time intervals has limited model capacity

and can result in missed details from a dynamic traffic operation status (the

model is too simple, potentially biased); the prediction results are unable

to be applied in a traffic control strategy. If the time interval is too small,

the calculation is time consuming and the traffic speed prediction results are

unstable (potentially overfit with high model variance). A study by Song, et.

al. (Song, Guo, Wu, and Ma, 2019) compared accuracy of a best performing

model under different time collection intervals from one minute to 30 minutes.

Results found significant improvement in traffic speed prediction with increasing

time collection interval from one to 10 minutes, with slower improvement

from 10 to 30 minutes, indicating that an increase of the data collection time

interval leads to decreased volatility of measured traffic speed, resulting in

more stable and more predictable time series, but a balance of model complexity

and performance is an important consideration.
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Considering the effects of sample size is also important. Sample size

impacts the precision of our estimates. Generally, the more data we have, the

more information we have about the true population, therefore decreasing

our uncertainty and increasing precision (Littler, 2018). In gene expression

research, it was found that increasing sample size led to increased prediction

accuracy and stability of results. However, performance improvement varied

between patient subgroups, suggesting that sample size selection should also

take required study aims into account. For example, increasing sample sizes

of specific gene-signature sub-groups may be a better strategy for prediction

of heterogeneous diseases such as breast cancer (Kim, 2009).

2.1.2 Data Cleansing and Imputation

Data cleansing and imputation methods include filtering, listwise deletion,

mean and median imputation, regression imputation, multiple imputation,

and others. Data cleansing is a form of data management where data is

removed or updated to account for incomplete, incorrect, improperly formatted,

duplicated, or irrelevant data (“What is Data Cleansing?: Experian Business”,

n.d.). Incorrect or inconsistent data can lead to false conclusions if not properly

addressed, but using incorrect methods of cleansing and imputation can also

lead to loss of important information. Big data, with its already high volume,

velocity, and variety, presents additional challenges and importance for data

cleansing including resources required to parse the data, potential issues

merging data from multiple sources, and the challenges of complex data

structures. A study by Gray, Bowes, et. al (2011) found that misuse and

improper cleaning of the publicly available NASA Metrics Data Program

data sets can lead to erroneous findings. The 13 public use data sets are

available for researchers to test software defect prediction experiments. The

researchers found through an extensive data cleansing process that each of
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the datasets had between six and 90 percent less of their original data after

cleansing, with much of the data lost due to duplication. One of the major

issues of duplicate data in a prediction experiment is the potential inclusion

of data in the test data set that was already seen in the training data set. This

is an issue known as "data leakage" and results in overfit models that do not

generalize well to real-world data. In this case, the study found via 10-fold

cross validation of training and test data splits, that the average "proportion

of seen data points in the testing sets is larger than the proportion of repeated

data points in total (Gray et al., 2011), as seen in Figure 2.6.

FIGURE 2.6: Proportions of repeated data and seen data in
testing sets (Gray, Bowes, Davey, Sun, and Christianson, 2011).

Imputation is a technique used to replace missing data. Since many statistical

analysis algorithms rely on complete data, missing data can introduce bias or

affect the generalization of the results by eliminating any cases with missing
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data (listwise deletion). In addition, eliminating cases with missing data

results in smaller effective datasets available for modeling, and the potential

for unreliable results when the number of features starts to outweigh the

number of cases. For example, in a regression problem fit using least squares,

when the number of observations approaches the number of features, variance

of the least squares model tends to increase resulting in overfitting and poor

generalization to new data. When the number of features is larger than the

number of observations, there is no longer a unique estimate of the least

squares model due to infinite variance, resulting in a model that will not

converge.

Imputation generally falls into three categories: univariate (replacing values

with the mean or median of that feature), bivariate (data stratified by a feature

both related to the outcome of interest and associated with missing data,

and the missing data imputed within each group), and multivariate (missing

values obtained by regression of non-missing features). Using mean imputation

has the advantage of maintaining the same sample mean and sample size

for the imputed feature, but it can minimize any correlations involving the

feature since the imputed value will have no relationship with any other

measure features. Mean imputation is also not recommended for features

with skewed distributions or outliers as it gives more weight to values in

the skewed or outlier direction. In this case, median imputation is a better

technique although it still suffers from attenuated correlations. Bivariate or

stratified imputation is a good way to deal with data that is not missing at

random, i.e. missingness in one feature is correlated to values in another

feature. Multivariate (regression-based) imputation solves some of the problems

of univariate imputation by using a regression model to predict missing values

based on values of other features. However, single regression imputation fits

the missing values perfectly without any error or variance in their estimates,

which can result in overfitting. Multiple imputation is used to account for
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imputation-related noise by averaging imputed values from multiple imputed

datasets. Barakat, et. al. (Barakat et al., 2017) studied the effect of imputation

methods on a training dataset for a lung cancer prediction problem and compared

to prediction using a smaller, complete data set. Results showed that even

when proportion of records with missing data is very high, imputation led

to models with higher accuracy than those trained using smaller, complete

records datasets, with multiple imputation performing best at imputing values,

even when 100% of the cases contain missing data, Figure 2.7.

FIGURE 2.7: Error of estimated mean values for each
imputation method (Barakat et al., 2017).

2.1.3 Feature Selection and Reduction

In the model development phase of feature selection and feature reduction,

data scientists have a myriad of choices ranging from clustering algorithms,

principle component analysis (PCA), correlation coefficients, etc. Limiting

the number of features in a model helps avoid issues of multicollinearity,

but the analyst also needs to balance the resulting reduction in proportion
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of variance of the target feature explained when data is removed from a

model. Feature selection and reduction techniques aim to balance model

parsimony (simplicity) with model accuracy. Feature selection techniques

reduce features in a model by selecting the most important ones, while feature

reduction techniques reduce features by creating new, combined features

from the originals. A 2019 study on software defect prediction was one of

the first to consider the effects of several feature reduction techniques on

software defect prediction (Kondo, Bezemer, Kamei, Hassan, and Mizuno,

2019). They studied the impact of eight feature reduction techniques on

prediction performance and variance among five supervised and five unsupervised

learning models and compared results with the best-performing feature selection

techniques found in prior work. They found, for example, that

"studied correlation and consistency-based feature selection techniques

result in the best-performing supervised defect prediction models,

while feature reduction techniques using neural network-based

techniques (restricted Boltzmann machine and autoencoder) result

in the best-performing unsupervised defect prediction models."

2.1.4 Feature Engineering

The next step of a model development framework considers feature engineering

methods, such as variable discretization, transformation, and aggregation

across multiple data sources. These processes create new features from raw

data, often for the purpose of converting data into analysis and machine

learning-ready formats, such as mapping text to numeric features. Feature

engineering is also used when domain knowledge is applied to extract more

relevant information from the raw data sources. Feature engineering is used

to construct and select explanatory variables for model training to improve

predictive power. In addition, using feature engineering aims to improve the
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explanatory quality and information density of the features, allowing for the

flexibility to use less complex, more parsimonious models which are more

computationally efficient and easier to interpret.

In NCAA Basketball tournament prediction, researchers have made use

of domain knowledge, feature selection, and feature engineering to improve

prediction results, with research teams such as Dutta et. al. (2017) and

Ford and Fodor (2018) focusing on scenarios of predicting upsets (the lower

seeded team beats the favorite). Ford and Fodor noted with over 70 million

March Madness brackets each year, the difference between winning and losing

in a bracket pool is often determined by correctly predicting upsets. On

average there are about 6 upsets each year in the first round (round of 64).

Their proposed method combined independent datasets with historical seed

data to predict matchups which are similar to historical upsets. They argue

that the Rating Pecentage Index (RPI), one of the main metrics (although

supposedly not the only metric) used by the NCAA to select and seed the

teams for the tournament, is outdated as it does not incorporate factors such

as margin of victory, location of games played, and game tempo. Many

researchers have developed models to attempt to outperform this seed-based

bracket selection method. While seeds are strongly predictive in early rounds,

their predictive power weakens as the tournament progresses due to smaller

differences between team strength, so additional selection methods become

more important to consider in later rounds when finding subtle predictive

features can strengthen a model over simple seed-selection. The NCAA recognizes

four researchers at the forefront of analytics: Ken Pomeroy, Jeff Sagarin, Ben

Alamar, and Kevin Pauga. These researchers have each created their own

ratings systems that many bracket modelers now incorporate in their models

because they include factors not included in the NCAA seeding-based system.

Ford and Fodor combined the 4 z-normalized ratings to create an overall

score for each team and found some inconsistencies between the external
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ratings versus the NCAA seeded ratings, finding some teams they felt were

unfairly seeded. This method also allowed the authors to compare absolute

and relative strength of teams on each seed line. The method presented

in their paper combines the absolute and relative strength of teams with

historical upset data to make per round predictions on which teams will be

involved in an upset.

Recent work by Zhang, et. al. (2019) considers the effect of discretization

on classification of imbalanced data, and points out that “most standard

statistics and machine learning models are heavily biased towards the majority

class (i.e. non-events) and severely misclassify the minority class (i.e. events),

caused by their assumptions of equal target class distribution and maximizing

overall accuracy.” This study illustrates the effects of variable discretization

on classification of imbalanced data across several domains, comparing four

discretization methods (distance, quantile, Gini, optimal binning). Variable

discretization resulted in model improvement across all the test domains for

measures of accuracy in comparison to models with the original variables,

for example Figure 2.8.

FIGURE 2.8: ROC curves of wine quality (a) and arrhythmia (b)
data (Zhang, Ray, Priestley, and Tan, 2019).
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2.1.5 Normalization

In this context we consider normalization to include data scaling techniques

such as normalization and standardization. In traditional statistical modeling,

such as logistic regression, scaling data by normalization and standardization

is important because variables with a large difference in ranges can result in

an ill-conditioned design matrix and difficulty reaching model convergence,

resulting in slower processing times and unstable estimates. In addition,

variables measured on different scales will not contribute equally to the analysis,

with potential bias towards variables with much larger scales than others in

the dataset (Lakshmanan, 2019).

Scaling data is equally as important in machine learning techniques such

as neural networks because we optimize these models through the process

of gradient descent (Jordan, 2019), where the variable inputs are put through

a series of linear combinations and non-linear activations, and the optimal

value of the loss function (global minimum) is found by taking steps in the

direction of the steepest loss function descent. If the variables are on different

scales the shape of the loss function will result in an emphasis on certain

variable gradients, and difficulty in finding the true function minimum as

shown in Figure 2.9. Normalizing the variables to be on the same scale allows

gradient descent to optimize more quickly and converge if a global minimum

exists. Additionally, scaling variables between -1 and 1 helps avoid computational

issues with floating point number precision (Altman, Gill, and McDonald,

2004).

2.1.6 Model Building

In the model building phase, it is first important to select the appropriate

model given the data structures. For example, data that is assumed to have

some linear deterministic relationship with a continuous target of interest can
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FIGURE 2.9: Gradient descent with data on different scales
(Jordan, 2019)

be modeled using linear regression. Generalizations of ordinary linear model

regression, the generalized linear model (GLM), can then be extended to data

with non-normal response variables, such as when the target is binary or

multinomial. Logistic regression and multinomial logistic regression, respectively,

are appropriate in these cases. When the target data is a measure of counts,

the GLM can use the Poisson or negative binomial distributions, depending

on the variance in the data. These same ideas can be extended to more

complex models, such as decision trees, random forests, and neural networks

where the optimized loss functions are learned with estimates of a continuous

value or estimates of a predicted probability for continuous and binary targets,

respectively.

Once the appropriate model(s) are selected, models can be tuned to optimize

prediction results using a variety of model building choices including regularization,

batch processing, and other optimization techniques such as dropout and

early stopping rules. While much progress in image recognition classification

has focused on advancements in model architectures, gains in model accuracy

have also been influenced by updates to training procedures, such as data

augmentations and optimization methods. However, much of the research

mentions only the implementation details or source code of such refinements,
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without focus on their quantitative value. A late 2018 study by He et al.

(He et al., 2019). evaluated the prediction effects of a dozen convolutional

neural network training refinements, including batch size, learning rate, and

weight decay. Results found that several of these refinements improve model

accuracy with only minor modifications to model architecture and loss function,

and that stacking all the refinements led to significantly higher accuracy, for

example, raising ResNet-50’s top-1 validation accuracy from 75.3% to 79.29%

on ImageNet, Figure 2.10.

FIGURE 2.10: Computational costs and validation accuracy of
various models (He et al., 2019)

2.1.7 Model Training & Validation

In order to determine the best performing model architecture and attributes

in the model building phase, it is necessary to train, tune, and test the models

using some split of the available data into training, validation, and test datasets

(See Figure 2.11). The training dataset is used to fit the model parameters (i.e.

feature coefficients in regression, weights in neural network) to result in an

optimal value of the predetermined loss function (i.e. minimum MSE for

linear regression). Depending on the complexity of the model, there may be

hyperparameters to be tuned while fitting the model on the training data. A

separate validation dataset is used to fine-tune the model hyperparameters

without introducing bias into the training dataset by using it for repeated

model evaluation. The test dataset is then used as a hold-out sample of

unseen data, representative of the population of interest, i.e. gold standard
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data to evaluate the model. The test dataset is also used to compare performance

of multiple models.

FIGURE 2.11: Visualization of train-validate-test data splits
(Shah, 2017)

One of the main drawbacks of using the train-validate-test split to train,

tune, and test models is that it requires enough samples to effectively split

into the datasets. In a dataset with only 100 samples, using an 80-10-10 split

means there is only 10 samples left in the test set. Performance results in

this case would be due to chance, especially if it is a multi-class problem. A

simple model with few or no hyperparameters can be tuned using a small

validation set or no validation set at all, but this still leaves too few samples

for testing. Cross-validation or bootstrapping are data splitting methods

that allow training and testing using all the available data. Cross-validation

uses multiple splits of the training data into training and validation sets (or

training and test sets) where the model can be iteratively trained and tuned

(or trained and tested where validation is unnecessary) using the complete

data. For example, k-fold cross-validation splits the data into k parts, where

the model is trained on k - 1 parts, tested on the remaining part, and then

the process is repeated until each split has been used as the test dataset

(See Figure 2.12). Advantages of cross-validation include: ability to use all

available data for training and testing without introducing bias or overfitting,

averaging model performance over multiple iterations of model training and

testing (can assess whether model has consistent results), ability to split and

train data based on dependent or grouped data, ability to tune hyperparameters
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in complex model architectures with limited data by cross-validating on 3

folds (each fold is used as train, test, and split at least once). Xu and Goodacre

(2018) tested multiple splitting methods on simulated datasets of varying

sizes and found that performance results varied greatly between validation

and test datasets across all methods when used on small simulated datasets,

with consistency of results improving as sample size increased. In this study,

they tested a selection of cross-validation, bootstrapping, and systematic partitioning

(selecting most representative samples based on distribution of data and using

remaining samples for validation) techniques, pointing out that, while "all

these methods have been routinely reported in the literature and despite their

popularity, most people chose a method with which they have familiarity."

FIGURE 2.12: k-fold cross-validation with k = 4 (Shulga, 2018)

Bootstrapping is a similar method to cross-validation where, instead of

folds, a re-sampling method is used for estimating the model parameters.

Random samples with replacement are selected from the available data for

training and then validated or tested on the out-of-bag samples. This process

is then repeated many times with average results "estimating the generalization

performance of the model (Xu and Goodacre, 2018)".
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2.1.8 Model Evaluation

At the end of our proposed model development pipeline we have a wide

selection of model evaluation measures to choose from including: accuracy,

value of loss/cost functions, receiver operating characteristics (ROC) curve,

sensitivity, specificity, as well as methods for calculating these measures,

such as cross-validation. Even though accuracy is still the most commonly

used metric to evaluate performance of machine learning models, other methods

are often more appropriate given certain goals of prediction or aspects of

the data, such as class imbalance. In 2019, Dinga, et. al. (Dinga, Penninx,

Veltman, Schmaal, and Marquand, 2019) evaluated several families of performance

measures on pattern recognition models and found that accuracy had the

"worst performance with respect to statistical power, detecting model improvement,

selecting informative features, and reliability of results." They also pointed

out that accuracy should be avoided in models where relative cost of positive

or negative prediction is relevant, such as in a clinical setting where costs of

false positives and false negatives are not equivalent.

2.1.9 Quantitatively Motivated Pre-Processing Framework for

Models

The current state of data science suffers from an inconsistent approach to

modeling strategies, with the complexities of big data, and potentially bad

data, inadequately addressed. Summarizing the previous sections:

• Even big data does not exist in a vacuum

• What constitutes "big data" is not consistent across domains

• No Free Lunch (NFL) Theorem: no single algorithm is better than all

others on all problems
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• Choice of analytic strategy, whether statistically valid or not, has effects

on the results

Understanding and further analyzing the downstream effects of the model

development strategies mentioned in the preceding sections is an important

step towards a unified model development framework. Quantifying the

analysis effects of these strategies in a unified framework will provide a

diagnostic illustration of where researchers can expect to find improvements

in their model results. The general idea of the proposed framework illustrated

below is that researchers can select analysis methods based on the understanding

that model results are a function of the selected model, the selected model

development strategies, and the characteristics of the data:

L = f (M, [p1, ...pi], D) (2.1)

where L is the loss function value, M is the selected model, p1...pi is the list of

model development strategies used, and D is the data structure. Figure 2.13

is the proposed model development framework. While we encourage further

depth of research into each of the aforementioned steps to complete a more

robust statistically motivated model development framework, the rest of this

dissertation will focus on illustrating the use of the proposed framework

through the quantitative effects of normalization methods. In this context,

this literature review will now focus on the study of the downstream analysis

effects of the various normalization methods and further development of the

motivated pre-processing frameworks for the model development process.

The review will touch on the normalization strategies and methods, the downstream

analysis effects of normalization strategies, and the influence normalization

methods have in conducting a study.
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This sec�on will be blown up as a separate figure to detail the model development decision 

points of various data types, characteris�cs, and models

FIGURE 2.13: Proposed framework for diagnostic pairing of
best models, model development strategies, and data structures

2.2 Normalization Strategies in Statistics

Normalization as it relates to data scaling and standardization in statistics

was initially discussed in Section 2.1.5. Data can be scaled so that features

measured on different scales can be compared on a common scale. Probability

distributions of features can also be adjusted to be in alignment with each

other. Another method is to shift and scale the features (standardization),

which removes the units of measure. The primary goal of normalization is

to scale each data point in a way that gives equal weight to the features to

be used in developing a model. Five normalization methods are discussed
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below, representing a range of methods used across several domains.

2.2.1 Z-Score, "Standardization"

Standardization is a method that shifts and scales the data to be centered

around 0 with a standard deviation of 1:

xi −mean(x)
stdev(x)

(2.2)

Characteristics of this method include:

• Assumes data is normally distributed within each feature

• Centers distribution around 0, with standard deviation 1

• If data has outliers, scales most of the data to a small interval

• Does not produce normalized features with the exact same scale

Even if the data has outliers, Z-score normalization will scale most of the

non-outlier data to be in a similar range between all features, assuming the

data is normally distributed, as in Figure 2.14.
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FIGURE 2.14: The data is squished due to outlier but most of the
data lies within similar range for both features (codeacademy).

2.2.2 Min-Max Normalization

For each feature, the minimum value of that feature is transformed to a 0, the

maximum value is transformed to a 1, and every other value lies between 0

and 1:
xi −min(x)

max(x)−min(x)
(2.3)

Advantages of this method include:

• Scales data between 0 and 1; guarantees all features have exact same

scale

• Preserves shape of original distribution

• Preserves 0 entries in sparse data

• Least disruptive to information in original data

However, this method does not reduce the importance of outliers, so

skewed results can still exist after normalizing if outliers exist, as in Figure

2.15.
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FIGURE 2.15: Min-Max Normalization fixes the distribution on
the Y-axis but is still problematic on the X-axis due to the outlier

(“Normalization”, n.d.).

2.2.3 Max Absolute Value Normalization

This method scales feature by its maximum absolute value so that the maximum

absolute value of each feature will be 1. This sets the distribution of each

feature between -1 and 1.

xi −mean(x)
max(abs(xi −mean(x)))

(2.4)

Characteristics of this method include:

• Good for data with positive and negative values

• Preserves 0 entries in sparse data

• Similar sensitivity to outliers as in min-max normalization

2.2.4 Quantile Transformation

Quantile transformation transforms each feature independently to follow a

uniform or normal distribution. This is a non-linear transformation that uses
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the estimated value of the cumulative distribution function (CDF) to map a

features original values to a uniform or normal distribution:

1. Calculate empirical ranks, using percentile function

2. Modify the ranking through interpolation

3. Map to a Normal distribution by inverting the CDF, and clipping bounds

at the extreme values so they don’t go to infinity

Characteristics of this method include:

• Tends to spread out the most frequent values of a given feature

• Smooths out unusual distributions

• Less sensitive to outliers as other scaling methods

• Distorts the linear correlations between variables measured at the same

scale, but variables measured at different scales are more directly comparable

• For a Normal transformation, the median of the feature becomes the

mean, centered at 0

2.2.5 Quantile Normalization

Quantile normalization is a method most notably used in genetics to normalize

within samples, rather than within features as in the previously described

methods. In genetic sequencing, data is often normalized based on the assumption

of consistent within and between sample distributions, with observed variation

around these distributions assumed to be the result of technical noise. Samples

are normalized to the same distribution as each other or to a reference gene

sample (Evans et al., 2017).

1. Given n arrays of length p, form X of dimension p× n where each array

is a column;
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2. Sort each column of X to give Xsort;

3. Take the means across rows of Xsort and assign this mean to each element

in the row to get X′sort;

4. Get Xnormalized by rearranging each column of X′sort to have the same

ordering as original X

Characteristics of this method include:

• Makes 2 or more distributions identical in statistical properties

• Does not preserve original data distributions

2.3 Normalization Strategies in Machine Learning

Within the context of machine learning research, normalization as it relates

to data pre-processing, i.e. data scaling, is rarely mentioned in detail, if at all,

and only then glossed over as a minor methodological step. In August 2019,

Google Scholar released the Google Scholar Metrics Ranking, which ranked the

most highly-cited papers published between 2014 and 2018 with all citations

indexed as of July 2019. Table 2.16 details some of the most highly-cited

machine learning papers from the most influential journals on the list, and

illustrates the lack of detail found regarding data pre-processing.
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Author (s), �tle Journal Year Cita�ons Purpose Normaliza�on Discussed?

He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image 

recogni�on. 

Proceedings of the IEEE 

conference on computer 

vision and pa�ern 

recogni�on

2016 43,318

Architecture for improved 

training of deep layer neural 

networks (NN)

Details of convolu�onal 

filters and downsampling 

used in NN architecture 

included in implenta�on, 

with reasoning following 

conven�ons from previous 

studies. No further 

discussion of input scaling

LeCun, Y., Bengio, Y., & Hinton, G. Deep Learning. Nature 2015  24,435

Introduc�on of deep 

learning as a machine 

learning method to learn 

complex data rela�onships

Only indica�on of 

importance of normalizing 

data is in quote: "As long 

as the modules are 

rela�vely smooth 

func�ons of their inputs 

and of their internal 

weights, one can compute 

gradients using the 

backpropaga�on 

procedure."

C. Szegedy et al ., Going deeper with convolu�ons. 

IEEE Conference on 

Computer Vision and 

Pa�ern Recogni�on (CVPR)

2015 20,647

Introduc�on of state-of-the-

art CNN architecture 

'Incep�on'

Details of architecture, 

convolu�ons, filters, 

pooling layers but no 

discussion of pre-

processing except

cropping images 

"224×224 in the RGB color

space with zero mean", 

which was based on 

previous architectures

J. Long, E. Shelhamer and T. Darrell, Fully convolu�onal networks for

seman�c segmenta�on . 

 IEEE Conference on 

Computer Vision and 

Pa�ern Recogni�on (CVPR)

2015 15,207

Use of a fully convolu�onal 

network for seman�c

segmenta�on task - 

pixelwise predic�on

Discussion of architecture 

convolu�on/pooling/filter 

layers, training on image 

patches, augmen�ng data 

with noise; no comment 

on input scaling

Literature Metrics - Highly Cited Machine Learning Papers

FIGURE 2.16: Machine Learning Literature Metrics

2.3.1 Input Normalization

In supervised machine learning, neural networks map input data from a

training set to predicted outputs. The weights of the model, similar to estimated

coefficients in a regression model, are initialized to random values close to

zero and updated using an algorithmic process known as gradient descent

by iteratively checking estimates of error on the training dataset, as shown in

equation 2.5.

θi := θi + ∆θi

where

δθi = −α
∂J(θ)

∂θi

(2.5)

where ∆θi is the step the algorithm takes along the gradient, with the

learning rate, α, controlling the step size. Since the gradient descent algorithm
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relies on an initialization of small (usually random) weights and updated

calculations of error between predictions and expected values, the size of

inputs and outputs used to train the model are crucial to the implementation

of the gradient descent optimization problem (Brownlee, 2019). Gradient

descent updates the model weights in the steepest direction which minimizes

the difference between predicted and true values (found by partial differentiation).

By minimizing the weights in the steepest direction, the gradient descent

algorithm aims to find the parameters that minimize the loss function, with

Mean Square Error (MSE), 0-1 loss, and log-loss as commonly used loss functions.

For example, assume a simple neural network with input feature x1, with

values from 0 to 1, and input feature x2, with values from 0 to 10 (as seen

previously in Figure 2.9). Since the network learns the optimal combination

of these inputs through a series of linear combinations and nonlinear activations,

the weights (parameters) associated with each input will be on different scales,

with the gradient of the larger input dominating the gradient descent updates.

This leads to a loss function topology that is difficult to navigate, and slow or

unstable for the model to learn due to the presence of multiple points of local

minimum in the loss function and potential saddle points. The result is a

model learning process that is slow, has higher variance in results, or possibly

no model convergence at all (Jordan, 2019). Scaling the inputs before training

the model allows for faster, more consistent optimization of the weights in

the input layer. If the input variable has a normal distribution it can be

standardized (mean 0, unit variance); otherwise it can be normalized (min-max

scaling between 0 and 1). It is also recommended to consider scaling the

output variable so that the scale of the output variable matches that of the

activation function used in the output layer of the neural network, although

it is best to choose an activation function that best suits the distribution of

the output data (Brownlee, 2019). Scaling input data between -1 to 1 helps

avoid computation accuracy issues associated with floating point number
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precision, i.e. computers operating on really small or really large values

(Altman et al., 2004).

2.3.2 Batch Normalization

While limited formal research has been dedicated towards neural network

input normalization, there has been extensive work in recent years extending

the idea of input normalization to additional hidden layers of neural networks

through a technique known as "batch normalization", where batch normalization

specifically utilizes the idea of data scaling to improve model performance.

Other optimization techniques used with neural network architecture include

dropout, weight decay, and early stopping. The central assumption of batch

normalization is that if normalizing inputs to the network allows for improved

learning of the parameters in the first layer, then extending this idea to the

hidden layers will allow for improved learning of the parameters in those

layers as well (See Figures 2.17 and 2.18).

FIGURE 2.17: Example Neural Network(a) (Jordan, 2019)

"By ensuring the activations of each layer are normalized, we

can simplify the overall loss function topology. This is especially
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FIGURE 2.18: Example Neural Network(b) (Jordan, 2019)

helpful for the hidden layers of our network, since the distribution

of unnormalized activations from previous layers will change as

the network evolves and learns more optimal parameters. Thus,

by normalizing each layer, we’re introducing a level of orthogonality

between layers - which generally makes for an easier learning

process (Jordan, 2019)."

