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ABSTRACT 

This study uncovers how secondary high school chemistry process-oriented motivation is 

altered after implementation of Argument-Driven Inquiry (ADI). ADI is a laboratory instructional 

model that utilizes four Science and Engineering Practices (SEPs) in a student-centered lab 

experience. The SEPs are embedded to the current curriculum to help motivate students to learn 

chemistry (NRC, 2012). This study utilized eleven total chemistry classes, five on-level chemistry 

and six honors chemistry, with a total of 243 students participating in some facet of the study. Data 

sources included were View About Scientific Inquiry (VASI), the newly developed Process-

Oriented Motivation Instrument (POMI), and student lab reports (achievement). Two goals were 

necessary to examine student-process-oriented motivation for the control and experimental group. 

Based on current science education literature, a valid and reliable POMI does not currently exist. 

Thus, Goal 1 purpose was to create an instrument, POMI, while generating valid and reliable data. 

A Confirmatory Factor Analysis along with other forms of validity and reliability were completed 

to find the most valid and reliable model, the revised POMI model. Thus, Goal 2 utilized this 

revised POMI model to find the effect ADI had on student-process oriented motivation for both 

groups. The control group, honors chemistry students, utilized a traditional lab. However, the 

experimental group, on-level chemistry students, participated in the ADI lab to determine if the 

type of lab implementation caused a significant difference in process-oriented motivation among 

the groups. Normalized gain scores were used to compare if there was significant difference 

between the control and experimental groups. Finally, mediation path analysis discovered if 

process-oriented motivation factors influence how the experimental group or control performed 

on their lab report. Two conclusions were drawn as a result of Goal 2: (1) after ADI implementation 

both groups experienced statistically similar changes in each POMI motivation factor and (2) no 

POMI factor possessed a significant influence on the lab report scores of either group. 
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CHAPTER 1: INTRODUCTION 

Statement of Problem         

“Successful and unsuccessful people do not vary greatly in their abilities. They vary in 

their desires to reach their potential” - John Maxwell.  

 Motivation can be defined with various quotes or definitions, while it can be defined as a 

drive toward a task or job that culminates in a desired outcome or result. According to Carver and 

Scheier (1998), motivation is a result of psychological forces that enable action. Ryan and Deci 

(2000) reported that motivated students demonstrated higher achievement, improved 

comprehension of concepts taught, increased satisfaction in school, and lower dropout rates. Yet, 

the National Research Council found that more than 40 percent of high school students are 

characterized as disengaged or unmotivated during school (National Research Council [NRC], 

2003). Despite many forms of change within standards, curriculum, testing, and professional 

development that persist to increase student achievement, motivation is often overlooked as a 

prime factor to student success. Referencing the two previous studies, efforts to improve student 

performance in science should focus on enhancing high school students’ motivation toward 

learning science (NRC, 2003; 2012). The student inequality pertaining to motivation that exists in 

education has been a point of emphasis for the newly implemented framework for science 

education. The Framework for K-12 Science Education prime focus was to prep students for 

science careers with implementation of scientific practices into grade school curriculum. The 

vehicle to achieve this primary focus was the Science and Engineering Practices (SEPs). SEPs 

enable students to perform science by utilizing skills and knowledge that mimic the investigative 

methods employed by scientists and engineers (NRC, 2012). There are eight SEPs that were 

deemed essential for students to engage in scientific investigation, which were expected to pique 
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students’ curiosity, interest, and motivate them to learn science (NRC, 2012). The following 

current motivation instruments Intrinsic Motivation Inventory (IMI), Motivation Strategies 

Learning Questionnaire (MSLQ), Students’ Motivation toward Science Learning (SMTSL), SMQ, 

and SMQ-II (Deci & Ryan, 2007; Glynn, 2009; Glynn, 2011; Pintrich, 2000; Tuan & Chin, 2005) 

do not measure motivation in terms of this new science curriculum. The relationship between 

student motivation and performance has been discussed, raising the question: can strategies aligned 

with the Framework for K-12 Science Education effectively motivate students toward learning 

science? The requirement to motivate students utilizing a reform that empowers such motivation 

has been established; however, an effective motivation instrument is necessary to measure any 

impact from implemented strategies derived from the new science curriculum framework. 

According to Bandura and Schunk (2001), five motivation factors have been deemed 

important to students’ motivation to learn: intrinsic motivation, extrinsic motivation, goal 

orientation, task value, and self-determination with assessment anxiety (Bandura, 2001; Schunk, 

2001). According to Roth (2013), intrinsic and extrinsic motivation are both effective chemistry 

motivation measures. Extrinsic and intrinsic are the most used forms of motivation in science 

education literature, therefore it was necessary to sustain this trend with a novel instrument (Roth, 

2013; Sen & Erdogan, 2016; Yilmaz & Geban, 2015). Two goals exist for this study: provide an 

instrument that effectively measures student motivation towards the SEPs and application of that 

instrument to assess change in process-oriented motivation due to implementation of new science 

curriculum strategies. The development of a new instrument described herein will utilize two 

former factors in valid and reliable motivation instruments: intrinsic motivation and extrinsic 

motivation. Intrinsic motivation pertains to internal desires when performing a specific task, while 

extrinsic motivation refers to performing a specific task to receive an external reward (Ryan & 
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Deci, 2000). Intrinsically motivated students that have learning goals tend to truly understand and 

master science skills and content (Bandura, 2001; Schunk, 2001).  Extrinsically motivated students 

with performance goals seek to impress people other than themselves by earning high grades 

(Bandura, 2001; Schunk, 2001). The main difference with the newest curriculum and the previous 

one is the emphasis on the newly created SEPs. SEPs are intertwined in every single standard in 

the newly created curriculum to ensure that students are learning science content using the 

approaches used by scientists and engineers (NRC, 2012). These two specific factors were chosen 

to measure student motivation pertaining to the implementation of a new science curriculum 

designed to achieve the elements of the Framework for K-12 Science Education (NRC, 2012).  

While conducting a literature review on motivation, only 21 articles were founded that 

related to high school motivation in science. The literature includes studies from the three main 

secondary subjects: chemistry, physics, and biology. Three prevailing issues are present in current 

science education literature. First, goals are not clearly defined in current science motivation 

instruments. A goal must have a definitive beginning and end state (Touré-Tillery & Fishbach, 

2014). However, current surveys utilized to measure student’s motivation toward science usually 

have science as the subject of each item. Unfortunately, science appears indefinite and thus 

requires a specific beginning and end. Therefore, the subject of science can be exchanged with 

chemistry to remedy this issue. Simply substituting science with chemistry, ensures that there is 

an intentional goal and finite time period for each item in this instrument. All participants do not 

have previous chemistry experience, which limits their exposure to chemistry concepts mostly to 

what they have learned this school year.  

Secondly, intrinsic motivation and extrinsic motivation need a third main factor to 

differentiate students that simply enjoy participating in specific science tasks. Current instruments 
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categorized students into two main pots of motivation, inherent general interest in a task or 

importance of receiving a reward at the end of the task. For example, an intrinsic motivated student 

would enjoy science class irrespective of the grade they receive in that course. In contrast, an 

extrinsic motivated student would appreciate receiving an A in their science class more than 

attending that class daily. This third factor would be described as students’ motivation by a certain 

science task. It is imperative that teachers can pinpoint specific science tasks students enjoy, which 

would enable teachers to utilize these tasks more frequently in their classroom. This same student 

that was intrinsically motivated to attend science class may be most motivated by science lab 

experiments. A third factor would have items that pinpoint the science task that best motivates this 

student, identifying the source of the student’s motivation. 

Thirdly, current motivation instruments are not aligned with the existing science 

curriculum that have been recently implemented based on the Framework for K-12 Science 

Education.  This factor provides an avenue to utilize items by embedding each of the eight SEPs 

to directly determine which process of learning science motivates students. For example, planning 

and carrying out an investigation is a SEP to effectively learn science. An item in this third factor 

would resemble, “I enjoy completing experiments in this chemistry class since they allow me to 

investigate different problems with my classmates”. A student that is motivated by completing 

experiments would agree with the item. However, a student that is not motivated by experiments 

may be motivated by another SEP like construction of an explanation. Current instruments lack 

any reference to the SEPs. This is an essential requirement for the novel third factor. Within current 

motivation instruments, science is not spoken of as a process, but as a fixed measure. After the 

Framework for K-12 Science Education was created, each state either adopted the Next Generation 

of Science Standards or altered their own standards based on the framework. The state of the 
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researcher’s locale, Georgia, adapted its own standards by taking the preexisting Georgia 

Performance Standards and embedding the eight SEPs. The following example was the result of 

the Science Georgia Standards of Excellence (GSE): “Develop and use models, including electron 

configuration of atoms and ions, to predict the element’s chemical properties” (NRC, 2012). 

Georgia Performance Standards (GPS), previous standards, equivalent was “Use the orbital 

configuration of neutrals atoms to explain its effect on the atom’s chemical properties (NRC, 

2003). The new standard differs as it begins with an SEP and connects the practice with the concept 

to promote student learning. Strategies that utilize the SEPs to achieve student mastery are aligned 

with the GSE and the novel instrument can measure that strategy’s capability of motivating 

students toward science.   

Argument Driven Inquiry (ADI), lab-based instructional model, is an example of a 

classroom instruction that utilizes strategies that incorporate four out of the eight SEPs. The 

education community needs an instrument to determine how implementation of various strategies 

that are in alignment with the Framework for K-12 Science Education (i.e. ADI) affect student 

motivation. The NRC created a new framework as the guide for the nation’s new science standards. 

The SEPs are practices that describe how scientists investigate and how engineers design and build 

models (NRC, 2012). The SEPs that are discussed in the Framework for K-12 Science Education 

are theoretical means to effectively learn science knowledge (NRC, 2012). The original Process-

Oriented Motivation Instrument (POMI) would enable teachers to directly measure student 

motivation toward the SEPs. Therefore, results from such an instrument could identify any student 

growth in process-oriented motivation due to implementation of various strategies. Currently, an 

instrument does not exist that exhibits these characteristics. The original POMI is ground-breaking 

in that it serves as a vehicle to measure how the SEPs influence students’ motivation to learn 
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science. This study has paired a chemistry lab strategy that utilizes the SEPs to evaluate how 

student motivation may or may not predict student chemistry achievement (Tuan & Chin, 2005). 

Purpose and Significance of the Study 

The main purpose of this study is to create an instrument that can be effective in measuring 

motivation based on the Framework for K-12 Science Education and newly developed Georgia 

Standards of Excellence in Science (GSE-Sci). Three significant gaps are revealed in science 

education literature amongst current motivation instruments: ambiguous goals, lack of a third main 

factor that assesses student motivation pertaining to specific science tasks, and consideration of 

scientific processes via SEP implementation into this third main factor. Furthermore, intrinsic and 

extrinsic motivation has been measured with current instruments but disregards the process of goal 

pursuit.  

Due to the science education literature gaps and the science education community’s need 

for a resolution, a novel instrument can suffice as a necessary answer. This study will compare 

students’ level of motivation when engaged in Argument-Driven Inquiry (ADI), a teaching 

pedagogy that engages students in the SEP’s, compared to a group of students who engage in a 

traditional experiment after creating their own lab procedure. Growth in motivation for both groups 

will be collected and analyzed. As mentioned above, the Framework for K-12 Science Education 

was written to motivate students to learn science; however, no current literature has probed 

emerging teaching pedagogies as they relate to their effect on students’ motivation toward science. 

The results from student motivation growth in this study will inform how effective ADI is towards 

motivating students in chemistry. Nevertheless, this study will be groundbreaking in that it will be 

the first study to challenge the Framework for K-12 Science Education; specifically, does the 

current framework create strategies that motivate students in science? While this study will not 
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answer this question with certainty, it will begin this essential discussion amongst the science 

education community.  

Students are the direct recipients and are most responsible for their achievement. However, 

teachers are the direct influencers of the what, the how, and the when of student learning. 

Administrators are managers of their teachers to ensure they are effectively disseminating 

information in a manner that culminates in student achievement. County officials ensure that 

administrators are good stewards of their teachers. Finally, the community of a local school is 

indirectly correlated to all these relationships. If all parties are ineffective, then schools scores and 

ratings may be affected. This could impact the local community property value. However, the 

opposite can also be true. While this chain of events may seem drastic, it is conceivable. Therefore, 

assessing students’ motivation and appropriately addressing motivation issues can have a 

widespread effect. The original POMI taps into the root of the problem and attempts to water such 

roots with solutions. These solutions include finding teaching strategies and other strategies that 

motivate students. Although this study will be the genesis for process-oriented motivation, its goal 

is to give rise to new studies that measure process-oriented motivation. New studies can form a 

new sector of literature on process-oriented motivation and will provide the science education 

community with strategies that are literature-supported to be effective at motivating students 

toward learning science.  

Research Questions  

Before discussing the research questions, it is first imperative to address the three issues 

that this study is investigating.  First, original POMI student responses must demonstrate 

appropriate validity and reliability before it can be administered in any study. The types of validity 

that will be examined are construct, content, convergent, and predictive validity. Content validity 
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will ensure that subject matter on the original POMI is indeed appropriate to measure each type of 

motivation being investigated. Construct validity includes a Confirmatory Factor Analysis (CFA), 

which will utilize a Structural Equation Model (SEM). Each model has a correlation conducted 

between factors and their respective items to remove items that poorly correlate, which may 

culminate in poor goodness-of-fit statistics for a model. Convergent validity, a form of 

discriminant validity, will compare original POMI scores and Views About Scientific Inquiry 

(VASI) instrument scores to investigate the relationship between the factors in both instruments. 

Such an analysis will be performed via a Pearson or Spearman correlation test. The VASI is a 

survey that assesses the learner’s understandings about essential scientific inquiry aspects 

(Lederman, 2014). Scientific inquiry is a combination of science processing skills utilized with 

traditional science content along with critical thinking to help develop student’s scientific 

knowledge (Lederman, 2014). The VASI instrument and means-focused motivation factors have 

certain commonalities and the same purpose: motivation derived from science skills or practice 

comprehension. Finally, predictive validity will attempt to use a Pearson or Spearman correlation 

to examine the relationship between student achievement and process-oriented motivation (Tuan 

& Chin, 2005). Two forms of reliability will be conducted to establish instrument reliability: 

Cronbach alpha per each factor of the instrument and Cronbach alpha for all items of the 

instrument. Cronbach alpha factor executes a correlation between items and their respective 

factors: outcome-focused motivation, intrinsic motivation, and means-focused motivation. The 

Cronbach alpha for all items will collectively ensure that all items represent process-oriented 

motivation. In the end, instrument reliability is implemented to determine any sources of 

measurement error that may negatively affect instrument scores.  
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Secondly, the goal of this study is to establish valid and reliable data for a novel instrument 

that can effectively measure student motivation before and after the implementation of the 

Framework for K-12 Science Education aligned teaching pedagogy. This research study will 

utilize Argument-Driven Inquiry (ADI), a teaching strategy that has been developed to engage 

students in the SEPs. The overall goal will be to determine if differing teaching pedagogies affects 

student motivation: traditional labs (the control) versus ADI lab (the experimental group). Data 

will be collected and analyzed to determine if ADI accounts for a significant effect on student’s 

process-oriented motivation. The second part of Goal 2 uses a mediation path analysis to determine 

whether process-oriented motivation provides a path or influences the relationship between ADI 

and student achievement. Any correlation found between these three variables will have vast 

implications. Additionally, this study will illustrate an understanding of the effect caused by ADI 

on student achievement. This would provide predictive validity in that if strategies like ADI are 

utilized; then students should perform better in chemistry and possibly other sciences. 

Furthermore, if process-oriented motivation effects the experimental group’s student achievement, 

such an effect will provide implications on how the Framework for K-12 Science Education’s 

strategies can motivate students. The three research questions for this study that will address the 

two overarching goals described above are:  

Goal 1 Research Questions: 

1. How does the data from the Process-Oriented Motivation Instrument establish appropriate 

validity and reliability for high school chemistry students? 

a. What is the relationship between a student’s Views about Scientific Inquiry and the 

degree to which they are motivated by scientific processes? 
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Goal 2 Research Questions: 

2a. What is Argument-Driven Inquiry’s effect on high school chemistry students’ process-

oriented motivation? 

2b. What is the mediation effect of process-oriented motivation and relationship between 

argument-driven inquiry and student achievement? 

Conceptual Framework 

The Framework for K-12 Science Education is the conceptual framework behind process-

oriented motivation. This framework is broken into three dimensions: scientific and engineering 

practices, crosscutting concepts, and core ideas in science disciplines (NRC, 2012). The purpose 

of the Framework for K-12 Science Education is to empower students to learn how to think like 

scientists, which is a feat that had been sought after by the National Science Foundation since 1956 

when the Sputnik Launch occurred (DeBeor, 1991). According to NRC (2012), a goal of this 

framework was to give students time to deepen their understanding of SEP’s. The Framework for 

K-12 Science Education provides a template for each state to create their science standards. The 

overarching goal for this framework is to ensure that students graduate high school with enough 

knowledge of science and engineering to engage in public issues, to learn about science outside of 

school, and to enable students to enter science, engineering, and technology careers (NRC, 2012).  

The Framework describes eight SEP’s that are embedded within science standards, GSE. 

The eight SEPs are asking questions and defining problems, developing and using models, 

planning and carrying out investigations, analyzing and interpreting data, using mathematics and 

computational thinking, constructing explanations and designing solutions, engaging in argument 

from evidence and obtaining, evaluating, and communicating information (NRC, 2012). These 

practices assist students to directly experience science for themselves, while studying scientific 
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concepts (NRC, 2012). According to NRC (2012), science is not simply a body of knowledge that 

reflects an understanding of the world but involves practices that create a foundation to expand 

and refine such knowledge.  

Process-oriented motivation presents a second conceptual framework guiding this research.  

Process-oriented motivation is the drive to attain or complete a goal (Touré-Tillery & Fishbach, 

2014). The current working definition of intrinsic and extrinsic motivation helps to define process-

oriented motivation; however, this study will measure these forms of motivation with a goal pursuit 

perspective (Touré-Tillery & Fishbach, 2014). Current instruments utilize intrinsic motivation as 

students that are interested in the subject, while extrinsic motivation is intrigued with the reward 

of the subject. Intrinsic and extrinsic motivation will be utilized in respect to the process of learning 

science, goal pursuit. The original POMI has two main factors: outcome-focused motivation and 

process-focused motivation. In comparison to outcome-focused motivation, which is driven by the 

reward or outcome of goal completion, extrinsic motivation is driven by the reward of task 

completion (Touré-Tillery & Fishbach, 2014). Process-focused motivation has two sub-factors: 

intrinsic motivation (process-oriented) and means-focused motivation (Touré-Tillery & Fishbach, 

2014). Intrinsic motivation (process-oriented) will be correlated with enjoyment and interest 

during the process of goal pursuit (Tillery & Fishbach, 2014). Means-focused motivation is a novel 

factor that utilizes proper means during goal pursuit; proper means are how actions are performed 

in terms of adherence to rules, principles, and self-set standards (Touré-Tillery & Fishbach, 2014). 

What means were endured during the process of goal pursuit? The original POMI can link a score 

with students’ behaviors, confirming the type of motivation that predominates for each student. 
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Local Context  

This study will take place at the researcher’s locale, a Georgia pubic high school. The 

sample will include all honors and on-level chemistry students at this high school during the 2019-

2020 school year. Researcher’s school of interest is a school in the North Metro Atlanta area with 

approximately 2,000 students. Students at this school range in ages from 13 to 19 and all genders, 

a blended mix of several races, and socioeconomic statuses that range from low to high are present 

in this school. All classes are on a period schedule meaning students have the same chemistry 

teacher for an entire school year. Students see their teachers daily during the same period. On-level 

chemistry covers students that are in 10th to 12th grade. Most students taking honors chemistry are 

sophomore students that took on-level or honors biology their freshman year and received an A in 

that course. All students passed biology, physical science as a prerequisite to any chemistry course, 

honors or on-level. Chemistry is not a mandatory course for this locale; thus, students enroll in 

Chemistry with the intent to attend college after graduating high school. The experimental group 

will be on-level chemistry students, while the control group will consist of honors chemistry 

students at this locale during the 2019-2020 school year. Due to the advanced statistical analyses 

necessary to establish data for the novel instrument, the participant number would be insufficient 

if only one class type was analyzed. Therefore, this study would consist of two varying levels of 

students within the sample. Furthermore, all on-level teachers at this locale have utilized ADI labs 

in their classrooms for the past four years, making them more experienced than the honors 

chemistry teachers who have no experience with ADI.  

 The Chemistry GSE standard that will be explored during this study is “GSE-Sci SC3: 

Obtain, evaluate, and communicate information about how the Law of Conservation of Matter is 

used to determine chemical composition in compounds and chemical reactions” (Woods, 2016). 
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ADI will be the strategy utilized by the experimental group to investigate this standard due to its 

alignment with the Framework for K-12 Science Education (Grooms & Enderle, 2015). ADI 

utilizes four SEP’s from the Framework for K-12 Science Education. Inclusion of these four 

practices align ADI with the Framework, making it an instructional strategy that should motivate 

students. Argument Driven Inquiry is centered around students developing their argumentation 

(Practice #7) from scientific evidence pertaining to a laboratory experience (Grooms & Enderle, 

2015). However, the eight essential steps to complete an ADI lab involves other practices as well. 

Students will begin the lab by planning and carrying out an investigation based on the given 

guiding question within their group (Practice #3). In other words, students are tasked to plan and 

carry out an experiment that will create the necessary data to answer their guiding question. Next, 

students must analyze and interpret data by constructing evidence to participate in the 

argumentation session with their classmates (Practice #4). Students will then obtain (collect) data, 

evaluate that data, then communicate information which is necessary to prepare for the 

argumentation session and revision of their rationale for their lab report (Practice #8). Students are 

expected to communicate how the Law of Conservation of Matter is used to determine the 

chemical composition in compounds. It is apparent that the Framework for K-12 Science 

Education is built upon eight SEP’s, those same practices are embedded in the Science GSE, and 

ADI utilizes four of these SEP’s in their instruction to influence student motivation toward science.
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CHAPTER 2: LITERATURE REVIEW 

Introduction 

This chapter presents a literature review that begins with a summary of the Framework for 

K-12 Science Education and curriculum pertaining to this study, Georgia Standards of Excellence 

in Science. The literature review serves two purposes: to make evident the need for a motivation 

instrument pertaining to science and reveal the novelty of process-oriented motivation in any 

literature. The Framework is imperative because it justifies the independent variable, type of 

instruction, with peer-reviewed articles. Next, the history of science education literature will be 

presented, which focuses on student motivation. Studies that have been found to measure such 

motivation will be summarized with a greater emphasis on the factors guiding this investigation, 

including intrinsic and extrinsic motivation in the absence of goal pursuit. Intrinsic and extrinsic 

motivation studies will be expanded to all sciences to provide contrast with chemistry studies, 

while linking student achievement. Finally, the literature review was narrowed to the factors of 

the original POMI, which are the points of emphasis of this study. 

Framework for K-12 Science Education  

The National Research Council (NRC) recently published a new framework for science 

standards to create coherence across K-12 curriculum to enhance students’ motivation toward 

science (NRC, 2012). The goal of this Framework was to address the following weaknesses: 

emphasis on learning discrete facts, lack of consistency with curriculum from state to state, and 

the absence of student engagement that involve genuine science practices.  The Framework for 

K-12 Science Education combined two aspects to achieve the purpose of meaningful learning: 

four science proficiency strands along with Science and Engineering Practices (SEPs). The four 

strands achieved science proficiency by requiring several experiences that support students’ and 



25 
 

 

inspire science learning (NRC, 2012). The four science proficiency strands include knowing, 

(using and interpretation of science in the natural world), generation and evaluation of scientific 

evidence and explanations, comprehension of how scientific knowledge develops, effective 

engagement in each practice while comprehending norms of creation, presenting scientific models 

and explanations, defending claims during engaged scientific debates, and improving students’ 

motivation toward science. The SEPs are eight practices that are considered essential for K-12 

science learning. Appropriate utilization of the SEPs enable an appreciation of how scientific 

knowledge was created and supports better student understanding (NRC, 2012). The NRC 

believed students’ motivation and interest in science and engineering practices help improve 

student achievement and may increase several qualified applicants in pursuit of higher education 

in science-related fields (NRC, 2012). Since the Framework was a manuscript and guideline for 

K-12 curriculum in Georgia, GSE, each public education class has standards with the eight SEPs 

embedded throughout each document. Unfortunately, based on this study’s literature review, 

motivation is not a point of emphasis in secondary science education literature. Additionally, most 

of the literature and instruments utilized in this study are not aligned with the Framework for K-

12 Science Education.  

Argument-Driven Inquiry 

Argument-Driven Inquiry (ADI) will be the pedagogy utilized within this study. ADI was 

chosen specifically due to its alignment with the Framework for K-12 Science Education. The 

Framework for K-12 Science Education was explicit in emphasizing “engaging in argument from 

evidence” as one of the SEP’s (NRC, 2012). Argument, critique, and analysis connects the natural 

world, data collection, theories, models, and formation of hypotheses (Grooms & Enderle, 2015). 

Engaging in argument was demonstrated only once within the eight practices, but ADI requires 
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the student to engage in additional practices. ADI laboratories empower students to plan and carry 

out an investigation (Practice #3), then analyze data (Practice #4), develop their argumentation 

(Practice #7), and obtain, evaluate and communicate information (Practice #8) (Grooms & 

Enderle, 2015). Utilization of these four practices was ADI’s connection to the Framework for K-

12 Science Education, while creating a lab experience that engages and motivates students toward 

learning science. ADI is a strategy that has been designed to foster the development of all four 

strands related to scientific proficiency and practices (strands) of science that is detailed in the 

Framework for K-12 Science Education (Grooms & Enderle, 2015). ADI has been deemed the 

most pragmatic form of lab instruction because it is the only strategy that is literature-based in its 

utilization of multiple SEP’s.  

ADI is an instructional model that promotes student engagement in scientific 

argumentation. The goal of ADI is to empower students to develop arguments that can support 

explanations pertaining to research questions (Walker & Sampson, 2012). Eight major steps 

comprise the ADI instructional model. The first step of the model is student identification of the 

task. The goal of the teacher during this step is to introduce a major topic being studied while 

initiating a lab activity. Students are given a handout and a question that can be answered along 

with a list of usable materials for their investigation (Walker & Sampson, 2012). The second step 

of the model is data collection. Students will work in collaborative groups to develop an 

experiment to answer their research question and to collect data. The third step is the creation of 

an argument. Students will construct an argument that includes claim, evidence, and rationale on 

a large whiteboard (Walker & Sampson, 2012). The fourth step involves a small group 

argumentation session. The argumentation session includes each lab group utilizing a six-foot by 

four-foot white board that has their claim, evidence, and reasoning from their lab. Each group will 
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have their board setup to receive constructive criticism on their board from their peers. The purpose 

of this session is to allow each group’s argument to be polished (Walker & Sampson, 2012). The 

fifth step is the formation of a basic report. Students will produce a report that answers several 

questions. The goal of this step is to empower students to learn how to transform data into evidence 

to create a quality scientific argument (Walker & Sampson, 2012). The sixth step involves a 

double-blind peer review of students’ basic reports. Each student will submit three blind reports, 

copies of their basic report without names, and those reports will be given to each lab group with 

a peer review sheet. Each report will be passed or failed by the peer reviewer based on the peer 

review rubric. Failure would result in a revision of the student's basic report (Walker & Sampson, 

2012). The seventh step of ADI is the revision of the basic investigative report from peer review 

feedback. Students have the option to revise their reports based on feedback and comments given 

to them on their draft. Both original and final drafts will be submitted to their teachers for 

evaluation. The eighth and final step will be the submission of the final report. These eight steps 

encourage students to focus on understanding what claim to make, why they made it, and justify 

their claim versus others in a science context (Walker & Sampson, 2012). ADI’s design is to 

empower students to move past looking for the correct answer, which is common in traditional 

labs.  

Student Motivation in Science 

According to the National Research Council (2012), students’ motivation and interest in 

science are imperative in student achievement and their eventual quest of science-related fields in 

college and beyond. Therefore, strategies that motivate students are of paramount importance to 

the learning environment and possibly students’ success in that course and in future science 

education. According to Ekici (2010), a low-performing student had a higher probability to 
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experience low motivation belief. Current instruments focus mainly on two main factors of 

motivation. Intrinsic and extrinsic motivation measures, which flood the current science education 

literature, does not acknowledge new science standards and its focus on science being a process in 

lieu of rote memorization. This study desires to build upon previous motivation studies, while also 

offering the original POMI that will appropriately assess student motivation with instruction that 

effectively utilizes new curriculum that have been developed based on the Framework for K-12 

Science Education. Throughout science secondary education literature, intrinsic and extrinsic 

motivation were always measured together in studies in the chemistry, physics, and biology 

classrooms. The following studies used these factors of motivation as dependent variables versus 

independent variables by utilizing different instructional strategy implementations. 

Three main search engines were used to gather articles from the science-education 

literature. Google Scholar was searched with the keyword chemistry motivation and high School 

chemistry motivation. Kennesaw Library System’s Education Source and ERIC employed the 

keywords chemistry motivation using the following subjects: Student Motivation, Motivation 

Techniques, Learning Motivation, Teacher Influence and Chemistry Instruction. More articles 

were found in Education Source versus ERIC with the same key words and subjects used. Finally, 

Kennesaw EBSCO host super search was used with keywords chemistry motivation. Articles were 

mostly excluded due to a lack of focus on chemistry content area and motivation being exempt 

from the introductions or methodologies of each research article. This same exact research protocol 

was repeated by substituting the search term chemistry with physics or biology. The articles were 

then further filtered by strategies that induced motivation, subject area (physics, chemistry, or 

biology) as the content being assessed, and a hypothesis/question that tested student’s motivation 

or performance. Mandatory criteria included for each study included hypothesis or research 
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question, collection of data to answer hypothesis or question, discussion and future actions from 

the conclusions made.  

Upon filtering the search results, 21 articles were included in this study based on the 

following criteria for all secondary science. Motivation studies were then separated by subject 

matter: physics, biology, or chemistry. Chemistry had nine articles that fit this search criteria and 

articles were found in Journal of Chemical Education (3 articles),  Journal of Educational Science 

(2 articles), Journal of Theoretical Educational Science (2 articles), International Online 

Chemistry Education Research and Practice (1 article), and Journal of Turkish Science Education 

(1 article). Each of the following journals contributed one physics article: Computers in Human 

Behavior, Educational Studies, International Journal of Science Education, Eurasia Journal of 

Mathematics and Science & Technology Education. Lastly, a total of five biology articles were 

found from Educational Science (2 articles), Education and Science (1 article), Journal of 

Education and Training Studies (1 article), and International Journal of Higher Education (1 

article). Lastly, three combined sciences articles originated from the following journals: Learning 

Science, Science Education, and US-China Education Review. 

Physics Education Literature  

Articles found in Table 2.1 pertain to secondary high school physics, which provided some 

evidence on effective instruction, strategies, and learning environments that alter student 

motivation and achievement. According to Nikou and Economides (2016), students had an 

increase in their motivation when computers and mobile devices were used for assessments versus 

traditional paper assessments. Students were given the exact same multiple-choice test on both 

platforms, pre-test (paper assessment) and post-test (electronic assessment), these results displayed 

that students intrinsic and extrinsic motivation increased along with student achievement. 
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Additionally, low-achieving students performed better on an electronic-based assessment as 

opposed to paper assessments (Nikou & Economides, 2016).   

Brain-based teaching, strategies that utilized evidence from neuroscience, were found to 

provide a stronger conceptual understanding of Newtonian physics and higher motivation versus 

a conventional teaching method. Brain-based teaching utilized seven steps: activation; clarification 

of the big picture of lesson, making the connection; student active engagement in learning; student 

demonstration of understanding; review for student understanding recall; students previewing the 

new topic. The increase in motivation among the experimental group was based on students 

making connections, which raised their awareness and motivation pertaining to assigned physics 

concepts.  Learning should involve the whole physiology of the body, which gives each human a 

huge potential for success (Saleh, 2012).  

Askoy and Ozdamli (2016) reported that the flipped classroom approach was more 

effective for student achievement and student motivation versus a traditional didactic teaching 

method. The flipped classroom approach is an instructional strategy that is the reverse of the 

traditional learning environment, where instructional material will be delivered outside of the 

classroom and class time is spent working in collaborative groups. Similarly, the effectiveness of 

two different group work instructions were investigated for their influence on student motivation 

by Berger and Hanze (2009). The type of small group setting, jigsaw classroom versus cyclical 

rotation method, lacked a significant difference for student intrinsic motivation (Berger & Hanze, 

2009). In the jigsaw classroom, lessons are divided into multiple segments. The cyclical rotation 

method eliminates ‘jigsaw’ and ‘expert’; thus, all learners have the same responsibilities within 

their respective groups. 
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Table 2.1 
 
Types of Motivation for Physics Education Literature 
 
Articles Measured 
 

 
Type(s) of Motivation 
 

The Impact of Paper-Based, Computer-Based, and Mobile-Based Self-Assessment on 
Students Science Motivation and Achievement (Nikou & Economides, 2016)                   

Intrinsic and Extrinsic         

The Effectiveness of Brain-Based Teaching Approach in Dealing with the Problems of 
Students ‘Conceptual Understanding and Learning Motivation Towards Physics 
(Saleh, 2012) 

Motivation 

Comparison of Two Small‐group Learning Methods in 12th‐grade Physics Classes 
Focusing on Intrinsic Motivation and Academic Performance (Berger & Hanze, 2009) Intrinsic and Extrinsic 

Flipped Classroom adapted to the ARCS Model of Motivation and applied to a 
Physics Course (Aşıksoy & Özdamlı, 2016) Motivation 

 

Biology Education Literature 

Articles found pertaining to biology classes at the secondary level provided evidence on 

effective instruction, strategies, and learning environments that altered student motivation and 

achievement. All five biology articles are present in Table 2.2. According to Ekici (2010), a 

significant difference between students’ intrinsic and extrinsic motivation existed based on the 

type of biology lesson. In Turkey, rigor of biology lesson was based on the difficulty or the amount 

of critical thinking that was necessary to complete a lesson. However, varying levels of classes 

were not mentioned, thus an assumption of the same rigor between classes was made. The higher 

level of difficulty or critical thinking led to an increased intrinsic and extrinsic motivation for 

students. Yerdelen and Aydin (2014) discovered that the mastery approach goal-orientation was 

the best predictor of each sub-dimension of motivation outside of extrinsic motivation for biology 

students. Sub-dimensions were intrinsic motivation, extrinsic motivation-profession, and extrinsic 

motivation-social. Mastery approach goal-orientation can be defined as the student’s utilization of 
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metacognition to comprehend certain tasks. The student set their own goals based on a task- and 

monitor-progress until their task or goal has been mastered (Yerdelen & Aydin, 2014). In an 

expanded study, Aydin (2015) discovered a positive correlation between metacognitive strategies 

and self-efficacy with students’ intrinsic motivation. In other words, once metacognition and self-

efficacy were used to teach biology, students were more curious or interested in learning that 

biology lesson.  

According to Kisoglu (2018), the strongest correlation among the four subdimensions of 

motivation (intrinsic, amotivation(lack of motivation), extrinsic-social, extrinsic-career) from 

attitude scales was found to be between the intrinsic motivation with interest subdimensions and 

the intrinsic motivation with pleasure subdimensions. Findings about motivation towards learning 

biology demonstrated a positive correlation between students with a high level of success in 

science and their desire to pursue a science career. In other words, the students that were most 

interested and curious (intrinsic motivation) about learning biology were also students that wanted 

to pursue a science career (extrinsic motivation-career). On the contrary, student’s’ willingness to 

show their success to others (extrinsic motivation-social) was the least effective sub-dimension at 

motivating them to learn biology.  
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Table 2.2  
 
Types of Motivation for Biology Education Literature 

Article Title                                                  Type(s) of Motivation  

Strengthening of The Motivation of High School Students by A Laboratory                               
Experiment in Virology (Szabó & Čipková, 2017) 

Intrinsic and Career 

Factors Affecting Biology Lesson Motivation of High School                                                     
 Students (Ekici, 2010)  

Intrinsic and Extrinsic 

Relationship between High School Students' Achievement Goal Orientation and 
Academic Motivation for Learning Biology: A Path Analysis (Yerdelen & 
Aydin, 2014) 

Intrinsic, amotivation, 
extrinsic-career, and extrinsic-
social 

An Analysis of the Relationship Between High School Students' Self-Efficacy, 
Metacognitive Strategy Use and their Academic Motivation for Learn Biology 
(Aydin, 2015)               

Intrinsic, amotivation, 
extrinsic-career, and extrinsic-
social 

An Examination of Science High School Students’ Motivation towards Learning 
Biology and Their Attitude Towards Biology Lesson (Kisoglu, 2018)                              

Intrinsic, amotivation, 
extrinsic-career, and extrinsic-
social 

 

Chemistry Education Literature 

Table 2.3 show nine studies that brought a small contribution to the secondary chemistry-

education literature. Five types of active learning strategies were utilized in the secondary 

chemistry-education literature including: Computer-Assisted Instruction, Case-Based, Context-

Based-Inquiry, Lab Inquiry, and Attention Relevance Confidence and Satisfaction (ARCS). 

