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SUMMARY

Growing health problems, such as lung diseases, especially for children and the elderly,

require better diagnostic methods, such as computer-based solutions, and it is crucial to

detect and treat these problems early. The purpose of this article is to design and implement

a new computer vision-based algorithm based on lung disease diagnosis, which has better

performance in lung disease recognition than previous models to reduce lung-related health

problems and costs . In addition, we have improved the accuracy of the five lung diseases

detection, which helps doctors and doctors use computers to solve this problem at an early

stage.

xii



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Research Problem

In this X-ray image classification study, We will conduct research on five lung dis-

eases, which are: Emphysema, Effusion, Pneumonia, Nodule, Mass.This paper studies

many mechanical methods for classifying chest radiographic images, such as CheXNet

and DenseNet. It provides the operation theory and framework of various methods, and

analyzes the advantages and inconveniences of each process. Then, the hyperparameters

of different methods are compared. Neural networks require a lot of time cost because

of the complexity of the architecture when training on images. When training neural net-

works, fine-tuning can help improve time and cost efficiency. Using evolutionary algorithm

can find the best transmission architecture to learn, so we applied evolutionary algorithm

and genetic algorithm based on neural network.Therefore, this article will apply evolution-

ary algorithm on CheXNet, searching for the best model hyperparameters to obtain a new

model that performs better in five lung diseases.

1.2 Purpose of Study

Through this study, we aimed to understand the effectiveness of each model, report

accuracy, f1-scores, and other hyperparameters, and choose the model that best fits the

lung X-ray image classification, which has many interesting considerations, For exam-

ple, interpretability, differences in importance. This article fine-tunes popular X-ray image

classification methods and uses evolutionary algorithms to obtain higher performance ar-

chitectures. This article provides a basic understanding for some researchers who wish to

study medical image analysis in depth, and provides them with some new inspirations. This
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article also compares the new method with the original version of hyperparameters to help

readers choose and develop different technologies.

1.3 Audience

This article is intended for people who have just learned and want to learn about deep

learning techniques in the medical field. Many machine learning researchers may wish to

study the application of machine learning in medicine, and there are currently many rele-

vant research materials. This paper studies the common multi-label classification method

of X-ray image classification CheXNet, and proposes a new model based on CheXNet. It

provides a basic and broad understanding for the researchers who read this article and lays

the foundation for further research.

1.4 Contribution

More and more people are beginning to pay attention to machine learning in medicine,

and related research topics are very popular. We chose this topic in order to let more people

have a broad understanding of the application of machine learning in X-ray image process-

ing, and let people who do not know have some interest to carry out in-depth research.

At the same time, we hope to explore more possibilities of machine learning in X-ray im-

age classification by applying evolutionary algorithms. Although the technology of CNN

to classify images is relatively mature, CNN has certain defects. CNN has only neurons,

neural network layers and the entire neural network, and its structural layers are too few.

Moreover, the CNN feature extraction layer and the sub- sampling layer are interleaved to

gather the output of adjacent feature detectors of the same type, which can cause problems.

Therefore, we hope to use this article to explore a more effective functional classification

network that is expected to help in the future. It can classify normal and abnormal chest X-

ray images and provide valuable information for primary medical doctors and radiologists

to greatly reduce Diagnose time and improve the standard of medical care.

2



1.5 Motivation

Pulmonary function test is one of the necessary methods for the diagnosis of respiratory

diseases. It is important to detect lung and tracheal diseases early, evaluate the severity of

lung diseases, evaluate the efficacy of drugs or other treatments, and identify the causes of

dyspnea. The guiding significance of [1]. Due to the good contrast of the image data of the

human lungs, lung function examinations often use image examination methods. Common

image examination methods include X-ray, CT, and ultrasound examination.

Lung X-ray examination is mainly used for health screening, diagnosis of lung diseases

and follow-up of lung diseases [2]. Checking the lung X-ray medical image data can di-

agnose the disease with no obvious early symptoms. The lung X-ray image data can often

observe the lesion and even make a qualitative diagnosis [3].

Lung CT may be a valuable supplement to X-ray examination in the detection of lung

disease lesions, location diagnosis and qualitative diagnosis [4]. CT examination can check

the relatively small lesions of the lungs, reduce missed diagnosis, and improve the detection

rate of lesions.

Ultrasound examination has a greater limit for the diagnosis of lung diseases, because

the gas-containing lung tissue and thoracic bone can totally reflect the incident ultrasound,

so ultrasound examination is only of great value for the diagnosis of lesions in the super-

ficial parts of the lung [5]. Ultrasound examination is mainly used for the examination of

malignant tumors, pleural lesions and superficial lung tumors.

The above methods have a certain detection effect on the examination of lung diseases,

and lung X-rays, CT, and ultrasound have complementary effects in medical examinations.

In the actual lung function test, generally according to the medical conditions of the hospi-

tal, and then consider the actual situation of the patient, and finally adopt the principle of

first simple and then complex, first economic and then expensive for the patient to perform

lung function test. At present, no matter whether the physical examination of the unit’s

3



on-board medical examination or school physical examination is a lung X-ray examination

during lung function examination, and the lung X-ray examination is the basis of other

imaging examinations, so X-rays are used to perform lung function examination. Exami-

nation is the first choice for examination of lung symptoms using imaging technology. In

general, the current common diagnosis and treatment of lung diseases mainly rely on lung

X-ray medical images as a basis for decision-making, and improving the accuracy of lung

X-ray medical image recognition is conducive to the diagnosis of common lung diseases .

However, detecting pneumonia on CXR is a difficult task. It relies heavily on the ex-

pertise of physicians and is prone to errors. In the early diagnosis of lung cancer, great

progress has been made in applying deep learning methods.With the rapid development of

computer vision and deep learning technology, efficient technologies have been introduced

in image classification, recognition and segmentation. Deep learning technology can also

be used for medical data analysis, such as the diagnosis of chest X-ray abnormalities.

1.6 Background and Significance

With the development of medical technology and information technology, medical

imaging equipment has developed rapidly in recent years, and has been widely used in

clinical and medical information. Among various types of medical images, medical im-

ages are classified by X-ray imaging, computed tomography (CT) imaging, nuclear mag-

netic resonance (MR) imaging, and ultrasound (UI) imaging. The classification processing

of typical medical images and how to obtain the images required for diagnosis and informa-

tion processing are important propositions and research contents. As one of the important

technologies of medical image processing, classification technology can more accurately

analyze the anatomical structure and resolution area of human body in medical images.

Traditional classification methods need to calculate a large number of features in the

target area, then select the proposed features, then train the classifier, and finally test the

test set. When selecting features, artificial selection will make the selected features unrep-
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resentative, resulting in a lower classification accuracy, which will affect the diagnosis of

later doctors.

The defects of the traditional medical image classification technologies have led to the

development of deep learning in the field of medical images more and more widely. The

amazing success of deep learning technology is due to the improvement of the comput-

ing power of the central processing unit (CPU) and graphics processing unit (GPU), the

acquisition of large amounts of data and the development of learning algorithms. Deep

learning can be seen as improving traditional artificial neural networks by building more

than two layers of networks. Hierarchical feature representations are found in deep neu-

ral networks, so that high-level features can be extracted from low-level features. Due to

the excellent characteristics of learning hierarchical features from data, deep learning has

achieved excellent performance in various artificial intelligence applications. Especially

the great progress in the field of computer vision has inspired its application in medical

image analysis, such as image segmentation and image fusion.

CNN is the most widely used deep learning architecture in the field of image processing.

In the field of image processing, choose CNN to classify images, you can directly use the

image as input, and then train and test, which will improve the classification accuracy and

reduce the running time of the program.

On the other hand, the CNN architecture also exhibited some defects in the development

process. If CNN is used to classify images, a large number of pictures are needed to train

the network, or the trained CNN network is reused to fill some layers of the current network;

CNN cannot handle complex images well. After the pooling layer is introduced, A large

amount of image information will be actively lost, and the pooling layer reduces the spatial

resolution, so CNN is insensitive to small changes in input. If the network is required

to save detailed information, the use of CNN is not effective; In addition, CNN requires

additional components to identify the attribution of elements in the image.

Neural evolution can discover new network architectures, which use genetic algorithms
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[6]. Previous studies have shown that neuro-evolution has discovered new buildings with

the most advanced performance [7]. After that, there are still some documents to study and

discover new architecture in the CIFAR-10 data set, and then test it. It is used for image

classification on different data sets, using genetic algorithm [8].

1.7 Paper Goals and organization

This research aims to study the application of deep learning in the field of chest image

recognition, discuss newer and more popular methods, and propose new models. This arti-

cle introduces the popular X-ray classification method CheXNet and reproduces CheXNet.

At the same time, this paper also uses the neural method to optimize CheXNet, and then

compares the hyperparameters of the original method and the optimized new model to ob-

tain a better performance model, and proposes an architecture that is more suitable for

lung disease recognition. This article aims to provide researchers with extensive content

information through these operations.

The second part of this article is a literature review, enumerating CNN-based machine

methods for chest X-ray image classification and literature methods on genetic algorithms.

In the third part, we introduced the structure of Densenet and CheXNet based on Densenet-

121, and then introduced the method of genetic algorithm and the method and framework

we used to optimize the original model. The fourth part first introduces the data set, then

introduces the setting of the experimental environment, and then, we introduce the data pre-

processing. Then we listed five evaluation indexes of lung diseases. Finally, we listed our

experimental structure through tables and images and discussed the experimental results.

Finally, in the fifth part, we summarize the experience and lessons of the experiment and

summarize our expectations for the future.
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CHAPTER 2

LITERATURE REVIEW

Deep learning methods have become very common in the field of medical image clas-

sification. This is mainly due to the huge success rate of these algorithms. The chal-

lenges of early machine learning models include low accuracy, which mainly depends on

the capabilities of the feature extraction layer. Traditional machine learning techniques use

techniques such as scale-invariant feature transform (SIFT) [9], accelerated robust feature

(SURF) [10], and other methods [11] for feature extraction.

Deep learning provides the possibility of automating the extraction of relevant features

and merging with classification programs. CNN inherently learns the hierarchical structure

of increasingly complex features, so they can directly operate on image blocks centered on

abnormal tissues. The applications of CNN in medicine include classification of interstitial

lung diseases based on computed tomography (CT) images, classification of pulmonary

tuberculosis based on X-ray images [12], classification of neural progenitor cells from so-

matic cells, detection of color fundus image bleeding, and Anatomical classification of

organs or specific parts of the body in CT images.

2.1 CNN-based methods

Many well-known and most successful works in medical image classification involve the

implementation of deep learning algorithms, such as convolutional neural networks (CNN).

At present, CNN is gradually becoming the standard technology in image screening classi-

fication, and its application is very extensive.

Arevalo et al. proposed a feature learning framework for breast cancer diagnosis [13],

which uses CNN to automatically learn distinguishing features and classify the lesions on

mammograms.
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Kooi et al. compared manual design and automatic CNN feature extraction methods

in traditional CAD [14], both of which were trained on a large data set of about 45,000

mammograms. The results show that CNN is superior to traditional CAD system methods

at low sensitivity, and in At high sensitivity, the two are equivalent. Spampinato and other

application depth CNN automatically assess bone and bone age.

In addition, there is some work to combine CNN and RNN. For example, Gao et al.

used CNN to extract low-level local feature information in slit lamp images [15], combined

with RNN to further extract high-level features, and graded nuclear cataracts.

The classification of targets or lesions can assist doctors in the diagnosis of diseases,

such as the classification of benign and malignant breast lesions. The treatment process

usually first recognizes or marks the specific area through the pretreatment method, and

then classifies the target or lesion in the specific area. Accurate classification requires

not only local information on the appearance of the lesion, but also the global context

information of its location.

CNN is widely used in the classification of targets or lesions. Kawahara et al. used

multi-processing flow CNN to classify skin lesions [16], where each process processed

images with different resolutions.

Jiao et al. used CNN to extract depth features at different levels [17], which improved

the classification accuracy of breast cancer.

Tajbakhsh et al. compared the task of detecting lung nodules in CT images and dis-

tinguishing between benign and malignant lung nodules by mass-training artificial neural

networks (MTANNs) and CNN [18]. The performance of the network and its experimental

results show that the performance of MTANN is significantly higher than that of CNN only

when less training data is used.

Roth et al. [19] used computed tomography (CT) scan results to identify and clas-

sify the lymph node (LN) detection using CNN. Compared with earlier methods based on

enhanced feature selection (including many false positives), they can obtain higher classi-

8



fication accuracy [19].

As shown in [20], CNN with U-net algorithm is used for cell image segmentation and

tracking. U-net is a 23-layer CNN, introduced by Olaf Ronneberger, Philipp Fischer and

Thomas Brox in 2015 [20].

Lan et al. [21] also implemented a deep CNN using the U-Net algorithm and added a

residual network to correctly identify and classify lung nodules.

Oksuz et al. [22] proposed a CNN-based technique for detecting artifacts in cardiac

magnetic resonance (CMR) imaging. Before training the model, they performed image

preprocessing through normalization and region of interest (ROI) extraction. The author

uses a CNN architecture with 6 convolutional layers (ReLU activation), 4 merged layers, 2

fc layers, and a softmax layer to estimate motion artifact labels. They show good perfor-

mance in classifying motion artifacts in videos.

Zhe et al. [23] proposed a technique for locating and identifying chest diseases in the

public database NIH X-ray 14. Their model performs both positioning and recognition

tasks. They use the popular ResNet [24] architecture to build computational models. In

their model, the input image is extracted by CNN for feature maps, and then the size of the

input image is adjusted by the patch slice layer using the maximum merge or bilinear inter-

polation layer. After that, the recognition is finally performed using the fully convolutional

layer. For training, the author used a multi-instance learning (MIL) framework, and during

the testing phase, the model can predict labels and class-specific localization details.

Marsiya et al. [25] using NLST and LDIC/IDRI dataset [26] to detect lung nodules in

CT images. They proposed a 3D group and other variable convolutional neural network

(G-CNN) technology, which is used for rapid positive reduction in lung nodule detection.

Yan et al. proposed a body part recognition system [27]. The CNN-based multi-stage

deep learning framework extracts patches with the most and least discriminatory local

patches in the pre-training stage. Subsequently, the promotion phase uses this local in-

formation to improve performance. The author points out that compared to the use of
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global image context, training based on discriminative local appearance is more accurate.

CNN has also been proposed for segmentation of brain tissue at equal intensity stages and

brain extraction from multimodal MR images.

A hybrid method combining CNN with other architectures is also proposed [28]. A

deep learning algorithm is used to encode the parameters of the deformable model, thereby

promoting the segmentation of the left ventricle (LV) from short-axis cardiac MRI. CNN

is used to automatically detect LV, and deep autoencoder is used to infer its shape.