In machine learning, orthogonalization refers to tuning hyperparameters to

achieve improved model results. Hyperparameters are model values that

are set before the training process, such as learning rate, as opposed to other

model parameters which are learned during the training process. Choice of

hyperparameters can significantly affect the the speed and quality of model

training and testing, and resulting model performance (Claesen and De Moor,

2015). In this case, hyperparameters are tuned within the context of a chain

of assumptions: the model fits the training, validation, and the test set well

on the cost function, and then generalizes to real world data, with consistent

performance across these datasets. Within each step there are a distinct set of

tuning functions one can use to improve the fit on the cost function: bigger
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network (architecture), more advanced normalization/optimization method

(such as Adam method for stochastic optimization) in the training set, regularization,

or a bigger training set to improve model fit on the validation set, bigger

validation set to better fit test set (if training and validation set fit the cost

function well, but do not fit the test set well, this probably means the validation

dataset is overfit), change the validation set or the cost function if previous

steps all fit well but do not perform consistently on real world data. In

contrast, tuning methods such as early stopping (method for regularization

that involves ending model training early) make orthogonalization difficult

because it simultaneously affects the training set (i.e. stopping the training

early will reduce accuracy) as well as validation set performance (Ng, 2020).

Normalization is a precise model tuning method that can be utilized as a

pre-processing step on the input layer or within each hidden layer of the

network on the training dataset through a process known as batch normalization.

2.3.3 Effects of Batch Normalization

Batch normalization is an extension of traditional input layer normalization

that is applied to more parameters of a neural network (hidden layers). The

previous section established that normalizing the inputs to the network help

the network learn the parameters in the first layer more accurately and efficiently.

Since the second and further layers of the network accept the activations

from the previous layer, it is assumed that normalizing these values will also

help the network learn more effectively (Ioffe and Szegedy, 2015). During

training of a neural network, as the weights of a previous layer change, the

distribution of the layer inputs to the next hidden layer will also change.

This is known as internal covariance shift and results in slow training due

to the need for smaller learning rates. Batch normalization helps eliminate

covariance shift by normalizing the inputs to each hidden layer using the
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mean and variance of the linear combinations of a batch of observations from

the previous layer (Ioffe and Szegedy, 2015). It has been found that batch

normalization allows for higher learning rates (faster training) and acts as

a regularizer (avoiding model overfit), sometimes eliminating the need for

older regularization techniques such as dropout. In fact, batch normalization

does not drastically increase architecture complexity but it reaches state of

the art results in a fraction of the training steps (Ioffe and Szegedy, 2015).

However, recently, additional research has questioned why batch normalization

works well for training neural networks, with previous research mostly focused

on implementation and results only. Santurkar et al. (2018) argue that the

success of batch normalization is not, in fact, due to the reduction in internal

covariance shift but rather due to its impact on the loss function optimization

landscape, resulting in smoother optimization topology. It was discussed in

the previous section how a smoother topology allows for a more efficient

gradient descent optimization towards the loss function minimum. The authors

demonstrated empirically that there is no apparent connection between performance

of batch normalization and reduction of internal covariance shift. The authors

argue that their results should encourage a more "systematic investigation of

the algorithmic toolkit of deep learning and the underpinnings of its effectiveness

(Santurkar et al., 2018)."

Additionally, the introduction of batch normalization indicated that the

use of dropout as a regularization may no longer be necessary. However,

some research has further investigated the relationship between batch normalization

and dropout. Dropout can be applied at different structural levels including

neuron, channel, path, and layer level. Cai et al. introduced a framework in

2019 for analyzing these four dropout methods and the poor performance in

convolutional neural networks (CNN), especially when used in the architecture

after batch normalization. They found that the poor performance is due

to incorrect placement of dropout in the network as well as using dropout
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methods not well-suited for particular CNN tasks (Cai et al., 2019). Li et

al. summarize additional guidelines for improved use of dropout and batch

normalization. Interestingly, in the statistical experiments described in this

paper to quantify the effect of dropout and batch normalization, the authors

use one sentence to describe the image pre-processing, i.e. normalizing the

data by using the channel means and standard deviations, but provide no

additional context behind those choices (Li, Chen, Hu, and Yang, 2019). A

2018 paper by He et. al. (2019) was the only one found that used empirical

study to quantify the effects of various CNN model tuning choices. They

point out that many of these model refinements, including changes in loss

functions, data pre-processing, and optimization methods have improved

model accuracy but are rarely mentioned in detail outside of implementation

details or source code. This study evaluated a dozen methods, including

batch training, learning rate scaling, zero weight decay, and others, on multiple

architectures and datasets, and found that several refinements lead to significant

model improvement. While the studies mentioned above evaluate some

internal model architecture normalization and optimization refinements, no

studies were found that focus on statistical evaluation of data pre-processing

in neural networks.

2.4 Effects of Model Frameworks and Normalization

in Application

In relation to the effects of model development choices on downstream analysis,

it is perhaps most interesting to consider the generalization of frameworks

towards specific model applications.
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2.4.1 NCAA Basketball Event Prediction

The NCAA Division I Men’s Basketball has a 68 game single elimination

tournament which is played annually, colloquially known as ’March Madness’.

The popularity of the tournament has increased in recent years among basketball

enthusiasts and data scientists (not necessarily mutually exclusive) due to the

introduction of the popular March Madness Kaggle competition. In 2019,

the longest streak of a perfect bracket to date was achieved when Gregg

Nigl correctly predicted the first 49 games of the tournament. It should be

noted that in the NCAA.com bracket tournament, points are awarded on a

sliding scale with each round progressively awarding more points per game.

This means that someone who correctly predicts the tournament winner, if

no one else picks that same team, will automatically win the tournament

even if the rest of their bracket performed poorly. In the NCAA.com game,

players are simply rewarded for correct predictions. However, in the Kaggle

competition, models are measured using the log loss function, with the aim

to minimize log loss between predicted win probabilities and actual game

outcomes. This loss function has high penalty for models that are both confident

and wrong (“Applying Machine Learning To March Madness”, n.d.). The

choice of how one wants to compete in the March Madness competition (i.e.

NCAA.com office pool versus data science community Kaggle competition)

determines the evaluation metric and the resulting best-performing model

development strategies. Paul Kvam and Joel Sokol at Georgia Tech developed

what may be the current gold standard NCAA ranking model, which currently

outperforms all other rankings and Las Vegas betting lines using only basic

input data (Kvam and Sokol, 2006). The model, developed in 2005, uses a

combined logistic regression/Markov chain (LRMC) to predict tournament

games by ranking teams and estimating win probabilities, with logistic regression

used to populate transition probabilities of the Markov chain. The LRMC
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model was tested both as a standalone predictor as well as the source of a

probability estimate for an existing dynamic programming model developed

by Kaplan and Garstka (2001). Results showed that LRMC was better at

predicting tournament winners than any other rankings and is significantly

better at game-by-game predictions for all compared rankings except for the

game-by-game Las Vegas odds. However, the Las Vegas odds use additional

information that is not included in the LRMC or other rankings. In addition,

in 4 of 5 test seasons, the LRMC model had the Final Four teams ranked

collectively higher than any of the other rankings systems. The logistic regression

described earlier also led to contradiction to conventional wisdom that good

teams are more likely to win close games. Instead, it was found that teams

that won a close home game were equally as likely to win the road game

as teams that lost a close home game (between 33 to 36% road win rates).

Overall, the LRMC model using only basic inputs predicts individual game

outcomes better than standard rankings systems, is better at predicting Final

Four teams, and is better than the selection committee’s seedings. Instead of

treating the outcome of games as binary win/lose events, LRMC estimates

the probability that the winning team is better than the losing team based on

game location and the margin of victory, so it is better at accurately predicting

the outcome of close games. Brown et al. (2012) improved on the original

LRMC model by finding that LRMC can be improved using an empirical

Bayes model instead of the Logistic Regression. LRMC and over 100 other

rankings were compared on a game-by-game basis; the Bayesian LRMC and

classic LRMC scored better than all other systems. The Kvam and Sokol

framework for NCAA tournament prediction provides a baseline for state-of-art

tournament prediction models.

Considering the complexity of tournament prediction, concerns have been

raised as to whether improved model development frameworks can be provided

for these models. According to Yuan et al. (2015), modeling the wins as well
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as the losses may attract endless statistical problems, and describe difficulties

with forecasting games, including lack of historical data to train models,

overfitting of models using post-tournament historical data, and high error

on predictions due to highly variable team performance based on potentially

unobservable factors. The authors tested over 30 models and found the most

successful models incorporated regularization and did not suffer from data

“contamination”, i.e. archival data for a given season which incorporated

the results of the final tournament for that year. Many publicly available

datasets contain contaminated data and their use can result in overfit models.

Popular aggregate statistics, including Pomeroy Ratings and Moore Power

Rankings, are made of post-tournament rankings and are, therefore, a source

of potential contamination. The authors of this paper made use of pre-tournament

iterations of these datasets to avoid contamination, as well as study the magnitude

and effects of contamination. Features were standardized by season before

training the models, with the difference in competing teams’ metrics used as

model predictors, although no other normalization methods or their effects

were considered in this research. They also found, through literature review

and their own experimentation with a large set of features and predictive

models, that parsimonious feature sets and simple algorithms tend to outperform

complicated models with many features, as seen in Figure 2.19.

Most of the ensembles did not outperform the individual models, possibly

due to overfitting or uncontrolled data contamination. The best performing

models in this paper did not outperform a baseline 0.5 prediction. It was

anecdotally suggested that predicting tournament games using regular season

games would result in poor performance since these are two very different

types of predictions. In addition, it is possible that since the available NCAA

tournament data is relatively limited, it is not well suited to some more

advanced algorithms such as random forests and neural networks. These

limitations, in addition to the common forecasting difficulties the authors
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FIGURE 2.19: 2014 NCAA tournament log losses for logistic
regression models (A, B, C), stochastic gradient boosted tree
model (D), neural network (E), various stacked algorithms, and
two naive benchmarks. The average Kaggle log loss score was

0.58. (Yuan et al., 2015)

previously described, could be addressed at various stages of the proposed

unified model development framework.

Some researchers have proposed model frameworks for NCAA tournament

prediction that have successfully implemented more complex models. Hao

et. al. (2018) presented a framework for predicting bracket-based competitions

using Recurrent Neural Networks (RNN) and combing with other models

using combinatorial fusion, and describe three preprocess steps for feature

selection including dataset transformation, merging highly correlated features,

and selection and ordering of relevant features (see Figure 2.20). The differences

in selected features between two teams are used in a recurrent neural network

(RNN) model to predict winning probabilities of each game. This model

was then compared to four classic models, with log loss results shown in

Figure 2.21. Combining RNN with the 4 classic models using combinatorial

fusion increased prediction accuracy from 70 to 75% but this provided no
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performance improvement compared to the model we used in the 2019 tournament,

which relied on the readily available Kaggle.com data and standard gradient

boosting regression available in the Python scikit-learn package. While this

study does suggest an important modeling framework to use for NCAA

bracket prediction, it does so without truly quantifying some of the results

of the use of such a framework. In fact, even though RNN has the best

performance in the first phase, it only makes it into 2 of the 3 best combined

models in the second phase, suggesting that combination of diverse models

is more important than combination of best models but further quantification

of this effect is required to confirm this suggestion.

FIGURE 2.20: Game prediction framework as described in Hao
et. al. (2018)

FIGURE 2.21: Log loss of five models in ten-fold cross
validation (Hao, Kristal, and Hsu, 2018)
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2.4.2 Normalization in Genetics

RNA-seq is a widely used method for studying the behavior of genes under

different biological conditions. It is necessary to normalize data in an RNA-seq

study to adjust data for factors that can prevent direct comparison between

gene expression measures. Evans, Hardin, and Stoebel (Evans et al., 2017)

presented a study on a sample of RNA-Seq normalization methods based on

significant assumptions. RNA-seq normalization methods have been developed

that address various experimental and gene expression assumptions. In this

context, the raw data is adjusted to account for relevant factors said to prevent

or impede direct comparison of the expression measures. It is worth noting

that differences in gene expression identified in the course of normalization

that may not be biologic in nature carry with them a significant impact on

the downstream analysis, as seen in the inflated false positives across the

differential expression analysis. For example, experimental variability such

as variability in the total number of molecules sequenced can lead to different

total read counts in different samples, i.e. differences in sequencing depth.

When one sample has more reads than another, non-differentially expressed

genes will tend to have higher read counts in that sample, requiring a correction.

Normalization is required so that differences in normalized read count represent

differences in true expression. In this research ‘expression’ and ‘differential

expression (DE)’ refer to the absolute quantities of mRNA/cell, therefore the

relationship between the normalized read counts must be known and correct.

A gene is said to be differentially expressed (DE) if it produces different

levels of mRNA/cell under different biological conditions. Previous studies

(Bullard, Purdom, Hansen, and Dudoit, 2010) found that normalization procedure

in DE had a larger impact on results than the choice of test statistic used in

hypothesis tests.

One group of normalization methods used in RNA-seq analysis is normalization
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by testing or distribution. Assumptions noted in these methods are that

non-DE genes and the DE genes almost behave the same way, which implies

that the technical effects are the same in the two cases. Another assumption is

that of balanced expression, where normalization is said to tolerate significant

differences in either up or down-regulated genes associated with higher proportions

of DE. In fact, previous research by Robinson et. al. (Robinson and Oshlack,

2010) illustrated the importance of this last assumption. When first introduced,

RNA-seq methods relied on normalizing by library size. However, this method

is too limited for many biological applications, especially where a large number

of genes are highly expressed in one experimental condition, resulting in

differential expression analysis to be skewed towards one condition. The

method presented by Robinson and Oshlack, 2010 “uses raw data to estimate

appropriate scaling factors that can be used in downstream statistical analysis,

i.e. a data-driven approach. A successful normalization method ensures that

a gene with the same expression level in two samples will not be detected

as DE." The authors used an empirical strategy to compare the expression

levels of genes between samples under the assumption that the majority of

them are not DE. This study illustrated the importance of normalization for

RNA-seq data (even though RNA-seq was said to not require normalization

to the same degree as older microarray technology), in “situations where the

underlying distribution of expressed transcripts between samples is markedly

different.” The final group of normalization assumptions addressed by Evans

et al. (2017) include normalization by controls, in which controls are defined

when there is a violation of the assumptions in the previously mentioned

methods. Assumptions required for this method include the existence of

controls (for negative controls they are non-DE under the experimental conditions)

and that the controls behave like non-control genes (technical effects are the

same for controls and non-control genes so that controls can be used for

normalization).
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As discussed above, Evans et al. (2017) postulated that normalization

choices based off of correct assumptions allow normalization to translate

raw read counts into meaningful measure of expression (correct amount of

fold-change relative between samples and conditions). The correct normalization

method to use depends on valid experimental assumptions and incorrect

normalization can lead to downstream analysis errors, including inflated

false positives and untrustworthy results. While no normalization method is

perfect, understanding the assumptions can lead towards the most suitable

method for the given experimental conditions. Zyprych-Walczak et al. (2015)

established that the final choice of the normalization approach would directly

affect or influence the outcome of the DE analysis and that sensitivity is likely

to vary between the test statistics but become more pronounced across the

normalization procedures. In an effort to prove that normalization carries a

significant impact on DE analysis, the researchers conducted an investigation

that involved five normalization methods that are commonly applicable to

RNA-seq data, and compared results on the analysis of three real RNA-seq

data sets, two of which come from publicly available resources (Asmann et

al., 2012, Cheung et al., 2010). The datasets vary with sample sizes, gene

numbers, and gene expression levels. The authors evaluated normalization

methods by first applying the bias and variance criterion proposed by Argyropoulos

et al. (2006), adjusted to be suitable for RNA-seq data, with the bias reducing

to the root mean square error (RMSE). The ratios of the mean bias and variance

values for each method are computed for all control genes, and the preferred

method is the one associated with smallest bias and variance (Figure 2.22).

Classification errors were based on five classifiers: naïve Bayes, neural network,

k-nearest neighbor, support vector machines, and random forest, utilizing

leave one out cross validation (LOOCV). Their findings suggest that the choice

of the normalization process can impact expression results. A poorly selected

normalization method, or none at all, can lead to erroneous DE analysis.
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Therefore, it is important to note that more effort needs to be put in place

when conducting the pre-processing stage of analysis. The authors suggest a

universal work flow for the selection of the optimal normalization procedure

for any dataset including calculation of bias and variance for the control

genes, sensitivity and specificity of the methods, and classification errors as

well as diagnostic plots.

FIGURE 2.22: Root mean square error (RMSE) performance of
normalization algorithms. (Argyropoulos et al., 2006)

Research has also suggested the importance of normalization choices in

microRNA (miRNA) analysis. Profiling the miRNA levels in a given cell is

emerging as a dominant and widely used approach. However, there is no

agreed upon consensus as to the best normalization to use and the relative

performances of varying methodologies. Rai et. al. (2012) evaluated data

quality, data normalization, and statistical hypothesis procedures used in

miRNA samples of repeated subjects over time, suggesting that the intra-subject

correlation created due to repeated sampling of patients and other key features

of experimental design should to be incorporated into the analysis. In this

study, the researchers were interested in an “exploratory analysis of changes

in cardiac expression of miRNAs in patients with end-stage heart failure

(HF) undergoing placement of a left ventricular assist device (LVAD) and

subsequent heart transplantation.” In this case, the measure of expression

level is found using the Ct values, where “Ct value represents the cycle

number at which the fluorescent signal of the reported dye crosses a threshold

value.” There are two unique challenges with the studied data: 1) in order
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to maximize the number of unique miRNAs included in the experiment,

technical replicates were not included so normal data quality techniques could

not be considered. 2) repeated sampling of miRNAs from the same subjects

over time present a normalization challenge as “typical normalization techniques

are not designed to preserve naturally occurring correlation structure.” They

considered the delta-CT method, mean normalization, quantile normalization,

and rank invariant normalization and compared the various normalization

techniques, by calculating coefficient of variation (CV) for each miRNA over

all the plates. Delta-Ct and mean normalization shift the mean expression

value preserving the correlation structure. However, quantile normalization

changes the distribution of the Ct values creating a new correlation structure

while also reducing variance, shown in the improved results based on the

coefficient of variation compared to the other methods. The authors question

whether quantile normalization’s effect on the correlation structure should

be a concern specifically asking: what effect does it have on the generalized

estimating equation (GEE) model and resulting significantly expressed genes?

How does this effect compare to shift of center, invariant normalization procedures

that do not reduce the variation in the Ct values? If the effect matters, should

we just do the analysis on raw, unnormalized data? A more recent study by

Schwarzenbach et al.(2015) also discussed the need for an optimal normalization

strategy for miRNA analysis, pointing out that there is little to no consistency

among normalization strategies for selecting endogenous and/or exogenous

control reference genes. This has led to issues with “ambiguous data interpretation,

misleading conclusions, and erroneous biological predicted affects” that leads

to a lack of comparability and reproducibility between studies.
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Chapter 3

Loss Function Decomposition and

Model Characteristics

Before providing details as to the methods for building a quantitatively motivated

pre-processing framework for predictive models, it is first necessary to explore

the mathematical motivation behind such a framework. Here, we will explore

the mathematical decomposition of several loss functions used to measure

the effectiveness of predictive models (model error), as well as the characteristics

of several models under consideration in the framework. Decomposing the

loss functions into the pieces measuring bias, variance, and noise allows

specific measurement of the bias-variance tradeoff when selecting appropriate

pre-processing techniques and models for various statistical distributions

and predictive modeling problem spaces. By measuring the specifics of these

decompositions, we gain improved understanding and quantification of model

and data elements affecting potential predictive issues including overfitting

(high variance), underfitting (high bias), and, subsequently, model capacity.

An important goal in model development is to control overall model error by

minimizing bias and variance. In this context, we consider generalizations of

Mean Square Error (MSE) and 0-1 Loss in terms of prediction, highlighting

the relationships between machine learning bias and statistical bias and variance.
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3.1 Relationship between Machine Learning and

Statistical Measures of Error

According to Dietterich and Kong (1995) machine learning bias is a general

term used to choose one model hypothesis over another. In this case, machine

learning bias can be divided into two types: absolute bias and relative bias.

Machine learning algorithms that consider absolute bias are those where

"certain hypotheses are entirely eliminated from the hypothesis space", as

in linear discriminant models, and algorithms that consider relative bias are

those where "certain hypotheses are preferred over others", as in a decision

tree algorithm such as CART where small trees are considered before larger

ones (Dietterich and Kong, 1995). In this way, machine learning considers

some amount of bias necessary in order to generalize algorithms for prediction.

Without considering some absolute or relative machine learning bias, then

we must consider all possible functions as hypotheses, and these functions

then predict all possible outcomes equally, providing no useful information

for generalization or prediction (Dietterich and Kong, 1995). For machine

learning, the expectation of systematic error, bias, is due to the choice of

model. By extension, variance in this case is understood to be the random

error around the model approximations that are due to randomness in the

training samples.

Statistical bias is a more specific term used to measure the expected error

an algorithm or function will make when trained on samples of size m from

the same probability distribution D. Traditionally, bias and variance are measured

in terms of functions of estimators. That is, statistical bias and variance

measure properties of functions, g, that estimate some characteristic of a

population from a sample, S, of data drawn from this population. The estimator

in this case is then:

Θ̂S = g(S), S = (x1, ..., xm), (3.1)
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where xi is a random variable drawn from some probability distribution D

where xi ∼ D. Statistical bias is then a property of how good this estimator,

Θ̂S, is in estimating the real value of Θ. This is measured as the difference

between the expected value of an estimator drawn from a sample, S, of size

m, from distribution D and its true value in the population:

Bias(Θ̂S, Θ) = ES∼Dm [Θ̂S −Θ]. (3.2)

If the bias is less than zero we say the estimator is negatively biased, if the

bias if greater than zero then the estimator is positively biased, and if the bias

is zero the estimator is unbiased. Subsequently, the estimator variance is then

a property of the consistency of this estimator among samples:

Var(Θ̂S) = VarS∼Dm [Θ̂S]. (3.3)

More specifically, statistical variance is the difference between the expected

value of the squared estimator and the squared expectation of the estimator:

Var(Θ̂) = E[Θ̂2]− (E[Θ̂])2 (3.4)

which is equivalently, since expectations are linear functions and can be distributed:

Var(Θ̂) = E[(E[Θ̂]− Θ̂)2]. (3.5)

Mean squared error (MSE) of the estimator is then a combination of these

estimator properties as:

MSE = E[(Θ̂S −Θ)2] = Bias2(Θ̂S, Θ) + Var(Θ̂S) (3.6)

where expectations are taken with respect to the sample, S, and parameter Θ.
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Proof.

MSE = E[(Θ̂S −Θ)2]

= E[Θ̂2
S − 2Θ̂SΘ + Θ2]

= E[Θ̂2
S]− 2E[Θ̂S]Θ + Θ2

= E[Θ̂2
S]−E[Θ̂S]

2 + E[Θ̂S]
2 − 2E[Θ̂S]Θ + Θ2

= E[Θ̂2
S]−E[Θ̂S]

2 + (E[Θ̂S]−Θ)2

= Var(Θ̂S) + Bias2(Θ̂S, Θ) (3.7)

Where in statistics we use bias and variance to measure properties of

estimators that estimate a characteristic of a population, in machine learning

we’re interested in predicting values using samples of data. In supervised

machine learning, a model A is used to learn some target function f, where

f maps data X to some real number IR prediction. As with the parameter

estimation above, we’re interested in samples of size m coming from probability

distributions, D. In this case, D is the probability distribution over the input

space X such that a random sample from the input space, x ∈ X, is drawn

with probability D(x). Then the sample, S, of size m, drawn from D is:

S = (x, f (x) + ε)|x ∈ X (3.8)

where each random example, x, in the sample is labeled with the value of the

learned function f, plus some noise ε. So, for each sample, the model A will

output a hypothesis of the learned function f. For a given example within a

sample, x0, the predicted value of the function is f̂ (x0).

Since our goal in machine learning is to find an approximation of f (x)

since we cannot observe this value directly, we instead draw repeated samples,
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S1, ..., Sl, of size m, to arrive at this approximation by building an averaged

hypothesis with model A over f̂S1 , f̂S2 , ... f̂Sl , where f̂Sl is the model A learned

function f hypothesis in sample i. This averaged prediction is then:

f̂ (x) = lim
l→inf

1
l

l

∑
i=1

f̂Si(x) (3.9)

Since f̂ is the expected predicted value of f (x) over different samples of size

m, we can instead call this expected value as the average, µ(x), over different

possibilities of the training set, τ, and write the average prediction, over all

training sets as:

µ(x) = Eτ[ f̂τ(x)]. (3.10)

The bias of model A for sample size m at example point x is then the error in

this average prediction:

Bias(A, m, x) = f̂ (x)− f (x) (3.11)

which can be written alternatively as:

Bias(x) = Eτ[ f̂τ(x)− f (x)]

= µ(x)− f (x). (3.12)

Bias is capturing systematic error which comes from the choice of model A

learning f (x). Since we’re interested in the approximation of f̂ (x) over many

training sets, τ, we know this model won’t be an exact match to the true

population data distribution.

Variance in this case is similar to that from statistical parameter estimation

variance, and it measures the average distance between the real function and

the predicted function. Variance is random error that results from "variation

in the training sample, random noise (ε) in the training data, or from random
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behavior in the learning algorithm itself, such as the random initial weights

often used in backpropagation (Dietterich and Kong, 1995)." Specifically, variance

of algorithm A is the expected value of the squared difference between the

predicted function f̂S and the average predicted function f̂ over the sample

space S:

Var(A, m, x) = E[( f̂S − f̂ (x))2]. (3.13)

Since the expectation is taken with respect to all training samples S of size m

then we can also rewrite the variance as we did with the bias as:

Var(x) = Eτ[( f̂τ(x)− µ(x))2]. (3.14)

Since expectations are linear functions we can distribute the expectation and

write:

Var(x) = Eτ[ f̂τ(x)2]− µ(x)2. (3.15)

To illustrate the relationship of statistical bias and variance to machine learning,

let’s assume there’s an unknown function we’d like to approximate. We draw

several different training sets from an unknown distribution and define these

sets in terms of the unknown target function plus noise or irreducible error.

Figure 3.1 includes several linear regression models fit to different training

sets. The predicted linear regression functions do not fit well to the true

function except at two points. This illustrates a high bias model since the

difference between the predicted value and the true value, on average (the

expectation over the training sets, not the average of the examples within

each training set), is very large.

Now suppose instead we fit unpruned decision tree models to several

training sets. In Figure 3.2 we can see these predicted models fit the training

data very closely. In fact, the expectation over the training sets would result

in the the average prediction fitting the true function perfectly, since noise is
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FIGURE 3.1: Illustration of High Bias (Raschka, n.d.)

assumed to be unbiased with an expected value of 0. However, the variance

in this case is very high since, on average, the predictions differ greatly from

expected value of the true function.

FIGURE 3.2: Illustration of High Variance (Raschka, n.d.)