Computer-Assisted Instruction (CAI) utilized simulation and tutorials that demonstrated increased 

student interest, which culminated in improved learning of chemistry concepts. According to 

Gambari and Gbodi (2016), CAI results demonstrated significant improvements in learning 

achievements for computer simulation versus traditional instruction. Additionally, the Chemistry 

Motivation Questionnaire discovered an increase for intrinsic and extrinsic motivation for students 

in the experimental group that learned chemistry via computer simulation (Gambari & Gbodi, 

2016).  

Case-based learning provided situational chemistry that gave context to how chemistry is 

used in the real world. An example of a case-based study would be the effectiveness of car airbags 
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(Yalçınkaya & Boz, 2012). According to Yalçınkaya and Boz (2012), case-based instruction 

improved high school students’ motivation statistically in most motivation factors except for 

anxiety. Context-based learning provided perspective by relating chemistry to students’ life events. 

An example of context-based chemistry would be students exploring minimizing production of 

hazardous material to the environment, green chemistry. Context-based learning resulted in an 

increase in half of the students’ motivation via experiences that gave them a better overall 

understanding of chemical equilibrium. Finally, the ARCS model used four strategies to provide 

motivation: Attention, Relevance, Confidence, and Satisfaction (Fend & Tuan, 2005).  Students in 

the experimental groups (ARCS learners) increased intrinsic motivation, student engagement, and 

achievement post-test results versus the control group (traditional learners) measured by the 

Students’ Motivation toward Science Learning Questionnaire (SMTSL) (Fend & Tuan, 2005). All 

these studies have one commonality: active learning strategies that improved student motivation 

and student achievement in chemistry compared to a control.  
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Table 2.3 
 
Types of Motivation for Chemistry Education Literature 

Article Title                                                                                                                        
Type(s) of Motivation 
Measured 

The Effect of Green Chemistry on Secondary School Students Understanding and 
Motivation (Roth, 2013) 

Intrinsic and Extrinsic 

Promoting Intrinsic and Extrinsic Motivation Among Chemistry Students Using 
Computer-Assisted Instruction (Gambari & Gobi, 2016) 

Intrinsic and Extrinsic 

Is Case-Based Instruction Effective in Enhancing High School Students’ Motivation 
Toward Chemistry (Yalcinkaya & Box, 2012) 

Intrinsic and Extrinsic 

Using ARCS Model to Promote 11th Graders’ Motivation and Achievement in Learning 
About Acids and Bases (Feng & Tuan, 2005) 

Performance Goal and 
Achievement Goal 

The Effect of Context-Based Chemical Equilibrium on Grade 11 Students’ Learning, 
Motivation and Constructivist Learning Environment (Ilhan & Yildirim, 2016) 

Intrinsic and Extrinsic 

A Research on the Generative Learning Model Supported by Context-Based Learning 
(Ulusoy & Onen, 2014) 

Intrinsic and 
Performance 

Stimulating Students’ Intrinsic Motivation for Learning Chemistry Through the Use of 
Context-Based Learning Modules (Valon & Holbrook, 2012) 

Intrinsic 

The Effect of Inquiry-Based Laboratory Application on Students’ Motivation and 
Learning Strategies (Sen & Erdogan, 2016) 

Intrinsic and Career 

The Effects of Process-Oriented Guided Inquiry Learning Environment on Students’ 
Self-Regulated Learning Skills (Yilmaz & Geban, 2015) 

Intrinsic and Extrinsic 

Combined Science Education Literature  

Three articles were found that utilized more than one field of science within each research 

article. Combined science articles involved a variety of secondary education courses: biology, 

environmental science, chemistry, and physics. These subjects were intertwined in each of these 

three articles as opposed to one subject article. Chow and Yong (2013) presented results that have 

multiple implications for the participants and the education community. Two additional articles 

are in Table 2.4. Results suggested that a group of students displayed a moderate level of intrinsic 

motivation, personal relevance, self-determination and self-efficacy and a high level of extrinsic 

motivation with assessment anxiety when learning combined science. Results also demonstrated 

significant differences in motivation orientations towards learning combined science between boys 
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and girls, then amongst high ability versus low ability students. Furthermore, correlation analyses 

indicated that significant positive associations between students’ motivation orientations and 

science achievement (Chow & Yong, 2013). Students’ intrinsic motivation, self-efficacy, self-

determination, and achievement were related. Chow and Yong (2013) found that the social 

cognitive theory and self-efficacy were most related to achievement. Students who wanted to take 

advanced placement (AP) classes had higher intrinsic motivation than those who did not. Patterns 

revealed in essays and interviews also identified teachers, career interests, and collaborative-

learning activities as strong motivators for this selective group of students. Article results 

suggested that science teachers should use social modeling and collaborative learning activities to 

foster students’ motivation, achievement, AP intent, and interest in a science career (Bryan & 

Glynn, 2011). Honors classes that had students with AP intent needed collaborative learning 

activities that challenged them to work together and to think critically. Such activities facilitated 

such motivation and created more student interest in science. 

 Zeyer (2013) discovered a Gender-Systemizing-Motivation model for physics and 

chemistry in which motivation to learn science is not gender-dependent. Gender had no direct 

impact on motivation, however systemizing explained almost 30% of the variation in students’ 

motivation. These results recommended that students’ cognitive style (systemizer versus 

empathizer), not gender, enabled a better understanding of student motivation to learn science. A 

systemizer used cognitive dimensions to perceive physical things and understand these objects and 

their function in the context of a system. The goal of this person was to identify rules that 

determined a system, which helped them understand how to predict people’s behavior (Zeyer, 

2013). Empathizers can identify and understand the feelings and thoughts of others while 
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responding with adequate emotions. On average men tend to be systemizers versus the average 

women being an empathizer.  

Table 2.4 
 
Types of Motivation for Combined Science Education Literature 

Article Title Type(s) of Motivation Measured  

Systemizing and Motivation to Learn Science in Different Science Subjects 
(Zeyer, 2013) Intrinsic, Career, and Grade          

Motivation, achievement, and advanced placement intent of high school 
students learning science (Bryan & Glynn, 2012) Intrinsic 

Secondary School Students' Motivation and Achievement in Combined 
Science (Chow & Yong, 2013) Intrinsic and Extrinsic 

 

Motivation in Laboratory Inquiry  

The primary focus of inquiry-based instruction was a student-centered environment in the 

classroom that promotes discussion via students’ critical thoughts. Other active learning strategies 

provoke inquiry, but inquiry was simply an aspect of the strategy’s effectiveness, not its primary 

goal. Inquiry labs were more effective than traditional labs in helping students rehash previously 

learned concepts (Sen & Erdogan, 2016). Throughout this portion of the literature review, the 

focus will be on how lab inquiry is utilized in the science classroom along with how this form of 

instruction affects student motivation and achievement.  

 A significant difference existed in post-test motivation scores, as measured by the 

Chemistry Motivation Questionnaire for inquiry-based lab students, demonstrating an increase in 

motivation (Sen & Erdogan, 2016). Motivated Strategies for Learning Questionnaire (MSLQ) 

assessed the motivation of process-oriented inquiry students in a Turkey secondary school via a 

pre-test and post-test (Yilmaz & Geban, 2015). Students’ self-efficacy for learning and 

performance (extrinsic and intrinsic motivation) differed significantly for students that underwent 

process-oriented inquiry (Yilmaz & Geban, 2015). Both research articles were executed at the high 
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school level and illustrated the impact on motivation for students who learned chemistry with 

inquiry versus traditional instruction.  

Amongst the other science courses taught in high school only one article measured student 

motivation as a result of lab inquiry. According to Szabo and Cipkova (2017), a lab that included 

Alfalfa mosaic virus replication influenced a high school virology class to improve student 

intrinsic motivation in reference to previous classroom labs. Current literature demonstrates that 

labs that allow students to utilize inquiry in order to advance their knowledge on specific science 

matters were effective at increasing student intrinsic motivation.  

The science literature for lab inquiry and student motivation was quite scant. It is fair to 

state that little to no evidence existed regarding how lab inquiry was an effective instructional tool 

for science students. Within all the active learning strategies utilized in science classrooms, lab 

inquiry was the least prevalent literature accounting for three studies throughout all founded 

science education literature. The inclusion of a prevalent strategy was imperative to appropriate 

diagnosis of student motivation amongst the new wave of instructional tools that had been created 

to increase student motivation. Lab participation differentiates science courses from other core 

subjects. Furthermore, these lab experiences are the medium that enables students to explore 

science in a safe, controlled environment. Therefore, an increase in lab inquiry studies was 

imperative for the education community to effectively assess instructional strategies that are 

created to improve student motivation via labs.  

Gaps in Current Motivation Instruments  

Current instruments utilized in science classrooms have three inherent issues. Table 2.5 

below summarizes all instruments that have been used to measure motivation in science 

classrooms. First, Touré-Tillery and Fishbach (2018) defined a goal as having a clear beginning 
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and end state; however, current instruments that measured student motivation may not have a clear 

start and end state. Increases in motivation are less likely to occur without a clear end state, due to 

a lack of closure and reference point (Touré -Tillery & Fishbach, 2011). In other words, motivation 

was measured in relative terms compared to prior levels of motivation (Touré-Tillery & Fishbach, 

2014). For example, the Science Motivation Questionnaire had an item that states: “I enjoy 

learning the science”. Learning science did not have a specific or definite end state; thus, 

motivation may fluctuate hourly, daily, or annually. Moreover, science does not differentiate past 

or present to appropriately measure a change in student motivation. If a teacher implements a new 

instructional practice that a student enjoys, that same student may still strongly disagree with the 

“enjoying learning science” item since science remains his or her least favorite subject. The event 

of a new strategy may not appropriately be factored into their motivation. An altered item would 

include chemical equilibrium, which indicated the start and completion of the goal being the 

chemical equilibrium unit. An amended item would read: “I enjoy learning about chemical 

equilibrium”. Such an example illustrates that a process can be associated with that goal.  

Table 2.5 
 
Breakdown of All Motivation Instruments  

Motivation Instrument 
(Reference) 

Factors Measured  
(Item #) 

Populations that have shown Validity 
and Reliability 

SMQ (Glynn, 2006) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

30 total items 
Six total factors 
Intrinsic motivation (5) 
Extrinsic Motivation (5) 
Personal relevance of science (5) 
Self-determination for learning 
science (5) 
Self-efficacy (5) 
Anxiety for assessment items (5) 
 
 
 
 
 
 

Voluntary participation  
Total of 984 students from three sections 
and 770 participated. 770 were analyzed 
and 9 were not due to incomplete 
responses.  
74% women and 24% men 
Ethnicity 
Caucasian (83%)  
Asian (6%)  
African American (6%) 
Multiracial (3%) 
Hispanic or Latino (2%) 
****minority status was not treated as a 
statistical variable since numbers for 
such populations were so small*** 
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Table 2.5 (continued) 
 
Breakdown of All Motivation Instruments 
MSLQ (Ilker, 2014) 
 
 
 
 
 
 
 

 44 total items 
Cognitive strategy (13) 
Self-regulation (9) 
Sub-scales –  
Self-efficacy (9) 
Intrinsic motivation (9) 
Test anxiety (4) 
 

Voluntary participation 
1605 high school students (3 schools) 
(51.6% female and 48.4% male) 
Population of Turkish students were not 
listed.  
 
 
 

IMI (Deci & Ryan, 2007) 
 

Intrinsic Motivation  N/A 

SMTSL (Tuan & Chin, 2005) 
 

35 total items 
Six total factors 
Self-efficacy (7) 
Active learning strategies (8) 
Science learning value (5) 
Performance goal (4) 
Achievement goal (5) 
Learning environment stimulation 
(6) 

 1407 middle high school students from 
central Taiwan students. Grades ranged 
from 7th to 9th grade and students were 
selected at random.  

 25 items 
5 total factors 
Intrinsic motivation (5) 
Self-determination (5) 
Self-efficacy (5) 
Career motivation (5) 
Grade motivation (5) 

Validated at a public university with 
25,335 undergraduate students in 
southern United States. 680 
undergraduate students, 367 science 
majors and 313 non-science majors. 
Science majors were enrolled in 
Principles of Biology either fall or 
spring semester of that school year. 
Non-science majors were enrolled in 
Basic Concepts in Biology for non-
science majors fall or spring semester.  
 
Some of the participating students were 
from underrepresented groups, African 
American (7%), Hispanic or Latino 
(3.1%), Multiracial (0.6%), and Native 
American (0.2%). These percentages 
were like those of the university 
population. Minority status was not 
treated as a statistical variable 

CBCMS (Onen & Ulusoy, 
2014) 
 

20 items  
Three factors 
Eagerness (9) 
Efficacy (6) 
Performance (5) 
 

525 high school students that were 
randomly chosen high school students. 
Students were taken from several 
different high schools in Ankara, 
Turkey. (Ulusoy & Onen, 2014). 
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Table 2.5 (continued) 
 
 
Breakdown of All Motivation Instruments 
Questionnaire of Students’ 
Motivation Towards Physics 
(Tuan & Chin, 2005)  
 

35 total items 
Six total factors 
Self-efficacy (7) 
Active learning strategies (8) 
Science learning value (5) 
Performance goal (4) 
Achievement goal (5) 
Learning environment stimulation 
(6) 
 
 

1407 middle high school students from 
central Taiwan students. Grades ranged 
from 7th to 9th grade and students were 
selected at random. 

Learning Experience 
Questionnaire 
(Berger & Hänze, 2009).  

6 items 
Three total factors 
Social Relatedness (2) 
Experience of competence (2) 
Experience of autonomy (2) 
(satisfaction of factors = intrinsic 
motivation) 

The first study 20 different physics 
classes (12th grade) with a total of 286 
students.   
The second study which happened a half 
year later had only seven classes with a 
total of 121 students. However, four new 
physics classes were added to push the 
participant total to 223 students.  

Biology Lesson Motivation 
Questionnaire (Cevik & Ekici, 
2008) 
 

30 items  
Six factors 
a. Internal Motivation  
b. External Motivation  
c. Interest in Learning Biology 
d. Responsibility for learning 
biology 
e. Trust in learning biology and 
anxiety in bio exams  

Voluntary participation  
Total of 984 students from three sections 
and 770 participated. 770 were analyzed 
and 9 were not due to incomplete 
responses.  
74% women and 24% men 
Ethnicity 
Caucasian (83%)  
Asian (6%)  
African American (6%) 
Multiracial (3%) 
Hispanic or Latino (2%) 
****minority status was not treated as a 
statistical variable since numbers for 
such populations were so small** 

Academic motivation scale for 
learning biology 
(Aydın & Yerdelen, 2014)  

19 total items 
Four total factors 
Intrinsic motivation (6) 
Amotivation (5) 
Extrinsic motivation – Career (4) 
Extrinsic motivation – Social (4) 

472 students 9th to 12th grades of science 
high school in five Anatolian high 
school in central district of Kars. This 
study took place in Turkey. 191 students 
were used in study one and two, then 
281 students from study 3. 240 male and 
232 female totals participated in all three 
study. Median age was 17.2 for all 
participants within the three studies.  
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Second, all motivation is separated into two major categories, intrinsic and extrinsic 

motivation, demonstrating that studies have no interest in the means to complete a goal. Extrinsic 

motivation can be associated with external benefits to completing a task or an activity (Touré-

Tillery & Fishbach, 2014), while intrinsic motivation was connected to enjoyment and interest in 

completing that same task (Touré-Tillery & Fishbach, 2014). A third factor, means-focused 

motivation, was imperative to differentiate a low score on both intrinsic and extrinsic motivation 

measures. 

Thirdly, current intrinsic and extrinsic motivation measures do not consider new science 

standards and their focus on science being a process in lieu of rote memorization (NRC, 2012). 

The Framework for K-12 Science Education was built upon eight SEP’s that are embedded from 

kindergarten to 12th grade. The curriculum facilitates students’ mastery of the eight practices and 

may lead to student motivation to learn science (NRC, 2012). One of the Framework for K-12 

Science Education’s goal was to provide causal explanations appropriate to students’ level of 

scientific knowledge, which aligned with the scientific practice of constructing an explanation 

(NRC, 2012). This process begins in kindergarten and culminates before the student graduates 

from high school. Although the goal is over a decade long, standards are in place that allows the 

goal to be accomplished on a smaller scale within each science course taken. However, most 

instruments do not acknowledge such a process, as several instruments refer to science as a static 

entity. The Science Motivation Questionnaire referred to science as the subject of motivation (e.g., 

I find the science interesting) (Glynn, 2006). “The science” is a phrase that does not embody a 

process because it denotes only one action, learning science, as opposed to a series of actions that 

result in a desired end, learning a science topic or completing a scientific goal. Such a phrase is 

too general and cannot definitively define a process. 
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Addressing holes, unexplainable gaps in literature research, in current instruments will be 

accomplished by creating the original POMI. The original POMI will incorporate lab as a specific 

goal. Additionally, this study will assess any modification in students’ motivation after 

implementation of instruction that utilizes the scientific and engineering practices used in the GSE, 

e.g., ADI. These two steps will accomplish three feats: acknowledging science as a process by 

referring to a specific chemistry process, adding a third main factor (means-focused motivation), 

and measuring the effectiveness of the new standard’s ability to motivate students. Creation of the 

Framework for K-12 Science Education must be validated by literature that provides evidence of 

motivation effectiveness from the framework.  

Process-Oriented Motivation Literature 

Five common motivation factors are consistent within current motivation instruments: 

intrinsic, extrinsic, goal orientation, task value, and self-determination with assessment anxiety 

deemed important to students’ motivation to learn (Bandura, 2001; Schunk, 2001). From these 

factors, intrinsic and extrinsic motivation help to define process-oriented motivation, and this study 

will measure these motivations with a goal pursuit perspective (Touré-Tillery & Fishbach, 2014). 

In comparison to outcome-focused motivation, which is driven by the reward or outcome of goal 

completion, extrinsic motivation is similar and is driven by the reward of task completion (Touré-

Tillery & Fishbach, 2014).  

The dimension of process-focused motivation is concerned with elements related to the 

process of goal pursuit and stems from internal benefits such as enjoyment and positive self-

concept (Touré-Tillery & Fishbach, 2014). Two sub-dimensions of process-focused motivation 

are means-focused motivation and intrinsic motivation. Means-focused motivation uses proper or 

correct means during goal pursuit (Touré-Tillery & Fishbach, 2014). For example, a chemistry 
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student who wants to perfect or master the art of studying with means-focused motivation will 

focus on bettering their studying habits versus an intrinsically motivated student who will focus 

on the joyful experience of studying chemistry. A significant difference between intrinsic 

motivation (process-oriented motivation) and current literature’s intrinsic motivation is the 

attainment of a goal versus a task (Touré-Tillery & Fishbach, 2014). 

Process-oriented motivation and its factors in Figure 2.1 relate to the process of goal pursuit 

(Touré-Tillery & Fishbach, 2014). The point of emphasis for process-focused motivation is proper 

means or enjoyment during goal pursuit. Process-focused motivation has two sub-factors: intrinsic 

motivation (process-oriented) and means-focused motivation (Touré-Tillery & Fishbach, 2014). 

Intrinsic motivation (process-oriented) will be specifically correlated with enjoyment and interest 

during the process of goal pursuit (Touré-Tillery & Fishbach, 2014). Means-focus motivation is a 

novel factor that utilizes proper means during goal pursuit; proper means are how actions are 

performed in terms of adherence to rules, principles, and self-set standards (Touré-Tillery & 

Fishbach, 2014). In contrast to process-focused motivation, outcome-focus motivation is a focus 

on the outcome not the process of the goal pursuit (Touré-Tillery & Fishbach, 2014). Outcome-

focus motivation is the student’s focus on the desired end state, outcome, or reward of the goal 

completion (Touré-Tillery & Fishbach, 2014).  
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Figure 2.1. Process-oriented motivation factors and its connections to other motivation factors 
 

Current literature does not measure process-oriented motivation or utilize process-oriented 

motivation as a dependent variable. Instead, mental simulation, process, or outcome simulation, 

was manipulated as the independent variable by Pham and Taylor (1999) and articles that followed 

while the dependent variable changed based on the study. Mental simulation is a psychological 

manipulation that emphasized a process to achieve a goal versus the outcome of goal achievement 

(Pham & Taylor, 1999). The psychological manipulation included reading scripts that simulated a 

desired goal (outcome simulation) or steps leading to a desired goal (process simulation) (Pham & 

Taylor, 1999). For example, one of the experimental groups simulated the outcome of receiving a 

good grade by reading a script that described a person getting an A on their mid-term exam. The 

totality of process-oriented articles followed the methodology from Pham and Taylor (1999) of 

researching mental simulation.  

Mental simulation enhanced connections between thought and action in order to emphasize 

a process necessary to accomplish a goal (process-focused) or emphasize an outcome of goal 

achievement (outcome-focused) (Pham & Taylor, 1999). According to the Pham and Taylor 
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(1999) study, three groups of college students prepared for a mid-term exam for 5 to 7 days. The 

first group mentally simulated good study habits, while the second group mentally simulated 

receiving a good grade on the midterm exam. The third group was a combination of both outcome 

and process simulation instructions. The procedure for each group included a brief questionnaire 

that assessed the amount of study time for the class midterm thus far. Every participant had a daily 

calendar sheet to track hours, days planned, and location of studying. The process simulation 

exercise included mental simulation of themselves studying for an exam, while they were given a 

specific item to read about practicing good study habits. The outcome simulation exercise included 

a mental simulation item that had to be read regarding the importance of getting a good grade. 

Mental simulation had to be completed five times per day for each group. The combination group 

had both items and had to undergo both mental simulations. The analysis methods included coding 

student diaries to find trends in their study times, Cronbach alpha for internal consistency of 

assessment measures, and two-way ANOVA with simulation versus each assessment measure 

(Pham & Taylor 1999). The process simulation group enhanced their studying and performed 

significantly better than the outcome simulation group on the midterm.  

Mental simulation shares similar characteristics to process-oriented motivation. Mental 

simulation has two types of manipulation: process simulation which is the focus on the process of 

goal pursuit and outcome simulation that is centered around the reward of goal pursuit (Pham & 

Taylor, 1999). According to Touré and Tillery (2014), process-focused motivation is a result of a 

participant being transfixed on the process of goal-pursuit. Conversely, outcome-focused 

motivation describes participants’ focal point as goal completion, reward, or outcome of goal-

pursuit. Mental simulation and process-oriented motivation have one significant difference: how 

they are utilized as variables in their respective research studies. Pham and Taylor (1999) 
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manipulated mental simulation of their participants and measured significant changes in the 

independent variable measures. However, Touré and Tillery (2014) regard process-focused 

motivation to be measured as a result of a change to participants. In other words, mental simulation 

serves as a psychological independent variable, while process-oriented motivation is a dependent 

variable that results from the implementation of an instructional strategy. 

Theoretical Framework 

The theoretical framework behind all four research questions was built upon 

constructivism.  According to Piaget (1967), constructivism is a theoretical framework that 

believes learning and comprehension are born in the mind via personal interaction with the world 

around the student. Human constructivism describes meaningful learning as an interactive web 

between thinking, feeling, and acting that culminates in student empowerment (Novak, 1977). 

Once knowledge has connected across three affective domains (thinking, feeling, and acting), then 

meaningful learning can occur. Thinking consisted of the cognitive domain, feelings are the 

attitudes, and acting was the students’ active learning experience. Constructivism has been linked 

to supplementing issues of engagement, motivation, and desire for further concept knowledge 

(Kahveci & Orgill, 2015). However, if any of the three domains were not achieved via that learning 

experience, then meaningful learning was absent from the student’s learning experience (Novak, 

1977). The focus of this study is process-oriented motivation toward chemistry (feeling) and how 

that may be affected by the implementation of ADI labs (acting). Student achievement will be 

measured to find the effect of feeling and acting on students’ thinking about science. ADI 

empowers students to use cognition, feeling, and action to inspire meaningful learning. The theory 

of human constructivism will be present via ADI, and its effect on student motivation will be 

measured by the original POMI.  
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According to Piaget’s (1967) idea of constructivism, people do not find existing 

knowledge, but they are always and actively constructing it. Therefore, our study will be driven 

by the goal to describe the cognitive structures of the concepts held by our participants (Cobern, 

1993). Students’ affective domain played an important role in the development of meaningful 

learning of chemistry concepts (Niewswandt, 2007). Through constructivism studies in science 

education, students’ affective domain has become an important aspect of learning that is now 

inseparable from cognition (McLeod, 1992). 

The impetus of the Framework’s alteration in its approach to curriculum was transforming 

student’s perspective to science. Strategies that encouraged quantity in learning versus quality in 

learning experience are no longer the focus of education. Science is not simply a body of 

knowledge that reflects an understanding of the world but involves practices that create a 

foundation to expand and refine such knowledge (NRC, 2012).  All eight science and engineering 

practices can be implemented in every facet. Like human constructivism, the Framework’s goal 

was to connect thinking and feeling into action to engage students in meaningful learning. 

Framework aligned strategies utilized the eight SEPs, which engaged the students to think about 

science concepts, feel concepts by development of models, and act on their understanding via 

planning and engaging in experiments. Therefore, a correlation can be made between Framework 

and constructivism in approach. ADI will empower students to think about how to approach their 

driving question with a procedure, experience how scientists approach science by executing their 

procedure, then act on their evidence with justification and argumentation with their peers.  

 Human Constructivism utilized Ausubel’s (1963) cognitive structure theory to provide 

meaningful learning to the science classroom. Ausubel’s cognitive structure theory had three 

phases to achieve meaningful learning instead of rote memorization (Ausubel, 1963). Phase one 
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began with clarifying the aim of the lesson, presenting the advance organizer, and creating a 

relationship between students’ knowledge and the advance organizer. Phase two was the 

presentation of a learning task or material. During phase two, the organization of new material was 

explicit, a logical order was created, and students engage presented material and meaningful 

learning activities. During phase three, new information was related to an advance organizer and 

promotion of active reception learning occurs. An example of an advance organizer can be a 

concept map. Novak (1977) described that the cognitive structure was needed for meaningful 

learning in science education that connected the three affective domains (thinking, feeling, and 

acting).  

 According to Moll (1990), the zone of proximal development addressed the issue of 

children who differ in their state of development in ways that cannot be assessed by their 

performance while working individually. Vygotsky (1978) proposed two levels of child 

development: actual development level and a more advanced proximal level. The actual 

development level is their individual performance or ability to solve problems by themselves. 

However, the proximal level of development refers to their performance once they have been aided 

in a task. Aided performance was usually based on their teacher’s assistance with problem-solving. 

Zone of Proximal development was the contrast between a student working individually or being 

helped during an assessment. This zone was created as an alternative to individual assessment or 

IQ testing. Vygotsky (1978) argued that developing mental functions must be assessed via 

collaborative activities as opposed to unassisted or independent activities. Therefore, if a student 

was helped with a task persistently, that student will eventually be able to perform the task 

individually. Zone of Proximal development was confirmed in Human Constructivism based on 

teacher instruction. Human Constructivism implored the teacher to utilize the student’s experience 
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in order to achieve meaningful learning (Bretz, 2001). This theory was founded on the fact that 

students have not already attained an understanding of a concept, but they can develop a stronger 

comprehension via their learning experience. Human Constructivism did not account for one 

aspect from the Zone of Proximal Development: the ability for teachers to assess each student’s 

ability. Consequently, the effectiveness of the student’s learning experience must be considered 

with a teacher’s ability to discover each student’s Zone of Proximal development. ADI empowers 

students to use cognition, feeling, and action to inspire meaningful learning. The theory of human 

constructivism will be present via ADI, and its effect on student motivation will be measured by 

the original POMI.  
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CHAPTER 3: METHODOLOGY 

Introduction  

The research design for this study was quasi-experimental with controls and treatments that 

have non-random assignments for all participants; such a design was commonly used in an 

educational environment (Muijs, 2011). Participants in this study were in one of two groups: 

experimental or control. The experimental group consisted of on-level chemistry students, while 

the control group was honors chemistry students. The purpose of this research design was to 

address two major issues present in the current motivation literature as it relates to science 

education: establish a motivation instrument that generates data that is valid and reliable to assess 

students’ process-oriented motivation for the researcher’s locale and utilization of this instrument.  

Research Questions    

 This study had two main parts that were segmented into two goals. The first goal was to 

develop the novel Process-Oriented Motivation Instrument (POMI).  Once validity and reliability 

were established among the POMI data, the second goal was to explore how Argument-Driven 

Inquiry (ADI) effected student’s process-oriented motivation and achievement in high school 

chemistry. To achieve these two goals the following research questions guided this study: 

 

Goal 1 Research Questions: 

1. How does the data from the Process-Oriented Motivation Instrument establish appropriate 

validity and reliability for high school chemistry students? 

a. What is the relationship between a student’s Views about Scientific Inquiry and the 

degree to which they are motivated by scientific processes? 
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Goal 2 Research Questions: 

2a. What is Argument-Driven Inquiry’s effect on high school chemistry students’ process-

oriented motivation? 

2b. What is the mediation effect of process-oriented motivation and relationship between 

argument-driven inquiry and student achievement? 

 

Research Question 1 and its sub-question, 1a, were constructed to achieve Goal 1. Data from 

the original POMI that established validity and reliability was imperative for any instrument that 

had new items that were being assessed in a certain demographic (Glynn, 2011). If the original 

POMI data collected did not demonstrate appropriate validity and reliability, then the original 

POMI would be deemed not fit for the population where research occurred (Glynn, 2009). While 

Research Question 1 was designed to confirm validity and reliability from data for the original 

POMI, Question 1a utilized a similar instrument that assessed congruence with the original POMI. 

Convergent validity was established by exploration of the relationship between a student’s VASI 

score and the degree to which they were motivated by scientific processes (see Appendix A). A 

convergent validity test, a subtype of construct validity, seeks to find a correlation between the 

factors of both instruments (Heale & Twycross, 2015). Means-focused motivation, a novel factor 

of the original POMI, and the VASI instrument both evaluate an aspect of the process of doing 

science (Lederman, 2014). However, means-focused measured student motivation on engaging in 

scientific practices instead of comprehension of those practices. Although both factors seem to be 

theoretically related, a Pearson or Spearman correlation test confirms if a relationship between 

means-focused scores and VASI scores in fact exists. A high-performing student that had a high 
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score on both instruments would be an indication of means-focused motivation and VASI’s factors 

being aligned or correlated.  

Construction of the POMI 

The original POMI, first survey administration during Goal 1, had a grand total of 25 items. 

Each item utilized the same response scale, a four-point Likert scale that ranges from strongly 

disagree to strongly agree (See Appendix B). Currently utilized science motivation instruments 

retained one commonality: the subject for motivation in each item was science. Science referred 

to any K-12 public education core course that was taken by a student, e.g., ecology. Process-

oriented motivation items, excluding those containing means-focused elements, were adapted from 

previously utilized science instruments including: Intrinsic Motivation Inventory (IMI), 

Motivation Strategies Learning Questionnaire (MSLQ), Students’ Motivation toward Science 

Learning (SMTSL), SMQ, and SMQ-II (Deci & Ryan, 2007; Glynn, 2009; Glynn, 2011; Pintrich, 

2000; Tuan & Chin, 2005). All questions were neither numeric nor open-ended, which enabled the 

student to avoid misinterpretation of original POMI items. An example of an adapted item used in 

the original POMI was “I enjoy laboratories in this chemistry class when they allow me to ask 

questions about the system being studied.” Like other original POMI items, this item emphasized 

the current chemistry class experiences, regardless of students’ previous science experience. 

Moreover, each original POMI item focused on the process involved in completing chemistry 

activities in their current class versus all of science.  

Justification of Factors 

Outcome-focused motivation was the first factor that was a part of the original POMI. Items 

for this factor, listed in Table 3.1 focused on the reward instead of the process of goal pursuit. For 

example, if two students were taking a chemistry test, the outcome-focused motivated student 
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would be fixated on receiving an A on the test instead of the journey associated with making an A 

on the test. This item focused on a student achieving the reward or grade regardless of the means. 

Without the reward, grade, these students may not deem learning activities to be necessary (Touré-

Tillery & Fishbach, 2014). Therefore, these items were categorized as outcome-focused 

motivation due to the emphasis of goal pursuit. Table 3.1 displays the justification for how each 

extrinsic motivation item was selected and adapted to be outcome-focused motivation. Items were 

adapted to outcome-focused motivation by substituting “in this chemistry class” as the subject of 

the students’ motivation. All outcome-focused motivation items in the original POMI were adapted 

from extrinsic motivation items from current motivation instruments. Some wording may differ 

from original items due to the inherent focus on their current chemistry class. This alteration brings 

a definitive goal that is necessary to define items as process-oriented motivation (Touré-Tillery & 

Fishbach, 2014). 

The intrinsic motivation factor shared similarities with the factor used in current 

instruments. The significant distinction pertaining to intrinsic motivation (process-oriented) in 

contrast to current literature intrinsic motivation was a process-centered theme. Thus, intrinsic 

motivation (process-oriented) is identified as a sub-factor of process-focused motivation. While 

current intrinsic motivation simply measures how interested or curious the student is about science, 

the original POMI pairs motivation with the process of doing science, specifically chemistry 

(Glynn, 2011). Intrinsic motivation (process-oriented) measured curiosity and interest distinctly 

based on the process of the goal pursuit, completion of chemistry activities (Touré-Tillery & 

Fischbach, 2014). Items were created to allow students to reflect on their chemistry experiences. 

All intrinsic motivation items that were part of the process-oriented sub-factor were adapted from 

intrinsic motivation items taken from peer-reviewed articles that reflected the process of doing 
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chemistry. An item from the original POMI states: “I find the topics discussed in this chemistry 

class interesting.” This item was adapted from Vansteenkiste (2007) by adding the phrase “in this 

chemistry”. All original POMI items were adapted and were categorized as process-oriented from 

their original source paper (Pintric & DeGroot, 1990; Vansteenkiste, 2007). Intrinsic motivation 

(process-oriented) items fixated on students indulging in the process of learning versus the reward 

or the goal (benefits of learning). Table 3.2 displays the original intrinsic motivation items, adapted 

original POMI items, and justification for selection and adaption of each item. 

Table 3.1 
 
Outcome-Focused Motivation Item Adaption with Justification  
Adapted POM 
Outcome-Focused Item 

Original Extrinsic Item 
(reference) 

Justification 

I attend this chemistry 
class only because I am 
supposed to do so 
(Vansteenkiste, 2007). 

I am studying because 
I’m supposed to do so 
(Vansteenkiste, 2007). 

This item was chosen due to its focus on the outcome of the 
process. The focus for this item is on the expectation of 
forces outside of the student. Without the expectation, the 
student may not study. The item was modified to highlight 
students’ attendance to be the subject in lieu of studying.  
 

I attend this class 
because without taking 
chemistry I would not 
find a high-paying job 
later on. 

Because with only a 
high-school degree I 
would not find a high-
paying job later on (Liu 
& Ferrel, 2017) 

This item was chosen due to its focus on security of a high-
paying job after high school.  This item was modified to pair 
student’s attendance with the importance of finding a high-
paying job at some point in life. Thus, the correlation is that 
students are motivated to attend their chemistry class 
because it may have on their career salary. In other words, 
an attendance motivator may also be in the importance of 
chemistry in relation to a student’s career after high school. 
 

I am only motivated in 
this chemistry class 
because we get grades 
(Amabile, 1994). 

I am strongly motivated 
by the grades I can earn 
(Amabile, 1994). 

The outcome or reward of grades is the reason for item 
selection. Modification of this item added students’ current 
chemistry class to the subject of their motivation. Strongly 
was substituted based on its ambiguity; students may not be 
able to quantify how motivated they truly are by grades in 
their chemistry class. However, substitution of only shows 
that grades are the singular motivator within their chemistry 
course.  
 

I took this chemistry 
class because it will 
look good on my high 
school transcript. 

