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Environmental contamination from marine oil spills can have damaging impacts on 

ecosystems and human health. In 2010, an explosion of the Deepwater Horizon (DWH) oil 

drilling platform resulted in approximately 1,728 km of shoreline oiling. Existing research 

characterizes health risk from exposure to oil spill chemicals (OSCs) for adults; however, 

data on impacts to child health are limited. One objective of the Beach Exposure And Child 

HEalth Study (BEACHES), funded by the Gulf of Mexico Research Initiative, is to estimate 

health risks to children between walking and six years of age from exposure to OSCs in a 

post-oil spill scenario during normal recreational beach activity. The National Research 

Council (NRC) risk assessment framework was adapted to account for child behavior 

patterns. Child macro- and micro-activity data were gathered from 391 parent surveys and 

recorded observations of beach play from 119 children from two beaches each in Miami, 

Florida and Galveston, Texas. Chemical concentration and distribution data for various OSCs 

(such as alkanes, polycyclic aromatic hydrocarbons, metals, and dispersants) were 

aggregated from existing literature and combined with micro-activity data to generate cancer 

and non-cancer risk ranges for oral (non-dietary), dermal, and inhalation exposures. Each 



 
 

 

input variable in the risk assessment framework was evaluated to determine which variable(s) 

have the most significant impact on overall risk estimates. A Monte Carlo analysis (MCA) 

was conducted to address uncertainty and variability of both the assumed and observed 

datasets. Finally, a sensitivity analysis was performed to investigate the different 

distributional assumptions for each model input. These analyses revealed gaps in current 

research to provide useful information in guiding local, regional, and national public health 

agencies regarding monitoring of hazards, beach advisories and closures, and media response 

in the event of a chemical disaster event.   
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BACKGROUND (LITERATURE REVIEW) 

Overview  

Contamination of shorelines from marine oil spills can have immediate and lasting 

impacts on the social, economic, political, and health makeup of communities and 

ecosystems. Over the years, there have been a number of oil spills in the United States and 

around the world, and various methods have been utilized to evaluate the magnitude and 

scope of these impacts. A risk assessment framework can provide important information to 

address and predict risks to a population from an adverse environmental event, where 

ecological and human health risk assessments have been used routinely for various scenarios. 

This information, in turn, can inform agencies involved in response and establish policy for 

risk mitigation.1  

Deepwater Horizon Oil Spill  

In April 2010, the BP-operated Deepwater Horizon (DWH) offshore drilling rig 

experienced an explosion that resulted in the deaths of 11 workers, as well as the release of 

over 205 million gallons of oil2 and hundreds of thousand tons of hydrocarbon gases into the 

Northern Gulf of Mexico (GOM) over the course of 84 days. The DWH rig, part of the 

Macondo Prospect, was located 66km off the coast of Louisiana and was approximately 

1500m in depth.3 This spill marked the largest in U.S. history, surpassing the previous Exxon 

Valdez spill in the Gulf of Alaska. A joint survey conducted in November 2010 by the 

National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey 

(USGS) estimated that 5% of discharged oil was burned in-situ and 20% was either skimmed 

or captured. Additionally, 25% was either evaporated or dissolved, while 24% was either 
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naturally or chemically dispersed. The remaining 26% of oil from the DWH rig was not 

recovered or dispersed.4 Data from 2016 found that 22% of surveyed shoreline in Texas, 

Louisiana, Mississippi, Alabama and Florida contained surface or subsurface oiling.5  

Between May 2010 and June 2011, Louisiana had 3,420 beach closure events (BCE) due to 

DWH; Mississippi had 2,148 BCE, Alabama had 1,661 BCE, and Florida had 2,245 BCE; 

Texas did not report any beach closures due to oil contamination.6    

One method to address the environmental impact of the DWH oil spill was to inject 

dispersant chemicals, specifically Corexit 9500, directly into the 1500m deep wellhead in 

addition to surface treatment with Corexit 9527.7  By dispersing oil at the sub-surface level, 

responders aimed to prevent large slicks from forming at the surface near the wellhead. This 

approach limits safety concerns for cleanup ships in the immediate area of the wellhead and 

did reduce oil impact along the shoreline.2  Overall, roughly 2 million gallons of dispersants 

were used for both surface and wellhead treatments between April and July 2010.7  

The GOM, compared to other nearshore drilling regions in the U.S., comprises a 

majority of offshore drilling activity.8 Although there has been an overall decline in marine 

oil spills since the passing of the Oil Pollution Act of 1990 (OPA), there have been some 

smaller marine oil spills in the GOM since DWH. In 2016, Royal Dutch Shell addressed a 

well leak in the Glider Oil Field, about 165 miles southwest of Louisiana. Approximately 

88,200 gallons of light crude oil had leaked from a subsea wellhead flow line in the two-day 

period between detection and response. With the use of skimmers and booms, response units 

were able to recover 76,600 gallons of oil-water mixture. The remaining oil was left for bio 

and photo-degradation.9  
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There have been many post-spill studies following DWH to synthesize new research 

regarding the effects of oil pollution on various ecosystems as well as psychological and 

physical health of communities and first responders. Studies have also been conducted to 

explore social and economic changes for industries and society affected by the oil spill. 

Many of these studies have been funded by the Gulf of Mexico Research Initiative (GoMRI).  

Adult Health Impact from DWH  

Much of the existing literature on the impact of oil spill contamination on human 

health focuses on the health of adults, specifically first responders and groups involved in oil 

spill cleanup.10  After the DWH incident, over 8,500 U.S. Coast Guard (USCG) personnel 

were deployed to coordinate and respond to clean-up efforts. Many of these personnel were 

exposed to crude oil and its byproducts, along with exposure to chemical dispersants. Studies 

focusing on the physical health of oil spill responders have found positive associations 

between exposure to crude oil and adverse respiratory and dermal health symptoms in both 

short-term and long-term instances.11,12 Furthermore, results from a 2017 study (McGowan et 

al.) found positive associations between exposure to the chemical dispersant Corexit and 

ocular, dermal, and respiratory irritation symptoms.13 Some of these studies have explored 

the relationship between specific behaviors and adverse health outcomes. For example, the 

National Institute of Health’s GuLF study conducted a prospective study of 32,608 

volunteers and workers involved in post-spill cleanup after DWH to assess potential exposure 

to oil constituents. Utilizing data regarding spill cleanup-related tasks, such as physically 

collecting oil from water or land, moving hazardous materials, working directly on the rig, or 
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providing administrative support, the study found that approximately 45% of participants 

experienced a maximum daily total hydrocarbon exposure level greater than 1.0ppm.14  

In addition to physical health impacts, some research has considered the 

psychological and social consequences resulting from the DWH oil spill. Psychological and 

behavioral-based studies conducted in the immediate aftermath of the spill investigated levels 

of distress within coastal communities. A 2011 study (Grattan et al.) found clinically 

significant levels of anxiety and depression within two coastal communities in Alabama and 

Florida; participants who suffered income-based loss had meaningfully higher scores relating 

to depression, tension, anxiety, fatigue, confusion and mood disturbance compared to 

participants who did not experience income-based loss. The former group also had a lower 

resiliency score and had a higher likelihood of using behavioral disengagement as a coping 

mechanism.15 Long-term studies assessing the mental health of affected communities 

continues, especially for those who had been impacted by Hurricane Katrina; several of these 

studies utilize frameworks previously established in the aftermath of the Exxon Valdez oil 

spill.16        

Some studies exploring the social aspect of post-oil spill changes examined how 

perceived resiliency determined an individual’s physical and mental response to disruption of 

life and livelihood.17 Other research has analyzed the impact of community resiliency on an 

individual’s response to disaster-related stressors following DWH. Specifically, these 

analyses outlined how family, local community, and governmental agencies could help those 

affected respond and adapt to post-disaster disequilibrium by making key resources 

accessible and available.18  
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Industrial, Economic, and Ecosystem Impact from DWH 

Studies evaluating the economic impact from oil spills on affected industries have 

been conducted. An economic analysis seven years post-spill concluded that DWH 

contributed to roughly $1.3 billion loss in visitor spending from recreational activities along 

the northwestern Florida shorelines of the GOM. The study estimated that total losses for this 

region were close to $2.04 billion in industry output as well as an estimated employment loss 

of over 20,000 job-years.19  

In regards to industry, analysts estimated $1.6 billion total revenue loss, $0.8 billion 

total profit loss, and $4.9 billion total economic loss among commercial fisheries; for 

recreational fisheries, analysts estimates 1.9 billion of total revenue loss, $1.1 billion in total 

profit loss, and $3.5 billion of total economic loss due to closures following DWH oil spill.20 

Lastly, several studies have examined the effects of marine oiling on various Gulf 

ecosystems, such as seabirds, coral reefs, sea turtles, various fish populations, and marine 

mammals.3    

Other Major Oil Spill Events 

Torrey Canyon 

Marine and nearshore oil spills in the US and throughout the world have both 

experienced downward trends, largely due to changes in national legislation and international 

agreements; nevertheless, the risk of a major oil spill event remains an issue for many 

nations.21 One of the first large marine oil spills occurred in 1967 when the supertanker SS 

Torrey Canyon shipwrecked near the coast of Cornwall, England, depositing approximately 

37 million gallons of crude oil on shorelines in England, Spain, France, and the Channel 
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Islands. At the time, information on the fate, transport and effects of petroleum-related 

hydrocarbons in water was scarce. A combination of burning, bombing, physical removal, 

and dispersants was utilized to remove oil from the sea and shore. This event, combined with 

similar oil spills in the U.S. and Canada, prompted further research on the impact and 

recovery from oil spills and dispersants on ecosystems and communities. Finally, the 

magnitude of the Torrey Canyon oil spill prompted the passing of the National Oil and 

Hazardous Substances Pollution Contingency Plan (NCP) by the United States, in addition to 

other international maritime laws for oil spill response enacted by the United Nations.22  

Ixtoc I  

One of the earliest marine oil spills to originate in the Gulf of Mexico (GOM) 

occurred in 1978 as a consequence of a blow-out on the Ixtoc I exploratory well in the Bahia 

de Campeche region of Southwest GOM. Between the initial blowout and the capping of the 

well 290 days later, approximately 145 million gallons of crude oil had leaked into the 

offshore and coastal zone of the GOM.2 The oil composition was lighter than that carried by 

the Exxon Valdez, and due to the depth of the well leakage point, a majority of the released 

oil formed a three-phase emulsion of small droplets and suspended gas bubbles. A small 

percentage of the oil was burned at the well site; a majority evaporated into the atmosphere, 

was mechanically removed at the well site through skimmers and absorbent devices, or sank 

to the bottom of the GOM. Approximately 10-15% was degraded through biological or 

photochemical means. Less than 1% was deposited on shorelines in Texas, while the 

remaining 5% (around 6 million gallons) was deposited on the Mexican shoreline.23 Ixtoc I 

represents the first major oil spill in a tropical marine environment. This region, in particular, 
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was a large biodiverse subsystem of a larger marine ecosystem in the GOM. The event 

triggered public concern regarding the acute and residual effects of oil contamination on 

shorelines and aquatic communities; furthermore, it demonstrated the need for pre-spill 

information in order to accurately assess the magnitude of post-spill environmental damage.24    

Exxon Valdez 

In March 1989, the oil tanker Exxon Valdez discharged approximately 11 million 

gallons of oil after running aground on the Bligh Reef off the coast of Prince William Sound, 

Alaska. Due to the nature of the oil (heavy oil), as well as weather conditions and safety 

concerns, dispersants were not used to mitigate the fate and transport of the oil. As a result, a 

significant portion of the discharged oil reached the shoreline, affecting approximately 16% 

of the shoreline of Prince William Sound and 14% of the shoreline of the Gulf of Alaska. 

Bioremediation from microbial degradation and enhancement with fertilizer was the primary 

method for oil removal. By 1992, studies indicated that a majority of the oil had been 

removed from both shorelines and cleanup activities were suspended. At the time, the Exxon 

Valdez incident represented the largest marine oil spill in U.S. history.2  

Due to the magnitude of the spill, as well as its impact on the local tourism and 

fishing industry, existing regulations associated with oil production and transport were 

reevaluated and new policies were enacted to potentially mitigate the risk for future spills.25 

Furthermore, this incident prompted decades of studies of the long-term effects of oil spills 

on communities and ecosystems, especially in regards to social and mental health from loss 

of employment or livelihood. Prior to this spill, very few studies gave attention to human 

health effects from oil spill events. Many of the human health studies from Exxon Valdez oil 



 
 

8 

spill focused on differences in depressive symptoms and community resilience among 

various indigenous communities; these studies found higher rates of post-traumatic stress 

disorder and social disruption in indigenous communities where fishing provided the primary 

sustenance for families. Furthermore, symptoms related to anxiety and depression were 

higher in the women of these communities.26  This later laid the groundwork for future 

research efforts following large oil spill events, and was the catalyst for the passing of the Oil 

Pollution Act in 1990.27    

Erika and Prestige 

In 1999, the oil tanker Erika shipwrecked off the coast of Brittany, France, 

discharging over 30,000 gallons of oil into nearby water and along 500km of French 

coastline. Due to the rocky nature of the coast, much of the subsequent removal and cleanup 

of shoreline oil was conducted by hand.28 Cross-sectional studies following the Erika spill 

found that although health risks to the general population were limited, cleanup workers and 

volunteers, most of who had prolonged skin contact with oil, had higher rates of adverse 

health conditions, such as dermatitis.26  A few years later, in 2002, the oil tanker Prestige 

experienced a burst tank and consequently released around 18 million gallons of oil into the 

waters and along 1,000km of coastline near Spain, Portugal, and France. A majority of 

cleanup activities were conducted by local fishermen and volunteers, many of whom did not 

use personal protective attire or equipment.29 Studies from the Prestige spill showed 

prevalence of lesions, low back pain, and neuro-vegetative disorders among bird cleanup 

workers, as well as higher rates of nausea, respiratory issues, and itchy eyes among workers 

who reported not using personal protective equipment (PPE), compared to workers who 
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reported using PPE.26  The Erika and Prestige incidents led to a heightened focus on the 

impact of OSC exposure on human health.30   

Oil Spill Impacts on Child Health 

Few studies have explored the health risk of oil spill contaminants (OSCs) to 

children. In 2013, a study was conducted to evaluate the effects of OSCs, specifically volatile 

organic compounds (VOCs), on the respiratory health of children following the 2007 Heibei 

Spirit oil spill on the western coast of South Korea. An initial survey was conducted for 436 

children living near or away from the spill area to determine whether the target populations 

had ever been diagnosed with asthma or experienced asthma-related symptoms in their 

lifetimes. A skin prick test was also conducted to rule out other inhalant allergies. An 

analysis of data from pulmonary function tests of child subjects found that children who lived 

near the coast exhibited significantly lower forced expiratory volume in one second and 

increased airway hyper-responsiveness compared to children who lived farther from the area 

of the oil spill. Furthermore, children near the coast had higher prevalence of asthma and 

wheezing compared to children in the second group.31  

There are some existing data on the impact of DWH on the health of children. A 

prospective cohort study (Peters et al.) was conducted between 2012 and 2016 to investigate 

midterm and long-term physical, behavioral, and mental health outcomes from DWH in 

women and children living in the most heavily affected coastal communities in Louisiana. 

The study involved telephone interviews, home visits, bio-specimen collection, and a child 

impact sub-study of over 2,000 women and 600 children.32 The study found associations 

among economic exposure, psychosocial stress, and adverse physical health symptoms.33  
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A 2017 study (Tipre et al.) utilized mail-in questionnaires to assess environmental 

exposure patterns to OSCs among pre-K to fourth-grade children 11 months post-DWH. A 

survey was administered to parents of children at six schools in both inland and coastal 

regions in Mobile, Alabama 11 months after DWH. Results from 180 completed surveys 

found that families of children in coastal areas were significantly more likely to continue 

exposure-related behaviors after an oil spill event compared to children from inland 

communities; namely, the behaviors of focus were fishing and eating caught fish. These 

families also were less likely (although not significantly) to reduce other exposure-related 

behaviors, such as visiting beaches and participating in cleanup activities.34 Both the Peters 

and Tipre studies utilized self-reports and interviews to estimate exposure to OSCs.  