The figures illustrate what is commonly referred to as the "bias-variance

tradeoff," indicating that modifying some aspect of the learning algorithm

often has opposite effects on the bias and the variance; as one increases the

complexity of the algorithm (increasing the degrees of freedom - number of

parameters that need to be estimated), the bias decreases but the variance

increases. The goal is to optimize the learning algorithm in such a way
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that decreases expected loss by optimizing this trade-off between bias and

variance.

3.2 Generalization of MSE Decomposition for Prediction

Consider a regression problem with an observed outcome Y and set of predictors

X. We can define the relationship between X and Y as:

Y = f (X) + ε (3.16)

where f is the unknown model that maps the predictor X to the true outcome

f (X), and ε is an error term for observation noise. Since f and ε are unknown,

we use sets of training data, τ, to estimate the function and predict the outcome

as f̂τ(X). We can then use the squared-error loss to predict the error based

on a test set, with the goal to minimize the following:

MSE = EX,Y ∼ D, τ ∼ Dm, ε ∼ E[(Y− f̂τ(X))2] (3.17)

where (X,Y) is the unobserved data following distribution D, τ is the data sets

of size m used to train the predictor which also follow distribution D, and ε

is the observation noise which follows some distribution E. It is important to

note that the unobserved (testing) data comes from the same distribution as

the training data τ. The squared-error can be rewritten as:

E[(Y− f̂ (X))2] = E[ f (X) + ε− f̂τ(X))2] (3.18)

In this case, squared error acts as a risk function rather than a loss function.

Specifically, Loss(L) is a measure of how well a model using f̂ (X) approximates

the true value of f (X) using the training data. However, our goal is to fit

models that generalize well to unseen data, and not just to the training data
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(which can lead to overfitting). In this case, we’re interested in the average

measure of loss (expected loss) across the whole data distribution, which we

approximate using repeated samples of training data and predicting on a

test dataset. Loss defined in this way using the above equation is specifically

known as a risk function. Since we are approximating the true data distribution

using repeated samples of training data, minimizing the loss function and

minimizing risk are approximately the same. For the rest of the discussion

on bias-variance decomposition, loss functions will be used to describe the

decompositions, except when we specifically refer to expected values using

repeated samples of training data and applied to test data, in which case

risk function terminology will be used. Before performing the bias-variance

decomposition we must first understand several factors. First, the decomposition

is performed in reference to the test set so X and ε are those values from the

test set. Also, the observed value of Y is dependent on both X and ε, whereas

the predicted outcome, f̂τ(X) is dependent on the training set τ used for

the estimation as well as X. We are also assuming during this process that ε

has a mean of zero. Finally, we will use the following identities of variance,

covariance, and expectations to complete the decomposition:

Var(X) = E[X2]−E2[X]

E[XY] = E[X]E[Y] + Cov(X, Y)

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

Var(X−Y) = Var(X) + Var(Y)− 2Cov(X, Y)

Cov(X, Y) = 0 if X and Y are independent (3.19)

The squared-error can now be written as:

Eτ[EX,ε[(Y− f̂τ(X))2]] = Eτ[EX,ε[( f (X) + ε− f̂τ(X))2]] (3.20)
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Since X and ε are independent we can expand the expression to be:

Eτ[EX,ε[(Y− f̂τ(X))2]] = EX[Eτ[Eε[( f (X) + ε− f̂τ(X))2]] (3.21)

The inner-most expectation, assuming ε has a mean of zero, is:

Eε[(Y− f̂τ(X))2] = Eε[( f (X) + ε− f̂τ(X))2]

= Eε[( f (X)− f̂τ(X))2 + ε2 + 2ε( f (X)− f̂τ(X))]

= ( f (X)− f̂τ(X))2 + Eε[ε
2] + 2( f (X)− f̂τ(X))Eε[ε]

= ( f (X)− f̂τ(X))2 + (Eε[ε
2]−Eε[ε]

2) + Eε[ε]
2

+ 2( f (X)− f̂τ(X))Eε[ε]

= ( f (X)− f̂τ(X))2 + Varε[ε] + 0 + 0

= ( f (X)− f̂τ(X))2 + Varε[ε] (3.22)

The second inner-most expectation is:

Eτ[Eε[(Y− f̂τ(X))2]] = Eτ[( f (X)− f̂τ(X))2 + Varε[ε]]

= Eτ[( f (X)− f̂τ(X))2] + Varε[ε]

= Eτ[ f (X)2 + f̂τ(X)2 − 2 f (X) f̂τ(X)] + Varε[ε]

= f (X)2 + Eτ[ f̂τ(X)2]− 2 f (X)Eτ[ f̂τ(X)] + Varε[ε]

= f (X)2 + Eτ[ f̂τ(X)2]− 2 f (X)Eτ[ f̂τ(X)] + Varε[ε]

+ Eτ[ f̂τ(X)]2 −Eτ[ f̂τ(X)]2

= ( f (X)2 + Eτ[ f̂τ(X)]2 − 2 f (X)Eτ[ f̂τ(X)]) + (Eτ[ f̂τ(X)2]

−Eτ[ f̂τ(X)]2) + Varε[ε]

= ( f (X)−Eτ[ f̂τ(X)])2 + Varτ[ f̂τ(X)] + Varε[ε]

(3.23)
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Then finally we can solve the outer-most expectation and get:

EX[Eτ[Eε[(Y− f̂τ(X))2]]] = EX[( f (X)−Eτ[ f̂τ(X)])2 + Varτ[ f̂τ(X)] + Varε[ε]]

= EX[( f (X)−Eτ[ f̂τ(X)])2] + EX[Varτ[ f̂τ(X)]] + Varε[ε]

(3.24)

In this way we can see that the squared-error risk function for prediction

decomposes into Varε[ε], the irreducible error/random observation noise,

and the reducible error caused by the algorithm. The reducible error can be

broken into EX[( f (X)−Eτ[ f̂τ(X)])2], the average bias, and EX[Varτ[ f̂τ(X)]],

the average variance. Bias for a prediction problem is the amount by which

our estimated function f̂τ(X) differs from the true value f (X) and is caused

by choice of model, e.g. approximating a very complicated relationship with

too simple of a model. Variance for a prediction problem, on the other hand,

is the amount an estimate of the function f̂τ(X) differs from the average value

of the function over all test sets. Once again, we can see that to minimize

the test error we need to select a model with both low bias and variance.

However, we often have to balance the trade-off of selecting a more complex

model, resulting in low bias but higher variance (Zeng, 2018). For example,

high capacity models such as neural networks have low bias since they approximate

the real model function very well, but they have high variance since it is more

difficult to generalize a model from training data to new test data. Lower

capacity models such as regression have high bias but low variance.

3.2.1 Loss Function Decomposition for Classification

The decomposition for prediction provided in the previous section has been a

generalized decomposition for regression models. For classification problems,

a quadratic loss function is often inappropriate since the class labels are not

numeric. From the computer science/machine learning perspective, many
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instead use misclassification rate or, equivalently, 0-1 loss (Kohavi, Wolpert,

et al., 1996). To extend this idea to classification tasks we must assume that

f is now a function that maps input data X to a finite set of class labels

c1, c2, ...ck and that, once again, given a sample S of size m, model A will

output prediction function A(S) = f̂S(X). For a classification problem, we

then want to know the probability that f̂S misclassifies a test point x as p̂S(x)

with:

p̂S(x) =


1 i f f̂S(x) 6= f (x)

0 i f f̂S(x) = f (x)
(3.25)

Since we don’t know the true value of f (x), we estimate the value by applying

the model over a set (τ) of training samples S1, ...Sl each of size m with

predicted functions f̂S1 , f̂S2 , ..., f̂Sl . Then the average probability of misclassification

over the training set becomes:

¯̂p(A, m, x) = lim
l→inf

1
l

l

∑
i=1

p̂Si(x) (3.26)

Generally, ¯̂p(A, m, x) is the probability that a predicted function from model

A from a training set of size m will misclassify test point x. If a point x has

¯̂p(A, m, x) > 0.5 then, on average, f̂S will misclassify the test point. This is

a systematic error and leads to our understanding of bias for a classification

problem to be:

Bias(A, m, x) =


0 i f ¯̂p(A, m, x) ≤ 0.5

1 i f ¯̂p(A, m, x) > 0.5
(3.27)
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Variance of model A at point x is then the difference between the average

probability of error and the bias:

Variance(A, m, x) =


¯̂p(x) i f ¯̂p(x) ≤ 0.5

¯̂p(x)− 1 i f ¯̂p(x) > 0.5
(3.28)

3.2.2 0-1 Loss Decomposition for Classification

The previous section describes a generalized 0-1 loss function for classification

in relation to the squared-error bias-variance decomposition as described by

Dietterich and Kong (1995). However, it suffers from some shortcomings,

including potentially negative variance, and it doesn’t relate well to the MSE

decomposition which is a strictly additive decomposition. An updated decomposition

has been provided by Domingos (2000) and provides an improved bias-variance

decomposition of the 0-1 loss that is directly related to the standard squared

error loss decomposition. The refined definitions of bias and variance, applicable

to any loss function, and a resulting decomposition for 0-1 loss, includes

weighted factors on bias and variance. These factors resolve to an additive

effect of variance in unbiased examples and a subtractive effect in biased

ones. Table 3.1 below provides a summary of the relationship of relevant

terms between MSE and 0-1 loss.

Squared Loss 0-1 Loss

Single loss (y− ŷ)2 L(y, ŷ)
Expected loss E[(y− ŷ)2] E[L(y, ŷ)]
Main prediction E[ŷ] mean (average) mode
Bias2 (y−E[ŷ])2 L(y, E[ŷ])
Variance E[(E[ŷ]− ŷ)2] E[L(ŷ, E[ŷ])]

TABLE 3.1: Relationships between relevant terms of loss
functions (Raschka, n.d.)

One of the main differences between squared error loss and 0-1 loss is that

the main prediction for MSE is the expected average of all predictions over
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the training sets, Eτ[ŷ], and for 0-1 loss it is simply the mode, i.e. if the model

predicts a label more than 50% of the time on average over all training sets,

then the prediction will be 1, otherwise it will be 0. In this case, if the 0-1 loss

is defined by a prediction ŷ using the mode, then if the prediction does not

agree with the true value of y the bias will be 1, and 0 otherwise.

Bias =


1 i f y 6= E[ŷ],

0 otherwise.
(3.29)

By extension, the variance is the probability that the predicted value ŷ does

not match the expected value of the prediction calculated over the training

set τ:

Variance = P(ŷ 6= E[ŷ]). (3.30)

If we assume that ε has a mean of zero, and assume that loss = bias + variance,

then we can show what happens to 0-1 loss if bias is 0:

Loss = 0 + Variance => Loss = P(ŷ 6= y) => Variance = P(ŷ 6= E[ŷ]).

(3.31)

Considering that a model with 0 bias is likely to suffer from overfitting, it

makes sense that 0-1 loss with no bias is completely defined by its variance.

A less intuitive scenario is when bias is equal to 1, the average prediction on

the test set is always wrong. We can rewrite the 0-1 loss as:

Loss = P(ŷ 6= y) = 1− P(ŷ = y). (3.32)

If we know bias is 1 then y 6= E[ŷ], and y = ŷ, so ŷ 6= E[ŷ] and:

Loss = P(ŷ 6= y) = 1− P(ŷ = y) = 1− P(ŷ 6= E[ŷ]). (3.33)
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Therefore, when the bias is equal to 1, the loss is defined as loss = bias −

variance or loss = 1− variance. This leads to the situation where, when the

average prediction on the test set is always wrong (bias = 1), increasing the

variance can actually decrease the loss. Both Dietterich and Kong (1995) and

Domingos (2000) explain the intuition behind this by pointing out that in

models with very high bias, increasing the variance can move the decision

boundary, resulting in some correct prediction simply by chance.

3.3 Pre-Processing Effects on Loss Function Decomposition

At this point in our consideration of loss function decomposition it is valuable

to consider the expected effects of certain pre-processing choices, specifically

data normalization procedures, on the overall loss and the decomposed bias-variance.

While certain choices may not effect the overall loss, it is still possible to

find granular effects on the bias variance. This is important to understand

particularly in situations where an algorithm choice has a known effect on

bias and/or variance (e.g. a nearest neighbor model resulting in low bias

but high variance) and a normalization procedure can provide quantifiable

improvements to these expected effects (e.g. a normalization technique that

has little or no effect on bias but improves variance). Since we are considering

both the traditional statistical loss function of MSE as well as the common ML

loss function of misclassification (0-1 loss), then we will consider the effects

of normalization on both loss functions. In addition, we will consider the

effects of data invariant as well as data variant normalization techniques. For

example, techniques such as z-score standardization (transforms data to have

a mean of zero and a standard deviation of 1) and feature scaling (rescaling

data to have values between 0 and 1) change the spread and position of data

points (all by consistent factors) but do not change the distribution shape

of the data. While these simple normalization techniques should not affect
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the overall loss, they can affect the more granular results of the bias-variance

decomposition. However, for techniques such as quantile normalization and

upper quartile normalization, both commonly used in genetic differential

expression analysis, the measures of spread, position, and shape are all affected.

3.4 Quantifying Bias-Variance Tradeoff

We can measure the effects of various pre-processing methods on the bias-variance

decomposition of the loss functions by directly simulating the two definitions

of the decomposition under varying conditions. We can use information

found from these simulations to propose decision points in a pre-processing

framework for the predictive models of interest. Since "an important goal

in algorithm design is to minimize statistical bias and variance and thereby

minimize error (Dietterich and Kong, 1995)," we can use our findings to

propose pre-processing and algorithm design choices that best minimize common

design effects on bias and variance. For example, "any change that increases

the representational power of an algorithm can reduce its statistical (and

ML) bias. Any change that expands the set of available alternatives for an

algorithm or makes them depend on a smaller fraction of the training data

can increase the variance of the algorithm (Dietterich and Kong, 1995)." The

result of such a study is to formulate a theory of bias and variance reduction

and predict when either or both will succeed in practice.

3.5 Model Characteristics

In order to test the effects of various pre-processing methods on select data

structures, the data structures and normalizations are considered under a

selection of commonly used modeling techniques. The selected models discussed

below represent a range of simple to complex, parametric and non-parametric,
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global and local, stochastic methods. Each method has characteristics that

may require normalization for optimal results or lead to unintended effects

if incorrect normalization is used. The selected models and their effects are

discussed below.

3.5.1 Generalized Linear Models

Historically, Generalized Linear Models (GLM) are an extension of simple

linear regression models with continuous targets and continuous and/or

categorical features. The form of such a model is expressed as

yi ∼ N(xT
i β, σ2), (3.34)

where xi is the data in feature i, and β are the coefficent parameters to be

estimated as part of the linear function. In simple linear regression the assumption

is that y is normally distributed, and the errors are normally distributed

as ei ∼ N(0, σ2) and independent, the data is fixed, and there is constant

variance σ2. The GLM extends this simple linear model concept by assuming

the target variable, yi, follows a distribution within the exponential family

(i.e. normal, binomial, poisson, etc.) with mean µi. The target then follows

some linear or nonlinear function of xT
i β, the linear combination of data and

estimated coefficient parameters (Agresti, 2003). A summary of common

GLMs is found in Table 3.2.



74 Chapter 3. Loss Function Decomposition and Model Characteristics

Model Random Link Systematic
Linear Regression Normal Identity Continuous
ANOVA Normal Identity Categorical
ANCOVA Normal Identity Mixed
Logistic Regression Binomial Logit Mixed
Loglinear Poisson Log Categorical
Poisson Regression Poisson Log Mixed
Multinomial response Multinomial Generalized Logit Mixed

TABLE 3.2: Summary of common Generalized Linear Models
from Agresti

Generalized Linear Models are comprised of three main components: Random,

Systematic, and Link Function. The random component refers to the distribution

of the target variable (Y), e.g. normal distribution in linear regression, or

binomial distribution in logistic regression. The systematic component specifies

the explanatory features (X1, X2, ...Xk) and their linear combination. The Link

Function specifies the link between the random distribution of the target

variable and the systematic features. Assumptions of GLMs include:

• Data are independently distributed

• Errors are independent, but do not need to be normally distributed (i.e.

Logistic Regression)

• Dependent variable does not need to be normally distributed (expect in

linear regression) but are distributed within the exponential family

• Assumes a linear relationship between the link function transformed

target and the explanatory features

• Uses Maximum Likelihood Estimation (MLE) to estimate the parameters,

so it relies on large sample properties and regularity conditions (1st and

2nd derivatives must exist)

GLMs use Maximum Likelihood Estimation (MLE) to estimate the model

parameters. In each of the distributions considered above (i.e. Linear, Logistic,
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Poisson, etc.), the distribution depends on one or more unknown parameters,

θ. The value of these parameters, θ, is estimated using observed data x. The

function of θ that results from plugging in observed data x is known as the

Likelihood Function:

L(θ; x) =
n

∏
i=1

f (Xi; θ) (3.35)

This function is the product of the values of the parameters, given each sample

of data, and is denoted simply as L(θ). The log-likelihood is often used for

computational convenience. The goal in GLMs is to maximize the likelihood

of a parameter estimate given the observed data. The value of θ that maximizes

this function is known as θ̂, the maximum-likelihood estimate (MLE). The

maximum of the function is found by taking the derivatives with respect to

the parameter(s) θ.

In this work, three generalized linear models are considered for three

distinct target data types: linear regression, logistic regression, and Poisson

regression.

Linear Regression

Linear regression is used for data with a continuous target which is a linear

combination of the explanatory features, as in

Yi = β0 + βxi + εi (3.36)

where index i represents each data point. This models the mean expected

value of Y. The random component of linear regression, Y, has a normal

distribution and normally distributed errors, ei ∼ N(0, σ2). The systematic

component, the explanatory features X, can be continuous, categorical, or

a combination of both, and is linear in the parameters β0 + βi. In multiple

linear regression with multiple explanatory features, there is still a linear

combination of the features in terms of their coefficient parameters β’s but
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the features themselves can have transformations, i.e. X2 or log(X). The link

function is the identity link, η = E(Yi) since linear regression is modeling the

mean response directly.

Logistic Regression

When there is a binary target ( i.e. 0 and 1) binary logistic regression models

the log odds of probability of "success" (target = 1). The random component,

Y, has a binomial distribution, Binomial(n, π), where π is the probability

of success. The systematic component, X, can be continuous, categorical,

or a combination of both, and is also linear in the parameters as in linear

regression. However, in this case, the link function is the Logit link, η =

logit(π) = log( π
1−π ). Specifically, the logit link models the log odds of the

mean response, π.

Poisson Regression

When the target of interest is an expected count (i.e. counts of disease, number

of homes sold in a day, etc.), we extend the generalized linear model to use

a log-linear or Poisson regression model. This models the expected count

as a function of the explanatory predictors, X = (X1, X2, ...Xk), where the

predictors can be continuous, categorical, or a combination of both. When

all the predictors are categorical this is known as a log-linear model. The

random component of the Poisson model is the response Y with Poisson

distribution, yi ∼ Poisson(µi) for i = 1, ..., N where expected count of yi

is E(Y) = µ. The systematic component is, as in the other GLM models, the

linear combination of explanatory features X. Finally, the link function for

the Poisson regression model is the natural log link, log(µ) = β0 + β1x1.

Advantages of GLM

• Do not need to transform target variable to have normal distribution
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• Models fit using MLE which provides statistically optimal properties of

the estimators

• Model can be easily explained and parameters can be interpreted in the

context of the prediction problem

• Easily implemented in most software

Disadvantages of GLM

• Still has to be a linear function of the parameters; the link function

serves only to connect the nonlinear target distribution to a linear function

• Target responses must be independent

3.5.2 Decision Tree

A decision tree is a non-parametric classification technique that learns decision

rules from features, using locally optimized, recursive partitioning. The algorithm

assigns each sample in a dataset into a predicted class based on each samples’

feature attributes. The algorithm uses information gain (3.37) to find the best

features for classifying the data, where p and n are the proportion of 0 and

1 values of a binary outcomes for the i-th target class. Then, for each value

defined for the decision values of the best feature (the feature and splitting

value that best splits the predicted 0 and 1 outcomes), the algorithm repeats

the process with additional, next-best predictive features. This process continues

until the leaves of the tree are pure (samples at each node belong to the same

class) or a pre-defined stopping criteria is reached (Owen, Ryza, Laserson,

and Wills, 2015). In this way, decision tree is also a feature importance algorithm,

where the data will be split on the most important, predictive features first.

G(A) = I(p, n)−
v

∑
i=1

pi + ni

p + n
I(pi, ni) (3.37)
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where

I(p, n) = − p
p + n

log2
p

p + n
− n

p + n
log2

n
p + n

Advantages

• Since the decision tree algorithm is based on ordering and splitting the

values within each feature, rather than a scale-dependent maximum

likelihood optimization, scaling and normalizing features is not required

• Robust to missing data

• This model provides visual splits of the data and ordered feature importance

that is easy to understand and interpret

• Implicit variable screening and selection – the top nodes of the tree are

the most important variables in the dataset

• Non-parametric model does not assume linearity or any other distribution

of the data. Model is built only based on observed data

Disadvantages

• Since this is a locally optimized, greedy algorithm, it is not guaranteed

that a global optimum will be reached

• Decision tree is very sensitive to changes in data. Small changes in data

(i.e. adding samples) can lead to large structural changes in the tree, i.e.

high variance

• This is a more complex model and often requires more training time

• Without regularization (early stopping, pruning, max nodes, etc.), there

is high risk of overfitting
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3.5.3 Random Forest

Random forest is a method that uses ensemble learning to address some of

the disadvantages of the decision tree model. Ensemble learning combines

results from multiple models to make more accurate predictions than any

one single model, by reducing variance. Random forest uses an ensemble

learning technique known as bootstrap aggregation, aka bagging. Bagging

uses random sampling with replacement to build individual models on subsets

of the available data and then aggregate the results into one prediction. The

repeated sampling leads to an algorithm that is known to reduce variance, as

in one of the main disadvantages of the decision tree model. Random forest

combines many decision trees into one model by running the individual

decision tree models in parallel and then outputting the prediction that is

the mode of target classes for a classification problem or the mean prediction

for a regression problem (Chakure, 2020). The structure of a random forest

model is shown in Figure 3.3.

FIGURE 3.3: Random Forest Structure (Chakure, 2020)

Advantages

• Much like decision tree, gives estimates of most important features
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• Known for high accuracy, low bias

• Decreased variance in comparison to decision tree

• Can handle large datasets with high dimensionality

• Since it identifies most important features, can be used as a feature

reduction method

• Robust to missing data

• Use of bootstrap sampling allows for successful application when data

is limited

Disadvantages

• When classifying categorical data, biased in favor of features with more

levels

• Will overfit data if regularization not used, such as limiting number of

features that can be split at each node

• More difficult to interpret than single decision tree model

3.5.4 Support Vector Machines (SVM)

SVM with Gaussian kernel is a parametric model that represents instances of

data as points in space and then builds a model to assign new instances to

one category or another. Each data point is represented as a n-dimensional

vector, then SVM constructs an n-1-dimensional separating hyperplane to

discriminate 2 classes, with maximized distance between the hyperplane and

data points on each side. SVM aims to find the best hyperplane for separation

of both classes (Rudd, 2018). Data are represented as:

( #»x i, yi), ..., ( #»x n, yn) (3.38)
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where yi is either 1 or -1, indicating to which class xi belongs. Each xi is

p-dimensional vector representing all of the characteristic values (features)

of xi. The hyperplane that best separates the group of xi vectors where yi = 1

from the group of vectors where yi = −1 is:

#»w · #»x − b = 0 (3.39)

Where #»w is the normal vector to the hyperplane and b is the offset of the

hyperplane from the origin. If the data points are linearly separable, the hard

margin can be represented as

#»w · #»x − b = 1 (3.40)

and

#»w · #»x − b = −1 (3.41)

Figure 3.4 shows a maximum margin separation for linearly separable data.

The samples that fall on the margin are known as the support vectors.

FIGURE 3.4: Maximum Margin Hyperplane (Kumari and
Chitra, 2013)

The SVM algorithm assumes that data is in a standard range (usually

between 0 to 1, or -1 to 1), so it is recommended to scale features before using

the algorithm. In fact, when using the Gaussian kernel, if data is normalized
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between 0 and 1, then the dot product between the feature vectors and the

separating hyperplane is the cosine similarity ( Forman, Scholz, and Rajaram,

2009).

Advantages

• If there is clear separation of the data classes, SVM works very well

• Effective in high-dimensional data, especially when the number of features

is similar or greater than the number of samples

• Since the samples that make up the support vectors are the only training

data used to define the model, SVM is memory efficient

Disadvantages

• Since this model has to calculate the distance between every training

point to create a separating hyperplane, it is computationally expensive

as the size of the data set increases

• Noisy data with overlapping target classes are difficult to separate; Kernel

functions can be added to transform the data into higher level feature

space for improved separation but this adds model complexity

• Does not directly provide parameter coefficients so it is difficult to interpret

3.5.5 Gradient Boosting

Gradient boosting is another form of ensemble learning, this time utilizing

a technique known as boosting. In a boosting algorithm, predictions are not

made in parallel as in the bagging method of random forest. In this case,

subsequent prediction models learn from the mistakes of previous models.

Observations have an unequal probability of appearing in the subsequent

models, with high error observations appearing in the most models. This

is contrary to the random forest model where observations are selected for
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each model via bootstrapping (random selection with replacement) and have

equal probability of appearing in each model. Visual comparison of single,

bagging, and boosting models is show in Figure 3.5.

FIGURE 3.5: Bagging (independent models) and Boosting
(sequential models) (Grover, 2019)

In gradient boosting, an ensemble of weak models, often decision trees,

are used to improve the model based off of hard to predict samples. The

algorithm leverages patterns in model residuals, such as those from using

MSE loss, to build subsequent models from the weak predictions. For example,

in a simple linear regression there is the assumption that the sum of the

residuals is 0, i.e. spread randomly with no pattern around zero. However,

assuming there is some pattern in the residuals for a base model, such as a

decision tree, gradient boosting builds sequential models off of these residual

patterns until there is no longer a pattern, i.e. average residual is zero or

constant. The sequential model predictions are then weighted into a combined

prediction. The intuitive idea behind gradient boosting is to combine several

weak models, with each additional weak model improving the MSE of the

overall model. Advantages of bagging and boosting ensemble techniques

are illustrated in Figure 3.6.

Advantages

• Focus on difficult to classify cases makes it robust to imbalanced datasets
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• MSE is commonly used loss function, but gradient boosting can be

optimized on many objective functions so it can be extended to many

different problem spaces

Disadvantages

• Requires more hyperparameter tuning, and training time to avoid overfitting

compared with random forest

• Sensitive to overfitting if data is noisy, i.e. many hard to classify cases

to use in the sequential models

• Longer training requirements due to sequential nature of algorithm (as

opposed to parallel model development in random forest)

FIGURE 3.6: Ensembling (Grover, 2019)

3.5.6 Neural Network

In this study, the effects of normalization on various data types are also tested

using a multi-layer perception (MLP), also known as the simple form of a

neural network. Neural networks are models that learn non-linear function

approximations by feeding a set of input features into an output. Although
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the input and output layers are similar to the linear approximations of generalized

linear models, neural networks differ in that there is one or more non-linear

hidden layers, as in Figure 3.7 with one hidden layer.