I am keenly aware of 
the GPA goals I have 
for myself (Amabile, 
1994) 

The outcome or reward of Grade Point Average (GPA) is 
the reason for item selection. Modification of item added 
students’ current chemistry class to the be the subject of 
their motivation. Additionally, wording was modified to 
give students a visual of their high school transcript and how 
their chemistry class may affect it. 
 

I am strongly motivated 
by the recognition I can 
earn from other people 
in this chemistry class.  

I am strongly motivated 
by the recognition I can 
earn from other people 
(Amabile, 1994). 

The outcome or recognition was the reason for item 
selection. Modification of item added students’ current 
chemistry class to the subject of their motivation. 
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Table 3.1 (continued) 
 
Outcome-Focused Motivation Item Adaption with Justification 

 
I am strongly motivated 
to participate in this 
chemistry class when 
the teacher pay 
attention to me. 

I participate in science 
courses to get a good 
grade (Harackiewicz, 
2008). 
 

I am strongly motivated 
by the recognition I can 
earn from other people 
(Amabile, 1994). 

Both original items are outcome focused motivators. 
However, these items were combined to focus on 
participating and recognition specified to their instructor.  
This item combined two goals outside of the process of 
chemistry 

Note. Four-point Likert response scale utilized for all Original POMI items: Strongly Disagree (1), Disagree (2), Agree (3), 
and Strongly Agree (4). 

 

Table 3.2 
Intrinsic Motivation (Process-Oriented) Item Adaption with Justification 

Adapted POM 
Intrinsic Item 

Original Intrinsic Item 
(reference) Justification 

 I find the topics 
discussed in this 
chemistry class 
interesting. 

I think that what we are 
learning in this class is 
interesting (Pintrich & 
DeGroot, 1990). 

The item was chosen due to its regard for student interest in 
the concepts, homework, classwork, activities, lessons, labs 
in chemistry. Class was specified to chemistry, which 
eliminated competing motivations from previous science 
courses. Moreover, chemistry is a unique class compared to 
their previous science. 

 I like this chemistry 
class because it is fun. 

I’m studying because 
it’s fun (Vansteenkiste, 
2007). 

This item was chosen due to inherent intrinsic nature. 
Enjoyment, interest, curiosity are all descriptors of naturally 
intrinsic items (Ryan & Deci, 2000). The item was modified 
to include this chemistry class to localize motivation. 

 I enjoy completing 
assignments for this 
chemistry class 
because they are 
exciting. 

I’m studying because 
it’s an exciting thing to 
do (Vansteenkiste, 
2007). 

This item was chosen due to inherent intrinsic nature. 
Enjoyment, interest, curiosity are all descriptors of naturally 
intrinsic items (Ryan & Deci, 2000). The item was modified 
to focus on assignment completion in their chemistry class.  

  I enjoy this class 
because I am highly 
interested in doing 
chemistry. 

I’m studying because I 
am highly interested in 
doing this 
(Vansteenkiste, 2007). 

This item was chosen due to inherent intrinsic nature. 
Enjoyment, interest, curiosity are all descriptors of naturally 
intrinsic items (Ryan & Deci, 2000). The item was modified 
to replace this with chemistry to ensure focus of interest was 
their current chemistry course.  

Note. Four-point Likert scale utilized for all Original POMI items: Strongly Disagree (1), Disagree (2), Agree 
(3), and Strongly Agree (4). 
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 Means-focused motivation was a sub-factor of process-focused motivation that brings a 

novelty to the education literature. This factor only appears in the psychology literature. How the 

process of goal pursuit is approached plays an important role in motivation (Touré-Tillery & 

Fishbach, 2011). However, this has never been considered in any motivation instrument. 

According to Touré-Tillery and Fischbach (2011), means can be defined as any activity 

contributing to goal attainment. The science and engineering practices that are embedded in the 

new science standards represent a means to achieving a goal.  The means-focused motivation factor 

from the original POMI aimed to measure all eight SEP’s. According to Touré-Tillery and 

Fishbach, (2011), using proper means is important for learning new skills or mastering old ones. 

These items evaluated a student’s drive to learn science in a correct manner by mastering 

techniques, skills, and practices (Touré-Tillery & Fishbach, 2014). Items for this motivational 

factor were created to measure the means, the SEPs, associated with completing any chemistry 

activity.  There were two sets of means-focused motivation items in the original POMI, original 

items and expert validated items. The original items had “I enjoy…, and I like…, which were 

commonly used stems in current intrinsic motivation items (Deci & Ryan, 2000). An example of 

an original item is “I like communicating my results after I have completed an experiment in this 

chemistry class’. There were seven total original items in Table 3.3. Expert validation items were 

created to provide a consistent and concise frame for each means-focused motivation item. These 

items began with “I enjoy this chemistry class more when I get to (insert SEP)”. There were eight 

items with one for each SEP. 
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Table 3.3 
 

Means-Focused Motivation Items with Justification 
Science and 
Engineering 
Practice 

Original Seven Means-
focused Item  

Validation Eight Means-
focused Item 

Application to Instrument 

Asking 
Questions and 
Defining 
Problems 

I enjoy laboratories in this 
chemistry class when they 
allow me to ask questions 
about the system being 
studied.  

I enjoy this chemistry class 
more when I get to research 
problems. 
 
 

Motivation was driven by the 
opportunity to inquire and ask 
questions that enable the 
student to grasp concepts 
pertaining to chemistry. 

Developing and 
Using Models 
 
 
 
 

No Original Item exists 
for this SEP 
 
 
 
  

I enjoy this chemistry class 
more when I use figures to 
make sense of the topics in 
this chemistry class. 
 
 

Motivation was connected to 
how models assisted students’ 
understanding while predicting 
chemistry concepts via 
computer simulations  
  

Planning and 
Carrying Out 
Investigations 
 
 
 

I enjoy completing 
experiments in this 
chemistry class since they 
allow me to investigate 
different problems with 
my classmates. 

I enjoy this chemistry class 
more when I get to plan and 
carry out investigations. 
 
 
 

Students found enjoyment in 
data collection and 
development of their own 
personal graphs from that data. 
.  
  

Analyzing and 
Interpreting 
Data 
 
 

Once I have collected data 
from a chemistry 
experiment, I like to 
search for patterns and 
trends in the data. 

I enjoy this chemistry class 
more when I get to analyze 
and interpret data. 
 
 

Students expressed interest 
while they searched for trends 
and patterns in their data. 
 
  

Using 
Mathematics 
and 
Computational 
Thinking 

I enjoy computer 
simulations that help me 
understand, predict, and 
explain concepts in this 
chemistry class. 

I enjoy this chemistry class 
more when I get to use math 
and computational thinking 
such as math expressions 
and computer simulations. 

Student enjoyment in utilizing 
computer simulations and 
math equations to help their 
comprehension of varying 
chemistry concepts.  

Constructing 
Explanations 
and Designing 
Solutions  

  I like to use evidence in 
my explanation to support 
a claim that I have made 
in this chemistry class. 
 

I enjoy this chemistry class 
more when I get to construct 
explanations about a 
concept. 
 

Using their own evidence or 
other evidence, students were 
motivated to support a claim or 
formulate an explanation about 
the concept in question.  

Engaging in 
Argument from 
Evidence 
 
 

  I enjoy creating 
supporting arguments for 
my understanding of the 
concepts addressed by lab 
in this chemistry class. 
 

I enjoy this chemistry class 
more when I get to engage in 
arguments based on 
scientific evidence. 
 
 

Students found motivation 
while defending a claim that 
connected their evidence with 
a reason that justified their 
position on a chemistry 
concept. 

Obtaining, 
Evaluating, and 
Communicating 
Information 
 

  I like communicating my 
results after I have 
completed an experiment 
in this chemistry class. 
 

I enjoy this chemistry class 
more when I get the 
opportunity to communicate 
my lab results. 
 

Students enjoyed sharing their 
results via lab report, 
discussion, conclusion, for 
short answer pertaining to a 
chemistry concept.  

Note. Four-point Likert response scale utilized for all Original POMI items: Strongly Disagree (1), Disagree 
(2), Agree (3), and Strongly Agree (4). 
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Revised POMI Validation  

Content validity. Before the original POMI was administered in Goal 1 of this study, the 

instrument underwent face validity, a form of content validity, from three process-oriented 

motivation experts. Each expert completed a survey that had three parts: clarity of each item, 

average expected response from the target population, high school chemistry students, and item 

categorization by each factor based on expert comprehension (Appendix C). Finally, experts added 

any clarification comments that would enhance the survey. The feedback was utilized to change 

the Liker scale from Never, Sometimes, about half of the time, Most of the Time, and Always to 

Strongly Disagree, Disagree, Agree, and Strongly Agree. Below, Table 3.4 was created to portray 

the evolution of each item from the expert validity item survey to the final survey items, the 

original POMI items, that were administered in Goal 1. After original POMI administration, 

validation items were added to the survey to ensure that students read each item on the survey. 

Student surveys that had incorrect answers for these validation items were considered invalid and 

consequently such student’s data was removed from final data collection.  There were four total 

validation items dispersed throughout the original POMI that stated, “Select agree for this 

statement” or “Select disagree for this statement”.  Thus, the final version of this instrument 

(Appendix D), the revised POMI, had a total of 31 items, the 27 items below in addition to four 

validation items. 
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Table 3.4 
 
Evolution of Original Process-Oriented Items from Content Validation to Revised POMI Items 

Item 
Number 

Item on Survey  Factor  Expert Feedback  Revised POMI Item 

1 
I like what we learn in this 
chemistry class, because it is 
interesting. 

Intrinsic 
This question is double-
barreled and needs to be  
two separate questions 

  I find the topics discussed in this 
chemistry class interesting. 
 

* N/A N/A N/A Select disagree for this statement 

2 

I enjoy this chemistry class 
more when I get to ask 
questions and research 
problems. 

Means-
Focused 

This question is double-
barreled, students could 
enjoy question asking but 
dislike researching 
problems.  

  I enjoy this chemistry class 
more when I get to research 
problems. 

3 

I like developing a model, 
either as a picture or 
mathematical equation in this 
chemistry class.  

Means-
Focused 

Students may not 
understand the word model, 
a more concise word should 
be used. 

  I enjoy this chemistry class 
more when I use figures to make 
sense of the topics in this 
chemistry class. 

4 
I like this chemistry class, 
because it’s fun.  

Intrinsic 
This item is in good 
standing. 

  I like this chemistry class 
because it is fun. 

5 

I enjoy this chemistry class 
more when I get to develop 
and use models such as 
diagrams, drawings, computer 
simulations or mathematical 
equations. 

Means-
Focused 

This question is double-
barreled, and student may 
answer based on one of the 
questions. 

This item was removed from the 
final version of instrument. 

6 

I like to use evidence in my 
explanation to support a claim 
that has been made in this 
chemistry class.  

Means-
Focused 

The claim that is being 
supported should be 
specified. 

 I like to use evidence in my 
explanation to support a claim 
that I have made in this chemistry 
class. 

 

7 
I enjoy doing activities in this 
chemistry class, because they 
are exciting. 

Intrinsic 
The term activities seem 
ambiguous and needs to be 
a direct activity. 

 I enjoy completing assignments 
for this chemistry class because 
they are exciting. 

8 
I enjoy this chemistry class 
more when I get to plan and 
carry out investigations. 

Means-
Focused 

This item is in good 
standing. 

  I enjoy this chemistry class 
more when I get to plan and carry 
out investigations. 
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Table 3.4 (continued) 
 

Evolution of Original Process-Oriented Items from Content Validation to Revised POMI Items 
 

9 
I find this class interesting, 
because I enjoy doing 
chemistry. 

Intrinsic 
This question is double-
barreled and needs to be two 
separate questions. 

This item was removed from the 
final version of instrument. 

10 

I enjoy laboratories in this 
chemistry class when they 
allow me to ask questions 
about the system being 
studied. 

Means-
Focused 

This item is in good 
standing. 

  I enjoy laboratories in this 
chemistry class when they allow 
me to ask questions about the 
system being studied. 

11 
I attend this chemistry class, 
because I am supposed to do 
so. 

Outcome-
Focused 

Since high school 
attendance is generally 
required, adding only in the 
item will provide a 
motivation to students’ 
attendance.  

  I attend this chemistry class only 
because I am supposed to do so. 

* N/A N/A N/A Select agree for this statement 

12 
I enjoy this chemistry class 
more when I get to analyze 
and interpret data. 

Means-
Focused 

This item is in good 
standing. 

  I enjoy this chemistry class 
more when I get to analyze and 
interpret data. 

13 

I attend this class, because 
without taking chemistry I 
would not find a high-paying 
job later on. 

Outcome-
Focused  

This item is in good 
standing. 

  I attend this class because 
without taking chemistry I would 
not find a high-paying job later 
on. 

14 

I enjoy this chemistry class 
more when I get to use math 
and computational thinking 
such as math expressions and 
computer simulations. 

Means-
Focused 

This question is double-
barreled and needs to be two 
separate questions 

  I enjoy this chemistry class 
more when I get to use math and 
computational thinking such as 
math expressions and computer 
simulations. 

15 
I am only motivated in this 
chemistry class, because we 
get grades. 

Outcome-
Focused  

This item is in good 
standing. 

  I am only motivated in this 
chemistry class because we get 
grades. 

16 

I enjoy computer simulations 
that help me understand, 
predict, and explain concepts 
in this chemistry class. 

Means-
Focused 

This item could be three 
separate items that would 
focus on understanding, 
prediction and explanation. 

  I enjoy computer simulations 
that help me understand, predict, 
and explain concepts in this 
chemistry class. 

17 
I enjoy this chemistry class 
more when I get to construct 
explanations about a concept. 

Means-
Focused 

This item is in good 
standing. 

  I enjoy this chemistry class 
more when I get to construct 
explanations about a concept. 

18 

I enjoy engaging in arguments 
for the understanding of the 
concepts addressed by labs in 
this chemistry class. 

Means-
Focused 

Item is verbose and needs to 
be simplified.  

  I enjoy creating supporting 
arguments for my understanding 
of the concepts addressed by lab 
in this chemistry class. 
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Table 3.4 (continued) 
 

Evolution of Original Process-Oriented Items from Content Validation to Revised POMI Items 

19 
I took this chemistry class 
because it will look good on 
my high school transcript. 

Outcome-
Focused 

This item is in good 
standing. 

I took this chemistry class 
because it will look good on my 
high school transcript. 

20 

I enjoy this chemistry class 
more when I get to engage in 
arguments from scientific 
evidence. 

Means-
Focused 

Scientific evidence is 
ambiguous and consider 
replacing “from” with 
“related to” in this item. 

I enjoy this chemistry class more 
when I get to engage in 
arguments based on scientific 
evidence. 

* N/A N/A N/A 
Select disagree for this statement 
 

21 

I like collecting data from 
chemistry experiments in this 
class and communicating my 
results after I have completed 
the experiment. 

Means-
Focused 

Double-barreled question 
students could like 
collecting data but not 
communicating results. 

I like communicating my results 
after I have completed an 
experiment in this chemistry 
class. 

22 
I enjoy this class, because I 
am highly interested in doing 
chemistry. 

Intrinsic 

Double-barreled question 
student could like what they 
learn, but not find it 
interesting.  

  I enjoy this class because I am 
highly interested in doing 
chemistry. 

23 

I am strongly motivated by the 
recognition I can earn from 
other people in this chemistry 
class. 

Outcome-
Focused 

This item is in good 
standing. 

  I am strongly motivated by the 
recognition I can earn from other 
people in this chemistry class. 

* N/A N/A N/A Select agree for this statement 

24 

I enjoy completing 
experiments in this chemistry 
class since they allow me to 
investigate different problems 
with my classmates. 

Means-
Focused 

Double-barreled question 
students could like 
experiments but may not 
enjoy inquiry. 

  I enjoy completing experiments 
in this chemistry class since they 
allow me to investigate different 
problems with my classmates.                                                

25 

Once I have collected data 
from a chemistry experiment, 
I like to search for patterns 
and trends in the data. 

Means-
Focused 

This item is in good 
standing. 

  Once I have collected data from 
a chemistry experiment, I like to 
search for patterns and trends in 
the data. 

26 
I participate in this chemistry 
class so that the teacher pays 
attention to me. 

Outcome-
Focused 

Consider adding “I am 
strongly motivated by” in 
this item. 

  I am strongly motivated to 
participate in this chemistry class 
when the teacher pays attention to 
me. 

27 

I enjoy this chemistry class 
more when I get the 
opportunity to communicate 
my lab results.   

Means-
Focused 

It is important to specify 
how students are 
communicating their data.  

I enjoy this chemistry class more 
when I get the opportunity to 
communicate my lab results. 

Note. *Represents validation items in the revised POMI 
 
Four-point Likert response scale utilized for all Original POMI items: Strongly Disagree (1), Disagree (2), Agree 
(3), and Strongly Agree (4). 

 



63 
 

 

Research Design to Achieve Goal 1 

Context of the Research Study for Goal 1 

Setting. This study was executed in the place of employment of the researcher. There are 

2,000 total students, 55% white, 30% black, 10% Hispanic and 5% other in terms of demographics 

of the target population for this study.  The research study for Goal 1 included a sample size of 

approximately 250 students from both honors and on-level chemistry after the first week of school 

had commenced (August 12th, 2019). The control group, honors chemistry students, and 

experimental group, on-level chemistry students, had six classes respectively that averaged around 

28 students per class.  

Data Collection  

Obtaining of student and parental consent.  All data collection methods utilized in this 

study were preceded by appropriate approval at the researcher’s university and place of 

employment, school district. A human subject’s approval was obtained from Kennesaw State’s 

Institutional Review Board (IRB) (Appendix E) and then presented to Fulton County Schools 

District research department (Appendix F). Fulton County Schools District research department 

accepted and ratified all details of this dissertation with a confirmation of approval via a research 

agreement (Appendix F). Consequently, all data collection procedures commenced at the 

researcher’s locale beginning with parental consent and student assent forms being solicited to 

all eligible students.  

Parental consent for this study was sent home with the syllabi on the second day of school 

(August 13th); thus, the student-given deadline was August 18th to ensure that student consent was 

received before the start of the research for Goal 1. Parental consent forms were accepted up to 

September 2nd (see Appendix G). Parental or guardian consent was received via a signed 
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permission form. Each student’s assent form was attached to their consent form and submitted 

after signature together to the participant’s chemistry teacher (see Appendix H). Consent/assent 

forms were collected, recorded by the researcher, and finally stored in a safe location. Any students 

that did not provide both a student assent and parental consent forms were pulled from this study’s 

data analysis  

Sources of data collection. Being a chemistry teacher at the locale in this study permitted 

the researcher to have unlimited access to complete the appropriate data collection. The first source 

of data that was required to answer Research Question 1 and 1a came from the VASI. The VASI 

administration occurred between August 19th and September 3rd. The VASI was a qualitative 

survey that was coded with a rubric. The online survey was administered via Qualtrics. The VASI 

online survey was accessible to students via Google classroom, an online classroom website. The 

survey was done during class only on the first day of VASI administration, but absent students 

could complete the survey until September 3rd. A sample of students were interviewed in order to 

demonstrate valid data from the VASI administration. The purpose of the interview was to ensure 

that students had a full understanding of each question in the VASI instrument. The interview 

protocol (see Appendix I) included a think-aloud process that allowed the students to share their 

thoughts for the selected questions with the interviewer. The interview selection process followed 

that used for the Science Motivation Questionnaire (SMQ) in which 6% of the sample of study 

participants were invited to participate in this interview protocol (Glynn, 2009). Based on the 

approximate number of 250 participants in this study, 6% accounted for 13 students. Six students 

were randomly chosen from the experimental group (on-level chemistry), and seven students were 

chosen at random from the control group (honors chemistry). Chosen students were notified by 

their teacher and indicated best date and time based on four choices: lunch, before school, after 
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school, or during study hall time. Each interview took about 10 minutes. All VASI validation 

interviews were conducted during the dates of September 6th and September 20th. Finally, the 

interview responses were transcribed and kept on a password protected One-Drive account for 

later data analysis.   

The second source of data pertaining to Research Question 1 was the original POMI. The 

original POMI administration occurred between September 6th and September 20th. The 

administration of this instrument was delayed until students could adequately reflect on their 

chemistry class experience.  The online survey was administered via Qualtrics. The original 

POMI was accessible to students via Google classroom, an online classroom website. The survey 

was only completed in class on September 6th and was completed outside of the classroom on 

other days of administration. Students were instructed to complete the survey by September 20th. 

Validation interviews were used again to modify any ambiguous wording or misunderstandings 

of the items that students may experience while completing the POMI. A different sample of 12 

students were interviewed to help validate the POMI data. The interview selection process 

mimicked the process for the VASI, which yielded 12 individual interviews. Instead of being 

chosen at random, students were selected based on their current grade in the class on September 

6th. Six total students were chosen that have the highest grade in the experimental group and the 

same was done for the control group. Afterwards, six other students were selected with the lowest 

grades from the experimental and control groups. Student selection was based on grades to assess 

any possible correlation between means-focused motivation scores and student performance in 

chemistry. Chosen students were notified by their teacher and indicated best date and time based 

on four choices: lunch, before school, after school, or during study hall time. Each interview took 

about 10 minutes. All POMI interviews were completed between September 23rd to October 7th. 
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A four-part interview protocol was completed with this sub-sample of students. In Part 1, 

a think-aloud protocol on the means-focused motivation items was utilized to ensure student 

responses matched their interview correspondence (See Appendix J). Students simply walked the 

interviewer through their thought process while taking the POMI. Part 2 involved students 

describing each item in their own words to ensure student understanding pertaining to each 

means-focused motivation item. Part 3 had students matching each means-focused motivation 

item to an in-class scenarios to measure students’ ability to classify each item with the appropriate 

classroom application. In Part 4, each item was ranked in decreasing motivational order to 

provide a relative list of items that students deemed motivated them the most in their chemistry 

class.   

Goal 1 Data Analysis Methods 

Both questions, research question 1 and 1a, which pertain to Goal 1 data analyses were 

conducted in STATA (StataCorp, 2019). 

Content validity. Content validity was performed on three separate occasions: twice for 

the POMI and once for the VASI. Both the VASI and the POMI content had to be deemed 

appropriate for the population before utilization of instrument scores. First, three process-oriented 

motivation experts completed a survey to ensure that each POMI item was clear, concise, and 

reasonable for high school students. This technique is also known as face validity, which 

empowers the experts to confirm that the content on survey matches the intent of survey. Experts 

were enabled to provide feedback on each item and advice was solicited on how to improve the 

instrument. Survey feedback was utilized to improve the instrument by editing items to accurately 

represent each type of motivation, which formed the original POMI.  
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The second check came from a student subsample four-part interview that examined POMI 

content validity in which findings were compared to students’ POMI survey results. These results 

were then analyzed to ensure content validity of means-focused motivation items (Glynn, 2009). 

The four-part interview utilized a subsample of each group, control and experimental, which 

emphasized the means-focused motivation items that suggested valid and reliable data. In the first 

part of the interview, student interview responses were matched with the corresponding means-

focused motivation responses to ensure that both the interview and the survey had congruent 

answers. The second part included student descriptions of the selected means-focused motivation 

items. Students’ descriptions were then compared with an objective of the item. Both description 

and objective were compared to determine student understanding of each item. The third part had 

students match the means-focused motivation items with in-class scenarios. Students interview 

answers were graded against a key, item and scenario correctly matched, to quantify accuracy on 

the seven means-focused motivation items. Lastly, students ranked all means-focused motivation 

items by decreasing motivation. The first and last motivation items on their list were compared to 

their POMI interview Likert response, strongly disagree to strongly agree, for congruency between 

most motivational item and least motivational item POMI interview response.   

The third check or content validity assessed the VASI content validity which utilized 

interview data.  Interview responses were matched with VASI responses to check for compatibility 

with the population for this study. The purpose of the analysis was to determine the legitimacy of 

the instrument’s responses.  

Construct validity. Construct validity was assessed by several steps in succession. The 

specialized form of Structural Equation Modelling (SEM) utilized was the Confirmatory Factor 

Analysis (CFA). The original POMI had two sets of means-focused motivation items, the original 
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items and the expert validated set. Model 1 had included eight expert validation means-focused 

items, while Model 2 had the seven-original means-focused items discussed previously in the 

original POMI construction. A CFA was run for these two separate POMI models. Therefore, 

Model 1 and Model 2 was evaluated by student responses to distinguish the best set of means-

focused motivation items, which were then used to compose the final revised POMI. This route 

ensured that the means-focused motivation items selected had data that suggested construct 

validity. Model 1 and Model 2, shown in Figure 3.1 and Figure 3.2, utilized three hypothesized 

factors, which were examined to find exactly how correlated each item was to its respective factor 

(Glynn, 2011). In this study, the three process-oriented motivation factors are intrinsic, outcome-

focused, and means-focused motivation. For example, Figure 3.1 displays Model 1 that had six 

outcome-focused motivation items, four intrinsic motivation items, and eight means-focused 

motivation items.  However, Model 2 contained the same identical items for outcome-focused and 

intrinsic motivation but means-focused motivation has seven distinct items. Below, Figure 3.2 

provides a graphic of both models for the original POMI and illustrates how each factor relates to 

one another. Intrinsic motivation and means-focused motivation contain a double-headed arrow 

since they were both types of process-focused motivation. Outcome-focused motivation was the 

opposite of those two factors, so it stands alone on the top of the figure.  

The necessary steps for the CFA began with the first index the normed chi-square, which 

assessed goodness-of-fit. An obtained chi-square value was divided by the degrees of freedom to 

create a normed chi-square, which reduced any affect from sample size on the chi-square test 

(Glynn, 2011). The recommended value for a normed chi-square was between 1.0 and 3.0. The 

second index was the standardized root mean square residual (SRMR); this ranged from 0 to 1. 

The recommended value for a SRMR was less than 0.08 (Kline, 2012). Next, goodness-of-fit (GFI) 



69 
 

 

index, ranged from 0 to 1, made an approximation for purporting the variability in sample 

covariance matrix in each model (Glynn, 2011). A good model fit must score a minimum of 0.90. 

The fourth index, the Bentler comparative fit index (CFI), compared model to a null model that 

made a zero population for manifest variables. The acceptable model fit for CFI was 0.900 or 

above (Kline, 2012). Tucker Fit Index (TFI) mimicked the CFI with an acceptable model range of 

greater than 0.900. Lastly, the Root Means Square Error of Approximation (RMSEA) assessed the 

lack of fit within population data for the model. The RMSEA was considered a good fit when it is 

less than 0.005 (Kline, 2012).  
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Figure 3.1. Model 1 of process-oriented motivation factors with respective items 

 

Outcome-
Focused 

Intrinsic 
Motivation  

Process-
Oriented 

Motivation  

I attend this chemistry class only 
because I am supposed to do so. 

I attend this class because without 
taking chemistry I would not find 

a high-paying job later on. 

I find the topics discussed in this 
chemistry class interesting. 

I enjoy assignments for this chemistry 
class because they are exciting.  

I enjoy creating supporting arguments for 
my understanding of the concepts address 

by lab in this chemistry class. 

I like 
communication my 
results after I have 

completed an 
experiment in this 
chemistry class. 

I enjoy computer simulations 
that help me understand, 

predict, and explain concepts in 
this chemistry class.  

I enjoy laboratories in this chemistry 
class when they allow me to ask 
questions about the system being 

studied.  

 I like to use evidence in my 
explanation to support a 

claim that I have made in this 
chemistry class. 

I like this chemistry 
class because it is fun. 

I enjoy this class because I am highly 
interested in doing chemistry.  

I am only motivated in 
this chemistry class 

because we get grades. 

I took this chemistry class 
because it will look good on 
my high school transcript. 

I am strongly motivated by the 
recognition I can earn from other 

people in this chemistry class. 

I am strongly motivated 
to participate in this 

chemistry class when the 
teacher pay attention to 

me. 

Once I have collected data from a 
chemistry experiment, I like to 

search for patterns and trends in the 
data. 

I enjoy completing 
experiments in this chemistry 
class since they allow me to 

investigate different problems 
with my classmates.  

Means-Focused 

Motivation  
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Figure 3.2. Model 2 of process-oriented motivation factors with respective items 

Outcome-
Focused 

Motivation  

Means-
Focused 

Motivation  

Intrinsic 
Motivation 

Process-
Oriented 

Motivation  

I attend this chemistry 
class only because I am 

supposed to do so. 

I attend this class because 
without taking chemistry I 

would not find a high-paying 
job later on 

I find the topics discussed in 
this chemistry class 

interesting. 

   I enjoy this chemistry class more when I get 
to use math and computational thinking such as 

math expressions and computer simulations. 

I enjoy this 
chemistry class 

more when I 
get to construct 

explanations 
about a 
concept.  

I enjoy this 
chemistry class 

more when I get to 
analyze and 

interpret data.  
I enjoy this chemistry class more 

when I use figures to make sense of 
the topics in this chemistry class.  

I enjoy this chemistry 
class more when I get to 

research problems.  

I enjoy this class because I 
am highly interested in 

doing chemistry.  

I am only motivated 
in this chemistry class 

because we get 
grades. 

I took this chemistry class 
because it will look good on 
my high school transcript. 

I am strongly motivated by the 
recognition I can earn from 

other people in this chemistry 
class. 

I am strongly motivated to participate 
in this chemistry class when the 

teacher pay attention to me. 

I enjoy this chemistry class more 
when I get to plan and carry out 

investigations.  

I enjoy this chemistry class more 
when I get to engage in arguments 

based on scientific evidence.  

I enjoy this chemistry classism ore 
when I get the opportunity to 
communicate my lab reports.  

I enjoy assignments for this chemistry 
class because they are exciting.  

I like this 
chemistry 

class because 
it is fun. 



72 
 

 

Convergent validity. A convergent validity test was run to assess any association between 

the VASI scores and the revised POMI (means-focused motivation scores). VASI and revised 

POMI survey response data was utilized in order to undergo convergent validation between both 

instruments. A Kolmogorov-Smirnov test was run for normality to check for normal distribution 

among both sources of data, VASI and POMI scores. A significant test would lead to a Spearman 

correlation, while a non-significant test would culminate in a Pearson correlation. Students’ VASI 

responses were coded based on a published rubric in order to categorize results (Appendix K). The 

dichotomous coding, naive or informed, was translated into numerical values or zero for naive and 

one for informed rankings.  This allowed an individual’s score to be summed up to obtain a one 

numerical value that represented their VASI score (zero or one). The revised POMI had a four-

point Likert Scale, (strongly disagree, disagree, agree, strongly agree) which was automatically 

scored from online Qualtrics platform. The means-focused motivation factor was the only factor 

compared with VASI factor due to its novelty and theoretical similarities. A correlation test was 

run on both factors, which ranged from -1 to 1. A strong correlation, 0.70, between means-focused 

motivation scores and VASI scores would indicate similarity between the factors (Schober & Boer, 

2018). A correlation between 0.40 to 0.69 would indicate a moderate relationship between both 

variables, but a coefficient below 0.39 would be considered a weak coefficient. A statistically 

significant value of 0.05 or less would suggest there was significance in the correlation that was 

found between variables. Therefore, data that confirms a relationship between these factors, 

convergent validity, would assist in making the novel means-focused motivation factor credible.   

Predictive validity. Predictive validity describes instrument data that demonstrated high 

correlations, which may predict future criterions (Heale & Twycross, 2015). The data from the 

revised POMI was evaluated to find correlation with a chemistry assessment taken after 
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implementation of ADI, i.e., does the revised POMI correlate with student performance on a 

chemistry lab report? This study paired chemistry lab report scores with process-oriented 

motivation scores to demonstrate how motivation may or may not predict student achievement 

(Tuan & Chin, 2005). A Kolmogorov-Smirnov test was run for normality to check for normal 

distribution among both sources of data, student achievement and means-focused motivation 

scores. A significant test would lead to a Spearman correlation, while a non-significant test would 

culminate in a Pearson correlation. The chosen correlation analysis tested both variables means-

focused motivation scores and students’ chemistry lab report scores (Tuan & Chin, 2005). A high 

correlation coefficient between variables would be an example of data demonstrating predictive 

validity between motivation and student achievement (Heale & Twycross, 2015).  

Reliability. As the instrument developer, it was necessary to identify sources of 

measurement error that were detrimental to instrument scores (Kimberlin & Winterstein, 2008). 

Thus, POMI responses were utilized to test the reliability of the POMI and helped identify any 

sources of error. A Cronbach alpha was computed to ensure that all items were consistently 

measuring process-oriented motivation (Kimberlin & Winterstein, 2008). Each item was evaluated 

and expected to be consistent with each other to ensure that all items were not only testing 

motivation, but also tested motivation in terms of a process. Cronbach alpha evaluated 

corresponding items for consistency within each POMI factor. (Kimberlin & Winterstein, 2008). 

Lack of consistency or items that had a weak correlation, less than 0.40, would be considered for 

realignment (Gliem & Gliem, 2003). An example of an alteration would be a mean-focused item 

being realigned as an intrinsic motivation.  

Inter-rater reliability occurred between the researcher and a Chemistry Education professor 

to establish consistency for VASI coding using eight students split evenly between control and 
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experimental group. Both educators went through eight students VASI responses coded and scored 

them based on the VASI rubric (see Appendix P). Following the first round of coding, differences 

were discussed until a common understanding of the coding scheme was reached.  A second round 

of coding eight additional students VASI results ensued.  This second round of coding resulted in 

93% agreement between the two coders, or 83 out of 88 items were scored the same by scorers.  

Completion of inter-rater reliability was necessary to authenticate the researcher’s ability to 

accomplish two feats: establish an appropriate rubric and develop internal grading consistency.  

Thus, inter-rater reliability was established, consequently the researcher’s scoring of the student 

VASI results was concluded to be reliable.  

Research Design to Achieve Goal 2 

If data from the revised POMI was validated and deemed reliable, it could then be used to 

study how process-oriented motivation affects using various teaching pedagogies. According to 

the NRC (2012), the new science curriculum facilitates students’ mastery of the eight practices 

and may lead to student motivation to learn science. According to Ryan and Deci (2000), 

motivation is often correlated to student performance. Results from Goal 2 were imperative in 

determining if instruction that was based on the Framework for K-12 Science Education had been 

effective at increasing student motivation and achievement towards learning chemistry. Therefore, 

the results from Goal 2 addressed two gaps that are present in the literature: adding research to the 

science education literature regarding student motivation and measuring how student motivation 

toward science may be affected by instructional practices that emphasize the process of doing 

science.  
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Context for Goal 2 

Population. The study for Goal 2 employed the same exact sample of students enrolled in 

honors and on-level Chemistry. However, students were excluded from the study that lacked at 

least one of the following: consent/assent form, original POMI administration, and VASI 

administration .The intervention that was utilized for Goal 2 was ADI and assisted in answering 

Research Question 2a and 2b for this study.  

Teaching pedagogy. Pacing of instructional material intersected for both honors and on-

level chemistry at the mole, unit for research study for Goal 2. Both group’s students learned how 

to calculate molar mass and go to moles from particles, volume, and grams. Students were 

responsible for knowing percent composition, calculating percent contribution for each element in 

a compound. This unit lasted about three weeks, and the lab implementation occurred during the 

last week of instruction after students learned how to calculate molar mass and convert to and from 

the mole of different compounds. Four SEPs are present in ADI labs: planning and carrying out an 

investigation (Practice #3), analyzing and interpreting data (Practice #4), argumentation (Practice 

#7), collection, evaluation, and communication of information (Practice #8). Thus, the 

experimental group utilized and engaged directly in these four SEPs, while the control group only 

engaged in one (Practice #3).   

The ADI lab was centered around students developing their argumentation (Practice #7) 

from scientific evidence pertaining to a laboratory experience (Grooms & Enderle, 2015). Unit 

placement of this lab empowered students to utilize the SEP’s and apply their chemistry knowledge 

to label various substances using only their mass. The four SEP’s used in the ADI lab aligned with 

the Framework, which made ADI an instructional strategy that is believed to motivate students. 
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The specific lab that was investigated focused on the Law of Conservation of Mass and was 

executed in chemistry labs at the researcher’s locale.  

Honors chemistry schedule (control group). Day one commenced with the following: 

planning and creation of a procedure. Students were in cooperative groups and collaboratively 

wrote a procedure to answer the guiding question, what is the identity of each bag’s content? 

Upon completion of the lab procedure creation, students had their procedure signed off by their 

chemistry teacher. If the procedure was not appropriate to obtain necessary lab results, then 

students had to revise their procedure until it was deemed acceptable by their chemistry teacher. 