Oil Spills and Policy 

Applicable Policy on Oil Spill Prevention and Response 

A combination of state, federal and international policies govern procedures for oil 

spill prevention. One of the earliest statutes was the NCP, enacted in 1968 in response to the 

Torrey Canyon oil spill in Europe. This law contained fundamental procedures for response 

to both oil spills and release of other hazardous materials. The NCP was later amended with 

the passing of the 1972 Clean Water Act (CWA), which has provisions for oil spill reporting, 

liability, and response. Additionally, this act mandates a federally appropriated fund for 

cleanup and restoration of natural resources. Other early statutes include the 1973 Trans-

Alaska Pipeline Authorization Act, which addresses oil spills and corporate liability for the 

Trans-Alaska Pipeline System, and the 1974 Deepwater Port Act, which regulates oil spills 

and liability at deepwater oil ports. Lastly, the 1978 Outer Continental Shelf Lands Act 
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Amendments created supplementary provisions for oil spills originating from extraction 

facilities that were operating in federal offshore waters.35  

After the Exxon Valdez oil spill in 1989, concerns were raised regarding whether the 

prevalent policies were adequate in addressing all types and magnitudes of oil spills. 

Following public pressure to revise existing laws, Congress enacted the Oil Pollution Act 

(OPA) in 1990, which consolidated all existing statutes under one federal law. The OPA 

represented the first comprehensive regulation to address oil spills in both U.S. waterways 

and coastlines.35 The OPA, along with existing statutes such as CWA, is comprised of two 

main components:  oil spill prevention and preparedness, and oil spill response and cleanup. 

Some key revisions instituted by the OPA included designation of a responsible authority in 

the event of an oil spill; expanding the scope and function of the NCP; requiring response 

plans from oil vessels and facilities; mandating a double-hull design for oil vessels; and 

creating an overarching liability system.36  

Coastal state agencies receive funding for recreational water quality testing, 

monitoring, and public notification through the federal Beaches Environmental Assessment 

and Coastal Health Act (BEACH Act), which is then distributed to local and regional 

agencies. The BEACH Act also requires coastal states to adopt water quality standards for 

pathogen and pathogen indicators. There are no provisions in place, however, for chemical 

standards.37   

The U.S. participates in various international treaties for marine pollution and vessel 

safety. Many of these treaties are regulated through the International Maritime Organization, 

a subdivision of the United Nations. Global cooperation for oil spill prevention and response 
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came largely as a reaction to the Torrey Canyon oil spill in the English Channel.22 The most 

relevant accord is MARPOL 73/78, which includes Annex I – Prevention of Pollution by Oil. 

This sets guidance for oil spill response, as well as emergency procedures onboard vessels 

when an oil discharge has occurred. The U.S. follows MARPOL 73/78 protocols through the 

Act to Prevent Pollution from Ships (APPS). APPS applies both to international vessels in 

U.S. waters or ports as well as U.S. ships operating in international waters.36   

Designated Authorities for Oil Spill Response 

Jurisdiction of U.S. coastal waters is shared between the coastal states and the federal 

government. Coastal states, under the 1953 Submerged Lands Act, enforce jurisdiction over 

resources and submerged lands in waters up to 3 nautical miles from shore. Nonetheless, 

navigation, commerce, defense, and international activities are still regulated by federal 

agencies in waters designated under state jurisdiction. The federal government has sole 

jurisdiction between 3 and 200 nautical miles off-shore, where the exclusive economic zone 

ends. In the event of an inland oil spill, the EPA has authority; in coastal waters, the USCG is 

the primary responding agency. This branch has the decisive power to coordinate oil spill 

response at the national, state, and private-sector level. They are aided by other federal 

agencies, including NOAA, which collects data to determine impact of OSCs on local 

ecosystems and communities.35    

Regulations and Protocols for Beach Closures 

The EPA has established protocols to monitor beach quality and deliver information 

to the public regarding beach advisories or closures. The Beach Advisory and Closing Online 

Notification system (BEACON) serves as a long-term database of beach advisories and 
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closures and is available to the public. In addition to water quality standards for pathogens 

mandated by the BEACH Act, the EPA also periodically publishes water quality criteria for a 

set of chemical pollutants, known as the Ambient Water Quality Criteria for the Protection of 

Human Health; the latest list published in 2015 includes 94 chemicals that have the potential 

to pose a risk to human health. A number of chemicals from this list, such as benzene and 

fluoranthene, can be found in crude oil.38  The methodology used to generate this list utilizes 

variables such as body weight (average for adult human), drinking water consumption rate 

(per capita estimate for adult humans), fish consumption rate (90th percentile rate for adult 

humans), toxicity values, and relative source contribution.39 Although this document serves 

as an essential recommendation tool for agencies to evaluate their local water quality 

standards, it does not take into consideration exposure inputs for children.  

Risk Assessment: Current Models and Uses in Public Health 

Risk is a measure of probability that an event will occur as a result of a given 

exposure. In broad terms, risk assessment is defined as “a systematic process of evaluating 

the potential risks that may be involved in a projected activity or undertaking.”40  In regards 

to environmental health, the EPA defines risk assessment as a “qualitative and quantitative 

evaluation of the risk posed to human health and/or the environment by the actual or 

potential presence and/or use of specific pollutants.”41 There are two major types of risk 

assessment:  ecological, which focuses on the risk to the environment and ecosystems, and 

human health risk assessment, which focuses on the risk to individuals and populations. The 

risk assessment paradigm has four major components:  hazard identification, dose-response 

assessment, exposure assessment, and risk characterization (Figure 1).42 Hazard identification 
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involves identifying any substance that may cause harm, and determining any health effects 

associated with the substance. Information used in the dose-response assessment includes 

evaluating data from animal models and extrapolating for various dose thresholds to 

determine toxicity levels. Exposure assessment characterizes the possible modes/dynamics of 

contact between the target population and the hazardous substance and any contaminant 

loading. In the case of human health risk assessment, exposure can be from a single route or 

a combination of oral, dermal and inhalation exposure routes. The risk assessment paradigm 

is an iterative process, where data from one step can provide information to other 

components. These data provide a risk characterization profile for a single hazard or group of 

hazards. Risk characterization entails using the data from the first three components to 

determine risk estimates and the overall degree of confidence for those estimates. The risk 

assessment process can potentially inform health, social, legal and economic decisions for 

risk management practices.42  

Risk Assessment Application in Environmental Scenarios 

Risk assessment can be applied to a wide array of industries, such as engineering, 

finance, business and security. Within the bounds of environmental health and safety, risk 

assessment can be applied to food, water, air, and other environmental and occupational 

exposure scenarios.43 Some examples of risk assessment applications include:  determining 

human health risk from waterborne viruses44 and other pathogens45; using QMRA to estimate 

the impact of contaminated irrigation water on fresh produce46 leading to microbial standards 

for food safety47; and using risk assessment to ascertain the potential reduction in human 

health risk from the implementation of an antimicrobial agent in hospital surface treatment.48 
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Risk assessment methods have also been previously used for natural disaster preparedness 

and damage mitigation. Studies have addressed the integration of risk assessment in response 

to tornadoes, earthquakes, hurricanes, monsoons and floods.49 50 51 52  

Ecological Risk Assessment from DWH 

Ecological risk assessment constitutes the same general framework as human health 

risk assessment but also takes into consideration the complexity and sensitivity of 

ecosystems, as well as indistinct routes of exposure and effects of nonchemical hazards, 

feedback loops, and other adaptive processes. In many ecological risk assessment scenarios, 

hazards are often referred to as stressors.53 Due to the organismal diversity of the GOM, 

much of the existing risk-related research following DWH focuses on ecological risk 

assessment. For example, frameworks have been put forth to investigate the effect of DWH 

on migratory bird populations, estuarine fish, and oyster reefs.54 55 56 These ecological risk 

assessment frameworks, compared to human health risk assessment, emphasize restoration 

and recovery practices rather than larger-scale policy recommendations. 

Probabilistic Risk Assessment 

The EPA established probabilistic risk assessment (PRA), a type of risk assessment 

process, as a means to carry out mandates from the 1980 Comprehensive Environmental 

Response, Compensation, and Liability Act (CERCLA), also known as the Superfund. The 

Superfund is authorized to assess current and potential threats to human health and the 

environment from the release of hazardous contaminants, pollutants, and other substances. 

Specifically, risk assessment is vital to the Remedial Investigation and Feasibility Study 

(RI/IS), which is an important component to the NCP and informs risk management 
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decisions within the Superfund. PRA uses probability models to characterize the likelihood 

of risk levels in a given population; it can also be used to assess uncertainty in risk estimation 

and identify certain populations that may be at increased risk of adverse health outcomes.57 

Prior to adoption of PRA, EPA guidelines recommended point estimate methods for 

risk assessment. This method generates either an average expected risk or maximum 

exposure estimate of risk, depending on what is used as the input variable. PRA, 

alternatively, employs probability distributions for one or many inputs of a risk equation, 

thereby accounting for uncertainty and variability. The generated output of a PRA is 

consequently a distribution of risk, which can theoretically provide more information on 

whether risk levels may be exceeded, which in turn can better inform decision-makers.57   

Monte Carlo analysis (MCA) is one of the most popular methods of PRA. This 

approach uses computer simulation to merge several probability distributions in a risk 

equation. Using a specified range, the MCA simulation randomly selects a value for each 

variable (assuming variables are independent of each other) and generates the resultant risk 

value. The simulation then repeats this method for many thousands of iterations, each time 

saving the risk value in order to generate a risk range. Some complex versions of MCA can 

also take into account variables that are dependent on one another.57   

Variability and Sensitivity 

Generally, risk values produced via point estimates are subject to variability and 

uncertainty, due to heterogeneity within the target population. Confidence intervals can be 

used to measure this variability. In a Monte Carlo approach, random values are repeatedly 

selected, resulting in a probability distribution rather than a discrete risk value. This approach 
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takes into consideration inter-individual variability and population diversity.57 Sensitivity 

analysis is used to establish which input variables or exposure pathway have the greatest 

influence on a risk estimate. This analysis is especially useful in multimedia fate and 

transport models, where conducting simulations for every variable and/or pathway is not 

feasible; additionally, identification of key variables and pathways allows for targeted 

research efforts.57  

Integration of Behavioral Data in Risk Assessment 

There are examples of studies integrating human behavior data in risk management. 

Some of these studies address exposure from microbial hazards. For example, a quantitative 

microbial risk assessment (QMRA) was applied to a 2012 study (Shibata and Solo-Gabriele) 

to evaluate the health risk to children from exposure to marine beach sand. This study 

utilized existing behavioral data on child ingestion patterns.58 In a meta-review of 12 

prospective cohort studies comparing adult and child exposure to beach water and sand, 

children between ages 4 and 12 years were found to have the highest exposure to sand, water 

and algae compared to other age groups. Moreover, children were four times as likely to 

ingest beach water compared to adults, and males had a tendency to ingest more beach water 

compared to females.59   

Following the Erika tanker spill, a human health PRA was conducted to estimate 

health risks from exposure to previously polluted beach zones in order to aid decisions 

regarding re-opening these beaches. Results indicated low risk for skin cancer among adult 

beachgoers, but slightly higher risk for adult beach workers and pregnant women. For 
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children, this PRA took into account ingestion of tar balls and bathing in seawater, but did 

not account for other beach play activities.60  

Black et al. (2016) performed a baseline human health risk assessment on children 

from exposure to OSCs during recreational beach play in the intertidal zone using existing 

analyzed samples and datasets from EPA for seven OSCs of concern. This study also derived 

behavioral and chemical inputs from assumptions of exposure, baseline activity, and 

exposure variables found in the EPA Exposure Factors Handbook and from the Center for 

Environmental and Human Toxicology (CEHT) technical reports. The study did not find 

significant acute or chronic health risk to children from oral, dermal or inhalation exposure.61 

However, child beach activities were estimated from residential soil exposure scenarios; 

child behaviors specific to beach play were not taken into account. Additionally, exposure 

duration (e.g., time spent at beaches daily and yearly) was estimated since family beach 

macro-activity was not available.   

One existing example of PRA from DWH involved assessing health risks from 

consuming contaminated shrimp among a community of Vietnamese adults in Southern 

Louisiana. This 2015 study by Wilson et al. used combined data from surveys on ingestion 

patterns with collected samples of locally harvested shrimp to conduct an MCA, which 

generated hazard quotient distributions for cancer and non-cancer health risk. The population 

for this study only included adult men and women. The study found that even among 

frequent consumers of shrimp, consumption of shrimp containing the levels of PAHs 

detected from collected samples yielded no significant cancer and non-cancer health risk.62    
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Child Behavior Patterns in the Context of Risk Assessment  

In human health risk assessment, the combination of behavioral parameters and 

presence of hazards determines risk of adverse health outcomes.57  Children might be more 

susceptible to adverse health outcomes when exposed to the same hazards as adults. Small 

children, especially toddlers, demonstrate greater risk from non-dietary ingestion due to 

frequent hand-to-mouth contact, along with oral contact with objects, such as sand. 

Compared to adults, children practice fewer self-hygiene behaviors, which may put them at 

risk from prolonged dermal contact with contaminated surfaces. Lastly, children have a 

tendency to be more physically active than adults, particularly in recreational scenarios such 

as the beach environment; as a result, they may experience higher exposure via the inhalation 

route.63   
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PUBLIC HEALTH SIGNIFICANCE 

Current literature references many studies on the potential influence of oil spill events 

on the social and economic infrastructure of an impacted community. There are also a 

number of studies on ecosystems from contamination from OSCs. Although there are some 

data on the effects to human health, much of it focuses on the health of first responders and 

other adult populations. Even in these cases, data are limited. There is little to no evidence 

investigating the risk of adverse health effects to vulnerable populations, such as children, 

after exposure to OSCs in the recreational environment. Human health risk assessment can 

give important insight into the magnitude of risk and what factors are of the greatest 

importance when determining risk. This analysis can provide valuable information for 

policymakers when developing regulations and procedures for oil spill prevention. 

Furthermore, the information generated from this type of risk assessment can offer 

recommendations to public health agencies involved in setting procedures for oil spill 

response.57  
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OBJECTIVES 

The objectives below are a subset of a larger study titled Beach Exposure And Child 

HEalth Study (BEACHES). The BEACHES project is a partnership among the University of 

Miami, the University of Texas Health Science Center at Houston School of Public Health, 

and North Carolina A&T State University, with funding from GoMRI. The overall goal of 

the BEACHES study is to determine the health risk to children from OSCs through the 

integration of play activities with chemical concentration distributions in the beach 

environment. The study protocol was approved by GoMRI and IRBs at each partner 

institution.  

Objective 1  

Using existing and generated nearshore concentrations of OSCs, along with macro- 

and micro-activity data characterized for children, health risks were estimated for young 

children (between walking and six years of age) playing in the beach environment. Macro-

activity information from family surveys provided information on frequency of exposure to 

the beach environment (days spent at the beach per year), and micro-activity days from child 

participation in the BEACHES study provided information on body weight and skin surface 

area.  

Objective 2  

Sensitivity analyses using Monte Carlo methods were conducted to determine which 

model parameters drive health risks. 



 
 

22 

Objective 3  

Policy recommendations were developed to address monitoring of chemical hazards 

in the recreational water environment in order to inform health communication, beach 

closures, remediation efforts, and outreach to families impacted by oil spill events. These 

recommendations were adjusted to align with existing jurisdictional authority limitations at 

the local, regional, and national level.   
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METHODS 

A full study protocol was reviewed and approved by the University of Texas Health 

Science Center at Houston Committee for the Protection of Human Subjects (CPHS) 

Institutional Review Board (Approval # HSC-SPH-18-0396) (see Appendix B). 

BEACHES Field Study 

Study Design 

To address Objective 1, this study utilized data from the BEACHES study, which has 

collected data on child macro-activity patterns through the use of a written, IRB-approved 

survey completed by parents of children under the age of seven years. Written and oral 

consent were obtained prior to administration of the survey.  