In the work of Yan and others, in order to deal with and use images as local human fea-

ture recognition, a multi-stage (multi-tier) profound learning system has been developed

[27]. During the pre-training process, the convolutionary neural network is trained through

multi-instance learning, in the current training data chart to obtain the most distinctive

local tiles and invalid message tiles. In the reinforcement phase, the pre-trained convolu-

tional neural network will further pass the corresponding local images. The highlight of

this multi-instance deep learning method is that it can automatically distinguish between

discriminative local images and local images of invalid messages. Therefore, no manual

labeling work is required in advance.

Miao team proposed a regression network based on convolutional neural networks to

achieve real-time 2D / 3D registration [29]. They proposed three algorithms to simplify

potential mapped object regression and added a robust non-linear model to the CNN re-

gression model. From the output results of this network, the results of the deep learning

algorithm are more accurate and robust than the previous optimal algorithm, which greatly

improves the gray-based 2D / 3D registration progress.

Yao utilizes DenseNet versions and long term memory grid (LSTM) to manipulate

anomaly dependence[30].This method uses the ChestX-Ray14 dataset.

DNet is an 121 layers DenseNet, it is a local aware Dense Networks [31]. Compared

with DenseNet, this method adds the location information. It uses the Adam Optimizer.

The rate of learning is initialized by 10 * 3 and decreased by 10 times when there are no
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validity rates [32]. This method initializes the network [33] with the pre-trained Image Net

model.This method combines the ChestX-Ray14 and PLCO data sets.

Guan et al. proposed an attention-oriented CNN [34].Multi-attention CNN is based on

DenseNet-121 which removes the average pool layer and the fully connected layer. This

approach refers to the Multi-attention model. This approach uses high-end bundling to help

classification prediction and generates a probability scoring by top-knoping for each cate-

gory, using the focus function to classify regions and to learn discriminatory features for

each class. The CNN ’s multi-sensitivity function is more distinctive in using a convolu-

tionary representation of the X-ray images and in having details on multi-sensitivity maps

by type.This method uses the ChestX-Ray14 dataset.Before focusing the classification task

on the narrowed field of view, we must first estimate the specific area of the disease. How-

ever, most current work indicates that training, verification, and testing to obtain results by

randomly segmenting data is problematic. Therefore, the same patient may appear in both

training and test sets at the same time. In addition, due to the imbalance of classes, there is a

big difference in the classification performance between the partitions, so the performance

is more problematic.

The ResNet network represents a connection to its updated VGG19 network [24],

whereby a residual unit is introduced by means of a mechanism for short circuits [35].

The implementation of shortcuts promotes the retrograde spread of the gradient and makes

it possible to effectively training deeper networks; on the other hand, it also makes the

learning task of each basic module change from learning an absolute amount to learning

the offset from the previous basic module the amount. ResNet’s network structure is very

simple, that is, these basic modules are stacked to form a network with different layers.

The simple stacking of basic modules also makes it easy to port ResNet to other networks.

This method uses the ImageNet dataset.

ResNet [24] is superior to other popular convolutional neural networks, such as AlexNet

[36], GoogLeNet [37], and VGGNet-16 [38] by presenting ROC-AUC scores, such as
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0.8141 for ”cardiac hypertrophy.” At the same time, for diseases such as ”quality” and

”pneumonia”, their scores were significantly reduced to 0.5609 and 0.6333, respectively.

This result reveals the long-term ignorance of the inability of traditional CNNs to learn

meaningful representations and weak supervision of noise labels. However, the main dif-

ficulty in applying deep learning models to medical problems is the lack of high-quality

annotations by pathologists.

ChestNet is based on ResNet-152. The classification branch is the ResNet-152 model,

which has been pre-trained on the ImageNet dataset. There are two divisions of ChestNet,

one of which is that of a classified system, which functions as a standardized extraction-

grade network, and the other of the focus branch, which uses the association of rating marks

with the sites of pathological anomalies [39].This method uses the ChestX-Ray14 dataset.

The concept of AlexNet comes from the classification of ImageNet papers, published

by Alex Krizhevsky et al [36]. AlexNet is a simple network structure, with five convolu-

tional layers and three fully-connected layers. It uses stochastic gradient descent and back-

propagation algorithms. AlexNet is also a pre-train model [36]. AlexNet uses a stochastic

gradient descent algorithm to test the dataset ImageNet used.

To detect lung nodules in computed tomography (CT) images, Zhu et al. [40] proposed

a deep network called DeepEM. The network uses a 3D CNN architecture that uses Ex-

pectation Maximization (EM) technology and Electronic Medical Records (EMR). They

use EM technology to train their models in an end-to-end manner. Their study used three

data sets, including: the largest publicly available LUNA16 data set for supervised nodule

detection [41], the NCI NLST data set for weakly supervised detection, and the Tianchi

lung nodule detection data set.

Yi et al. [42] proposed a scaled recursive network for detecting catheters in X-ray

images. Their network architecture is organized in an automatic encoder/decoder man-

ner. In Masood et al study [43], a deep network called DFCNet is proposed for automatic

computer-assisted lung detection.
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Gonzalez et al. [44] proposed a deep network for detecting the prediction of chronic

obstructive pulmonary disease (COPD) and acute respiratory disease (ARD) in CT images

of smokers. They used 7,983 COPDGene cases to train CNN and used logistic regression

for COPD detection and ARD prediction. This group of researchers used deep learning for

localization of weakly supervised courses in their another study [45].

The areas where neural networks can be applied, and in some areas their applications

and task dimensions will have a continuous impact is an issue that is still being explored.

In a groundbreaking study, Golkov proposed a primitive argument [46]. He used deep

learning to simplify the processing of diffuse MRI (nuclear magnetic resonance) image

data in a single step after optimization. Their research shows that this improved people’s

scan time to obtain scalar measurement data from an advanced model is reduced by 12

times. Gorkov states that the use of deep neural networks may reveal this relationship [46]:

diffusion migration Imaging (DWI) can be processed directly as input data instead of scalar

measurements obtained through model fitting.

Shortly after the release of Chest X-ray14, a state-of-the-art CNN model called CheXNet

was proposed [47], which consists of 121 layers. The model accepts chest X-ray images as

input and outputs the possibility of disease and the heat map of the most indicative disease

area located on the input image. In the task of detecting pneumonia, CheXNet success-

fully surpassed the average performance of four experienced radiologists in X-ray images

of 420 patients with pneumonia. The CheXNet network is a variant of DenseNet [31]. The

network is initialized with pre-trained weights on ImageNet [48]. Although CheXNet im-

proved the classification accuracy of ROC-AUC scores by 0.05, there is still much room

for improvement.

Kallenberg’s work takes mammograms as input data sources and uses unsupervised

feature learning to score breast disease risk [49]. They showed a way to learn structural

features from unlabeled data, which would then be fed directly into a simple classifier.

In this classifier, two different operations will be performed: 1) image segmentation of
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breast density, and 2) scoring of breast X-ray texture. The classifier performs very well in

this regard. A sparse optimization of regularization is used to control time and range of

speed to monitor the ability of the training model. In the unsupervised learning process,

the convolutional layer can actually be regarded as an autoencoder; the weights and bias

values (pre-workout) will be further fine-tuned with the Softmax regression function in the

supervised learning field.

2.2 Genetic algorithm methods

The work of Esteban Real and others used basic evolutionary methods to identify the

CIFAR-10 and CIFAR-100 versions of the data sets [50]. Starting from trivial initial con-

ditions, the accuracy reached 94.6% (the ensemble was 95.6%) And 77.0%.The inspiration

for my project also came from this article, applying a simple evolutionary algorithm to

classify a large number of X-ray pictures.

In general, the model learns its parameters through data-driven methods, but model

selection through hyperparameter selection (built as an architecture) is still a tedious and

highly intuitive task. Young et al. [51] proposed a multi-node evolutionary neural network

(MENNDL) for deep learning as a method for automatic network selection on computing

clusters by hyperparameter optimization performed by genetic algorithms.

Du-Yih Tsai et al. proposed a fuzzy logic method based on genetic algorithm for

computer-aided diagnosis in medical imaging [52]. The scheme is suitable for distin-

guishing myocardial echocardiographic images for disease detection and for detecting and

classifying cluster-like microcalcifications on mammograms. The average accuracy of our

myocardium is 96%. When the sensitivity of microcalcification on mammogram is 100%,

the accuracy is 88.5%.

The genetic algorithm framework not only proves that it can effectively solve the local

optimal problem, but also brings great flexibility to the segmentation process. In Ujjwal

Maulik’s article, he has introduced the main application of genetic algorithm in the field of
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medical image segmentation [53].

Ghosh Payel et al. proposed a genetic algorithm for automatic segmentation of the

prostate on 2D pelvic computed tomography (CT) images [54]. In this method, the seg-

mentation curve is represented by a level set function, which uses genetic algorithm (GA)

to evolve. Their preliminary tests on a small portion of the segmentation contour showed

that this method is expected to be achieved by converging to the prostate area.
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CHAPTER 3

METHOD

3.1 DenseNet

DenseNet is a densely connected convolutional network from the best paper of CVPR2017

by Gao Huang et al [31]. DenseNet borrows from ResNet in thought, it starts with feature

and achieves better results and fewer parameters through the extreme use of feature.The

size of the DenseNet model is currently limited by the GPU memory. In addition, the

memory consumption during training is very large.

The DenseNet model establishes a dense connection between all the front layers and the

back layer, and its name is also derived from it. Another major feature of DenseNet is the

realization of feature reuse through the connection of features on channels. These features

allow DenseNet to achieve better performance with fewer parameters and computational

costs.

DenseNet has the following advantages:

• Reduce overfitting

• Enhancement delivery

• Small calculation

• Reduced the number of parameters to a certain extent

The entire DenseNet is a combination of multiple dense blocks and other layers,

which can ensure that the size of each dense block is uniform and convenient for con-

cate.DenseNets improve flow of information and gradients through the network, making

the optimization of very deep networks tractable.
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Figure 3.1: DenseNet Structure

3.2 CheXNet

The team of Andrew Y. Ng has developed a model that improves typical pneumonia

diagnosis efficiency by radiologists [47], which is a variant of DenseNet introduced before

[31]. The paper said CheXNet exceeds the average radiologist’s performance on pneumo-

nia detection tasks. CheXNet detected all 14 diseases on chest X-ray 14 and found that the

performance on all 14 diseases was better than the best published results. This method uses

the ChestX-Ray14 dataset. Only positive X-rays were used in this method’s experiments.

However, studies have shown that using X-rays on the back can improve accuracy by at

17



Table 3.1: Performance of Different Methods

WANG YAO DNet ChestNet ResNet CheXNet DenseNet
Aletectasis 0.7 0.733 0.767 0.743 0.8 0.809 0.816
Cardiomegaly 0.81 0.856 0.883 0.875 0.877 0.925 0.902
Effusion 0.759 0.806 0.828 0.811 0.818 0.864 0.878
Infiltration 0.661 0.673 0.709 0.677 0.694 0.734 0.698
Mass 0.693 0.777 0.821 0.783 0.81 0.867 0.843
Nodule 0.669 0.724 0.758 0.698 0.736 0.780 0.775
Pneumonia 0.658 0.684 0.731 0.696 0.703 0.768 0.741
Pneumothorax 0.799 0.805 0.846 0.809 0.819 0.888 0.874
Consolidation 0.703 0.711 0.745 0.725 0.742 0.79 0.798
Edema 0.805 0.806 0.835 0.833 0.842 0.887 0.983
Emphysema 0.833 0.842 0.895 0.822 0.875 0.937 0.922
Fibrosis 0.786 0.743 0.818 0.804 0.8 0.804 0.828
Pleural
Thickening

0.684 0.724 0.761 0.751 0.742 0.806 0.784

Hernia 0.872 0.775 0.896 0.899 0.916 0.916 0.957

least 15%. Therefore, the results of this method are relatively conservative. In addition, the

patient’s medical history was not used in the experiment, which also affected the credibility

of the results to a certain extent.

CheXNet is a 121-layer dense convolutional network trained on the ChestX-ray 14

dataset. They replaced the final fully connected layer with a layer with only one output,

and then applied S-type nonlinearity. Use the weights in the pre-trained model on ImageNet

to initialize the weights of the network. Use Adam and standard parameters to train the

network end-to-end. They use a small batch size of 16 to train the model, and use an initial

learning rate of 0.001. Each time after a period of time, each time the verification loss

reaches a steady state, its initial learning rate will be reduced by 10 times, and the lowest

verification loss is selected model.

As shown in the table 3.1, based on the chest X-ray images of 14 diseases, the average

performance of CheXNet is higher than other methods, and the AUROC of 14 diseases is

relatively high, indicating that the model is relatively stable and the overall performance is

good.
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CheXNet has the advantages of DenseNet because it is a variant of DenseNet. CheXNet

can guarantee a better convergence rate, and the model results are more robust. There will

be a stable gradient during training, and the convergence speed is better. And the CheXNet

paper compares the diagnosis results of the network and the radiologist. In the detection of

pneumonia, CheXNet can be comparable to the radiologist.

But getting better convergence rate at the same layer depth requires a price, and one of

its costs is its huge memory footprint.

3.3 Genetic algorithm

Evolutionary algorithm includes genetic algorithms and neural evolution. Genetic al-

gorithm is one of the oldest methods and can be used to solve optimization problems [55].

Inspired by evolutionary algorithms are organisms in nature that typically require simple

gene operations such as coding, population start-up, transmutation operators and retention

processes. They often use the evolutionary role of humans. The Evolutionary Computing

is a mature global optimization method with great robustness and widely applicable com-

pared to traditional optimisation algorithms, such as calculus methods and comprehensive

methods.This is self-organizing, modifying and self-learning characteristics. Without the

complexity of the issue being constrained, complicated problems that traditional optimiza-

tion algorithms can hardly be overcome can effectively be tackled.

3.3.1 NNI (Neural Network Intelligence) Framework

Neuroevolution was actually first used to determine the weight of rigid objects sev-

eral years before [6]. The use of Evolving Neural Network (ENN) by increasing topology

(ENT) algorithms has been shown in Stanley and Miikkulainen to develop architecture

simultaneously [56]. Three types of mutations are present in NEAT: shift weight; link ex-

isting nodes; attach nodes to link new links when separating. It also includes a mechanism

for recombining two models into one and a fitness sharing strategy for promoting diversity
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[57]. Evolutionary algorithms use a convenient code to depict the DNA-like model.Direct

encoding is used by NEAT. Each node and connection is saved in DNA. Alternating my

model, indirect language, was the topic of several research on neuroevolution [58] [59].

NNI is a lightweight but powerful toolkit that helps users automatically perform feature

engineering [60], neural network architecture search, hyperparameter tuning and model

compression. Naı̈ve evolution tuner in NNI is a tuner based on plain evolution. Tuner

is an easy way to adopt an approach to set up parameter tuning algorithms provided by

NNI. Tuner receives metrics from Trial to evaluate the performance of a specific parame-

ters/architecture configuration. Tuner sends the next hyper-parameter or architecture con-

figuration to Trial. We chose to use this NNI framework to implement hyperparameter

search and get the most suitable hyperparameters for neural network training.