FIGURE 3.7: One hidden layer Neural Network

The first layer, the input layer, contains a set of neurons xi|x1, x2, ...xm

representing the m input features. The inputs are fed into the hidden layer

first with a weighted linear combination, similar to the linear combination

of features and βs in a GLM. The combined inputs are then transformed

by a non-linear activation, such as a tan function. From the last hidden

layer, the input layer then applies an activation function to transform the

values into outputs, such as the sigmoid function for a binary classification

problem. The weights within each layer of the neural network are learned

through a process of backpropagation and gradient descent. This process

uses derivatives with respect to each parameter to find the optimal value

of the selected loss function. Even though neural network uses non-linear

transformations in the hidden layers, the network still uses linear combinations

of the features and weights to learn the optimal parameters, as in the GLM,

linear-based methods.

Advantages

• Can learn complex, non-linear models
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• Works well with "big data"; feeding neural networks more data leads

to improved training and results

• Ability to detect all possible interactions between predictor variable

Disadvantages

• MLP with hidden layers have a non-convex loss function where there

exists more than one local minimum; different random weight initializations

can lead to different validation accuracy

• Sensitive to feature scaling, due to above disadvantage

• Requires a lot of tuning (number of hidden neurons, layers, iterations),

and regularization to prevent overfitting

• Requires a lot of data for best training and results

• Difficult, computationally expensive to train

• "Black box" algorithm is difficult or not possible to interpret

3.5.7 Model Summary

A global model is one in which there is a single predictive formula for the

entire data space. A linear transformation of data in a linear-based global

model (linear regression, logistic regression, Poisson regression, linear SVM)

will result in the model parameters (i.e. weights in a neural network, coefficients

in regression) adjusting to reach the optimal value of the loss function, such

as using the MLE in the GLM class of models. As a result, we expect that

choice of normalization method should not affect the loss function value as

long as the feature space is a convex function, but it can affect the values and

stability of the feature coefficients. In this case, even though normalization

may not affect the estimated total average error, it may have effects on the

estimated average bias and variance due to model instability.



3.5. Model Characteristics 87

For non-linear, locally recursive models such as decision tree, random

forest, and gradient boosting regression, it is also expected that within-feature

global normalization will have little effect on loss function value. These

tree-based models optimize by finding the best split-point within each individual

feature by the percentage of labels correctly classified using that feature.

Since these models are local, recursive models, as long as the ordering within

the features is preserved, normalization of the data should not affect the

loss function value. However, although we’re using a decision tree-based

learning model for the gradient boosting regression, this type of sequential

boosting model relies on minimizing the MSE for the global model through

subsequent predictions on the individual model residuals. Because of this, it

is suspected that the gradient boosting model will exhibit patterns in bias-variance

decomposition similar to the linear models. However, since we are using

the default hyperparameters in the gradient boosting model for consistent

simulation conditions, it is possible that the bias-variance decomposition

results will suffer from overfitting and have a longer training time.
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Chapter 4

Methods

4.1 Simulation Methods

In order to approximate the bias-variance decomposition we need to approximate

the expected value Eτ[ f̂τ(X) by simulating many variants of the training data

sets. We can do this via bootstrap sampling. We take a synthetic input dataset

D and create variants of D from D1, ..., DT of size n.

Algorithm 1 Bootstrap Sampling

for t = 1, . . . , T do
Dt = ∅
for i = 1, ..., n do

Pick (x, y) uniformly at random from D (i.e., with replacement) and
add it to Dt

end for
end for
Create B bootstrap variants of D
for each bootstrap dataset (b) do

Tb is the dataset and Ub are the “out of bag” examples
Train a hypothesis f̂b on Tb
Test f̂b on each x in Ub

end for

Now for each (x, y) example we have many predictions f̂1(x), f̂2(x), ..., f̂B(x)

and can estimate:

• variance: variance of f̂1(x), f̂2(x), ..., f̂n(x)

• bias: average( f̂1(x), f̂2(x), ..., f̂n(x))− y
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B = 1000 bootstrap replicate datasets with 70% training samples and 30%

out-of-bag testing samples were selected from simulated bivariate normal

data with n = 1000 samples. The simulated features have different means

and standard deviations, and an identity covariance matrix. The true target

value, Y, was created as a simple linear function of the simulated features

plus a random error term. In addition, datasets with binary (logistic) target

and continuous target were created for each simulated data distribution. Models

of varying complexity were applied using the training data and the bias-variance

decomposition of the MSE loss and 0-1 loss computed on the test set, with

average loss, bias, and variance calculated over all 1000 bootstrap replicates.

In this case, since this was an empirical study approximating model functions

by training on repeated bootstrap replicates and testing on the out-of-bag

samples, the expected values of the total loss are more specifically referred to

as empirical risk functions, i.e. MSE risk and 0-1 risk. Models tested included

logistic regression, decision tree, random forest, support vector machine (SMV),

gradient boosting regression, and neural network. This process was repeated

on the simulated data using several normalization techniques including z-score,

min-max, "maxAbs" (normalize between -1 and 1), quantile transformation

(within feature technique), and quantile normalization (between feature technique

commonly used in genetic data normalization). The former technique is a

generalization of a commonly used method for normalizing gene sequence

read lengths. Initial dataset simulations were completed in R and risk function

decompositions with bootstrapping completed in Python. This process was

then repeated on additional simulated datasets including rank-based data

(similar to sports statistics data), categorical data, mixed data, and Poisson

data. MSE and 0-1 risk decomposition were then performed on several benchmark

datasets to assess results on various data characteristics including sparse

data, wide data (more features than samples), and imbalanced data. These

benchmark datasets were from the UCI Machine Learning Library (Dua and
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Graff, 2017) and are listed in Table 4.1. Averaged risk function results from

simulations were then used to populate the decision points in the proposed

framework. Selected model/normalization pairings are determined by selecting

the best risk function value, i.e. best MSE and 0-1 risk. The results of bias-variance

decomposition are then used as a diagnostic illustration of where researchers

can expect to find improvements in their model results, i.e. does risk function

improvement result from improved bias, variance, or a combination of both.

Finally, the resulting model development framework was applied to several

applications, comparing to baseline results from these applications prior to

the development of the framework. Selected applications to test the framework

include the historical data from the NCAA Men’s Basketball Tournament

(historical data used due to cancellation of NCAA tournament in 2020; comparing

to model results from last years competition), and a credit risk model (Rudd

and Priestley, 2017). Application data sources and uses are found in Table

4.1.

Dataset Target Type A�ribute Type Dataset Characteris�cs # A�ributes  # Instances

Wine Quality Binary Numeric Imbalanced 10 4898

Breast Cancer Wisconsin Binary Numeric

features have very dissimilar ranges, with half of 

the features near unary at 0 30 569

Congressional Vo�ng Records  Binary Categorical Missing data 16 435

Abalone Binary Mixed Imbalanced 8 4177

Arrhythmia Binary Mixed

Imbalanced; small dataset; # features more than 

1/2 # of instances 279 452

Forest Fires Con�nuous Numeric No missings 13 517

Solar Flare Con�nuous Categorical

# of common solar flares within 24h; distribu�on of 

target is highly skewed towards 1 10 1066

Auto MPG Con�nuous Mixed No missings 8 398

Benchmark Datasets

TABLE 4.1: Benchmark Datasets and Charactertics

Applica�on Dataset(s)

NCAA tournament

Data from 1985 to present available 

on Kaggle.com; addi�onal metrics 

available for public use from sports 

sta�s�cs sites 

Credit Risk Model
Equifax data available from Binary 

Classifica�on Course 

Applica�on Datasets
Notes

2020 tournament canceled. Will test on 2018 tournament data 

instead

Previous results had logis�c regression performing slightly 

be�er than decision tree. Re-do analysis and select best data 

normaliza�on methods for logis�c and decision tree based on 

findings from proposed model development framework

FIGURE 4.1: Application Datasets
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Chapter 5

Experimental Results

This chapter is divided into three sections describing results from 1) bias-variance

decomposition simulation, 2) bias-variance decomposition on benchmark datasets,

and 3) application of findings from sections 1 and 2 to existing NCAA data

and credit risk data. The first section on simulation results is divided by

target data type (binary, continuous, Poisson), with details of results provided

by feature data structure and model. In this case, specific details of results

are provided for all models applied to bivariate normal data structure, with

additional summaries of results provided for the other considered data structures

(ranked, categorical, mixed data). Results across data structures and models

is relatively consistent so summaries were provided to avoid repetition. Complete

results of bias-variance decomposition under various data structures, normalization

strategies, and models are shown in Appendices A and B. Performance measures

for simulated model results are found in Table 5.1.

5.1 Simulation Results

5.1.1 Binary Target

Logistic Regression Results

Based on results from simulated bivariate normal data with a linearly dependent

binary target (Table A.1 and Figure B.1), the best performing normalization,
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quantile normalization, does not significantly improve empirical risk as compared

with the raw data when using logistic regression, with both methods resulting

in risk of 0.290. The within-feature normalization choices (z-standardization,

min-max, maxAbs, and quantile transformation) result in worse performance

in the logistic regression model due to increased average variance even though

bias is equal or improved from the raw and quantile normalized data (Figure

B.1a), with MSE and 0-1 risk ranging from 0.462 for z-standardization to

0.485 for maxAbs. Use of these methods results in variance to bias ratio

ranging from 1.06 for MSE risk under quantile transformation to 1.9 for MSE

risk under MaxAbs normalization. In addition, 0-1 risk estimates for the

within-feature normalization methods have increased noise due to the non-additive

nature of the 0-1 risk decomposition, whereas the MSE risk estimates average

zero additional noise.

Finally, use of the maxAbs normalization technique is the only time the

MSE decomposition has additional average noise (0.190), with bias (0.237)

plus variance (0.438) greater than the average total error (0.485). This effect is

seen in the decomposition results of all the simulated data and target types.

This is potentially due to the extreme value distribution problem, where the

extreme values in the original distributions result in maxAbs normalized

data squished around a small point. As a result, this normalization is not

recommended for data with large values or outliers.

Decision Tree Results

Using a decision tree model on the simulated bivariate normal data with

binary target results in increased risk function values across all normalizations

and raw data as compared with the logistic regression model, with risk ranging

from 0.393 using quantile normalization to 0.564 using any of the within-feature

normalization strategies (B.1b). The decision tree model results in increased

bias and variance across all normalizations in comparison with logistic regression.
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The within-feature normalization methods have the worst overall performance

for this model, particularly among 0-1 risk decomposition where the methods

result in more than doubling of the bias (0.71) as compared with the other

methods (0.35). The decision tree risk function values across all methods are

driven by high bias, as illustrated by variance to bias ratios ranging from

0.49 for 0-1 risk under both z-standardization and quantile transformation to

1.03 for MSE risk under maxAbs normalization. As in the logistic regression

model results, decision tree results illustrate the non-additive effect of 0-1

risk with increased noise (0.174 to 0.490), as well as the unstable MSE results

under the maxAbs normalization method.

Random Forest Results

Random forest model results on this data result in similar risk function behavior

as in the logistic regression model, with raw data and quantile normalization

both having best risk function value of 0.295 (B.1c). Both methods also result

in low variance between 0.009 for MSE risk and 0.011 for 0-1 risk, with variance

to bias ratio between 0.032 for MSE and 0.038 for 0-1 risk. The within-feature

normalization methods perform worse due to increased variance between

0.188 under MSE risk for z-standardization, min-max, and quantile transformation

to 0.252 under 0-1 risk for the same methods. Random forest model results

also illustrate the same non-additive behavior of the 0-1 risk decomposition,

as well as the unstable MSE results under the maxAbs normalization method.

Support Vector Machine (SVM) Results

Risk function results using a support vector machine (SVM) model with Gaussian

kernel, are normalization-agnostic, with raw and quantile normalized data

having risk of 0.292 and all other methods with risk of 0.290 (B.1d). The

results are consistent regardless of risk function or normalization method
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use, and do not exhibit the same irregularities in the 0-1 risk decomposition

or maxAbs methods found using the other models.

Gradient Boosting Results

Using a gradient boosting model on the simulated bivariate normal data with

binary target results in increased risk function values across all normalizations

and raw data as compared with the logistic regression, decision tree, and

SVM models, with risk ranging from 0.332 using raw data and quantile normalization

to 0.655 using any of the within-sample normalization strategies (B.1e). The

within-feature normalization methods have the worst overall performance

for this model with bias more than doubling as compared to the other methods.

The gradient boosting risk function values across all methods are driven by

high bias, as illustrated by variance to bias ratios ranging from 0.186 for 0-1

risk under z-standardization, min-max, maxAbs, and quantile transformation

to 0.38 for 0-1 risk using raw data. As in the logistic regression, decision

tree, and random forest model results, gradient boosting results illustrate the

non-additive effect of 0-1 risk with increased noise (between 0.073 and 0.187),

as well as the unstable MSE results under the maxAbs normalization method,

with average noise of 0.018.

Neural Network Results

As in the SVM model results, choice of normalization has little to no effect on

resulting risk function value using a neural network, with total average risk

ranging between 0.381 for 0-1 risk using quantile normalized data to 0.427

for MSE risk using z-standardized data (B.1f). As opposed to the SVM model

however, the risk function bias-variance decomposition varies slightly within

each normalization method using the neural network. For example, while

neural network results have lower bias across all normalization methods in

comparison to the SVM model, the risk decomposition has increased variance
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compared to SVM, resulting in higher total average risk. Once again, these

model results illustrate the non-additive effect of 0-1 risk with increased noise

(between 0.124 and 0.185), as well as the unstable MSE results under the

maxAbs normalization method, with MSE average noise of 0.093.

Generalized Results

Over all models applied to bivariate normal data with binary target, SVM

using within-feature normalization methods (risk = 0.290), and logistic regression

with raw data or quantile normalization (0.290) have best, similar risk function

results (A.1). While SVM has the consistently best results and is normalization-agnostic,

logistic regression with raw data or quantile normalization has similar performance

with a faster run time (approximately 5 seconds vs 18 seconds as in Table 5.1).

If an analyst would like to use decision tree, random forest, or neural network

models instead, it is recommended to use raw data or quantile normalization

for best risk function results.

For models applied to rank-based data with binary target, logistic regression

using raw data or quantile normalization (risk = 0.444), and SVM with raw

data or quantile normalization (0.437) have best, similar risk function results

(A.4). While SVM has the consistently best results, logistic regression with

raw data or quantile normalization has similar performance with a faster

run time (approximately 6 seconds vs 39 seconds as in Table 5.1). If an

analyst would like to use decision tree (best risk = 0.489), random forest (best

risk = 0.445), gradient boosting (best risk = 0.465), or neural network (best

risk = 0.475) models instead, it is recommended to use raw data or quantile

normalization for best risk function results.

Over all normalization methods and models applied to categorical data

with binary target, risk function ranged from 0.473 to 0.502, indicating that

this data is somewhat model- and normalization-agnostic (A.7). SVM using

z-standardized data, and logistic regression with all methods except z-standardization
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resulted in best risk function value of 0.473. However, while SVM and logistic

regression have similar results, logistic regression is more than 3 times faster

(7 seconds vs. 21 seconds average processing time as in Table 5.1). Since

the simulated dataset consists of all categorical data, the features are first

converted to [0,1] coded dummy features, effectively "normalizing" the data

between 0 and 1, so additional normalization methods are not expected to

have an effect on the downstream analysis.

For mixed data types with a binary target, although there are slight deviations

between normalization and model performance, risk function values do not

vary much between all methods, with a range between 0.479 and 0.507 (A.10).

A decision tree model using raw data leads to the best results, and gradient

boosting using raw or quantile normalized data leads to the worst results.

However, considering the consistency of performance across normalization

methods and models, it is recommended to make selections based on additional

criteria, such as processing resources, model interpretation, or another performance

measure such as specificity and sensitivity.

5.1.2 Continuous Target

Linear Regression Results

Based on results from simulated bivariate normal data with a linearly dependent

continuous target (Table A.2 and Figure B.2), the best performing normalization,

quantile normalization, does not improve empirical risk or bias-variance decomposition

of the risk as compared with the raw data when using linear regression,

with raw data resulting in risk of 0.338 and quantile normalization resulting

in risk of 0.344. The within-feature normalization choices result in worse

performance in the linear regression model due to increased average bias and

variance (Figure B.2a), with MSE ranging from 2× 105 for z-standardization

to 9× 106 for maxAbs. Use of these methods results in variance to bias ratio
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ranging from near 0 for MSE risk under the within-feature normalizations to

0.019 for MSE risk under quantile normalization. In all cases, bias significantly

outweighs variance in total risk estimate.

Finally, use of the maxAbs normalization technique is the only time the

MSE decomposition has additional average noise (3022.5), with bias (2,146,478,729.7)

plus variance (12.3) greater than the average total error (2,146,481,764.5).

Decision Tree Results

Using a decision tree model on the simulated bivariate normal data with

continuous target results in increased risk function values compared with the

best performing raw and quantile normalized data in the linear regression

model, but improved risk compared to the within-feature normalizations.

Risk ranges from 0.589 using quantile normalization to 114.6 using any of the

within-feature normalization strategies (B.2b). The decision tree risk function

values across the within-feature methods are driven by high bias, as illustrated

by variance to bias ratios of 0.24, and bias that is approximately 250 times

higher than that in the raw and quantile normalized data.

Random Forest Results

Random forest model results on this data result in similar risk function behavior

as in the decision tree model, with raw data and quantile normalization both

having best risk function value of 2.8 (B.2c). However, the best methods still

result in worse risk function performance than the best methods found in

any of the other tested models. The best risk function values range between

0.338 to 0.65 for all other tested models. The within-feature normalization

methods perform worse due to increased bias (22.9) approximately 9 times

higher than that found in raw and quantile normalized data (2.4).
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Support Vector Machine (SVM) Results

Risk function results using a support vector machine (SVM) model with Gaussian

kernel, result in similar risk function behavior as in the decision tree and

random forest models, with raw data and quantile normalization both having

best risk function value of approximately 0.65 (B.2d). However, risk function

performance across all methods is improved compared to decision tree and

random forest. The SVM risk function values across the within-feature methods

are driven by high bias, as illustrated by variance to bias ratios of 0.009 to

0.013, and bias that is approximately 14 times higher than that in the raw

and quantile normalized data. Finally, use of the maxAbs normalization

technique is the only time the MSE decomposition has additional average

noise (0.019), with bias (8.75) plus variance (0.112) greater than the average

total error (8.84).

Gradient Boosting Results

Using a gradient boosting model on the simulated bivariate normal data

with continuous target results in risk function values ranging from 0.55 using

raw data and quantile normalization to approximately 152 using any of the

within-feature normalization strategies (B.2e). The within-feature normalization

methods have the worst overall performance for this model with bias increasing

520-fold compared to the other methods. The gradient boosting risk function

values across the within-feature methods are driven by high bias, as illustrated

by variance to bias ratio of 0.007 for MSE risk. In the raw data and quantile

normalized data methods, bias and variance represent nearly equal weight in

the risk function decomposition. As in the linear regression and SVM model

results, gradient boosting results illustrate the unstable MSE results under

the maxAbs normalization method, with average noise of 0.001.
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Neural Network Results

Based on results from simulated bivariate normal data with a linearly dependent

continuous target, the best performing normalization, quantile normalization,

does not improve empirical risk or bias-variance decomposition of the risk

as compared with the raw data when using the neural network model, with

raw data resulting in risk of 0.341 and quantile normalization resulting in

risk of 0.356. (B.2f). The within-feature normalization choices result in worse

performance in the neural network model due to increased average bias and

variance, with MSE ranging from 200,151.85 for z-standardization to 2,145,420,994.19

for maxAbs. Use of these methods results in variance to bias ratio ranging

from near 0 for MSE risk under the within-feature normalizations to 0.132

for MSE risk under quantile normalization. In all cases, bias significantly

outweighs variance in total risk estimate.

Finally, use of the maxAbs normalization technique is the only time the

MSE decomposition has additional average noise (123,606), with bias (2,145,297,375.91)

plus variance (12.6) less than the average total error (2,145,420,994.19).

Generalized Results

Over all models applied to bivariate normal data with continuous target,

neural network using raw data (risk = 0.342), and linear regression with raw

data (0.338) have best, similar risk function results (A.2). Quantile normalization

method for both models has similar results with MSE risk of 0.344 for linear

regression and 0.356 for neural network. However, while neural network and

linear regression have similar results, linear regression is approximately 20

times faster (1.2 seconds vs. 26 seconds average processing time as in Table

5.1). SVM has the most consistent results; even though the within-feature

normalization methods all perform worse than raw or quantile normalized

data, SVM within-feature normalization results perform better than the same
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normalization in all other tested models. If normalization and scaling of

data is required, as with features measured on highly divergent scales, it

is recommended for an analyst to test the SVM model, keeping in mind

increased processing requirements.

When applied to rank-based data with continuous target, neural network

using raw and quantile normalized data (risk = 0.175), and linear regression

with raw and quantile normalized data (0.174) have best, similar risk function

results (A.5). However, while neural network and linear regression have

similar results, linear regression is more than 17 times faster (0.8 seconds

vs. 14 seconds average processing time as in Table 5.1). SVM has the most

consistent results; even though the within-feature normalization methods all

perform worse than raw or quantile normalized data, SVM within-feature

normalization results perform better than the same normalization in all other

tested models. If normalization and scaling of data is required, as with features

measured on highly divergent scales, it is recommended for an analyst to test

the SVM model, keeping in mind increased processing requirements. Note,

however, that outside of the best-performing linear regression and neural

network models, all other methods and models perform significantly worse

due to exploding estimates of average bias.

While normalization generally does not improve or worsen results as

compared with raw data, it is not recommended to use z-standardization for

categorical data with a continuous target, as the simulation results indicate

increased risk function values (A.8). In particular, if using linear regression,

z-standardization and quantile transformation should be avoided as these

methods used with this model lead to significant explosion in the risk function

value. Outside of z-standardization for any tested model, and quantile transformation

for linear regression, simulation results indicate that this type of data is both

normalization- and model-agnostic. In this case, normalization and model

selection can be based off of additional criteria, such as processing requirements
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or model transparency.

Over all models applied to mixed data with continuous target, neural

network using raw data (risk = 0.366) and quantile normalized data (risk

= 0.425), and linear regression using raw data (risk = 0.367) and quantile

normalized data (0.363) have best, similar risk function results (A.11). However,

while neural network and linear regression have similar results, linear regression

is approximately 41 times faster (1.6 seconds vs. 66 seconds average processing

time as in Table 5.1). SVM has the most consistent results; even though

the within-feature normalization methods all perform worse than raw or

quantile normalized data, SVM within-feature normalization results perform

better than the same normalization in all other tested models. If normalization

and scaling of data is required, as with features measured on highly divergent

scales, it is recommended for an analyst to test the SVM model, keeping in

mind increased processing requirements and potential for increased bias.

5.1.3 Poisson Target

Poisson Regression Results

Based on results from simulated bivariate normal data with a Poisson process

target (Table A.3 and Figure B.3), the best performing normalization, quantile

normalization, does not improve empirical risk or bias-variance decomposition

of the risk as compared with the raw data when using Poisson regression,

with both raw data and quantile normalization resulting in risk of 1.502.

The within-feature normalization choices result in worse performance in the

Poisson regression model due to increased average bias or variance, depending

on the method used (Figure B.3a). For example, using z-standardization

results in variance increasing more than 700-fold, and use of quantile normalization

leads to a 7-fold increase in variance as compared to the raw data.
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Finally, use of the maxAbs normalization technique is the only time the

MSE decomposition has additional average noise (0.101), with bias (1.6) plus

variance (0.264) greater than the average total error (1.764).

Decision Tree Results

Using a decision tree model on the simulated bivariate normal data with

poisson process target results in increased risk function values compared

with all methods and all models, except for neural network. Risk ranges from

1.8 using within-feature normalizations to 2.065 using quantile normalization

(B.3b). In this case, the decision tree risk function values are improved by

using within-feature normalization strategies. Increased risk function value

for raw data and quantile normalized data are due mostly due increased

variance. In fact, even though bias increases when using the within-feature

strategies, the 2-fold decrease in variance across these methods results in

lower empirical risk function values.

Random Forest Results

Random forest model results on this data result in similar risk function behavior

as in the decision tree model, with within-feature methods having best risk

function value of 1.125 (B.3c). However, in this case, improved risk function

results are due to both deceased bias and variance, with bias improving by

29% and variance improving by 26%. These risk function results are the best

of all tested methods.

Support Vector Machine (SVM) Results

Using a support vector machine (SVM) model with Gaussian kernel, the best

risk function result (1.324) is found using z-standardization (B.3d). Z-standardization,

min-max, and quantile transformation all perform better than raw data, maxAbs,
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and quantile normalization due to improved bias. For example, even though

variance increases from 0.148 to 0.233, z-standardization improves bias to

1.091 from 1.528 when compared with raw data, leading to better overall

performance. Finally, use of the maxAbs normalization technique is the only

time the MSE decomposition has additional average noise (0.171), with bias

(1.805) plus variance (0.252) greater than the average total error (1.886).

Gradient Boosting Results

Using a gradient boosting model on the simulated bivariate normal data

with Poisson target results in risk function characteristics similar to those

illustrated in decision tree and random forest models (B.3e). The within-feature

normalization methods have the best overall performance for this model

with risk function value of 1.167. As in the random forest model, improved

risk function results are due to both decreased bias and variance, with bias

improving by 29% and variance improving by 5%.

Neural Network Results

Based on results from simulated bivariate normal data with a Poisson target,

the best performing normalization, quantile normalization, slightly improves

empirical risk as compared with the raw data when using the neural network

model, with raw data resulting in risk of 1.501 and quantile normalization

resulting in risk of 1.496. (B.3f). The within-feature normalization choices

result in worse performance in the neural network model due to increased

average bias and variance, with MSE ranging from 50.24 for z-standardization

to 5.5× 105 for maxAbs. Use of these methods results in variance to bias ratio

ranging from near 0 for MSE risk using maxAbs to 1.029 for MSE risk under

min-max normalization. Use of the maxAbs normalization technique is the

only time the MSE decomposition has additional average noise (294,525.4),
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with bias (257,374.38) plus variance (1324.9) less than the average total error

(553,224.67).

Generalized Results

Over all models applied to bivariate normal data with Poisson target, random

forest using within-feature normalization methods (risk = 1.125), and gradient

boosting using within-feature normalization methods (1.167) have best, similar

risk function results (A.3). Poisson regression using raw or quantile normalized

data also has strong results with risk function value of 1.5. Although Poisson

regression results are not as strong as those found using random forest and

gradient boosting, Poisson regression has processing time more than 200

times faster than random forest (0.8 seconds vs. 167 seconds average processing

time) and 13 times faster than gradient boosting (0.8 vs. 167 seconds average

processing time) as seen in Table 5.1.

For rank-based data with Poisson target, SVM using raw and quantile

normalized data (risk = 1.281), and Poisson regression with raw and quantile

normalized data (1.280) have best, similar risk function results (A.6). However,

while SVM and Poisson regression have similar results, Poisson regression is

more than 6 times faster (6 seconds vs. 36.6 seconds average processing time),

as seen in Table 5.1. Although Poisson regression has the best results for

this data, use of the within-feature normalization methods result in unstable,

exploding risk function values and should be avoided. Within-feature normalizations

should also be avoided if using a neural network on this data for the same

reason. If normalization and scaling of data is required, random forest model

has the best results for the within-feature methods, although it has the longest

processing time.