Child micro-activity data were obtained from the translation of recorded video observations 

of children from the BEACHES study. Translation was executed by study partners at North 

Carolina A&T State University and provided for this analysis. 

Study Setting 

Data collection took place at four beaches; two in Miami, Florida (Figure 2) and two 

in Galveston, Texas (Figure 3). These beach locations were chosen to evaluate whether 

geographical differences or beach characteristics, impacted beach-play behavior, perception 

of risk (by parents), and hygiene behaviors among families.  

Data were collected at Crandon Beach, FL from June 21 through 25, 2018 and at 

Haulover Beach, FL from June 28 through July 1, 2018.  

Data were collected at Stewart Beach, TX from July 13 through 16, 2018 and at 

Seawall Beach, TX from July 18 through July 21, 2018. 
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Study Subjects 

The sample size goal for the video-translation portion of the study was over 100 

children between walking age and six years-old. Flyers were posted at local physicians’ 

offices, daycares, and on Facebook groups to recruit parents. Parents were instructed to call 

or email if interested in including their child/children in the study. Preliminary consent was 

obtained via a phone interview using IRB-approved protocols. Written consent was obtained 

onsite at the beach prior to child beach play using IRB-approved documentation. For macro-

activity information, a goal was set to collect 400 completed surveys from parents with 

children under the age of 7 years (200 from each region). These were collected from parents 

of study participants and from parents with qualifying children who visited the target beaches 

during the study period. Oral and written consent were obtained from all survey participants 

using IRB-approved protocols and documentation. Surveys were available in English and 

Spanish. 

Data Collection 

Participants were assigned an ID corresponding to a list of numbers from 1-125 and a 

randomized letter ID of D, W, or S, designating the treatment for hand press procedure (dry, 

wet, or sunscreen) used for the soil adherence portion of study. Height, weight, 

race/ethnicity, age, and sex was recorded for each participant on a written ID sheet and later 

transcribed onto an electronic spreadsheet. Demographic information was paired to the ID. 

Personal information was de-identified on the spreadsheet for field and survey data. 

Information on clothing, accessories (sunglasses, water shoes, etc.) and any existing skin 

abrasions was recorded for each participant. Participants were checked again for skin 
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abrasions after video recording was complete. Environmental data (water temperature, 

salinity, and microbial concentration, sand temperature, and ambient temperature and 

humidity) were collected for each day of videotaping. 

Family Survey of Macro-Activity and Hygiene Behaviors 
Parents were instructed to complete a written survey to record macro-activities, post-

beach play hygiene behaviors, and preferences for communication of beach closures and 

advisories. Survey responses were later transcribed onto an electronic spreadsheet. Parents 

could complete surveys prior to arriving at the beach if previously consented (see Appendix 

C). 

Hand and Body Adherence Tests 
Participants were assigned an ID corresponding to randomized letter ID of D (dry), W 

(wet), or S (sunscreen), designating the treatment for hand press procedure. A pencil tracing 

was made of participants’ hands and then cleaned with a clean wet wipe and dry paper towel. 

The hands were given the assigned treatment (or no treatment if assigned ID contained a D). 

Next, the participant pressed their hands, palms down, on a tray of sand collected from the 

beach that same day for a period of ten seconds. The tray was placed on a scale and the 

resulting weight measurement was taken for hand adherence measures. At the end of the one-

hour period, participants were instructed to stand in a collecting pool; clean sea water was 

passed over the body and appendages of each participant to collect sand and debris for body 

adherence measures.  
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Videotaping of Children’s Micro-Activity Behaviors  

Participant beach play activity was video-recorded for a period of one hour to record 

micro-activities (contact patterns with object and surfaces, activity levels, and micro-

environments visited). Additional observations were documented on paper to make 

supplement the video-recording.  

 
Human Health Risk Assessment 

Risk Models for Oral, Dermal, and Inhalation Exposure 

A point-estimate risk value can be calculated using the equations below (Eq. 1 – 5). 

These are standard equations provided by the EPA to calculate both cancer and non-cancer 

risk values57. In a PRA, point-estimates are generated using randomized values within a 

variable set; this generates a distribution for a given range of variables (such as 

concentration, body weight, etc.).  

The general equation for risk that will be used in this analysis is: 

 

 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = 𝑫𝑫𝑫𝑫𝑹𝑹𝑫𝑫 × 𝑺𝑺𝑺𝑺𝑫𝑫𝑺𝑺𝑫𝑫 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑫𝑫𝒇𝒇 (1) 

 

Calculation for dose is dependent on route of exposure. For oral (ingestion) exposure: 

 

 𝑫𝑫𝑫𝑫𝑹𝑹𝑫𝑫(𝑫𝑫𝒇𝒇𝒇𝒇𝑺𝑺) =
𝑪𝑪 × 𝑰𝑰𝑹𝑹𝑹𝑹 × 𝑹𝑹𝑹𝑹𝑹𝑹 × 𝑬𝑬𝑬𝑬 × 𝑪𝑪𝑬𝑬

𝑹𝑹𝑩𝑩
 (2) 
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where C=concentration (mg/kg), IRs=soil intake rate (mg/kg), RBA=relative bioavailability 

factor (unitless), EF=exposure factor (unitless), CF=oral conversion factor (mg/kg), and 

BW=body weight (kg). Exposure factor is defined as: 

 

 𝑬𝑬𝑬𝑬𝑺𝑺𝑫𝑫𝑹𝑹𝑬𝑬𝒇𝒇𝑫𝑫 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑫𝑫𝒇𝒇 (𝑬𝑬𝑬𝑬) =
𝑬𝑬 × 𝑬𝑬𝑫𝑫
𝑹𝑹𝑨𝑨

 (3) 

 

where F=frequency of exposure (days/year), ED=exposure duration (years), and 

AT=averaging time (days). For dermal exposure, dose is calculated as:   

 

 𝑫𝑫𝑫𝑫𝑹𝑹𝑫𝑫(𝒅𝒅𝑫𝑫𝒇𝒇𝒅𝒅𝒇𝒇𝑺𝑺) =
𝑪𝑪 × 𝑺𝑺𝑹𝑹 × 𝑹𝑹𝑬𝑬 × 𝑹𝑹𝑹𝑹𝑺𝑺 × 𝑬𝑬𝑬𝑬 × 𝑪𝑪𝑫𝑫

𝑹𝑹𝑩𝑩
 (4) 

 

where C=concentration (mg/kg), SA=skin surface area (cm2/event), AF=adherence factor 

(mg/cm2), ABS=absorption factor (unitless), EF=exposure factor (unitless), CD=dermal 

conversion factor (mg/kg), and BW=body weight (kg). Lastly, for inhalation exposure, dose 

is defined as:  

 
𝑫𝑫𝑫𝑫𝑹𝑹𝑫𝑫(𝑹𝑹𝒊𝒊𝒊𝒊𝒇𝒇𝑺𝑺𝒇𝒇𝒇𝒇𝑹𝑹𝑫𝑫𝒊𝒊) =

𝑪𝑪 × 𝟏𝟏
𝑷𝑷𝑬𝑬𝑬𝑬 × 𝑰𝑰𝑹𝑹𝒇𝒇 × 𝑬𝑬𝑨𝑨 × 𝑬𝑬𝑬𝑬

𝑹𝑹𝑩𝑩
 

(5) 

 

where C=concentration (mg/kg), PEF= soil-to-air particulate emission factor (m3/kg), IRa= 

inhalation rate (m3/day), ET=exposure time (hours/day), EF=exposure factor (unitless), and 

BW=body weight (kg).  
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Averaging time (AT) will differ between cancer and non-cancer risk calculations and can 

vary in non-cancer risk calculations, depending on the outcome in question. 

Variables 

A human health risk assessment was conducted by Black et al. (2016) using chemical 

concentration data from EPA datasets. EPA sample collection began April 28, 2010 and 

ended October 6, 2010.61  These chemical concentration values and select exposure variables 

from the EPA Exposure Factors Handbook were utilized in the BEACHES human health risk 

assessment.64   The chemical-specific variables used in the BEACHES human health risk 

assessment are summarized in Table 1 and the exposure-specific variables used in both the 

risk assessment by Black et al. (2016) and the BEACHES risk assessment are summarized in 

Table 2.  

A human health risk assessment was conducted in this study using exposure variables 

from Table 2 and chemical concentration inputs from fate and transport modeling data of 

OSCs in the nearshore environment. The chemical-specific variables used in the risk 

assessment for the six initial chemicals are summarized in Table 5. Six chemicals were 

chosen for this risk analysis. Information for slope factor, relative bioavailability factor 

(RBA) and dermal absorption factor (ABS) for each chemical was taken from the Center for 

Environmental and Human Toxicology Technical Report (2005).65  Values for the following 

variables - exposure duration (ED), averaging time (AT), exposure factor (EF), soil intake 

rate (IRs), oral and dermal conversion factors (CF, CD), adherence factor (AD), soil-to-air 

particulate emission factor (PEF), inhalation rate (IRa), and exposure time (ET) - were 

consistent with the risk assessment conducted by Black et al.61   
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Datasets were received from colleagues at North Carolina A&T State University with 

de-identified information on body weight (BW) and total skin surface area (SA) for 119 

children who successfully completed participation in the BEACHES study. A dataset of de-

identified information for frequency of exposure (F) – number of days per year that 

population visited the beach, taken from 391 surveys completed by parents of children 

participating in the BEACHES study and parents solicited for surveys during the field study, 

was also received. Using these datasets, averages were calculated from each dataset and used 

in the risk models for health risks from oral, dermal, and inhalation exposure routes. All 

exposure variables used in this risk assessment, including the three average values for BW, 

SA, and F calculated from BEACHES data, are summarized in Table 2. Expanded 

information on body weight, skin surface area, and frequency of visits to the beach from 

these datasets are summarized in Tables 3 and 4, respectively. The datasets were maintained 

for subsequent sensitivity and Monte Carlo analysis. Videotaping data was not used in this 

analysis but will be utilized for future risk assessment applications.   

Sensitivity Analysis 

Datasets for BW, SA, and F using BEACHES data were used in the sensitivity 

analysis. A fourth dataset was created for each of the six chemicals chosen for this 

assessment comprised concentration values from chemical fate and transport modeling data 

generated from another subproject within the BEACHES study (Montas et al. 2019, 

unpublished) and existing EPA data from sampling of GOM coastlines following the DWH 

oil spill. EPA sample collection began April 28, 2010 and ended October 6, 2010. 
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Concentration values for sediment, weathered oil, and tar were used in this analysis. The 

remaining variable values can be found in Table 2. 

Tables 8 - 13 summarize sensitivity analysis for six chemicals. A point estimate (Trial 

1) and five separate simulations (Trials 2-6) were run in Crystal Ball for each chemical.  

Trial 1 

An average value was calculated for each of the four datasets. These averages were 

used to generate a fixed point estimate risk value to be used as a comparison for sensitivity. 

Mean risk values for cancer are summarized in Trial 1 of Tables 8a, 9a, 10a, 11a, 12a and 

13a.  Mean risk values for non-cancer are summarized in Trial 1 of Tables 8b, 9b, 10b, 11b, 

12b and 13b. 

Trial 2 

In the second trial, average values were used for all variables except for body weight. 

For body weight, the dataset from the BEACHES study was used. A triangular distribution 

was chosen in Crystal Ball. The minimum, maximum and median values were used to 

generate the distribution for this dataset. The simulation was run for 1,000 iterations and 

probability graphs were generated for total cancer and non-cancer risk, added together using 

individual risk values from oral, dermal, and inhalation exposure. Mean, 2.5%, and 97.5% 

percentile risk values for cancer are summarized in Trial 2 of Tables 8a, 9a, 10a, 11a, 12a 

and 13a. Mean, 2.5%, and 97.5% percentile risk values for non-cancer are summarized in 

Trial 2 of Tables 8b, 9b, 10b, 11b, 12b and 13b. 
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Trial 3 

In the third trial, average values were used for all variables except for skin surface 

area. For skin surface area, the dataset from the BEACHES study was used. A triangular 

distribution was chosen in Crystal Ball. The minimum, maximum, and median values were 

used to generate the distribution for this dataset. The simulation was run for 1,000 iterations 

and probability graphs were generated for total cancer and non-cancer risk, added together 

using individual risk values from oral, dermal, and inhalation exposure. Mean, 2.5%, and 

97.5% percentile risk values for cancer are summarized in Trial 3 of Tables 8a, 9a, 10a, 11a, 

12a and 13a. Mean, 2.5%, and 97.5% percentile risk values for non-cancer are summarized in 

Trial 3 of Tables 8b, 9b, 10b, 11b, 12b and 13b. 

Trial 4 

In the fourth trial, average values were used for all variables except for frequency of 

exposure. For frequency of exposure, the dataset from the BEACHES study was used. A 

triangular distribution was chosen in Crystal Ball. The minimum, maximum, and median 

values were used to generate the distribution for this dataset. The simulation was run for 

1,000 iterations and probability graphs were generated for total cancer and non-cancer risk, 

added together using individual risk values from oral, dermal, and inhalation exposure. 

Mean, 2.5% and 97.5% percentile risk values for cancer are summarized in Trial 4 of Tables 

8a, 9a, 10a, 11a, 12a and 13a. Mean, 2.5% and 97.5% percentile risk values for non-cancer 

are summarized in Trial 4 of Tables 8b, 9b, 10b, 11b, 12b and 13b. 
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Trial 5 

In the fifth trial, average values were used for all variables except for chemical 

concentration. For chemical concentration, the combined dataset from EPA sampling and 

Montas et al. was used. A triangular distribution was chosen in Crystal Ball. The minimum, 

maximum and median values were used to generate the distribution for this dataset. The 

simulation was run for 1,000 iterations and probability graphs were generated for total cancer 

and non-cancer risk, added together using individual risk values from oral, dermal, and 

inhalation exposure. Mean, 2.5% and 97.5% percentile risk values for cancer are summarized 

in Trial 5 of Tables 8a, 9a, 10a, 11a, 12a and 13a. Mean, 2.5% and 97.5% percentile risk 

values for non-cancer are summarized in Trial 5 of Tables 8b, 9b, 10b, 11b, 12b and 13b. 

Trial 6 

In the sixth trial, distributions were used for body weight, skin surface area, frequency 

of exposure, and chemical concentration. Fixed values were used for all other variables 

(Table 2). A triangular distribution was chosen in Crystal Ball for each dataset. The 

minimum, maximum and median values were used to generate the distribution for these 

datasets. The simulation was run for 1,000 iterations and probability graphs were generated 

for total cancer and non-cancer risk, added together using individual risk values from oral, 

dermal and inhalation exposure. Mean, 2.5% and 97.5% percentile risk values for cancer are 

summarized in Trial 6 of Tables 8a, 9a, 10a, 11a, 12a and 13a. Mean, 2.5% and 97.5% 

percentile risk values for non-cancer are summarized in Trial 6 of Tables 8b, 9b, 10b, 11b, 

12b and 13b. 
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Monte Carlo Analysis 

Risk equations (1-5) served as the framework to generate probability distributions for 

a Monte Carlo analysis. This simulation and corresponding sensitivity analysis were 

conducted using Microsoft Excel and Oracle® Crystal Ball (Figure 4).66   

Monte Carlo analysis was conducted for six chemicals using concentration data for 

sediment, weathered oil, and tar. Datasets for body weight, frequency of exposure, and skin 

surface area from the BEACHES study, as well as chemical concentration data were used for 

the Monte Carlo analysis. A triangular distribution was assumed for each variable and 

minimum, likeliest, and maximum value was inputted to generate the distribution. Minimum 

represented the minimum value from each dataset; maximum represented the maximum 

value from each dataset; likeliest represented the median value from each dataset (Table 9). 

The simulation was run for 1,000 iterations.  Risk range was generated for oral, dermal and 

inhalation exposure. Mean values for each exposure route are summarized in Table 12a for 

cancer risk and 10b for non-cancer risk. 