Naı̈ve Evolution comes from Large-Scale Evolution of Image Classifiers [50]. It ran-

domly initializes the population according to the search space. For each generation, it will

choose a better generation and make some changes to it (for example, change hyperparam-

eters, add/remove a layer, etc.) to get the next generation. Naive evolution requires many

experiments to work, but it is very simple and can be easily extended with new features.

NNI provides state-of-the-art tuning algorithms as part of our built-in tuners and makes

them easy to use. NNI provides a variety of turners, such as Random Search, Grid Search,

Batch, Naı̈ve Evolution, Anneal, etc.

After the network structure is determined, NNI’s tuner can help users find the optimal

superparameter. Within a limited time, NNI tests a certain amount of superparameters

and returns the optimal parameter combination to the user. Therefore, NNI is to find the

optimal set of hyperparameters (Configuration) in a certain search space, so that the trail

corresponding to the set of parameters has the greatest accuracy. Under the limited time

and resource constraints, Tuner and Assessor help users Find this set of parameters quickly

and better.
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3.4 Proposed method

We first reproduced CheXNet and studied the hyperparameters of the structure.The rel-

evant training parameters of our experiment are as follows. Then we recorded the AUROC,

accuracy, loss, F1 score, precision, recall, specificity, sensitivity, correlation coefficient of

each structure of the training data set,validation data set,and test data set.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

Sensitivity =
True Positive

Positive
(3.4)

Specificity =
True Negative

Negative
(3.5)

For large deep neural networks, we need a lot of time to train. So before this we spend

some time doing hyperparameter search to determine the best setting is very necessary. We

chose Evolution Tuners in the NNI [60] toolkit to implement neural evolution, and perform

neural network searches to obtain the optimal hyperparameters, thereby enabling the new

CheXNet model to achieve better performance. The searched environmental parameters

are shown in the figure below.In addition to the feature of using genetic algorithms, it also

has a feature that supports weight migration models. This feature will make each mutant

individual need only a small amount of epoch to train, and the speed of operation will be

significantly improved. This is why we chose Naive Evolution.
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Select a set of hyperparameters from the search space.json file and start a trial. In-

sert the set of hyperparameters into the code by inserting the parameter setting part, run

training and verification. Insert report metrics in the verification part of the training to get

The result of this set of parameters. At this point, NNI knows the hyperparameters and

the corresponding results (we chose validation loss), so that we can call the optimizer im-

plemented in the framework to select the next set of hyperparameters to try, and iterate in

turn.

After obtaining the hyperparameters and validation loss, we added this set of experi-

ments to the population as Individuals. Then in the next individual selection (that is, in the

selection of hyperparameters), it is a standard evolutionary algorithm that selects individ-

uals with a higher probability and then performs a mutation operation to obtain the next

set of hyperparameters. After completing the model hyperparameter search, you can select

the best hyperparameter for the final training of the model. Specifically, fill in the best

hyperparameter in the get params function of train final file, and then execute train final

file.

The searched hyperparameters transferred to training network include: batch size, lr,

weight decay, rotation, brightness, contrast, saturation, hue, hidden units, dropout.After

the model hyperparameter search is completed, the best hyperparameter can be selected for

the final training of the model.

Table 3.2: Search Experimental parameters

Epoch 10

Population size 20

Concurrency 4

Max iteration number 100
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CHAPTER 4

EXPERIMENTS RESULTS AND ANALYSIS

4.1 Dataset

Currently ChestX-ray14 is NIH Research Institute ’s larger X-ray database for the lung.

The writers use natural language processing to identify text-mine diseases from related ra-

diological records to establish these marks. The labels shall be ¿ 90% precise and appro-

priate for low-level tracking [61].

The images provided by NIH have been preprocessed with a resolution of 1024 x 1024

pixels. The data set containing the label is also very clean, with no missing values.NIH

ChestX-ray14 dataset includes 112,120 total images about 42GB. There are 12 zip files in

total and range from 2 gb to 4 gb in size. There are 15 classes (14 diseases, and one for

”No findings”). Images can be classified as ”No findings” or one or more disease classes:

Atelectasis, Consolidation, Infiltration, Pneumothorax, Edema,Emphysema, Fibrosis, Ef-

fusion, Pneumonia, Pleural thickening, Cardiomegaly, Nodule, Mass,Hernia.In addition,

the data set also contains the CXR view type, patient gender, patient age, number of visits,

original pixel pitch, and original image height and width.

ChestX-ray14 is currently the largest lung X-ray database provided by NIH Research

Institute. To create these labels, the authors used Natural Language Processing to text-mine

disease classifications from the associated radiological reports. The labels are expected to

be less than 90% accurate and suitable for weakly-supervised learning.

In the NIH dataset, there are 2516 pictures labeled Emphysema, 13317 pictures labeled

Effusion, 1432 pictures labeled Pneumonia, 6331 pictures labeled Nodule, and 5782 pic-

tures labeled Mass. We will focus on these five lung diseases,so we get 29378 images.

Since the number of pictures of the five diseases that we studied accounted for about 1/4
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of the complete data set, we resampled and screened the pictures of the five diseases in the

data set to obtain data pictures that match the label and form five lung diseases dataset. The

disease data set is then divided into training, validation and testing. The split of the data set

is 70% training(20565 images), 10% validation(2937 images), 20%(58756 images).

(a) Atelectasis (b) Consolidation (c) Infiltration (d) Pneumothorax

(e) Edema (f) Emphysema (g) Fibrosis (h) Effusion

(i) Pneumonia (j) Pleural thickening (k) Cardiomegaly (l) Nodule

(m) Mass (n) Hernia

Figure 4.1: NIH dataset examples
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4.2 Data pre-processing

The images provided by NIH have been preprocessed with a resolution of 1024 x 1024

pixels. The data set containing the label is also very clean, with no missing values. It is

worth noting that the data set contains only 25533 labels, indicating pneumonia, masses,

nodules, fluid accumulation, and emphysema. Since the tags of interest only account for

22.7% of the data set, we try to resample the data set to obtain a new data set containing

a large number of positive and negative tags, and then divide it into training, verification,

and testing.

Before inputting the image into the network, in the pre-stage, we use the Python image

library (PIL) to adjust the size of the image to 224 x 224 to adapt to the needs of the pre-

trained model and reduce the calculation time. We use the RandomResizedCrop method to

process 1024 images, then randomly scale the original image, and then randomly intercept

224 images. Then normalize according to the mean and standard deviation of the images

in the ImageNet training set. We also expanded the training data by random horizontal

expansion. These operations are to increase the diversity and randomness of the data, so

that the training is more sufficient and has a stronger generalization.

Due to the growing demand for computing power, we have used cloud platforms for

high-performance computing.
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4.3 Experimental environment

Table 4.1: Experimental setup

Specification Details

Processor Intel Xeon CPU E5-2678 v3 @ 2.50GHz

Memory 62 GB

Grapyhics NVIDIA GeForce RTX 2080 Ti 11G

Operating System Ubuntu

Programming Language Python3.7.3

Dataset Source National Institute of Health(NIH)

Dataset Name Chest X-ray14

Dataset Size 9.3G

The ReLU activation function is a commonly used activation function in artificial neural

networks. When using the ReLU activation function, the neuron node can be activated only

when the input value is higher than a certain number. When the input value is lower than

0, it will be limited. When the input value rises to a certain threshold, the independent and

dependent variables in the function show lines Sexual relations. Calculation formula of

ReLU activation function: relu(x) = max(0, x)

The function image of the ReLU activation function is shown in the figure.

From the function image of the ReLU activation function, it can be seen that the ReLU

function is unilaterally suppressed. When the value exceeds a certain threshold, the func-

tion independent variable and the dependent variable will exhibit a linear relationship, and

when the function is below the threshold, it will be suppressed. Compared with the Sig-

moid function, the ReLU function has a relatively wide boundary, and the ReLU function

can quickly converge in the stochastic gradient descent algorithm. Because the ReLU func-

tion is fast and fast, we chose to use the ReLU function.
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Figure 4.2: ReLU function image

The process of using the objective function algorithm to optimize the objective func-

tion is called the objective function optimization algorithm process. When the lung X-ray

image is classified, the loss function is used as its objective function to optimize the al-

gorithm model. We chose the cross-entropy loss function to deal with the problem of

multi-classification in this article. The loss function calculation is also the most when the

cross-entropy loss function is calculated, and its definition is as described in the following

formula. Where n is the number of samples and m is the number of categories.

loss = −
n∑

i=1

ŷl1logyi1 + ....+ ˆylmlogyim

∂loss

∂yi1
= −

n∑
i=1

ŷl1
ŷi1

∂loss

∂yi2
= −

n∑
i=1

ŷl2
ŷi2

......
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∂loss

∂yim
= −

n∑
i=1

ˆylm
ˆyim

In the optimization of the neural network, the Adam algorithm can update the

weight of the neural network in real time according to the iteration of the network training

data. The Adam algorithm can quickly obtain excellent results when the neural network

trains the data.So we chose Adam as the optimizer.

Table 4.2: Experimental parameters

Optimizer Adam

Batch size 16

Epochs 50

Loss function Cross Entropy

Library Pytorch

Activation function Relu

Learning rate 0.0001

4.4 Evaluation metrics

4.4.1 Pneumonia

In X-rays, lobar pneumonia can be seen as a large patch of lung lobes and lung seg-

ments, which is manifested as a solid change (a large area of white). This inflammation

affects the lung segment and lung lobes, and the edges are generally They are all very

clear. Lobular pneumonia is distributed along the bronchi, so it is an irregular small patchy

shadow, and it is fuzzy, not as big as the large lobe.
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Figure 4.3: Pneumonia

4.4.2 Lung nodule

Figure 4.4: Lung nodule

In the X-ray picture, you can see the cloudiness of the upper lungs, blurred edges.Nodules

are spots that appear on lung X-rays or CT scans. They are round, white, or shaded on lung
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X-rays. If the lung X-ray examination shows an abnormality greater than 3 cm, it is con-

sidered to be a ”lump in the lung” rather than a nodule, and cancer is more likely to occur.

Lung nodules usually need to be at least one centimeter in size to be seen on chest X-rays.

4.4.3 Lung mass

A single, round, opaque, clear boundary lesion in the lung that is less than 3 cm in

diameter is a lung nodule, and a tumor that is larger than 3 cm is called a lung mass, which

is generally judged to be highly malignant.

Figure 4.5: Lung mass

4.4.4 Effusion

In a conventional chest X-ray, as much as 250-600 ml of fluid is required before it

becomes apparent. The lateral position projection is the most sensitive and can even rec-

ognize a small amount of liquid. At the other extreme, the protuberances lying on the back
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cover up a lot of liquid. Generally, the volume of effusion will be dull when the volume of

fluid is about 200ml. Packaged effusion is limited to one place and does not change with

changes in body position. When there is a lot of fluid accumulation, a high-density shadow

from one side of the chest cavity from bottom to top.

Figure 4.6: Lung effusion

4.4.5 Emphysema

X-ray examination showed an increase of the anterior and posterior diameter of the

ribcage, anterior sternotomy, widening of the posterior sternum space, flattened diaphragm,

decreased lung texture, increased light transmission in the lung field, enlarged heart, pul-

monary artery and main branches, and peripheral blood vessels small. Pulmonary function

measurement showed residual gas, increased total lung volume, increased residual gas/total

lung ratio, significantly reduced the rate of 1 second, and decreased diffusion function.
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Figure 4.7: Lung Emphysema

4.5 Results

The CheXNet model is a Densenet-121 model similar to Figure 3.3. The output from

the pre-trained model is input to training network. In addition, we use cross-entropy as the

loss function, Adam as the optimizer, and a built-in accuracy metric to obtain results during

training.

The split of the data set is 70% training(20565 images), 10% validation(2937 images),

20%(5875 images) testing. We compare the training data set of the original CheXNet and

the proposed CheXNet model, verify the data set, and test the parameters of the data set

to compare the performance of these two methods. In order to show the performance of

these two structures more accurately, we listed some indicators, such as accuracy, loss, F1

score, precision, recall rate, specificity, sensitivity, and correlation coefficient, to evaluate

the structure.
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Figure 4.8: 2 architectures loss comparison

Table 4.3: Original CheXNet and Proposed method training hyperparameters comparison

Hyperparameter Original

CheXNet

Proposed

method

AUROC

(Area Under ROC)

0.7677 0.8900

Accuracy 0.6659 0.9208

Loss 0.1854 0.1479

F1 score 0.2190 0.4413

Precision score 0.1673 0.3740

Recall score 0.6875 0.6091

Sensitivities 0.6875 0.6091

Specificity 0.6692 0.9357

Correlation coefficient 0.2048 0.4267
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Table 4.4: Original CheXNet and Optimized model validation hyperparameters comparison

Hyperparameter Original

CheXNet

Proposed

method

AUROC 0.7585 0.8419

Accuracy 0.6932 0.9187

F1 score 0.2212 0.3854

Precision score 0.1848 0.3282

Recall score 0.6546 0.5248

Sensitivities 0.6546 0.5248

Specificity 0.7012 0.9355

Correlation

coefficient

0.2086 0.3651

Table 4.5: Original CheXNet and Proposed method testing hyperparameters comparison

Hyperparameter Original

CheXNet

Proposed

method

AUROC 0.7564 0.8496

Accuracy 0.7158 0.9035

F1 score 0.2288 0.3834

Precision score 0.1666 0.3315

Recall score 0.6328 0.5392

Sensitivities 0.6328 0.5392

Specificity 0.7234 0.9226

Correlation

coefficient

0.2090 0.3614
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Figure 4.9: Two methods AUROC comparison

Figure 4.10: Two methods Accuracy comparison
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Figure 4.11: Two methods F1 score comparison

Figure 4.12: Two methods Precision score comparison
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Figure 4.13: Two methods Recall score comparison

Figure 4.14: Two methods Sensitivities comparison
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Figure 4.15: Two methods Specificity comparison

Figure 4.16: Two methods Correlation coefficient comparison
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Table 4.6: Original CheXNet and Proposed method 5 diseases AUROC comparison

Original CheXNet Proposed method

Effusion 0.7878 0.9333

Mass 0.7771 0.8665

Nodule 0.6820 0.8065

Pneumonia 0.6765 0.7549

Emphysema 0.8585 0.8867

Average AUROC 0.7564 0.8496

Table 4.7: Original CheXNet and Proposed method 5 diseases Accuracy comparison

Original

CheXNet

Proposed

method

Effusion 0.8607 0.9733

Mass 0.9026 0.9360

Nodule 0.5213 0.9064

Pneumonia 0.4550 0.8294

Emphysema 0.8394 0.8727

Average Accuracy 0.7158 0.9035
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Table 4.8: Original CheXNet and Proposed method 5 diseases Specificity comparison