Although there are slight deviations between normalization and model

performance, risk function values do not vary much between all methods

when considering categorical data with Poisson target, with a range between
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1.499 and 1.783 (A.9). A decision tree model using min-max, maxAbs, quantile

transformation, or quantile normalization lead to the best results, and SVM

using z-standardization leads to the worst result. However, considering the

consistency of performance across normalization methods and models, it is

recommended to make selections based on additional criteria, such as client

requested models.

Over all models applied to mixed data with Poisson target, gradient boosting

using raw and quantile normalized data (risk = 1.746), and random forest

using raw data (1.820) have best results (A.12). Generally, the best performing

risk function values do not vary much between all tested models, with a

range between 1.476 for the gradient boosting model and 2.087 for the decision

tree model (Table 5.1). The similarity in best performing model results indicates

that this data type is somewhat model-agnostic, although normalization methods

should be selected carefully if required for analysis. For example, it is not

recommended to use any of the tested within-feature normalizations if a

neural network is used due to significant increases in bias and variance found

in the simulation results.
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Features Bivariate Normal Ranked Categorical Mixed

Target
Binary Model

Logistic Regression 5 6 7 14.2
Decision Tree 2 3 15 3.3
Random Forest 139 209 183 208.6
SVM 18 39 21 37.3
Gradient Boosting 14 25 14 22.7
Neural Network 223 356 262 287

Continuous Model
Linear Regression 1.2 0.8 8.8 1.6
Decision Tree 3 2.3 1 2.8
Random Forest 206 167 156.9 170.9
SVM 30 42 10 30.4
Gradient Boosting 17 13 8.7 10.2
Neural Network 26 14 6.8 66.4

Poisson Model
Poisson Regression 0.8 6 2.4 8
Decision Tree 2.3 2.7 1 8
Random Forest 167 173.7 158.4 3.4
SVM 42 36.6 22.2 176.5
Gradient Boosting 13 12.9 7.5 9.5
Neural Network 14 24 6.6 43.1

TABLE 5.1: Average model performance (in seconds) for
bias-variance decomposition of simulated data structures.

5.1.4 Framework

The results discussed in the previous sections indicate that the choice of

normalization under various data conditions and models do affect predictive

model risk functions and should be considered when making model selections

under certain situations. Results from simulations are represented as a heatmap

in a blown up section of the proposed model development framework in

Figure 5.1, where best-performing normalization methods for each data type

are highlighted in green.
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Features

Target

Risk Func�on MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1
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FIGURE 5.1: Heatmap representing empirical risk function
values as a percentage of the best performing normalization
strategy for each data type, with green as best performing

strategies.

5.2 Benchmark Data Results

Benchmark datasets were selected from the UCI Machine Learning Library

to cover data types similar to those covered in the simulations. Complete

tables of risk function decomposition results are found in Appendix Section

A.0.2, and figures are found in Appendix Section B.0.2. Binary target datasets

with numeric features (wine quality, breast cancer), and categorical features

(congressional voting records), have bootstrapped bias-variance decomposition

results consistent with those found in the simulated datasets with the same

data structure characteristics (see Figures B.13, B.14, and B.15). The traditional

within-feature normalization methods (z-standardization, min-max, maxAbs,

quantile transformation) result in risk function values that are the same or

worse than using raw data or quantile normalization. For the wine quality

data, using raw or quantile normalized data in logistic regression, linear

SVM, or neural network results in best risk function performance, while

quantile normalization with logistic regression was best for the breast cancer

data. For the congressional voting records data, logistic regression and neural

network with raw and quantile normalized data were also found to be the

best method-model combinations, consistent with simulated data results. However,

it is interesting to note that z-standardization in both of these models resulted

in the worst risk function performance among all other method-model combinations

applied to this dataset, due to both increased bias and variance.
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For the binary target data with mixed data type features (arrhythmia,

abalone), raw data and quantile normalization also lead to the best risk function

performance. However, the arrhythmia dataset is a relatively more complex

dataset in comparison to the others tested. It has missing data, many features

in comparison to few instances (i.e. 279 features vs. 452 instances), and

imbalanced target data. As a result, logistic regression is not well suited for

describing these complex relationships, and has worse risk function performance;

decision tree and gradient boosting regression with raw data or quantile

normalization have best results (Figure B.17). In contrast, while the abalone

dataset is also an imbalanced dataset, it has less complex data structures

with only 8 features and over 4000 instances. In this case, logistic regression,

linear support vector machine, and neural network are well-suited for the

less complex data, and result in improved risk function values due to decreased

variance in comparison to the more complex models (Figure B.16).

For assessing results on continuous target data, the forest fires dataset

(numeric features), solar flare dataset (categorical features), and auto MPG

dataset (mixed type features) were considered. Once again, in all cases,

the within-feature normalization performed the same or worse than using

raw data, with the between-feature quantile normalization process being the

only method that resulted in same or some improvement to risk function

values. For both numeric and categorical only datasets (forest fires and solar

flare, respectively), the linear-based logistic regression and neural network

models with raw data or quantile normalization resulted in best performance

(see Figures B.18 and B.19), with all other normalization-model combinations

resulting in both increased bias and variance. In the case of the more complex

mixed feature type auto MPG dataset, gradient boosting regression also has

improved performance, but logistic regression has similar performance and

is a faster algorithm (Figure B.20).
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5.3 Applications

To test the utility of the proposed model development framework, best-performing

normalization-model combinations were applied to previous research, and

results with and without use of the framework compared.

5.3.1 NCAA Tournament Data

For the 2019 NCAA Men’s Basketball Tournament Bracket prediction problem,

data was used from over 100,000 NCAA regular season games, with the

goal to take information about two teams as input, and output a probability

of team 1 winning a game. Motivated by the popular Kaggle competition,

models were developed to minimize log-loss between predicted win probabilities

and actual game outcomes, as in:

LogLoss = − 1
n

n

∑
i=1

[yilog(yî) + (1− yilog(1− yî)] (5.1)

This loss function has high penalty for models that are both confident and

wrong (Yuan et al., 2015). Model development involved:

• Readily available game statistics, provided by Kaggle

• Commonly used external ratings systems (Massey Ratings)

• No additional feature engineering

• No domain knowledge

The analysis value-added in comparison to previous research and public

models found on Kaggle was to focus on the comparison of various normalization

techniques for model development. In particular, the use of outside domain

knowledge (public health, genetics) to apply a technique from one domain

(genetic research) to an unrelated domain (sports data) proved advantageous
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but was not, initially, statistically motivated. However, through simulation

of bias-variance decomposition and findings from application to benchmark

data, it is expected that improved loss function performance for this type

of data (ranked data, balanced target, non-missing data) can be achieved by

using a linear-based model with raw or quantile normalized data. Rather

than iterating through many normalization-model combinations (which took

over 12 hours of computation time when building the model for the 2019

tournament), logistic and linear SVM models with raw and quantile normalized

data were trained on NCAA regular season data from 2014-2017 and tested

on the 2018 tournament. The same features were used as in the 2019 model,

with only the model and normalization selection process updated based on

the model development framework findings. From the simulation results,

logistic regression and SVM for both raw and quantile normalization provided

similar results, although SVM outperformed logistic somewhat due to decreased

variance, although it has increased bias. In the updated NCAA application

on 2018 data, logistic regression with raw data outperformed the other tested

models, with a log-loss score of 0.569 (Figure 5.2). This log-loss score, in

comparison to other Kaggle submissions in the 2018 tournament, would have

ranked 23rd out of 933 teams (98 percentile) and required only the original

data supplied by Kaggle and no additional feature engineering or model

tuning. In addition, the entire model development process and testing took

less than 30 minutes. Three out of the four models developed correctly predicted

the Final Four including the tournament Champion, Villanova. This is compared

with a 2019 bracket that, while it correctly predicted the tournament winner,

only predicted two of the Final Four teams, and scored in the 90th percentile

of Kaggle Log-loss scores.
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FIGURE 5.2: 2018 Men’s Basketball March Madness bracket
developed using winning model, logistic regression with raw

data.

5.3.2 Credit Risk Data

Previous research by Rudd and Priestley (2017) compare the use of logistic

regression and decision trees for prediction of commercial credit risk. The

dataset, provided by Equifax, included over 11 million records and over 300

features, and involved extensive data preprocesing including imputation,

feature reduction, and transformation. The effects of normalization were not

considered at the time. Based on findings from simulations and benchmark

results, it was found that gradient boosting regression with raw and quantile

normalization should also be considered for this type of data. Running the

analysis again, this time including gradient boosting regression, found best

results for gradient boosting with raw data (AUC = 0.96). A drawback,

however, of this result in the context of credit risk analysis is that gradient
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boosting is much more difficult to explain than the logistic regression and

decision tree models, and can be problematic in a heavily regulated industry

where model interpretability is required.

FIGURE 5.3: AUC Curves for selected model-normalization
combinations tested based on model framework results
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Chapter 6

Discussion

6.1 Conclusions

The goal of this research is to propose a unified model development framework

that allows researchers to make statistically motivated variable preparation

and model selection choices within the model development pipeline. In

fields of social science, theoretical frameworks are common, and often required

elements of academic research. However, the current state of data science

suffers from an inconsistent approach to modeling strategies, with the complexities

of big data, and potentially bad data, inadequately addressed. Review of

current data science research and proposed epistemology found that:

• Even "big data" does not exist in a vacuum

• What constitutes "big data" is not consistent across domains

• No Free Lunch (NFL) Theorem: no single algorithm is better than all

others on all problems

• Choice of analytic strategy, whether statistically valid or not, has effects

on the results

Perhaps the most illustrative lack of research consistency is the study by

Silberzahn, et. al. (2018) which recruited 29 independent research teams with

61 analysts to address the question, “Are soccer referees more likely to give
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red cards to dark-skin-toned players than to light-skin-toned players?” The

research teams represented 13 countries, a variety of disciplines, and a range

of expertise and academic degrees. Using the same dataset and research

question, the 29 teams utilized 29 unique analytical modeling approaches

resulting in 21 unique combinations of covariates, 20 teams with significant

positive results, and odds ratios ranging from 0.89 to 2.93, as in Figure 2.4.

Analytic choices, even if justifiable and statistically valid, have a downstream

effect on model results. There appears to be no unified, quantitatively motivated

model development framework for making these analytic choices.

The model development framework can be generally divided into three

phases: data discovery, variable preparation, and modeling. Within each

of these phases there are steps in the model development that encompass a

wide range of data management, data mining, and data analysis techniques,

including data ingestion, sample selection, data cleaning and imputation,

feature reduction, feature engineering, normalization, model development,

and model validation. Analyzing the downstream effects of modeling approaches

within each of these steps should be an important goal of the data science

community in order to make better informed, statistically motivated modeling

choices in the future. Understanding and further analyzing the downstream

effects of model development strategies is an important step towards a unified

model development framework in the field. Quantifying the analysis effects

of these strategies in a unified framework provides a diagnostic illustration

of where researchers can expect to find improvements in their model results.

The general idea of the proposed framework is that researchers can select

analysis methods based on the understanding that model results are a function

of the selected model, the selected model development strategies, and the

characteristics of the data:

L = f (M, [p1, ...pi], D) (6.1)
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where L is the loss function value, M is the selected model, p1...pi is the list

of model development strategies used, and D is the data structure.

Additionally, a simulation study was used to determine empirical justification

of the proposed framework. This study tests the utility of the proposed

framework by investigating the effects of normalization on downstream analysis

results. Normalization methods are investigated by utilizing a decomposition

of the empirical risk functions, measuring effects on model bias, variance,

and irreducible error. Estimates of bias and variance are then used as diagnostic

procedures for data pre-processing and model development. The use of

bias-variance decomposition as a unified model framework diagnostic extends

from the work proposed by Dietterich and Kong (1995) that "an important

goal in algorithm design is to minimize statistical bias and variance and

thereby minimize error," and that "any change that increases the representational

power of an algorithm can reduce its statistical (and ML) bias. Any change

that expands the set of available alternatives for an algorithm or makes them

depend on a smaller fraction of the training data can increase the variance

of the algorithm." We use our findings to propose model development and

algorithm design choices that best minimize common design effects on bias

and variance. The result of such a study is to formulate a theory of bias and

variance reduction and predict when either or both will succeed in practice.

Both the traditional statistical risk function of mean square error (MSE) as

well as the common machine learning risk function of misclassification (0-1

loss) are considered, and the effects of a selection of normalization methods

are measured on both risk functions where appropriate. Normalization techniques

are selected that represent both data invariant as well as data variant normalization

strategies. For example, techniques such as z-score standardization (transforms

data to have a mean of zero and a standard deviation of 1) and feature scaling

(rescaling data to have values between 0 and 1) change the spread and position

of data points (all by consistent factors) but do not change the distribution
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shape of the data, whereas techniques such as quantile normalization, commonly

used in genetic differential expression analysis, affect the measures of spread,

position, and shape. Through simulation of various data structures and bootstrap

sampling of the two considered definitions of bias-variance decomposition, a

heatmap of best performing model-normalization-data structure combinations

was developed to illustrate the empirical justification of an aspect of the

proposed unified model development framework. For example, it was found

that for rank-based data with binary target, quantile normalization performed

better than the data invariant methods with similar or improved performance

over raw data due to decreased variance in the loss function value. In addition,

results found from simulations were verified and expanded to include additional

data characteristics (imbalanced, sparse) by testing on benchmark datasets

available from the UCI Machine Learning Library. Normalization results on

benchmark data are consistent with those found using simulations, while

also illustrating that more complex and/or non-linear models provide better

performance on datasets with additional complexities, such as wide data

(large feature to instance ratio) as in the arrhythmia dataset. Finally, applying

the model development framework and findings from simulation experiments

to previous applications led to equivalent or improved results with less model

development overhead and processing time. Applying the model framework

to the 2018 NCAA Men’s Basketball data resulted in a log-loss score that

would have been ranked 23 out of 933 teams (98th percentile) and only required

30 minutes of model overhead, as opposed to a 2019 model that required over

12 hours of processing and resulted in a 90th percentile log-loss score.

6.1.1 Limitations

While this work establishes a justification for a unified model development

framework in data science, the statistical illustration of the downstream effects
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of such a framework is limited in scope, and represents a baseline for further

research in this area. For example, while the bias-variance decomposition

simulations described in this dissertation illustrate that model and normalization

method selection do affect downstream results, they are only suggestive of

theoretical properties of these specific methods that should be further explored.

Also, a researcher’s primary modeling goal (i.e. predictive accuracy vs. explanatory

model) will determine both appropriate model and pre-processing technique

selection. In addition, the main goal of normalization is to put features on

comparable scale for improved model fitting, performance, and interpretability.

Considering normalization as a model selection procedure and selecting based

on minimized loss function value (MSE or 0-1 in this case) can potentially

lead to overfitting. Finally, this study considers a limited selection of models

and model performance measures, while assuming all other proposed aspects

of the model development framework are held constant. A more exhaustive

study of performance assessments should be considered to better establish

the downstream analysis effects of statistical procedures, including coverage

probabilities, misclassification rates, sensitivity/specificity, etc. In this study,

we selected MSE and 0-1 loss due to the ability to generalize these loss functions

across multiple data types and model applications. In addition, these assessments

need to include additional consideration on various combinations of model

development strategies within the rest of the proposed framework, i.e. sample

selection, feature engineering, model validation, etc. The combinations to

consider are vast, but considering them within a unified framework allows

for a baseline and consistency for continued algorithmic research and applications

in the field of data science.
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6.1.2 Future Research

To strengthen findings used to propose the usefulness and empirically test

the model development framework, it is necessary to explore the theoretical

connections between the empirical results and the suggested decision points

in the framework. The theoretical work is recommended to justify application

of the empirical findings to the proposed framework, creating a more robust

theoretical framework for data science. At this stage of the research, the

framework and the empirical study results are suggestive of characteristics

of linear models, and some aspects of simple non-linear models. Suggested

theoretical work will build upon what we know in linear models to extend

to non-linear, more complex data structures and models. By building upon

foundational knowledge from linear models, we are then completing the

theoretical framework in data science using a process much like proof by

induction, i.e. if generalized linear models by way of maximum likelihood

estimation are, in fact, unbiased in their predictions (base case), and this

holds true for any locally linear element of other more complex, globally

non-linear models (induction step), then this will be foundational theoretical

knowledge for building and testing any models within the proposed model

development framework.

6.1.3 Motivating Example

In the empirical study of the model development framework, generalized

linear models (GLM) were most often found to have best risk function results

regardless of data structure or selected normalization. Maximum likelihood

is the best linear unbiased estimator (BLUE) for parameters. If we assume

that the maximum likelihood estimate (MLE) is unbiased in GLM as well,

then estimates of bias should resolve towards zero as the sample size increases.

In this case, the bias-variance decomposition of the loss will be completely
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defined by variance. As an extension, the Cramer-Rao lower bound property

of MLE (the lower bound of the variance of the estimator) suggests that no

other model will achieve a better result of the bias-variance loss decomposition

(since bias of zero plus lowest bound of variance equals smallest possible

loss, if we assume average error is zero in unbiased model).

This potential explanation requires theoretical understanding of at least

two questions: 1) Are generalized linear models, in fact, unbiased? and 2)

Does the Cramer-Rao lower bound theorem apply to variance of the prediction

and not just the parameters? We can show that, for finite samples, the GLM

estimates are biased but they are asymptotically unbiased. If we consider

a simple logistic regression with binary dependent variable Y, intercept β0,

and a single binary independent variable X then

Pr(Yi = 1 | Xi = 1) = Λ(β0 + βXi) (6.2)

where Λ is the logistic link function. The logit form of the simple logistic

regression is then

ln
(

Pr(Yi = 1 | Xi = 1)
1− Pr(Yi = 1 | Xi = 1)

)
= β0 + βXi (6.3)

If we have a sample size n then n1 is the number of observations where Xi = 1

and n0 is the number of observations where Xi = 0, and n1 + n0 = n. The

estimated conditional probabilities are then

P̂r(Y = 1 | X = 1) ≡ P̂1|1 =
1
n1

∑
Xi=1

yi (6.4)

P̂r(Y = 1 | X = 0) ≡ P̂1|0 =
1
n0

∑
Xi=0

yi (6.5)
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and the solutions for the maximum likelihood parameter estimates solve as

β̂0 = ln

(
P̂1|0

1− P̂1|0

)
, β̂ = ln

(
P̂1|1

1− P̂1|1

)
− ln

(
P̂1|0

1− P̂1|0

)
(6.6)

Due to the properties of MLE for parameter estimates, P̂1|1 and P̂1|0 are unbiased

estimators of the probabilities, but the estimates of β̂0 and β̂ are biased due

to the non-linear log transformation. However, since the MLE probability

estimates are consistent and asympotically normal, the MLE parameter estimates

become asymptotically unbiased as in

lim
n→∞

E[β̂0] = E

[
ln

(
lim

n→∞

P̂1|0

1− P̂1|0

)]
= E

[
ln

(
P1|0

1− P1|0

)]
= β0 (6.7)

and the same holds true for β.

For question 2 of our assumptions, there is no asymptotic closed-form

solution for the MLE of the variance-covariance matrix. However, the asymptotic

properties of MLE lead to an estimate of the variance-covariance matrix as

the inverse of the Hessian matrix of the log-likelihood of the sample

Var(θ̂) ≈ − 1
n
(E[H])−1 ≈ − 1

n

(
1
n

Ĥ
)−1

= −Ĥ−1 (6.8)

indicating that the lower bound of the variance of the MLE estimates in a

simple logistic regression holds true for large samples, but more work needs

to be conducted to extend this to the variance of Y(Agresti, 2003).

6.1.4 Extensions of Research

If the initial empirical study of the model development framework suggests

some theoretical basis in linear models, how then do we extend what we

know about generalized linear models to other more complex, non-linear

models? Once we establish the validity of the foundational assumptions
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surrounding the effectiveness of the linear models, then we can slowly increase

and test on additional model complexities. For example, Lili Zhang developed

a "penalized log-likelihood function" for imbalanced data "by including penalty

weights as decision variables for observations in the minority class (i.e. event)

and learning them from data along with model coefficients/parameters(Zhang

et al., 2019)." These learned weights add one layer of non-linearity to the

GLM model and present a logical next step in the theoretical research once

we establish that the simple GLM estimates themselves are unbiased.

Another extension of this theoretical research could be to consider the

relevance of the GLM findings to a non-probabilistic linear classifier such

as linear Support Vector Machines (SVM). In fact, Franc et al. have already

established how a linear SVM can be reparameterized as an unbiased maximum

likelihood estimate of a probabilistic model(Franc, Zien, and Schölkopf, 2011).

However, this work does not yet extend to non-linear SVMs, i.e. those with

non-linear kernels replacing the dot product.

Finally, extending the theoretical justification of the model development

framework towards neural networks, application of the GLM findings can

be tested specifically on extreme learning machines. These neural networks

use single or multiple hidden layers where the parameters are randomly

assigned, do not need to be tuned, and are not trained using backpropagation.

Generally, these networks apply a linear combination of random weights to

create a binary output, much like an MLE-type process(Huang, Zhu, and

Siew, 2006).

6.1.5 Application to Ethical Principles of Data Science

A unified model development framework lends itself to an improved ethical

application of data science. The Analytics and Data Science Institute at Kennesaw

State University Principles of Ethical Data Science include:
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1. Principle of responsible data collection and sourcing

2. Principle of protection

3. Principle of transparency and reproducibility

4. Principle of foresight

5. Principle of competence

By considering data science research and applications within the context of a

unified framework, one can better ensure consistency of research methodologies.

For example, if Data Science practitioners followed an agreed upon workflow,

this leads to transparency and reproducibility of future work. In the Silberzahn

example assessing soccer refereeing (2018), many research teams followed

statistically valid yet highly disparate workflows to arrive at a wide range of

conclusions. If independent research teams follow validated, unified pathways

of research using the same data and assumptions, it is expected that the

selection of methods will be more consistent and lead to improved generalization

of results. A unified framework also lends itself to the Principle of Competence

as it gives data science practitioners a toolbox in which to appropriately use

and assess data, much like differential diagnoses used by medical professionals.
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Appendix A

Tables

A.0.1 Simulations

Bivariate Normal Data with Binary Target

Data Model Normaliza�on

Bivariate 

Normal - 

Binary 

Target Logis�c Type of Loss MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

Total Loss 0.290 0.290 0.462 0.462 0.474 0.474 0.485 0.485 0.482 0.482 0.290 0.290

Bias 0.290 0.290 0.220 0.290 0.228 0.290 0.237 0.290 0.234 0.290 0.290 0.290

Variance 0.000 0.000 0.242 0.409 0.246 0.438 0.438 0.464 0.248 0.457 0.000 0.000

Noise 0.000 0.000 0.000 0.237 0.000 0.254 0.190 0.268 0.000 0.265 0.000 0.000

Variance-Bias Ra�o 0.000 0.000 1.098 1.412 1.080 1.511 1.850 1.599 1.061 1.578 0.000 0.000

Percent Change from 

Raw ~ ~ 159.319 159.319 163.488 163.488 167.408 167.408 166.279 166.279 100.007 100.007

Decision Tree

Total Loss 0.408 0.408 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.393 0.393

Bias 0.250 0.350 0.337 0.710 0.337 0.710 0.337 0.710 0.337 0.710 0.225 0.360

Variance 0.158 0.232 0.227 0.348 0.227 0.348 0.348 0.348 0.227 0.348 0.168 0.257

Noise 0.000 0.174 0.000 0.494 0.000 0.494 0.121 0.494 0.000 0.494 0.000 0.223

Variance-Bias Ra�o 0.631 0.663 0.673 0.490 0.673 0.490 1.033 0.490 0.673 0.490 0.748 0.713

Percent Change from 

Raw ~ ~ 138.303 138.303 138.303 138.303 138.303 138.303 138.303 138.303 96.434 96.434

Random Forest Total Loss 0.295 0.295 0.396 0.396 0.396 0.396 0.396 0.396 0.396 0.396 0.295 0.295

Bias 0.286 0.290 0.207 0.290 0.207 0.290 0.207 0.290 0.207 0.290 0.286 0.290

Variance 0.009 0.011 0.188 0.252 0.188 0.252 0.252 0.252 0.188 0.252 0.009 0.011

Noise 0.000 0.006 0.000 0.146 0.000 0.146 0.064 0.146 0.000 0.146 0.000 0.006

Variance-Bias Ra�o 0.032 0.038 0.909 0.869 0.909 0.869 1.215 0.869 0.909 0.869 0.033 0.038

Percent Change from 

Raw ~ ~ 134.241 134.241 134.241 134.241 134.241 134.241 134.241 134.241 100.002 100.002

SVM Total Loss 0.292 0.292 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.292 0.292

Bias 0.287 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.288 0.290

Variance 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.005

Noise 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003

Variance-Bias Ra�o 0.016 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.018

Percent Change from 

Raw ~ ~ 99.440 99.440 99.440 99.440 99.440 99.440 99.440 99.440 100.218 100.218

Gradient Boos�ng Total Loss 0.332 0.332 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.332 0.332

Bias 0.249 0.293 0.540 0.710 0.540 0.710 0.541 0.710 0.540 0.710 0.249 0.297

Variance 0.082 0.111 0.115 0.132 0.115 0.132 0.132 0.132 0.115 0.132 0.083 0.111

Noise 0.000 0.073 0.000 0.187 0.000 0.187 0.018 0.187 0.000 0.187 0.000 0.076

Variance-Bias Ra�o 0.331 0.380 0.212 0.186 0.212 0.186 0.244 0.186 0.212 0.186 0.331 0.375

Percent Change from 

Raw ~ ~ 197.402 197.402 197.402 197.402 197.529 197.529 197.402 197.402 100.040 100.040

Neural Network Total Loss 0.403 0.398 0.427 0.424 0.410 0.411 0.401 0.401 0.401 0.401 0.387 0.381

Bias 0.206 0.290 0.207 0.290 0.206 0.290 0.207 0.290 0.206 0.290 0.211 0.290

Variance 0.197 0.258 0.219 0.319 0.204 0.288 0.288 0.288 0.195 0.263 0.176 0.215

Noise 0.000 0.149 0.000 0.185 0.000 0.167 0.093 0.177 0.000 0.153 0.000 0.124

Variance-Bias Ra�o 0.954 0.888 1.059 1.101 0.993 0.992 1.392 0.992 0.943 0.908 0.835 0.740

Percent Change from 

Raw ~ ~ 105.818 106.440 101.766 103.111 99.415 100.547 99.543 100.548 95.891 95.508

Quan�le NormalizeNone Z-standard Min-Max MaxAbs (-1,1) Quan�le Transform

TABLE A.1: Bias-Variance Decomposition Results for Bivariate
Normal Data with Binary Target
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Bivariate Normal Data with Continuous Target

Data Model Normaliza�on None Z-standard Min-Max MaxAbs (-1,1) Quan�le Upper Quar�le

Bivariate Normal 

- Con�nuous 

Target
Linear Type of Loss MSE MSE MSE MSE MSE MSE

Total Loss 0.338 200151.804 8999347.482 2146481764.484 2247609.346 0.344

Bias 0.335 200151.449 8999335.213 2146478729.725 2247069.765 0.338

Variance 0.003 0.355 12.269 12.269 539.581 0.006

Noise 0.000 0.000 0.000 3022.490 0.000 0.000

Variance-Bias Ra�o 0.008 0.000 0.000 0.000 0.000 0.019

Percent Change from 

Raw ~ 59281297.280 2665441848.182 635748573177.009 665700710.123 101.929

Decision Tree

Total Loss 0.748 114.588 114.588 114.588 114.588 0.589

Bias 0.444 111.856 111.856 111.856 111.856 0.338

Variance 0.304 2.731 2.731 2.731 2.731 0.251

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.685 0.024 0.024 0.024 0.024 0.742