A separate Monte Carlo analysis was run for 12 chemicals where the concentration 

data were known for sediment and weathered oil. There were no data on concentration in tar 

available for these 12 chemicals. The concentration value for sediment and weathered oil 

were used in the risk models as static values. Information for slope factor, RBA, and ABS for 

each chemical was taken from the Center for Environmental and Human Toxicology 

Technical Report (2005). The chemical-related data used in this analysis is summarized in 

Table 11. The same datasets for BW, SA, and F and distribution parameters from the 

BEACHES study were used for this analysis. A triangular distribution was assumed for each 
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dataset (Table 14). The simulation was run for 1,000 iterations.  Risk range was generated for 

oral, dermal, and inhalation exposure. Mean values for each exposure route are summarized 

in Table 15a for cancer risk and 13b for non-cancer risk. 

 
Protection of Human Subjects 

Each participant was assigned an alphanumeric ID at check-in and this ID was used in 

all subsequent tests and records. The datasets will remain with the data owner (Dr. Solo-

Gabriele, University of Miami) and all identifying information will be removed from the 

dataset before transfer to UTHealth.  
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Table 1:  Input values for risk estimate comparison to data from Black et al. (2016).61   

 Concentration (mg/kg) Slope Factor   

Chemicals Sediment Weathered 
Oil Tar Oral Dermal Inhalation RBA 

Oral 
ABS 

Dermal 
Arsenic NM 39.4 BDL 1.5 1.579 15.05 0.5 0.01 
Barium NM 164 5.8 NA NA NA 0.5 0.01 

Vanadium 77 25.5 0.2 NA NA NA 0.5 0.01 
Benzo[a]pyrene 1.49 7.19 BDL 7.3 14.6 3.1 0.5 0.01 

Benz[a]anthracene 1.91 33.9 BDL 0.73 1.46 0.31 0.5 0.01 
Benzo[b]fluoranthene 1.46 4.4 0.62 0.73 1.46 0.31 0.5 0.01 
Dibenz[a,h]anthracene 0.11 0.13 BDL 7.3 14.6 3.1 0.5 0.01 

1 

 

 

                                                 
1   Concentration values taken from post-DWH EPA sampling of shorelines. Data collection began on April 28th, 2010 and ended October 6, 2010. 14,434 
samples of sediment, 6,363 samples of weathered oil, and 327 samples of tar were analyzed for metals and organic oil constituents. 
Oral, dermal, and inhalation slope factor values, oral RBA, and dermal RBS were obtained from Center for Environmental Toxicology report (2005).60 
NM = not measured 
BDL = below detection limit 
NA = not applicable 
RBA = relative bioavailability 
ABS = absorption factor 
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Table 2:  Factors utilized for exposure assessment that are independent of chemicals considered.  

Factor Assumed Variables from Black 
et al. (2016) 

Average Values from 
BEACHES Study 

ALL PATHWAYS 
Body Weight, BW (kg) 25.4 37.5 
Frequency of Exposure, F (days/year) 12 6.5 
Exposure Duration, ED (years) 8 8 
Average Time, AT (days) 365 (non-cancer) 

28,489 (cancer) 
365 (non-cancer) 
28,489 (cancer) 

Exposure Factor, EF (unitless) 0.263 (non-cancer) 
0.002958 (cancer) 

0.263 (non-cancer) 
0.002958 (cancer) 

ORAL 
    Soil Intake Rate, IRS (mg/day) 1000 1000 
    Conversion Factor, CF (mg/kg) 0.000001 0.000001 
DERMAL 
    Skin Surface Area, SA (cm2/event) 11,350 13,050.62 
    Adherence Factor, AD, AF (mg/cm2) 18 18 
    Conversion Factor, CD, CF (mg/kg) 0.000001 0.000001 
INHALATION 
    Soil-to-Air Particulate Emission Factor, PEF 
(m3/kg) 

1,240,000,000 1,240,000,000 

    Inhalation Rate, IRa (m3/day) 9.62 9.62 
    Exposure Time, ET (hours/day) 3 3 

2 

 

                                                 
2 Data taken from Black, et al. 2016.57 
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Table 3:  Distribution of child participants used to create datasets for body weight and skin surface area.   

 

 
 

0 – 1 years 
(0-23 months) 

2 – 3 years 
(24-47 months) 

4 – 6 years 
(48-73 months) 

6+ years 
(72-83 months) 

Total Number 23 38 39 19 
Male 10 21 18 5 

Female 13 17 21 14 
Percent 19.33 31.93 32.77 15.97 
Average Body Weight (kg) 24.69 31.83 42.85 53.07 
Average Skin Surface Area 
(cm2) 

9,220.60 11,700.27 14,655.13 17,094.21 

3 

  

                                                 
3 N = 391 
Skin surface area was computed for each child participant using protocols from EPA Exposure Factors Handbook.60  
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Table 4:  Distribution of survey responses used to create dataset for frequency of exposure.   

 
 

 Number Percent 
Once a week 67 17.14 

Once a month 142 36.32 
Once a year  156 39.90 

Uncertain 26 6.65 
4 

  

                                                 
4 N = 391 
 Respondents were asked “How often do you visit the beach?” 
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Table 5:  Input values for chemical risk assessment.  

 Concentration (mg/kg) Slope Factor   

Chemicals Sediment Weathered 
Oil Tar Oral Dermal Inhalation RBA 

Oral 
ABS 

Dermal 
Benzo[b]fluoranthene 0.06109 4.4 0.62 0.73 1.46 0.31 0.5 0.01 

Benzo[e]pyrene 0.04733 4.285 0.75 7.3 14.6 3.1 0.5 0.01 
C3-naphthalene 0.01094 2.30 0.70 0.02 8.57x10-4 0.02 0.5 0.01 

Chrysene 0.2417 26.86 4.8 0.0073 0.0146 0.0031 0.5 0.01 
Fluoranthene 0.03597 2.169 61.0 0.04 0.02 0.02 0.5 0.01 
Phenanthrene 0.1143 36.15 1.75 0.03 0.015 0.015 0.5 0.01 

5 

  

                                                 
5 Chemical concentration data were obtained from fate and transport modeling within the BEACHES study. Oral, dermal, and inhalation slope factor 
values, oral RBA, and dermal RBS were obtained from Center for Environmental Toxicology report (2005).61 
The oral, dermal, and inhalation slope factor used for C3-naphthalene is that of naphthalene.  
RBA = relative bioavailability 
ABS = absorption factor 
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Figure 1:  The risk assessment paradigm. Modified from the National Research Council Risk Assessment Framework.67  Created 

using https://www.draw.io/.  

 
 
 
  

https://www.draw.io/
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Figure 2: Locations of Haulover Beach (top) and Crandon Beach (bottom) in Miami, FL. 
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Figure 3: Locations of Seawall Beach (bottom) and Stewart Beach (top) in Galveston, TX. 
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Figure 4: Process of Monte Carlo simulation using Crystal Ball.66  Created using https://www.draw.io/. 
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OBJECTIVE 1: HUMAN HEALTH RISK ASSESSMENT 

Results 

Comparison of BEACHES Risk Assessment to Black et al., 2016 Study 

A prior human health risk assessment for children was conducted in 2016 by Black et 

al. using chemical concentration data from existing sampling (Table 1); exposure variables 

were modified from EPA Exposure Factors Handbook (Table 2).64  Individual risk estimates 

for exposure to chemical concentrations in sediment, weathered oil, and tar (if measured) 

were added to provide single risk estimate per chemical, per exposure route. The results from 

this study were used as a baseline for this risk assessment process. A point estimate of risk 

was conducted using average values for body weight, frequency of exposure, and skin 

surface area generated from the BEACHES study and chemical concentration data used in 

the Black analysis. All other exposure variables were modified from the EPA Exposure 

Factors Handbook, consistent with the values used in the Black et al. analysis (Table 2).  

The results from both point estimate risk assessments are summarized in Table 6a for 

cancer risk and Table 6b for non-cancer risk. There was a decrease of one order of magnitude 

of cancer risk estimate from the BEACHES study compared to the Black analysis for 

vanadium, benz[a]anthracene, and dibenz[a,h]anthracene in the oral exposure scenario.  

There was a decrease of one order of magnitude of cancer risk estimate from the BEACHES 

study compared to the Black analysis for benz[a]anthracene in the dermal exposure scenario. 

There was a decrease of one order of magnitude of cancer risk estimate from the BEACHES 

study compared to the Black analysis for dibenz[a,h]anthracene in the inhalation exposure 

scenario. All other comparisons only showed minor decrease in cancer risk estimate. Total 
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cumulative cancer risk estimates from oral (2.04x10-05 vs. 5.57x10-05), dermal (2.72x10-05 vs. 

6.44x10-05) , and inhalation (1.75x10-09 vs. 4.78x10-09) exposure routes from the BEACHES 

study did not differ significantly from cancer risk estimates from the Black analysis.     

There was a decrease of one order of magnitude of non-cancer risk estimate from the 

BEACHES study compared to the Black et al. analysis for barium, vanadium, 

benz[a]anthracene and benzo[b]fluoranthene in the oral exposure scenario.  For dermal 

exposure, there was a decrease of one order of magnitude of non-cancer risk estimate from 

the BEACHES study compared to the Black et al. analysis for vanadium, benz[a]anthracene 

and benzo[b]fluoranthene. There was a decrease of one order of magnitude of non-cancer 

risk estimate from the BEACHES study compared to the Black et al. analysis for vanadium, 

benz[a]anthracene and dibenz[a,h]anthracene in the inhalation exposure scenario. All other 

comparisons showed only minor reductions in non-cancer risk estimates. Total cumulative 

non-cancer risk estimates from (1.60x10-03 vs. 4.53x10-03), dermal (2.12x10-03 vs. 5.03x10-03) 

, and inhalation (1.37x10-07 vs. 3.73x10-07) exposure routes from the BEACHES study did not 

differ significantly from cancer risk estimates from the Black analysis.    Risk Assessment 

Using BEACHES Chemical & Exposure Data 

A risk assessment was conducted using average variables for body weight, frequency 

of exposure, and skin surface area generated from the BEACHES study; all other variables 

were maintained from the previous analysis (Table 2).  Six chemicals were chosen from 

chemical concentration data provided by a separate sub-project within the BEACHES study. 

These chemicals were chosen because concentration values for sediment, weathered oil, and 

tar were known. Chemical-specific variables were obtained from the Center for 
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Environmental Health and Technology Technical Report. Concentration and other chemical-

specific values are summarized in Table 5. The results from the BEACHES risk assessment 

are summarized in Table 7a for cancer risk and Table 7b for non-cancer risk. 

Cancer risk values from exposure to chemical concentrations in sediment, weathered 

oil, and tar from oral, dermal and inhalation exposure routes are summarized in Table 7a. 

Totals are given for each chemical (cumulative) and each exposure route (aggregate). 

Benzo[b]fluoranthene and benzo[e]pyrene show the highest cancer risk estimates of the six 

chemicals in this assessment for oral and dermal exposure routes in sediment. 

Benzo[e]pyrene shows the highest cancer risk estimate of the six chemicals in this 

assessment for oral and dermal exposure routes in weathered oil and tar. Benzo[e]pyrene 

shows the highest cancer risk estimate of the six chemicals in this assessment for inhalation 

exposure route in sediment and weathered oil. Benzo[e]pyrene and fluoranthene show the 

highest cancer risk estimate of the six chemicals in this assessment for inhalation exposure 

route in tar. Benzo[e]pyrene shows the highest total cancer risk estimate of the six chemicals 

in this assessment for all three exposure scenarios (9.03x10-07 for oral, 8.48x10-06 for dermal, 

and 1.78x10-11 for inhalation route). 

C3-naphthalene shows the lowest cancer risk estimate of the six chemicals in this 

assessment for oral exposure route in sediment and dermal exposure route in sediment, 

weathered oil, and tar. C3-naphthalene, chrysene, and fluoranthene show the lowest cancer 

risk estimate of the six chemicals in this assessment for oral and inhalation exposure routes in 

weathered oil. C3-naphthalene and chrysene show the lowest cancer risk estimate of the six 

chemicals in this assessment for oral exposure route in tar and inhalation exposure route in 
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sediment. C3-naphthalene, chrysene, and phenanthrene show the lowest cancer risk estimate 

of the six chemicals in this assessment for inhalation exposure route in tar. C3-naphthalene 

shows the lowest total cancer risk estimate of the six chemicals in this assessment for all 

three exposure routes (1.47x10-09 for oral, 2.95x10-10 for dermal, and 6.82x10-14 for 

inhalation route). 

Total cumulative cancer risk estimates in sediment, weathered oil, and tar from oral, 

dermal, and inhalation exposure are also presented. Total risk estimates are highest in oral 

and dermal exposure routes and lowest in inhalation exposure route.  There is a difference of 

three orders of magnitude between total risk estimates from inhalation exposure compared to 

oral and dermal exposure. Total risk estimates are highest in weathered oil and tar and lowest 

in sediment for oral and dermal exposure routes. Total risk estimates are highest in weathered 

oil and lowest in sediment for inhalation exposure routes.  

Non-cancer risk values from exposure to chemical concentrations in sediment, 

weathered oil, and tar from oral, dermal, and inhalation exposure routes are summarized in 

Table 7b. Totals are given for each chemical (cumulative) and each exposure route 

(aggregate). Benzo[e]pyrene shows the highest non-cancer risk estimate of the six chemicals 

in this assessment for oral exposure routes in sediment, weathered oil, and tar. 

Benzo[e]pyrene shows the highest non-cancer risk estimate of the six chemicals in this 

assessment for dermal and inhalation exposure routes in sediment and weathered oil. 

Benzo[e]pyrene and fluoranthene show the highest non-cancer risk estimate of the six 

chemicals in this assessment for dermal and inhalation exposure routes in tar. 

Benzo[e]pyrene shows the highest total non-cancer risk estimate of the six chemicals in this 
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assessment for all three exposure routes (7.05x10-05 for oral, 6.62x10-04 for dermal, and 

1.39x10-09 for inhalation route). 

C3-naphthalene shows the lowest non-cancer risk estimate of the six chemicals in this 

assessment for oral exposure route in sediment and weathered oil, and dermal exposure route 

in sediment, weathered oil and tar. C3-naphthalene, chrysene, and phenanthrene show the 

lowest non-cancer risk estimate of the six chemicals in this assessment for oral and inhalation 

exposure routes in tar. C3-naphthalene and chrysene show the lowest non-cancer risk 

estimate of the six chemicals in this assessment for inhalation exposure route in sediment. 

C3-naphthalene, chrysene, and fluoranthene show the lowest non-cancer risk estimate of the 

six chemicals in this assessment for inhalation exposure route in weathered oil. C3-

naphthalene shows the lowest total non-cancer risk estimate for oral, dermal, and inhalation 

exposure routes (1.14x10-07 for oral, 2.30x10-08 for dermal, and 5.32x10-12 for inhalation 

route).  

Total cumulative non-cancer risk estimates in sediment, weathered oil, and tar from 

oral, dermal, and inhalation exposure are also presented. Total non-cancer risk estimates are 

highest in dermal exposure route and lowest in inhalation exposure route.  There is a 

difference of three orders of magnitude between total non-cancer risk estimates from 

inhalation exposure compared to dermal exposure. There is a difference of two orders of 

magnitude between total non-cancer risk estimates from inhalation exposure compared to 

oral exposure. Total non-cancer risk estimates are highest in weathered oil and tar and lowest 

in sediment for oral and dermal exposure routes. Total non-cancer risk estimates are highest 

in weathered oil and lowest in sediment for inhalation exposure routes. 



 
 

49 

Table 6a. Comparison of cancer risk estimate values from oral, dermal and inhalation exposure for seven chemicals between risk 

assessment conducted by Black et al. (2016) and data generated from the BEACHES study.  