Original

CheXNet

Proposed

method

Effusion 0.8691 0.9828

Mass 0.9285 0.9602

Nodule 0.5068 0.9353

Pneumonia 0.4510 0.8326

Emphysema 0.8619 0.9022

Average Specificity 0.7235 0.9226

Table 4.9: Original CheXNet and Proposed method 5 diseases F1 score comparison

Original

CheXNet

Proposed

method

Effusion 0.1424 0.4936

Mass 0.3012 0.4305

Nodule 0.1576 0.3656

Pneumonia 0.0315 0.0637

Emphysema 0.5116 0.5634

Average F1 score 0.2288 0.3834
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Table 4.10: Original CheXNet and Proposed method 5 diseases Precision comparison

Original

CheXNet

Proposed

method

Effusion 0.0829 0.4366

Mass 0.2359 0.3903

Nodule 0.0881 0.3075

Pneumonia 0.0161 0.0339

Emphysema 0.4100 0.4893

Average Precision 0.1666 0.3315

Table 4.11: Original CheXNet and Proposed method 5 diseases Recall comparison

Original

CheXNet

Proposed

method

Effusion 0.5049 0.5678

Mass 0.4164 0.4799

Nodule 0.7486 0.4515

Pneumonia 0.8140 0.5331

Emphysema 0.6800 0.6639

Average Recall 0.6328 0.5392
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Table 4.12: Original CheXNet and Proposed method 5 diseases Sensitivities comparison

Original

CheXNet

Proposed

method

Effusion 0.5049 0.5678

Mass 0.4164 0.4799

Nodule 0.7486 0.4515

Pneumonia 0.8140 0.5331

Emphysema 0.6800 0.6639

Average Sensitivities 0.6328 0.5392

Table 4.13: Original CheXNet and Proposed method 5 diseases Correlation Coefficient
comparison

Original

CheXNet

Proposed

method

Effusion 0.1615 0.48458

Mass 0.2650 0.3993

Nodule 0.1212 0.3241

Pneumonia 0.0553 0.1007

Emphysema 0.4419 0.4988

Average CC 0.2090 0.3615
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Figure 4.17: Two methods AUROC comparison

Figure 4.18: Two methods Accuracy comparison
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Figure 4.19: Two methods Precision score comparison

Figure 4.20: Two methods Recall score comparison
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Figure 4.21: Two methods F1 score comparison

Figure 4.22: Two methods Sensitivities comparison
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Figure 4.23: Two methods Specificity comparison

Figure 4.24: Two methods Correlation coefficient comparison
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4.6 Discussion

As shown in the figure 4.1, the loss of the new method is less than the original meth-

ods.It can be seen from the loss curve that after the optimized model learns to a certain

stage, the loss curve tends to be stable. Although it is not obvious to see the change trend,

it can still be seen that the curve is slowly decreasing. This process is a fune-turning stage.

However, although the original CheXNet’s loss tends to converge but is oscillating, and

the overall is higher than the optimization model, the optimization model loses less and

learns more.As can be seen from the comparison table, the performance of the new model

has greatly improved. Furthermore, the study did not try to use other models of neural

networks in naive evolution due to lack of resources and time.

As the hyperparameters shown in Table 4.2,Table 4.3,Table 4.4, the optimized

model has made great progress in the three data sets of train, val, and test. The accuracy

has been greatly improved, the loss is also smaller than the original version, and the F1

score has also been significantly improved. The specificity is also higher than the original

version, which means that the new model has a higher probability of diagnosis.

The AUROC is calculated as the area under the ROC curve. It shows the trade-off

between sensitivity and specificity. Area under the curve of ROC is a measure on the

performance of the model. For original model displayed lowest area under the curve while

proposed method showed highest.

Compared with the results of similar implementations in the recent literature, the pro-

posed model shows better AUROC. Moreover, newer methods, such as fine-tuning using

Resnet, and attention-oriented CNN models, show that more accurate results come at the

cost of complexity.

Accuracy can not meet the judgment of category imbalance, and it is not very suitable

to evaluate the classification model, so we only use the accuracy value as a reference.

Precision for original model was found to be lowest at 16% and the proposed method
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model showed the highest precision of 37%. Precision tells us how often the prediction

of pneumonia is correct. F1-score is a comprehensive measure of Precision and Recall.

The higher the F1-score, the more robust the classification model. The original model’s

F1 score is 21%, while the F1 score of the proposed method model is 38%. The F1 of the

optimized model is improved by 17% compared to the original model, which proves that

our model is more stable.

The proposed (fine-tuned CheXNet) demonstrates the most test accuracy of 75%.Test

sensitivity of the proposed model was found to be highest at 60% and specificity was found

to be highest for proposed model at 93%. The sensitivity refers to the probability that

a test result will be positive when the disease is present (true positive rate, expressed as

a percentage), while the specificity indicates to the probability that a test result will be

negative when the disease is not present (true negative rate, expressed as a percentage).

Sensitivity also called as true positive rate, is the proportion of correct labels that were

accurately identified to have pneumonia.

Similarly, specificity also called as true negative rate, is the proportion of correct labels

that were accurately identified to have no lung diseases. It needs to be noted that we give

more importance to specificity than sensitivity. This is because our model aims to increase

the work flow of doctors. Therefore, we want high rate of identifying pneumonia while

missing only a few cases of actual pneumonia.

To be equal to each other, we re-implemented CheXNet, but did not use oversam-

pling to train the model and obtain results. As shown in the table4.3,table4.4,table4.5, our

model can test 5 diseases with an AUROC of 0.8496. Compared with the model using

CheXNet, our model can exceed 9%. In addition, the detection of each disease has im-

proved. This proves that the found hyperparameters settings are better than those used in

previous work.

We compared the accuracy of the five diseases, and we can see that the accuracy of

the new model has been greatly improved. As shown in Table 4.6, the accuracy of all five
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diseases has been improved. Among them, nodule and pneumonia have a huge increase, an

increase of more than 38%, followed by effusion increased by 11%, mass and emphysema

increased by a small amount, increased by 3%.The new model has better results in the

accuracy of detecting lung diseases and helps radiologists improve their efficiency.

For the diagnosis of our lung diseases, we believe that the cost of misdetection a dis-

eased patient as a disease-free patient may be very high. Therefore, we would rather miss

some patients who are not sick, rather than mistakenly treat the sick patients as not sick.

Therefore, the precision of our model should be as high as possible, and the recall can be

lower.

High sensitivity means low missed diagnosis rate, while high specificity means low

misdiagnosed rate. Ideally, we want both sensitivity and specificity to be high, but in fact

we generally look for a balance between sensitivity and specificity, so we will study the

ROC (Receiver Operating Characteristic) curve. At this time we can look at AUROC.

Although the sensitivity of the optimized model is reduced, the specificity is improved,

and AUROC is greatly improved. Overall, how much the diagnostic performance of the

optimized model is improved.

In machine learning, the correlation coefficient is used to measure the classification per-

formance of the two classifications. The indicator considers true positives, true negatives,

and false positives and false negatives. It is generally considered that this indicator is a

relatively balanced indicator. It can be applied even when the sample sizes of the two cat-

egories are very different. CC is essentially a correlation coefficient describing the actual

classification and the predicted classification. Its value range is [-1,1]. When the value is 1,

it indicates a perfect prediction for the test subject, and when the value is 0, it indicates The

predicted result is not as good as the random predicted result, -1 means that the predicted

classification and the actual classification are completely inconsistent. The CC of our op-

timization model is 15% higher than the original version, indicating that the optimization

model has better prediction capabilities.
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CHAPTER 5

CONCLUSION

Early and accurate interventions are essential for the treatment of lung diseases. Chest

X-ray is one of the cheapest and most widely used diagnostic tools for identifying abnor-

malities in the lungs. We have proposed a new model that can help improve the diagnostic

accuracy of chest X-rays for lung abnormalities. In this article, we used the CheXNet ar-

chitecture and extensively evaluated the chest X-ray neural network. We applied CheXNet

on some chest X-ray 14 datasets to implement computer-aided diagnosis of lung diseases.

Throughout the project, we applied neural evolution to hyperparameter search, searched

for the best hyperparameters, and adjusted CheXNet to obtain a new model with higher

performance.

In this model, the user will input an X-ray image, and the model will output the cor-

rect pneumonia classification label. The accuracy of the new model has reached 90%, the

specificity has reached 92%, and the precision has also been improved to 33%, which is

comparable to the accuracy (71%), specificity (72%), and precision (16%) of the original

model. All results are from the data set provided by NIH. Therefore, compared with the

state-of-the-art model, the proposed model is more effective and accurate.

In medical imaging, computing tools have been particularly successful in helping doc-

tors process various patient images before helping them make a final diagnosis. Machine

learning has entered the era of deep learning. The newly developed deep machine learning

algorithm has overcome some original ideas of tasks that are impossible to achieve one by

one.

In future work, it is not clear whether computer deep learning is possible to carry out

doctor-specific diagnostic work, and then we can know that the development of technology

has greatly improved the accuracy of filtering and greatly improved the production effi-
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ciency. There is no doubt that the medical industry has some Help, and the prospect of

corresponding machine learning in the medical field is still very broad.

Nevertheless, due to the complexity of the field of health data, we will look for more

advanced and in-depth learning methods to effectively process advanced medical data. The

software application received positive feedback. With the rapid development of medical

technology and computer science, the demand for medical image processing has also in-

creased. In order to effectively improve medical image processing technology and inter-

weave with multidisciplinary theories, communication between medical personnel and the-

ories and technicians has become increasingly important.
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APPENDIX A

ORIGINAL CHEXNET

A.1 ChexnetTrainer

import os

import numpy as np

import time

import sys

import torch

import torch.nn as nn

import torch.backends.cudnn as cudnn

import torchvision

import torchvision.transforms as transforms

import torch.optim as optim

import torch.nn.functional as tfunc

from torch.utils.data import DataLoader

from torch.optim.lr scheduler import

import torch.nn.functional as func

from sklearn.metrics.ranking import roc auc score

from sklearn.metrics import accuracy score, f1 score, precision recall curve, confu-

sion matrix

from DensenetModels import DenseNet121

from DensenetModels import DenseNet169

from DensenetModels import DenseNet201

from DensenetModels import Resnet101
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from DatasetGenerator import DatasetGenerator

device = torch.device(”cuda” if torch.cuda.is available() else ”cpu”)

#——————————————————————————–

class ChexnetTrainer ():

#—- Train the densenet network

#—- pathDirData - path to the directory that contains images

#—- pathFileTrain - path to the file that contains image paths and label pairs (training

set)

#—- pathFileVal - path to the file that contains image path and label pairs (validation

set)

#—- nnArchitecture - model architecture ’DENSE-NET-121’, ’DENSE-NET-169’ or

’DENSE-NET-201’

#—- nnIsTrained - if True, uses pre-trained version of the network (pre-trained on im-

agenet)

#—- nnClassCount - number of output classes

#—- trBatchSize - batch size

#—- trMaxEpoch - number of epochs

#—- transResize - size of the image to scale down to (not used in current implementa-

tion)

#—- transCrop - size of the cropped image

#—- launchTimestamp - date/time, used to assign unique name for the checkpoint file

#—- checkpoint - if not None loads the model and continues training

def train ( pathDirData, pathFileTrain, pathFileVal,

nnArchitecture, nnIsTrained,

nnClassCount,

trBatchSize, trMaxEpoch, transResize, transCrop,

launchTimestamp, checkpoint, args):
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#——————– SETTINGS: NETWORK ARCHITECTURE

if nnArchitecture == ’DENSE-NET-121’: model = DenseNet121(nnClassCount, nnIs-

Trained, args).to(device)

elif nnArchitecture == ’DENSE-NET-169’: model =

DenseNet169(nnClassCount, nnIsTrained, args).to(device) elif nnArchitecture == ’DENSE-

NET-201’: model =

DenseNet201(nnClassCount, nnIsTrained, args).to(device) elif nnArchitecture == ”RESNET-

101”: model =

Resnet101(nnClassCount, nnIsTrained, args).to(device)

model = torch.nn.DataParallel(model).to(device)

#——————– SETTINGS: DATA TRANSFORMS

normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

transformList = []

transformList.append(transforms.RandomResizedCrop(transCrop))

transformList.append(transforms.RandomHorizontalFlip())

transformList.append(transforms.RandomRotation(args.rotation))

transformList.append(transforms.ColorJitter(

brightness=args.brightness,

contrast=args.contrast,

saturation=args.saturation,

hue=args.hue, ) )

transformList.append(transforms.ToTensor())

transformList.append(normalize)

transformSequence=transforms.Compose(transformList)

#——————– SETTINGS: DATASET BUILDERS

datasetTrain =

DatasetGenerator(pathImageDirectory=pathDirData,

55



pathDatasetFile=pathFileTrain,

transform=transformSequence)

datasetVal =

DatasetGenerator(pathImageDirectory=pathDirData,

pathDatasetFile=pathFileVal,

transform=transformSequence)

dataLoaderTrain = DataLoader(dataset=datasetTrain,

batch size=trBatchSize, shuffle=True,

num workers=24, pin memory=True)

dataLoaderVal = DataLoader(dataset=datasetVal,

batch size=trBatchSize, shuffle=False,

num workers=24,

pin memory=True)

#——————– SETTINGS: OPTIMIZER & SCHEDULER

optimizer = optim.Adam (

model.parameters(),

lr=args.lr,

betas=(0.9, 0.999), eps=1e-08,

weight decay=args.weight decay)

scheduler = ReduceLROnPlateau(optimizer, factor = 0.1, patience = 5,

mode = ’min’)

#——————– SETTINGS: LOSS

loss = torch.nn.BCELoss(size average = True)

#—- Load checkpoint

if checkpoint != None:

modelCheckpoint = torch.load(checkpoint)

model.load state dict(modelCheckpoint[’state dict’])
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optimizer.load state dict(modelCheckpoint[’optimizer’])

#—- TRAIN THE NETWORK

lossMIN = 100000

for epochID in range (0, trMaxEpoch):

timestampTime = time.strftime(”%H%M%S”)

timestampDate = time.strftime(”%d%m%Y”)

timestampSTART = timestampDate + ’-’ + timestampTime

ChexnetTrainer.epochTrain(model, dataLoaderTrain, optimizer,

scheduler, trMaxEpoch, nnClassCount, loss)

lossVal, losstensor = ChexnetTrainer.epochVal (model,

dataLoaderVal, optimizer, scheduler, trMaxEpoch, nnClassCount,

loss)

timestampTime = time.strftime(”%H%M%S”)

timestampDate = time.strftime(”%d%m%Y”)

timestampEND = timestampDate + ’-’ + timestampTime

scheduler.step(losstensor.data)

if lossVal ¡ lossMIN:

lossMIN = lossVal

torch.save(’epoch’: epochID + 1, ’state dict’:

model.state dict(), ’best loss’: lossMIN, ’optimizer’ :

optimizer.state dict(), ’m-’ + launchTimestamp + ’.pth.tar’)

print (’Epoch [’ + str(epochID + 1) + ’] [save] [’ +

timestampEND + ’] loss= ’ + str(lossVal))

else:

print (’Epoch [’ + str(epochID + 1) + ’] [—-] [’ +

timestampEND + ’] loss= ’ + str(lossVal))