On day two, students were in the same groups as the planning step but executed their lab 

procedure and collected results. Results were filled out in a pre-populated table in their lab packet, 

and students answered questions from their observations of the lab as well (Appendix L). 

Observations described the number of grams calculated for each unknown substance. On day 

three, students analyzed their results and discussed the conclusion from their data. Student 

analysis was calculation of the molar mass for each unknown substance utilizing grams collected 

and given moles labeled on each bag. In addition, student analysis involved the molar mass 

calculation of each unknown substance by dividing the given number of moles, on the container, 

by weighted mass of unknown substance. Each group finalized and then put their claim, evidence, 

and rationale in their lab packet to help guide them throughout their lab report. Their claim was 

the answer to their guiding question based on their results. Evidence was students’ collected data 

with analysis and the rationale was their justification of how the evidence connected with their 

claim. Finally, students then started typing their lab report individually based on their results and 

their agreed upon claim, evidence, and reasoning. Their lab report included three sections: 

introduction with guiding question, the method, and an argument (claim, evidence, and 
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reasoning).  On day five, students submitted their final lab report, which was two days later at 

11:59 pm. Students’ chemistry lab reports were utilized as the assessment data for this study. 

On-level chemistry schedule (experimental group). The first step was student 

identification of the task. Students were given a packet that had the guiding question for their lab 

(see Appendix M).  Based on their answer to the guiding question, students had to create a teacher 

authorized procedure. On day two, students completed the second step of the model, which was 

experiment completion with data collection (Practice #3). On day three, students completed the 

third step, creation of an argument via data analysis (Practice #4). Students constructed an 

argument to defend their data collection that included: claim, evidence, and rationale (Walker & 

Sampson, 2012). Day four included the fourth step, which implemented a small group 

argumentation session (Practice #7). Each group prepared for the argumentation session by 

putting their claim, evidence and rationale on a six-foot by four-foot white board. Collaborative 

groups shared their arguments with other groups that critiqued their board to provide constructive 

feedback. The intent of the argumentation session was for each group to collect feedback that 

enabled them to improve on their argument (Walker & Sampson, 2012). In the fifth step, 

completed on day five, original student groups met to discuss what they learned from the 

argumentation session. Students then modified their tentative argument as necessary. After 

modifications were completed, a teacher-led class discussion ensued in which students explained 

what they learned about the phenomenon in question. The point of emphasis for this group 

council was to improve the reasoning or justification of each group’s claim. The argumentation 

session with peers along with a debriefing roundtable with the chemistry teacher was exclusive 

to the experimental group students. On day six, the experimental group completed the sixth step, 

student formation of a basic report. Lab report formation empowered students to learn to 
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transform their data into evidence, which improved the quality of their science argument (Walker 

& Sampson, 2012). The seventh step, day seven, involved a double-blind peer review of students’ 

basic reports (Practice #8). Each student submitted three blind reports, copies of their basic report 

without names, and those reports were given to each lab group with a peer-review sheet. Each 

report was passed or failed by the peer reviewer based on the peer review rubric (see Appendix 

O). The last step was the submission of students’ lab report, which occurred two days after 

students received feedback from the peer-review session. Students had the option to revise their 

reports based on feedback and comments given to them on their draft or they chose to submit 

their paper without revisions. Peer-review editing was also unique to the experimental group. 

Both original and final drafts were submitted to their teachers for final evaluation. Students’ 

Chemistry lab reports were utilized as the assessment data for this study. 

Data Collection  

ADI is a form of instruction that attempts to develop students’ arguments and exploratory 

practices. If students took a chemistry test, their score would not be indicative of these practices. 

All students’ scores involved in both groups were quantified by the standard rubric used for ADI 

lab reports (Appendix N). The ADI rubric was created to effectively measure students’ ability to 

create substantial scientific arguments from lab data (Grooms & Enderle, 2015). Argumentation 

from evidence involves planning and carrying out an investigation (Practice #3), obtaining, 

evaluating, communicating information (Practice #8), and analyzing data (Practice #4) (Grooms 

& Enderle, 2015).  

Data necessary for Goal 2 included the student responses to the revised POMI and the 

students’ lab report to assess chemistry achievement that concluded the instructional unit for the 

mole. Students from both control and experimental group lab reports were graded with the same 
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rubric. The control group and experimental group students answered questions from their lab 

packet as they executed their experiment. Students used this packet to help them write their lab 

report as it contained their observations, data, and analysis for the lab.  

Administration of the revised POMI. The second survey administered was the revised 

POMI that measured students’ initial process-oriented motivation pertaining to chemistry. During 

Goal 1 of this study, the original POMI was administered to students to demonstrate that this 

instrument provided valid data for this population. Based on results, the original POMI was 

altered to ensure that students could answer each item to the best of their ability. Students 

completed the revised survey online a month before the unit. This survey was accessible to 

students via Google classroom. The revised POMI was done during class only on the first day. 

Students who missed the first day completed the revised POMI up to the fifth day. However, after 

the fifth day, the revised POMI was closed.  

 Student administration of the revised POMI. Students took the revised POMI before 

the lab to measure their growth of process-oriented motivation pertaining to chemistry about a 

month before the implementation. All students who completed consent forms, the original and 

revised POMI surveys, and the lab participated in the second revised POMI administration.  The 

survey was accessible to students via Google classroom and completed within the last five days 

of the mole unit. This commenced in early November. On the first day of administration, students 

completed the revised POMI during class. Students who were absent on the first day of 

administration completed the survey for the following four days. However, on the sixth day and 

thereafter the final survey was not accessible. Students who missed this administration of the 

revised POMI were excluded from results.  
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ADI Lab Report Validity and Reliability  

Validity. ADI validation was emphasized by the lab report rubric to ensure that lab report 

content was effective. Therefore, mastery or a high score with this rubric could indicate student 

mastery or development within these scientific practices. Since the goal of this study was to 

measure students’ comprehension and motivation of the SEP’s, a lab report was deemed a more 

appropriate avenue to verify students’ proficiency (Grooms & Enderle, 2015). ADI rubric has been 

established in the science education field as effective and appropriate in measurement of the four 

practices embedded in the lab (Grooms & Enderle, 2015).   

Reliability. To ensure that all chemistry teachers were consistent with grading of student 

lab reports, teachers took five lab reports and graded them individually and compared student 

scores. All teachers gathered and discussed discrepancies amongst each other on each of the five 

scores, and this process continued until all five teacher scores are +/- two points within each 

other’s scores. Each round of this grading process utilized a new set of five lab reports that were 

graded by all teachers. This inter-rater reliability procedure occurred in November before the ADI 

lab described above. 

Goal 2 Data Analysis Methods 

Both questions, research question 2a and 2b, which pertain to Goal 2 data analyses were 

conducted in STATA (StataCorp, 2019). 

Question 2 analysis. This study investigated how change in instruction would affect 

motivation within the experimental group.  According to Hake (1998), a normalized gain score 

metric accounted for classes, e.g., honors versus on level, with different pretest averages in which 

one class has the potential of having less significant gains due to ceiling effects. A normalized gain 

score utilized each student’s before and after lab motivation score per factor, which determined 
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the growth in motivation. The normalized gain was particularly effective for this research study as 

two different populations of students were utilized in reference to chemistry class rigor, honors vs 

on-level, which demonstrated different starting points of initial knowledge.  Therefore, normalized 

gain scores were calculated using the pre- and post-administration of the revised POMI. 

In order to answer research question 2a, Kolmogorov-Smirnov test was completed for each 

class that participated in the study to check for normal data distribution of each revised POMI 

factor mean. A significant p-value for any class statistic indicated non-normal data distribution 

pertaining to the initial revised POMI scores, which led to nonparametric tests for Goal 2 analysis. 

Initial revised POMI mean data represented student’s scores for each factor before lab 

implementation. A Kruskal-Wallis, non-parametric test, examined discrepancies between each 

individual class that comprised the experimental group. Figure 3.3 shows a breakdown of all 

classes that contributed to the control and experimental group, respectively. First, the class 

combination for the experimental group was examined via a Kruskal-Wallis test. This test ensured 

that all classes that contributed to the experimental group had no significant difference in data 

before comparing to the control. Second, a non-significant Kruskal-Wallis test result would 

confirm all classes in the experimental group. In contrast, a significant test would lead to alterations 

of class involvement followed up with another Kruskal-Wallis test until the experimental group 

data has displayed no statistical difference. This same procedure ensued the control group. After 

all control group classes were combined, both groups were compared to ensure no significant 

difference in group data. A non-significant Mann-Whitney U outcome would indicate the control 

and experimental groups initial motivation data was statistically similar for each revised POMI 

factor before ADI implementation. Next, normalized gain score was calculated for the three POMI 

factors, which culminated in three separate sets of normalized gain score tests.  Finally, a Mann-
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Whitney U test determined if the difference between normalized gain score of control and 

experimental group was significant. Effect size was only employed if significance was found.  

 

Figure 3.3. Normalized Gain Score Class combination for Control and Experimental Groups 

Question 2b analysis. Research question 2b required a mediation path analysis to 

demonstrate ADI’s effect on students’ process-oriented motivation and how this affects student 

performance, chemistry lab report scores (Puca & Schmalt, 1999). All students revised POMI 

scores and chemistry lab report scores underwent a mediation path analysis test to find correlation 

within the sample. This model was utilized to run a mediation path analysis for each type of 

motivation: outcome-focused, means-focused, and intrinsic. Students’ process-oriented 

motivation, each revised POMI factor, acted as a mediator that connects a type of instruction with 

students’ achievement. Evidence that validated process-oriented motivation as a mediator between 

ADI and our experimental group achievements indicated the value of implementation of 
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Framework for K-12 Science Education aligned practices on students’ process-oriented motivation 

toward chemistry. 

Data Security  

Students personal information was kept confidential throughout this study by identification 

of students with assigned numbers paired with the letter S and a number. Students’ personal 

information was anonymously treated. Findings of this study utilized this system of identification 

to ensure students name were withheld from the published dissertation. All results presented as 

part of this study aggregated data when possible or this numbering scheme as necessary. 

Any paper forms which included: the student assent forms, parental consent forms, lab 

reports, and lab report rubrics, were stored in a locked filing cabinet at the researcher’s enrolled 

university in the research faculty member’s research lab. All electronic data was stored in a 

designated research folder on a cloud storage and backed up on a password protected research 

desktop at the same university. Prior to storage all student names were removed and replaced with 

an appropriate number. All security measures were approved by researcher’s university and district 

of employment.  
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CHAPTER 4: GOAL 1 AND GOAL 2 FINDINGS   

The purpose of Chapter 4 was to utilize findings to establish a version of the POMI as a 

valid and reliable instrument. This valid and reliable model would then be employed to assess 

student process-oriented motivation and achievement toward chemistry. Thus, chapter four was 

split into two parts: Goal 1 and Goal 2.  The first half of this chapter, Goal 1, explored the following 

research questions: (1) How does the data from the original POMI establish appropriate validity 

and reliability for high school chemistry students?  (1a) What is the relationship between a 

student’s Views about Scientific Inquiry (VASI) and the degree to which they are motivated by 

scientific processes? The second half of Chapter 4 will present the necessary evidence to address 

Goal 2 via two questions: (2a) What is Argument-Driven Inquiry’s effect on high school chemistry 

students’ process-oriented motivation?  (2b) What is the mediation effect of process-oriented 

motivation and relationship between argument-driven inquiry and student achievement? Research 

questions 2a and 2b were developed to determine if a Framework aligned teaching pedagogy, ADI, 

affected student process-oriented motivation and achievement in high school chemistry. 

Goal 1 Findings  

How Does the Data from the Process-Oriented Motivation Instrument Establish Appropriate 

Validity and Reliability for High School Chemistry Students?  

Validation and reliability data techniques were utilized to ensure the POMI was an 

instrument that was precise in its content, items were effective in their measure, and consistently 

measured process-oriented motivation. Therefore, the following tests utilized POMI and VASI 

survey data to establish appropriate validity and reliability to determine the best construction of 

the POMI: content validity, construct validity, predictive validity, convergent validity, and 
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reliability. Table 4.1 displays the Goal 1 research questions along with the purpose and research 

method or statistical test aligned with each question. 

Table 4.1 
 
Goal 1 Research Questions with Respective Analysis  

Goal 1 Research Question Purpose 
Research Method/ 
Statistical Test  

Q1: How does the data from the Process-
Oriented Motivation Instrument establish 
appropriate validity for high school 
chemistry students? 

Construct Validity  
 

Confirmatory Factor 
Analysis 

 
Content Validity 

 
Triangulation 

Predictive Validity  Pearson Correlation or 
Spearman Correlation 

Reliability  Cronbach Alpha  

Q1a: What is the relationship between a 
student’s Views about Scientific Inquiry 
and the degree to which they are 
motivated by scientific processes? 

Content Validity Triangulation  

Convergent Validity Pearson Correlation or 
Spearman Correlation  

Reliability  Interrater Reliability* 

Note. *Interrater Reliability description and evidence was in Chapter 3.  

 

Construct validity. POMI construct validity utilized a confirmatory factor analysis to 

inspect the two models, Model 1a and Model 2a, built for the POMI in Chapter 3.  This inspection 

used correlations between POMI factors and their respective items to examine if either model 

provided credible data on student process-oriented motivation. Goodness-of-fit statistics were 

employed on data from each POMI model to validate the best model, Model 1a or Model 2a. The 

best model was administered to students, which evaluated student process-oriented motivation and 

achievement toward high school chemistry in the second part of this chapter. Therefore, student 

responses to the 25-item original POMI survey was divvied amongst Model 1a and Model 2a. 

Model 1a had a total of 18-items split amongst the three POMI motivation factors:  six outcome-

focused, four intrinsic, and eight means-focused motivation items. Model 2a had a total of 17-

items split amongst the three POMI motivation factors:  six outcome-focused, four intrinsic, and 
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seven means-focused motivation items. Model 1a and Model 2a contained identical outcome-

focused and intrinsic motivation items, while means-focused motivation items were unique to each 

model. 

Progression from Model 1a to Model 1b. Figure 4.1 and 4.2 display Model 1a and Model 

1b in addition to correlations between factors and its items based on student responses. A strong 

correlation has a factor loading of 0.70 or greater, a good relationship was between 0.70 to 0.41, 

and a weak relationship was less than 0.40 (Keith, 1999). Items that had a factor loading less than 

0.40 were deteremined unfit for the model and thus removed (Kine, 2012). Standard error, a 

measure of statistical accuracy, was located to the right of each POMI item (Kline, 2012).  

 

Figure 4.1. Model 1a Confirmatory Factor Analysis with Factor Loadings and Error 
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Figure 4.2. Model 1b Confirmatory Factor Analysis with Factor Loadings and Error 

 

In Figure 4.2, three items were removed to create Model 1b. Any item with a factor loading 

less than 0.40 was removed one at a time (Kline, 2012). Values less than 0.40 demonstrated poor 

correlation within the outcome-focused motivation factor possibly causing a source of misfit in 

the Model 1a; thus Q11, Q21, and Q24 were removed to produce Model 1b (Kline, 2012). Q11, 

Q21, and Q24 obtained respective factor loadings of 0.21, -0.15, and -0.05. In other words, data 

indicated these items do not appropriately represent the intent of outcome-focused motivation 

items. Item Q11 states “I attend this class because without taking chemistry I would not find a 

high-paying job later on.”  Q11 represented an outcome that possibly students had not considered 

yet since they were still enrolled in high school during data collection. Based on these results, 
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students did not correlate their future career as an outcome they were directly motivated by in this 

chemistry class. While Q21 states “I am strongly motivated by the recognition I can earn from 

other people in this chemistry class”. Q24 states “I am strongly motivated to participate in this 

chemistry class when the teacher pays attention to me.” Finally, Q21 and Q24 represented obtained 

attention, which was an outcome that one may consider based on an achievement. It was apparent 

that students did not associate the teacher’s attention as an outcome they were motivated by in this 

chemistry class.  Comparing Model 1a versus Model 1b, factor loadings between factors were not 

significantly affected by the removal of three items. This was evident by two weakened 

relationships: outcome-focused motivation to intrinsic motivation and outcome-focused 

motivation to means-focused motivation. Both relationships experienced a decrease in factor 

loading from Model 1a to Model 1b. 

In Figure 4.2, Model 1b showed that means-focused and outcome-focused motivation had 

a weak negative relationship with a correlation factor loading of -0.25. This correlation was weaker 

than Model 1a. Means-focused motivation items were process-focused toward chemistry activities, 

while outcome-focused motivation items were results-focused toward chemistry activities. The 

intent of each factor was an inverse relationship and therefore justifies this negative factor loading.  

However, this weak factor loading indicated both factors may not appropriately measure process-

oriented motivation. A large negative factor loading would confirm both factors having opposite 

intents, while simultaneously measuring process-oriented motivation. In both Figure 4.1 and 4.2, 

means-focused and intrinsic motivation remained an unchanged means-focused motivation to 

intrinsic factor loading, which was a result of zero items being removed for either factor.  A strong 

positive relationship between these two factors existed with a factor loading of 0.71, which 

confirmed both factors are process focused. Model 1b showed a decrease of 0.02 in the factor 
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loading value for intrinsic and outcome-focused motivation, which was considered a moderate 

negative relationship with a correlation factor loading of 0.54. Outcome-focused motivation is 

related to the reward of the process, while intrinsic motivation is the enjoyment of the process. 

These opposite objectives confirmed the negative factor loading between outcome-focused 

motivation and intrinsic motivation.     

Progression from Model 2a to Model 2b. In Figure 4.3, Model 2a shows that means-

focused and outcome-focused motivation demonstrated a weak negative relationship with a 

correlation factor loading of 0.27. Means-focused and intrinsic motivation displayed a good 

positive relationship with a correlation factor loading of 0.67. Finally, intrinsic and outcome-

focused motivation suggested a good negative relationship with a correlation factor loading of 

0.56. As described for Model 1a and 1b, the direction of these relationships was expected.   

 

Figure 4.3. Model 2a Confirmatory Factor Analysis with Factor Loadings and Error 
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Model 2a started with 17 items, but three items were removed resulting in an altered Model 

2b with 14 items. Comparing the original and altered version, Model 2a and Model 2b, factor 

loadings between factors were mildly impacted by the removal of three items. In Figure 4.4, 

means-focused motivation and outcome-focused motivation experienced a factor loading decrease 

of 0.05. Means-focused motivation and intrinsic motivation remained a good positive relationship 

with a factor loading of 0.67, which confirmed the intent of these two factors. Finally, intrinsic 

and outcome-focused motivation decreased in correlation factor loading from -0.56 to 

 -0.54. Items Q24, Q21, and Q11 were removed from Model 2a successively due to factor loadings 

being under 0.40. These were the same exact items removed from Model 1a to form Model 1b. 

Therefore, item removal justification utilized above on Model 1b items applied for Model 2b items 

in the same manner.  

 

Figure 4.4. Model 2b Confirmatory Factor Analysis with Factor Loadings and Error 
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Comparison Model 1b and 2b. Table 4.2 displayed the comparison for Goodness-of-Fit 

statistics between Model 1b and Model 2b. All values calculated for goodness-of-fit confirmed 

that Chi-Square and RMSEA were not acceptable for Model 1b, while Model 2b demonstrated 

unacceptable statistical values for Chi-Square, RMSEA and TLI. Consequently, these models can 

be deemed as poorly fit models due to multiple unacceptable values. Results indicated that neither 

model was capable to provide consistent and credible data pertaining to student’s process-oriented 

motivation for the selected population. Therefore, additional alterations to Model 1b and Model 

2b must be completed before another confirmatory factor analysis would verify a valid POMI. 

Table 4.2 
 
Goodness-of-Fit Comparison Between Model 1b and Model 2b 

Goodness-of-Fit Measure Model 1b Model 2b 

X2 (>0.05) 0.00* 0.00* 
SRMR (0.08 or below) 0.057 0.059 
CFI (.900 or above) .923 0.917 
RMSEA (0.05 or below) 0.059* 0.068* 
TLI (Tucker) (.900 or above) 0.907 0.898* 
Note.  RMSEA = root-mean square error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis 
index; SRMR= standardized room mean square residual. 
 
Statements in parenthesis refer to number that deems model a good fit by the corresponding indices.  
 
*Statistic is demonstrating a poor model fit 

 

Second CFA Justification. Model 1b and Model 2b did not qualify as good fits to utilize 

in Goal 2 based on goodness-of-fit measures. Therefore, four validation items were added to the 

POMI to ensure that all data utilized in the CFA were participants that read each question in the 

survey. This was a final attempt to ensure findings were an accurate representation of the 

selected sample’s motivation. An example of a revised POMI validation item was “Select 

disagree for this statement”.  All four validation items were not considered in relation to the 

second CFA data analysis. Although failure to respond to the item correctly was used to this 

disqualify participants from the study. The original POMI with four validated items was renamed 
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to the revised POMI survey. Before Goal 2, participants completed the revised POMI survey.  

Model 1c and 2c were developed by splitting the mean-focused items, in the same way Model 1a 

and 1b were developed. The findings were evaluated via CFA and the same three outcome-

focused motivation items (Q11, Q21, and Q24) had factor loadings under 0.40; thus, these items 

were removed from Model 1c and Model 2c.  Therefore, Model 1c and Model 2c were 

disqualified as final POMI models due to poorly fit items. Item removal generated two new 

models, Model 1d and Model 2d, with three less outcome-focused motivation items and had the 

exact same items as Model 1b and Model 2b.  

Model 1d and Model 2d Comparison. Four conclusions were drawn based on this new 

data for Model 1d and 2d, presented in Figure 4.5 and 4.6. First, data from Model 2d factor 

relationships suggested superiority compared to Model 1d data for two paths: outcome-focused 

to intrinsic motivation and intrinsic to means-focused motivation. In other words, student 

responses suggested that the relationship between these two paths were stronger pertaining to 

Model 2d items. Second, Model 1d had five items that were considered strongly correlated to its 

respective factor, while Model 2d had six items. This conclusion was based on a factor loading 

greater than 0.70 for an item (Keith, 1999). Third, Model 1d and 2d outcome-focused motivation 

item, Q9, increased from a 0.77 factor loading to 0.85 as a result of item removal. Such an 

increase demonstrated the dramatic effect caused by removal of same factor items that may 

represent misfits in a model.  Fourth, Model 1d and Model 2d experienced significant 

improvements with factor to factor loadings that was representative of the initial original POMI 

model structure and intent referred to in Chapter 3.  
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Figure 4.5. Model 1d Confirmatory Factor Analysis with Factor Loadings and Error 

 

Figure 4.6. Model 2d Confirmatory Factor Analysis with Factor Loadings and Error 
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Most Valid and Reliable POMI Model. Table 4.3 displayed the comparison of goodness-

of-fit statistics between Model 1d and Model 2d. In reference to Model 1d, all values calculated 

for goodness-of-fit indicated that all measures were acceptable apart from Chi-Square and RMSEA 

values. All values calculated for goodness-of-fit confirmed that all measures except for Chi-Square 

were acceptable for Model 2d.  Consequently, Model 1d can be deemed to have a poorer fit due to 

two unacceptable values. Although Model 2d did not meet the acceptable value for Chi-Square, 

this could be a result of a small sample size, a significant limitation of this study (Kline 2012). 

Therefore, Model 2d was deemed most valid based on the goodness-of-fit measurements, and 

therefore most capable of providing coherent and credible data pertaining to student’s process-

oriented motivation toward chemistry at the locale of interest.  

Table 4.3 
 

Goodness-of-Fit Comparison Between Model 1d and Model 2d After Item Removal 

Goodness-of-Fit Measure Model 1d Model 2d 

Chi-Square (>0.05) 0.000* 0.000* 
SRMR (0.08 or below) 0.057 0.046 
CFI (.900 or above) .918 0.971 
RMSEA (0.05 or below) 0.071* 0.044 
TLI (Tucker) (.900 or above) 0.901 0.964 
Note.  RMSEA = root-mean square error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis 
index; SRMR= standardized room mean square residual. 
 
Statements in parenthesis refer to number that deems model a good fit by the corresponding indices.  
 
*Statistic is demonstrating a poor model fit 

 

Model 2d Covariance. Since Model 2d was selected as the superior model, all future 

analyses were executed with only Model 2d items. A high Modification Index (MI) suggested that 

two items within a factor had a close association. In other words, data indicated that students 

answered two items similarly. MI values were identified as sources of misfits in a model that when 

appropriately addressed may result in model improvement (Kline, 2012). Selected items within 
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each POMI factor had a greater than 9 MI. The pairs of items that met this criterion to be covaried 

were the following: Q5 & Q16 (15.578), Q8 & Q22(13.854), Q13 & Q17 (13.364).  

The first path justification transpired between items Q5 and Q16: “(Q5) I like to use 

evidence in my explanation to support a claim that I have made in this class” and “(Q16) I enjoy 

creating support arguments for any understanding of the concepts addressed by lab in this 

chemistry class”. Q5 and Q16 had two operative terms, argumentation and explanation, that were 

distinct but compatible in the education literature. According to Berland and Kuhn (2009), students 

utilized argumentation to develop their explanations pertaining to a scientific phenomenon. 

Explanation and argumentation can be viewed as complementary practices (Berland & Kuhn, 

2009). Therefore, students could have interpreted these terms to be interchangeable and as a result 

answered both questions alike. As an alternative, an explanation can be viewed as evidence 

construction, while argumentation can be viewed as a defense of that same explanation. Finally, 

Grooms and Enderle (2015) confirmed that explanations provide evidence to support a claim 

however, argument generation demands higher-level thinking.  

The next pair of covaried items in Model 2d were Q8 and Q22: “(Q8) I enjoy laboratories 

in this chemistry class when they allow me to ask questions about the system being studied” and 

“(Q22) I enjoy completing experiments in this chemistry class since they allow me to investigate 

different problems with my classmates.” Asking questions and investigating can be viewed as 

synonymous terms since they can both be included in the same experiment. Many investigations 

begin with an observation or a question, thus it is easy to pinpoint how students could have 

answered these two terms in a similar manner.  

The following items represented the final two covaried items: “(Q13) I am only motivated 

in this chemistry class because we get grades” and “(Q17) I took this chemistry class because it 
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will look good on my high school transcript.”  Q13 and Q17 are both outcome-focused motivation 

items that emphasized students’ grades as the reward for learning. Data suggested students 

answered these in a similar manner due to the same single outcome: a grade. As a result, Table 4.4 

displays an improved model based on goodness-of-fit statistics. This overall increase compared to 

Model 2b was attributed to implemented validation items, which enabled only true motivation 

results into this data set. Moreover, data that skewed results was no longer in the second CFA, 

which led to an improved model. In addition, covaried items contributed to improved statistics that 

suggest a better model. 

Table 4.4 
 

Goodness-of-Fit for Model 2d After Covariance 

Goodness-of-Fit Measure Model 2  

Chi-Square (>0.05) 0.000* 
SRMR (0.08 or below) 0.037 
CFI (.900 or above) 1.000 
RMSEA (0.05 or below) 0.000 
TLI (Tucker) (.900 or above) 1.001 
Note.  RMSEA = root-mean square error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis 
index; SRMR= standardized room mean square residual. 
 
Statements in parenthesis refer to number that deems model a good fit by the corresponding indices.  
 
*Statistic is demonstrating a poor model fit 

 

Reliability. Cronbach alpha is a reliability measure that provides coefficients, which 

demonstrate the degree of internal consistency for the items composing a factor, e.g., POMI (Gliem 

& Gliem, 2003). A reliability coefficient of 0.70 suggested that items for the factor or instrument 

were consistently representative of the measurement at hand. In Table 4.5, data suggested that all 

17 Model 2d items was confirmed to be reliable as a cohesive unit to represent process-oriented 

motivation. Additionally, all three POMI factors had items that consistently measured intended 

content.  
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Table 4.5 
 
Reliability Cronbach Alpha for Model 2d  
                Form of Reliability Test                 Model 2d 

Cronbach Alpha all items 
 

0.88* 

Cronbach Alpha for Means-Focused 
Motivation Construct 

 
Cronbach Alpha for Outcome- Focused 

Motivation Construct 
 

0.80* 

0.70* 

Cronbach Alpha for Intrinsic Motivation 
Construct 

 

0.84* 

Note. *Cronbach Alpha coefficient that is considered reliably acceptable is 0.70. (Gliem & Gliem, 2003) 

 

Content Validity. Research questions 1 and 1a provided evidence that verified validity 

and reliability pertaining to VASI and revised POMI surveys. Three forms of content validity were 

utilized to establish validity from POMI student responses: expert content feedback (face validity), 

POMI interviews, and VASI interviews. Face validity via process-oriented motivated experts was 

established in Chapter 3, which culminated in the original POMI survey. The purpose of all three 

forms of content validity was to confirm that POMI items and data demonstrated that students 

comprehended the content on the surveys taken, the VASI and the POMI. Such evidence was 

necessary to determine if both instruments were credible for the target population: high school 

chemistry students.  

Revised POMI content validity. Two hundred and five participants completed the revised 

POMI before Goal 2. The revised POMI was composed of Likert scale items where students could 

rank the item between 1, strongly disagree, to 4 strongly agree.  Table 4.6 contains a summary of 

descriptive statistics for each item that composed the revised POMI, grouped by the expected 

survey factor.  The complete instrument can be found in Appendix D.   

Revised POMI content validity was established by conducting validation interviews with 

12 students (six honors chemistry and six on-level chemistry students) in a four-part interview.  
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Part 1 enabled students to walk the researcher through their thought process that led them to choose 

their response. Students then elaborated on their choice. A comparison was made between 

student’s survey selection and their interview for the revised POMI’s means-focused motivation 

items. The point of emphasis was frequency of student’s responses going from some form of Agree 

to Disagree or the opposite direction. Q5, Q8, Q14, Q16, Q19, Q22, Q23 were revised POMI 

means-focused motivation items that were asked of the students via the online survey and via 

interview. In Appendix Q, revised POMI survey responses for each question were placed in 

parentheses and the interview responses to the left of the parenthesis. Moreover, Appendix Q 

further breaks down details as to how content validity was determined for Part 1. In Table 4.6, 

three levels of coding existed to help understand any discrepancy between student’s POMI survey 

and POMI interview. To quantify this discrepancy each student was assessed by Level A, Level B 

or Level C. The Part 1 column categorized students in Level A, B , or C based on how many times 

each student’s interview and survey responses changed from any form of agreement to any form 

of disagreement, (e.g., a change from strongly agree to disagree would be counted as 1) while a 

change from strongly agree to agree would not be counted. Level A ranged from 0-1 change; Level 

B ranged from 2-4 changes; Level C ranged from 5-7 changes. Level C had two students, Level B 

had six students, and Level A had three students. Thus, only two students changed their answer 

for five out of seven items on the revised POMI. The rest of the students rarely changed their 

answers on at least half of the revised POMI items.  
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In Part 2, students described each item in a manner appropriate for an elementary student 

to comprehend. Students were given a piece of paper that had the seven means-focused motivation 

items of interest. In Table 4.6, content validity was also assessed by Level X, Level Y or Level Z. 

Level X description demonstrated a complete understanding of all seven items and its intent. Level 

Y description was based on an understanding of four out of seven items. Finally, Level Z 

description was based on an understanding of three or less items. Level Z had no students, Level 

Y contained only three out of twelve students, and Level X was comprised of the remaining nine 

students that were interviewed. All twelve students understood at least four out of seven items; 

Part 2’s data suggested students had a strong grasp of the purpose of each means-focused 

motivation item. Furthermore, Table 4.6 displays each misunderstood question in parentheses next 

to the coded Level X, Level Y, and Level Z.  

 Part 3 of the validation interview consisted of a matching procedure for students whereby 

each student matched all seven items with in-class scenarios that best illustrated those items. The 

Table 4.6 
 
POMI Content Validity: POMI Interview Response (POMI Survey Response) 
Student Name  Teacher  Part 1 Score * Part 2 Score** 

S1 Teacher 2 B X 

S2 Teacher 4 B X 

S3 Teacher 4 C X 

S4 Teacher 4 B X 

S5 Teacher 3 B X 

S6 Teacher 3 A X 

S7 Teacher 3 C X 

S8 Teacher 1 B X 

S9 Teacher 1 B Y(Q5) 
S10 Teacher 5 A X 

S11 Teacher 5 B Y(Q16) 

S12 Teacher 5 A Y(Q19) 

*Note. Full table present in Appendix Q 
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complete results for this part were included in Appendix R. Approximately 92% of students 

matched five out of seven items correctly. Items Q16 and Q23 were mismatched on three 

occasions, which indicated that students may not be able to consistently differentiate between 

creating an argument from their data versus finding trends and patterns from their data. Twenty-

five percent of the students mismatched these items, which was not enough evidence to alter items.  

Part 4 of the validation interview asked the students to rank items in decreasing order based 

on how motivated they were by each scientific practice that was described.  Items placed first or 

at the top were considered highly motivational and items at the bottom were less motivational to 

the student. This ranking was then compared with the student’s interview response in Part 1 for 

accuracy. The claim was students that were most motivated by an item would select a higher degree 

of motivation compared to the least motivational item during Part 1 of the interview. The results 

of this part of the validation interview were included in Table 4.7. Only two students selected their 

most motivational item as disagree, while selecting agree or strongly agree for their least 

motivational item. 
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Table 4.7 
 

POMI Content Validity for Created Means-Focused Motivation Data (Part 4) 

Student Name  Teacher  Agreement in Interview with First and Last Ranked Item  

S1  Teacher 2  
First - Q5 (D) 
Last - Q22(A) 

S2 Teacher 4  
First- Q22(SA) 
Last - Q19(A) 

S3 Teacher 4 
First - Q23 (D) 
Last - Q5 (D) 

S4 Teacher 4  
First - Q5 (A) 
Last - Q16 (A) 

S5 Teacher 3  
First - Q5 (A) 
Last - Q22(A) 

S6 Teacher 3 
First - Q16 (A) 
Last - Q8 (A) 

S7 Teacher 3 
First - Q16 (SA) 
Last - Q22 (SD) 

S8 Teacher 1 
First - Q8 (A) 
Last - Q19 (D) 

S9 Teacher 1 
First - Q23 (D) 
Last - Q22 (A) 

S10 Teacher 5 
First - Q16 (A) 
Last - Q14 (A) 

S11 Teacher 5 
First - Q22(D) 
Last - Q23(D) 

S12 Teacher 5 
First - Q16 (SA) 
Last - Q14(A) 

Note. Table focuses on Part 4 of interview that enabled students to rank all seven means-focused motivation items 
by decreasing order of motivation toward learning chemistry.  Please refer to Appendix S for an expanded version 
of this table.  

 

In summary, all four parts of the revised POMI content validation interview provided 

adequate evidence to demonstrate that the revised POMI assessed student’s means-focused 

motivation at an adequate level for high school chemistry students. In Part 1, most students were 

consistent in answering a similar degree of motivation, e.g., Agree or Strongly Agree, between 

POMI interview and POMI survey. In Part 2, all students accurately described most means-focused 
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motivation items. Part 3 suggested that most students appropriately matched the correct class 

scenario with the corresponding means-focused motivation item. Finally, Part 4 showed that all 

but two students’ highest ranked means-focused motivation item was aligned with a higher degree 

of motivation. 

VASI content validity. The results of the comparison of VASI responses and student 

validation interviews are reported in Table 4.8. The purpose of these interviews was to establish 

that students understood each question they answered before further utilization of data in future 

analyses. Three VASI items were chosen to be queried during content validity interviews based 

on significant student feedback on such items being ambiguous. The three chosen VASI items 

were repeated verbatim during each student interview and allowed students to clarify their answer. 

Each student received a score based on the VASI rubric that assessed if the student’s answer was 

informed or naive (one or zero points, respectively). Student’s survey score was then matched with 

their interview score to ensure that students provided consistent answers between the survey and 

interview. Each students VASI interview and survey scores were matched to ensure consistency 

of student’s answers.  Eight students matched all three questions from survey to interview. Four 

students matched two out of three answers accurately and only one student matched one out of 

three answers. Approximately 85% matched their answers correctly, which displayed an 

appropriate level of content validity that demonstrated that most students had a conceptually grasp 

of the survey’s content. 
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Convergent Validity. Convergent validity compared revised POMI scores and VASI 

instrument scores, which explored any correlation between the means-focused motivation factor 

and the VASI factor. Before the convergent validity test, a Kolmogorov-Smirnov test was utilized 

to assess normal distribution amongst the means-focused scores and VASI scores, respectively. 