Percent Change from 

Raw ~ 15311.228 15311.228 15311.228 15311.228 78.694

Random Forest Total Loss 2.809 22.970 22.970 22.970 22.970 2.812

Bias 2.425 22.501 22.501 22.501 22.501 2.427

Variance 0.385 0.469 0.469 0.469 0.469 0.385

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.159 0.021 0.021 0.021 0.021 0.158

Percent Change from 

Raw ~ 817.686 817.686 817.686 817.686 100.088

SVM Total Loss 0.652 8.712 8.884 8.840 8.878 0.662

Bias 0.623 8.632 8.771 8.747 8.768 0.629

Variance 0.029 0.080 0.112 0.112 0.110 0.033

Noise 0.000 0.000 0.000 0.019 0.000 0.000

Variance-Bias Ra�o 0.047 0.009 0.013 0.013 0.013 0.052

Percent Change from 

Raw ~ 1336.235 1362.522 1355.909 1361.662 101.476

Gradient Boos�ng Total Loss 0.550 151.982 151.982 152.078 151.982 0.552

Bias 0.289 150.938 150.938 151.034 150.938 0.290

Variance 0.261 1.043 1.043 1.043 1.043 0.262

Noise 0.000 0.000 0.000 0.001 0.000 0.000

Variance-Bias Ra�o 0.904 0.007 0.007 0.007 0.007 0.901

Percent Change from 

Raw ~ 27615.537 27615.537 27633.076 27615.537 100.363

Neural Network Total Loss 0.341 200151.851 8999382.281 2145420994.195 2247611.004 0.356

Bias 0.335 200151.497 8999370.017 2145297375.914 2247071.518 0.315

Variance 0.007 0.355 12.264 12.264 539.487 0.041

Noise 0.000 0.000 0.000 123606.017 0.000 0.000

Variance-Bias Ra�o 0.020 0.000 0.000 0.000 0.000 0.132

Percent Change from 

Raw ~ 58619129.637 2635678625.092 628336487970.484 658265211.621 104.238

TABLE A.2: Bias-Variance Decomposition Results for Bivariate
Normal Data with Continuous Target
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Bivariate Normal Data with Poisson Target

Data Model Normaliza�on None Z-standard Min-Max MaxAbs (-1,1) Quan�le Upper Quar�le

Bivariate Normal 

- Poisson Target
Poisson Regression Type of Loss MSE MSE MSE MSE MSE MSE

Total Loss 1.502 191.901 1.874 1.764 3.004 1.502

Bias 1.280 1.561 1.609 1.600 1.459 1.275

Variance 0.222 190.340 0.264 0.264 1.546 0.227

Noise 0.000 0.000 0.000 0.101 0.000 0.000

Variance-Bias Ra�o 0.173 121.919 0.164 0.165 1.060 0.178

Percent Change from 

Raw ~ 12776.852 124.753 117.429 200.027 100.023

Decision Tree

Total Loss 1.869 1.801 1.801 1.802 1.801 2.065

Bias 1.126 1.428 1.428 1.429 1.428 1.173

Variance 0.743 0.373 0.373 0.373 0.373 0.892

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.660 0.261 0.261 0.261 0.261 0.760

Percent Change from 

Raw ~ 96.319 96.319 96.371 96.319 110.450

Random Forest Total Loss 1.564 1.125 1.125 1.125 1.125 1.564

Bias 1.369 0.980 0.980 0.980 0.980 1.370

Variance 0.195 0.145 0.145 0.145 0.145 0.194

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.142 0.148 0.148 0.148 0.148 0.142

Percent Change from 

Raw ~ 71.964 71.964 71.964 71.964 100.059

SVM Total Loss 1.676 1.324 1.443 1.886 1.341 1.700

Bias 1.528 1.091 1.192 1.805 1.104 1.556

Variance 0.148 0.233 0.252 0.252 0.237 0.143

Noise 0.000 0.000 0.000 0.171 0.000 0.000

Variance-Bias Ra�o 0.097 0.213 0.211 0.139 0.214 0.092

Percent Change from 

Raw ~ 78.974 86.122 112.515 80.023 101.403

Gradient Boos�ng Total Loss 1.561 1.167 1.167 1.167 1.167 1.550

Bias 1.325 0.943 0.943 0.943 0.943 1.319

Variance 0.235 0.224 0.224 0.224 0.224 0.231

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.178 0.237 0.237 0.237 0.237 0.175

Percent Change from 

Raw ~ 74.795 74.795 74.791 74.795 99.310

Neural Network Total Loss 1.501 50.236 2611.864 553224.671 740.072 1.496

Bias 1.253 25.275 1286.970 257374.377 412.057 1.267

Variance 0.248 24.961 1324.894 1324.894 328.015 0.229

Noise 0.000 0.000 0.000 294525.400 0.000 0.000

Variance-Bias Ra�o 0.198 0.988 1.029 0.005 0.796 0.181

Percent Change from 

Raw ~ 3346.523 173990.881 36853390.488 49300.337 99.642

TABLE A.3: Bias-Variance Decomposition Results for Bivariate
Normal Data with Poisson Target
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Ranked Data with Binary Target

Data Model Normaliza�on

Ranked - 

Binary 

Target Logis�c Type of Loss MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

Total Loss 0.444 0.444 0.505 0.505 0.506 0.506 0.506 0.506 0.506 0.506 0.444 0.444

Bias 0.369 0.437 0.343 0.500 0.344 0.507 0.344 0.510 0.343 0.503 0.369 0.437

Variance 0.075 0.111 0.163 0.240 0.162 0.240 0.240 0.240 0.163 0.241 0.075 0.111

Noise 0.000 0.104 0.000 0.235 0.000 0.241 0.078 0.244 0.000 0.238 0.000 0.104

Variance-Bias Ra�o 0.202 0.255 0.474 0.480 0.473 0.474 0.698 0.471 0.476 0.479 0.202 0.255

Percent Change from 

Raw ~ ~ 113.941 113.941 114.128 114.128 114.127 114.127 114.080 114.080 100.000 100.000

Decision Tree

Total Loss 0.489 0.489 0.494 0.494 0.494 0.494 0.494 0.494 0.494 0.494 0.493 0.493

Bias 0.292 0.437 0.246 0.433 0.246 0.437 0.246 0.437 0.246 0.437 0.291 0.467

Variance 0.197 0.302 0.248 0.454 0.248 0.454 0.454 0.454 0.248 0.454 0.202 0.314

Noise 0.000 0.250 0.000 0.393 0.000 0.396 0.206 0.396 0.000 0.396 0.000 0.287

Variance-Bias Ra�o 0.672 0.692 1.009 1.047 1.006 1.040 1.843 1.040 1.006 1.040 0.692 0.672

Percent Change from 

Raw ~ ~ 100.905 100.905 101.041 101.041 101.041 101.041 101.041 101.041 100.767 100.767

Random Forest Total Loss 0.445 0.445 0.488 0.488 0.487 0.487 0.487 0.487 0.487 0.487 0.445 0.445

Bias 0.354 0.433 0.248 0.437 0.247 0.437 0.247 0.437 0.247 0.437 0.354 0.433

Variance 0.091 0.121 0.240 0.398 0.240 0.399 0.399 0.399 0.240 0.399 0.091 0.121

Noise 0.000 0.109 0.000 0.347 0.000 0.348 0.159 0.348 0.000 0.348 0.000 0.109

Variance-Bias Ra�o 0.257 0.279 0.965 0.912 0.969 0.914 1.613 0.914 0.969 0.914 0.257 0.279

Percent Change from 

Raw ~ ~ 109.658 109.658 109.524 109.524 109.524 109.524 109.524 109.524 100.000 100.000

SVM Total Loss 0.437 0.437 0.441 0.441 0.460 0.460 0.460 0.460 0.459 0.459 0.437 0.437

Bias 0.437 0.437 0.407 0.437 0.308 0.437 0.309 0.437 0.313 0.437 0.437 0.437

Variance 0.000 0.000 0.034 0.035 0.152 0.187 0.187 0.187 0.146 0.178 0.000 0.000

Noise 0.000 0.000 0.000 0.031 0.000 0.163 0.036 0.163 0.000 0.155 0.000 0.000

Variance-Bias Ra�o 0.000 0.000 0.083 0.080 0.493 0.428 0.606 0.428 0.468 0.408 0.000 0.000

Percent Change from 

Raw ~ ~ 101.023 101.023 105.432 105.432 105.403 105.403 105.171 105.171 100.000 100.000

Gradient Boos�ng Total Loss 0.465 0.465 0.521 0.521 0.521 0.521 0.521 0.521 0.521 0.521 0.465 0.465

Bias 0.303 0.473 0.298 0.563 0.299 0.563 0.299 0.563 0.299 0.563 0.303 0.473

Variance 0.162 0.241 0.222 0.334 0.222 0.334 0.334 0.334 0.222 0.334 0.162 0.241

Noise 0.000 0.250 0.000 0.376 0.000 0.376 0.112 0.376 0.000 0.376 0.000 0.250

Variance-Bias Ra�o 0.535 0.509 0.745 0.592 0.745 0.593 1.119 0.593 0.745 0.593 0.535 0.509

Percent Change from 

Raw ~ ~ 112.059 112.059 112.123 112.123 112.123 112.123 112.123 112.123 100.000 100.000

Neural Network Total Loss 0.478 0.475 0.492 0.492 0.487 0.485 0.486 0.488 0.484 0.486 0.476 0.480

Bias 0.253 0.437 0.248 0.440 0.249 0.437 0.247 0.437 0.250 0.437 0.258 0.437

Variance 0.225 0.325 0.245 0.429 0.238 0.383 0.383 0.383 0.234 0.390 0.218 0.353

Noise 0.000 0.286 0.000 0.377 0.000 0.334 0.144 0.331 0.000 0.341 0.000 0.309

Variance-Bias Ra�o 0.889 0.744 0.988 0.975 0.955 0.876 1.547 0.876 0.937 0.893 0.844 0.808

Percent Change from 

Raw ~ ~ 103.006 103.458 101.848 102.056 101.619 102.607 101.338 102.220 99.489 101.060

None Z-standard Min-Max MaxAbs (-1,1) Quan�le Upper Quar�le

TABLE A.4: Bias-Variance Decomposition Results for Ranked
Data with Binary Target
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Ranked Data with Continuous Target

Data Model Normaliza�on None Z-standard Min-Max MaxAbs (-1,1) Quan�le Upper Quar�le

Ranked - 

Con�nuous 

Target Linear Type of Loss MSE MSE MSE MSE MSE MSE

Total Loss 0.174 304375397009.301 3627820620136.140 3635081968755.210 3635123035407.580 0.174

Bias 0.174 304375397000.036 3627820620026.510 3635081968645.360 3635121515273.040 0.174

Variance 0.000 9.265 109.624 109.624 1520134.541 0.000

Noise 0.000 0.000 0.006 0.226 0.001 0.000

Variance-Bias Ra�o 0.000 0.000 0.000 0.000 0.000 0.000

Percent Change from 

Raw ~ 175139389533788.000 2087469273113810.000 2091647495719290.000 2091671125712040.000 100.000

Decision Tree

Total Loss 6464.023 3058180.695 3058180.695 3058180.695 3058180.695 6421.793

Bias 959.928 3055675.410 3055675.410 3055675.410 3055675.410 1113.417

Variance 5504.094 2505.285 2505.285 2505.285 2505.285 5308.376

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 5.734 0.001 0.001 0.001 0.001 4.768

Percent Change from 

Raw ~ 47310.799 47310.799 47310.799 47310.799 99.347

Random Forest Total Loss 102252.318 1283608.530 1283608.530 1283608.530 1283608.530 102252.318

Bias 84950.814 1277680.008 1277680.008 1277680.008 1277680.008 84950.814

Variance 17301.504 5928.522 5928.522 5928.522 5928.522 17301.504

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.204 0.005 0.005 0.005 0.005 0.204

Percent Change from 

Raw ~ 1255.334 1255.334 1255.334 1255.334 100.000

SVM Total Loss 468652.034 468824.111 468659.254 468659.354 468687.960 468652.034

Bias 467902.232 468167.990 467974.616 467974.484 467999.280 467902.232

Variance 749.803 656.121 684.638 684.638 688.680 749.803

Noise 0.000 0.000 0.000 0.232 0.000 0.000

Variance-Bias Ra�o 0.002 0.001 0.001 0.001 0.001 0.002

Percent Change from 

Raw ~ 100.037 100.002 100.002 100.008 100.000

Gradient Boos�ng Total Loss 10562.614 3087157.051 3087157.051 3087157.051 3087157.051 10562.614

Bias 3197.090 3083591.900 3083591.900 3083591.900 3083591.900 3197.090

Variance 7365.524 3565.151 3565.151 3565.151 3565.151 7365.524

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 2.304 0.001 0.001 0.001 0.001 2.304

Percent Change from 

Raw ~ 29227.208 29227.208 29227.208 29227.208 100.000

Neural Network Total Loss 0.175 304375382136.401 3627820444148.760 3635081654196.280 3635123003365.700 0.175

Bias 0.174 304375382127.117 3627820444038.680 3635081654084.160 3635121483216.140 0.174

Variance 0.001 9.284 110.079 110.079 1520149.555 0.001

Noise 0.000 0.000 0.000 2.041 0.005 0.000

Variance-Bias Ra�o 0.007 0.000 0.000 0.000 0.000 0.007

Percent Change from 

Raw ~ 173769104867507.000 2071136984781720.000 2075282438206230.000 2075306044609960.000 99.994

TABLE A.5: Bias-Variance Decomposition Results for Ranked
Data with Continuous Target
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Ranked Data with Poisson Target

Data Model Normaliza�on None Z-standard Min-Max MaxAbs (-1,1) Quan�le Upper Quar�le

Ranked - Poisson 

Target Poisson Regression Type of Loss MSE MSE MSE MSE MSE MSE

Total Loss 1.280 2.000E+18 8.871E+17 8.850E+17 9.325E+17 1.280

Bias 1.280 1.009E+18 2.303E+17 2.294E+17 2.537E+17 1.280

Variance 0.000 9.907E+17 6.568E+17 6.568E+17 6.788E+17 0.000

Noise 0.000 4.096E+03 0.000E+00 1.261E+15 1.024E+03 0.000

Variance-Bias Ra�o 0.000 9.816E-01 2.852E+00 2.863E+00 2.675E+00 0.000

Percent Change from 

Raw ~ 1.562E+20 6.929E+19 6.913E+19 7.284E+19 100.000

Decision Tree

Total Loss 2.418 2.276 2.270 2.270 2.270 2.305

Bias 1.318 1.325 1.320 1.320 1.320 1.320

Variance 1.100 0.950 0.950 0.950 0.950 0.985

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.834 0.717 0.719 0.719 0.719 0.746

Percent Change from 

Raw ~ 94.094 93.868 93.868 93.868 95.304

Random Forest Total Loss 1.505 1.307 1.307 1.307 1.307 1.505

Bias 1.396 1.279 1.279 1.279 1.279 1.396

Variance 0.108 0.028 0.028 0.028 0.028 0.108

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.077 0.022 0.022 0.022 0.022 0.077

Percent Change from 

Raw ~ 86.878 86.880 86.880 86.880 100.000

SVM Total Loss 1.281 1.434 1.553 1.553 1.559 1.281

Bias 1.280 1.339 1.398 1.398 1.401 1.280

Variance 0.001 0.096 0.155 0.155 0.159 0.001

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.001 0.071 0.111 0.111 0.113 0.001

Percent Change from 

Raw ~ 111.913 121.171 121.171 121.664 100.000

Gradient Boos�ng Total Loss 1.804 1.999 2.000 2.000 2.000 1.804

Bias 1.594 1.330 1.330 1.330 1.330 1.594

Variance 0.210 0.670 0.670 0.670 0.670 0.210

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.132 0.504 0.504 0.504 0.504 0.132

Percent Change from 

Raw ~ 110.831 110.855 110.855 110.855 100.000

Neural Network Total Loss 1.345E+00 3.224E+03 3.912E+04 3.922E+04 4.046E+04 1.346E+00

Bias 1.302E+00 2.120E+03 2.587E+04 2.594E+04 2.718E+04 1.302E+00

Variance 4.318E-02 1.105E+03 1.325E+04 1.325E+04 1.327E+04 4.328E-02

Noise 6.661E-15 0.000E+00 1.019E-10 3.600E+01 0.000E+00 0.000E+00

Variance-Bias Ra�o 3.317E-02 5.212E-01 5.121E-01 5.107E-01 4.882E-01 3.323E-02

Percent Change from 

Raw ~ 2.397E+05 2.908E+06 2.915E+06 3.007E+06 1.000E+02

TABLE A.6: Bias-Variance Decomposition Results for Ranked
Data with Poisson Target
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Categorical Data with Binary Target

Data Model Normaliza�on

Categorical - 

Binary 

Target Logis�c Type of Loss MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

Total Loss 0.473 0.473 0.476 0.476 0.473 0.473 0.473 0.473 0.473 0.473 0.473 0.473

Bias 0.281 0.447 0.266 0.447 0.281 0.447 0.281 0.447 0.281 0.447 0.281 0.447

Variance 0.192 0.282 0.209 0.322 0.192 0.282 0.282 0.282 0.192 0.282 0.192 0.282

Noise 0.000 0.256 0.000 0.293 0.000 0.256 0.090 0.256 0.000 0.256 0.000 0.256

Variance-Bias Ra�o 0.683 0.632 0.786 0.721 0.683 0.632 1.004 0.632 0.683 0.632 0.683 0.632

Percent Change from 

Raw ~ ~ 100.573 100.573 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Decision Tree

Total Loss 0.502 0.502 0.480 0.480 0.485 0.485 0.485 0.485 0.485 0.485 0.485 0.485

Bias 0.338 0.550 0.281 0.487 0.306 0.497 0.306 0.497 0.306 0.497 0.306 0.497

Variance 0.164 0.264 0.200 0.320 0.178 0.284 0.284 0.284 0.178 0.284 0.178 0.284

Noise 0.000 0.311 0.000 0.326 0.000 0.295 0.105 0.295 0.000 0.295 0.000 0.295

Variance-Bias Ra�o 0.484 0.479 0.710 0.657 0.582 0.571 0.926 0.571 0.582 0.571 0.582 0.571

Percent Change from 

Raw ~ ~ 95.636 95.636 96.508 96.508 96.508 96.508 96.508 96.508 96.508 96.508

Random Forest Total Loss 0.476 0.476 0.484 0.484 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476

Bias 0.288 0.450 0.282 0.487 0.288 0.450 0.288 0.450 0.288 0.450 0.288 0.450

Variance 0.187 0.272 0.201 0.311 0.187 0.272 0.272 0.272 0.187 0.272 0.187 0.272

Noise 0.000 0.247 0.000 0.314 0.000 0.247 0.085 0.247 0.000 0.247 0.000 0.247

Variance-Bias Ra�o 0.649 0.605 0.714 0.638 0.649 0.605 0.944 0.605 0.649 0.605 0.649 0.605

Percent Change from 

Raw ~ ~ 101.709 101.709 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

SVM Total Loss 0.476 0.476 0.473 0.473 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476

Bias 0.288 0.447 0.285 0.437 0.288 0.447 0.288 0.447 0.288 0.447 0.288 0.447

Variance 0.188 0.275 0.187 0.285 0.188 0.275 0.275 0.275 0.188 0.275 0.188 0.275

Noise 0.000 0.246 0.000 0.249 0.000 0.246 0.087 0.246 0.000 0.246 0.000 0.246

Variance-Bias Ra�o 0.653 0.616 0.656 0.652 0.653 0.616 0.957 0.616 0.653 0.616 0.653 0.616

Percent Change from 

Raw ~ ~ 99.398 99.398 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Gradient Boos�ng Total Loss 0.483 0.483 0.496 0.496 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483

Bias 0.305 0.447 0.326 0.500 0.305 0.447 0.305 0.447 0.305 0.447 0.305 0.447

Variance 0.178 0.284 0.170 0.234 0.178 0.284 0.284 0.284 0.178 0.284 0.178 0.284

Noise 0.000 0.248 0.000 0.238 0.000 0.248 0.106 0.248 0.000 0.248 0.000 0.248

Variance-Bias Ra�o 0.585 0.635 0.521 0.469 0.585 0.635 0.932 0.635 0.585 0.635 0.585 0.635

Percent Change from 

Raw ~ ~ 102.711 102.711 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Neural Network Total Loss 0.491 0.490 0.496 0.496 0.491 0.490 0.491 0.490 0.491 0.491 0.490 0.490

Bias 0.248 0.447 0.248 0.447 0.249 0.447 0.249 0.447 0.249 0.447 0.249 0.450

Variance 0.242 0.419 0.249 0.468 0.242 0.418 0.418 0.418 0.242 0.422 0.241 0.418

Noise 0.000 0.376 0.000 0.419 0.000 0.375 0.177 0.375 0.000 0.377 0.000 0.378

Variance-Bias Ra�o 0.975 0.939 1.005 1.048 0.973 0.936 1.676 0.936 0.974 0.944 0.970 0.928

Percent Change from 

Raw ~ ~ 101.214 101.205 100.004 99.975 100.041 100.001 100.097 100.151 99.941 99.996

None Z-standard Min-Max MaxAbs (-1,1) Quan�le Upper Quar�le

TABLE A.7: Bias-Variance Decomposition Results for
Categorical Data with Binary Target
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Categorical Data with Continuous Target

Data Model Normaliza�on None Z-standard Min-Max MaxAbs (-1,1) Quan�le Upper Quar�le

Categorical - 

Con�nuous 

Target Linear Type of Loss MSE MSE MSE MSE MSE MSE

Total Loss 0.243 3414987786139060000.000 0.243 0.243 12972148828.537 0.243

Bias 0.241 2518113273062070000.000 0.241 0.241 27556466.022 0.241

Variance 0.003 896874513076987000.000 0.003 0.003 12944592362.515 0.003

Noise 0.000 3584.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.011 0.356 0.011 0.011 469.748 0.011

Percent Change from 

Raw ~ 1403381296822710000000.000 100.000 100.000 5330874423463.480 100.020

Decision Tree

Total Loss 0.245 1.325 0.243 0.243 0.243 0.243

Bias 0.239 1.198 0.240 0.240 0.240 0.240

Variance 0.006 0.126 0.003 0.003 0.003 0.003

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.025 0.105 0.013 0.013 0.013 0.013

Percent Change from 

Raw ~ 540.783 99.133 99.133 99.133 99.133

Random Forest Total Loss 0.364 1.605 0.364 0.364 0.364 0.364

Bias 0.350 1.489 0.350 0.350 0.350 0.350

Variance 0.013 0.116 0.013 0.013 0.013 0.013

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.038 0.078 0.038 0.038 0.038 0.038

Percent Change from 

Raw ~ 441.086 100.000 100.000 100.000 100.000

SVM Total Loss 0.242 0.689 0.242 0.242 0.242 0.242

Bias 0.238 0.689 0.238 0.238 0.238 0.238

Variance 0.004 0.000 0.004 0.004 0.004 0.004

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.016 0.000 0.016 0.016 0.016 0.017

Percent Change from 

Raw ~ 284.707 100.000 100.000 100.000 99.918

Gradient Boos�ng Total Loss 0.243 2.096 0.243 0.243 0.243 0.243

Bias 0.240 2.096 0.240 0.240 0.240 0.240

Variance 0.003 0.000 0.003 0.003 0.003 0.003

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.012 0.000 0.012 0.012 0.012 0.012

Percent Change from 

Raw ~ 862.207 100.000 100.000 100.000 100.000

Neural Network Total Loss 0.244 0.792 0.244 0.244 0.244 0.244

Bias 0.241 0.623 0.241 0.241 0.241 0.241

Variance 0.002 0.169 0.002 0.002 0.002 0.002

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.010 0.271 0.010 0.010 0.010 0.010

Percent Change from 

Raw ~ 325.239 100.000 100.041 100.020 99.980

TABLE A.8: Bias-Variance Decomposition Results for
Categorical Data with Continuous Target
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Categorical Data with Poisson Target

Data Model Normaliza�on None Z-standard Min-Max MaxAbs (-1,1) Quan�le Upper Quar�le

Categorical - 

Poisson Target Poisson Regression Type of Loss MSE MSE MSE MSE MSE MSE

Total Loss 1.753 1.748 1.753 1.753 1.753 1.753

Bias 1.682 1.673 1.682 1.682 1.682 1.682

Variance 0.071 0.074 0.071 0.071 0.071 0.071

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.042 0.044 0.042 0.042 0.042 0.042

Percent Change from 

Raw ~ 99.698 100.000 100.000 100.000 100.000

Decision Tree

Total Loss 1.559 1.591 1.499 1.499 1.499 1.499

Bias 1.351 1.435 1.314 1.314 1.314 1.314

Variance 0.208 0.157 0.185 0.185 0.185 0.185

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.154 0.109 0.141 0.141 0.141 0.141

Percent Change from 

Raw ~ 102.089 96.164 96.164 96.164 96.164

Random Forest Total Loss 1.581 1.661 1.581 1.581 1.581 1.581

Bias 1.434 1.559 1.434 1.434 1.434 1.434

Variance 0.147 0.102 0.147 0.147 0.147 0.147

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.103 0.066 0.103 0.103 0.103 0.103

Percent Change from 

Raw ~ 105.064 100.000 100.000 100.000 100.000

SVM Total Loss 1.754 1.783 1.754 1.754 1.754 1.754

Bias 1.685 1.740 1.685 1.685 1.685 1.685

Variance 0.069 0.043 0.069 0.069 0.069 0.069

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.041 0.025 0.041 0.041 0.041 0.041

Percent Change from 

Raw ~ 101.675 100.000 100.000 100.000 100.000

Gradient Boos�ng Total Loss 1.521 1.544 1.521 1.521 1.521 1.521

Bias 1.343 1.378 1.343 1.343 1.343 1.343

Variance 0.178 0.166 0.178 0.178 0.178 0.178

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.133 0.121 0.133 0.133 0.133 0.133

Percent Change from 

Raw ~ 101.547 100.000 100.000 100.000 100.000

Neural Network Total Loss 1.554 1.525 1.554 1.554 1.553 1.554

Bias 1.405 1.301 1.405 1.405 1.404 1.405

Variance 0.149 0.224 0.149 0.149 0.149 0.149

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.106 0.172 0.106 0.106 0.106 0.106

Percent Change from 

Raw ~ 98.134 100.007 99.993 99.947 99.980

TABLE A.9: Bias-Variance Decomposition Results for
Categorical Data with Poisson Target
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Mixed Data with Binary Target

Model Normaliza�on

Logis�c Type of Loss MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

Total Loss 0.499 0.499 0.499 0.499 0.499 0.499 0.497 0.497 0.499 0.499 0.496 0.496