Cancer Oral Dermal Inhalation 
CHEMICAL Black BEACHES Black BEACHES Black BEACHES 
Arsenic 5.13E-06 1.88E-06 3.34E-06 1.41E-06 3.63E-09 1.33E-09 
Barium 3.06E-05 1.12E-05 6.25E-06 2.64E-06 7.12E-10 2.61E-10 
Vanadium 1.36E-05 5.00E-06 2.78E-06 1.17E-06 3.17E-10 1.16E-10 
Benzo(a)pyrene 4.20E-06 1.54E-06 3.43E-05 1.45E-05 8.31E-11 3.05E-11 
Benz(a)anthracene 1.73E-06 6.36E-07 1.42E-05 5.98E-06 3.43E-11 1.26E-11 
Benzo(b)fluoranthene 3.14E-07 1.15E-07 2.56E-06 1.08E-06 6.20E-12 2.28E-12 
Dibenz[a,h]anthracene 1.16E-07 4.26E-08 9.50E-07 4.01E-07 2.30E-12 8.43E-13 
TOTAL 5.57E-05 2.04E-05 6.44E-05 2.72E-05 4.78E-09 1.75E-09 
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Table 6b. Comparison of non-cancer risk estimates for oral, dermal and inhalation exposure for seven chemicals from the Black 

et al. (2016) study and the BEACHES study.  

Non-Cancer Oral Dermal Inhalation 
CHEMICAL Black BEACHES Black BEACHES Black BEACHES 
Arsenic 4.00E-04 1.47E-04 2.61E-04 1.10E-04 2.83E-07 1.04E-07 
Barium 2.39E-03 8.76E-04 4.88E-04 2.06E-04 5.56E-08 2.04E-08 
Vanadium 1.06E-03 3.90E-04 2.17E-04 9.17E-05 2.48E-08 9.08E-09 
Benzo(a)pyrene 3.28E-04 1.20E-04 2.68E-03 1.13E-03 6.48E-09 2.38E-09 
Benz(a)anthracene 1.35E-04 4.97E-05 1.11E-03 4.67E-04 2.68E-09 9.82E-10 
Benzo(b)fluoranthene 2.45E-05 8.99E-06 2.00E-04 8.44E-05 4.84E-10 1.78E-10 
Dibenz[a,h]anthracene 9.07E-06 3.33E-06 7.41E-05 3.13E-05 1.79E-10 6.58E-11 
TOTAL 4.35E-03 1.60E-03 5.03E-03 2.12E-03 3.73E-07 1.37E-07 
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Table 7a. Point estimate cancer risk estimates from oral, dermal and inhalation exposure for six chemicals in sediment, weathered 

oil, and tar.  

Chemical 
Oral Dermal Inhalation Tota

l Sedim
ent 

Weathe
red Oil Tar Tota

l 
Sedim

ent 
Weathe
red Oil Tar Tota

l 
Sedim

ent 
Weathe
red Oil Tar Tota

l 
Benzo[b]fluora
nthene 

1.09E-
09 

7.82E-
08 

1.10
E-08 

9.03
E-08 

1.02E-
08 

7.35E-
07 

1.04
E-07 

8.48
E-07 

2.15E-
14 

1.55E-
12 

2.18
E-13 

1.78
E-12 

1.09
E-09 

Benzo[e]pyrene 8.41E-
09 

7.61E-
07 

1.33
E-07 

9.03
E-07 

7.90E-
08 

7.15E-
06 

1.25
E-06 

8.48
E-06 

1.66E-
13 

1.50E-
11 

2.63
E-12 

1.78
E-11 

8.41
E-09 

C3-
Naphthalene 

5.32E-
12 

1.12E-
09 

3.41
E-10 

1.47
E-09 

1.07E-
12 

2.25E-
10 

6.86
E-11 

2.95
E-10 

2.48E-
16 

5.21E-
14 

1.59
E-14 

6.82
E-14 

5.32
E-12 

Chrysene 4.29E-
11 

4.77E-
09 

8.53
E-10 

5.67
E-09 

4.03E-
10 

4.48E-
08 

8.01
E-09 

5.33
E-08 

8.49E-
16 

9.43E-
14 

1.69
E-14 

1.12
E-13 

4.29
E-11 

Fluoranthene 3.50E-
10 

2.11E-
09 

5.94
E-08 

6.18
E-08 

8.23E-
10 

4.96E-
09 

1.39
E-07 

1.45
E-07 

8.15E-
15 

4.91E-
14 

1.38
E-12 

1.44
E-12 

3.50
E-10 

Phenanthrene 8.35E-
11 

2.64E-
08 

1.28
E-09 

2.78
E-08 

1.96E-
10 

6.20E-
08 

3.00
E-09 

6.52
E-08 

1.94E-
15 

6.14E-
13 

2.97
E-14 

6.46
E-13 

8.35
E-11 

Total 9.98E-
09 

8.74E-
07 

2.06
E-07 

1.09
E-06 

9.06E-
08 

8.00E-
06 

1.51
E-06 

9.60
E-06 

1.99E-
13 

1.74E-
11 

4.30
E-12 

2.19
E-11 

9.98
E-09 

6 
 
 
  

                                                 
6 Computed averages for body weight, frequency of exposure, and skin surface area were generated from BEACHES data. Chemical concentration data 
were obtained from fate and transport modeling within the BEACHES study. 
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Table 7b. Point estimate non-cancer risk estimates from oral, dermal and inhalation exposure for six chemicals in sediment, 

weathered oil, and tar.  

Chemical 
Oral Dermal Inhalation Tota

l Sedim
ent 

Weathe
red Oil Tar Tota

l 
Sedim

ent 
Weathe
red Oil Tar Tota

l 
Sedim

ent 
Weathe
red Oil Tar Tota

l 
Benzo[b]fluora
nthene 

8.47E-
08 

6.10E-
06 

8.60
E-07 

7.05
E-06 

7.96E-
07 

5.73E-
05 

8.08
E-06 

6.62
E-05 

1.67E-
12 

1.21E-
10 

1.70
E-11 

1.39
E-10 

8.47
E-08 

Benzo[e]pyrene 6.56E-
07 

5.94E-
05 

1.04
E-05 

7.05
E-05 

6.17E-
06 

5.58E-
04 

9.77
E-05 

6.62
E-04 

1.30E-
11 

1.17E-
09 

2.06
E-10 

1.39
E-09 

6.56
E-07 

C3-
Naphthalene 

4.16E-
10 

8.74E-
08 

2.66
E-08 

1.14
E-07 

8.37E-
11 

1.76E-
08 

5.35
E-09 

2.30
E-08 

1.93E-
14 

4.07E-
12 

1.24
E-12 

5.32
E-12 

4.16
E-10 

Chrysene 3.35E-
09 

3.72E-
07 

6.66
E-08 

4.42
E-07 

3.15E-
08 

3.50E-
06 

6.25
E-07 

4.16
E-06 

6.63E-
14 

7.36E-
12 

1.32
E-12 

8.74
E-12 

3.35
E-09 

Fluoranthene 2.73E-
08 

1.65E-
07 

4.63
E-06 

4.83
E-06 

6.42E-
08 

3.87E-
07 

1.09
E-05 

1.13
E-05 

6.36E-
13 

3.84E-
12 

1.08
E-10 

1.12
E-10 

2.73
E-08 

Phenanthrene 6.51E-
09 

2.06E-
06 

9.97
E-08 

2.17
E-06 

1.53E-
08 

4.84E-
06 

2.34
E-07 

5.09
E-06 

1.52E-
13 

4.79E-
11 

2.32
E-12 

5.04
E-11 

6.51
E-09 

Total 7.79E-
07 

6.82E-
05 

1.61
E-05 

8.51
E-05 

7.07E-
06 

6.24E-
04 

1.18
E-04 

7.49
E-04 

1.55E-
11 

1.36E-
09 

3.35
E-10 

1.71
E-09 

7.79
E-07 

7  

                                                 
7 Computed averages for body weight, frequency of exposure, and skin surface area were generated from BEACHES data. Chemical concentration data 
were obtained from fate and transport modeling within the BEACHES study. 



 
 

53 

Discussion 

There is existing literature characterizing the health risks to adults from exposure to 

OSCs, however analyses specific to children’s health risks are limited. Children are 

considered a vulnerable population; studying children’s health risks is complex and involves 

many factors, such as a child’s rapid growth, physical and cognitive development, and varied 

and age-related behaviors that may influence the types and magnitude of exposure to various 

contaminants.62  The normal steps to process a substance within the body – absorption, 

distribution, metabolism and clearance – are less developed in children, which can result in 

greater risk for adverse health outcomes compared to adults.63  These parameters can change 

dramatically among infants, toddlers, and older children.62  For example, indiscriminate 

ingestion and crawling behavior among young children can put them at risk of exposure to 

certain hazards.63 In the beach environment, young children spend a majority of their play 

time in the sand and intertidal zone, where chemical contaminants tend to accrue. Whereas 

normally the primary exposure route of focus for children’s health in outdoor environments 

is inhalation exposure, the combination of crawling, non-dietary ingestion, and potential 

contamination of beach sand broaden the scope of potential health risks to children.57 Most 

existing risk assessment analyses are based on adult exposure, either using data from mature 

animal models, or from studies in the occupational environment. The rare exception is in 

cases where the health outcome is related to growth and development.62  

For this human health risk assessment, a point risk estimate analysis was conducted 

using variables generated from the BEACHES study and compared against a prior children’s 

health risk assessment by Black et al. (2016).57 The variables for body weight and skin 
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surface area were collected from 119 height and weight measurements of children who 

successfully completed the study, and frequency of exposure was modified from 391 

completed parental surveys. This prior risk assessment utilized values from the EPA 

Exposure Factors Handbook, which averaged values for children between the ages of 2 to 10. 

Compared to the standard value established by the EPA Exposure Factors Handbook (for 

children aged 2 to 10), average body weight from the BEACHES study was slightly higher at 

37.5 versus 25.4 kg for children between walking and 6 years of age. Average skin surface 

area was also higher in the BEACHES cohort, 13,050, versus 11,350 cm2.59 Average self-

reported frequency of exposure was lower compared to the value used in the Black et al. 

analysis (6.5 versus 12 days per year visits to the beach). Children who qualified to 

participate in the BEACHES study were required to meet two criteria: they can walk 

unaided, and were under the age of 7. Almost half (48.74%) of the children who completed 

the BEACHES study were above the age of four; only one child was under one year of age. 

Since the overall demographic profile of children in the BEACHES study skewed toward the 

older, this accounts for the higher average body weight and skin surface area values 

compared to EPA established standard values.  

The three equations used as models for cancer and non-cancer risk from oral, dermal 

and inhalation exposure to OSCs use multiplication and division as the primary method for 

manipulating risk inputs. Mathematically, a change by one order of magnitude will change 

the risk output value by one order of magnitude. Compared to the standard values used in the 

Black analysis, the average BEACHES variables were lower in two cases: frequency of 

exposure (45.8% decrease) and body weight (47.6% decrease). Average body weight was 



 
 

55 

higher in the BEACHES cohort (47.6% increase), but since body weight is found in the 

denominator of each of the risk equations, it can be assumed that this is actually a 47.6% 

decrease mathematically. The average value for skin surface area from the BEACHES study 

was higher than the average value used in the Black analysis (15% increase). Since two out 

of three variables reduce the overall output, and the remaining variable is only used in one 

equation (risk from dermal exposure), it is logical that the risk estimates from the BEACHES 

study will be lower compared to the Black analysis. Based on the results, the risk estimates 

from the BEACHES study were lower than in the Black analysis in every case. In some 

cases, the risk estimate was lower by one order of magnitude: for cancer risk, risk estimates 

differed by one order of magnitude for three chemicals in oral exposure scenario, one 

chemical in dermal exposure scenario, and three chemicals in inhalation exposure scenario; 

for non-cancer risk, risk estimates differed by one order of magnitude for four chemicals in 

oral exposure scenario, three chemical in dermal exposure scenario, and three chemicals in 

inhalation exposure scenario. Risk estimates from dermal exposure showed the least amount 

of change compared to the Black analysis, likely due to the value used for skin surface area 

offsetting reductions from smaller values used for average body weight and frequency of 

exposure. In both risk assessments, the lowest risk estimates were seen in inhalation exposure 

and highest risk estimates were seen in oral and dermal exposure. This suggests that the latter 

two exposure routes should be of greatest concern when evaluating and communicating 

children’s health risks in the beach environment. 

A separate risk assessment was conducted using chemical information from a project 

within the BEACHES study. Six chemicals were selected from a larger dataset due to 
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existing shoreline chemical concentration information for sediment, weathered oil, and tar. 

Following DWH oil spill, approximately 22% of oil that was released deposited onto 

shoreline sediment or was carried to shorelines as tar.64  Weathered oil is used in this risk 

assessment to represent the upper limit of OSC concentration that can exist in sediment 

following shoreline oiling.57 Chemical-specific variables for slope factor, oral relative 

bioavailability factor, and absorption factor were extracted from the same source as the 

chemicals used in the comparative analysis (CEHT 2005). Highest risk estimates were 

observed using concentrations from weathered oil and tar; using these concentrations allows 

for a conservative risk estimation, since it is unlikely that concentrations will be found 

significantly higher than these values. Similar to the comparative analysis, risk estimates for 

inhalation exposure were considerably lower compared to risk estimates from oral and 

dermal exposure. This suggests that communications regarding children’s health risks to 

families following an oil spill event should focus on oral and dermal exposure scenarios. This 

translates to proper hygiene practices during and following beach play – limiting ingestion or 

mouthing of objects that are covered in sand, and thoroughly cleaning sand and water from 

the child’s skin. In all three cases, overall risk estimates were relatively low; however, this 

assessment only accounts for six OSCs; crude oil contains hundreds of compounds, and 

additional chemical by-products are created when crude oil comes into contact and reacts 

with water and air.65   
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OBJECTIVE 2: SENSITIVITY AND MONTE CARLO ANALYSIS 

Results 

Sensitivity Analysis 

Mean, 2.5% and 97.5% percentile total risk values (aggregate risk from oral, dermal 

and inhalation exposure routes) are summarized in Tables 8a, 9a, 10a, 11a, 12a and 13a for 

cancer outcomes and Tables 8b, 9b, 10b, 11b, 12b and 13b for non-cancer outcomes.  

Mean total risk values for benzo[b]fluoranthene increased by one order of magnitude 

for Trial 4 (varying frequency of exposure) and Trial 6 (varying all four datasets in both 

cancer and non-cancer calculations). No change in either direction was observed for Trial 2: 

varying body weight, Trial 3: varying skin surface area, or Trial 5: varying chemical 

concentration. The same order of magnitude increase was seen in mean risk values for Trial 4 

and Trial 6 for C3-naphthalenes, chrysene and phenanthrene for both cancer and non-cancer 

outcomes. No change in either direction was observed for Trial 2, Trial 3 and Trial 5 for C3-

naphthalenes, chrysene and phenanthrene for both cancer and non-cancer calculations.  

Mean total risk values for benzo[e]pyrene decreased by one order of magnitude for 

Trial 2 and Trial 5 in cancer calculations. No change in either direction was observed for 

Trial 3, Trial 4 or Trial 6 in cancer calculations. Mean total risk values for benzo[e]pyrene 

increased by one order of magnitude for Trial 4 and Trial 6 in non-cancer calculations. No 

change in either direction was observed for Trial 2, Trial 3 or Trial 5 in non-cancer 

estimations. 

Mean total risk values for fluoranthene increased by one order of magnitude for Trial 

6 in cancer calculations. No change in either direction was observed for Trial 2, Trial 3, Trial 
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4, and Trial 5 for fluoranthene for cancer calculations. Mean total risk values for fluoranthene 

increased by one order of magnitude for Trial 6 in non-cancer calculations. No change in 

either direction was observed for Trial 3, Trial 4, or Trial 5 in non-cancer calculations. Mean 

total risk value for fluoranthene decreased by one order of magnitude for Trial 2 in non-

cancer calculations. 

Monte Carlo Analysis for 6 Chemicals 

Cancer 

 Mean risk values associated with oral, dermal and inhalation exposure routes are 

summarized in Table 15a for cancer outcomes. Benzo[e]pyrene shows the highest risk 

estimate of the six chemicals in this assessment for oral and dermal exposure routes. 

Benzo[e]pyrene, C3-naphthalenes and phenanthrene show the highest risk estimate of the six 

chemicals assessed for inhalation exposure. Chrysene and fluoranthene show the lowest risk 

estimate of the six chemicals in this assessment for oral and inhalation exposure. 