Thus, a significant difference for either factor’s data would suggest non-normal distribution, which 

would result in a non-parametric correlation test. Means-focused scores were not normally 

distributed, D (0) = 1.1, p < 0.001, which confirmed the necessity of a non-parametric test for 

convergent validity. VASI scores also lacked a normal distribution, D (0) = 1.6, p < 0.01. Thus, 

Table 4.8 
 

VASI Content Validity Table  

Student  Question #3 Score Question #11 Score Question #12 Score 
Match Between 
Interview and VASI 
Score 

 Survey Interview Survey Interview Survey Interview  
S1 
 

1 1 0 1 1 1 2 out of 3 

S2  
 

1 1 0 1 0 1 1 out of 3 

S3  
 

0 0 1 1 0 0 3 out of 3 

S4 
 

0 0 1 1 0 1 2 out of 3 

S5 
 

1 1 1 1 1 1 3 out of 3 

S6 
 

1 1 
 

1 1 1 1 3 out of 3 

S7 
 

1 1 1 1 1 1 3 out of 3 

S8 
 

1 1 1 1 0 1 2 out of 3 

S9 
 

1 0 1 1 1 1 2 out of 3 

S10 
 

0 0 1 1 1 1 3 out of 3 

S11 
 

1 1 1 1 1 1 3 out of 3 

S12 
 

0 0 1 1 0 0 3 out of 3 

S13 
 

1 1 0 0 1 1 3 out of 3 

Note. Please refer to Appendix T for an expanded version of this table with students’ quotes.  
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convergent validity between VASI scores and means-focused scores was assessed via Spearman 

correlation, non-parametric test (Tuan & Chin, 2005). Spearman correlation results indicated no 

significant difference for the correlation coefficient between means-focused motivation and the 

VASI factor, which was validated by an extremely weak Spearman correlation coefficient, rs (159) 

= 0.044, p = 0.71. Therefore, the Spearman correlation test revealed no significant relationship 

existed between student’s means-focused motivation scores and VASI scores. Upon further 

elaboration, students with a high VASI score were not expected to have a high mean score for 

means-focused motivation. Hence, convergent validity cannot be assumed between the means-

focused motivation factor and the VASI factor.  

Predictive Validity. A Kolmogorov-Smirnov test was utilized to confirm the necessary 

type of correlation test. Means-focused scores and lab report scores both indicated the data was 

not normally distributed, D (0) = 2.3, p < 0.001; D (0) = 3.1, p < 0.01. Thus, the predictive 

validity utilized a Spearman correlation to link student achievement with means-focused 

motivation scores (Tuan & Chin, 2005). Predictive validity did not exhibit a significantly 

different correlation coefficient, which indicated that students are not more likely to score high 

on student achievement if they scored high on means-focused motivation. Means-focused 

motivation and lab report scores were found to have a small insignificant correlation, rs (159) = 

0.082, p < 0.01. Furthermore, means-focused motivation cannot be utilized with assurance to 

predict how students will perform on ADI lab reports. Theoretically, a correlation between these 

two variables would denote a possible utilization of the novel means-focused motivation factor. 

Nevertheless, current evidence does not authenticate any imminent predictive validation that 

would enable science teachers to utilize the revised POMI to predict future success in science.  
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Goal 1 Conclusion  

 Based on data, Model 2d was selected as the most valid and reliable version of the POMI 

after two completed CFA. Thus, Model 2d was renamed the revised POMI and utilized for 

further analyses in this study. Content validity was established with a four-part interview that 

demonstrated that students comprehended content being assessed by the revised POMI. 

Convergent validity was not established between POMI means-focused motivation data and 

VASI. Therefore, congruency with VASI or means-focused motivation findings cannot be 

predicted or assumed due to lack of a relationship based on data.  Finally, reliability was 

established for the revised POMI, which meant all items measured process-oriented motivation 

consistently. Moreover, each item consistently measured content fittingly for their respective 

motivation factor: outcome-focused, intrinsic, means-focused. In other words, means-focused 

motivation items can be trusted to give data that aptly measures student motivation toward the 

SEPs in their chemistry class.  

Goal 2 Findings 

Three research questions were formulated throughout this study to address two goals: valid 

and reliable data for the revised Process-Oriented Motivation Instrument (POMI) and exploration 

of Argument Driven Inquiry (ADI) effect on high school chemistry students’ motivation and 

achievement. At the conclusion of Goal 1, Model 2d was selected as the best model to obtain the 

most accurate data pertaining to students’ process-oriented motivation toward chemistry. 

Following this the revised POMI, Model 2d, was utilized to evaluate how students’ process-

oriented motivation was altered by two different pedagogical implementations of a lab. This 

chapter will present the necessary evidence to address Goal 2 via two questions: (2a) What is 

Argument-Driven Inquiry’s effect on high school chemistry students’ process-oriented 
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motivation?  (2b) What is the mediation effect of process-oriented motivation and relationship 

between argument-driven inquiry and student achievement? Research questions 2a and 2b were 

developed to determine if a Framework aligned teaching pedagogy, ADI, affected student process-

oriented motivation and achievement in high school chemistry. Question 2a utilized findings to 

address how each revised POMI factor was affected by ADI implementation. Question 2b obtained 

data to explore the mediation path effect from outcome-focused motivation, intrinsic motivation, 

and means-focused motivation to the control and experimental group’s lab report scores.  Table 

4.9 presents the research questions of Goal 2 aligned to the statistical analysis performed to answer 

each question.   

Table 4.9 
 
Goal 2 Research Questions with Respective Analysis  

Goal 2 Research Question Statistical Analysis 

Q2a: What is Argument-Driven Inquiry’s effect on high school chemistry 
students’ process-oriented motivation? 

Kruskal-Wallis or Mann-Whitney 
U Test 

Q2b: What is the mediation effect of process-oriented motivation and 
relationship between argument-driven inquiry and student achievement? 

Mediation Path Analysis 

What is Argument-Driven Inquiry’s Effect on High School Chemistry Students’ Process-

Oriented Motivation? 

This question measured the effect of the implementation of ADI on students’ process-

oriented motivation.  The goal of ADI is to empower students to develop arguments that can 

support explanations pertaining to research questions (Walker & Sampson, 2012). The 

independent variable was based on the presence of ADI in each group’s lab experience. The 

experimental group participated in an ADI lab, while the control group completed a traditional lab. 

ADI is an instructional model that promotes student engagement via scientific argumentation. The 

dependent variable for question 2a of the research study was students’ process-oriented motivation.  
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Table 4.10 provided a breakdown of average outcome-focused, intrinsic, means-focused 

motivation scores aligned with the average achievement scores per individual class examined in 

this study. Teachers 1, 2 and 3 comprised the experimental group, while Teacher 4 and Teacher 5 

represented the control group. Thus, the control group began with a total of five classes, but the 

experimental group has a grand total of six classes. In the end, a sum of eleven classes were 

considered to help answer Question 2a.  

Table 4.10  
 
Lab Report Statistics for All Teacher and their Classes 

     
 

Teacher Course 

Outcome 
Score 

Average 

Intrinsic 
Score 

Average 

Means-Focused 
Score 

Average 
Lab Report Score 

Average 

Experimental 
Group 

Teacher 1 Class 1 2.71 2.50 2.65 77.71 

Teacher 1 Class 2 2.69 3.01 2.75 77.91 

Teacher 2 Class1 2.91 2.91 2.62 75.75 

Teacher 3 Class 1 2.82 2.71 2.56 77.30 

Teacher 3 Class 2 2.91 2.31 2.75 74.11 

Control 
Group  

 
Teacher 4 Class 1 2.91 2.01 2.56 87.18 

Teacher 4 Class 2 3.11 2.11 2.62 87.34 

Teacher 4 Class 3 3.00 2.31 2.54 81.93 

Teacher 5 Class 1 2.91 2.91 2.96 83.12 

Teacher 5 Class 2 2.41 2.83 2.64 82.87 

Teacher 5 Class 3 2.62 2.87 2.91 83.11 

 

Research question 2a investigated if a change in instruction, exposure to ADI, resulted in 

a statistically significant difference between both groups outcome-focused motivation. Before this 

comparison, a test for normality was utilized to assess normal distribution of individual classes 

initial outcome-focused motivation scores. If a significant difference was founded for any class, a 

non-parametric test would then be utilized to compare control and experimental groups initial-

outcome-focused motivation scores. Afterwards, a normalized gain score was calculated for each 

group and these calculated mean scores were compared via a parametric or a non-parametric test 



108 
 

 

for a significant difference. Normalized gain scores are particularly effective for this research study 

as two different populations of students were utilized with regards to the class rigor, honors vs on-

level, which demonstrated different starting points of initial knowledge. Hake (1998) created the 

normalized gain score metric to account for classes, e.g., honors versus on level, with varying 

pretest averages in which one class has the potential to having less significant gains due to ceiling 

effects.  

Comparison of revised Pre-POMI outcome-focused motivation scores. To begin 

assessing the data collected it was first important to determine if a parametric or nonparametric 

statistical analysis could be performed.  To do so, a Kolmogorov-Smirnov test was run to check 

for normal distribution among the initial outcome-focused motivation scores. The revised pre-

POMI outcome focused motivation scores for each class in this study did not adhere to a normal 

distribution. The results of the Kolmogorov-Smirnov test were provided in Table 4.11. A 

significant p-value, p = 0.00, indicated that the distribution was non-normal leading to the use of 

nonparametric tests being employed to make the statistical comparisons to answer research 

question 2a. 

Table 4.11 
 
Kolmogorov-Smirnov Normality Results for All Teacher and their Classes 

Teacher  Course  Degrees of Freedom  Chi-Square Value  P-Value  

Teacher 1 Class 1 7 1.99 <0.001 

Teacher 1 Class 2 11 1.77 <0.001 

Teacher 2 Class1 8 2.25 <0.001 

Teacher 3 Class 1 10 2.07 <0.001 

Teacher 3 Class 2 22 1.96 <0.001 

Teacher 4 Class 1 22 1.83 <0.001 

Teacher 4 Class 2 14 1.77 <0.001 

Teacher 4 Class 3 23 2.01 <0.001 

Teacher 5 Class 4 15 1.73 <0.001 

Teacher 5 Class 4 15 1.88 <0.001 

Teacher 5 Class 4 13 2.02 <0.001 
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Next, classes that composed the experimental and control groups had to be combined.  To 

deem that there was no significant difference among the classes prior to combing the data. Thus, 

a Kruskal-Wallis test was performed to compare the initial outcome-focused motivation values of 

all classes within its respective group. Five total classes were compared amongst the experimental 

group and the results suggested no significant difference between classes in the experimental group 

existed, X2(4) = 3.02 p = 0.541. Thus, all experimental group classes were statistically similar, 

comprising the experimental group. Kruskal-Wallis test displayed no significant difference among 

the initial outcome-focused motivation scores for the six classes composing control group, X2(5) 

= 9.55 p = 0.89. All classes in the control group were combined for further analysis. According to 

the Mann-Whitney U test results, the experimental group compared to the control group’s initial 

outcome-focused motivation lacked a statistical difference, Z = 0.141, p = 0.881. Theoretically, it 

can be deduced that the experimental group and control group had similar initial outcome-focused 

motivation scores before ADI implementation.  

Determining the effect of ADI on outcome-focused motivation. A normalized gain score 

was computed for outcome-focused motivation before and after ADI implementation. First, 

Kolmogorov-Smirnov test assessed the normality of the newly formed control and experimental 

group, which both groups were determined to have non-normally distributed data, D (0) = -1.3, p 

= 0.000; D (0) = -1.1, p = 0.000. A Mann-Whitney U, non-parametric version of a t-test, revealed 

no significant difference between the control and experimental group’s normalized gain score, Z 

= -0.202, p = 0.841. Consequently, the normalized gain scored for outcome-focused motivation 

was statistically similar despite the implementation of ADI. 

Comparison of revised Pre-POMI intrinsic motivation scores. A Kolmogorov-Smirnov 

test examined sample data for normal distribution amongst the initial intrinsic motivation scores. 
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The revised pre-POMI intrinsic motivation scores for each class in this study had data that was not 

normally distributed. In Table 4.12, Kolmogorov-Smirnov results demonstrated a significant p-

value, p = 0.000 for all the data of each individual class, which led to nonparametric tests used for 

statistical comparisons to answer research question 2a pertaining to intrinsic motivation. 

Table 4.12 
 
Kolmogorov-Smirnov Normality Results for All Teacher and their Classes 

Teacher   Course  Degrees of Freedom  Chi-Square Value  P-Value  
 
 

Teacher 1 Class 1 7 2.06 <0.001  

Teacher 1 Class 2 11 1.87 <0.001  

Teacher 2 Class1 8 2.45 <0.001  

Teacher 3 Class 1 10 2.00 <0.001  

Teacher 3 Class 2 22 1.91 <0.001  

Teacher 4 Class 1 22 1.88 <0.001  

Teacher 4 Class 2 14 1.74 <0.001  

Teacher 4 Class 3 23 1.93 <0.001  

Teacher 5 Class 4 15 1.80 <0.001  

Teacher 5 Class 4 15 1.84 <0.001  

Teacher 5 Class 4 13 2.05 <0.001  

 

A Kruskal-Wallis test was performed to compare the initial intrinsic motivation values of 

each class within its respective group. Five total classes were compared amongst the experimental 

group and the result suggested no difference, X2(4) = 3.08 p = 0.545, between classes in the 

experimental groups prior to the implementation of the lab. Thus, all experimental group classes 

were statistically similar, which enabled all five on-level chemistry classes to represent the 

experimental group. The Kruskal-Wallis test displayed no significant difference, X2(5) = 5.802, p 

= 0.319, between all six classes in the control group initial intrinsic motivation. Each of the six 

sections of honors chemistry composed the control group since all classes were statistically similar. 

A Mann-Whitney U test confirmed no significant difference, Z = 0.316, p = 0.752, when 

comparing the pre-POMI scores for the experimental and control groups before ADI 
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implementation, which included all classes from experimental and control group concerning initial 

intrinsic motivation. 

Determining the effect of ADI on intrinsic motivation. A normalized gain score 

compared intrinsic motivation growth throughout this study. At the outset, Kolmogorov-Smirnov 

test assessed the normality of the novel control and experimental group, both groups had data that 

was not normally distributed, D (0) = -1.13, p = 0.000; D (0) = -1.02, p = 0.000. A lack of a 

significant difference between control and experimental group was discovered by the Mann-

Whitney U test, Z = 1.94, p = 0.0524. Ultimately, ADI implementation did not impact students’ 

intrinsic motivation in a manner that resulted in a dramatic change throughout this study.  

Comparison of revised Pre-POMI means-focused motivation scores. Assessing the 

data collected began with determining if a parametric or nonparametric statistical analysis was 

necessary.  A Kolmogorov-Smirnov test was run to check for normal distribution among the initial 

means-focused motivation scores. Revised pre-POMI means-focused motivation scores for all 

eleven classes in this study had a significant difference for normality. In Table 4.13, a significant 

p-value, i.e. p = 0.000, signaled a non-normal distribution.  

Table 4.13 
 
Kolmogorov-Smirnov Normality Results for All Teacher and their Classes 

Teacher   Course  Degrees of Freedom  Chi-Square Value  P-Value  
 
 

Teacher 1 Class 1 7 1.99 <0.001  

Teacher 1 Class 2 11 1.98 <0.001  

Teacher 2 Class1 8 2.79 <0.001  

Teacher 3 Class 1 10 2.11 <0.001  

Teacher 3 Class 2 22 1.82 <0.001  

Teacher 4 Class 1 22 1.87 <0.001  

Teacher 4 Class 2 14 1.79 <0.001  

Teacher 4 Class 3 23 2.05 <0.001  

Teacher 5 Class 4 15 1.90 <0.001  

Teacher 5 Class 4 15 1.94 <0.001  

Teacher 5 Class 4 13 2.09 <0.001  
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To assess any statistical difference between the classes a Kruskal-Wallis test was 

performed to compare the initial means-focused motivation values of each class within the 

experimental group. Five total classes were compared, and the outcome indicated no difference, 

X2(4) = 0.238 p = 0.994, between classes in the experimental group. Second, a Kruskal-Wallis test 

between all control group sections determined that there was no significant difference, X2(5) = 

12.67 p = 0.027, between the six honors chemistry classes. All classes in the control group were 

combined for further analysis. Mann-Whitney U test indicated a lack of statistical difference 

between experimental and control initial means-focused motivation, Z = -0.540, p = 0.591. In 

theory, it can be concluded that the experimental group and control group had comparable initial 

means-focused motivation scores before ADI implementation.  

Determining the effect of ADI on means-focused motivation. A normalized gain score 

was calculated for means-focused motivation before and after ADI lab implementation. First, 

Kolmogorov-Smirnov test measured normal distribution of the newly formed control and 

experimental group, which determined that the data was not normally distributed, D (0) = -1.27, p 

= 0.000; D (0) = -1.34, p = 0.000. Thus, a Mann-Whitney U test indicated no significant difference 

between the control and experimental group’s normalized gain score, Z = 0.199, p = 0.842. A lack 

of significant difference between normalized gain score for control and experimental groups 

indicated statistically similarity pertaining to means-focused motivation growth between groups.   

What is the Mediation Effect of Process-Oriented Motivation and Relationship Between 

Argument-Driven Inquiry and Student Achievement? 

Three mediation path analyses were conducted to represent the following factors for the 

revised POMI: outcome-focused motivation, intrinsic motivation, and means-focused motivation. 

Two items were emphasized for all three mediation path analyses: path coefficient and p-value for 
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that path coefficient. Correlations between connected variables in path and significant difference 

explained the relevance of that path. Additionally, correlation and p-value supplied necessary 

evidence to draw conclusions about the effectiveness of each variable. Finally, p-value above 0.05 

categorized the path as not significant in difference between variables. On the contrary, p-values 

below 0.05 categorized the path as producing a significant difference between variables.  

Direct effects. Direct Effects demonstrated how each variable in a path influenced the 

other, via path coefficient, and if a significant difference existed. There were three direct effect 

tables that represent each type of motivation: outcome, intrinsic, means-focused. ADI to 

Motivation, Motivation to Score, and ADI to Score were the paths represented in each 

corresponding direct effect table. Thus, motivation would be replaced with one of the three POMI 

factors, while a path coefficient and p-value were computed for necessary evidence on path 

significance. 

Indirect effects. Question 2b can be simply answered via each motivation’s indirect effect 

table, which was the motivation’s effect on the ADI to Score path. ADI to Score was the only 

mediation path available since the only mediator can be a form of motivation: outcome-focused, 

intrinsic, or means-focused. The p-value was paired in all three indirect effect tables to provide 

evidence necessary to a draw conclusion for Question 2b. A small non-significant p-value under 

0.05 provides two conclusions: control and experimental groups scores were impacted in the same 

manner by motivation despite ADI implementation and any discrepancy in mediation effect was 

quite small and insignificant (Sullivan & Fenin, 2012). In contrast, a significant p-value provided 

two conclusions: control and experimental groups scores were impacted in a significantly different 

manner by motivation due to ADI implementation and this discrepancy gap in mediation effect 

was large and significant (Sullivan & Fenin, 2012).  



114 
 

 

Outcome-focused motivation. In Figure 4.7, a non-significant relationship existed 

between the experimental group, ADI, and outcome-focused motivation. As a result, it can be 

determined that the experimental group was not significantly more outcome-focused motivated 

than the control group. Outcome-focused motivation to lab report score had the weakest and 

smallest correlation in Table 4.14, thus no significant disparity existed between those variables. 

Outcome-focused motivation did not affect student lab report scores in a substantial manner. 

Further-motivated students did not score better on their lab report. Finally, Table 4.14 suggested 

via ADI to Score’s significant path that the experimental group scored significantly better than the 

control group on their lab report irrespective of outcome-focused motivation. These results suggest 

that the ADI implementation was considerably effective on student achievement, student lab report 

scores.  

 

Figure 4.7. Outcome-focused Motivation Mediation Path Analysis 

 

Table 4.14 
 
Outcome-Focused Unstandardized Path Coefficients, Standard Errors, and P-value for Theoretical Model 
Path Coefficient SE P-value 95% CI 
ADI to Outcome 0.11 0.91 0.22 -0.067, 0.29 
Outcome to Score 0.05 0.086 0.53 -0.11, 0.22 
ADI to Score  0.38 0.077 0.00* 0.23, 0.53 
Note. *Significant Difference exists for path 
 
SE=Standard Error; CI= Confidence Interval 

. 
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Table 4.15 displayed the direct effects for three distinct paths in conjunction with its 

coefficient and p-value. Each path can be simply described based on the direct impact of one 

variable to the other variable in its path. Therefore, a significant p-value for the ADI to Outcome 

path would indicate that the ADI implementation affected experimental group students’ outcome-

focused motivation scores. The first path was ADI to Outcome, which lacked a significant 

difference. Next, Table 4.15 confirmed that higher-motivated students did not score significantly 

better than their peers who obtained a low outcome-focused motivation score. ADI to Score path 

was quite significant and displayed a dramatic score improvement from control to experimental 

groups due to ADI implementation.  

Table 4.15 
 
Direct Effects with Respective Confidence Intervals for Outcome-Focused Motivation Path Model 
Path Coefficient SE P-value 95% CI 
ADI to Outcome 0.46 0.39 0.22 -0.28, 1.21 
Outcome to Score 0.35 0.56 0.53 -0.74, 1.44 
ADI to Score 10.10 2.30 0.00* 5.61, 14.62 
Note. *Significant Difference exists for path 
 
SE=Standard Error; CI= Confidence Interval  

 

In Table 4.16, only one indirect path existed, ADI to Score, which highlighted the experimental 

group students and their lab report scores. Therefore, p-value and coefficient for this path were 

based on the effect from outcome-focused motivation scores on the ADI to Score path. In the ADI 

to Score path, the mediator was one of the revised POMI motivation factors, e.g., outcome focused. 

The p-value was considerably above the threshold, which meant that outcome-focused motivation 

did possess a significant effect on the ADI to Score path. An on-level student, experimental group, 

who scored low for outcome-focused motivation should not be presumed to have scored poorly on 

the lab report.  
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Table 4.16 
 
Indirect Effects with Respective Confidence Intervals for Outcome-focused Motivation Path Model 
Path Coefficient SE P-value 95% CI 
ADI to Outcome 0 No path - - 
Outcome to Score 0 No path - - 
ADI to Score 0.16 0.29 0.58 -0.41, 0.73 
Note. * No significant difference exists for path 
 
SE=Standard Error; CI= Confidence Interval 

 

Intrinsic motivation. In Figure 4.8, a significant path coefficient existed between the 

experimental group, ADI, and intrinsic motivation. Consequently, it can be determined that the 

experimental group was significantly more motivated than the control group due to ADI 

implementation. This significant p-value can be found in Table 4.17, which confirmed the 

importance of the ADI to intrinsic motivation path coefficient. Intrinsic motivation did not affect 

student lab report scores in a substantial manner. Finally, the experimental and control groups had 

no statistical difference in lab reports. ADI implementation was not dramatically effective on how 

well students scored on the lab their lab report.   

 

Figure 4.8. Intrinsic Motivation Mediation Path Analysis 

 

 Table 4.17 
 
Unstandardized Path Coefficients, Standard Errors, and P-value for Theoretical Model 
Path Coefficient SE P-value 95% CI 
ADI to Intrinsic 0.22 0.93 0.020* 0.34, 0.40 
Intrinsic to Score 0.15 0.097 0.13 -0.043, 0.34 
ADI to Score 0.16 0.097 0.11 -0.32, 0.35 
Note. * Significant Difference exists for path 
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Three direct effect paths were examined in Table 4.18 based on intrinsic motivation scores 

amongst experimental and control group students. The first path in Table 4.18, ADI to Intrinsic 

path, had a significant difference, which illuminated that ADI implementation did affect the 

experimental group’s intrinsic motivation in a significant manner. Next, students that were more 

intrinsically motivated did not score significantly better than students that had a low intrinsic 

motivation score. ADI to Score path did not suggest a statistically significant score improvement 

from control to experimental groups due to the implementation of ADI. 

Table 4.18 
 
Direct Effects with Respective Confidence Intervals for Intrinsic Path Model 
Path Coefficient SE P-value 95% CI 
ADI to Intrinsic 1.49 0.66 0.025* 0.19, 2.80 
Intrinsic to Score 0.74 0.49 0.13 -0.22, 1.70 
ADI to Score 5.36 3.35 0.11 -1.21, 12 
Note. * Significant Difference exists for path 
 
SE=Standard Error; CI= Confidence Interval 

 

In Table 4.19, the ADI to Score path was examined for a significant difference based on the indirect 

effect of students’ intrinsic motivation scores. The p-value was above the threshold, which meant 

that intrinsic motivation lacked an indirect effect on the experimental group’s lab report 

performance. Intrinsic motivation was not a mediator and did not portray a mediation effect 

between ADI and lab report scores, which answered Question 2b. The p-value in Table 4.19 

indicated that both groups performed statistically similar on lab reports scores in response to 

intrinsic motivation. Simply put, an honors chemistry or on-level chemistry student, control group, 

who scored high for intrinsic motivation should not be presumed to have performed well on the 

lab report.  
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Table 4.19 
 
Indirect Effects with Respective Confidence Intervals for Intrinsic Path Model 
Path Coefficient SE P-value 95% CI 
ADI to Intrinsic 0 No path - - 
Intrinsic to Score 0 No path - - 
ADI to Score 1.09 0.88 0.21 -0.62, 2.8 
Note. * No significant difference exists for path 
Dash (-) indicates no value for column of focus 
SE=Standard Error; CI= Confidence Interval 

 

Means-focused motivation. In Figure 4.9, a negative path coefficient existed between the 

experimental group, ADI, and means-focused motivation. A negative coefficient indicated that the 

control group performed better on means-focused motivation versus the experimental group. This 

result was the opposite of the expectation from ADI lab implementation. Nevertheless, this result 

was not statistically significant, which meant that the difference was marginal at best. Means-

focused motivation to lab report score had a small correlation in Table 4.20. Means-focused 

motivation did not affect student lab report scores in a considerable manner based on the above 

threshold p-value. Therefore, less motivated students did not score worse on their lab report. 

Finally, the experimental group scored significantly better than the control group on their lab report 

regardless of their means-focused motivation. A p-value below 0.05 served as evidence that ADI 

implementation was substantially effective on student achievement or performance. 

 

Figure 4.9. Means-focused Motivation Mediation Path Analysis 
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Table 4.20 
 
Unstandardized Path Coefficients, Standard Errors, and P-value for Theoretical Model 
Path Coefficient SE P-value 95% CI 
ADI to Means-
Focused 

-0.14 0.091 0.12 -0.32, 0.035 

Means-Focused to 
Score 

0.049 0.086 0.56 -0.12, 0.22 

ADI to Score 0.39 0.076 0.00* 0.24, 0.54 
Note. * Significant Difference exists for path 

 

Table 4.21 explored three direct paths that revolved around students’ means-focused 

motivation scores. Thus, a significant p-value for a path confirmed that a direct influence occurred 

from one variable to another pertaining to students’ means-focused motivation. The first path in 

Table 4.21 investigated an indirect relationship between means-focused motivation and ADI, 

however it was not shown to be statistically significant. High-scoring means-focused motivation 

students scored similarly on lab reports compared to relatively low-score means-focused 

motivation students. ADI to Score path yielded a statistically significant difference between 

control to experimental groups due to the implementation of ADI. A 10.46 path coefficient 

confirmed a sizeable effect: the experimental group scored considerably better on lab reports 

compared to their control group counter parts due to ADI instruction (Keith, 1999). 

Table 4.21 
 
Direct Effects with Respective Confidence Intervals for Means-Focused Motivation Path Model 
Path Coefficient SE P-value 95% CI 
ADI to Means-
Focused 

-1.01 0.65 0.12 -2.29, 0.27 

Means-Focused to 
Score 

0.18 0.32 0.57 -0.45, 0.82 

ADI to Score 10.46 2.31 0.00* 5.94, 14.98 
Note. * Significant Difference exists for path 
  
SE=Standard Error; CI= Confidence Interval 

 

Table 4.22 examined the indirect effect means-focused motivation scores had on the ADI 

to Score path. The p-value was well above the threshold, which led to means-focused motivation 
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having no indirect effect on the experimental group’s lab report performance. Means-focused 

motivation did not facilitate a mediation effect between ADI and lab report scores, which was an 

emphatic no response to Question 2b. Means-focused motivation did not have a notable impact on 

how the experimental group students performed on their lab reports. In other words, an on-level 

student who scored high for means-focused motivation should not be presumed to have a high lab 

report score. 

Table 4.22 
 
Indirect Effects with Respective Confidence Intervals for Means-Focused Motivation Path Model 
Path Coefficient SE P-value 95% CI 
ADI to Means-Focused 0 No path - - 
Means-Focused to 
Score 

0 No path - - 

ADI to Score -0.19 0.35 0.60 -0.87, 0.50 
Note. *Significant Difference exists within Past 
 
SE=Standard Error; CI= Confidence Interval 

 

Goal 2 Conclusion 

 Research question 2a was answered with a normalized gain score evaluation. Normalized 

gain score was conducted to compare the experimental and control group for each POMI 

motivation factor. Findings revealed that there was no significant difference in either group’s 

process-oriented motivation despite utilization of a teaching pedagogy that utilized the SEPs. 

Therefore, experimental group POMI data indicated that no current evidence and claim can be 

substantiated that reflected process-oriented motivation being substantially altered or effected by 

a curriculum aligned teaching strategy.  

Research question 2b utilized three variables to conduct a mediation path analysis: ADI, 

Motivation, and Lab Report Score. ADI represented the type of instruction between the control 

and experimental group. Motivation represented each factor in the revised POMI instrument. All 

three revised POMI factors had its own mediation path analysis. Finally, the lab report score 
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represented the student achievement aspect of this study. Any significant difference in a mediation 

path analysis between two variables, the path, implied one variable had a more substantial effect 

on the other. Ultimately, the goal for each mediation path analysis was to discover if any process-

oriented motivation factors facilitated the relationship between ADI and students’ lab report 

scores. Throughout data collection, an additional path was created between instructional strategy, 

ADI, and student lab report score to examine any statistically significant effect. Findings suggested 

that no mediation effect existed from motivation on ADI to Score path. This revelation established 

that no indirect effect was incurred for outcome-focused, intrinsic, and means-focused motivation. 

In other words, any significant effect from the ADI to Score path was not influenced by students’ 

process-oriented motivation. However, two inconsequential conclusions were discovered: 

outcome-focused and means-focused motivation mediation path analysis demonstrated that 

experimental group students scored higher on their lab reports and the experimental group was 

more intrinsically motivated compared to the control group. 
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CHAPTER 5: CONCLUSIONS, IMPLICATIONS, AND RECCOMENDED FUTURE 

RESEARCH 

 This chapter presents conclusions, implication and future research pertaining to the revised 

POMI. A summary of evidence will be presented that addresses Research question 1, 1a, 2a and 

2b. Future implication on how the science education community will be affected by the revised 

POMI. Finally, future research as a result of conclusions will be investigated. 

Conclusions 

Findings can be deduced down to three major points: a) the revised POMI has valid and 

reliable survey data for high school chemistry students at the researcher’s locale, b) the effect ADI 

has on process-oriented motivation is not substantial but has a significant effect on student 

achievement, c) process-oriented motivation does not influence chemistry students’ performance 

on their lab reports.  

Valid and Reliable Data for Revised POMI 

The newly created revised POMI has data that demonstrates content validity and construct 

validity. Content validity is first evident by the feedback received from three process-oriented 

experts. The revised POMI construction is a final product due to this feedback and implementation 

within the instrument. Face validity is evident by three process-oriented motivation experts’ 

feedback being implemented in the administered original and revised POMI. During this study, a 

four-part interview protocol for 12 students (six each from control and experimental groups) 

suggested that most students had a grasp on process-oriented motivation.  Construct validity is 

evident via CFA results. After two complete CFA’s, Model 2d had appropriate goodness-of-fit 

statistics confirming Model 2d as a good model fit. Model 2d includes seven means-focused 
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motivation items that accurately, precisely and reliably reflect the content of students being 

motivated by the science and engineering practices.  

ADI Effect on Process-Oriented Motivation  

 Our second conclusion is ADI’s effect on students’ process-oriented motivation is not 

evident due to the lack of a significant difference in process-oriented motivation during this study. 

The Mann-Whitney U test was utilized to compare control and experimental group normalized 

gain scores for a significant difference. Test results suggest that despite ADI implementation, both 

groups still have a similar change in their process-oriented motivation. Therefore, it is apparent 

that ADI did not result in a significant change in the experimental group’s motivation for all three 

factors. ADI did however employ a significant effect on students’ intrinsic motivation, which 

meant that students in the experimental group were more motivated in the ADI lab versus a 

traditional lab. Despite this result, the Framework for K-12 Science Education’s strategies may not 

be effective at motivating students to learn science. Outcome-focused motivation mediation path 

analysis results reveal that ADI affected experimental group lab report scores. Such a finding is 

present in the means-focused motivation path analysis as well. ADI has not shown substantial 

evidence to motivate students, but ADI affects students’ comprehension of the SEPs.  

Process-Oriented Motivation Effect on Experimental Group’s Lab Reports 

 Our last conclusion is none of the three motivation factors for the revised POMI possess a 

significant influence on how the experimental group students score on their lab report. Outcome-

focused and means-focused motivation path analyses had a significant path for ADI to Score. An 

unexpected finding, but a result that suggests the Framework for K-12 Science Education initiates 

an impact on student learning, more specifically their ability to utilize the SEPs to communicate 

evidence. ADI implementation resulted in on-level students scoring significantly higher than the 
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control group, which suggests that ADI impacted student’s comprehension of the SEP. Drawing 

this conclusion is a direct connection to the ADI rubric that measured student comprehension of 

four of the eight SEPs. A higher lab report score quantifies to better comprehension of at least one 

of the four SEPs. Furthermore, this can be attributed to the peer-review session experienced by the 

experimental group. The ADI peer-review is manifestation of Science and Engineering Practice 

number eight in a lab high school setting: obtain, evaluate, communicate information. Thus, the 

evolution of obtaining, evaluating, and communicating information is evident in writing a lab 

report and application of feedback that preceded an improved lab report score. In contrast, intrinsic 

motivation mediation path analysis had only one significant path, ADI to Intrinsic. Experimental 

group students had significantly more intrinsic motivation than the control group. Additionally, it 

is evident that ADI implementation had a substantial effect on on-level students’ intrinsic 

motivation.  ADI influenced students to become more motivated about science, which was 

quantified by a significant difference for the ADI to Intrinsic path (Grooms & Enderle, 2015). In 

conclusion, ADI does not significantly affect student achievement via outcome-focused, intrinsic, 

or means-focused motivation. Therefore, it can be concluded each revised POMI motivation factor 

was not effective in mediating a relationship between ADI implementation and lab report score. 

In other words, each significant difference that occurred between ADI and Score, outcome-focused 

motivation and means-focused motivation, cannot be attributed to students’ process-oriented 

motivation.  

Limitations of the Study 

Sample Size 

 The appropriate sample size necessary to correctly analyze and draw a conclusion for the 

data resulted in an experimental and control group of different rigors of chemistry class. Ideally, 
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all students would have had a similar rigor to avoid adding an unnecessary variable to this study.  

However, since the participant number to perform normalized gain test, confirmatory analysis, and 

similar statistics was less than 300 students, it was necessary to join both honors chemistry and 

on-level chemistry students. Thus, an insufficient amount of honors chemistry and on-level 

chemistry students was a limitation of this study that may have had an influence on results of the 

statistical analysis of both groups. Additionally, the second CFA run before Goal 2 had less than 

200 students due to validation items removing unqualified participants. Therefore, CFA results 

cannot be utilized as absolute but mere suggestion on the model fit.  

Novelty of Means-Focused Motivation Factor 

 Amongst the three main motivation factors, means-focused was the only factor that has 

not been used in any instrument. The factor was introduced by Touré and Tillery (2014) but has 

not been implemented to measure participant motivation. Despite the novelty of means-focused 

motivation, this study seeks to further research on this factor. With more research, means-focused 

motivation could find its niche in the science-education community and will be modified to 

measure motivation in several subject areas. Nevertheless, the lack of prior research or literature 

on means-focused motivation and process-oriented motivation was a limitation that prohibits the 

researcher from assumptions and hypothesis about the correct utilization of how to measure 

process-oriented motivation in an instrument. Finally, the lack of process-oriented motivation 

literature removed the opportunity to compare revised POMI with similar instruments.  