Bias 0.311 0.510 0.250 0.480 0.250 0.480 0.253 0.480 0.250 0.480 0.303 0.477

Variance 0.188 0.286 0.249 0.474 0.250 0.479 0.479 0.421 0.249 0.471 0.193 0.297

Noise 0.000 0.297 0.000 0.455 0.000 0.460 0.235 0.404 0.000 0.452 0.000 0.278

Variance-Bias Ra�o 0.605 0.561 0.999 0.989 1.000 0.997 1.891 0.877 0.998 0.982 0.638 0.623

Percent Change from 

Raw ~ ~ 99.962 99.962 99.988 99.988 99.521 99.521 99.931 99.931 99.254 99.254

Decision Tree

Total Loss 0.479 0.479 0.504 0.504 0.503 0.503 0.503 0.503 0.503 0.503 0.492 0.492

Bias 0.267 0.473 0.268 0.520 0.267 0.520 0.267 0.520 0.267 0.520 0.287 0.470

Variance 0.212 0.336 0.236 0.387 0.236 0.389 0.389 0.389 0.236 0.389 0.204 0.317

Noise 0.000 0.330 0.000 0.403 0.000 0.405 0.153 0.405 0.000 0.405 0.000 0.296

Variance-Bias Ra�o 0.793 0.709 0.879 0.744 0.884 0.747 1.455 0.747 0.884 0.747 0.710 0.675

Percent Change from 

Raw ~ ~ 105.113 105.113 104.978 104.978 104.978 104.978 104.978 104.978 102.570 102.570

Random Forest Total Loss 0.503 0.503 0.487 0.487 0.490 0.490 0.490 0.490 0.490 0.490 0.503 0.503

Bias 0.294 0.510 0.357 0.480 0.353 0.480 0.353 0.480 0.353 0.480 0.295 0.510

Variance 0.209 0.329 0.129 0.153 0.136 0.165 0.165 0.165 0.136 0.165 0.209 0.329

Noise 0.000 0.336 0.000 0.146 0.000 0.155 0.028 0.155 0.000 0.155 0.000 0.336

Variance-Bias Ra�o 0.709 0.646 0.362 0.319 0.386 0.343 0.466 0.343 0.386 0.343 0.709 0.646

Percent Change from 

Raw ~ ~ 96.736 96.736 97.287 97.287 97.287 97.287 97.287 97.287 100.023 100.023

SVM Total Loss 0.504 0.504 0.484 0.484 0.484 0.484 0.489 0.489 0.482 0.482 0.505 0.505

Bias 0.309 0.533 0.387 0.480 0.396 0.480 0.316 0.480 0.441 0.480 0.311 0.520

Variance 0.194 0.299 0.097 0.109 0.088 0.097 0.097 0.097 0.041 0.043 0.194 0.299

Noise 0.000 0.328 0.000 0.105 0.000 0.093 0.076 0.088 0.000 0.041 0.000 0.314

Variance-Bias Ra�o 0.628 0.560 0.251 0.227 0.221 0.202 0.307 0.202 0.093 0.090 0.624 0.575

Percent Change from 

Raw ~ ~ 96.131 96.131 96.036 96.036 97.036 97.036 95.607 95.607 100.269 100.269

Gradient Boos�ng Total Loss 0.507 0.507 0.503 0.503 0.505 0.505 0.505 0.505 0.505 0.505 0.507 0.507

Bias 0.318 0.523 0.257 0.537 0.260 0.523 0.260 0.523 0.260 0.523 0.318 0.523

Variance 0.189 0.286 0.246 0.447 0.245 0.437 0.437 0.437 0.245 0.437 0.189 0.286

Noise 0.000 0.303 0.000 0.481 0.000 0.456 0.192 0.456 0.000 0.456 0.000 0.302

Variance-Bias Ra�o 0.595 0.547 0.960 0.833 0.940 0.835 1.680 0.835 0.940 0.835 0.594 0.546

Percent Change from 

Raw ~ ~ 99.241 99.241 99.599 99.599 99.599 99.599 99.599 99.599 100.082 100.082

Neural Network Total Loss 0.498 0.498 0.498 0.499 0.499 0.499 0.499 0.499 0.499 0.498 0.497 0.497

Bias 0.250 0.480 0.250 0.480 0.250 0.480 0.250 0.480 0.250 0.480 0.251 0.480

Variance 0.248 0.437 0.248 0.462 0.249 0.478 0.478 0.478 0.250 0.462 0.246 0.439

Noise 0.000 0.419 0.000 0.443 0.000 0.459 0.228 0.459 0.000 0.444 0.000 0.422

Variance-Bias Ra�o 0.992 0.910 0.993 0.962 0.998 0.996 1.915 0.996 1.000 0.963 0.982 0.915

Percent Change from 

Raw ~ ~ 99.986 100.167 100.084 100.286 100.183 100.286 100.181 100.149 99.700 99.912

None Z-standard Min-Max MaxAbs (-1,1) Quan�le Upper Quar�le

TABLE A.10: Bias-Variance Decomposition Results for Mixed
Data with Binary Target
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Mixed Data with Continuous Target

Data Model Normaliza�on None Z-standard Min-Max MaxAbs (-1,1) Quan�le Upper Quar�le

Mixed Data - 

Con�nuous 

Target Linear Type of Loss MSE MSE MSE MSE MSE MSE

Total Loss 0.367 3086898153055320000.000 5568986.309 2121588770.884 1895990182.853 0.363

Bias 0.362 2060070195326140000.000 5568970.874 2121584456.477 886.312 0.355

Variance 0.005 1026827957729170000.000 15.435 15.435 1895989296.541 0.008

Noise 0.000 10240.000 0.000 4298.972 0.000 0.000

Variance-Bias Ra�o 0.014 0.498 0.000 0.000 2139189.427 0.022

Percent Change from 

Raw ~ 841116717750002000000.000 1517435060.458 578089621005.122 516618612087.659 98.992

Decision Tree

Total Loss 0.955 74.278 74.222 74.222 74.222 1.193

Bias 0.472 73.880 73.821 73.817 73.821 0.717

Variance 0.483 0.398 0.401 0.401 0.401 0.476

Noise 0.000 0.000 0.000 0.004 0.000 0.000

Bias-Variance Ra�o 1.023 0.005 0.005 0.005 0.005 0.664

Percent Change from 

Raw ~ 7777.318 7771.442 7771.406 7771.442 124.898

Random Forest Total Loss 3.925 23.205 23.205 23.205 23.205 3.921

Bias 3.506 22.923 22.923 22.923 22.923 3.502

Variance 0.419 0.282 0.282 0.282 0.282 0.419

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Bias-Variance Ra�o 0.120 0.012 0.012 0.012 0.012 0.120

Percent Change from 

Raw ~ 591.191 591.191 591.191 591.191 99.893

SVM Total Loss 0.816 11.521 11.548 11.528 12.201 0.831

Bias 0.783 11.519 11.528 11.521 11.952 0.801

Variance 0.032 0.002 0.021 0.021 0.250 0.031

Noise 0.000 0.000 0.000 0.014 0.000 0.000

Bias-Variance Ra�o 0.041 0.000 0.002 0.002 0.021 0.038

Percent Change from 

Raw ~ 1412.698 1416.026 1413.574 1496.065 101.955

Gradient Boos�ng Total Loss 1.695 59.055 62.797 62.806 62.797 1.694

Bias 1.154 58.342 62.004 62.013 62.004 1.151

Variance 0.541 0.712 0.792 0.792 0.792 0.543

Noise 0.000 0.000 0.000 0.001 0.000 0.000

Bias-Variance Ra�o 0.469 0.012 0.013 0.013 0.013 0.472

Percent Change from 

Raw ~ 3483.593 3704.328 3704.895 3704.328 99.940

Neural Network Total Loss 0.366 172936.383 5567736.822 2092341169.038 1980462.195 0.425

Bias 0.359 172879.121 5567709.809 2077346984.312 1980266.673 0.355

Variance 0.007 57.262 27.013 27.013 195.522 0.070

Noise 0.000 0.000 0.000 14994157.713 0.000 0.000

Bias-Variance Ra�o 0.020 0.000 0.000 0.000 0.000 0.198

Percent Change from 

Raw ~ 47277162.892 1522101918.052 572001983668.337 541416629.719 116.261

TABLE A.11: Bias-Variance Decomposition Results for Mixed
Data with Continuous Target
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Mixed Data with Poisson Target

Data Model Normaliza�on None Z-standard Min-Max MaxAbs (-1,1) Quan�le Upper Quar�le

Categorical - 

Con�nuous 

Target Poisson Regression Type of Loss MSE MSE MSE MSE MSE MSE

Total Loss 1.929 631.554 2.208 2.070 6.928 1.929

Bias 1.743 6.792 1.801 1.928 1.271 1.740

Variance 0.186 624.762 0.407 0.407 5.657 0.188

Noise 0.000 0.000 0.000 0.264 0.000 0.000

Variance-Bias Ra�o 0.107 91.989 0.226 0.211 4.452 0.108

Percent Change from 

Raw ~ 32734.401 114.423 107.289 359.076 99.957

Decision Tree

Total Loss 2.087 2.127 2.137 2.140 2.137 2.119

Bias 1.123 1.199 1.213 1.212 1.213 1.264

Variance 0.964 0.927 0.924 0.924 0.924 0.855

Noise 0.000 0.000 0.000 0.004 0.000 0.000

Variance-Bias Ra�o 0.859 0.773 0.762 0.762 0.762 0.677

Percent Change from 

Raw ~ 101.899 102.382 102.521 102.382 101.557

Random Forest Total Loss 1.820 2.129 2.113 2.113 2.113 1.821

Bias 1.608 2.029 1.997 1.997 1.997 1.609

Variance 0.212 0.100 0.116 0.116 0.116 0.212

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.132 0.049 0.058 0.058 0.058 0.132

Percent Change from 

Raw ~ 116.956 116.100 116.100 116.100 100.040

SVM Total Loss 1.940 2.029 2.201 2.247 2.188 1.938

Bias 1.775 1.865 2.157 2.244 2.133 1.771

Variance 0.165 0.164 0.044 0.044 0.055 0.166

Noise 0.000 0.000 0.000 0.041 0.000 0.000

Variance-Bias Ra�o 0.093 0.088 0.020 0.020 0.026 0.094

Percent Change from 

Raw ~ 104.577 113.429 115.807 112.765 99.867

Gradient Boos�ng Total Loss 1.746 2.042 2.000 2.001 2.000 1.746

Bias 1.531 1.876 1.787 1.787 1.787 1.530

Variance 0.216 0.166 0.213 0.213 0.213 0.216

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.141 0.089 0.119 0.119 0.119 0.141

Percent Change from 

Raw ~ 116.930 114.528 114.553 114.528 99.966

Neural Network Total Loss 1.892 50.960 2168.995 531230.373 508.503 1.882

Bias 1.711 23.142 938.748 185620.790 157.692 1.708

Variance 0.181 27.817 1230.247 1230.247 350.811 0.175

Noise 0.000 0.000 0.000 344379.336 0.000 0.000

Variance-Bias Ra�o 0.106 1.202 1.311 0.007 2.225 0.102

Percent Change from 

Raw ~ 2693.431 114640.142 28077665.821 26876.443 99.497

TABLE A.12: Bias-Variance Decomposition Results for Mixed
Data with Poisson Target
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A.0.2 Benchmark Results

Wine Quality Data with Binary Target

Data Model Normaliza�on

Wine Quality 

with binary 

target Logis�c Type of Loss MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

Total Loss 0.038 0.038 0.058 0.058 0.100 0.100 0.166 0.166 0.062 0.062 0.038 0.038

Bias 0.037 0.038 0.036 0.037 0.037 0.037 0.047 0.037 0.034 0.037 0.037 0.037

Variance 0.000 0.001 0.022 0.023 0.063 0.068 0.144 0.140 0.028 0.030 0.001 0.001

Noise 0.000 0.001 0.000 0.002 0.000 0.005 0.024 0.011 0.000 0.005 0.000 0.001

Variance-Bias Ra�o 0.010 0.015 0.609 0.607 1.710 1.814 3.086 3.735 0.809 0.794 0.022 0.028

Percent Change from 

Raw ~ ~ 153.636 153.636 265.145 265.145 440.891 440.891 165.508 165.508 100.728 100.728

Decision Tree

Total Loss 0.061 0.061 0.772 0.772 0.696 0.696 0.684 0.684 0.688 0.688 0.061 0.061

Bias 0.030 0.036 0.608 0.963 0.491 0.963 0.475 0.963 0.481 0.963 0.030 0.036

Variance 0.031 0.040 0.164 0.207 0.205 0.289 0.046 0.301 0.207 0.295 0.031 0.040

Noise 0.000 0.015 0.000 0.398 0.000 0.556 0.162 0.579 0.000 0.569 0.000 0.015

Variance-Bias Ra�o 1.033 1.110 0.269 0.215 0.417 0.300 0.098 0.313 0.430 0.306 1.034 1.111

Percent Change from 

Raw ~ ~ 1259.483 1259.483 1135.652 1135.652 1116.508 1116.508 1123.095 1123.095 100.079 100.079

Random Forest Total Loss 0.039 0.039 0.822 0.822 0.762 0.762 0.754 0.754 0.749 0.749 0.039 0.039

Bias 0.031 0.034 0.692 0.963 0.593 0.963 0.581 0.963 0.572 0.963 0.031 0.033

Variance 0.008 0.011 0.129 0.153 0.169 0.217 0.127 0.225 0.177 0.230 0.008 0.011

Noise 0.000 0.006 0.000 0.294 0.000 0.417 0.047 0.433 0.000 0.444 0.000 0.005

Variance-Bias Ra�o 0.263 0.336 0.187 0.159 0.285 0.225 0.218 0.234 0.310 0.239 0.263 0.343

Percent Change from 

Raw ~ ~ 2087.923 2087.923 1936.937 1936.937 1916.597 1916.597 1902.651 1902.651 100.093 100.093

SVM Total Loss 0.038 0.038 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.038 0.038

Bias 0.035 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.035 0.037

Variance 0.003 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.004

Noise 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003

Variance-Bias Ra�o 0.094 0.118 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.086 0.107

Percent Change from 

Raw ~ ~ 97.849 97.849 97.849 97.849 97.849 97.849 97.849 97.849 100.306 100.306

Gradient Boos�ng Total Loss 0.046 0.046 0.939 0.939 0.927 0.927 0.934 0.934 0.920 0.920 0.046 0.046

Bias 0.035 0.042 0.913 0.963 0.891 0.963 0.905 0.963 0.876 0.963 0.035 0.042

Variance 0.011 0.015 0.026 0.027 0.036 0.038 0.003 0.030 0.044 0.046 0.011 0.015

Noise 0.000 0.011 0.000 0.051 0.000 0.073 0.027 0.059 0.000 0.089 0.000 0.011

Variance-Bias Ra�o 0.319 0.359 0.028 0.028 0.041 0.039 0.003 0.032 0.050 0.048 0.319 0.360

Percent Change from 

Raw ~ ~ 2032.992 2032.992 2007.584 2007.584 2022.734 2022.734 1991.394 1991.394 100.018 100.018

Neural Network Total Loss 0.038 0.038 0.406 0.406 0.387 0.387 0.526 0.526 0.178 0.178 0.038 0.038

Bias 0.037 0.037 0.173 0.137 0.154 0.037 0.279 0.791 0.049 0.037 0.037 0.037

Variance 0.001 0.001 0.232 0.389 0.234 0.378 0.000 0.460 0.129 0.154 0.001 0.001

Noise 0.000 0.001 0.000 0.121 0.000 0.028 0.247 0.725 0.000 0.013 0.000 0.001

Variance-Bias Ra�o 0.025 0.031 1.340 2.848 1.521 10.105 0.000 0.582 2.629 4.105 0.017 0.021

Percent Change from 

Raw ~ ~ 1072.621 1072.621 1023.751 1023.751 1391.955 1391.955 471.839 471.839 99.592 99.592

None Z-standard Min-Max MaxAbs (-1,1) Quan�le Transform Quan�le Normalize

TABLE A.13: Bias-Variance Decomposition Results for Wine
Quality Data with Binary Target
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Breast Cancer Data with Binary Target

Data Model Normaliza�on

Breast 

cancer data 

with binary 

target Logis�c Type of Loss MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

Total Loss 0.043 0.043 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.042 0.042

Bias 0.029 0.041 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.028 0.041

Variance 0.013 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.020

Noise 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019

Variance-Bias Ra�o 0.451 0.460 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.487 0.485

Percent Change from 

Raw ~ ~ 1465.753 1465.753 1465.753 1465.753 1465.753 1465.753 1465.753 1465.753 98.205 98.205

Decision Tree

Total Loss 0.091 0.090 0.601 0.601 0.514 0.514 0.488 0.488 0.536 0.536 0.090 0.090

Bias 0.047 0.064 0.566 0.626 0.284 0.620 0.239 0.374 0.322 0.626 0.046 0.064

Variance 0.043 0.061 0.035 0.037 0.231 0.370 0.370 0.465 0.214 0.313 0.044 0.061

Noise 0.000 0.036 0.000 0.062 0.000 0.475 0.121 0.352 0.000 0.403 0.000 0.036

Variance-Bias Ra�o 0.911 0.954 0.062 0.059 0.814 0.596 1.544 1.244 0.667 0.500 0.951 0.955

Percent Change from 

Raw ~ ~ 663.908 670.579 568.172 573.881 539.083 544.500 592.106 598.056 99.025 100.020

Random Forest Total Loss 0.059 0.059 0.626 0.626 0.551 0.551 0.498 0.498 0.590 0.590 0.059 0.059

Bias 0.048 0.058 0.626 0.626 0.449 0.626 0.289 0.626 0.512 0.626 0.048 0.058

Variance 0.011 0.015 0.000 0.000 0.102 0.124 0.124 0.313 0.078 0.086 0.011 0.015

Noise 0.000 0.015 0.000 0.000 0.000 0.199 0.085 0.440 0.000 0.122 0.000 0.015

Variance-Bias Ra�o 0.232 0.259 0.000 0.000 0.226 0.199 0.429 0.500 0.152 0.138 0.232 0.260

Percent Change from 

Raw ~ ~ 1061.508 1061.508 934.306 934.306 845.407 845.407 1000.397 1000.397 100.010 100.010

SVM Total Loss 0.374 0.374 0.625 0.625 0.422 0.422 0.405 0.405 0.608 0.608 0.374 0.374

Bias 0.374 0.374 0.622 0.626 0.268 0.374 0.297 0.374 0.543 0.626 0.374 0.374

Variance 0.000 0.000 0.003 0.003 0.154 0.190 0.190 0.123 0.065 0.070 0.000 0.000

Noise 0.000 0.000 0.000 0.004 0.000 0.142 0.082 0.092 0.000 0.088 0.000 0.000

Variance-Bias Ra�o 0.000 0.000 0.005 0.005 0.574 0.508 0.639 0.329 0.120 0.112 0.000 0.000

Percent Change from 

Raw ~ ~ 166.986 166.986 112.766 112.766 108.264 108.264 162.484 162.484 100.000 100.000

Gradient Boos�ng Total Loss 0.067 0.067 0.624 0.624 0.561 0.561 0.551 0.551 0.596 0.596 0.067 0.067

Bias 0.042 0.053 0.623 0.626 0.418 0.626 0.343 0.626 0.502 0.626 0.042 0.053

Variance 0.025 0.034 0.001 0.001 0.143 0.177 0.177 0.295 0.094 0.105 0.025 0.034

Noise 0.000 0.020 0.000 0.003 0.000 0.241 0.031 0.370 0.000 0.134 0.000 0.020

Variance-Bias Ra�o 0.594 0.653 0.002 0.002 0.341 0.282 0.515 0.471 0.187 0.168 0.594 0.653

Percent Change from 

Raw ~ ~ 938.808 938.808 843.573 843.573 827.809 827.809 896.325 896.325 100.053 100.053

Neural Network Total Loss 0.069 0.069 0.626 0.626 0.626 0.626 0.626 0.626 0.374 0.374 0.068 0.068

Bias 0.055 0.058 0.626 0.626 0.626 0.626 0.626 0.626 0.374 0.374 0.055 0.064

Variance 0.014 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.016

Noise 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012

Variance-Bias Ra�o 0.249 0.305 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.230 0.252

Percent Change from 

Raw ~ ~ 906.933 906.933 906.933 906.933 906.933 906.933 542.761 542.761 98.940 98.940

Quan�le NormalizeNone Z-standard Min-Max MaxAbs (-1,1) Quan�le Transform

TABLE A.14: Bias-Variance Decomposition Results for Breast
Cancer Data with Binary Target
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Voting Data with Binary Target

Data Model Normaliza�on

Vo�ng data 

with binary 

target Logis�c Type of Loss MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

Total Loss 0.058 0.058 0.112 0.112 0.058 0.058 0.058 0.058 0.058 0.058 0.059 0.059

Bias 0.046 0.061 0.078 0.099 0.046 0.061 0.046 0.061 0.046 0.061 0.048 0.061

Variance 0.011 0.017 0.034 0.045 0.011 0.017 0.017 0.017 0.011 0.017 0.011 0.016

Noise 0.000 0.020 0.000 0.032 0.000 0.020 0.005 0.020 0.000 0.020 0.000 0.018

Variance-Bias Ra�o 0.247 0.277 0.435 0.449 0.247 0.277 0.365 0.277 0.247 0.277 0.227 0.255

Percent Change from 

Raw ~ ~ 193.123 193.123 100.000 100.000 100.000 100.000 100.000 100.000 101.162 101.162

Decision Tree

Total Loss 0.066 0.066 0.063 0.063 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066

Bias 0.036 0.046 0.040 0.061 0.036 0.046 0.036 0.046 0.036 0.046 0.036 0.046

Variance 0.030 0.043 0.023 0.035 0.030 0.043 0.043 0.043 0.030 0.043 0.030 0.043

Noise 0.000 0.023 0.000 0.033 0.000 0.023 0.013 0.023 0.000 0.023 0.000 0.023

Variance-Bias Ra�o 0.853 0.942 0.567 0.577 0.816 0.942 1.182 0.942 0.816 0.942 0.816 0.942

Percent Change from 

Raw ~ ~ 96.100 95.646 100.475 100.000 100.475 100.000 100.475 100.000 100.475 100.000

Random Forest Total Loss 0.044 0.044 0.053 0.053 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044

Bias 0.031 0.038 0.041 0.046 0.031 0.038 0.031 0.038 0.031 0.038 0.031 0.038

Variance 0.012 0.018 0.012 0.017 0.012 0.018 0.018 0.018 0.012 0.018 0.012 0.018

Noise 0.000 0.012 0.000 0.010 0.000 0.012 0.005 0.012 0.000 0.012 0.000 0.012

Variance-Bias Ra�o 0.388 0.462 0.297 0.379 0.388 0.462 0.561 0.462 0.388 0.462 0.388 0.462

Percent Change from 

Raw ~ ~ 121.723 121.723 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

SVM Total Loss 0.052 0.052 0.054 0.054 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052

Bias 0.045 0.053 0.038 0.046 0.045 0.053 0.045 0.053 0.045 0.053 0.045 0.061

Variance 0.007 0.011 0.016 0.023 0.007 0.011 0.011 0.011 0.007 0.011 0.007 0.011

Noise 0.000 0.012 0.000 0.015 0.000 0.012 0.004 0.012 0.000 0.012 0.000 0.020

Variance-Bias Ra�o 0.162 0.208 0.427 0.510 0.162 0.208 0.247 0.208 0.162 0.208 0.163 0.184

Percent Change from 

Raw ~ ~ 102.883 102.883 100.000 100.000 100.000 100.000 100.000 100.000 99.649 99.649

Gradient Boos�ng Total Loss 0.056 0.056 0.058 0.058 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

Bias 0.033 0.046 0.039 0.046 0.033 0.046 0.033 0.046 0.033 0.046 0.033 0.046

Variance 0.022 0.032 0.019 0.028 0.022 0.032 0.032 0.032 0.022 0.032 0.022 0.032

Noise 0.000 0.022 0.000 0.016 0.000 0.022 0.009 0.022 0.000 0.022 0.000 0.022

Variance-Bias Ra�o 0.668 0.693 0.472 0.617 0.668 0.693 0.949 0.693 0.668 0.693 0.668 0.693

Percent Change from 

Raw ~ ~ 103.490 103.490 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Neural Network Total Loss 0.059 0.059 0.079 0.079 0.059 0.059 0.059 0.059 0.059 0.059 0.058 0.058

Bias 0.045 0.053 0.059 0.076 0.045 0.053 0.045 0.053 0.045 0.053 0.044 0.053

Variance 0.014 0.020 0.021 0.028 0.014 0.020 0.020 0.020 0.014 0.020 0.014 0.019

Noise 0.000 0.014 0.000 0.025 0.000 0.014 0.006 0.014 0.000 0.014 0.000 0.014

Variance-Bias Ra�o 0.312 0.372 0.353 0.362 0.312 0.372 0.442 0.372 0.312 0.372 0.307 0.348

Percent Change from 

Raw ~ ~ 134.324 134.324 100.000 100.000 100.000 100.000 100.000 100.000 98.049 98.049

Quan�le NormalizeNone Z-standard Min-Max MaxAbs (-1,1) Quan�le Transform

TABLE A.15: Bias-Variance Decomposition Results for
Congressional Voting Data with Binary Target
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Abalone Data with Binary Target

Data Model Normaliza�on

Abalone 

data with 

binary target Logis�c Type of Loss MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

Total Loss 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093

Bias 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093

Variance 0.000 0.000 0.000 0.000 0.000 0.000 0.144 0.000 0.000 0.000 0.000 0.000

Noise 0.000 0.000 0.000 0.000 0.000 0.000 0.144 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.000 0.000 0.000 0.000 0.000 0.000 1.542 0.000 0.000 0.000 0.000 0.000

Percent Change from 

Raw ~ ~ 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Decision Tree

Total Loss 0.145 0.145 0.102 0.102 0.230 0.230 0.252 0.252 0.391 0.391 0.145 0.145

Bias 0.079 0.108 0.091 0.093 0.098 0.133 0.111 0.156 0.174 0.160 0.079 0.108

Variance 0.066 0.097 0.011 0.012 0.131 0.197 0.046 0.206 0.217 0.374 0.066 0.097

Noise 0.000 0.060 0.000 0.004 0.000 0.101 0.095 0.110 0.000 0.143 0.000 0.060

Variance-Bias Ra�o 0.847 0.892 0.124 0.131 1.340 1.482 0.419 1.318 1.248 2.331 0.847 0.892

Percent Change from 

Raw ~ ~ 70.193 70.193 158.349 158.349 173.704 173.704 269.903 269.903 100.000 100.000

Random Forest Total Loss 0.108 0.108 0.093 0.093 0.122 0.122 0.127 0.127 0.149 0.149 0.108 0.108

Bias 0.081 0.100 0.093 0.093 0.077 0.093 0.082 0.093 0.079 0.093 0.081 0.100

Variance 0.027 0.037 0.000 0.000 0.045 0.056 0.127 0.055 0.070 0.079 0.027 0.037

Noise 0.000 0.030 0.000 0.000 0.000 0.027 0.081 0.021 0.000 0.023 0.000 0.030

Variance-Bias Ra�o 0.337 0.371 0.000 0.000 0.587 0.597 1.554 0.586 0.881 0.851 0.337 0.371

Percent Change from 

Raw ~ ~ 86.254 86.254 112.596 112.596 117.182 117.182 138.182 138.182 100.000 100.000

SVM Total Loss 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093

Bias 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093

Variance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Noise 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Percent Change from 