Fluoranthene shows the lowest risk estimate of the six chemicals assessed in for dermal 

exposure.  

 Total oral, dermal and inhalation cumulative risk are also presented. Total risk 

estimates are highest for dermal exposure route (2.88x10-05) and lowest for inhalation 

exposure route (1.11x10-16). There is a difference of 11 orders of magnitude between total 

risk estimates from inhalation exposure compared to dermal exposure. In addition, there is a 

difference of 10 orders of magnitude between total risk estimates from inhalation exposure 

compared to oral exposure (4.13 x10-06). Further, there is a difference of one order of 

magnitude between total risk estimates from oral exposure compared to dermal exposure. 



 
 

59 

Non-Cancer 

 Mean risk values from oral, dermal and inhalation exposure routes are summarized in 

Table 15b for non-cancer outcomes. Benzo[e]pyrene shows the highest risk estimate of the 

six chemicals in this assessment for oral and dermal exposure routes. Benzo[e]pyrene, C3-

naphthalenes, and phenanthrene show the highest risk estimate of the six chemicals assessed 

for inhalation exposure. Chrysene and fluoranthene show the lowest risk estimate of the six 

chemicals in this assessment for oral and inhalation exposure. Fluoranthene shows the lowest 

risk estimate of the six chemicals assessed in for dermal exposure.  

 Total oral, dermal and inhalation cumulative risk are also presented. Total risk 

estimates are highest in dermal exposure route (2.25 x10-03) and lowest in inhalation 

exposure route (8.58x10-15).  There is a difference of 12 orders of magnitude between total 

risk estimates from inhalation exposure compared to dermal exposure. There is a difference 

of 11 orders of magnitude between total risk estimates from inhalation exposure compared to 

oral exposure (3.21x10-04). There is a difference of one order of magnitude between total risk 

estimates from oral exposure compared to dermal exposure. 

Monte Carlo Analysis for 12 Chemicals  

 A separate Monte Carlo analysis was conducted for 12 OSCs due to missing 

information for chemical concentration in tar. Mean risk values from oral, dermal and 

inhalation exposure routes using concentration values from sediment and weathered oil are 

summarized in Table 18a for cancer outcomes and 16b for non-cancer outcomes.  
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Cancer 

Of the twelve chemicals in this assessment, benzo[a]pyrene shows the highest cancer 

risk estimate for oral and dermal exposure routes in both sediment (2.19x10-08 and 1.51x10-

06, respectively and weathered oil (2.14x10-07 and 1.48 x10-05, respectively). Benzo[a]pyrene 

show the highest cancer risk estimate for inhalation exposure in weathered oil, and both 

benzo[a]pyrene and dibenz[a,h]anthracene show the highest cancer risk estimate for 

inhalation exposure in sediment. Of the twelve chemicals in this assessment, acenaphthene, 

acenaphthylene, benzo[g,h,i]perylene, fluorene, naphthalene and pyrene show the lowest 

cancer risk estimate for oral exposure in sediment. Acenaphthylene and naphthalene show 

the lowest cancer risk estimate for oral exposure in weathered oil. Naphthalene is associated 

with the lowest cancer risk estimate for dermal exposure in both sediment and weathered oil. 

Acenaphthylene and naphthalene show the lowest cancer risk estimates for inhalation 

exposure in sediment, and acenaphthylene relates to the lowest cancer risk estimate for 

inhalation exposure in weathered oil.  

 Total oral, dermal, and inhalation cumulative cancer risk are also presented (Table 

18a). Total cancer risk estimates are highest in weathered oil for all three exposure routes. 

Total cancer risk estimates are highest in dermal exposure route and lowest in inhalation 

exposure route.  There is a difference of 12 orders of magnitude between total cancer risk 

estimates from inhalation exposure compared to dermal exposure. There is a difference of 11 

orders of magnitude between total cancer risk estimates from inhalation exposure compared 

to oral exposure. There is a difference of one order of magnitude between total cancer risk 

estimates from oral exposure compared to dermal exposure. 
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Non-Cancer 

 Mean risk values from oral, dermal and inhalation exposure routes using 

concentration values from sediment and weathered oil are summarized in Table 18b for non-

cancer outcomes.  

 Of the twelve chemicals in this assessment, benzo[a]pyrene shows the highest non-

cancer risk estimate for oral and dermal exposure routes in both sediment and weathered oil. 

Benzo[a]pyrene showed the highest non-cancer risk estimate for inhalation exposure in 

weathered oil, and both benzo[a]pyrene and dibenz[a,h]anthracene show the highest non-

cancer risk estimate for inhalation exposure in sediment. Of the twelve chemicals in this 

assessment, acenaphthylene and naphthalene show the lowest non-cancer risk estimates for 

oral exposure in sediment and weathered oil. Naphthalene shows the lowest non-cancer risk 

estimate for dermal exposure in both sediment and weathered oil. Acenaphthene, 

acenaphthylene, benzo[g,h,i]perylene, and naphthalene show the lowest non-cancer risk 

estimate for inhalation exposure in sediment acenaphthylene shows the lowest non-cancer 

risk estimate for inhalation exposure in weathered oil. 

 Total oral, dermal and inhalation cumulative non-cancer risk are also presented 

(Table 18b). Total non-cancer risk estimates are highest in weathered oil for all three 

exposure routes. Total non-cancer risk estimates are highest in dermal exposure route and 

lowest in inhalation exposure route.  There is a difference of 12 orders of magnitude between 

total non-cancer risk estimates from inhalation exposure compared to dermal exposure. There 

is a difference of 11 orders of magnitude between total non-cancer risk estimates from 

inhalation exposure compared to oral exposure. There is a difference of one order of 
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magnitude between total non-cancer risk estimates from oral exposure compared to dermal 

exposure. 
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Table 8a. Cancer risk estimates for benzo[b]fluoranthene based on varying datasets.  

 Inputs  Simulation Output 
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 6.07 5.40E-07 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 6.07 4.37E-07 
 

2.69E-07 
 

7.24E-07 
 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 6.07 5.75E-07 
 

3.89E-07 
 

8.13E-07 
 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

6.07 2.69E-06 
 

6.31E-07 
 

7.24E-06 
 

5 34.8 12582 3 Min: 0.007211 
Likeliest: 6.07 

Max: 23.36 

7.76E-07 2.14E-07 1.74E-06 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.007211 
Likeliest: 6.07 

Max: 23.36 

3.31E-06 
 

6.03E-07 
 

1.62E-05 
 

8

                                                 
8 Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 
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Table 8b. Non-cancer risk estimates for benzo[b]fluoranthene based on varying datasets.  

 Inputs Simulation Output  
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 6.07 4.21E-05 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 6.07 3.39E-05 
 

2.09E-05 
 

7.24E-05 
 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 6.07 4.47E-05 
 

3.09E-05 
 

6.31E-05 
 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

6.07 2.14E-04 
 

4.90E-05 
 

5.62E-04 
 

5 34.8 12582 3 Min: 0.007211 
Likeliest: 6.07 

Max: 23.36 

6.03E-05 
 

1.66E-05 
 

1.38E-04 
 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.007211 
Likeliest: 6.07 

Max: 23.36 

2.75E-04 
 

4.68E-05 
 

1.26E-03 
 

9  

                                                 
9 Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 
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Table 9a. Cancer risk estimates for benzo[e]pyrene based on varying datasets.  

 Inputs  Simulation Output  
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 12.12 1.08E-05 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 12.12 8.71E-06 
 

5.50E-06 
 

1.48E-05 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 12.12 1.15E-05 
 

7.94E-06 1.62E-05 
 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

12.12 5.25E-05 
 

1.26E-05 
 

1.41E-04 
 

5 34.8 12582 3 Min: 0.0038 
Likeliest: 12.12 

Max: 13.05 

6.92E-06 2.09E-06 1.10E-05 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.0038 
Likeliest: 12.12 

Max: 13.05 

2.82E-05 
 

4.79E-06 
 

1.32E-04 
 

10  

                                                 
10Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 
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Table 9b. Non-cancer risk estimates for benzo[e]pyrene based on varying datasets.  

 Inputs Simulation Output  
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 12.12 8.41E-04 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 12.12 6.92E-04 
 

4.27E-04 
 

1.05E-03 
 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 12.12 8.91E-04 
 

6.17E-04 
 

1.26E-03 
 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

12.12 4.07E-03 
 

1.00E-03 
 

1.10E-02 
 

5 34.8 12582 3 Min: 0.0038 
Likeliest: 12.12 

Max: 13.05 

5.37E-04 
 

1.66E-04 
 

3.72E-04 
 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.0038 
Likeliest: 12.12 

Max: 13.05 

2.19E-03 
 

3.72E-04 
 

1.02E-02 
 

11  

                                                 
11 Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 
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Table 10a. Cancer risk estimates for C3-naphthalene based on varying datasets.  

 Inputs  Simulation Output  
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 1167.35 3.37E-07 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 1167.35 2.69E-07 1.74E-07 4.57E-07 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 1167.35 3.39E-07 3.24E-07 3.63E-07 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

1167.35 1.74E-06 4.37E-07 4.27E-06 

5 34.8 12582 3 Min: 0.01094 
Likeliest: 1616.11 

Max: 1858.97 

3.16E-07 1.32E-07 4.90E-07 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.01094 
Likeliest: 1616.11 

Max: 1858.97 

1.29E-06 2.63E-07 5.01E-06 

12  

                                                 
12 Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 
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Table 10b. Non-cancer risk estimates for C3-naphthalene based on varying datasets.  

 Inputs Simulation Output  
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 1167.35 2.63E-05 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 1167.35 2.09E-05 1.35E-05 3.55E-05 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 1167.35 2.69E-05 2.51E-05 2.88E-05 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

1167.35 1.35E-04 3.39E-05 3.31E-04 

5 34.8 12582 3 Min: 0.01094 
Likeliest: 1616.11 

Max: 1858.97 

2.45E-05 1.02E-05 3.80E-05 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.01094 
Likeliest: 1616.11 

Max: 1858.97 

1.02E-04 2.09E-05 3.89E-04 

13  

                                                 
13 Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 



 
 

69 

Table 11a. Cancer risk estimates for chrysene based on varying datasets.  

 Inputs  Simulation Output 
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 49.71 4.42E-08 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 49.71 3.55E-08 
 

2.24E-08 
 

6.03E-08 
 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 49.71 4.68E-08 
 

3.24E-08 
 

6.61E-08 
 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

49.71 2.24E-07 
 

5.50E-08 
 

5.89E-07 
 

5 34.8 12582 3 Min: 0.011175 
Likeliest: 49.71 

Max: 231.38 

7.24E-08 2.24E-08 1.66E-07 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.011175 
Likeliest: 49.71 

Max: 231.38 

3.02E-07 
 

4.79E-08 
 

1.51E-06 
 

14  

                                                 
14 Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 
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Table 11b. Non-cancer risk estimates for chrysene based on varying datasets.  

 Inputs Simulation Output  
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 49.71 3.45E-06 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 49.71 2.75E-06 
 

1.74E-06 
 

4.68E-06 
 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 49.71 3.63E-06 
 

2.51E-06 
 

5.25E-06 
 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

49.71 1.74E-05 
 

4.27E-06 
 

4.57E-05 

5 34.8 12582 3 Min: 0.011175 
Likeliest: 49.71 

Max: 231.38 

5.62E-06 
 

1.74E-06 
 

1.29E-05 
 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.011175 
Likeliest: 49.71 

Max: 231.38 

2.34E-05 
 

3.72E-06 
 

1.17E-04 
 

15  

                                                 
15 Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 
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Table 12a. Cancer risk estimates for fluoranthene based on varying datasets.  

 Inputs  Simulation Output 
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 9.35 1.48E-08 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 9.35 1.20E-08 7.94E-09 1.86E-08 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 9.35 1.55E-08 1.17E-08 2.00E-08 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

9.35 7.76E-08 2.29E-08 1.74E-07 

5 34.8 12582 3 Min: 0.007483 
Likeliest: 4.635 

Max: 61.00 

3.09E-08 8.51E-09 7.24E-08 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.007483 
Likeliest: 4.635 

Max: 61.00 

1.32E-07 2.14E-08 5.75E-07 

16  

                                                 
16 Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 
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Table 12b. Non-cancer risk estimates for fluoranthene based on varying datasets.  

 Inputs Simulation Output 
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 9.35 1.15E-06 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 9.35 9.33E-07 6.17E-07 1.45E-06 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 9.35 1.23E-06 9.12E-07 1.58E-06 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

9.35 6.17E-06 1.78E-06 1.38E-05 

5 34.8 12582 3 Min: 0.007483 
Likeliest: 4.635 

Max: 61.00 

2.45E-06 6.61E-07 5.75E-06 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.007483 
Likeliest: 4.635 

Max: 61.00 

1.02E-05 1.66E-06 4.47E-05 

17  

                                                 
17 Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 
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Table 13a. Cancer risk estimates for phenanthrene based on varying datasets.  

 Inputs  Simulation Output 
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 254.70 3.02E-07 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 254.70 2.45E-07 1.62E-07 3.89E-07 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 254.70 3.16E-07 6.03E-07 4.17E-07 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

254.70 1.66E-06 4.79E-07 3.72E-06 

5 34.8 12582 3 Min: 0.007111 
Likeliest: 322.46 

Max: 725.90 

3.98E-07 1.62E-07 6.76E-07 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.007111 
Likeliest: 322.46 

Max: 725.90 

1.78E-06 4.17E-07 6.03E-06 

18  

                                                 
18 Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 
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Table 13b. Non-cancer risk estimates for phenanthrene based on varying datasets.  

 Inputs Simulation Output 
Trial Body Weight 

(kg) 
Skin Surface Area 

(cm2) 
Frequency 
(days/yr) 

Concentration 
(mg/kg) 

Mean Value 
(2.5%) 

Value 
(97.5%) 

1 34.8 12582 3 254.70 2.36E-05 NA NA 
2 
 

Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

12582 3 254.70 1.91E-05 1.26E-06 3.02E-05 

3 34.8 Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

3 254.70 2.45E-05 1.86E-05 3.24E-05 

4 34.8 12582 Min: 1 
Likeliest: 3 

Max: 50 

254.70 1.29E-04 3.80E-05 2.95E-04 

5 34.8 12582 3 Min: 0.007111 
Likeliest: 322.46 

Max: 725.90 

3.09E-05 1.26E-05 3.31E-05 

6 Min: 19.2 
Likeliest: 34.8 

Max: 82.4 

Min: 7430.253 
Likeliest: 12582.02 

Max: 21258.03 

Min: 1 
Likeliest: 3 

Max: 50 

Min: 0.007111 
Likeliest: 322.46 

Max: 725.90 

1.38E-04 3.24E-05 4.68E-04 

19

                                                 
19 Trial 1 = risk assessment estimate using average values computed from BEACHES data.  
Trial 2 = risk assessment estimate using full dataset for body weight and averages for all other variables.  
Trial 3 = risk assessment estimate using full dataset for skin surface area and averages for all other variables. 
Trial 4 = risk assessment estimate using full dataset for frequency of exposure and averages for all other variables. 
Trial 5 = risk assessment estimate using full dataset for chemical concentration and averages for all other variables. 
Trial 6 = risk assessment estimate using full dataset for body weight, skin surface area, frequency of exposure, and chemical concentration. 
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Table 14. Assumption values used in risk estimate simulations in Crystal Ball.66    

 ASSUMPTIONS 
 Distribution Minimum Likeliest (Median) Maximum 
EXPOSURE DATA  
Body Weight (kg) Triangular 19.2 34.8 82.4 
Skin Surface Area(CM2) Triangular 7430.253 12582.02 21258.03 
Frequency of Exposure 
(days/yr) 

Triangular 1 3 50 

CHEMICAL DATA 
Benzo[b]fluoranthene 
(mg/kg) 

Triangular 0.007211 6.07 23.36 

Benzo[e]pyrene (mg/kg) Triangular 0.0038 12.12 13.05 
C3-Naphthalene (mg/kg) Triangular 0.01094 1616.11 18.58.97 
Chrysene (mg/kg) Triangular 0.011175 49.71 231.38 
Fluoranthene (mg/kg) Triangular 0.007483 4.635 61.00 
Phenanthrene (mg/kg) Triangular 0.007111 322.46 725.90 

20  

                                                 
20 Minimum, likeliest, and maximum values for body weight, frequency of exposure, and skin surface area were obtained from BEACHES data. Median 
values were used as likeliest value to create distribution. Minimum, likeliest, and maximum values for chemical concentrations were obtained from 
combining data from EPA sampling and fate and transport modeling within the BEACHES study. 
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Table 15a. Mean cancer risk estimate values for six chemicals from oral, dermal and inhalation exposure routes.   