#————————————————————————-
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def epochTrain (model, dataLoader, optimizer, scheduler, epochMax,

classCount, loss):

model.train()

for batchID, (input, target) in enumerate(dataLoader):

input, target = input.to(device), target.to(device)

varOutput = model(input)

lossvalue = loss(varOutput, target)

optimizer.zero grad()

lossvalue.backward()

optimizer.step()

if (batchID+1) % 100 == 0:

print(”Training step , loss ”.format(batchID+1,

lossvalue.data))

#————————————————————————-

def epochVal (model, dataLoader, optimizer, scheduler, epochMax,

classCount, loss):

model.eval ()

lossVal = 0

lossValNorm = 0

losstensorMean = 0

with torch.no grad():

for i, (input, target) in enumerate (dataLoader):

input, target = input.to(device), target.to(device)

# target = target.cuda(non blocking=True)

# varInput = torch.autograd.Variable(input, volatile=True)

# varTarget = torch.autograd.Variable(target, volatile=True) varOutput = model(input)

losstensor = loss(varOutput, target)
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losstensorMean += losstensor

# print(losstensor.data)

lossVal += losstensor.data

lossValNorm += 1

outLoss = lossVal / lossValNorm

losstensorMean = losstensorMean / lossValNorm

return outLoss, losstensorMean

#————————————————————————-

#—- Computes area under ROC curve

#—- dataGT - ground truth data

#—- dataPRED - predicted data

#—- classCount - number of classes

def computeAUROC(dataGT, dataPRED, classCount):

outAUROC = []

datanpGT = dataGT.cpu().numpy()

datanpPRED = dataPRED.cpu().numpy()

for i in range(classCount):

outAUROC.append(roc auc score(datanpGT[:, i], datanpPRED[:, i]))

return outAUROC

def computeOtherMetrics(dataGT, dataPRED, classCount):

datanpGT = dataGT.cpu().numpy()

datanpPRED = dataPRED.cpu().numpy()

accuracies = []

f1 scores = []

sensitivities = []

specificities = []

precisions, recalls, thresholds = [], [], []
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ccs = []

for i in range(classCount):

target = datanpGT[:, i]

pred = datanpPRED[:, i]

precision, recall, threshold = precision recall curve(target,

pred)

pr = precision * recall

threshold = threshold[np.argmax(pr)]

pred[pred¿=threshold] = 1

pred[pred¡threshold] = 0

accuracies.append(accuracy score(target, pred))

f1 scores.append(f1 score(target, pred))

precisions.append(precision[np.argmax(pr)])

recalls.append(recall[np.argmax(pr)])

thresholds.append(threshold)

tn, fp, fn, tp = confusion matrix(target, pred).ravel()

sensitivity = tp / (tp+fn)

specificity = tn / (tn+fp)

sensitivities.append(sensitivity)

specificities.append(specificity)

cc = ((tp*tn) - (fn*fp))/ ((tp+fn)*(tn+fp)*(tp+fp)*(tn+fn))**0.5

ccs.append(cc)

return accuracies, f1 scores, precisions, recalls, sensitivities,

specificities, ccs

#————————————————————————-

#—- Test the trained network

#—- pathDirData - path to the directory that contains images
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#—- pathFileTrain - path to the file that contains image paths and label pairs (training

set)

#—- pathFileVal - path to the file that contains image path and label

pairs (validation set)

#—- nnArchitecture - model architecture ’DENSE-NET-121’, ’DENSE-NET-169’ or

’DENSE-NET-201’

#—- nnIsTrained - if True, uses pre-trained version of the network

(pre-trained on imagenet)

#—- nnClassCount - number of output classes

#—- trBatchSize - batch size

#—- trMaxEpoch - number of epochs

#—- transResize - size of the image to scale down to (not used in

current implementation)

#—- transCrop - size of the cropped image

#—- launchTimestamp - date/time, used to assign unique name for the

checkpoint file

#—- checkpoint - if not None loads the model and continues training

def test (

pathDirData, pathFileTest,

pathModel, nnArchitecture,

nnClassCount,

nnIsTrained, trBatchSize, transResize,

transCrop, launchTimeStamp, args):

#CLASS NAMES = [ ’Atelectasis’, ’Cardiomegaly’, ’Effusion’,

’Infiltration’, ’Mass’, ’Nodule’, ’Pneumonia’,

# ’Pneumothorax’, ’Consolidation’, ’Edema’, ’Emphysema’,

’Fibrosis’, ’Pleural Thickening’, ’Hernia’]
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CLASS NAMES = [’Emphysema’, ’Effusion’,’Pneumonia’,’Nodule’,’Mass’,]

cudnn.benchmark = True

#——————– SETTINGS: NETWORK ARCHITECTURE, MODEL LOAD

if nnArchitecture == ’DENSE-NET-121’: model = DenseNet121(nnClassCount, nnIs-

Trained, args).to(device)

elif nnArchitecture == ’DENSE-NET-169’: model =

DenseNet169(nnClassCount, nnIsTrained, args).to(device)

elif nnArchitecture == ’DENSE-NET-201’: model =

DenseNet201(nnClassCount, nnIsTrained, args).to(device)

elif nnArchitecture == ”RESNET-101”: model = Resnet101(nnClassCount,

nnIsTrained, args).to(device)

model = torch.nn.DataParallel(model).to(device)

modelCheckpoint = torch.load(pathModel)

model.load state dict(modelCheckpoint[’state dict’])

#——————– SETTINGS: DATA TRANSFORMS, TEN CROPS

normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224,

0.225])

#——————– SETTINGS: DATASET BUILDERS

transformList = []

transformList.append(transforms.Resize(transResize))

transformList.append(transforms.TenCrop(transCrop))

transformList.append(transforms.Lambda(lambda crops:

torch.stack([transforms.ToTensor()(crop) for crop in crops])))

transformList.append(transforms.Lambda(lambda crops:

torch.stack([normalize(crop) for crop in crops])))

transformSequence=transforms.Compose(transformList)

datasetTest = DatasetGenerator(pathImageDirectory=pathDirData,
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pathDatasetFile=pathFileTest, transform=transformSequence)

dataLoaderTest = DataLoader(dataset=datasetTest,

batch size=trBatchSize, num workers=8, shuffle=False,

pin memory=True)

outGT = torch.FloatTensor().to(device)

outPRED = torch.FloatTensor().to(device)

model.eval()

with torch.no grad():

for i, (input, target) in enumerate(dataLoaderTest):

target = target.to(device)

input = input.to(device)

outGT = torch.cat((outGT, target), 0)

bs, n crops, c, h, w = input.size()

varInput = input.view(-1, c, h, w).to(device)

out = model(varInput)

outMean = out.view(bs, n crops, -1).mean(1)

outPRED = torch.cat((outPRED, outMean.data), 0)

aurocIndividual = ChexnetTrainer.computeAUROC(outGT, outPRED,

nnClassCount)

accuracy, f1 scores, precisions, recalls, sensitivities,

specificities, ccs = ChexnetTrainer.computeOtherMetrics(outGT, outPRED, nnClass-

Count)

aurocMean = np.array(aurocIndividual).mean()

accMean = np.array(accuracy).mean()

f1Mean = np.array(f1 scores).mean()

precisionsMean = np.array(precisions).mean()

recallsMean = np.array(recalls).mean()
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sensMean = np.array(sensitivities).mean()

specMean = np.array(specificities).mean()

ccMean = np.array(ccs).mean()

print()

print(”=” * 15 + ” Test accuracy ” +”=”*15)

print (’1. AUROC mean ’, aurocMean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, aurocIndividual[i])

print()

print (’2. Accuracy mean ’, accMean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, accuracy[i])

print()

print (’3. F1 score mean ’, f1Mean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, f1 scores[i])

print()

print (’4. precision score mean ’, precisionsMean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, precisions[i])

print()

print (’5. recall score mean ’, recallsMean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, recalls[i])

print()

print (’6. sensitivities score mean ’, sensMean)

for i in range (0, len(aurocIndividual)):
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print (CLASS NAMES[i], ’ ’, sensitivities[i])

print()

print (’7. specificity score mean ’, specMean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, specificities[i])

print()

print (’8. correlation coefficient mean ’, ccMean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, ccs[i])

print()

return

A.2 DatasetGenerator

import os

import numpy as np

from PIL import Image

import torch

from torch.utils.data import Dataset

#—————————————————————————–

class DatasetGenerator (Dataset):

#————————————————————————-

def init (self, pathImageDirectory, pathDatasetFile, transform):

self.listImagePaths = []

self.listImageLabels = []

self.transform = transform

#—- Open file, get image paths and labels

fileDescriptor = open(pathDatasetFile, ”r”)
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#—- get into the loop

line = True

while line:

line = fileDescriptor.readline()

#— if not empty

if line:

lineItems = line.split()

imagePath = os.path.join(pathImageDirectory, lineItems[0])

imageLabel = lineItems[1:]

imageLabel = [int(i) for i in imageLabel]

if os.path.isfile(imagePath):

# Choose the five interested labels.

imageLabel = [

imageLabel[2],

imageLabel[10],

imageLabel[6],

imageLabel[5],

imageLabel[4],

]

self.listImagePaths.append(imagePath)

self.listImageLabels.append(imageLabel)

fileDescriptor.close()

#————————————————————————-

def getitem (self, index):

imagePath = self.listImagePaths[index]

imageData = Image.open(imagePath).convert(’RGB’)

imageLabel= torch.FloatTensor(self.listImageLabels[index])
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if self.transform != None: imageData = self.transform(imageData)

return imageData, imageLabel

#————————————————————————-

def len (self):

return len(self.listImagePaths)

#—————————————————————————-

A.3 DensenetModels

import os

import numpy as np

import torch

import torch.nn as nn

import torch.backends.cudnn as cudnn

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

from sklearn.metrics import roc auc score

import torchvision

class Resnet101(nn.Module):

def init (self, classCount, isTrained, args=None):

super(Resnet101, self). init ()

self.resnet101 = torchvision.models.resnet101(pretrained=isTrained)

kernelCount = self.resnet101.fc.in features

if args is None:

self.resnet101.fc = nn.Sequential(nn.Linear(kernelCount,

classCount), nn.Sigmoid())

else:

hidden units = args.hidden units
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if hidden units == 0:

self.resnet101.fc = nn.Sequential(nn.Linear(kernelCount,

classCount), nn.Sigmoid())

else:

self.resnet101.fc = nn.Sequential(

nn.Linear(kernelCount, hidden units),

nn.ReLU(),

nn.Dropout(args.dropout),

nn.Linear(hidden units, classCount),

nn.Sigmoid())

def forward(self, x):

x = self.resnet101(x)

return x

class DenseNet121(nn.Module):

def init (self, classCount, isTrained, args=None):

super(DenseNet121, self). init ()

self.densenet121 = torchvision.models.densenet121(pretrained=isTrained)

kernelCount = self.densenet121.classifier.in features

if args is None:

self.densenet121.classifier = nn.Sequential(nn.Linear(kernelCount,

classCount), nn.Sigmoid())

else:

hidden units = args.hidden units

if hidden units == 0:

self.densenet121.classifier =

nn.Sequential(nn.Linear(kernelCount, classCount), nn.Sigmoid())

else:
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self.densenet121.classifier = nn.Sequential(

nn.Linear(kernelCount, hidden units),

nn.ReLU(),

nn.Dropout(args.dropout),

nn.Linear(hidden units, classCount),

nn.Sigmoid())

def forward(self, x):

x = self.densenet121(x)

return x

class DenseNet169(nn.Module):

def init (self, classCount, isTrained, args=None):

super(DenseNet169, self). init ()

self.densenet169 = torchvision.models.densenet169(pretrained=isTrained)

kernelCount = self.densenet169.classifier.in features

if args is None:

self.densenet169.classifier = nn.Sequential(nn.Linear(kernelCount,

classCount), nn.Sigmoid())

else:

hidden units = args.hidden units

if hidden units == 0:

self.densenet169.classifier =

nn.Sequential(nn.Linear(kernelCount, classCount), nn.Sigmoid())

else:

self.densenet169.classifier = nn.Sequential(

nn.Linear(kernelCount, hidden units),

nn.ReLU(),

nn.Dropout(args.dropout),
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nn.Linear(hidden units, classCount),

nn.Sigmoid())

def forward (self, x):

x = self.densenet169(x)

return x

class DenseNet201(nn.Module):

def init (self, classCount, isTrained, args=None):

super(DenseNet201, self). init ()

self.densenet201 = torchvision.models.densenet201(pretrained=isTrained)

kernelCount = self.densenet201.classifier.in features

if args is None:

self.densenet201.classifier = nn.Sequential(nn.Linear(kernelCount,

classCount), nn.Sigmoid())

else:

hidden units = args.hidden units

if hidden units == 0:

self.densenet201.classifier =

nn.Sequential(nn.Linear(kernelCount, classCount), nn.Sigmoid())

else:

self.densenet201.classifier = nn.Sequential(

nn.Linear(kernelCount, hidden units),

nn.ReLU(),

nn.Dropout(args.dropout),

nn.Linear(hidden units, classCount),

nn.Sigmoid())

def forward (self, x):

x = self.densenet201(x)
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return x

A.4 HeatmapGenerator

import os

import numpy as np

import time

import sys

from PIL import Image

import cv2

import torch

import torch.nn as nn

import torch.backends.cudnn as cudnn

import torchvision

import torchvision.transforms as transforms

from DensenetModels import DenseNet121

from DensenetModels import DenseNet169

from DensenetModels import DenseNet201

#—————————————————————————–

#—- Class to generate heatmaps (CAM)

class HeatmapGenerator ():

#—- Initialize heatmap generator

#—- pathModel - path to the trained densenet model

#—- nnArchitecture - architecture name DENSE-NET121, DENSE-NET169,

DENSE-NET201

#—- nnClassCount - class count, 14 for chxray-14

def init (self, pathModel, nnArchitecture, nnClassCount,

transCrop):
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#—- Initialize the network

args = ”hidden units”: 256, ”dropout”: 0.33721971567120623

if nnArchitecture == ’DENSE-NET-121’: model = DenseNet121(nnClassCount, True,

args).cuda()

elif nnArchitecture == ’DENSE-NET-169’: model =

DenseNet169(nnClassCount, True, args).cuda()

elif nnArchitecture == ’DENSE-NET-201’: model =

DenseNet201(nnClassCount, True, args).cuda()

model = torch.nn.DataParallel(model).cuda()

modelCheckpoint = torch.load(pathModel)

model.load state dict(modelCheckpoint[’state dict’])

self.model = model.module.densenet121.features

self.model.eval()

#—- Initialize the weights

self.weights = list(self.model.parameters())[-2]