Researcher Bias 

Honors and on-level chemistry students were lost to sampling bias, which influenced the 

demographics of the sample in this study (Smith & Noble, 2019). These students were removed 

for one of two reasons: lack of participation in any survey administration or the failure to complete 
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their lab report. The selection of ADI as the independent variable presented intervention and 

experience bias within this study. Although ADI satisfied the need for a lab with alignment with 

the current framework, bias existed in the fact that this strategy is modeled at the researcher’s 

district. Furthermore, positive experience bias existed with the experimental group that utilized 

ADI labs in their classrooms for four years. Such bias is positive since comfort within that group 

of teachers was present to execute ADI within their classrooms versus inexperienced teachers who 

had never utilized this strategy in their locale. Bias also existed from the Framework for K-12 

Science Education. Research bias from the framework was apparent in the initiative to motivate 

students to pursue careers in science, engineering, and technology.  

Implications for Practice  

      During this study, the revised POMI survey demonstrated valid and reliable data in a high 

school chemistry setting. This instrument is of paramount importance to the science community 

due to its ability to measure how students are motivated by the process or practice to complete 

science, SEPs. Means-focused motivation, novel POMI factor, embeds seven out of eight SEPs in 

each item, resulting in a measurement of how scientific practices motivate students to learn 

chemistry content. Moreover, the revised POMI can assess how effective strategies are at 

motivating students, especially those aligned with the new Framework. According to Ryan and 

Deci (2000), students performed better in science after their motivation increased. Thus, the 

revised POMI can simply help teachers and administrators comprehend which strategies are 

effectively motivating students. Like this study, some strategies may not motivate students, but 

lead to stronger understanding. Nonetheless, educators need to be able to identify strategies and 

practices that empower students learning, which is measured via summative assessments.   
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In this study, a definitive model was not specified until completion. The revised POMI, Model 

2d, is more effective since it is shorter, and evidenced to be the most valid and reliable POMI 

model. A simple comparison of the CFA’s goodness-of-fit statistics for the original Model 2c 

versus the final Model 2d is a strong indication that Model 2d had more valid data. Such a result 

can lead to students providing evidence that is more concise on their process-oriented motivation. 

Future teacher use would provide definitive findings with the assurance that the revised POMI data 

has demonstrated validity and reliability in various K-12 public school settings. This is especially 

true at the researcher’s locale where all chemistry students were administered the original and 

revised POMI. 

Argument-Driven Inquiry utilizes four SEP’s from the Framework for K-12 Science 

Education, which aligns with the current curriculum in Georgia (Grooms & Enderle, 2015). 

Teachers that currently utilize this lab instruction hold a confirmation with this study’s lab results. 

Moreover, teachers that do use other strategies should consider utilizing ADI or aspects of ADI in 

their classroom. ADI completion takes approximately five days, which may not be feasible based 

on many school variables. Aspects of ADI such as peer-review, argumentation, procedure creation 

from a driving question can assist with student understanding via the SEPs (Grooms & Enderle, 

2015).  ADI may only intrinsically motivate students in a substantial manner, while improving 

student’s ability to effectively communicate their evidence to their peers and their teacher. This 

ability can lead to high lab report scores as evidenced in this study’s mediation path analysis for 

both outcome-focused and means-focused motivation.  

Recommendations for Future Research  

Strategies that are aligned with the current curriculum, like ADI, should be measured by 

revised POMI to quantify change in student motivation. Multiple studies would generate a few 
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narratives: the revised POMI does not effectively measure student motivation, strategies 

effectively motivate students toward learning science, or strategies improve student achievement. 

Additional literature would provide additional evidence to assist teachers to utilize strategies that 

help students. In addition, this would provide fuel to educators to perform professional 

development on effective strategies in science as well.  

  The revised POMI can find utilization for all science courses due to its ability to easily 

adapt. One revised POMI item states “I like to use evidence in my explanation to support a claim 

that I have in this chemistry class”. This item can be adapted to “I like to use evidence in my 

explanation to support a claim that I have in this biology class” by switching chemistry to biology. 

Adaptation in items are imperative to enable multiple uses.  SMQ and SMQ-II are two instruments 

by Glynn (2009 & 2011) that are utilized in chemistry, biology and physic since the items are 

easily adapted. Therefore, most high school science courses are taken for the first time in K-12 

education, which enables this adaption to measure students’ motivation in multiple courses. The 

revised POMI can also be utilized for future research that will add to the science literature catalog.  

  Predictive validity was not evident with the revised POMI, means-focused motivation, 

and student achievement, lab report scores, but the revised POMI has future potential to predict 

student’s performance in a course. Enrollment in AP courses usually utilize, PSAT scores, to help 

predict student’s success in their AP course. PSAT scores could be the borderline score that may 

allow student to take an AP course if other metrics are borderline. However, means-focused 

motivation helps facilitate students’ interest and curiosity in the SEPs at the highest-level of 

understanding. Methods to test future predictive validity could be an AP Biology administering 

the revised POMI and executing predictive validity for all students at the beginning of the course. 

A Spearman or Pearson correlation for predictive validity could be examined between the means-
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focused motivation score and students’ final grade and AP score, respectively. A significant 

difference would suggest that means-focused motivation can predict student performance in an 

Advanced Placement science course. If predictive validity is found with these methods, the means-

focused motivation could spread to be utilized on a science department basis at the researcher’s 

locale and further spread to other schools.  
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Appendices 

Appendix A: VIEWS ABOUT SCIENTIFIC INQUIRY 

Views about Scientific Inquiry (VASI) 
  
The following questions are asking for your views related to science and scientific investigations. There are no right 
or wrong answers.  
  
Please answer each of the following questions. You can use all the space provided to answer a question and continue 
on the back of the pages if necessary.  
  

1. A person interested in birds looked at hundreds of different types of birds who eat different types of food. 
He noticed that birds who eat similar types of food, tended to have similar shaped beaks. For example, birds 
that eat hard-shelled nuts have short, strong beaks, and birds who eat insects have long, slim beaks. He 
wondered if the shape of a bird’s beak was related to the type of food the bird eats and he began to collect 
data to answer that question. He concluded that there is a relationship between beak shape and the type of 
food birds eat.  

  
a. Do you consider this person’s investigation to be scientific? Please explain why or why not.  

  
b. Do you consider this person's investigation to be an experiment? Please explain why or why not.  

 
c. Do you think that scientific investigations can follow more than one method?  

If no, please explain why there is only one way to conduct a scientific investigation.   
If yes, please describe two investigations that follow different methods, and explain how 
the methods differ and how they can still be considered scientific.   
 

2. Two students are asked if scientific investigations must always begin with a scientific question. One of the 
students says “yes” while the other says “no”. Whom do you agree with and why?  
 

3. (a) If several scientists ask the same question and follow the same procedures to collect data, will they 
necessarily come to the same conclusions? Explain why or why not.   

 
(b) If several scientists ask the same question and follow different procedures to collect data, will they 
necessarily come to the same conclusions? Explain why or why not.   

  
4. Please explain if “data” and “evidence” are different from one another.  

    
5. Two teams of scientists are walking to their lab one day and they saw a car pulled over with a flat tire. They 

all wondered, “Are certain brands of tires more likely to get a flat?”    
  

Team A went back to the lab and tested various tires’ performance on one type of road surfaces.   
  

Team B went back to the lab and tested one tire brand on three types of road surfaces.  
  

Explain why one team’s procedure is better than the other one.  

  
6. The data table below shows the relationship between plant growth in a week and the number of minutes of 

light received each day.  
Minutes of light each day  Plant growth-height (cm per week)  

0  25  
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5  20  

10  15  

15  5  

20  10  

25  0  

  
Given this data, explain which one of the following conclusions you agree with and why.  

    
Please circle one:  

  
a) Plants grow taller with more sunlight.  

  
b) Plants grow taller with less sunlight.  

  
c) The growth of plants is unrelated to sunlight.  

  
Please explain your choice of a, b, or c below:  

   
7. The fossilized bones of a dinosaur have been found by a group of scientists. Two different arrangements for 

the skeleton are developed as shown below.    

 Figure 1                              
Figure 2      
  

a) Describe at least two reasons why you think most of the scientists agree that the animal in figure 1 
had the best sorting and positioning of the bones?    

  
b) Thinking about your answer to the question above, what types of information do scientists use to 

explain their conclusions?  
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Appendix B: THE PROCESS-ORIENTED MOTIVATION INSTRUMENT 

 

Please complete the following information about yourself 

o First Name (1) ________________________________________________ 

o Last Name (2) ________________________________________________ 

Who is your chemistry teacher this semester? 

o Prelac (1)  

o Bishop (2)  

o Lau (3)  

o Wisdom (4)  

o Harhay (5) 
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Strongly Disagree 
(1) 

Disagree (2) Agree (3) Strongly Agree (4) 

I find the topics 
discussed in this 
chemistry class 
interesting. (1)  

o  o  o  o  
I enjoy this 
chemistry class 
more when I get to 
research problems. 
(24)  

o  o  o  o  
I enjoy this 
chemistry class 
more when I use 
figures to make 
sense of the topics 
in this chemistry 
class. (3)  

o  o  o  o  

I like this chemistry 
class because it’s 
fun. (4)  o  o  o  o  
I like to use 
evidence in my 
explanation to 
support a claim that 
I have made in this 
chemistry class. (5)  

o  o  o  o  

I enjoy completing 
assignments for this 
chemistry class 
because they are 
exciting. (7)  

o  o  o  o  
I enjoy this 
chemistry class 
more when I get to 
plan and carry out 
investigations. (8)  

o  o  o  o  
I enjoy laboratories 
in this chemistry 
class when they 
allow me to ask 
questions about the 
system being 
studied. (9)  

o  o  o  o  

I attend this 
chemistry class only 
because I am 
supposed to do so. 
(10)  

o  o  o  o  
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I enjoy this 
chemistry class 
more when I get to 
analyze and 
interpret data. (12)  

o  o  o  o  

I attend this class 
because without 
taking chemistry I 
would not find a 
high-paying job 
later on. (13)  

o  o  o  o  

 
 
End of Block: Default Question Block 
 
Start of Block: Block 1 
Page Break  
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Strongly Disagree 
(1) 

Disagree (2) Agree (3) Strongly Agree (4) 

I enjoy this 
chemistry class 
more when I get to 
use math and 
computational 
thinking such as 
math expressions 
and computer 
simulations. (2)  

o  o  o  o  

I am only motivated 
in this chemistry 
class because we get 
grades. (4)  

o  o  o  o  
I enjoy computer 
simulations that 
help me understand, 
predict, and explain 
concepts in this 
chemistry class. (5)  

o  o  o  o  

I enjoy this 
chemistry class 
more when I get to 
construct 
explanations about a 
concept. (6)  

o  o  o  o  

I enjoy creating 
supporting 
arguments for my 
understanding of the 
concepts addressed 
by labs in this 
chemistry class. (7)  

o  o  o  o  

I took this chemistry 
class because it will 
look good on my 
high school 
transcript. (8)  

o  o  o  o  

I enjoy this 
chemistry class 
more when I get to 
engage in arguments 
based on scientific 
evidence. (9)  

o  o  o  o  
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I like 
communicating my 
results after I have 
completed an 
experiment in this 
chemistry class. (10)  

o  o  o  o  

I enjoy this class 
because I am highly 
interested in doing 
chemistry. (11)  

o  o  o  o  
I am strongly 
motivated by the 
recognition I can 
earn from other 
people in this 
chemistry class. (12)  

o  o  o  o  

I enjoy completing 
experiments in this 
chemistry class 
since they allow me 
to investigate 
different problems 
with my classmates. 
(13)  

o  o  o  o  

Once I have 
collected data from 
a chemistry 
experiment, I like to 
search for patterns 
and trends in the 
data. (24)  

o  o  o  o  

I am strongly 
motivated to 
participate in this 
chemistry class 
when the teacher 
pays attention to 
me. (25)  

o  o  o  o  

I enjoy this 
chemistry class 
more when I get the 
opportunity to 
communicate my 
lab results. (26)  

o  o  o  o  

 
 
End of Block: Block 1 
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Appendix C: CONTENT EXPERT VALIDATION SURVEY FOR ORIGINAL POMI 

 
Consent Form for the Process-Oriented Motivation Instrument Content Validation Survey 

My signature below indicates that I have read the information provided and have decided to participate in the 
content validation for the study titled “Measuring the Effect of Argument-Driven Inquiry on High School Chemistry 
Students’ Process-Oriented Motivation utilizing the Newly Developed Valid and Reliable Process Oriented 
Motivation Instrument”. I understand the purpose of this survey will be to assist with content validity for the 
Process-Oriented Motivation Instrument to ensure that its content is appropriate and valid for a high school 
chemistry classroom.        
 
Sample Instructions: Thanks again for agreeing to participate in our expert review of the items on the Process-
Oriented Motivation Instrument that we are developing. Below is a description of the larger research project, the 
construct definitions, and then a list of questions about each of the items on the survey. Please begin by familiarizing 
yourself with this background information and the construct definitions, and then review the specific instructions for 
completing the content validation. 
 
Research project: The Framework for K-12 Science Education’s prime goal is to motivate students in the science 
classroom with standards that utilize science and engineering practices (SEP’s) that prepare students for science 
careers (NRC, 2012).  The requirement to motivate students, and reform that empowers such motivation, has been 
established; however, an appropriate instrument is needed to measure any change in the degree of motivation that 
results from new science framework.  Therefore, the purpose of this study is to develop the novel Process-Oriented 
Motivation Instrument (POMI) which will be validated and deemed reliable for a high school chemistry 
student.  Once the instrument has been constructed, the survey will be given before and after a unit taught using 
argument-driven inquiry, a pedagogy that supports that Framework. Anticipated in findings of this study will aid in 
confirming that teaching using methods supported by the Framework do in fact improve student’s motivation 
towards learning science.  
 
Construct definitions:  Process-Oriented Motivation has three constructs that is focused on the process of goal 
attainment.  A goal must have a definitive beginning and end state (Touré-Tillery & Fishbach, 2014). 
a) Outcome-Focused Motivation is driven by the reward or outcome of goal completion, but extrinsic motivation 

is driven by the reward of task completion (Touré-Tillery & Fishbach, 2014).   
b) Intrinsic motivation (process-oriented) will be correlated with enjoyment and interest during the process of goal 

pursuit (Tillery & Fishbach, 2014). A significant difference between intrinsic motivation (process-oriented 
motivation) and current literature’s intrinsic motivation is the attainment of a goal versus fulfillment of a task 
(Touré-Tillery & Fishbach, 2014).  

c) Means-focus motivation is a novel construct that utilizes proper means during goal pursuit; proper means are 
how actions are performed in terms of adherence to rules, principles, and self-set standards (Tillery & Fishbach, 
2014). What means were endured during the process of goal pursuit?      There are no known risks or anticipated 
discomforts that have been identified by this research protocol.       

 
This study will be guided by the following research questions:   
1. How does the data from the Process-Oriented Motivation Instrument establish appropriate validity for high 

school chemistry students?   
1a.  What is the relationship between a student’s Views about Scientific Inquiry and the degree to which they are 

motivated by scientific processes? 
2. What is Argument-Driven Inquiry’s effect on high school chemistry students’ process-oriented motivation? 
3. What is the mediation effect of process-oriented motivation and relationship between argument-driven inquiry 

and student achievement?      
 
Participants personal information will be kept confidential in this survey.  All participant data will be deidentified 
with a code that does not include the participant's name.  For this online survey, Internet Protocol addresses WILL 
NOT be collected.  Results from this survey will only be used to improve the survey and will not be included in the 
dissertation.   Such results will be the overall potential benefit of this survey. Participation in this survey is voluntary 
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and will be pulled from consideration for the analysis of this instrument if I decide to withdraw permission after the 
survey is completed via email to Martel Wisdom or Dr. Michelle Head.       
 
If further information is needed regarding this survey, I can contact Martel Wisdom or Dr. Michelle Head at the 
following emails:  wisdomm@fultonschools.org or mhead24@kennesaw.edu.   Research at Kennesaw State 
University that involves human participants is carried out under the oversight of an Institutional Review 
Board.  Address questions or problems regarding these activities to the Institutional Review Board, Kennesaw State 
University, 585 Cobb Avenue, KH3417, Kennesaw, GA 30144-5591, (470) 578-6407. 
 

Participant Consent 

o I agree and give my consent to participate in this research project. I understand that participation is voluntary 
and that I may withdraw my consent at any time without penalty.  (1)  

o I do not agree to participate and will be excluded from the remainder of the questions (2)  
 
In this section, we would like to know how comprehensible each item is for our anticipated respondent population. 
Select how understandable each of the following items is by using the scales below. If you have ideas for how to 
clarify the meaning of an item, please note your thoughts beneath each item via suggestions.   
 
Each item below will be ranked by the participants on a 5-Point Likert Scale.  The five-point Likert scale will be as 
follows:  a. Always b. Most of the time c. About half the time  d. Sometimes e. Never 
 
Item 1 - I like what we learn in this chemistry class, because it is interesting.     

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 1  ________________________________________________________________ 
 
 Item 2 - I enjoy this chemistry class more when I get to ask questions and research problems. 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 2  _______________________________________________________________ 
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 Item 3 - I like developing a model, either as a picture or mathematical equation in this chemistry class.  

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 3 _________________________________________________________________ 
 
 Item 4 - I like this chemistry class, because it’s fun. 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 

Suggestions for Item 4  ________________________________________________________________ 
 
 Item 5 - I enjoy this chemistry class more when I get to develop and use models such as diagrams, drawings, computer 
simulations or mathematical equations.  

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
Suggestions for Item 5  ________________________________________________________________ 



144 
 

 

 
 Item 6 - I like to use evidence in my explanation to support a claim that has been made in this chemistry class.  

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
Suggestions for Item 6  ________________________________________________________________ 
 
 Item 7 - I enjoy doing activities in this chemistry class, because they are exciting. 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 7 ________________________________________________________________ 
 
 Item 8 - I enjoy this chemistry class more when I get to plan and carry out investigations. 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 8 

________________________________________________________________ 
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Item 9 -   I find this class interesting, because I enjoy doing chemistry 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 9 ________________________________________________________________ 
 
 Item 10 - I enjoy laboratories in this chemistry class when they allow me to ask questions about the system being 
studied. 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestion for Item 10 ________________________________________________________________ 
 
 Item 11 - I attend this chemistry class, because I am supposed to do so. 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestion for Item 11 ________________________________________________________________ 
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Item 12 - I enjoy this chemistry class more when I get to analyze and interpret data. 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 12 ________________________________________________________________ 
 
 Item 13 - I attend this class, because without taking chemistry I would not find a high-paying job later on.  

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 13________________________________________________________________ 
 
 Item 14 - I enjoy this chemistry class more when I get to use math and computational thinking such as math 
expressions and computer simulations.  

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestion for Item 14  ________________________________________________________________ 
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 Item 15 - I am only motivated in this chemistry class, because we get grades. 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 15 ________________________________________________________________ 
 
 Item 16 - I enjoy computer simulations that help me understand, predict, and explain concepts in this chemistry class 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 16  ________________________________________________________________ 
 
 Item 17 - I enjoy this chemistry class more when I get to construct explanations about a concept.  

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 17 ________________________________________________________________ 
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 Item 18 - I enjoy engaging in arguments for the understanding of the concepts addressed by labs in this chemistry 
class 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 18 ________________________________________________________________ 
 
 Item 19 - I took this chemistry class because it will look good on my high school transcript. 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
 Suggestions for Item 19 ________________________________________________________________ 
 
 Item 20 - I enjoy this chemistry class more when I get to engage in arguments from scientific evidence.  

o Not at all understandable (6)  

o Slightly understandable (7)  

o Somewhat understandable (8)  

o Quite understandable (9)  

o Extremely understandable (10)  
 
Q88 Suggestions for Item 20 ________________________________________________________________ 
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Q87 Item 21 - I like collecting data from chemistry experiments in this class and communicating my results after I 
have completed the experiment.  

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
Q89 Suggestions for Item 21 ________________________________________________________________ 
 
Q86 Item 22 - I enjoy this class, because I am highly interested in doing chemistry.     

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
Q90 Suggestions for Item 22________________________________________________________________ 
 
Q85 Item 23 -   I am strongly motivated by the recognition I can earn from other people in this chemistry class. 

o Not at all understandable (4)  

o Slightly understandable (5)  

o Somewhat understandable (6)  

o Quite understandable (7)  

o Extremely understandable (8)  
 
Q91 Suggestions for Item 23________________________________________________________________ 
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Q71 Item 24 - I enjoy completing experiments in this chemistry class since they allow me to investigate different 
problems with my classmates.  

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
Q92 Suggestions for Item 24 ________________________________________________________________ 

 
Q72 Item 25 - Once I have collected data from a chemistry experiment, I like to search for patterns and trends in the 
data   

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
Q93 Suggestions for Item 25________________________________________________________________ 
 
Q73 Item 26 - I participate in this chemistry class so that the teacher pays attention to me. 

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
Q94 Suggestions for Item 26________________________________________________________________ 
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Q74 Item 27 - I enjoy this chemistry class more when I get the opportunity to communicate my lab results.   

o Not at all understandable (1)  

o Slightly understandable (2)  

o Somewhat understandable (3)  

o Quite understandable (4)  

o Extremely understandable (5)  
 
Q95 Suggestions for Item 27________________________________________________________________ 
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In this section, we would like your help to anticipate which of our items will produce an adequate range of means. 
Please select what you think the average (mean) response for each item will be given from our audience (Ages 15 and 
16). 
 
Item 1 - I like what we learn in this chemistry class, because it is interesting. 

o Always (13)  

o Most of the time (14)  

o About half the time (15)  

o Sometimes (16)  

o Never (17)  
 
 Item 2 - I enjoy this chemistry class more when I get to ask questions and research problems. 

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
 Item 3 - I like developing a model, either as a picture or mathematical equation in this chemistry class 

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
 Item 4 - I like this chemistry class, because it’s fun. 

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
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 Item 5 - I enjoy this chemistry class more when I get to develop and use models such as diagrams, drawings, computer 
simulations or mathematical equations.  

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
 Item 6 - I like to use evidence in my explanation to support a claim that has been made in this chemistry class.  

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
 Item 7 - I enjoy doing activities in this chemistry class, because they are exciting. 

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
 Item 8 - I enjoy this chemistry class more when I get to plan and carry out investigations. 

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
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 Item 9 - I find this class interesting, because I enjoy doing chemistry 

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
 Item 10 - I enjoy laboratories in this chemistry class when they allow me to ask questions about the system being 
studied. 

o Always (13)  

o Most of the time (14)  

o About half the time (15)  

o Sometimes (16)  

o Never (17)  
 
Item 11 - I attend this chemistry class, because I am supposed to do so. 

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
 Item 12 - I enjoy this chemistry class more when I get to analyze and interpret data.  

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
  



155 
 

 

 Item 13 - I attend this class, because without taking chemistry I would not find a high-paying job later on.  

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
 Item 14 - I enjoy this chemistry class more when I get to use math and computational thinking such as math 
expressions and computer simulations.  

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
 Item 15 - I am only motivated in this chemistry class, because we get grades.  

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometime (4)  

o Never (5)  
 
 Item 16 - I enjoy computer simulations that help me understand, predict, and explain concepts in this chemistry class 

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
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Item 17 - I enjoy this chemistry class more when I get to construct explanations about a concept.  

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 

 Item 18 - I enjoy engaging in arguments for the understanding of the concepts addressed by labs in this chemistry 
class 

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
 Item 19 - I took this chemistry class because it will look good on my high school transcript. 

o Always (1)  

o Most of the time (2)  

o About half the time (3)  

o Sometimes (4)  

o Never (5)  
 
Q97 Item 20 - I enjoy this chemistry class more when I get to engage in arguments from scientific evidence.  

o Always (11)  

o Most of the time (12)  

o About half the time (13)  

o Sometimes (14)  

o Never (15)  
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Q98 Item 21 - I like collecting data from chemistry experiments in this class and communicating my results after I 
have completed the experiment.  

o Always (18)  

o Most of the time (19)  

o About half the time (20)  

o Sometimes (21)  

o Never (22)  
 
Q99 Item 22 - I enjoy this class, because I am highly interested in doing chemistry.     

o Always (13)  

o Most of the time (14)  

o About half the time (15)  

o Sometimes (16)  

o Never (17)  
 
Q100 Item 23 - I am strongly motivated by the recognition I can earn from other people in this chemistry class. 

o Always (13)  

o Most of the time (14)  

o About half the time (15)  

o Sometimes (16)  

o Never (17)  
 

Q101 Item 24 - I enjoy completing experiments in this chemistry class since they allow me to investigate different 
problems with my classmates.  

o Always (13)  

o Most of the time (14)  

o About half the time (15)  

o Sometimes (16)  

o Never (17)  
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Q102 Item 25 - Once I have collected data from a chemistry experiment, I like to search for patterns and trends in the 
data 

o Always (13)  

o Most of the time (14)  

o About half the time (15)  

o Sometimes (16)  

o Never (17)  
 
Q103 Item 26 - I participate in this chemistry class so that the teacher pays attention to me.  

o Always (13)  

o Most of the time (14)  

o About half the time (15)  

o Sometimes (16)  

o Never (17)  
 
Q104 Item 27 - I enjoy this chemistry class more when I get the opportunity to communicate my lab results.   

o Always (18)  

o Most of the time (19)  

o About half the time (20)  

o Sometimes (21)  

o Never (22)  
 
Q1 Please group each item in the following boxes based on the constructs they are related to and if the item is 
unrelated place item in the other box. Below are the definitions for each category/construct. 
a. Outcome-Focused Motivation is driven by the reward or outcome of goal completion, but extrinsic motivation 

is driven by the reward of task completion (Touré-Tillery & Fishbach, 2014).  
b. Intrinsic motivation (process-oriented) will be correlated with enjoyment and interest during the process of goal 

pursuit (Tillery & Fishbach, 2014). A significant difference between intrinsic motivation (process-oriented 
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motivation) and current literature’s intrinsic motivation is the attainment of a goal versus fulfillment of a task 
(Touré-Tillery & Fishbach, 2014).  
 

c. Means-focus motivation is a novel construct that utilizes proper means during goal pursuit; proper means are 
how actions are performed in terms of adherence to rules, principles, and self-set standards (Tillery & Fishbach, 
2014). What means were endured during the process of goal pursuit? 
 

 
Intrinsic Motivation 
(Process-Oriented) 

Outcome-Focused 
Motivation 

Means-Focused 
Motivation 

Other 

______ I like what we 
learn in this chemistry 
class, because it is 
interesting. (1) 

   

______ I enjoy this 
chemistry class more 
when I get to ask 
questions and research 
problems. (2) 

   

______ I like developing 
a model, either as a 
picture or mathematical 
equation in this chemistry 
class. (3) 

   

______ I like this 
chemistry class, because 
it’s fun. (4) 

   

______ I enjoy this 
chemistry class more 
when I get to develop and 
use models such as 
diagrams, drawings, 
computer simulations or 
mathematical equations. 
(5) 

   

______ I like to use 
evidence in my 
explanation to support a 
claim that has been made 
in this chemistry class. (6) 

   

______ I enjoy doing 
activities in this chemistry 
class, because they are 
exciting. (7) 

   

______ I enjoy this 
chemistry class more 
when I get to plan and 
carry out investigations. 
(8) 
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______ I find this class 
interesting, because I 
enjoy doing chemistry (9) 

   

______ I enjoy 
laboratories in this 
chemistry class when they 
allow me to ask questions 
about the system being 
studied. (10) 

   

______ I attend this 
chemistry class, because I 
am supposed to do so. 
(11) 

   

______ I enjoy this 
chemistry class more 
when I get to analyze and 
interpret data. (12) 

   

______ I attend this class, 
because without taking 
chemistry I would not 
find a high-paying job 
later on. (13) 

   

______ I enjoy this 
chemistry class more 
when I get to use math 
and computational 
thinking such as math 
expressions and computer 
simulations. (14) 

   

______ I am only 
motivated in this 
chemistry class, because 
we get grades. (15) 

   

______ I enjoy computer 
simulations that help me 
understand, predict, and 
explain concepts in this 
chemistry class (16) 

   

______ I enjoy this 
chemistry class more 
when I get to construct 
explanations about a 
concept. (18) 

   

______ I took this 
chemistry class because it 
will look good on my 
high school transcript. 
(19) 
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______ I enjoy this 
chemistry class more 
when I get to engage in 
arguments from scientific 
evidence. (20) 

   

______ I like collecting 
data from chemistry 
experiments in this class 
and communicating my 
results after I have 
completed the 
experiment. (21) 

   

______ I enjoy this class, 
because I am highly 
interested in doing 
chemistry. (22) 

   

______ I am strongly 
motivated by the 
recognition I can earn 
from other people in this 
chemistry class. (23) 

   

______ I enjoy 
completing experiments 
in this chemistry class 
since they allow me to 
investigate different 
problems with my 
classmates. (24) 

   

______ Once I have 
collected data from a 
chemistry experiment, I 
like to search for patterns 
and trends in the data (25) 

   

______ I participate in 
this chemistry class so 
that the teacher pays 
attention to me. (26) 

   

______ I enjoy this 
chemistry class more 
when I get the opportunity 
to communicate my lab 
results. (27) 

   

______ I enjoy engaging 
in arguments for the 
understanding of the 
concepts addressed by 
labs in this chemistry 
class (28) 
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Q2 Please explain any items placed in the other category. Please write the item number and the comment justifying 
other placement and press enter for the next submission within this text box.  

________________________________________________________________ 
________________________________________________________________ 
________________________________________________________________ 
________________________________________________________________ 
________________________________________________________________ 

 
 
Q3 Please think about all the items for a moment. We hope this survey scale fairly represents the entire process-
oriented motivation dimension.  Please indicate below any aspects or characteristics that you feel are important parts 
of the Process-Oriented Motivation Instrument which are not represented or are inadequately represented by this 
survey scale.   

________________________________________________________________ 
________________________________________________________________ 
________________________________________________________________ 
________________________________________________________________ 
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Appendix D: THE PROCESS-ORIENTED MOTIVATION INSTRUMENT POST-

SURVEY WITH VALIDATION ITEMS 

 
Q25 Please complete the following information about yourself 

o First Name (1) ________________________________________________ 

o Last Name (2) ________________________________________________ 
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Q26 Who is your chemistry teacher this semester? 

o Prelac (1)  

o Bishop (2)  

o Lau (3)  

o Wisdom (4)  

o Harhay (5)  
 

Q22 Please rate each of the following items regarding your motivation towards learning in your current chemistry 
course.    
 

 
Strongly Disagree 
(1) 

Disagree (2) Agree (3) Strongly Agree (4) 

I find the topics 
discussed in this 
chemistry class 
interesting. (1)  

o  o  o  o  
Select disagree for 
this statement (8)  o  o  o  o  
I enjoy this 
chemistry class 
more when I get to 
research problems. 
(24)  

o  o  o  o  

I enjoy this 
chemistry class 
more when I use 
figures to make 
sense of the topics 
in this chemistry 
class. (3)  

o  o  o  o  

I like this chemistry 
class because it’s 
fun. (4)  o  o  o  o  
I like to use 
evidence in my 
explanation to 
support a claim that 
I have made in this 
chemistry class. (5)  

o  o  o  o  

I enjoy completing 
assignments for this 
chemistry class 
because they are 
exciting. (7)  

o  o  o  o  
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Strongly Disagree 
(1) 

Disagree (2) Agree (3) Strongly Agree (4) 

I enjoy this 
chemistry class 
more when I get to 
plan and carry out 
investigations. (1)  

o  o  o  o  

I enjoy laboratories 
in this chemistry 
class when they 
allow me to ask 
questions about the 
system being 
studied. (24)  

o  o  o  o  

I attend this 
chemistry class only 
because I am 
supposed to do so. 
(3)  

o  o  o  o  

Select agree for this 
statement (8)  o  o  o  o  
I enjoy this 
chemistry class 
more when I get to 
analyze and 
interpret data. (4)  

o  o  o  o  

I attend this class 
because without 
taking chemistry I 
would not find a 
high-paying job 
later on. (5)  

o  o  o  o  

I enjoy this 
chemistry class 
more when I get to 
use math and 
computational 
thinking such as 
math expressions 
and computer 
simulations (7)  

o  o  o  o  
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Strongly Disagree 
(1) 

Disagree (2) Agree (3) Strongly Agree (4) 

I am only motivated 
in this chemistry 
class because we get 
grades. (1)  

o  o  o  o  
I enjoy computer 
simulations that 
help me understand, 
predict, and explain 
concepts in this 
chemistry class. 
(24)  

o  o  o  o  

I enjoy this 
chemistry class 
more when I get to 
construct 
explanations about a 
concept. (3)  

o  o  o  o  

I enjoy creating 
supporting 
arguments for my 
understanding of the 
concepts addressed 
by lab in this 
chemistry class (4)  

o  o  o  o  

I took this chemistry 
class because it will 
look good on my 
high school 
transcript. (5)  

o  o  o  o  
I enjoy this 
chemistry class 
more when I get to 
engage in arguments 
based on scientific 
evidence. (7)  

o  o  o  o  

Select disagree for 
this statement (25)  o  o  o  o  
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Strongly Disagree 
(1) 

Disagree (2) Agree (3) Strongly Agree (4) 

I like 
communicating my 
results after I have 
completed an 
experiment in this 
chemistry class. (1)  

o  o  o  o  

I enjoy this class 
because I am highly 
interested in doing 
chemistry. (24)  

o  o  o  o  
I am strongly 
motivated by the 
recognition I can 
earn from other 
people in this 
chemistry class. (4)  

o  o  o  o  

Select agree for this 
statement (25)  o  o  o  o  
I enjoy completing 
experiments in this 
chemistry class 
since they allow me 
to investigate 
different problems 
with my classmates. 
(5)  

o  o  o  o  

Once I have 
collected data from 
a chemistry 
experiment, I like to 
search for patterns 
and trends in the 
data. (7)  

o  o  o  o  

I am strongly 
motivated to 
participate in this 
chemistry class 
when the teacher 
pays attention to 
me. (27)  

o  o  o  o  

I enjoy this 
chemistry class 
more when I get the 
opportunity to 
communicate my 
lab results. (28)  

o  o  o  o  
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Appendix E: KENNESAW STATE UNIVERSITY IRB APPROVAL 

5/16/2019  

Martel Wisdom, Student  

Secondary and Middle Grades  

  

RE: Your follow-up submission of 5/16/2019, Study #19-542: Measuring the Effect of 
Argument-Driven Inquiry on High School Chemistry Students' Process-Oriented Motivation 
utilizing the Newly Developed Valid and Reliable Process Oriented Motivation Instrument   

  

Hello Mr. Wisdom,  

Your application for the new study listed above has been administratively reviewed. This study 
qualifies as exempt from continuing review under DHHS (OHRP) Title 45 CFR Part 
46.101(b)(2) - Educational tests, surveys, interviews, observations of public behavior. The 
consent procedures described in your application are in effect. You are free to conduct your 
study.  

NOTE: All surveys, recruitment flyers/emails, and consent forms must include the IRB study 
number noted above, prominently displayed on the first page of all materials.  

 

Please note that all proposed revisions to an exempt study require submission of a Progress 
Report and IRB review prior to implementation to ensure that the study continues to fall within 
an exempted category of research. A copy of revised documents with a description of planned 
changes should be submitted to irb@kennesaw.edu for review and approval by the  

IRB.    

Please submit a Progress Report to close the study once it is complete.  

Thank you for keeping the board informed of your activities. Contact the IRB at 
irb@kennesaw.edu or at (470) 578-6407 if you have any questions or require further 
information.  

  

Sincerely,  

  

Christine Ziegler, Ph.D.  

KSU Institutional Review Board Director and Chair  
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Appendix F: FULTON COUNTY IRB APPROVAL 

BOARD OF EDUCATION  

 Linda P. Bryant, President  

Julia C. Bernath, Vice President  

Gail Dean • Kimberly Dove• Linda McCain Katie Reeves • Katha Stuart  

Mike Looney, Ed.D., Superintendent  

RESEARCH AGREEMENT  

This agreement between Martel Wisdom ("the Applicant") and the Fulton County School District 
("the  

District") is made for purpose of the study to be conducted entitled: " Measuring the Effect of 
Argument-Driven Inquiry on High School Chemistry Students’ Process-Oriented Motivation 
Utilizing the Newly Developed Valid and Reliable Process Oriented Motivation Instrument  

The Application for Research Study and all attachments submitted by the Applicant outline the 
purpose of the study, the scope of the student, and the information to be disclosed to the 
Applicant for purposes of this study.  This Application and attached documents are specifically 
incorporated by reference into this Research Agreement ("the Agreement").   

Except as discussed in Section 1, below, no changes to the information provided in the 
application and research proposal documents may be made without written consent of the 
District.   