Raw ~ ~ 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Gradient Boos�ng Total Loss 0.103 0.103 0.094 0.094 0.171 0.171 0.213 0.213 0.237 0.237 0.103 0.103

Bias 0.081 0.093 0.093 0.093 0.086 0.117 0.109 0.166 0.105 0.114 0.081 0.093

Variance 0.021 0.028 0.001 0.001 0.085 0.120 0.003 0.150 0.132 0.184 0.021 0.028

Noise 0.000 0.018 0.000 0.000 0.000 0.066 0.102 0.102 0.000 0.061 0.000 0.018

Variance-Bias Ra�o 0.261 0.296 0.015 0.015 0.985 1.023 0.025 0.902 1.263 1.616 0.261 0.296

Percent Change from 

Raw ~ ~ 92.110 92.110 166.500 166.500 207.969 207.969 230.980 230.980 100.000 100.000

Neural Network Total Loss 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093

Bias 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093

Variance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Noise 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.001 0.001

Percent Change from 

Raw ~ ~ 99.989 99.989 99.985 99.985 99.987 99.987 100.166 100.166 100.055 100.055

Quan�le NormalizeNone Z-standard Min-Max MaxAbs (-1,1) Quan�le Transform

TABLE A.16: Bias-Variance Decomposition Results for Abalone
Data with Binary Target
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Arrhythmia Data with Binary Target

Data Model Normaliza�on

Arrhythmia 

data with 

binary target Logis�c Type of Loss MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

Total Loss 0.065 0.065 0.875 0.875 0.755 0.755 0.636 0.636 0.905 0.905 0.064 0.064

Bias 0.046 0.051 0.828 0.904 0.650 0.838 0.476 0.713 0.877 0.934 0.046 0.051

Variance 0.018 0.024 0.047 0.059 0.105 0.144 0.144 0.236 0.027 0.034 0.018 0.024

Noise 0.000 0.010 0.000 0.089 0.000 0.227 0.016 0.313 0.000 0.063 0.000 0.011

Variance-Bias Ra�o 0.398 0.459 0.057 0.065 0.161 0.172 0.302 0.331 0.031 0.036 0.395 0.457

Percent Change from 

Raw ~ ~ 1350.982 1350.982 1165.815 1165.815 983.032 983.032 1397.399 1397.399 98.683 98.683

Decision Tree

Total Loss 0.034 0.034 0.094 0.094 0.099 0.099 0.098 0.098 0.100 0.100 0.034 0.034

Bias 0.018 0.022 0.056 0.059 0.055 0.059 0.056 0.059 0.055 0.059 0.018 0.022

Variance 0.016 0.024 0.038 0.040 0.044 0.046 0.046 0.044 0.044 0.047 0.016 0.024

Noise 0.000 0.011 0.000 0.005 0.000 0.006 0.004 0.005 0.000 0.006 0.000 0.011

Variance-Bias Ra�o 0.907 1.071 0.691 0.682 0.796 0.790 0.834 0.754 0.798 0.791 0.907 1.071

Percent Change from 

Raw ~ ~ 274.608 274.608 290.841 290.841 286.111 286.111 291.056 291.056 100.000 100.000

Random Forest Total Loss 0.059 0.059 0.111 0.111 0.172 0.172 0.153 0.153 0.160 0.160 0.059 0.059

Bias 0.059 0.059 0.057 0.059 0.063 0.059 0.062 0.059 0.062 0.059 0.059 0.059

Variance 0.001 0.001 0.054 0.058 0.108 0.127 0.127 0.105 0.098 0.112 0.001 0.001

Noise 0.000 0.000 0.000 0.006 0.000 0.014 0.035 0.010 0.000 0.012 0.000 0.000

Variance-Bias Ra�o 0.013 0.014 0.937 0.980 1.708 2.153 2.057 1.782 1.594 1.911 0.013 0.014

Percent Change from 

Raw ~ ~ 186.609 186.609 289.307 289.307 258.218 258.218 268.824 268.824 100.000 100.000

SVM Total Loss 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059

Bias 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059

Variance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Noise 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Variance-Bias Ra�o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Percent Change from 

Raw ~ ~ 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Gradient Boos�ng Total Loss 0.033 0.033 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.033 0.033

Bias 0.019 0.022 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.019 0.022

Variance 0.014 0.022 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.014 0.022

Noise 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012

Variance-Bias Ra�o 0.768 1.018 0.036 0.036 0.046 0.046 0.046 0.048 0.047 0.047 0.768 1.018

Percent Change from 

Raw ~ ~ 184.039 184.039 185.689 185.689 185.823 185.823 185.800 185.800 100.000 100.000

Neural Network Total Loss 0.071 0.071 0.387 0.387 0.059 0.059 0.061 0.061 0.074 0.074 0.073 0.073

Bias 0.057 0.051 0.206 0.331 0.059 0.059 0.058 0.059 0.057 0.059 0.057 0.059

Variance 0.014 0.020 0.181 0.279 0.000 0.000 0.000 0.003 0.018 0.018 0.015 0.022

Noise 0.000 0.001 0.000 0.223 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.008

Variance-Bias Ra�o 0.251 0.387 0.880 0.843 0.000 0.000 0.000 0.044 0.309 0.303 0.268 0.370

Percent Change from 

Raw ~ ~ 547.100 547.100 83.160 83.160 86.268 86.268 104.927 104.927 102.682 102.682

Quan�le NormalizeNone Z-standard Min-Max MaxAbs (-1,1) Quan�le Transform

TABLE A.17: Bias-Variance Decomposition Results for
Arrhythmia Data with Binary Target
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Forest Fires Data with Continuous Target

Data Model Normaliza�on None Z-standard Min-Max MaxAbs (-1,1) Quan�le Transform Quan�le Normalize

Forest Fires Data 

- Con�nuous 

Target
Linear Type of Loss MSE MSE MSE MSE MSE MSE

Total Loss 8254.563 4636426.991 54418873.320 61656927.105 77782033.117 8254.563

Bias 8188.901 3419009.689 38494821.256 43230677.674 12450153.080 8188.901

Variance 65.662 1217417.301 15924052.064 15924052.064 65331880.037 65.662

Noise 0.000 0.000 0.000 2502197.367 0.000 0.000

Variance-Bias Ra�o 0.008 0.356 0.414 0.368 5.247 0.008

Percent Change from 

Raw ~ 56168.051 659258.104 746943.595 942291.388 100.000

Decision Tree

Total Loss 14564.197 174310.342 191218.064 191189.902 191069.504 14564.197

Bias 9705.018 67683.825 82269.473 82240.074 82166.683 9705.018

Variance 4859.179 106626.517 108948.592 108948.592 108902.820 4859.179

Noise 0.000 0.000 0.000 1.237 0.000 0.000

Bias-Variance Ra�o 0.501 1.575 1.324 1.325 1.325 0.501

Percent Change from 

Raw ~ 1196.841 1312.932 1312.739 1311.912 100.000

Random Forest Total Loss 9973.155 70512.566 83921.663 83911.156 83802.232 9973.155

Bias 9118.659 48292.165 60221.253 60210.717 60139.045 9118.659

Variance 854.497 22220.400 23700.410 23700.410 23663.187 854.497

Noise 0.000 0.000 0.000 0.029 0.000 0.000

Bias-Variance Ra�o 0.094 0.460 0.394 0.394 0.393 0.094

Percent Change from 

Raw ~ 707.024 841.476 841.370 840.278 100.000

SVM Total Loss 8527.384 8520.206 8540.229 8542.123 8535.867 8527.384

Bias 8527.287 8520.015 8539.941 8541.850 8535.546 8527.287

Variance 0.096 0.191 0.288 0.288 0.321 0.096

Noise 0.000 0.000 0.000 0.014 0.000 0.000

Bias-Variance Ra�o 0.000 0.000 0.000 0.000 0.000 0.000

Percent Change from 

Raw ~ 99.916 100.151 100.173 100.099 100.000

Gradient Boos�ng Total Loss 12412.847 152934.223 173769.259 173744.792 173578.379 12412.847

Bias 9842.247 87776.569 108617.796 108588.723 108475.548 9842.247

Variance 2570.601 65157.654 65151.463 65151.463 65102.831 2570.601

Noise 0.000 0.000 0.000 4.606 0.000 0.000

Bias-Variance Ra�o 0.261 0.742 0.600 0.600 0.600 0.261

Percent Change from 

Raw ~ 1232.064 1399.915 1399.717 1398.377 100.000

Neural Network Total Loss 8253.932 4636990.709 54421909.843 61660412.813 77784164.639 8253.828

Bias 8190.282 3419289.295 38495662.258 43234843.780 12450637.226 8190.207

Variance 63.650 1217701.414 15926247.585 15926247.585 65333527.413 63.621

Noise 0.000 0.000 0.000 2499321.449 0.000 0.000

Bias-Variance Ra�o 0.008 0.356 0.414 0.368 5.247 0.008

Percent Change from 

Raw ~ 56179.172 659345.259 747042.891 942389.202 99.999

TABLE A.18: Bias-Variance Decomposition Results for Forest
Fires Data with Continuous Target
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Solar Flares Data with Continuous Target

Data Model Normaliza�on None Z-standard Min-Max MaxAbs (-1,1) Quan�le Transform Quan�le Normalize

Solar Flare Data - 

Con�nuous 

Target Linear Type of Loss MSE MSE MSE MSE MSE MSE

Total Loss 0.376 0.457 0.376 0.376 0.376 0.376

Bias 0.346 0.454 0.345 0.346 0.346 0.345

Variance 0.030 0.002 0.031 0.031 0.030 0.031

Noise 0.000 0.000 0.000 0.001 0.000 0.000

Variance-Bias Ra�o 0.087 0.005 0.089 0.089 0.087 0.089

Percent Change from 

Raw ~ 121.569 100.043 100.000 100.000 100.127

Decision Tree

Total Loss 0.769 0.734 0.769 0.769 0.769 0.772

Bias 0.534 0.408 0.534 0.534 0.534 0.534

Variance 0.235 0.326 0.235 0.235 0.235 0.237

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Bias-Variance Ra�o 0.440 0.799 0.440 0.440 0.440 0.444

Percent Change from 

Raw ~ 95.427 100.000 100.000 100.000 100.413

Random Forest Total Loss 0.408 0.459 0.408 0.408 0.408 0.408

Bias 0.380 0.459 0.380 0.380 0.380 0.380

Variance 0.028 0.000 0.028 0.028 0.028 0.028

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Bias-Variance Ra�o 0.074 0.000 0.074 0.074 0.074 0.074

Percent Change from 

Raw ~ 112.494 100.000 100.000 100.000 99.989

SVM Total Loss 0.457 0.459 0.457 0.457 0.457 0.457

Bias 0.454 0.459 0.455 0.454 0.455 0.455

Variance 0.003 0.000 0.002 0.002 0.002 0.003

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Bias-Variance Ra�o 0.006 0.000 0.005 0.005 0.005 0.006

Percent Change from 

Raw ~ 100.520 100.094 100.000 100.094 100.018

Gradient Boos�ng Total Loss 0.475 0.495 0.474 0.475 0.475 0.474

Bias 0.386 0.452 0.386 0.386 0.386 0.386

Variance 0.089 0.043 0.089 0.089 0.089 0.089

Noise 0.000 0.000 0.000 0.000 0.000 0.000

Bias-Variance Ra�o 0.230 0.095 0.230 0.230 0.230 0.230

Percent Change from 

Raw ~ 104.234 99.950 100.000 100.019 99.971

Neural Network Total Loss 0.376 0.459 0.382 0.376 0.380 0.376

Bias 0.346 0.454 0.343 0.346 0.343 0.346

Variance 0.030 0.006 0.039 0.039 0.037 0.030

Noise 0.000 0.000 0.000 0.009 0.000 0.000

Bias-Variance Ra�o 0.087 0.012 0.114 0.114 0.107 0.087

Percent Change from 

Raw ~ 122.285 101.825 100.017 101.063 100.011

TABLE A.19: Bias-Variance Decomposition Results for Solar
Flares Data with Continuous Target
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Auto MPG Data with Continuous Target

Data Model Normaliza�on None Z-standard Min-Max MaxAbs (-1,1) Quan�le Transform Quan�le Normalize

Auto mpg Data - 

Con�nuous 

Target Linear Type of Loss MSE MSE MSE MSE MSE MSE

Total Loss 12.98046102 294549287 21.07621525 10679343815 1330291933 12.98015593

Bias 12.26544827 289704291.2 15.90522095 10498618797 1271499879 12.26513305

Variance 0.715012746 4844995.802 5.170994305 5.170994305 58792054.55 0.715022881

Noise 0.000 0.000 0.000 180725013.172 0.000 0.000

Variance-Bias Ra�o 0.058 0.017 0.325 0.000 0.046 0.058

Percent Change from 

Raw ~ 2269174312.476 162.369 82272453970.192 10248418231.961 99.998

Decision Tree

Total Loss 20.35952034 192.7351085 192.3863593 192.6548085 192.6548085 20.34683051

Bias 11.75359202 190.2749575 189.3929514 189.6552294 189.6552294 11.73801808

Variance 8.605928322 2.460151 2.993407966 2.993407966 2.999579076 8.608812432

Noise 0.000 0.000 0.000 0.006 0.000 0.000

Bias-Variance Ra�o 0.732 0.013 0.016 0.016 0.016 0.733

Percent Change from 

Raw ~ 946.658 944.945 946.264 946.264 99.938

Random Forest Total Loss 13.88021356 198.0505356 196.9833525 196.9741881 196.9799559 13.87697119

Bias 12.26761708 197.5658196 196.3927268 196.3792721 196.3848908 12.2658974

Variance 1.612596483 0.484716 0.59062578 0.59062578 0.595065085 1.611073788

Noise 0.000 0.000 0.000 0.004 0.000 0.000

Bias-Variance Ra�o 0.131 0.002 0.003 0.003 0.003 0.131

Percent Change from 

Raw ~ 1426.855 1419.167 1419.101 1419.142 99.977

SVM Total Loss 64.88569492 65.64744407 66.1892 65.76787458 65.50859322 64.88569492

Bias 64.42644 65.51012007 65.930896 65.32432358 65.23181822 64.42644

Variance 0.459254915 0.137324 0.258304 0.258304 0.276775 0.459254915

Noise 0.000 0.000 0.000 0.185 0.000 0.000

Bias-Variance Ra�o 0.007 0.002 0.004 0.004 0.004 0.007

Percent Change from 

Raw ~ 101.174 102.009 101.360 100.960 100.000

Gradient Boos�ng Total Loss 12.87477458 165.7410966 147.1753051 147.0851763 147.0084356 12.87114746

Bias 9.470313237 158.7233288 138.9423038 138.8274936 138.7787025 9.467715856

Variance 3.404461339 7.017767822 8.233001305 8.233001305 8.22973311 3.403431602

Noise 0.000 0.000 0.000 0.025 0.000 0.000

Bias-Variance Ra�o 0.359 0.044 0.059 0.059 0.059 0.359

Percent Change from 

Raw ~ 1287.332 1143.129 1142.429 1141.833 99.972

Neural Network Total Loss 19.39505593 295027446.4 5028226627 10679463722 1330243795 19.17344576

Bias 16.20878464 290183140.4 4945080967 10498761102 1271459586 16.07586747

Variance 3.186271297 4844306.03 83145660.64 83145660.64 58784209.06 3.097578297

Noise 0.000 0.000 0.000 97556959.755 0.000 0.000

Bias-Variance Ra�o 0.197 0.017 0.017 0.008 0.046 0.193

Percent Change from 

Raw ~ 1521147695.846 25925300988.752 55062814767.424 6858674704.191 98.857

TABLE A.20: Bias-Variance Decomposition Results for Auto
MPG Data with Continuous Target
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Figures

B.0.1 Simulations
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Bivariate Normal Data with Binary Target
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FIGURE B.1: Bias-Variance Decomposition for Bivariate
Normal Data with Binary Target
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Bivariate Normal Data with Continuous Target
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FIGURE B.2: Bias-Variance Decomposition for Bivariate
Normal Data with Continuous Target
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Bivariate Normal Data with Poisson Target
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FIGURE B.3: Bias-Variance Decomposition for Bivariate
Normal Data with Poisson Target
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Ranked Data with Binary Target
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FIGURE B.4: Bias-Variance Decomposition for Ranked Data
with Binary Target



150 Appendix B. Figures

Ranked Data with Continuous Target
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FIGURE B.5: Bias-Variance Decomposition for Ranked Data
with Continuous Target
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Ranked Data with Poisson Target
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FIGURE B.6: Bias-Variance Decomposition for Ranked Data
with Poisson Target
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Categorical Data with Binary Target
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FIGURE B.7: Bias-Variance Decomposition for Categorical Data
with Binary Target
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Categorical Data with Continuous Target
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FIGURE B.8: Bias-Variance Decomposition for Categorical Data
with Continuous Target
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Categorical Data with Poisson Target
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FIGURE B.9: Bias-Variance Decomposition for Categorical Data
with Poisson Target



Appendix B. Figures 155

Mixed Data with Binary Target
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FIGURE B.10: Bias-Variance Decomposition for Mixed Data
with Binary Target
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Mixed Data with Continuous Target
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FIGURE B.11: Bias-Variance Decomposition for Mixed Data
with Continuous Target
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Mixed Data with Poisson Target
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FIGURE B.12: Bias-Variance Decomposition for Mixed Data
with Poisson Target
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B.0.2 Benchmark Data Results

Wine Quality Data
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FIGURE B.13: Bias-Variance Decomposition for Wine Quality
Data with Binary Target
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Breast Cancer Data
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FIGURE B.14: Bias-Variance Decomposition for Breast Cancer
Data with Binary Target
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Voting Data
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FIGURE B.15: Bias-Variance Decomposition for Congressional
Voting Data with Binary Target
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Abalone Data

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

None Z-standard Min-Max MaxAbs (-1,1) Quantile Transform Quantile Normalize

TO
TA

L 
ER

R
O

R

TYPE OF NORMALIZATION

Bias-Variance Decomposition for Abalone Data - Logistic Regression

Total Loss Bias Variance Noise

(A) Logistic Regression

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

None Z-standard Min-Max MaxAbs (-1,1) Quantile Transform Quantile Normalize

TO
TA

L 
ER

R
O

R

TYPE OF NORMALIZATION

Bias-Variance Decomposition for Abalone Data - Decision Tree

Total Loss Bias Variance Noise

(B) Decision Tree

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

None Z-standard Min-Max MaxAbs (-1,1) Quantile Transform Quantile Normalize

TO
TA

L 
ER

R
O

R

TYPE OF NORMALIZATION

Bias-Variance Decomposition for Abalone Data - Random Forest

Total Loss Bias Variance Noise

(C) Random Forest

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

None Z-standard Min-Max MaxAbs (-1,1) Quantile Transform Quantile Normalize

TO
TA

L 
ER

R
O

R

TYPE OF NORMALIZATION

Bias-Variance Decomposition for Abalone Data - SVM

Total Loss Bias Variance Noise

(D) Support Vector Machine (SVM)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

None Z-standard Min-Max MaxAbs (-1,1) Quantile Transform Quantile Normalize

TO
TA

L 
ER

R
O

R

TYPE OF NORMALIZATION

Bias-Variance Decomposition for Abalone Data - Gradient Boosting

Total Loss Bias Variance Noise

(E) Gradient Boosting Regression (GBR)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1 MSE 0-1

None Z-standard Min-Max MaxAbs (-1,1) Quantile Transform Quantile Normalize

TO
TA

L 
ER

R
O

R

TYPE OF NORMALIZATION

Bias-Variance Decomposition for Abalone Data - Neural Network

Total Loss Bias Variance Noise

(F) Neural Network

FIGURE B.16: Bias-Variance Decomposition for Abalone Data
with Binary Target
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Arrhythmia Data
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FIGURE B.17: Bias-Variance Decomposition for Arrhythmia
Data with Binary Target
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Forest Fires Data
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## ---------------------------
##
## Script name: CreateSimData.R
##
## Purpose of script: This script simulates 11 types of datasets for
dissertation simulation study:
## bivariate normal (continuous and binary outcome), rank-based (continuous
and binary outcome), 
## categorical (continuous and binary outcome), mixed data (continuous and
binary outcome), 
## poisson (bivariate normal, categorical, ranked, mixed data with poisson
response)
## 
## Output of script: 9 simulated datasets
##
## Author: Jessica M. Rudd, MPH
##
## Date Created: 2020-03-16
##
## Copyright (c) Jessica M. Rudd 2020
## Email: jess@irudd.com
##
## ---------------------------
##
## Notes:
##   
##
## ---------------------------

## set working directory for Mac and PC

setwd("C:/Users/jess/OneDrive/Grad School/Dissertation/Programs/Simulations")
# Tim's working directory (PC)

## ---------------------------

options(scipen = 6, digits = 4) # I prefer to view outputs in non-scientific
notation
#memory.limit(30000000)     # this is needed on some PCs to increase memory
allowance, but has no impact on macs.

## load up the packages we will need:  (uncomment as required)
library(dplyr)
library(MASS)
library(arm)
library(Hmisc)
library(dummies)

# number of simulated observations
n <- 1000

# Target parameters for univariate normal distributions
rho <- 0.0
mu1 <- 10
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s1 <- 1
mu2 <- 150
s2 <- 2

#Linear coefficients
b0 <- 1
b1 <- 1.5
b2 <- 2

#Simulate bivariate normal data with binary outcome
set.seed(123)

sim_bvn_bin <- function() {
  # Create dependent variables
  x1 <- mvrnorm(n, mu1, s1)
  x2 <- mvrnorm(n, mu2, s2)
  eps = rnorm(n = n, mean = 0, sd = .1) #irreducible error
  pr = invlogit((b0 + b1*x1 + b2*x2 + eps)*.001)
  Y = rbinom(n, 1, pr/2)

  bivarNorm_bin <- data.frame(Y = Y, x1 = x1, x2 = x2)
  #Save as CSV
  write.csv(bivarNorm_bin,'bivarNorm_bin.csv')
  return(bivarNorm_bin)
}

C.1. Create Simulated Datasets 169



Bias-Variance Decomposition Sample

May 10, 2020

[ ]: #from imblearn.datasets import fetch_datasets
from sklearn import preprocessing
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import itertools
#from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn import svm
from sklearn.svm import SVC
#from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
#from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
#from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import BaggingRegressor
from sklearn.neural_network import MLPRegressor
import csv
import time
import os
import logging

import json
from datapackage import Package

#package = Package('https://datahub.io/machine-learning/abalone/datapackage.
↪→json')

#package = Package('https://datahub.io/machine-learning/arrhythmia/datapackage.
↪→json')

[ ]: logging.basicConfig(filename="mse_decomp_standard_bivarNormCont.log",␣
↪→level=logging.DEBUG)

1
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[ ]: bivarNorm_cont = pd.read_csv('C:/Users/jess/OneDrive/Grad School/Dissertation/
↪→Programs/Simulations/bivarNorm_cont.csv')

[ ]: bivarNorm_cont.head()

[ ]: bivarNorm_cont.describe()

0.0.1 Bias-Variance decomposition adapted from mlxtend package created by Sebas-
tian Raschka (https://github.com/rasbt)

[ ]: def _draw_bootstrap_sample(rng, X, y):
sample_indices = np.arange(X.shape[0])
bootstrap_indices = rng.choice(sample_indices,

size=sample_indices.shape[0],
replace=True)

return X[bootstrap_indices], y[bootstrap_indices]

[ ]: def bias_variance_decomp_mse(estimator, X_train, y_train, X_test, y_test,
loss='0-1_loss', num_rounds=200, random_seed=None):

supported = ['0-1_loss', 'mse']

if loss not in supported:
raise NotImplementedError('loss must be one of the following: %s' %

supported)

rng = np.random.RandomState(random_seed)

all_pred = np.zeros((num_rounds, y_test.shape[0]), dtype=np.int)
#all_pred_df = pd.DataFrame()

for i in range(num_rounds):
X_boot, y_boot = _draw_bootstrap_sample(rng, X_train, y_train)
#estimator.fit(X_boot, y_boot)
pred = estimator.fit(X_boot, y_boot).predict(X_test)
#all_pred_df[i] = pred
all_pred[i] = pred

#all_pred = all_pred_df.values.T

if loss == '0-1_loss':
main_predictions = np.apply_along_axis(lambda x:

np.argmax(np.bincount(x)),
axis=0,
arr=all_pred)

avg_expected_loss = (main_predictions != y_test).sum()/y_test.size

2
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avg_expected_loss = np.apply_along_axis(lambda x:
(x != y_test).mean(),
axis=1,
arr=all_pred).mean()

avg_bias = np.sum(main_predictions != y_test) / y_test.size

var = np.zeros(pred.shape)

for pred in all_pred:
var += (pred != main_predictions).astype(np.int)

var /= num_rounds

avg_var = var.sum()/y_test.shape[0]

else:
avg_expected_loss = np.apply_along_axis(

lambda x:
((x - y_test)**2).mean(),
axis=1,
arr=all_pred).mean()

main_predictions = np.mean(all_pred, axis=0)

avg_bias = np.sum((main_predictions - y_test)**2) / y_test.size
avg_var = np.sum((main_predictions - all_pred)**2) / all_pred.size

#all_pred_df["true"] = y_test

return avg_expected_loss, avg_bias, avg_var #, all_pred_df

[ ]: ### Bivariate Normal Linear with raw data, MSE
dataset_names = [bivarNorm_cont]
name = 'bivarNorm_cont'
loss = 'mse'
normalization ='None'
model_name = 'Linear Regression'

bootstrap_rounds = 1000

for dataset_name in dataset_names:

logging.info("\ndataset: %s" % dataset_name)

3
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result_csv = [f for f in os.listdir("C:/Users/jess/OneDrive/Grad School/
↪→Dissertation/Programs/mse_decomp_results") if name+"_bootstrap_standard.csv"␣
↪→in f]

if len(result_csv) == 1:
logging.info("This dataset is done!")

else:
dataset = dataset_name
dataset.data = dataset.iloc[:,2:].values
dataset.y = dataset.iloc[:,1].values

X_train, X_test, y_train, y_test = train_test_split(dataset.data,␣
↪→dataset.y,

test_size=0.3,␣
↪→random_state=0)

model = LinearRegression()
#classifier = DecisionTreeRegressor(random_state=123)

time1 = time.time()

avg_expected_loss, avg_bias, avg_var = bias_variance_decomp_mse(
model, X_train, y_train, X_test, y_test, loss='mse',␣

↪→num_rounds=bootstrap_rounds, random_seed=123)

time2 = time.time()
standard_time = time2-time1
logging.info("running time of standard model in seconds: %.2f" %␣

↪→standard_time)
logging.info("average expected loss: %s" % avg_expected_loss)
logging.info("average bias: %s " % avg_bias)
logging.info("average variance: %s " % avg_var)

[ ]: # Store model results
summary1 = pd.DataFrame({'Dataset': [name], 'Normalization': [normalization],␣
↪→'Loss Function': [loss], 'Model': [model_name],

'avg_expected_loss': [avg_expected_loss], 'Avg.␣
↪→Bias': [avg_bias], 'Avg. Variance': [avg_var]},

columns=['Dataset', 'Normalization', 'Loss␣
↪→Function', 'Model', 'avg_expected_loss', 'Avg. Bias', 'Avg. Variance'])

4
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