#—- Initialize the image transform - resize + normalize

normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224,

0.225])

transformList = []

transformList.append(transforms.Resize(transCrop))

transformList.append(transforms.ToTensor())

transformList.append(normalize)

self.transformSequence = transforms.Compose(transformList)

#————————————————————————-

def generate (self, pathImageFile, pathOutputFile, transCrop):

#—- Load image, transform, convert

imageData = Image.open(pathImageFile).convert(’RGB’)
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imageData = self.transformSequence(imageData)

imageData = imageData.unsqueeze (0)

input = torch.autograd.Variable(imageData)

self.model.cuda()

output = self.model(input.cuda())

#—- Generate heatmap

heatmap = None

for i in range (0, len(self.weights)): map = output[0,i,:,:] if i == 0: heatmap = self.weights[i]

* map else: heatmap += self.weights[i] * map

#—- Blend original and heatmap

npHeatmap = heatmap.cpu().data.numpy()

imgOriginal = cv2.imread(pathImageFile, 1)

imgOriginal = cv2.resize(imgOriginal, (transCrop, transCrop))

cam = npHeatmap / np.max(npHeatmap)

cam = cv2.resize(cam, (transCrop, transCrop))

heatmap = cv2.applyColorMap(np.uint8(255*cam), cv2.COLORMAP JET)

img = heatmap * 0.5 + imgOriginal

cv2.imwrite(pathOutputFile, img)

#—————————————————————————–

pathInputImage = ’test/00009285 000.png’

pathOutputImage = ’test/heatmap.png’

pathModel = ’models/train final.pth.tar’

nnArchitecture = ’DENSE-NET-121’

nnClassCount = 14

transCrop = 224

h = HeatmapGenerator(pathModel, nnArchitecture, nnClassCount, transCrop)

h.generate(pathInputImage, pathOutputImage, transCrop)
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A.5 test final

import os

import numpy as np

import time

import sys

import argparse

import logging

logger = logging.getLogger(’Chexnet Evolution’)

os.environ[”CUDA VISIBLE DEVICES”] = ”0”

from ChexnetTrainer import ChexnetTrainer

def runTest(args):

phases = [”train”, ”val”, ”test”]

for phase in phases:

print()

print(”=” * 25)

print(” metrics: ”.format(phase))

pathDirData = ’../database’

if phase == ”train”:

pathFileTest = ’./dataset/train 1.txt’

elif phase == ”val”:

pathFileTest = ’./dataset/val 1.txt’

elif phase == ”test”:

pathFileTest = ’./dataset/test 1.txt’

DENSENET121 = ’DENSE-NET-121’

DENSENET169 = ’DENSE-NET-169’

DENSENET201 = ’DENSE-NET-201’
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RESNET101 = ”RESNET-101”

if args.arch == ”chexnet”:

nnArchitecture = DENSENET121

elif args.arch == ”resnet”:

nnArchitecture = RESNET101

elif args.arch == ”densenet”:

nnArchitecture = DENSENET169

nnIsTrained = True

nnClassCount = 5

trBatchSize = 16

imgtransResize = 256

imgtransCrop = 224

if args.model:

pathModel = args.model

else:

pathModel = ’./models/train final.pth.tar’

timestampLaunch = ”

ChexnetTrainer.test(pathDirData, pathFileTest, pathModel,

nnArchitecture, nnClassCount, nnIsTrained, trBatchSize, imgtransResize, imgtransCrop,

timestampLaunch, args)

#—————————————————————————–

# Set the optimal hyper-parameters from evolutional-strategy search stage.

def get params():

# Training settings

parser = argparse.ArgumentParser(description=’PyTorch MNIST Example’)

# For model architecture.

parser.add argument(”–hidden units”, type=int, default=0, metavar=’N’,
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help=’hidden layer size (default: 256)’)

parser.add argument(”–dropout”, type=float, default=0, metavar=’N’)

# For training hyper-parameters.

parser.add argument(’–batch size’, type=int, default=16, metavar=’N’,

help=’input batch size for training (default: 16)’)

parser.add argument(’–lr’, type=float, default=0.001, metavar=’LR’,

help=’learning rate (default: 0.0001)’)

parser.add argument(’–weight decay’, type=float, default=0, metavar=’M’,

help=’weight decay (default: 1e-5)’)

parser.add argument(’–epochs’, type=int, default=50, metavar=’N’,

help=’number of epochs to train (default: 20)’)

# For data augmentation.

parser.add argument(’–rotation’, type=float, default=0.0, metavar=’N’,

help=’Random rotation angle (default: 10)’)

parser.add argument(’–brightness’, type=float, default=0, metavar=’N’,)

parser.add argument(’–contrast’, type=float, default=0, metavar=’N’)

parser.add argument(’–saturation’, type=float, default=0, metavar=’N’)

parser.add argument(’–hue’, type=float, default=0, metavar=’N’)

# Set the model architecture and model path.

parser.add argument(’–arch’, type=str, default=”chexnet”, metavar=’N’)

parser.add argument(’–model’, type=str,

default=’./models/train final.pth.tar’, metavar=’N’)

args, = parser.parse known args()

return args

if name == ’ main ’:

try:

params = get params()
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runTest(params)

except Exception as exception:

logger.exception(exception)

raise

A.6 train final

import os

import numpy as np

import time

import sys

import argparse

import logging

logger = logging.getLogger(’Chexnet Evolution’)

os.environ[”CUDA VISIBLE DEVICES”] = ”0”

from ChexnetTrainer import ChexnetTrainer

def runTrain(args):

DENSENET121 = ’DENSE-NET-121’

DENSENET169 = ’DENSE-NET-169’

DENSENET201 = ’DENSE-NET-201’

RESNET101 = ”RESNET-101”

timestampTime = time.strftime(”%H%M%S”)

timestampDate = time.strftime(”%d%m%Y”)

timestampLaunch = timestampDate + ’-’ + timestampTime

#—- Path to the directory with images

pathDirData = ’../database’

#—- Paths to the files with training, validation and testing sets.

#—- Each file should contains pairs [path to image, output vector]
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#—- Example: images 011/00027736 001.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pathFileTrain = ’./dataset/train 1.txt’

pathFileVal = ’./dataset/val 1.txt’

pathFileTest = ’./dataset/test 1.txt’

#—- Neural network parameters: type of the network, is it pre-trained

#—- on imagenet, number of classes

if args.arch == ”chexnet”:

nnArchitecture = DENSENET121

elif args.arch == ”resnet”:

nnArchitecture = RESNET101

elif args.arch == ”densenet”:

nnArchitecture = DENSENET169

nnIsTrained = True

nnClassCount = 5

#—- Training settings: batch size, maximum number of epochs

trBatchSize = args.batch size

trMaxEpoch = args.epochs # Set epoch=20 for ES search.

#—- Parameters related to image transforms: size of the down-scaled

image, cropped image

imgtransResize = 256

imgtransCrop = 224

pathModel = ’m-’ + timestampLaunch + ’.pth.tar’

print (’Training NN architecture = ’, nnArchitecture)

ChexnetTrainer.train(

pathDirData, pathFileTrain, pathFileVal,

nnArchitecture, nnIsTrained,

nnClassCount,
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trBatchSize, trMaxEpoch,

imgtransResize, imgtransCrop,

timestampLaunch, None,

args)

print (’Testing the trained model’)

ChexnetTrainer.test(

pathDirData, pathFileTest,

pathModel, nnArchitecture,

nnClassCount, nnIsTrained,

trBatchSize, imgtransResize,

imgtransCrop, timestampLaunch,

args)

# Set the optimal hyper-parameters from evolutional-strategy search stage.

def get params():

# Training settings

parser = argparse.ArgumentParser(description=’PyTorch MNIST Example’)

# For model architecture.

parser.add argument(”–hidden units”, type=int, default=0, metavar=’N’,

help=’hidden layer size (default: 256)’)

parser.add argument(”–dropout”, type=float, default=0, metavar=’N’)

# For training hyper-parameters.

parser.add argument(’–batch size’, type=int, default=16, metavar=’N’,

help=’input batch size for training (default: 16)’)

parser.add argument(’–lr’, type=float, default=0.001, metavar=’LR’,

help=’learning rate (default: 0.0001)’)

parser.add argument(’–weight decay’, type=float, default=0, metavar=’M’,

help=’weight decay (default: 1e-5)’)
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parser.add argument(’–epochs’, type=int, default=50, metavar=’N’,

help=’number of epochs to train (default: 20)’)

# For data augmentation.

parser.add argument(’–rotation’, type=float, default=0.0, metavar=’N’,

help=’Random rotation angle (default: 10)’)

parser.add argument(’–brightness’, type=float, default=0, metavar=’N’,)

parser.add argument(’–contrast’, type=float, default=0, metavar=’N’)

parser.add argument(’–saturation’, type=float, default=0, metavar=’N’)

parser.add argument(’–hue’, type=float, default=0, metavar=’N’)

# Identify the phase: train or search.

parser.add argument(’–arch’, type=str, default=”chexnet”, metavar=’N’)

args, = parser.parse known args()

return args

if name == ’ main ’:

try:

# get parameters form tuner

params = get params()

runTrain(params)

except Exception as exception:

logger.exception(exception)

raise
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APPENDIX B

PROPOSED METHOD

B.1 ChexnetTrainer

import os import numpy as np import time import sys import nni

import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torchvi-

sion import torchvision.transforms as transforms import torch.optim as optim import torch.nn.functional

as tfunc from torch.utils.data import DataLoader from torch.optim.lr scheduler import Re-

duceLROnPlateau import torch.nn.functional as func

from sklearn.metrics.ranking import roc auc score from sklearn.metrics import accu-

racy score, f1 score, precision recall curve, confusion matrix

from DensenetModels import DenseNet121 from DensenetModels import DenseNet169

from DensenetModels import DenseNet201 from DatasetGenerator import DatasetGener-

ator

device = torch.device(”cuda” if torch.cuda.is available() else ”cpu”)

#——————————————————————————–

class ChexnetTrainer ():

#—- Train the densenet network

#—- pathDirData - path to the directory that contains images

#—- pathFileTrain - path to the file that contains image paths and label pairs (training

set)

#—- pathFileVal - path to the file that contains image path and label

pairs (validation set)

#—- nnArchitecture - model architecture ’DENSE-NET-121’, ’DENSE-NET-169’ or

’DENSE-NET-201’
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#—- nnIsTrained - if True, uses pre-trained version of the network

(pre-trained on imagenet)

#—- nnClassCount - number of output classes

#—- trBatchSize - batch size

#—- trMaxEpoch - number of epochs

#—- transResize - size of the image to scale down to (not used in

current implementation)

#—- transCrop - size of the cropped image

#—- launchTimestamp - date/time, used to assign unique name for the

checkpoint file

#—- checkpoint - if not None loads the model and continues training

def train (

pathDirData, pathFileTrain, pathFileVal,

nnArchitecture, nnIsTrained,

nnClassCount,

trBatchSize, trMaxEpoch, transResize, transCrop,

launchTimestamp, checkpoint, args):

#——————– SETTINGS: NETWORK ARCHITECTURE

if nnArchitecture == ’DENSE-NET-121’: model = DenseNet121(nnClassCount, nnIs-

Trained, args).to(device)

elif nnArchitecture == ’DENSE-NET-169’: model =

DenseNet169(nnClassCount, nnIsTrained, args).to(device)

elif nnArchitecture == ’DENSE-NET-201’: model =

DenseNet201(nnClassCount, nnIsTrained, args).to(device)

model = torch.nn.DataParallel(model).to(device)

#——————– SETTINGS: DATA TRANSFORMS

normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224,
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0.225])

transformList = []

transformList.append(transforms.RandomResizedCrop(transCrop))

transformList.append(transforms.RandomHorizontalFlip())

transformList.append(transforms.RandomRotation(args[’rotation’]))

transformList.append(transforms.ColorJitter(

brightness=args[’brightness’],

contrast=args[’contrast’],

saturation=args[’saturation’],

hue=args[’hue’],

) )

transformList.append(transforms.ToTensor())

transformList.append(normalize)

transformSequence=transforms.Compose(transformList)

#——————– SETTINGS: DATASET BUILDERS

datasetTrain = DatasetGenerator(pathImageDirectory=pathDirData,

pathDatasetFile=pathFileTrain, transform=transformSequence)

datasetVal = DatasetGenerator(pathImageDirectory=pathDirData,

pathDatasetFile=pathFileVal, transform=transformSequence)

dataLoaderTrain = DataLoader(dataset=datasetTrain,

batch size=trBatchSize, shuffle=True, num workers=24,

pin memory=True)

dataLoaderVal = DataLoader(dataset=datasetVal, batch size=trBatchSize, shuffle=False,

num workers=24, pin memory=True)

#——————– SETTINGS: OPTIMIZER & SCHEDULER

optimizer = optim.Adam (

model.parameters(),
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lr=args[’lr’],

betas=(0.9, 0.999), eps=1e-08,

weight decay=args[’weight decay’])

scheduler = ReduceLROnPlateau(optimizer, factor = 0.1, patience = 5,

mode = ’min’)

#——————– SETTINGS: LOSS

loss = torch.nn.BCELoss(size average = True)

#—- Load checkpoint

if checkpoint != None:

modelCheckpoint = torch.load(checkpoint)

model.load state dict(modelCheckpoint[’state dict’])

optimizer.load state dict(modelCheckpoint[’optimizer’])

#—- TRAIN THE NETWORK

lossMIN = 100000

for epochID in range (0, trMaxEpoch):

timestampTime = time.strftime(”%H%M%S”)

timestampDate = time.strftime(”%d%m%Y”)

timestampSTART = timestampDate + ’-’ + timestampTime

ChexnetTrainer.epochTrain (model, dataLoaderTrain, optimizer,

scheduler, trMaxEpoch, nnClassCount, loss, args[’search’])

lossVal, losstensor = ChexnetTrainer.epochVal (model,

dataLoaderVal, optimizer, scheduler, trMaxEpoch, nnClassCount,

loss)

nni.report intermediate result(lossVal.item())

timestampTime = time.strftime(”%H%M%S”)

timestampDate = time.strftime(”%d%m%Y”)

timestampEND = timestampDate + ’-’ + timestampTime
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scheduler.step(losstensor.data)

if lossVal ¡ lossMIN:

lossMIN = lossVal

torch.save(’epoch’: epochID + 1, ’state dict’:

model.state dict(), ’best loss’: lossMIN, ’optimizer’ :

optimizer.state dict(), ’m-’ + launchTimestamp + ’.pth.tar’)

print (’Epoch [’ + str(epochID + 1) + ’] [save] [’ +

timestampEND + ’] loss= ’ + str(lossVal))

else:

print (’Epoch [’ + str(epochID + 1) + ’] [—-] [’ +

timestampEND + ’] loss= ’ + str(lossVal))

# report final result

nni.report final result(lossMIN.item())