Chemical 
Oral Dermal Inhalation Total 

Cancer Risk (mean) Cancer Risk (mean) Cancer Risk (mean)  

Benzo[b]fluoranthene 2.63E-07 2.82E-06 5.13E-18  

Benzo[e]pyrene 2.51E-06 2.45E-05 5.13E-17  

C3-Naphthalene 9.12E-07 2.00E-07 4.27E-17  

Chrysene 2.45E-08 2.63E-07 5.50E-19  

Fluoranthene 3.16E-08 6.92E-08 7.08E-19  

Phenanthrene 3.89E-07 9.77E-07 1.02E-17  

Total 4.13E-06 2.88E-05 1.11E-16 3.30E-05 
21 

  

                                                 
21 Data generated from Crystal Ball.66 
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Table 15b. Mean non-cancer risk estimate values for six chemicals from oral, dermal and inhalation exposure routes.  

Chemical 
Oral Dermal Inhalation Total 

Non-Cancer Risk 
(mean) 

Non-Cancer Risk 
(mean) 

Non-Cancer Risk 
(mean)  

Benzo[b]fluoranthene 2.04E-05 2.19E-04 3.98E-16  

Benzo[e]pyrene 1.95E-04 1.91E-03 3.98E-15  

C3-Naphthalene 7.08E-05 1.55E-05 3.31E-15  

Chrysene 1.91E-06 2.09E-05 4.27E-17  

Fluoranthene 2.45E-06 5.37E-06 5.62E-17  

Phenanthrene 3.09E-05 7.59E-05 7.94E-16  

Total 3.21E-04 2.25E-03 8.58E-15 2.57E-03 
22 
  

                                                 
22 Data generated from Crystal Ball.66   
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Table 16:  Input values for chemical risk assessment of twelve chemicals missing data for tar.  

 Concentration (mg/kg) Slope Factor   

Chemicals Sediment Weathered 
Oil Tar Oral Dermal Inhalation RBA 

Oral 

ABS 
Derma

l 
Acenaphthene 0.01637 0.1638 NA 0.06 0.03 0.03 0.5 0.01 
Acenaphthylene 0.008792 0.0145 NA 0.03 0.03 0.03 0.5 0.01 
Anthracene 0.01404 10.15 NA 0.30 0.15 0.15 0.5 0.01 
Benz[a]anthracene 0.08517 13.26 NA 0.73 1.46 0.31 0.5 0.01 
Benzo[a]pyrene 0.02968 0.0888 NA 0.073 0.146 0.031 0.5 0.01 
Benzo[g,h,i]perylene 0.03759 0.521 NA 0.03 0.015 0.015 0.5 0.01 
Benzo[k]fluoranthene 0.06724 4.586 NA 7.3 14.6 3.1 0.5 0.01 
Dibenz[a,h]anthracene 0.02398 0.133 NA 7.3 14.6 3.1 0.5 0.01 
Fluorene 0.03472 6.461 NA 0.04 0.02 0.02 0.5 0.01 
Indeno[1,2,3-cd]pyrene 0.03214 0.345 NA 0.73 1.46 0.31 0.5 0.01 
Naphthalene 0.01367 0.0336 NA 0.02 8.57x10-4 0.02 0.5 0.01 
Pyrene 0.05729 9.59 NA 0.03 0.015 0.015 0.5 0.01 

23  

                                                 
23 Chemical concentration data were obtained from fate and transport modeling within the BEACHES study. Oral, dermal, and inhalation slope factor 
values, oral RBA, and dermal RBS were obtained from Center for Environmental Toxicology report (2005). 61 
NA = not available 
RBA = relative bioavailability 
ABS = absorption factor 
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Table 17. Assumption values used in risk estimate simulations in Crystal Ball.66    

 ASSUMPTIONS 

 Distribution Minimum Likeliest (Median) Maximum 

EXPOSURE DATA  

Body Weight (kg) Triangular 19.2 34.8 82.4 

Skin Surface Area (cm2) Triangular 7430.253 12582.02 21258.03 

Frequency of Exposure 
(days/year) 

Triangular 1 3 50 

24 

                                                 
24 Minimum, likeliest, and maximum values for body weight, frequency of exposure, and skin surface area were obtained from BEACHES data. Median 
values were used as likeliest value to create distribution.  
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Table 18a. Mean cancer risk estimate values for twelve chemicals from oral, dermal and inhalation exposure routes using 

concentration from sediment and weathered oil. Data generated from Crystal Ball.66  

 Cancer Risk 
Chemical Oral Risk (mean) Dermal Risk (mean) Inhalation Risk (mean) Total 

  Sediment Weathered 
Oil Sediment Weathered 

Oil Sediment Weathered 
Oil   

Acenaphthene 4.37E-11 4.27E-10 1.10E-10 1.15E-09 1.02E-21 1.05E-20   
Acenaphthylene 1.20E-11 1.95E-11 6.31E-11 1.00E-10 5.50E-22 8.91E-22   

Anthracene 1.86E-10 1.32E-07 4.68E-10 3.31E-07 4.37E-21 3.24E-18   
Benz[a]anthracene 2.75E-09 4.37E-07 2.69E-08 4.07E-06 5.62E-20 8.51E-18   

Benzo[a]pyrene 2.19E-08 1.51E-06 2.14E-07 1.48E-05 4.37E-19 2.88E-17   
Benzo[g,h,i]perylene 5.13E-11 7.24E-10 1.23E-10 1.74E-09 1.20E-21 1.66E-20   

Benzo[k]fluoranthene 1.00E-10 2.88E-10 9.12E-10 2.95E-09 2.04E-21 5.75E-21   
Dibenz[a,h]anthracene 8.32E-09 4.57E-08 7.76E-08 4.17E-07 1.55E-19 8.51E-19   

Fluorene 6.17E-11 1.15E-08 1.55E-10 2.95E-08 1.51E-21 2.69E-19   
Indeno[1,2,3-cd]pyrene 1.07E-09 1.17E-08 1.05E-08 1.10E-07 2.09E-20 2.19E-19   

Naphthalene 1.20E-11 2.95E-11 2.57E-12 6.17E-12 5.89E-22 1.41E-21   
Pyrene 7.76E-11 1.29E-08 2.04E-10 3.02E-08 1.78E-21 3.09E-19   

Total 3.46E-08 2.17E-06 3.31E-07 1.98E-05 6.82E-19 4.23E-17 
Sediment Weathered 

Oil 
3.65E-07 2.20E-05 

Total 2.20E-06 2.01E-05 4.30E-17 2.23E-05 
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Table 18b. Mean non-cancer risk estimate values for twelve chemicals from oral, dermal and inhalation exposure routes using 

concentration from sediment and weathered oil. Data generated from Crystal Ball.66   

 Non-Cancer Risk 
Chemical Oral Risk (mean) Dermal Risk (mean) Inhalation Risk (mean) Total 

  Sediment Weathered 
Oil Sediment Weathered 

Oil Sediment Weathered 
Oil   

Acenaphthene 3.47E-09 3.31E-08 8.51E-09 8.91E-08 7.94E-20 8.13E-19   
Acenaphthylene 9.33E-10 1.51E-09 4.90E-09 7.76E-09 4.27E-20 6.92E-20   

Anthracene 1.45E-08 1.05E-05 3.72E-08 2.57E-05 3.39E-19 2.51E-16   
Benz[a]anthracene 2.14E-07 3.39E-05 2.14E-06 3.16E-04 4.37E-18 6.61E-16   

Benzo[a]pyrene 1.70E-06 1.17E-04 1.66E-05 1.17E-03 3.39E-17 2.29E-15   
Benzo[g,h,i]perylene 3.98E-09 5.62E-08 9.55E-09 1.35E-07 9.55E-20 1.29E-18   

Benzo[k]fluoranthene 7.76E-09 2.24E-08 7.08E-08 2.29E-07 1.58E-19 4.57E-19   
Dibenz[a,h]anthracene 6.46E-07 3.55E-06 3.02E-06 3.24E-05 1.20E-17 6.61E-17   

Fluorene 4.79E-09 8.91E-07 1.20E-08 2.29E-06 1.17E-19 2.09E-17   
Indeno[1,2,3-cd]pyrene 8.32E-08 9.12E-07 8.13E-07 8.51E-06 1.32E-18 1.70E-17   

Naphthalene 9.33E-10 2.34E-09 2.00E-10 4.79E-10 4.57E-20 1.12E-19   
Pyrene 6.03E-09 1.00E-06 1.58E-08 2.40E-06 1.38E-19 2.40E-17   

Total 2.68E-06 1.68E-04 2.27E-05 1.56E-03 5.26E-17 3.33E-15 
Sediment Weathered 

Oil 
2.54E-05 1.73E-03 

Total 1.71E-04 1.59E-03 3.39E-15 1.76E-03 
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Discussion 

Examining children’s health risks from environmental exposures is a complex 

process. The interaction between a child and his or her environment, coupled with child-

specific behaviors, such as higher rate of hand-to-mouth actions, higher rate of non-dietary 

ingestion, crawling and prolonged time spent near the ground, and increased physical 

activity, creates an exposure profile that is distinctly different than for adults. In some 

scenarios, children can experience increased exposures compared to adults for the same 

environmental context. This exposure profile can also change based on sociological and 

psychological factors. The unique exposure profile for children can result in adverse health 

outcomes even in scenarios where adults are not considered at risk. For example, children are 

at greater risk from exposure to chemical hazards found in soil or sand (such as at beach 

sites), due to young children spending a majority of time closer to the ground, and potentially 

crawling in and/or eating the contaminated soil.63  It is important to evaluate factors used in 

human health risk assessment for how they might represent exposures experienced by a child.  

A sensitivity analysis was conducted to determine which variables might drive overall 

risk estimates. First, a baseline risk estimate was computed using average values for each 

variable. Then, one dataset was inputted into a Crystal Ball simulation, while averages were 

used for all remaining variables. A triangular distribution was chosen for each dataset, since 

minimum and maximum values were known. In the last simulation, datasets were used for all 

four variables. The only single trial where an increase from the baseline was seen in most 

cases was for frequency of exposure. Comparing the three datasets generated from the 

BEACHES study demographic and survey information, the greatest range in values is seen 
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for frequency of exposure (1 to 50 days). Ranges for body weight (19.2 to 82.4kg) and skin 

surface area (7,430 21,258 cm2) are not as great compared to frequency of exposure. A 

greater range in values may have contributed to the increases in aggregate risk estimates for 

these chemicals. Furthermore, skin surface area is only used in risk estimates for dermal 

exposure, so it did not have a substantial impact on overall aggregate risk estimates.    

 In the context of beach-related behavior, families who might report 50 days per year 

visiting the beach are likely to be those that live close to beach sites. Increase in risk estimate 

values from varying frequency of exposure in this sensitivity analysis could suggest that 

frequency of visiting the beach environment is a driver of exposure; residents who live close 

to beaches and visit them regularly, such as those living on Galveston Island, may experience 

higher rates of exposure to OSCs and subsequent adverse health outcomes compared to those 

visiting the beach sporadically from other cities. Increase can occur in time spent at beaches 

and number of visits per year.  

A Monte Carlo analysis was conducted using chemical information from a fate and 

transport modeling sub-project within the BEACHES study, combined with existing 

concentration information from EPA sampling immediately following the DWH oil spill. Six 

chemicals were selected from a larger dataset due to existing shoreline chemical 

concentration information for sediment, weathered oil, and tar. Following the DWH oil spill, 

approximately 22% of oil that was released deposited onto shoreline sediment or was carried 

to shorelines as tar.68  Weathered oil is used in this human health risk assessment to represent 

the upper limit of OSC concentration that can exist in sediment following shoreline oiling.61  

Chemical-specific variables for slope factor, oral relative bioavailability factor, and 
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absorption factor were extracted from the Center for Environmental Toxicology Technical 

Report. .65  For both cancer and non-cancer risk estimates of this set of six chemicals, the 

highest values were seen for benzo[e]pyrene. The mean risk estimates are highest in dermal 

exposure, followed closely by oral exposure; estimates were lowest in inhalation exposure. 

This suggests that the former two exposure routes should be of greatest concern when 

evaluating and communicating children’s health risks  in the beach environment. 

A second Monte Carlo analysis was conducted using BEACHES datasets and 

chemical concentration data for twelve chemicals that had missing information for 

concentration in tar. Single values were used for chemical concentration, and health risk 

estimates were generated for exposures to concentration in sediment and weathered oil.  For 

both cancer and non-cancer risk estimates of the second set of twelve chemicals, the highest 

values were seen for benzo[a]pyrene. Since weathered oil represents the upper limit of 

concentration, highest risk estimates were seen for weathered oil calculations compared to 

sediment. Each beach site may have a different distribution of chemicals in different zones; 

further analysis is necessary to determine how the composition of beach sites impact 

children’s play behavior, and how that may translate in terms of exposure to different OSCs 

in the various beach locations.  

The mean risk estimates are highest in dermal exposure, followed closely by oral 

exposure; estimates were lowest in inhalation exposure. These risk estimates are missing 

information for tar; as a result, cumulative risk might be higher than what is presented here. 

This suggests that communications regarding children’s health risks to families following an 

oil spill event should focus on oral and dermal exposure scenarios. This translates to proper 
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hygiene practices during and following beach play – limiting ingestion or mouthing of 

objects that are covered in sand, and thoroughly cleaning sand and water from the child’s 

skin.  In analyses of the first six chemicals, as well as in the latter twelve chemicals, overall 

risk estimates were relatively low; however, this assessment only accounts for 18 OSCs; 

crude oil contains hundreds of compounds, and additional chemical by-products are created 

when crude oil comes into contact and reacts with water and air.69   
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OBJECTIVE 3: ANALYSIS OF POLICIES FOR RECREATIONAL BEACH USE 

AND CLOSURES 

Local and National Regulations Governing Beach Advisories and Closures 

Analysis of local procedures on beach closures in the event of contamination will be 

limited to the two locations included in the BEACHES study, Galveston County and Miami-

Dade County, as well as relevant national protocols.  

Galveston County Policy on Beach Closures 

Following mandates from the federal BEACH Act, Texas has implemented a beach 

advisory system called Texas Beach Watch, administered and maintained by the Texas 

General Land Office with funding and support from the EPA. Texas Beach Watch monitors 

water quality through the use of fecal indicator bacteria (Enterococci) at 167 stations located 

on 65 different beach sites in various counties, including Galveston County. Within 

Galveston County, there are 52 water quality monitoring stations. During peak beach use 

season, running between May and September, and in March, during Spring Break period, 

water samples are collected weekly at each station. During off-peak months, water samples 

are collected at two-week intervals.70  Water quality monitoring data is uploaded to Texas 

Beach Watch Information system, and later archived with BEACON.  

If concentrations of fecal indicator bacteria exceed EPA limits in a collected water 

sample, an advisory is issued for the corresponding beach site. Water samples are collected at 

the affected site every 24 hours until the concentration falls below exceedance limit. 

Although an advisory is issued for the beach location both online and through physical 

signage at the affected beach in both English and Spanish, the beach itself is not closed to the 
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public unless concentrations remain above allowable limits for more than 48 hours. People 

visiting the beach make the decision to move to another beach site or remain at affected 

location.71 The signage at the beach indicates a warning of potential illness from beach use 

(Figure 5) and the online advisory states only that fecal indicator bacteria levels exceeded 

EPA standard at a given location.70  Specific health information regarding beach use in 

affected areas can be found on the Galveston County Health District page on Beach Water 

Advisories, where it identifies those with open cuts and sores, immune-suppressive 

conditions, diabetes, liver disease, or cancer are at increased risk of infection. The site also 

recommends immediate attention, and if needed, medical attention in the event of 

experiencing an open cut or wound while at the beach.71      

The Texas Commission on Environmental Quality (TCEQ) also monitors surface 

waters throughout the state; routine monitoring every six months is conducted at over 3,200 

stations across the state and continuous, real-time monitoring occurs at 35 select watersheds. 