1. STATEMENT OF WORK. The research proposal submitted in the application dated 
May 28, 2019 is accepted with the following modifications/stipulations: 

-IRB approval letter must be submitted to DPE 

2. PERIOD OF RESEARCH. The Research shall be conducted during the period July 2, 
2019 to July 1, 2020. 

3. COSTS. There is no cost to the District to participate in this research. 

4. REPORTING OF DATA. The Applicant must submit a report summarizing the 
outcomes of their research conducted with the District. The purpose of this requirement is to 
enable the District to share the findings to inform the practice of our school leaders and teachers. 
This report is to be submitted as soon as practicable, but no later than 6 months after completion 
of the research study. 

5. CONFIDENTIALITY.  Student, parent, guardian and personnel privacy is and must be 
a paramount concern.  The Applicant must, in all respects comply with the provisions of privacy 
law including, but not limited to, the Family Educational Right to Privacy Act (“FERPA”) 20 
USC 1232g; the Protection of Pupil Rights Amendment ("PPRA"), 20 U.S.C. 1232h; and 
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O.C.G.A. 50-18-72(a)(34), as applicable. The Applicant may not maintain, use, disclose, or share 
student record information in a manner not allowed under Federal or state law or regulation.  
Student and personnel information gathered by Applicant during this research can be used for no 
other purpose other than the research described in this Research Agreement.  Access to data will 
be limited only to those representatives of the Applicant’s institution with legitimate interests 
under the research described in this Agreement. Except as may be required by law, the Applicant 
will not share information received under this Agreement with any other entity or person without 
prior written approval from the District. The data continues to be owned by the District.  

6. SECURITY AND DATA PROTECTION.  Upon termination of this Agreement or 
three months after the publication of reports generated under the Research, whichever is sooner, 
the Applicant will destroy all data obtained under the agreement that contains any personally 
identifiable information as that term is defined in FERPA. The Applicant will promptly notify 
the District when they or their subcontractors become aware of any actual or potential security or 
data breach relating to the information shared under this Agreement. All steps to mitigate and 
rectify the consequences of such a breach, including notification to impacted parties, shall be 
undertaken by the Applicant at its sole expense. The District will be entitled as a matter of right 
to seek injunctive relief to prevent commencing or continuing a breach of security or data 
protection violation without having to post a bond or other security and without having to prove 
the inadequacy of any other available remedies. Nothing will be deemed to limit or abridge any 
other remedy available to the District at law or in equity.  

7. SCHOOL ENVIRONMENT.  All visitors to school property will comply with the 
directions of the school principal or site director.  Any visitor may be requested to leave school 
property, and the District reserves the right to refuse access to any individual on school property.   

8. PUBLICATIONS. The Applicant must have written approval prior to identifying the 
District in any publications or releases about the research. All publications and written releases 
will be provided to the District one month prior to the release or publication. The Applicant will 
not share information in any manner that could identify any individual school, student, parent, 
guardian, or personnel member.  All publications will include appropriate methods of disclosure 
avoidance, including but not limited to, suppression, blurring, recoding the ends of the 
distribution, protecting underlying contents, collapsing across outcome categories, perturbation 
techniques, and establishing minimum subgroup sizes.    

9. HUMAN SUBJECTS. The use of human subjects in the Project shall comply with 
Department of Health and Human Services (DHHS) policies and regulations on the protection of 
human subjects (45 CFR 46, as amended. The Applicant will not ask the Subcontractor to engage 
in the research activities.  The Applicant is responsible for ensuring that all research activities 
comply with applicable law, will inform the District of any requirements under this paragraph, 
and will assist the District with steps necessary to ensure compliance.    

10. TERMINATION. Either party may terminate the research at any time upon written 
notice to the other party.   
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11. COMPLIANCE. The Applicant will ensure that this research conforms to all 
requirements of this Agreement, of Board Policy and Procedure ICC, and of all applicable 
federal, state and local laws, rules and regulations. All permission slips and consent forms will be 
approved by the Department of Research and Program Evaluation for the District.  

12. INDEPENDENT CONTRACTOR. For the purposes of this Agreement and research, 
the Applicant and the District shall be, and shall be deemed to be, independent contractors and 
not an agent or employee of the other Party.   

13. ASSIGNMENT. The activities under this Agreement shall not be assigned without the 
written consent of the other Party and any attempt to assign without such consent shall be void.  

14. MODIFICATION. No modification of this Agreement will be valid unless in writing 
and executed by authorized representatives of both the District and the Applicant.   

15. CONTACTS.  Written notices and other questions about the research should be directed 
to:  

programevaluation@fultonschools.org.   

16. LIABILITY.  To the extent permitted by law, the Applicant shall hold harmless and 
indemnify the District, its past, future and current Board of Education, and its past, future, and 
current employees, agents, volunteers or assignees (“the District Indemnitees”)  from any and all 
claims, suits, actions, damages, liability and expenses including attorney fees in connection with 
(a) claims, demands, or lawsuits with respect to any activities related to this Agreement that are 
undertaken by the Applicant, the Applicant's subcontractors, the District, or the District's 
representatives or staff as a result of this Agreement;  (b) the failure of the Applicant or its 
subcontractors to comply with any law or regulation, including FERPA or PPRA; (c) the loss, 
misappropriation or other unauthorized disclosure of data by Applicant or its subcontractors; and 
(e) any security breach involving data in Applicant’s or a subcontractor's possession, custody or 
control, or for which Applicant or a subcontractor accesses or is otherwise responsible. The 
Applicant’s obligation shall not be limited by, or in any way to, any insurance coverage or by 
any provision in or exclusion of omission from any policy of insurance.  

17. CHOICE OF LAW.  This Agreement shall be interpreted, construed and given effect in 
all respects according to the laws of the State of Georgia.    

 District Authorized Representative:        Applicant Authorized Representative:  

  

  

            ________________________________                    ______________________________  

            (signature)                                                                  (signature)  

  Researcher, FCS Chemistry Teacher 
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Appendix G: CONSENT FORM 

My signature below indicates that I have read the information provided and have decided to allow my child to 
participate in the study titled “Measuring the Effect of Argument-Driven Inquiry on High School Chemistry 
Students’ Process-Oriented Motivation utilizing the Newly Developed Valid and Reliable Process Oriented 
Motivation Instrument” to be conducted at my child’s school between the dates of 08/12/2019 and 05/22/2020.  
 
I understand the purpose of the research project will be to learn about process-oriented motivation and how it is 
affected by different instructional strategies and that my child will participate in the following manner:  

1. Participants will be asked to complete the Process-Oriented Motivation (15 minutes to complete) and 
Views about Scientific Inquiry (30 minutes to complete). These are both online surveys and the chemistry 
teacher may ask for them to be completed outside of class time. The results of the VASI may be used to 
provide discussion points for class regarding scientific inquiry. 

2. Participants may be invited by their chemistry teacher to a focus group interview or individual interview to 
make sure that students understood each survey. These interviews will be scheduled outside of instructional 
time and will take between 20-35 minutes to complete. 

3. All participants in the sample will complete a lab report based on the molar mass lab and it will be graded 
by their teacher using a valid and reliable rubric. This is part of normal classroom instruction. 
 

There are no known risks or anticipated discomforts that have been identified by this research protocol. 
 
I understand that the following data pertaining to my child will be requested/collected:  

1. Student responses to the Process-Oriented Motivation Instrument that will assess students’ motivation 
toward science.  

2. Student responses to the Views about Scientific Inquiry instrument that will measure student 
comprehension of scientific inquiry.  

3. Student responses to individual and focus group interviews that will aid in validating the surveys described 
in #1 and #2 above. Interviews may be audio recorded only if permission from student is received. Audio 
recording is strictly to create an interview transcript for the researcher to collect data and find trends in 
interviews. Individual interviews will take approximately 20 minutes but focus group interviews could take 
up to 35 minutes.  

4. Lab reports will be utilized to assign a grade for each student’s lab reports and is part of the normally 
planned curriculum. This will reveal how well students understood the lab. Scores for students will be kept 
confidential. Completion of lab report could take up to two days for participants to complete.  
 

If I wish to review any instrument or instructional material used in connection with any protected information or 
marketing survey, I may submit a request to the school principal. The school principal will notify me of the time and 
place where I may review these materials. I have the right to review a survey and/or instructional materials before 
the survey is administered to my student.  
 
Students personal information will be kept confidential in the study. All student data will be deidentified by 
replacing the student’s name with an assigned number. All audio recordings will be deleted once a transcript has 
been produced. Students and teachers will not identify themselves on audio recordings. The online surveys will be 
delivered using Qualtrics and Internet Protocol addresses WILL NOT be collected. Electronic data will be kept on a 
private OneDrive account and physical data will be stored in a secure location at Kennesaw State University. Once 
the results of this research study are produced, data will be presented in aggregate when possible.  
 
Overall potential benefits of this study are that the results will inform best practices used by chemistry educators. 
More specifically, based on this study’s findings, it could be determined that Argument-Driven Inquiry 
(experimental group’s instructional strategy) motivates students to learn chemistry and leads to improved chemistry 
performance. 
 
Participation in the study is voluntary and will not affect either student grades or placement decisions (or if staff 
is involved, will not affect employment status or annual evaluations.) If I decide to withdraw permission after the 
study begins, I will notify the school of my decision in writing. Removal from that research study does not remove 
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the student from participation from the laboratory experiment that has been embedded in the research protocol. 
Students will still need to complete this lab experiment. However, their data will not be collected as part of this 
study. 
 
Age groups in this study will consist of minors, which will represent the Vulnerable Participants. Therefore, all 
students must have signed consent and assent forms to fully participate in this study.  
 
If further information is needed regarding the research study, I can contact Martel Wisdom or Dr. Michelle Head 
at the following emails: wisdomm@fultonschools.org or mhead24@kennesaw.edu.  
 
This also serves as assurance that the Fulton County School District complies with requirements of the Family 
Educational Rights and Privacy Act (FERPA) and the Protection of Pupil Rights Amendment (PPRA) and will 
ensure that these requirements are followed in the conduct of this research. The District provides parents/guardians 
information regarding rights under FERPA and PPRA annually in the Code of Conduct & Discipline Handbook. 
Additional information regarding compliance of research studies with FERPA and PPRA may be found in District 
Policy / Procedure ICC – Educational Research.  
 
By signing this letter, you are disclosing you are aware of those rights.  
 
Parental Consent to Participate 
 
I give my consent for my child, __________________________________________________________, to 
participate in the research project described above. I understand that this participation is voluntary and that I may 
withdraw my consent at any time without penalty. I also understand that my child may withdraw his/her assent at 
any time without penalty.  
 
 
__________________________________________________ 
Signature of Parent or Authorized Representative, Date  
 
 
__________________________________________________ 
Signature of Investigator, Date 
 
_____________________________________________________________________________________ 
 
PLEASE SIGN BOTH COPIES OF THIS FORM, KEEP ONE AND RETURN THE OTHER TO THE 
INVESTIGATOR 
 
Research at Kennesaw State University that involves human participants is carried out under the oversight of an 
Institutional Review Board. Address questions or problems regarding these activities to the Institutional Review 
Board, Kennesaw State University, 585 Cobb Avenue, KH3417, Kennesaw, GA 30144-5591, (470) 578-6407. 
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Appendix H: CHILD ASSENT FORM 

 
My name is Martel Wisdom. I am inviting you to be in a research study about process-oriented motivation and how it 
is affected by different instructional strategies used by teachers. Your parent has given permission for you to be in this 
study, but you get to make the final choice. It is up to you whether you participate.  
 
If you decide to be in the study, I will ask you to complete the Process-Oriented Motivation survey (15 minutes to 
complete) and Views about Scientific Inquiry survey (30 minutes to complete). You may be invited by your chemistry 
teacher to a focus group interview or individual interview to make sure that you understood each survey.  
 
These interviews will be scheduled outside of instructional time and will take between 20-35 minutes to complete. 
Interviews may be audio recorded only if you give us permission to do so. Audio recordings are strictly to create an 
interview transcript for the researcher to collect data and find trends in interviews. Finally, you will complete a lab 
report based on the molar mass lab and it will be graded by your teacher using a valid and reliable rubric.  
 
Overall potential benefits of this study are that the results will tell us about instructional strategies used by chemistry 
teachers. More specifically, based on this study’s findings, it could be determined that Argument-Driven Inquiry (on-
level Chemistry’s instructional strategy) motivates students to learn chemistry and lead to better chemistry grades.  
 
There are no known risks or anticipated discomforts that have been identified by this research protocol. 
 
You do not have to answer any question you do not want to answer or do anything that you do not want to do. 
Everything you say and do will be private, and your parents will not be told what you say or do while you are taking 
part in the study. When I tell other people what I learned in the study, I will not tell them your name or the name of 
anyone else who took part in the research study.  
 
Interviews may be audio recorded, please indicate if you do or do not grant permission to be recorded 

 Yes, I grant permission for you to audio record me during any form of interview 
 

 No, I do not grant permission for you to audio record me during any form of interview 
 
If anything in the study worries you or makes you uncomfortable, let me know and you can stop. No one will be upset 
with you if you change your mind and decide not to participate. You are free to ask questions at any time and you can 
talk to your parent any time you want. If you want to be in the study sign, date, and print your name on the lines below: 
 
 
__________________________________   _____________________ 
Child’s Signature         Date 
 
________________________________ 
Child’s Printed Name  
 
Check which of the following applies (completed by person administering the assent.) 
 

 Child is capable of reading and understanding the assent form and has signed above as documentation of 
assent to take part in this study. 

 

 Child is not capable of reading the assent form, but the information was verbally explained to him/her. The 
child signed above as documentation of assent to take part in this study. 

 
 
_____________________________________________ 
Signature of Person Obtaining Assent, Date 
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Appendix I: VASI INTERVIEW PROTOCOL 

 

Question Outside of VASI - How can you define scientific inquiry in your own terms? 
 
 
 
 
3. Do you think that scientific investigations can follow more than one method?        
 
 
 
 
If no, please explain why there is only one way to conduct a scientific investigation.  
 
 
 
 
  
If yes, please describe two investigations that follow different methods, and explain how the methods differ and how 
they can still be considered scientific.   
 
 
 
 
11. Describe at least two reasons why you think most of the scientists agree that the animal in figure 1 had the best 
sorting and positioning of the bones? 
 
 
 
 
 
12. Thinking about you answer to the question above what types of information do scientists use to explain their 
conclusions? 
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Appendix J: PROCESS-OREINTED MOTIVATION STUDENT INTERVIEW 

PROTOCOL 

 
1. Walk me through your thought process that led you to choose (Strongly Disagree, Disagree, Agree, Strongly 

Agree) for the (number) _____________ item.  
 
 

2. Describe what this item means in your own words. (How would you describe this item to an elementary age 
student?) 
 
 

3. Please match scenarios that students engage in this classroom with the seven items. 
a. Please put the card scenarios next to the corresponding item 
b. Take picture 

 
 

4. Rank the items from which motivates me the most to the least in this chemistry class. Please shuffle cards from 
most to least. Take picture of card order for each student and document.  Decreasing order (Top-Most Motivated 
and Bottom-Least Motivated) 
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Appendix K: VASI SCORING RUBRIC 

 
Aspect of 
Scientific 
Inquiry 

Question 
on VASI 

Definition of an Informed 
Response 

Informed quotes 
Definition of a Naïve 
Response 

Naïve Quotes 

1 
 
Scientific 
Investigations 
all begin with 
a question and 
do not 
necessarily test 
a hypothesis 
 
 

1a (1) 
 
 
 
 

The student should answer 
the question as yes and 
explain that the investigation 
is scientific due to its 
purpose in testing via 
question or hypothesis 
referring to the birds.  

“Yes, I do, as the 
person used an 
experiment to test a 
hypothesis that they 
created. 
Furthermore, the 
prosses if gathering 
research made 
scientific sense.” 

The student would 
answer the question as 
no and explain how the 
investigation is not 
scientific.  

“No, because there 
isn't a lot of detail to 
explain.” 
 

1b (2) 

The student should include 
yes in their answer while 
explaining that a question 
was answered in some form, 
while reasoning was applied 
due to the evidence 
collected. Furthermore, 
student can explain how the 
theory was tested.  

“Yes, they can test 
their theory on 
whether beaks 
developed over 
time” 
 

Student answered no to 
the question and made a 
justification on why it is 
not an experiment.  

“I do not, as there 
was no independent 
and manipulated 
variables, the person 
just collected data 
from nature. 
Therefore, this is an 
observation, not an 
experiment.” 
 

2 (4) 

The student’s answer must 
explain the necessity of a 
thought being led into a 
question in any format. Yes 
or no does not qualify for a 
correct answer.  

“The student that 
said no because you 
can make an 
observation that 
leads to a question.” 

The student’s 
explanation describes a 
lack of necessity in a 
question before a 
scientific investigation.   

“No, you don’t need 
a scientific question 
to be able to be to 
undergo an 
experiment” 
 

2 
 
There is no 
single set of 
steps followed 
in all 
investigations 

1b (2) 

The student should include 
in their answer a yes and 
explain that a question was 
answered in some form, 
while reasoning was applied 
due to the evidence 
collected. Furthermore, 
student can explain how the 
theory was tested. 

“Yes, they can test 
their theory on 
whether beaks 
developed over 
time” 
 

Student answered no to 
the question and made a 
justification on why it is 
not an experiment. 

“I do not, as there 
was no independent 
and manipulated 
variables, the person 
just collected data 
from nature. 
Therefore, this is an 
observation, not an 
experiment.” 
 

1c (3) 

The student should answer 
yes while explaining that the 
scientific method is not tied 
to a specific order that is 
followed by a conclusion.  
Instead the scientific method 
has various methods.  

“Yes, such as the 
prosses seen above 
in which an 
observation was first 
made and later 
tested, or in common 
claim evidence 
reasoning 
investigated 
investigations used 
by biologists.” 
 

The student’s answer 
may state that the 
scientific method must 
be followed in an exact 
order.  

“No, there is only 
way to conduct the 
scientific method.” 
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3 
 
Inquiry 
procedures are 
guided by 
questions 
asked 

5 (8) 

The student’s answer 
included Team A testing 
multiple brands of tires.  
This inclusion by Team A 
appropriately answered the 
question posed.  

“Team A’s 
procedure is better 
because they tested 
multiple tire brands” 

The student answered 
Team B and described 
their thought process.  

“Teams B has too 
much data to prove” 

4 
 
All scientists 
performing 
same 
procedures 
may not get 
the same 
results 

3a (5) 

The student answered no 
and explained that different 
scientists may get different 
results despite the same 
procedure.  

“No, because they 
could each have 
different thought 
processes and would 
interpret the results 
differently.” 

The student answered 
yes and described that 
all scientist should get 
the same results.  

“Yes, because they 
need to try different 
methods.” 

5 
 
Inquiry 
procedures can 
influence 
results 

3b (6) 

The student answered no 
and described that different 
procedures may produce 
different results.  

“No, because they 
could use different 
thought processes 
and use different 
experimentation to 
find results.” 

The student answered 
yes or did not have a 
definitive answer to the 
question. Student’s 
answer included an 
explanation that 
justified that different 
procedures did not 
affect results of 
multiple scientists.   

“They will get the 
same results from 
different methods”. 

6 
 
Research 
conclusions 
must be 
consistent with 
collected data 

6 (9) 

The student answered B and 
described that less sunlight 
resulted in more plant 
growth.  

“B, Plants grew 
taller with less 
sunlight.” 

The student answered A 
or C and described that 
more sunlight resulted 
in more plant growth or 
the variables were 
unrelated. 

“a) Plant grow taller 
with more sunlight.” 
 
“c) The growth of 
plant is unrelated to 
sunlight.” 

7 
 
Scientific data 
are not the 
same as 
evidence 

4 (7) 

The student stated a 
significant difference 
between data and evidence 
and included data are results 
without an explanation.  

“They are different, 
data is numerical, 
but evidence is 
anything that 
supports your 
claim.” 

The student stated there 
was no difference 
between data and 
evidence. Student did 
not articulate the 
difference between two 
items.  

“A because the plant 
that grew the tallest 
had more sunlight.” 

8 
 
Explanations 
are developed 
from a 
combination of 
collected data 
and what is 
already known 
 

7 (11) 

The student selected figure 
one and described how 
Figure 1 was effective or 
why Figure 2 was 
ineffective. Answer 
accurately utilized data or 
prior knowledge to 
comprehend the choice of 
Figure 1.  

“I think figure one is 
more prominent 
because it has a 
more symmetrical 
bone layout. 
Furthermore, figure 
two does not appear 
to be fit for any 
environment.” 

The student selected 
figure two and 
explained their 
reasoning. Another 
student may also select 
figure one and have a 
poor explanation that 
lacks any reference to 
data.  

“Figure 2 has a better 
structure.” 

7 (12) 
The student’s answer 
includes data, information, 
evidence or reasoning.  

“Evidence and 
Reasoning” 

The student answer 
includes opinions, 
vague references to 
logic, and lacks any 
reference to any 
semblance of data. 

“Scientist do not need 
any evidence or 
reasoning behind 
decisions.” 
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Appendix L: CONTROL GROUP ADI LAB PACKET 

 
Lab 14. Molar Relationships: What Are the Identities of the Unknown Compounds?  
The concept of the mole is important for understanding chemistry. The mole provides a measure of the number of 
atoms present in a sample of a compound. One mole of an element or compound contains 6.02 × 1023 atoms or 
molecules. This quantity is referred to as the Avogadro constant. Knowing the amounts of particles allows chemists 
to understand how different chemicals behave during chemical reactions and predict the outcomes of reactions. Moles 
provide a standardized way of comparing elements. Using the Avogadro constant, chemists can use other measures, 
such as mass or volume, to determine the number of particles a sample has.  

To use mass to determine the number of moles of an element or molecule in a sample, you must also know the 
molar mass of that element or molecule. The molar mass refers to the total mass of an element present in one mole of 
that element. The unit for these masses is grams per mole (g/mol). The molar mass of an element is easily identified 
on most periodic tables, where it is typically listed in the box provided for a particular element. Examples of molar 
mass include carbon (C), 12.011 g/mol; oxygen (O), 15.994 g/mol; and gold (Au), 196.967 g/mol. To determine the 
molar mass for a compound made of larger molecules, you must add up the molar masses of all the atoms present in 
the molecular formula. For example, the molar mass of CO2 is 43.999 g/mol, which is calculated by 12.011 g/mol (C) 
+ 15.994 g/mol (O) + 15.994 g/mol (O). Remember that you have to include the total number of atoms in the molecular 
formula when calculating molar mass, so be mindful of the subscripts in those formulas.  

By knowing the molar mass of a compound and the mass of a sample of that compound, you can determine the 
number of moles in the compound. Continuing from the example above, if you have a sample of CO2 whose mass is 
2.523 g, then you can determine the number of moles in that sample by dividing the actual mass by the molar mass 
(e.g., 2.523 g / 43.999 g/mol = 0.0573 moles of CO2).  

You will now use your understanding of the relationships between moles, molar mass, and mass of a  
sample to identify some unknown compounds. Remember, moles provide a standardized unit of measure (based 

on the Avogadro constant) so that chemists can compare a wide variety of substances, including the amount of 
substances needed and produced by a chemical reaction.  

Your Task  
You will be given seven sealed bags. Each bag will be filled with a different powder and will be labeled with the 
number of moles of powder that is inside the bag. Your task will be to identify the powder in each bag. The unidentified 
powders could be any of the following compounds:  

• Calcium acetate, Ca(C2H3O2)2  •  Sodium carbonate, Na2CO3  
• Calcium oxide, CaO  •  Sodium chloride, NaCl  
• Potassium sulfate, K2SO4  •  Zinc (II) oxide, ZnO  
• Sodium acetate, NaC2H3O2  

The guiding question of this investigation is, what are the identities of the unknown compounds? Materials  
You may use any of the following materials during your investigation:  

Consumables  
• Sealed plastic bags of unknown compounds  
• Empty plastic bags  

Equipment  
• Electronic or triple beam balance  
• Periodic table  

  
Follow all normal lab safety rules. Your teacher will explain relevant and important information about working with 
the chemicals associated with this investigation. In addition, take the following safety precautions:  

• Wear indirectly vented chemical-splash goggles while in the laboratory.  
• Wash your hands with soap and water before leaving the laboratory.  

To answer the guiding question, you will need to design and conduct an investigation. To accomplish this task, you 
must first determine what type of data you need to collect, how you will collect the data, and how you will analyze 
the data.  

To determine what type of data you need to collect, think about what type of measurements you will need to make 
during your investigation.  

To determine how you will collect the data, think about the following questions:  
• How will you make sure that your data are of high quality (i.e., how will you reduce error)?  
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• How will you keep track of the data you collect and how will you organize it?   
To determine how you will analyze the data, think about the following questions:  

• What type of table or graph could you create to help make sense of your data?  
• What types of calculations will you need to make?  

As you work through your investigation, be sure to think about  
• the importance of identifying patterns,  
• which proportional relationships are critical to the understanding of this investigation,  
• how scientific knowledge changes over time in light of new evidence, and  
• the difference between data and evidence.  

Once you have completed your research, you will need to prepare an investigation report that consists of three sections 
that provide answers to the following questions:  

1. What question were you trying to answer and why?  
2. What did you do during your investigation and why did you conduct your investigation in this way?  
3. What is your argument?  

Your report should answer these questions in two pages or less. The report must be typed, and any diagrams, 
figures, or tables should be embedded into the document. Be sure to write in a persuasive style; you are trying to 
convince others that your claim is acceptable or valid!  
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Deep learning in science requires students to gather, reason with, and communicate scientific information. These skills 
will also prepare students for college and career success. Because of the importance of these skills, the new Georgia 
Milestones Assessment System will require students to demonstrate their ability to comprehend, reason with, and 
respond to textual and graphical information through a combination of selected-, constructed-, and extended-response 
items. At the heart of these skills lies students’ ability to make and evaluate claims based on various types of evidence 
and on their understanding of key ideas and concepts within various science disciplines. Teachers in all science 
classrooms can apply writing tasks designed around the Claim-Evidence-Reasoning (CER) framework as both 
learning and assessment tasks for students. 
 
Q-CER Graphic Organizer 
Use this graphic organizer to support student thinking within the CER framework and as a pre-writing organizer for 
extended-response items. After completing the graphic organizer, students should be ready to develop a clear, 
coherent, and complete written argument that draws on core science concepts and crosscutting ideas. 
 

Question: (This is the question provided in the task.) 

Claim: (Often you can use part of the question to formulate 
your claim. In an extended response, this will be your topic 
or thesis sentence.) 

Evidence: (This is data gathered from text or graphics that 
help you answer the question provided in the task. Choose a 
quote or other evidence that directly supports your claim. If 
you use a quote, then be sure to credit the quote properly.) 

Reasoning: (This is the most important part of your answer. It provides your reader with the explanation for your claim, and 
it explains how your evidence supports your claim. This is also where you should draw on key ideas and concepts from the 
discipline to tie your evidence to your claim.) 
 
The evidence shows: 
 
I know (relevant disciplinary ideas – i.e., scientific facts and concepts that help answer the question): 
 
I can apply (relevant crosscutting concepts – i.e., big ideas that connect the concepts and evidence): 
 
Therefore, I can conclude that: 
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Practice 
Select a writing item from the OAS sample items that is most relevant to your subject area. Then use the Q-CER 
graphic organizer to analyze both an extended-response test item. 

Question:  

Claim:  Evidence:  

Reasoning:  
The evidence shows: 
 
 
 
 
I know (relevant disciplinary ideas – i.e., scientific facts and concepts that help answer the question): 
 
 
 
 
I can apply (relevant crosscutting concepts – i.e., big ideas that connect the concepts and evidence): 
 
 
 
 
Therefore, I can conclude that: 
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ADI Investigation Report – Sentence Starters 
 
We have been studying                 in class. At  
 
the beginning of the investigation, we knew   

 
 

 
              
 

             
               
My goal for this investigation was to 
         

  
  
                           
                              
  
The guiding question was  
                   
                            
 
Method 
In order to gather the data I needed to answer this question, I         
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I then analyzed the data I collected by                   
 

                           
 

                           
 

                           
 

                           
My claim is   
            
           
 

                           
 

                          
                           

 
 

                           
 

                           
                              
  
When I analyzed the data I collected, I assumed               

                           
 
 
 

The figure at right shows    

 

This analysis  indicates    
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Appendix M: EXPERIMENTAL GROUP ADI LAB PACKET 

  
Lab 14. Molar Relationships: What Are the Identities of the Unknown Compounds?  
The concept of the mole is important for understanding chemistry. The mole provides a measure of the number of atoms present 
in a sample of a compound. One mole of an element or compound contains 6.02 × 1023 atoms or molecules. This quantity is 
referred to as the Avogadro constant. Knowing the amounts of particles allows chemists to understand how different chemicals 
behave during chemical reactions and predict the outcomes of reactions. Moles provide a standardized way of comparing 
elements. Using the Avogadro constant, chemists can use other measures, such as mass or volume, to determine the number of 
particles a sample has.  

To use mass to determine the number of moles of an element or molecule in a sample, you must also know the molar mass 
of that element or molecule. The molar mass refers to the total mass of an element present in one mole of that element. The 
unit for these masses is grams per mole (g/mol). The molar mass of an element is easily identified on most periodic tables, 
where it is typically listed in the box provided for a particular element. Examples of molar mass include carbon (C), 12.011 
g/mol; oxygen (O), 15.994 g/mol; and gold (Au), 196.967 g/mol. To determine the molar mass for a compound made of larger 
molecules, you must add up the molar masses of all the atoms present in the molecular formula. For example, the molar mass 
of CO2 is 43.999 g/mol, which is calculated by 12.011 g/mol (C) + 15.994 g/mol (O) + 15.994 g/mol (O). Remember that you 
have to include the total number of atoms in the molecular formula when calculating molar mass, so be mindful of the subscripts 
in those formulas.  

By knowing the molar mass of a compound and the mass of a sample of that compound, you can determine the number of 
moles in the compound. Continuing from the example above, if you have a sample of CO2 whose mass is 2.523 g, then you 
can determine the number of moles in that sample by dividing the actual mass by the molar mass (e.g., 2.523 g / 43.999 g/mol 
= 0.0573 moles of CO2).  

You will now use your understanding of the relationships between moles, molar mass, and mass of a  
sample to identify some unknown compounds. Remember, moles provide a standardized unit of measure (based on the 

Avogadro constant) so that chemists can compare a wide variety of substances, including the amount of substances needed and 
produced by a chemical reaction.  

Your Task  
You will be given seven sealed bags. Each bag will be filled with a different powder and will be labeled with the number of 
moles of powder that is inside the bag. Your task will be to identify the powder in each bag. The unidentified powders could 
be any of the following compounds:  

• Calcium acetate, Ca(C2H3O2)2  •  Sodium carbonate, Na2CO3  
• Calcium oxide, CaO  •  Sodium chloride, NaCl  
• Potassium sulfate, K2SO4  •  Zinc (II) oxide, ZnO  
• Sodium acetate, NaC2H3O2  

The guiding question of this investigation is, what are the identities of the unknown compounds? Materials  
You may use any of the following materials during your investigation:  

Consumables  
• Sealed plastic bags of unknown compounds  
• Empty plastic bags  

Equipment  
• Electronic or triple beam balance  
• Periodic table  

  
Follow all normal lab safety rules. Your teacher will explain relevant and important information about working with the 
chemicals associated with this investigation. In addition, take the following safety precautions:  

• Wear indirectly vented chemical-splash goggles while in the laboratory.  
• Wash your hands with soap and water before leaving the laboratory.  

To answer the guiding question, you will need to design and conduct an investigation. To accomplish this task, you must first 
determine what type of data you need to collect, how you will collect the data, and how you will analyze the data.  

To determine what type of data you need to collect, think about what type of measurements you will need to make during 
your investigation.  

To determine how you will collect the data, think about the following questions:  
• How will you make sure that your data are of high quality (i.e., how will you reduce error)?  
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• How will you keep track of the data you collect and how will you organize it?   
To determine how you will analyze the data, think about the following questions:  

• What type of table or graph could you create to help make sense of your data?  
• What types of calculations will you need to make?  

As you work through your investigation, be sure to think about  
• the importance of identifying patterns,  
• which proportional relationships are critical to the understanding of this investigation,  
• how scientific knowledge changes over time in light of new evidence, and  
• the difference between data and evidence.  

Once your group has finished collecting and analyzing FIGURE L14.1 your 
data, you will need to develop an initial argument. Your argument must include 
a claim, which is your answer to the guiding question. Your argument must also 
include evidence in support of your claim. The evidence is your analysis of the 
data and your interpretation of what the analysis means. Finally, you must 
include a justification of the evidence in your argument. You will therefore need 
to use a scientific concept or principle to explain why the evidence that you 
decided to use is relevant and important. You will create your initial argument 
on a whiteboard. Your whiteboard must include all the information shown in 
Figure L14.1.  
 
The argumentation session allows all of the groups to share their arguments. 
One member of each group stays at the lab station to share that group’s 
argument, while the other members of the group go to the other lab stations one 
at a time to listen to and critique the arguments developed by their classmates. The goal of the argumentation session is not to 
convince others that your argument is the best one; rather, the goal is to identify errors or instances of faulty reasoning in the 
initial arguments so these mistakes can be fixed. You will therefore need to evaluate the content of the claim, the quality of the 
evidence used to support the claim, and the strength of the justification of the evidence included in each argument that you see. 
To critique an argument, you might need more information than what is included on the whiteboard. You might therefore need 
to ask the presenter one or more follow-up questions, such as:  

• How did your group collect the data? Why did you use that method?  
• What did your group do to make sure the data you collected are reliable? What did you do to decrease measurement 

error?  
• What did your group do to analyze the data? Did you check your calculations?  
• Is that the only way to interpret the results of your group’s analysis? How do you know that your interpretation of the 

analysis is appropriate?  
• Why did your group decide to present your evidence in that manner?  
• What other claims did your group discuss before deciding on that one? Why did you abandon those alternative ideas?  
• How confident are you that your group’s claim is valid? What could you do to increase your confidence?  

Once the argumentation session is complete, you will have a chance to meet with your group and revise your original 
argument. Your group might need to gather more data or design a way to test one or more alternative claims as part of this 
process. Remember, your goal at this stage of the investigation is to develop the most valid or acceptable answer to the research 
question!  
Once you have completed your research, you will need to prepare an investigation report that consists of three sections that 
provide answers to the following questions:  

4. What question were you trying to answer and why?  
5. What did you do during your investigation and why did you conduct your investigation in this way?  
6. What is your argument?  

Your report should answer these questions in two pages or less. The report must be typed, and any diagrams, figures, or 
tables should be embedded into the document. Be sure to write in a persuasive style; you are trying to convince others that your 
claim is acceptable or valid!  
  

Argument presentation on a whiteboard  
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Evidence-Based Writing in Science 
Introduction 
Deep learning in science requires students to gather, reason with, and communicate scientific information. These skills will 
also prepare students for college and career success. Because of the importance of these skills, the new Georgia Milestones 
Assessment System will require students to demonstrate their ability to comprehend, reason with, and respond to textual and 
graphical information through a combination of selected-, constructed-, and extended-response items. At the heart of these 
skills lies students’ ability to make and evaluate claims based on various types of evidence and on their understanding of key 
ideas and concepts within various science disciplines. Teachers in all science classrooms can apply writing tasks designed 
around the Claim-Evidence-Reasoning (CER) framework as both learning and assessment tasks for students. 
Q-CER Graphic Organizer 
Use this graphic organizer to support student thinking within the CER framework and as a pre-writing organizer for extended-
response items. After completing the graphic organizer, students should be ready to develop a clear, coherent, and complete 
written argument that draws on core science concepts and crosscutting ideas. 

Question: (This is the question provided in the task.) 

Claim: (Often you can use part of the question to formulate 
your claim. In an extended response, this will be your topic 
or thesis sentence.) 

Evidence: (This is data gathered from text or graphics that 
help you answer the question provided in the task. Choose a 
quote or other evidence that directly supports your claim. If 
you use a quote, then be sure to credit the quote properly.) 

Reasoning: (This is the most important part of your answer. It provides your reader with the explanation for your claim, and 
it explains how your evidence supports your claim. This is also where you should draw on key ideas and concepts from the 
discipline to tie your evidence to your claim.) 
 
The evidence shows: 
 
I know (relevant disciplinary ideas – i.e., scientific facts and concepts that help answer the question): 
 
I can apply (relevant crosscutting concepts – i.e., big ideas that connect the concepts and evidence): 
 
Therefore, I can conclude that: 
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Practice 
Select a writing item from the OAS sample items that is most relevant to your subject area. Then use the Q-CER graphic 
organizer to analyze both an extended-response test item. 