#————————————————————————-

def epochTrain (model, dataLoader, optimizer, scheduler, epochMax,

classCount, loss, search):

model.train()

for batchID, (input, target) in enumerate(dataLoader):

input, target = input.to(device), target.to(device)

# target = target.cuda(non blocking=True)

# target = target.cuda(non blocking=True)

# varInput = torch.autograd.Variable(input)

# varTarget = torch.autograd.Variable(target)

varOutput = model(input)

lossvalue = loss(varOutput, target)

optimizer.zero grad()

lossvalue.backward()
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optimizer.step()

if (batchID+1) % 100 == 0:

print(”Training step , loss ”.format(batchID+1,

lossvalue.data))

# # Terminate the training during search.

# if search:

# if batchID ¿ len(dataLoader)/2:

# break

#————————————————————————-

def epochVal (model, dataLoader, optimizer, scheduler, epochMax,

classCount, loss):

model.eval ()

lossVal = 0

lossValNorm = 0

losstensorMean = 0

with torch.no grad():

for i, (input, target) in enumerate (dataLoader):

input, target = input.to(device), target.to(device)

# target = target.cuda(non blocking=True)

# varInput = torch.autograd.Variable(input, volatile=True)

# varTarget = torch.autograd.Variable(target, volatile=True) varOutput = model(input)

losstensor = loss(varOutput, target)

losstensorMean += losstensor

# print(losstensor.data)

lossVal += losstensor.data

lossValNorm += 1

outLoss = lossVal / lossValNorm
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losstensorMean = losstensorMean / lossValNorm

return outLoss, losstensorMean

#————————————————————————-

#—- Computes area under ROC curve

#—- dataGT - ground truth data

#—- dataPRED - predicted data

#—- classCount - number of classes

def computeAUROC(dataGT, dataPRED, classCount):

outAUROC = []

datanpGT = dataGT.cpu().numpy()

datanpPRED = dataPRED.cpu().numpy()

for i in range(classCount):

outAUROC.append(roc auc score(datanpGT[:, i], datanpPRED[:, i]))

return outAUROC

def computeOtherMetrics(dataGT, dataPRED, classCount):

datanpGT = dataGT.cpu().numpy()

datanpPRED = dataPRED.cpu().numpy()

accuracies = []

f1 scores = []

sensitivities = []

specificities = []

precisions, recalls, thresholds = [], [], []

ccs = []

for i in range(classCount):

target = datanpGT[:, i]

pred = datanpPRED[:, i]

precision, recall, threshold = precision recall curve(target,
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pred)

pr = precision * recall

threshold = threshold[np.argmax(pr)]

pred[pred¿=threshold] = 1

pred[pred¡threshold] = 0

accuracies.append(accuracy score(target, pred))

f1 scores.append(f1 score(target, pred))

precisions.append(precision[np.argmax(pr)])

recalls.append(recall[np.argmax(pr)])

thresholds.append(threshold)

tn, fp, fn, tp = confusion matrix(target, pred).ravel()

sensitivity = tp / (tp+fn)

specificity = tn / (tn+fp)

sensitivities.append(sensitivity)

specificities.append(specificity)

cc = ((tp*tn) - (fn*fp))/ ((tp+fn)*(tn+fp)*(tp+fp)*(tn+fn))**0.5

ccs.append(cc)

return accuracies, f1 scores, precisions, recalls, sensitivities,

specificities, ccs

#————————————————————————-

#—- Test the trained network

#—- pathDirData - path to the directory that contains images

#—- pathFileTrain - path to the file that contains image paths and label pairs (training

set)

#—- pathFileVal - path to the file that contains image path and label

pairs (validation set)

#—- nnArchitecture - model architecture ’DENSE-NET-121’, ’DENSE-NET-169’ or
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’DENSE-NET-201’

#—- nnIsTrained - if True, uses pre-trained version of the network

(pre-trained on imagenet)

#—- nnClassCount - number of output classes

#—- trBatchSize - batch size

#—- trMaxEpoch - number of epochs

#—- transResize - size of the image to scale down to (not used in

current implementation)

#—- transCrop - size of the cropped image

#—- launchTimestamp - date/time, used to assign unique name for the

checkpoint file

#—- checkpoint - if not None loads the model and continues training

def test (

pathDirData, pathFileTest,

pathModel, nnArchitecture,

nnClassCount,

nnIsTrained, trBatchSize, transResize,

transCrop, launchTimeStamp, args):

#CLASS NAMES = [ ’Atelectasis’, ’Cardiomegaly’, ’Effusion’,

’Infiltration’, ’Mass’, ’Nodule’, ’Pneumonia’,

# ’Pneumothorax’, ’Consolidation’, ’Edema’, ’Emphysema’,

’Fibrosis’, ’Pleural Thickening’, ’Hernia’]

CLASS NAMES = [’Emphysema’,’Effusion’,’Pneumonia’,’Nodule’,’Mass’,]

cudnn.benchmark = True

#——————– SETTINGS: NETWORK ARCHITECTURE, MODEL LOAD

if nnArchitecture == ’DENSE-NET-121’: model = DenseNet121(nnClassCount, nnIs-

Trained, args).to(device)
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elif nnArchitecture == ’DENSE-NET-169’: model =

DenseNet169(nnClassCount, nnIsTrained, args).to(device)

elif nnArchitecture == ’DENSE-NET-201’: model =

DenseNet201(nnClassCount, nnIsTrained, args).to(device)

model = torch.nn.DataParallel(model).to(device)

modelCheckpoint = torch.load(pathModel)

model.load state dict(modelCheckpoint[’state dict’])

#——————– SETTINGS: DATA TRANSFORMS, TEN CROPS

normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224,

0.225])

#——————– SETTINGS: DATASET BUILDERS

transformList = []

transformList.append(transforms.Resize(transResize))

transformList.append(transforms.TenCrop(transCrop))

transformList.append(transforms.Lambda(lambda crops:

torch.stack([transforms.ToTensor()(crop) for crop in crops])))

transformList.append(transforms.Lambda(lambda crops:

torch.stack([normalize(crop) for crop in crops])))

transformSequence=transforms.Compose(transformList)

datasetTest = DatasetGenerator(pathImageDirectory=pathDirData,

pathDatasetFile=pathFileTest, transform=transformSequence)

dataLoaderTest = DataLoader(dataset=datasetTest,

batch size=trBatchSize, num workers=8, shuffle=False,

pin memory=True)

outGT = torch.FloatTensor().to(device)

outPRED = torch.FloatTensor().to(device)

model.eval()
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with torch.no grad():

for i, (input, target) in enumerate(dataLoaderTest):

target = target.to(device)

input = input.to(device)

outGT = torch.cat((outGT, target), 0)

bs, n crops, c, h, w = input.size()

varInput = input.view(-1, c, h, w).to(device)

out = model(varInput)

outMean = out.view(bs, n crops, -1).mean(1)

outPRED = torch.cat((outPRED, outMean.data), 0)

aurocIndividual = ChexnetTrainer.computeAUROC(outGT, outPRED,

nnClassCount)

accuracy, f1 scores, precisions, recalls, sensitivities,

specificities, ccs = ChexnetTrainer.computeOtherMetrics(outGT, outPRED, nnClass-

Count)

aurocMean = np.array(aurocIndividual).mean()

accMean = np.array(accuracy).mean()

f1Mean = np.array(f1 scores).mean()

precisionsMean = np.array(precisions).mean()

recallsMean = np.array(recalls).mean()

sensMean = np.array(sensitivities).mean()

specMean = np.array(specificities).mean()

ccMean = np.array(ccs).mean()

print()

print(”=” * 15 + ” Test accuracy ” +”=”*15)

print (’1. AUROC mean ’, aurocMean)

for i in range (0, len(aurocIndividual)):

91



print (CLASS NAMES[i], ’ ’, aurocIndividual[i])

print()

print (’2. Accuracy mean ’, accMean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, accuracy[i])

print()

print (’3. F1 score mean ’, f1Mean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, f1 scores[i])

print()

print (’4. precision score mean ’, precisionsMean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, precisions[i])

print()

print (’5. recall score mean ’, recallsMean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, recalls[i])

print()

print (’6. sensitivities score mean ’, sensMean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, sensitivities[i])

print()

print (’7. specificity score mean ’, specMean)

for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, specificities[i])

print()

print (’8. correlation coefficient mean ’, ccMean)
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for i in range (0, len(aurocIndividual)):

print (CLASS NAMES[i], ’ ’, ccs[i])

print()

return

B.2 DatasetGenerator

import os

import numpy as np

from PIL import Image

import torch

from torch.utils.data import Dataset

#—————————————————————————–

class DatasetGenerator (Dataset):

#————————————————————————-

def init (self, pathImageDirectory, pathDatasetFile, transform):

self.listImagePaths = []

self.listImageLabels = []

self.transform = transform

#—- Open file, get image paths and labels

fileDescriptor = open(pathDatasetFile, ”r”)

#—- get into the loop

line = True

while line:

line = fileDescriptor.readline()

#— if not empty

if line:

lineItems = line.split()
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imagePath = os.path.join(pathImageDirectory, lineItems[0])

imageLabel = lineItems[1:]

imageLabel = [int(i) for i in imageLabel]

if os.path.isfile(imagePath):

# Choose the five interested labels.

imageLabel = [

imageLabel[2],

imageLabel[10],

imageLabel[6],

imageLabel[5],

imageLabel[4],

]

self.listImagePaths.append(imagePath)

self.listImageLabels.append(imageLabel)

fileDescriptor.close()

#————————————————————————-

def getitem (self, index):

imagePath = self.listImagePaths[index]

imageData = Image.open(imagePath).convert(’RGB’)

imageLabel= torch.FloatTensor(self.listImageLabels[index])

if self.transform != None: imageData = self.transform(imageData)

return imageData, imageLabel

#——————————————————————————–

def len (self):

return len(self.listImagePaths)

#——————————————————————————–
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B.3 DensenetModels

import os

import numpy as np

import torch

import torch.nn as nn

import torch.backends.cudnn as cudnn

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

from sklearn.metrics import roc auc score

import torchvision

class DenseNet121(nn.Module):

def init (self, classCount, isTrained, args=None):

super(DenseNet121, self). init ()

self.densenet121 = torchvision.models.densenet121(pretrained=isTrained)

kernelCount = self.densenet121.classifier.in features

if args is None:

self.densenet121.classifier = nn.Sequential(nn.Linear(kernelCount,

classCount), nn.Sigmoid())

else:

hidden units = args[”hidden units”]

if hidden units == 0:

self.densenet121.classifier =

nn.Sequential(nn.Linear(kernelCount, classCount), nn.Sigmoid())

else:

self.densenet121.classifier = nn.Sequential(

nn.Linear(kernelCount, hidden units),
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nn.ReLU(),

nn.Dropout(args[”dropout”]),

nn.Linear(hidden units, classCount),

nn.Sigmoid())

def forward(self, x):

x = self.densenet121(x)

return x

class DenseNet169(nn.Module):

def init (self, classCount, isTrained, args=None):

super(DenseNet169, self). init ()

self.densenet169 = torchvision.models.densenet169(pretrained=isTrained)

kernelCount = self.densenet169.classifier.in features

if args is None:

self.densenet169.classifier = nn.Sequential(nn.Linear(kernelCount,

classCount), nn.Sigmoid())

else:

hidden units = args[”hidden units”]

if hidden units == 0:

self.densenet169.classifier =

nn.Sequential(nn.Linear(kernelCount, classCount), nn.Sigmoid())

else:

self.densenet169.classifier = nn.Sequential(

nn.Linear(kernelCount, hidden units),

nn.ReLU(),

nn.Dropout(args[”dropout”]),

nn.Linear(hidden units, classCount),

nn.Sigmoid())
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def forward (self, x):

x = self.densenet169(x)

return x

class DenseNet201(nn.Module):

def init (self, classCount, isTrained, args=None):

super(DenseNet201, self). init ()

self.densenet201 = torchvision.models.densenet201(pretrained=isTrained)

kernelCount = self.densenet201.classifier.in features

if args is None:

self.densenet201.classifier = nn.Sequential(nn.Linear(kernelCount,

classCount), nn.Sigmoid())

else:

hidden units = args[”hidden units”]

if hidden units == 0:

self.densenet201.classifier =

nn.Sequential(nn.Linear(kernelCount, classCount), nn.Sigmoid())

else:

self.densenet201.classifier = nn.Sequential(

nn.Linear(kernelCount, hidden units),

nn.ReLU(),

nn.Dropout(args[”dropout”]),

nn.Linear(hidden units, classCount),

nn.Sigmoid())

def forward (self, x):

x = self.densenet201(x)

return x
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B.4 HeatmapGenerator

import os

import numpy as np

import time

import sys

from PIL import Image

import cv2

import torch

import torch.nn as nn

import torch.backends.cudnn as cudnn

import torchvision

import torchvision.transforms as transforms

from DensenetModels import DenseNet121

from DensenetModels import DenseNet169

from DensenetModels import DenseNet201

#—————————————————————————–

#—- Class to generate heatmaps (CAM)

class HeatmapGenerator ():

#—- Initialize heatmap generator

#—- pathModel - path to the trained densenet model

#—- nnArchitecture - architecture name DENSE-NET121, DENSE-NET169,

DENSE-NET201

#—- nnClassCount - class count, 14 for chxray-14

def init (self, pathModel, nnArchitecture, nnClassCount,

transCrop):

#—- Initialize the network
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args = ”hidden units”: 256, ”dropout”: 0.33721971567120623

if nnArchitecture == ’DENSE-NET-121’: model = DenseNet121(nnClassCount, True,

args).cuda()

elif nnArchitecture == ’DENSE-NET-169’: model =

DenseNet169(nnClassCount, True, args).cuda()

elif nnArchitecture == ’DENSE-NET-201’: model =

DenseNet201(nnClassCount, True, args).cuda()

model = torch.nn.DataParallel(model).cuda()

modelCheckpoint = torch.load(pathModel)

model.load state dict(modelCheckpoint[’state dict’])

self.model = model.module.densenet121.features

self.model.eval()

#—- Initialize the weights

self.weights = list(self.model.parameters())[-2]

#—- Initialize the image transform - resize + normalize

normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224,

0.225])

transformList = []

transformList.append(transforms.Resize(transCrop))

transformList.append(transforms.ToTensor())

transformList.append(normalize)

self.transformSequence = transforms.Compose(transformList)

#————————————————————————-

def generate (self, pathImageFile, pathOutputFile, transCrop):

#—- Load image, transform, convert

imageData = Image.open(pathImageFile).convert(’RGB’)

imageData = self.transformSequence(imageData)
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imageData = imageData.unsqueeze (0)

input = torch.autograd.Variable(imageData)

self.model.cuda()

output = self.model(input.cuda())

#—- Generate heatmap

heatmap = None

for i in range (0, len(self.weights)):

map = output[0,i,:,:]

if i == 0: heatmap = self.weights[i] * map

else: heatmap += self.weights[i] * map

#—- Blend original and heatmap

npHeatmap = heatmap.cpu().data.numpy()

imgOriginal = cv2.imread(pathImageFile, 1)

imgOriginal = cv2.resize(imgOriginal, (transCrop, transCrop))

cam = npHeatmap / np.max(npHeatmap)

cam = cv2.resize(cam, (transCrop, transCrop))

heatmap = cv2.applyColorMap(np.uint8(255*cam), cv2.COLORMAP JET)

img = heatmap * 0.5 + imgOriginal

cv2.imwrite(pathOutputFile, img)

#—————————————————————————–

pathInputImage = ’test/00009285 000.png’

pathOutputImage = ’test/heatmap.png’

pathModel = ’models/train final.pth.tar’

nnArchitecture = ’DENSE-NET-121’

nnClassCount = 14

transCrop = 224

h = HeatmapGenerator(pathModel, nnArchitecture, nnClassCount, transCrop)
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h.generate(pathInputImage, pathOutputImage, transCrop)

B.5 Main

import os

import numpy as np

import time

import sys

import argparse

import logging

import nni

logger = logging.getLogger(’Chexnet Evolution’)

os.environ[”CUDA VISIBLE DEVICES”] = ”0”

from ChexnetTrainer import ChexnetTrainer

def runTrain(args):

DENSENET121 = ’DENSE-NET-121’

DENSENET169 = ’DENSE-NET-169’

DENSENET201 = ’DENSE-NET-201’

timestampTime = time.strftime(”%H%M%S”)

timestampDate = time.strftime(”%d%m%Y”)

timestampLaunch = timestampDate + ’-’ + timestampTime

#—- Path to the directory with images

pathDirData = ’../database’

#—- Paths to the files with training, validation and testing sets.