Question:  

Claim:  Evidence:  

Reasoning:  
The evidence shows: 
 
 
 
 
I know (relevant disciplinary ideas – i.e., scientific facts and concepts that help answer the question): 
 
 
 
 
I can apply (relevant crosscutting concepts – i.e., big ideas that connect the concepts and evidence): 
 
 
 
 
Therefore, I can conclude that: 
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Argumentation Session Notes for Presenters  
  
Critiques of our claim…  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

    
Critiques of our evidence…  
  

      
  
Critiques of our justification…  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

    
Ways to improve our argument…  
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 Argumentation Session Notes for Reviewers 

  
Claims made by other groups…  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

    
Examples of good evidence…  
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Examples of good justifications…  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

    
Questions to take back to my group…  
  

     
 
ADI Investigation Report – Sentence Starters 
 
We have been studying                 in class. At  
 
the beginning of the investigation, we knew               

  
                
      

  
                
      

  
          
  
My goal for this investigation was to  
                 
 

                           
                              
  
The guiding question was  
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Method 
In order to gather the data I needed to answer this question, I         

  
             

                           
 

                           
 

                           
 

                           
 

                           
 

                           
 

                           
 

                           
 

                           
 

                           
 

                           
                              

  
 
 
I then analyzed the data I collected by                   
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My claim is   
            
           
 

                           
 

                          
                           

 
 

                           
 

                           
                              
  
When I analyzed the data I collected, I assumed               

                           
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

The figure at right shows    

 

This analysis  indicates    
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Appendix N: ADI LAB REPORT SCORING RUBRIC 

  
 

Aspect of the Essay  
Point Value   
0  1  2  

 

1.1 The author made the claim that s/he was trying to refute explicit to the reader. 
*The author should be refuting the expert’s claim  
  

No  Somewhat  Yes  

1.2 The author provided several reasons for why the expert’s claim is not accurate 
and/or acceptable.  
*If the student argues for the expert claim, then 1.1, 1.2, and 1.4 are 
automatically “No” and “None”. ‘Reasons’ can be anything when scored at the 
structural level.  
  

None  Only One  ≥ Two  

1.3 The author made the claim that s/he was advancing explicit to the reader. 
*The claim may be found anywhere in the essay  
  

No  Somewhat  Yes  

1.4 The author provided several reasons to support the validity or the acceptability 
of his or her claim.  
*When analyzing a reason statement, count it only one time, either as refuting 
the expert claim or supporting the author claim, not as both. Again, ‘reasons’ 
can be anything when scored at the structural level.  
  

None  Only One  ≥ Two  

 

2.1 The author provided reasons for why the expert’s claim is not accurate that are 
empirical or analytical in nature.  
*If the student argues for the expert’s claim, then this is automatically “No”.  
  

No  Somewhat  Yes  

2.2 The author provided reasons in support of his or her claim that are empirical or 
analytical in nature.  
*Mark ‘yes’ if all the reasons provided by the author are either empirical (i.e., 
uses the data available) or analytical (e.g., points out a flaw in the expert’s 
analysis) in nature. If one of the reasons does not meet these characteristics, 
then mark ‘somewhat’. Mark ‘no’ if more than one reason does not meet the 
characteristics.  
  

No  Somewhat  Yes  

2.3 The author’s interpretation of the data provided in the item was valid and relevant. 
*Mark ‘no’ if there are no relationships made between pieces of data and if they 

focus on data that is not relevant. Mark ‘somewhat’ if only one of these criteria is 
met. Mark ‘yes’ if all these criteria are met.  

No  Partially  Yes  

2.4 The author’s overall argument was coherent and focused.  
*Mark ‘no’ if the author included a lot of extraneous information that was not 

needed to support or challenge the claim (i.e., it appeared that the author added 
information just to add information).  

No  Somewhat  Yes  

2.5 The author used scientific terms correctly and used rhetorical references that do 
not misrepresent NOS or NOSI  
*Mark ‘yes’ if the author used scientific terms (e.g., data, evidence, etc.) 
correctly and used rhetorical references that do not misrepresent the nature of 
science or the nature of scientific inquiry (e.g., these data suggest, etc.) 
throughout the essay. Mark ‘mostly’ if there are only 1 or 2 instances where the 
author misused a term such as evidence or claims that the evidence ‘proves’ that 
his or her claim is correct. Mark ‘no’ if there are more than two instances of 
misused terms or phrases in the essay or if there is are no scientific terms or 
rhetorical references used at all.  
  

No  Mostly  Yes  
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3.1 Organization: The order and arrangement of the paragraphs and sentences 
enhances the development of the main idea.  
*Mark ‘no’ if the essay seems to ‘jump around’ or the paragraphs are in an 
inappropriate order, paragraphs are too short or long, or if ideas are introduced 
within a paragraph where they should not have been.  
  

No  Mostly  Yes  

3.2 Word Choice: The author uses the appropriate word at a given time (e.g., affect 
vs.  

effect, their vs. there, etc.).  
  

No  Mostly  Yes  

3.3 Voice: The sentences are written in an active voice rather than a passive voice 
(e.g., the expert analyzed the data vs. the data was analyzed by the expert) and 
the author use a professional tone rather than a conversational tone.  
  

No  Mostly  Yes  

3.4 Grammar: The author used complete sentences, proper subject-verb agreement, 
and a constant tense throughout the essay.  
  

No  Mostly  Yes  

3.5 Conventions: The author used appropriate spelling, punctuation, and 
capitalization.  

*Mark ‘yes’ if there are only 1 or 2 errors, mark ‘mostly’ if there are more than 
two errors, and mark ‘no’ if there are so many errors that the ideas in the essay 
were obscured or you were forced to stop and re-read a section of the essay.  
  

No  Mostly  Yes  

  
 Total Score:    /28  
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Appendix O: ADI INVESTIGATION REPORT PEER REVIEW RUBRIC- HIGH SCHOOL 

VERSION 

  
Report By: 
  
Author: Did 
the reviewers 
do a good job?  1   2   3   4   5  
  Rate the overall quality of the peer review  
Reviewed By:    
   ID Number    ID Number    ID Number    ID Number  
  
Section 1: Introduction and Guiding Question   Reviewer Rating  Instructor Score  
1. Did the author provide enough background information?   

No  
 
Partially  

 
Yes  

0   1   2  

2.  Is the background information accurate?   
No  

 
Partially  

 
Yes  

0   1   2  

3.  Did the author describe the goal of the study?   
No  

 
Partially  

 
Yes  

0   1   2  

4.  Did the author make the guiding question explicit and explain 
how the guiding question is related to the background 
information?  

 
No  

 
Partially  

 
Yes  

0   1   2  

Reviewers: If your group made any “No” or “Partially” 
marks in this section, please explain how the author 
could improve this part of his or her report.  
  
  
  

Author: What revisions did you make in your report? Is 
there anything you decided to keep the same even though 
the reviewers suggested otherwise? Be sure to explain why.  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Section 2: Method   Reviewer Rating  Instructor Score  
1.  Did the author describe the procedure he/she used to gather data 

and then explain why he/she used this procedure?  
 
No  

 
Partially  

 
Yes  

0   1   2  

2.  Did the author explain what data were collected (or used) during 
the investigation and why they were collected (or used)?  

 
No  

 
Partially  

 
Yes  

0   1   2  

3.  Did the author describe how he/she analyzed the data and 
explain why the analysis helped him/her answer the guiding 
question?  

 
No  

 
Partially  

 
Yes  

0   1   2  

4.  Did the author use the correct term to describe his/her 
investigation (e.g., experiment, observations, interpretation of a 
data set)?  

 
No  

 Partially  
 
Yes  

0   1   2  

ID Number 
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Reviewers: If your group made any “No” or “Partially” 
marks in this section, please explain how the author 
could improve this part of his or her report.  
  
  
  
  
  
  
  

Author: What revisions did you make in your report? Is 
there anything you decided to keep the same even though 
the reviewers suggested otherwise? Be sure to explain why.  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
The development of this peer review guide was supported by the Institute of Education Sciences, U.S. Department of Education, 
through Grant R305A100909 to the Florida State University  
  
  
Section 3: The Argument   Reviewer Rating  Instructor Score  
1. Did the author provide a claim that answers the guiding question?   

No  
 
Partially  

 
Yes  

0   1   2  

2.  Did the author include high quality evidence in his/her 
argument?  Were the data collected in an appropriate 
manner?  
 Is the analysis of the data appropriate and free from errors?  
 Is the author’s interpretation of the analysis (what it means) 
valid?  

 
No 
 
No 
 
No  

 
Partially 
 
Partially 
 Partially  

 
Yes 
 
Yes 
 Yes  

  
0   1   2  
0   1   2  
0   1   2  

3. Did the author present the evidence in an appropriate manner by:  
 using a correctly formatted and labeled graph (or 
table);  including correct metric units (e.g., m/s, g, 
ml, etc.); and,  referencing the graph or table in the 
body of the text?  

 
No 
 
No 
 
No  

 
Partially 
 
Partially 
 
Partially  

 
Yes 
 
Yes 
 
Yes  

0   1   2  
0   1   2  
0   1   2  

4.  Is the claim consistent with the evidence?   
No  

 
Partially  

 
Yes  

0   1   2  

5. Did the author include a justification of the evidence that:  
 explains why the evidence is important (why it matters) and  
 defends the inclusion of the evidence with a specific science 

concept or by discussing his/her underlying assumptions?  

  
 
No 
 
No  

  
 
Partially 
 Partially  

  
 
Yes 
 Yes  

  
0   1   2  
0   1   2  

6.  Is the justification of the evidence acceptable?    
No  

 
Partially  

 
Yes  

0   1   2  

7.  Did the author discuss how well his/her claim agrees with the 
claims made by other groups and explain any disagreements?  

 
No  

 Partially  
 
Yes  

0   1   2  

8. Did the author use scientific terms correctly (e.g., hypothesis vs.  
prediction, data vs. evidence) and reference the evidence in an 
appropriate manner (e.g., supports or suggests vs. proves)?  

 
No  

 Partially   Yes  0   1   2  
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Reviewers: If your group made any “No” or “Partially” 
marks in this section, please explain how the author 
could improve this part of his or her report.  
  
  

Author: What revisions did you make in your report? Is 
there anything you decided to keep the same even though 
the reviewers suggested otherwise? Be sure to explain why.  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Mechanics   Reviewer Rating  Instructor Score  
1.  Organization: Is each section easy to follow? Do paragraphs 

include multiple sentences? Do paragraphs begin with a topic 
sentence?  

 
No  

 
Partially  

 
Yes  

0   1   2  

2.  Grammar: Are the sentences complete? Is there proper subject-
verb agreement in each sentence? Are there run-on sentences?  

 
No  

 
Partially  

 
Yes  

0   1   2  

3.  Conventions: Did the author use appropriate spelling, 
punctuation, paragraphing and capitalization?  

 
No  

 
Partially  

 
Yes  

0   1   2  

4. Word Choice: Did the author use the appropriate word (e.g., there 
vs.  

their, to vs. too, than vs. then, etc.)?  

 
No  

 Partially   Yes  
0   1   2  

Instructor Comments:  
  
  
  
  
  
 Total:   /50  
 
The development of this peer review guide was supported by the Institute of Education Sciences, U.S. Department of Education, 
through Grant R305A100909 to the Florida State University  
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Appendix P: VASI-INTER-RATER RELIABLITY EVIDENCE 

 
Researcher's Inter-Rater Reliability  

  item_1 item_2 item_3 item_4 item_5 item_6 item_7 item_8 item_9 item_11 item_12 Results  

Student 1 Teacher 5 0 0 0 0 1 1 1 0 0 0 1 Naïve 

Student 2 Teacher 5 1 0 1 1 1 1 1 1 1 1 1 Mixed 

Student 3 Teacher 1 1 0 0 1 0 1 1 1 1 1 1 Mixed 

Student 4 Teacher 2 1 0 1 1 0 0 1 1 0 0 1 Mixed 

Student 5 Teacher 2 1 0 1 0 1 1 1 1 1 1 1 Mixed 

Student 6 Teacher 3 0 1 1 1 1 1 1 0 1 1 1 Mixed 

Student 7 Teacher 3 0 1 1 0 1 1 1 1 1 1 1 Mixed 

Student 8 Teacher 3 0 1 0 0 0 1 0 0 1 0 1 Naïve 
Chemistry Professor's Inter-Rater Reliability  

  item_1 item_2 item_3 item_4 item_5 item_6 item_7 item_8 item_9 item_11 item_12 Results  
Student 1 

Teacher 5 0 0 0 0 1 1 1 0 0 0 1 Naïve 
Student 2 

Teacher 5 1 0 1 1 1 1 1 1 0 1 1 Mixed 
Student 3 

Teacher 1 0 0 0 1 0 0 1 1 1 1 1 Mixed 
Student 4 

Teacher 2 0 0 1 1 0 0 1 1 0 0 1 Mixed 
Student 5 

Teacher 2 1 0 1 0 1 1 1 1 1 1 1 Mixed 
Student 6 

Teacher 3 0 1 1 1 1 1 1 0 1 1 1 Mixed 
Student 7 

Teacher 3 0 1 1 0 1 1 1 1 1 1 1 Mixed 
Student 8 

Teacher 3 0 1 0 0 0 1 0 1 1 0 1 Naïve 
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Appendix Q: REVISED POMI CONTENT VALIDITY PART 1 AND PART 2 

 
 
 
 
 
 

Table ____ 
 
 
 
Revised POMI Content Validity for Created Means-Focused Data (Part 1 and Part 2) 
Revised POMI Interview Response (Revised POMI Survey Response) 

Student Name Teacher Q5 Q8 Q14 Q16 Q19 Q22 Q23 Part 1 * 

 
Part 
2** 

S1 Teacher 2 D (A) SA(SA) D(D) A(A) SA(D) A(SD) A(D) B 
 
X 

S2 Teacher 4 A(A) A(SA) SA(A) A(A) A(D) SA(D) A(SD) B 
 
X 

S3 Teacher 4 D(A) A(A) A(D) D(SA) D(D) D(A) D(A) C 
 
X 

S4 Teacher 4 A(SA) A(A) D(A) A(A) D(A) A(A) A(A) B 
 
X 

S5 Teacher 3 A(A) A(SA) SD(D) A(D) SA(A) A(SD) A(D) B 
 
X 

S6 Teacher 3 A(A) A(SA) A(A) A(A) A(A) A(A) A(A) A 
 
X 

S7 Teacher 3 A(D) A(A) D(SD) SA(D) A(D) SD(A) A(D) C 
 
X 

S8 Teacher 1 A(A) A(A) D(A) A(A) D(D) A(D) A(D) B 
 
X 

S9 Teacher 1 SA(D) A(A) SA(A) A(A) A(D) A(D) D(A) B 
 
Y(Q5) 

S10 Teacher 5 A(SA) A(A) A(A) A(SA) A(SA) SA(SA) A(SA) A 
 
X 

S11 Teacher 5 A(SA) D(SA) SD(SA) SD(A) D(D) D(A) D(A) B 
 
X(Q16) 

S12 Teacher 5 A(SA) SA(SA) A(SA) SA(SA) SA(SA) SA(SA) A(A) A 
 
X(Q19) 

Note. Q5, Q8, Q14, Q16, Q19, Q22, Q23 are means-focused motivation POMI items that were asked to students via online survey and 
via interview. POMI survey responses for each question were placed in parentheses and the responses to the left of parenthesis were POMI 
interview responses.    
*In Part 1, three levels of coding existed to help understand any discrepancy between students POMI survey and POMI interview. 
  Part 1’s column displayed the POMI’s content validity based on how many times each student’s interview and survey responses changed 
from any form of agreement to any form of disagreement (e.g. a change from strongly agree to disagree would be counted as 1, while a 
change from strongly agree to agree would not be counted.  Level A ranged from 0-1; Level B; ranged from 2-4; Level C ranged from 5-
7.  
 
**Part 2 descriptions were coded level X, level Y, and level Z with each misunderstood question in parentheses. Level X describes a 
student that completely understood all the items by explaining the intent of each item accurately. Level Y describes a student that 
understood at least four out of seven items and the item is in parentheses next to the level. Level Z describes a student that understood 
three or less items out of seven and each misunderstood item is in parentheses next to the level.   
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Appendix R: POMI CONTENT VALIDITY PART 3 

POMI Content Validity: Student Matching Scenarios for each Means-Focused Item (Part 3) 
 

Student Name Teacher 

Number of Items 
Matched 
Incorrectly Items Incorrectly Matched 

Details for Incorrectly Matched 
Items 

S1 Teacher 2 2 Q8 and Q19 

Items Q8 and Q19 were flipped 
by student, which meant the 
student confused argumentation 
with lab results communication. 

S2 Teacher 4 2 Q16 and Q23 

Items Q16 and Q23 were flipped 
by student. Student confused 
problem investigation and 
asking questions to assist 
chemistry concept 
understanding during labs. 

S3 Teacher 4 0 N/A N/A 

S4 Teacher 4 2 Q16 and Q23 

Items Q16 and Q23 were flipped 
by student. Student confused 
problem investigation and 
asking questions to assist 
chemistry concept 
understanding during labs. 

S5 Teacher 3 2 Q8 and Q23 

Items Q8 and Q23 were flipped 
by student. Student confused 
searching for patterns in data 
with questions purposed to 
facilitate their own 
understanding.  

S6 Teacher 3 2 Q16 and Q23 

Items Q16 and Q23 were flipped 
by student. Student confused 
problem investigation and 
asking questions to assist 
chemistry concept 
understanding during labs. 

S7 Teacher 3 0 N/A N/A 

S8 Teacher 1 2 Q8 and Q19 

Items Q8 and Q19 were flipped 
by student, which meant the 
student confused argumentation 
with lab results communication. 

S9 Teacher 1 2 Q19 and Q22 

Items Q19 and Q22 were flipped 
by student, which meant the 
student confused evidence 
argumentation and the joy of 
learning via computer 
simulations. 

S10 Teacher 5 4 Q5, Q8 Q19, and Q23 

Student did not have an 
appropriate grasp on the 
understanding and utilization of 
a claim in a lab or how to 
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effectively communicate their 
results after an experiment. 
Additionally, student could not 
differentiate between learning 
from computer simulations and 
asking questions during lab to 
gain a better understanding of 
chemistry concepts. 

S11 Teacher 5 0 N/A N/A 

S12 Teacher 5 0 N/A N/A 
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Appendix S: REVISED POMI CONTENT VALIDITY PART 4 

 

 
 
 
 

Revised POMI Content Validity for Created Means-Focused Data (Part 4) 
 

Student 
Name Teacher  

Order of Ranked Items 
(Range is first to last) 

First Ranked and Last 
Ranked Items 

 
Agreement in Interview with 1st and Last 
Ranked Item 

S1 Teacher 2 
Q5, Q8, Q19, Q14, Q16, 
Q23, Q22 

First - Q5 
Last - Q22 

First - Q5 (D) 
Last - Q22(A) 

S2 
 
 

Teacher 4 
 
 

Q22, Q14, Q5, Q16, Q23, 
Q8, Q19 
 

First- Q22 
Last - Q19 
 

 
First- Q22(SA) 
                        Last - Q19(A) 
 

S3 
 
 

Teacher 4 
 

Q23, Q16, Q22, Q8, Q14, 
Q19, Q5 

First - Q23 
Last - Q5 

                             
                        First - Q23 (D) 
                       Last - Q5 (D) 

S4 
 
 

Teacher 4 
 

Q5, Q14, Q19, Q8, Q23, 
Q22, Q16 

First - Q5 
Last - Q16 

 
First - Q5 (A) 
Last - Q16 (A) 

S5 
 
 

Teacher 3 
 

Q5, Q8, Q19, Q14, Q16, 
Q23, Q22 

First - Q5 
Last - Q22 

 
First - Q5 (A) 
Last - Q22(A) 

S6 
 

Teacher 3 
 

Q16, Q23, Q14, Q5, Q22, 
Q19, Q8 

First - Q16 
Last - Q8 

                  
First - Q16 (A) 
Last - Q8 (A) 

S7 
 

Teacher 3 
 

Q16, Q23, Q8, Q5, Q19, 
Q14, Q22 

First - Q16 
Last - Q22 

      
First - Q16 (SA) 
Last - Q22 (SD) 

S8 
 
 

Teacher 1 
 

Q8, Q23, Q22, Q14, Q16, 
Q5, Q19 

First - Q8 
Last - Q19 

 
First - Q8 (A) 
Last - Q19 (D) 

S9 
 
 

Teacher 1 
 

Q23, Q5, Q14, Q8, Q16, 
Q19, Q22 

First - Q23 
Last - Q22 

 
First - Q23 (D) 
Last - Q22 (A) 

S10 
 
 

Teacher 5 
 

Q16, Q22, Q8, Q23, Q5, 
Q19, Q14 

First - Q16 
Last - Q14 

 
First - Q16 (A) 
Last - Q14 (A) 

S11 
 
 

Teacher 5 
 

Q22, Q16, Q5, Q14, Q19, 
Q8, Q23 

First - Q22 
Last - Q23 

 
First - Q22(D) 
Last - Q23(D) 

S12 
 
 

Teacher 5 
 

Q16, Q22, Q5, Q19, Q23, 
Q8, Q14 

First - Q16 
Last - Q14 

 
First - Q16 (SA) 
Last - Q14(A) 

Note.  Table focuses on Part 4 of interview that enabled students to rank all seven means-focused items by decreasing order of 
motivation toward learning chemistry.  
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Appendix T: VASI CONTENT VALIDITY  

Table 4.3 
 
VASI Content Validity Table 
 
Stude
nt 
Name 

Question 
#3 
Interview 
Quotes 

Question #3 
Survey Quotes 

Question #11 
Interview 
Quotes 

Question 
#11 
Survey 
Quotes 

Question 
#12 
Interview 
Quotes 

Question 
#12 
Survey 
Quotes 

Score 
for each 
question 
from 
VASI 
Survey   

Score for 
each 
question 
from 
VASI 
Interview   

Match 
Between 
Interview 
and 
VASI 
Score 
 

S1 
 

Yes, they 
can 
follow 
more 
than one 
method. 
 

Yes, one 
method for 
finding the age 
of dinosaurs 
will be different 
for finding if 
social media 
causes anxiety 
in teenagers. 
 

Reason 1 is 
weight 
distribution legs 
in the back of a 
species creates 
weighing down 
from top half 
the body 
Reason2 
cartilage 
placement there 
is gaps in legs 
and arms to 
match the 
placement on 
body. 

Placements 
of bones and 
ligaments 
line up, and 
you can put 
them back 
together 
later. 
 

One way is 
looking at 
fossils you 
must look at 
the data 
with historic 
principles 
while other 
the hand if 
you are 
building a 
building you 
must look at 
geographical 
maps.  
 

Evidence 
from facts 
of other 
experimen
ts, data, 
and 
conclusion
s of their 
finding. 
 

3. 1 
11. 0 
12. 1 
 

3.1 
11. 1 
12. 1 
 

2 out of 3  

S2 
 

Yes, if 
you are 
trying to 
size the 
noodle or 
you can 
use the 
water 
displace
ment are 
two 
different 
ways to 
get the 
same 
answer.  
 

Yes, I think 
they can follow 
multiple ways. 
 

Bigger bones 
are placed at its 
feet will make it 
have more 
power. If it is at 
the front than it 
will weigh the 
bottom half of 
the body down. 
Figure 2 stands 
on its legs it 
would break it 
would not be 
able to stand up. 
Bottom legs 
would be 
useless.  
There is more 
space for Figure 
1 for its bones 
and the Figure 2 
would be less 
mobile because 
the bones are 
tightly 
connected to its 
frame. 

N/A The data 
that they 
collect they 
use in their 
conclusion 
to answer 
the question 
or the result 
they are 
trying 
answer. 
Whether it 
is a 
scientific 
problem 
without the 
data they are 
not able to 
prove what 
they are 
researching 
about.  
 

N/A 3. 1 
11.0 
12.0 
 

3. 1 
11.1 
12.1 
 

1 out of 3  
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S3 
 

yes 
 

No because 
there’s a 
specific way 
that an 
experiment 
must be done. 
You must first 
collect some 
data and make a 
claim, then 
collect the 
materials 
needed for the 
experiment and 
conduct said 
experiment. 
Finally, you 
must put your 
data into a data 
table and restate 
your claim if it 
was right or 
wrong. 

 

– 
Figure 1 had the 
best positioning 
it makes more 
sense because 
you wouldn’t 
wont short legs 
and short longs. 
Tiny bones look 
like they would 
support the 
fossil property 
may not be able 
to function. 
 

One reason 
would be 
that the 
animal’s 
legs would 
have to be 
bigger to 
help support 
the body and 
that and 
animal will 
arm that big 
would not 
be beneficial 
to itself 
 

The types of 
information 
use would 
be past bone 
lay outs to 
help justify 
the current 
bone and 
common 
sense one 
figure 1 
looks more 
natural. 
 

They use 
rational 
informatio
n and 
common 
sense. 
 

3.0 
11.1 
12.0 
 

3.0 
11.1 
12.0 
 

3 out of 3 

S4 
 

yes 
 

No, because 
there is only 
one method do 
to experiments 
and that is the 
scientific 
method. 
 

Figure 1 looks 
natural because 
Figure 2 arms 
don’t look 
correct or legs 
would not able 
to support the 
rest of the body. 
Figure 1 looks 
more obvious 
sorting of the 
bones.  
 

Because it 
just looks 
righter that 
the second 
one. I mean 
gorillas kind 
of have the 
same 
structure as 
figure two, 
but it just 
looks so 
impractical 
for sorting 
and bone 
positioning 
compared to 
figure one. 
 

Skeletons of 
creatures of 
that time 
period or 
evolution of 
the animal 
and place in 
a timeline 
based on the 
evolution of 
the creature 
and 
common 
sense of 
Figure 1 
looking 
more natural 
than figure 
2.  
 

The good 
kind. 
 

3. 0 
11.1 
12.0 
 

3.0 
11.1 
12.1 
 

2 out of 3 

S5 
 

Yes, 
seeing 
how 
much 
cereal is 
in the 
bag the 
person 
can use 
scale and 
another 
person 
can count 

Yes, I believe 
that scientific 
investigations 
can follow more 
than one 
method because 
if one way 
doesn’t work 
out then another 
way will.  
 
 
 

The bones 
structure is 
parallel and 
how well the 
bones are 
together. Figure 
2 they are 
slanted bones.  
 

Figure 1 had 
the best 
sorting and 
positions of 
the bones 
because of 
the way the 
bones where 
placed and 
how they 
were found. 
 

How old the 
bones are 
and where 
they were 
found and 
how 
damaged the 
bones are.  
 

The type 
of 
informatio
n scientist 
uses to 
explain 
their 
conclusion
s is based 
on the 
evidence 
they found 
and what 

3.1 
11.1 
12.1 
 

3.1 
11.1 
12.1 
 

3 out of 3  
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it out and 
then 
divide to 
find the 
amount 
of cereal. 
 

 has a 
better 
understan
ding. 
 

 
 
S6 
 
 

Yes, 
because 
you can 
have case 
study 
with only 
one 
subject 
or a 
correlatio
n study 
where 
you can 
compare 
variables 
and they 
can both 
answer a 
question 
you 
have.  
 

Yes, for 
example, in 
psychology 
multiple types 
of experiments 
can be done to 
collect data. 
Some are case 
studies, 
surveys, and 
naturalistic 
observations, all 
using the 
scientific 
method. 
 

Because the 
main legs need 
to hold up all 
the body weight 
so they can be 
stronger. And 
they fit with the 
bottom half of 
the body for 
figure 1. 
 

Because the 
legs on 
animal two 
are too weak 
to be used as 
legs, and 
figure one, 
the legs 
seem to hold 
the body 
weight of 
the dinosaur. 
 

Research on 
the topic 
and 
background 
along with 
evidence 
from other 
comparative 
species.  
 

Biological 
evidence 
and 
compariso
n of other 
animals or 
dinosaurs. 
 

3.1 
11.1 
12.1 
 

3.1 
11.1 
12.1 
 

3 out of 3  

S7 
 

Yes, 
CER and 
Sci 
Method 
they 
differ 
because 
they 
approach 
the 
problem 
in 
different 
ways and 
use 
different 
steps to 
get to the 
result. 
 

Yes, such as the 
prosses seen 
above in which 
an observation 
was first made 
and later tested, 
or in common 
claim evidence 
reasoning 
investigated 
investigations 
used by 
biologists. 
 

The animal in 
figure 1 seems 
more able to 
survive and live 
and reproduce. 
The bones in 
figure 1 fit 
together better 
and are matched 
better than 
figure 2. 
Finally, the fact 
that the upper 
extremity bones 
are very thin in 
figure 1 and not 
good for 
walking on 
fours. Figure 2 
upper extremity 
bones are 
thicker and 
better for 
walking on 
fours.  
 

I think 
figure one is 
more 
prominent 
because it 
has a more 
symmetrical 
bone payout. 
Furthermore
, figure two 
does not 
appear to be 
fit for any 
environment
. 
 

Scientist use 
logically 
thinking, sci 
inquiry, 
data, 
evidence 
and 
historical 
findings.  
 

Evidence 
and 
Reasoning 
 

3. 1 
11. 1 
12.1 
 

3.1 
11.1 
12.1 
 

3 out of 3 
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S8 
 

Yes, if 
there is 
only one 
method 
then how 
can you 
get 
enough 
data to 
figure 
out what 
is right 
or 
wrong. If 
only do 
the same 
thing 
over and 
over and 
get same 
results is 
insanity. 
If you 
are trying 
to find 
out what 
a certain 
mineral 
is made 
of in 
terms of 
elements 
you 
could do 
that with 
an 
electroni
c 
microsco
pe or by 
taking 
bits and 
pieces of 
it and 
testing 
reactivity 
of 
elements.  
Burn it 
or see 
reactivity 
to flame 
and see 
colors 
that it 
gives off 
and see if 

Yes, scientific 
investigations 
can follow 
various 
methods. For 
example, 
experimenting 
on how 
chemicals react 
with water is a 
hands-on 
experiment, but 
observing the 
flight patterns 
of birds is more 
of an 
observation-
oriented 
experiment. 
 

They probably 
knew that the 
animal’s 
muscles and 
ligaments 
would not have 
worked 
properly with 
the second 
positioning. 
They had 
scientific data 
to prove that 
was the case 
that the 1st 
figure is best. 
 

It makes 
more sense 
because the 
weight 
distribution 
would be 
messed up 
in B. 
 

They use 
data 
gathered by 
numerous 
experiments 
and test 
along with 
common 
sense logic 
and years of 
training and 
gaining 
knowledge 
and previous 
knowledge.  
 

Scientific 
facts. 
 

3. 1 
11. 1 
12. 0 

3,1 
11.1 
12. 1 

2 out of 3 
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they 
match 
somethin
g. 
 

S9 
 

No there 
is not 
more 
than one 
way to 
perform 
scientific 
investiga
tion 
because 
you need 
to know 
about 
your 
subjects 
beforeha
nd and 
record 
your data 
and draw 
your 
conclusio
ns from 
said data.  
 

Yes, they can 
follow more 
than one 
method because 
a student can 
observe birds 
and find an 
answer to a 
question or a 
student can 
conduct an 
experiment to 
get their 
answer. 
 

The reason is 
because the 
figure 2 its clear 
that the bones 
cannot hold up 
the entire 
organism 
logically 
speaking.  
 

Figure 2 put 
the legs 
where the 
arms are 
supposed to 
be and vice 
versa. The 
legs are 
bigger to 
support the 
weight of 
the dinosaur. 
Something 
small arms 
can’t do. 
 

Scientist 
used 
information 
that they 
had before 
of other 
dinosaurs 
that they 
had found 
and agreed 
on the form 
of and so 
they already 
have 
foundation 
to build 
upon in their 
mind.  
 

How well 
the bones 
fit into the 
slots, how 
much 
muscle 
would be 
necessary 
to support 
the weight 
of the 
dinosaur, 
and past 
knowledg
e on 
dinosaurs. 
 

3. 1 
11. 1 
12. 1 
 

3. 0 
11.1 
12. 1 
 

2 out of 3  

S10 
 

Yes, but 
I don’t 
know 
how. 
Seems 
irrational 
that they 
only 
follow 
one 
method 
 

I do not know. 
 

Figure 1 has the 
bigger legs on 
the bottom to 
support the rest 
of body. Figure 
2 the smaller 
legs at the 
bottom will 
work well for 
the dinosaur to 
walk on.  
 

The leg 
position in 
figure 1 
makes more 
sense in 
which the 
dinosaur 
would stand. 
Figure 2 
would have 
immense 
trouble 
walking. 
 

These two 
figures they 
use they use 
what is most 
reasonable 
on how the 
bone 
assortment 
should be.  
 

The data 
and 
reasoning 
that makes 
the most 
sense? 
 

3. 0 
11.1 
12.1 
 

3. 0 
11.1 
12.1 
 

3 out of 3  

S11 
 

Yes, I 
can’t 
explain 
it. I feel 
that yes 
is true 
because I 
don’t 
have 
specific 
reasonin
g. 
 

Yes, because 
there are 
multiple ways 
to gather 
scientific 
information in 
different 
experiments 
that don’t 
necessarily 
follow the same 
path. Scenario 
one is an 

Logically 
because in the 
first one the 
way that lived 
and what they 
ate it makes 
more sense for 
them to support 
themselves on 
hind legs and 
use other arms 
to do other 
things. In 

Most of the 
scientists 
agree that 
Figure 1 had 
the best 
sorting and 
positioning 
of the bones 
because the 
legs in 
figure 1 look 
more like 
legs and the 

Scientists 
what they 
knew about 
dinosaurs to 
explain their 
reasoning.  
 

Scientists 
use 
backgroun
d 
informatio
n and 
knowledg
e to 
explain 
their 
conclusion
s. 
 

3. 1 
11. 1 
12. 1 
 

3. 1 
11. 1 
12. 1 
 

3 out of 3  
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example of an 
untraditional 
way to gather 
scientific 
information that 
was still 
effective. Many 
other 
experiments 
follow a 
specific step-
by-step process 
of gathering 
information. 
 

Figure 2 the 
hind legs are 
arms would not 
be that 
beneficial and 
the whole 
dinosaur would 
be more leveled 
and less tall.  
 

legs in 
figure 2 look 
more like 
arms. 
Besides 
physical 
appearance, 
the bones 
look like 
they would 
fit better in 
figure 1. 
 

S12 
 

No, 
followin
g more 
than one 
method 
can lead 
to bias. 

No, I believe 
there is only 
one way to 
conduct this 
experiment. 
With something 
so specific as 
beak and diet, 
the only two 
variables that 
can be 
administered 
and watched are 
beak and diet. 
Any other 
methods of 
testing might 
lead to 
inconclusive 
results 
 

Longer hind 
legs provided 
an advantage to 
running or 
maneuverability
.  

The longer 
legs 
provided an 
advantage 
over other 
dinosaurs 
 

Which 
structure 
was found 
more 
recently the 
amount of 
dinosaur 
bones 
recovered 
matching 
figure one? 

They 
would 
need to 
include 
how one 
might 
have our 
lives the 
other or 
population
s. 
 
 

3.0 
11.1 
12.0 
 

3.0 
11.1 
12.0 
 

3 out of 3  

S13 
 

Yes, 
there are 
multiples 
ways to 
get 
solution 
to an 
answer. 

Yes. There are 
many different 
thought 
processes that 
can lead u to 
solution. 
 

Grab prey and 
hold close to 
eat. To attach 
prey close 
distance to 
them.  

Helps pull 
pray closer 
 

Fossils, to 
see what 
they might 
eat to see if 
that variable 
might affect 
other 
aspects such 
as arms.  

Bones and 
meal plan 
over time 
 

3. 1 
11.0 
12.1 
 

3. 1 
11. 0 
12. 1 
 

3 out of 3 

Note. Table ___ displays the content validity of the Views About Scientific Inquiry instrument. Thirteen students were interviewed and 
quoted on their responses on the three most confusing questions to ensure students’ comprehension of these questions.  
 
Table _ starts with two columns for each question (3, 11, & 12), which displays interview quotes for that question and then survey quotes 
from the online VASI survey pertaining to each student.  
 
In the next set of columns, all three question’s VASI score was listed for each student; scores were 0 (naïve) or 1 (informed).  
In the final column, VASI interview and survey scores were compared to evaluate precision for each student’s responses, e.g. a student 
that scored 1 on each question for both VASI interview and survey match column would be:  3 out of 3.  
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