#—- Each file should contains pairs [path to image, output vector]

#—- Example: images 011/00027736 001.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pathFileTrain = ’./dataset/train 1.txt’

pathFileVal = ’./dataset/val 1.txt’
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pathFileTest = ’./dataset/test 1.txt’

#—- Neural network parameters: type of the network, is it pre-trained

#—- on imagenet, number of classes

nnArchitecture = DENSENET121

nnIsTrained = True

nnClassCount = 14

#—- Training settings: batch size, maximum number of epochs

trBatchSize = args[’batch size’]

trMaxEpoch = args[’epochs’] # Set epoch=20 for ES search.

#—- Parameters related to image transforms: size of the down-scaled

image, cropped image

imgtransResize = 256

imgtransCrop = 224

pathModel = ’m-’ + timestampLaunch + ’.pth.tar’

print (’Training NN architecture = ’, nnArchitecture)

ChexnetTrainer.train(

pathDirData, pathFileTrain, pathFileVal,

nnArchitecture, nnIsTrained,

nnClassCount,

trBatchSize, trMaxEpoch,

imgtransResize, imgtransCrop,

timestampLaunch, None,

args)

if not args[’search’]:

print (’Testing the trained model’)

ChexnetTrainer.test(

pathDirData, pathFileTest,
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pathModel, nnArchitecture,

nnClassCount, nnIsTrained,

trBatchSize, imgtransResize,

imgtransCrop, timestampLaunch,

args)

#—————————————————————————–

def runTest():

pathDirData = ’../database’

pathFileTest = ’./dataset/test 1.txt’

nnArchitecture = ’DENSE-NET-121’

nnIsTrained = True

nnClassCount = 14

trBatchSize = 16

imgtransResize = 256

imgtransCrop = 224

pathModel = ’./models/train epoch 20.pth.tar’

timestampLaunch = ”

ChexnetTrainer.test(pathDirData, pathFileTest, pathModel, nnArchitecture,

nnClassCount, nnIsTrained, trBatchSize, imgtransResize, imgtransCrop,

timestampLaunch)

#—————————————————————————–

def get params():

# Training settings

parser = argparse.ArgumentParser(description=’PyTorch MNIST Example’)

# For model architecture.

parser.add argument(”–hidden units”, type=int, default=256, metavar=’N’,

help=’hidden layer size (default: 256)’)
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parser.add argument(”–dropout”, type=float, default=0.5, metavar=’N’)

# For training hyper-parameters.

parser.add argument(’–batch size’, type=int, default=16, metavar=’N’,

help=’input batch size for training (default: 16)’)

parser.add argument(’–lr’, type=float, default=0.0001, metavar=’LR’,

help=’learning rate (default: 0.0001)’)

parser.add argument(’–weight decay’, type=float, default=0.00001,

metavar=’M’,

help=’weight decay (default: 1e-5)’)

parser.add argument(’–epochs’, type=int, default=10, metavar=’N’,

help=’number of epochs to train (default: 20)’)

# For data augmentation.

parser.add argument(’–rotation’, type=float, default=10.0, metavar=’N’,

help=’Random rotation angle (default: 10)’)

parser.add argument(’–brightness’, type=float, default=0, metavar=’N’,)

parser.add argument(’–contrast’, type=float, default=0, metavar=’N’)

parser.add argument(’–saturation’, type=float, default=0, metavar=’N’)

parser.add argument(’–hue’, type=float, default=0, metavar=’N’)

# Identify the phase: train or search.

parser.add argument(’–search’, type=bool, default=True, metavar=’N’)

args, = parser.parse known args()

return args

if name == ’ main ’:

try:

# get parameters form tuner

tuner params = nni.get next parameter()

params = vars(get params())

104



params.update(tuner params)

print(params)

runTrain(params)

except Exception as exception:

logger.exception(exception)

raise

B.6 test final

import os

import numpy as np

import time

import sys

import argparse

import logging

import nni

logger = logging.getLogger(’Chexnet Evolution’)

os.environ[”CUDA VISIBLE DEVICES”] = ”0”

from ChexnetTrainer import ChexnetTrainer

def runTrain(args):

DENSENET121 = ’DENSE-NET-121’

DENSENET169 = ’DENSE-NET-169’

DENSENET201 = ’DENSE-NET-201’

timestampTime = time.strftime(”%H%M%S”)

timestampDate = time.strftime(”%d%m%Y”)

timestampLaunch = timestampDate + ’-’ + timestampTime

#—- Path to the directory with images

pathDirData = ’../database’
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#—- Paths to the files with training, validation and testing sets.

#—- Each file should contains pairs [path to image, output vector]

#—- Example: images 011/00027736 001.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pathFileTrain = ’./dataset/train 1.txt’

pathFileVal = ’./dataset/val 1.txt’

pathFileTest = ’./dataset/test 1.txt’

#—- Neural network parameters: type of the network, is it pre-trained

#—- on imagenet, number of classes

nnArchitecture = DENSENET121

nnIsTrained = True

nnClassCount = 5

#—- Training settings: batch size, maximum number of epochs

trBatchSize = args[’batch size’]

trMaxEpoch = args[’epochs’] # Set epoch=20 for ES search.

#—- Parameters related to image transforms: size of the down-scaled image, cropped

image

imgtransResize = 256

imgtransCrop = 224

pathModel = ’m-’ + timestampLaunch + ’.pth.tar’

print (’Training NN architecture = ’, nnArchitecture)

ChexnetTrainer.train(

pathDirData, pathFileTrain, pathFileVal,

nnArchitecture, nnIsTrained,

nnClassCount,

trBatchSize, trMaxEpoch,

imgtransResize, imgtransCrop,

timestampLaunch, None,
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args)

if not args[’search’]:

print (’Testing the trained model’)

ChexnetTrainer.test(

pathDirData, pathFileTest,

pathModel, nnArchitecture,

nnClassCount, nnIsTrained,

trBatchSize, imgtransResize,

imgtransCrop, timestampLaunch,

args)

#—————————————————————————–

def runTest(args):

phases = [”train”, ”val”, ”test”]

for phase in phases:

print()

print(”=” * 25)

print(” metrics: ”.format(phase))

pathDirData = ’../database’

if phase == ”train”:

pathFileTest = ’./dataset/train 1.txt’

elif phase == ”val”:

pathFileTest = ’./dataset/val 1.txt’

elif phase == ”test”:

pathFileTest = ’./dataset/test 1.txt’

nnArchitecture = ’DENSE-NET-121’

nnIsTrained = True

nnClassCount = 5
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trBatchSize = 16

imgtransResize = 256

imgtransCrop = 224

pathModel = ’./models/train final.pth.tar’

timestampLaunch = ”

ChexnetTrainer.test(pathDirData, pathFileTest, pathModel,

nnArchitecture, nnClassCount, nnIsTrained, trBatchSize, imgtransResize, imgtransCrop,

timestampLaunch, args)

#—————————————————————————–

# Set the optimal hyper-parameters.

def get params():

# Training settings

parser = argparse.ArgumentParser(description=’PyTorch MNIST Example’)

# For model architecture.

parser.add argument(”–hidden units”, type=int, default=256, metavar=’N’,

help=’hidden layer size (default: 256)’)

parser.add argument(”–dropout”, type=float, default=0.33721971567120623,

metavar=’N’)

# For training hyper-parameters.

parser.add argument(’–batch size’, type=int, default=16, metavar=’N’,

help=’input batch size for training (default: 16)’)

parser.add argument(’–lr’, type=float, default=0.0001, metavar=’LR’,

help=’learning rate (default: 0.0001)’)

parser.add argument(’–weight decay’, type=float, default=0.00001,

metavar=’M’,

help=’weight decay (default: 1e-5)’)

parser.add argument(’–epochs’, type=int, default=50, metavar=’N’,
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help=’number of epochs to train (default: 20)’)

# For data augmentation.

parser.add argument(’–rotation’, type=float, default=0.0, metavar=’N’,

help=’Random rotation angle (default: 10)’)

parser.add argument(’–brightness’, type=float,

default=0.12472637828693578, metavar=’N’,)

parser.add argument(’–contrast’, type=float, default=0.04714110886484995, metavar=’N’)

parser.add argument(’–saturation’, type=float,

default=0.1602227747387773, metavar=’N’)

parser.add argument(’–hue’, type=float, default=0.19276279407362312,

metavar=’N’)

# Identify the phase: train or search.

parser.add argument(’–search’, type=bool, default=True, metavar=’N’)

args, = parser.parse known args()

return args

if name == ’ main ’:

try:

# get parameters form tuner

tuner params = nni.get next parameter()

params = vars(get params())

params.update(tuner params)

print(params)

runTest(params)

except Exception as exception:

logger.exception(exception)

raise
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B.7 train final

import os

import numpy as np

import time

import sys

import argparse

import logging

import nni

logger = logging.getLogger(’Chexnet Evolution’)

os.environ[”CUDA VISIBLE DEVICES”] = ”0”

from ChexnetTrainer import ChexnetTrainer

def runTrain(args):

DENSENET121 = ’DENSE-NET-121’

DENSENET169 = ’DENSE-NET-169’

DENSENET201 = ’DENSE-NET-201’

timestampTime = time.strftime(”%H%M%S”)

timestampDate = time.strftime(”%d%m%Y”)

timestampLaunch = timestampDate + ’-’ + timestampTime

#—- Path to the directory with images

pathDirData = ’../database’

#—- Paths to the files with training, validation and testing sets.

#—- Each file should contains pairs [path to image, output vector]

#—- Example: images 011/00027736 001.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pathFileTrain = ’./dataset/train 1.txt’

pathFileVal = ’./dataset/val 1.txt’

pathFileTest = ’./dataset/test 1.txt’
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#—- Neural network parameters: type of the network, is it pre-trained

#—- on imagenet, number of classes

nnArchitecture = DENSENET121

nnIsTrained = True

nnClassCount = 5

#—- Training settings: batch size, maximum number of epochs

trBatchSize = args[’batch size’]

trMaxEpoch = args[’epochs’] # Set epoch=20 for ES search.

#—- Parameters related to image transforms: size of the down-scaled

image, cropped image

imgtransResize = 256

imgtransCrop = 224

pathModel = ’m-’ + timestampLaunch + ’.pth.tar’

print (’Training NN architecture = ’, nnArchitecture)

ChexnetTrainer.train(

pathDirData, pathFileTrain, pathFileVal,

nnArchitecture, nnIsTrained,

nnClassCount,

trBatchSize, trMaxEpoch,

imgtransResize, imgtransCrop,

timestampLaunch, None,

args)

if not args[’search’]:

print (’Testing the trained model’)

ChexnetTrainer.test(

pathDirData, pathFileTest,

pathModel, nnArchitecture,
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nnClassCount, nnIsTrained,

trBatchSize, imgtransResize,

imgtransCrop, timestampLaunch,

args)

#—————————————————————————–

def runTest():

pathDirData = ’../database’

pathFileTest = ’./dataset/test 1.txt’

nnArchitecture = ’DENSE-NET-121’

nnIsTrained = True

nnClassCount = 5

trBatchSize = 16

imgtransResize = 256

imgtransCrop = 224

pathModel = ’./models/train epoch 20.pth.tar’

timestampLaunch = ”

ChexnetTrainer.test(pathDirData, pathFileTest, pathModel, nnArchitecture,

nnClassCount, nnIsTrained, trBatchSize, imgtransResize, imgtransCrop,

timestampLaunch)

#—————————————————————————–

# Set the optimal hyper-parameters.

def get params():

# Training settings

parser = argparse.ArgumentParser(description=’PyTorch MNIST Example’)

# For model architecture.

parser.add argument(”–hidden units”, type=int, default=256, metavar=’N’,

help=’hidden layer size (default: 256)’)
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parser.add argument(”–dropout”, type=float, default=0.33721971567120623,

metavar=’N’)

# For training hyper-parameters.

parser.add argument(’–batch size’, type=int, default=16, metavar=’N’,

help=’input batch size for training (default: 16)’)

parser.add argument(’–lr’, type=float, default=0.0001, metavar=’LR’,

help=’learning rate (default: 0.0001)’)

parser.add argument(’–weight decay’, type=float, default=0.00001,

metavar=’M’,

help=’weight decay (default: 1e-5)’)

parser.add argument(’–epochs’, type=int, default=50, metavar=’N’,

help=’number of epochs to train (default: 20)’)

# For data augmentation.

parser.add argument(’–rotation’, type=float, default=0.0, metavar=’N’,

help=’Random rotation angle (default: 10)’)

parser.add argument(’–brightness’, type=float,

default=0.12472637828693578, metavar=’N’,)

parser.add argument(’–contrast’, type=float, default=0.04714110886484995, metavar=’N’)

parser.add argument(’–saturation’, type=float,

default=0.1602227747387773, metavar=’N’)

parser.add argument(’–hue’, type=float, default=0.19276279407362312,

metavar=’N’)

# Identify the phase: train or search.

parser.add argument(’–search’, type=bool, default=True, metavar=’N’)

args, = parser.parse known args()

return args

if name == ’ main ’:
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try:

# get parameters form tuner

tuner params = nni.get next parameter()

params = vars(get params())

params.update(tuner params)

print(params)

runTrain(params)

except Exception as exception:

logger.exception(exception)

raise
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