Routine monitoring efforts collect sampling data on water flow, nutrients (phosphorus, 

nitrogen, etc.), bacterial indicators, and other ambient field measurements, such as 

temperature and pH. At certain sites, data on aquatic life and chemical concentration in 

sediment and water is also collected; chemicals identified to be of concern are those that have 

demonstrated toxicity in aquatic organisms.72 However, in the most recent report on water 

quality monitoring data, the TCEQ did not collect and chemical-specific samples at 

recreational beach sites.73   
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Miami-Dade County Policy on Beach Closures 

 Following implementation of the BEACH Act, the state of Florida instituted the 

Florida Healthy Beaches Program, which collects water samples from 32 regions along the 

shoreline for both the GOM-facing and Atlantic Ocean-facing coasts. Samples are collected 

and analyzed for fecal indicator bacteria (Enterococci) every two weeks from March to 

October, coinciding with beach use activity for most of the state. If the concentration of fecal 

indicator bacteria exceeds an established upper limit in both an initial and subsequent water 

sample, a beach advisory is issued for the beach sampling site. Similar to protocols in Texas, 

Florida issues an advisory to inform beachgoers, but does not close the beach site in the event 

of fecal indicator bacteria exceedances. The Florida Healthy Beaches Program also partners 

with Florida Fish and Wildlife Conservation and the Florida Department of Health to monitor 

harmful algal blooms and other aquatic toxins and pathogens.74   

The Florida Department of Environmental Protection is the state equivalent to the 

TCEQ, and monitors watersheds across the state for various physical, biological and 

chemical indicators. However, water samples are limited to lakes, streams, rivers, canals, and 

aquifers. There is no established routine monitoring of chemical contaminants in beach 

zones.75   

National Sampling Protocols to Inform State Agencies 

Nationwide sampling of coastal waters to evaluate potential hazards for human health 

and ecosystems occurs approximately every five years by the EPA; the program, called the 

National Coastal Condition Assessment (NCCA) collects data on four indicators – biological 

(measure of ecosystem health), chemical (including contaminants in sediment), physical, and 
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human health (recreational potential, commercial fish tissue contaminants) for coastal waters 

extending from the shoreline to the nearshore boundary of the open water for both oceans 

and the Great Lakes. NCCAs are conducted every five years; the latest NCCA report was 

issued in 2010, and the most recent sampling cycle was conducted in 2015. An updated 

report and new sampling cycle is scheduled to be generated in 2020. The NCCA serves as a 

general monitoring tool for coastal water quality, and has not been used to inform beach 

closures.76 

Coastline sampling for chemical contamination has occurred in emergency situations, 

such as immediately following DWH oil spill. EPA collected data on water, sediment, air, 

and waste between April and October 2010. Human health benchmarks were used to assess 

cancer and non-cancer risk from exposure to metals, VOCs, SVOCs, and PAHs. The human 

health benchmark used in this assessment was 90 hours of exposure from skin contact and 

accidental ingestion of water by a child swimmer. Sampling and subsequent risk data was 

provided to local agencies for all states affected by DWH oil spill, and each state and region 

made individual decisions regarding recreational beach closures.77 

Strengths and Limitations of Regulations Governing Beach Advisories 

Following the DWH oil spill, EPA conducted emergency sampling of coastlines in 

Florida, Alabama. Mississippi, Louisiana, and Texas to evaluate the potential health risks to 

humans and ecosystems along the GOM. In the data analysis for human health risks, 

benchmarks were used for children to determine whether a cancer or non-cancer health risk 

existed (yes or no). Using child benchmarks constitutes a conservative approach that takes 
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into consideration a vulnerable population (children) and ensures the reported risks reflect all 

populations that may be using the beach.78   

Advisories and closures of recreational beach sites are largely governed by available 

data on various water quality factors. EPA sampling activities might inform state agencies 

regarding potential beach closures, and states and territories are required to report beach 

closures to the EPA, but generally are the primary decision-makers to close or reopen a 

beach.76  Based on current, existing information on procedures regulating beach advisories 

and closures, in most cases advisories are issued for biological contamination, with closures 

being rare. Advisories associated with chemical contamination appear uncommon except in 

cases of major events, such as DWH oil spill. Both biological and chemical-associated beach 

advisory and closure recommendations are limited by available water sampling data, which is 

collected by states under mandate by the BEACH Act and using funding from EPA. 

However, these mandates only compel water quality analysis for biological pathogens; in the 

case of Florida and Texas, there is no routine sampling of water for chemical contaminant 

analysis at recreational beach sites. Furthermore, EPA funding is sensitive to national 

budgetary initiatives; for the past 3 years, EPA funding for BEACH Act-related activities 

have declined.79  

Recommendations for Regulations Governing Beach Advisories 

 State and local agencies rely on quantitative data on water quality in order to manage 

public beach use. Many local agencies must weigh their obligation to inform the public 

regarding beach advisories and promoting recreational beach use as a revenue-generating 

instrument. A 2004 study conducted by Turbow et al. found a 40% reduction in recreational 
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beach use at selected California beaches following a closure due to bacterial pollution.80  

Currently, the only routine monitoring of chemical contaminants in beach environments is 

conducted in an emergency following a spill or other disaster event. Even in these cases, it is 

difficult to interpret sampling data without a baseline measurement prior to the disaster 

event.81  Following DWH oil spill, many beaches and commercial fisheries were closed as a 

preventative measure rather than a response to available exposure data.82  In order for local 

and state agencies to make logical decisions regarding beach advisories and closures for the 

protection of human health, routine water sampling programs should be established to gather 

data on potential chemical hazards. Current environmental policies should be broadened to 

include sampling requirements outside damage assessment situations; consistent sampling for 

chemical hazards would not only help inform local agencies tasked with protecting public 

health, but would also provide a baseline measurement of chemical constituents in the 

environment in the event of another disaster, and may potentially limit the impact of lost 

revenue.81   

The biggest limitation to implementing chemical hazard monitoring is the vast profile 

of potential chemicals in the water environment; oil alone has hundreds of chemical 

constituents and byproducts. In Texas, there is limited testing of water for chemicals, but this 

testing is primarily for sediment in inland watersheds.  The cost of sampling for every 

possible OSC would likely exceed current and future funding allocation. At the federal level, 

the EPA should consider raising the budget assisting states in their water sampling programs. 

This would allow states to implement sampling programs for chemicals to run alongside 

existing sampling programs for bacterial indicators. In the event that budget constraints 
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remain, state programs can utilize data generated from many studies following the DWH oil 

spill studying the primary residual compounds following oil contamination of nearshore 

environments;83  additionally, technologies have advanced to create chemical indicators, 

similar to fecal indicator bacteria, to detect OSCs in water samples.84  These two methods – 

utilizing indicators and novel technologies - would limit the scope of chemical testing, 

thereby mitigating the burden of funding constraints. Acceptable thresholds can be 

established using current information on chemical toxicity, as well as risk assessment models 

for various populations, including children.  

Preliminary indications from this risk assessment process suggest that frequency of 

exposure, specifically number of days per year a population interacts with the beach 

environment, drives risk estimates. Populations visiting the beach regularly, especially those 

that live near the beach, such as in the case for many residents of Galveston and Miami-Dade 

counties, may be at higher risk for exposure to OSCs. It will be important for decision-

makers to take this into consideration when determining whether to post an advisory or close 

an affected beach site, and the manner in which they communicate one or the other. Special 

health warnings may need to be issued for local communities who use public beaches at a 

higher rate compared to tourists; a possible recommendation would be to provide a health 

advisory to families who visit the beach more than twice a week during the peak seasons. 

These specialized advisories could provide additional information regarding the health risks 

of chronic exposure to beaches contaminated by OSCs. Similar to existing policies 

encompassing bacterial contamination, chemical-exposure advisories can be posted at sites 

and online, deliver information in plain language, and allow the public to make their own 
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decisions regarding their exposure to the beach environment. Additionally, as in the case 

with bacterial contamination, any advisories related to chemical contamination need to be 

informed by sampling data in order to prevent the possibility of inciting unnecessary fear or 

avoidance of beaches. These advisories cannot be presented without the support of consistent 

scientific data. Based on survey data collected from the BEACHES study, preferences for 

receiving warnings regarding beach advisories, closures, and other public announcements 

appear to vary by race; white families tend to prefer information via social media and other 

phone-based services, while black families prefer TV and radio  announcements, site 

postings, newspapers, and word of mouth.85 Communication of beach advisories and closures 

from oil-spill related events should consider varied routes in order to ensure consistent and 

inclusive dissemination of information.    

Protocols and regulations for the management of public beach use has not caught up 

to the vast array of potential chemical hazards that can exist in the beach environment. The 

lack of available data regarding exposures at beach sites is a significant limitation to 

informing state and local agencies, as well as informing the public. State and national 

lawmakers have the opportunity to develop new and needed water sampling and reporting 

programs by leveraging ten years of research regarding the characteristics, transport of, and 

impact of OSCs in the marine environment. These programs will be especially important in 

the event of a future marine oil spill or hazardous chemical release. Special considerations 

for health communication need to be made for families who have higher-than-average 

exposure to chemical contaminants through recreational use of beaches, and messaging 

should specifically include recommendations for hygiene practices on and off the beach in 
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order to mitigate health risks from oral and dermal exposure routes. Finally, any future 

assessments of potential risk need to account for exposures by children and other vulnerable 

populations.  
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Figure 5: Physical signage for beach advisory in Texas. Photo courtesy of Texas Beach 

Watch.70    
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FINAL DISCUSSION AND CONCLUSION 

The DWH oil spill signified the largest oil spill in U.S. history, discharging over 200 

million gallons of crude oil and gaseous hydrocarbons into the GOM and shorelines along 

Florida, Alabama, Mississippi, Louisiana and Texas.5 Since the 2010 disaster, there has been 

considerable research focused on the impact of the spill on ecosystems, economy, and the 

mental, physical, and social health of affected populations.17  In regards to human health 

outcomes, a majority of focus has been given to the health of first responders11 and adults 

living and working in affected areas in the GOM.18  

Children’s’ age-specific behaviors, such as mouthing, crawling, increased physical 

activity, lack of consistent hygiene practices, and indiscriminate ingestion of substances, puts 

them at greater risk of exposure to environmental contaminants86 . Some studies have 

investigated the relationship between child behavior patterns and the outdoor environment,87 

but few studies have investigated the potential health risks to children playing at beach sites 

that may have been contaminated by OSCs. Children participating in the BEACHES study 

ranged from 10 to 83 months of age. In the context of the beach environment, children in this 

age range experience heightened exposures via oral, dermal, and inhalation routes. They are 

likely to spend more time outdoors, such as at beaches, where they may come into contact 

with various hazards not found at home. Additionally, they tend to participate in increased 

and more vigorous play activities and likely have prolonged contact with contaminated sand 

and water, which might not be washed away properly if effective hygiene practices are not 

present. Hand-to-mouth activity is high in very young children and does not begin to subside 



 
 

97 

until closer to 60 months of age.86 These behaviors can lead to higher exposure to OSCs that 

may be found at beach sites following an oil spill.  

A key objective of this project, funded by GoMRI, was to conduct a human health 

risk assessment using exposure variables generated from the BEACHES field study and 

determine which factors drive overall risk estimates. A risk assessment was conducted for 

three different sets of chemicals: the first set was consistent with a prior risk assessment 

conducted by Black et al. (2016), and the second set utilized concentrations generated from 

fate and transport modeling of OSCs in sediment, weathered oil, and tar. The third set of 

chemicals also came from the fate and modeling project within BEACHES, but included 

concentrations for sediment and weathered oil only. In all three risk assessments, overall 

estimates were highest in dermal exposure routes and lowest in inhalation exposure routes. In 

context, children playing at beach sites may experience higher risk from prolonged skin 

contact with contaminated sand and water, and risk of exposure from the inhalation pathway 

might not be of greatest concern.  

The micro-activity data generated from video-translation of children’s beach play 

represents a significant output from the BEACHES study but has not been incorporated into 

this analysis. This micro-activity information can give more insight into specific behavioral 

inputs, such as soil intake rate and inhalation rate, as well as dermal contact patterns, such as 

loading, reloading, and reloading of sand and water onto the skin through different play 

behaviors, on a per hour basis. Video-translation data can also demonstrate where children 

spend most of their time when they visit the beach, and what surfaces, other than the sand 

and water, they may come in contact with (toys, other children or animals, etc.). This narrow 
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timeframe of highly specific behavior and exposure data can subsequently be extrapolated to 

predict a child’s exposure patterns over the course of a day, or a year, or a set of years.10     

For these risk analyses, certain assumptions were made. First, it was assumed that 

children playing in the beach environment would be exposed to the same concentrations of 

OSCs equally in all locations of the beach environment. In reality, the distribution of OSCs 

will differ in different beach zones (sand, water, intertidal zone, etc.). Some chemicals might 

be in higher concentrations in one location, rather than equally dispersed across the beach.  

Additionally, it was assumed for this risk assessment process that children would be exposed 

to the same chemical concentrations via the oral, dermal, and inhalation routes. Practically, 

children might experience higher exposure to some chemicals via the dermal or inhalation 

route, or experience little-to-no exposure via certain pathways. The use of mathematical 

weighting of chemical concentration values within specific exposure pathways has been 

explored as a possible method to address unequal distribution of OSCs in the environment 

and unequal exposures. Weighting has been previously utilized to assess the individual 

impacts of different chemicals within a mixture on the risk of non-Hodgkin lymphoma.88 

Lastly, it was assumed that all chemicals considered in these analyses not only have a cancer 

outcome (i.e, are carcinogenic), but also have the same cancer outcome. Studies in animal 

models evaluating specific cancer outcomes for OSCs are limited, so it is difficult to 

accurately predict whether every chemical constituent and byproduct found in crude oil will 

result in carcinogenic outcomes in humans.   

Results from the sensitivity analysis suggests that frequency of exposure – days per 

year that families visited the beach – could be a driver of risk. This might be of greatest 
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concern for families that live near recreational beach sites, such as those living on Galveston 

Island or Key Biscayne, two locations of the BEACHES study. Families in close proximity to 

the beach environment may use the beach as their primary place for family recreation, and 

could potentially visit the beach up to or over 50 times per year. Taking into consideration 

timing of a potential oil spill (off-peak vs. summertime), as well as severity of the spill itself, 

children living in these areas are at higher risk of exposure from OSCs compared to children 

who only visit the beach one or two times a year.  

An analysis of policy governing beach advisories and closures for Galveston and 

Miami-Dade counties reveals that advisories and closures are primarily dictated by 

exceedances of fecal indicator bacteria and other biological toxins; there is no monitoring of 

chemical contamination at recreational beach sites in both counties. Routine monitoring of 

chemical contaminants in Texas and Florida is sporadic, and is generally only conducted to 

determine ecosystem health for high-risk watersheds. Following the DWH oil spill, the EPA 

conducted sampling of sediment, weathered oil, and tar along affected coastlines and 

computed risk estimates addressing children as the population of focus to represent a 

conservative risk estimate. These estimates provided by the EPA were based on the risk 

scenario where children swimming might come into contact with contaminated water via oral 

and dermal exposure pathways. The EPA reported their findings to states, who were the final 

decision-makers regarding whether to close beach sites for public use. These risk estimates 

did not take into consideration potential exposure from contaminated sand. Since states and 

counties make the ultimate determination to close beach sites, it is important to communicate 

risk information that takes into consideration the types and magnitude of exposures affecting 
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children. Agencies should produce messaging that can be delivered through various channels 

(TV, radio, print, social media) and should specifically include recommendations for hygiene 

practices on and off the beach in order to mitigate health risks from oral and dermal exposure 

routes. 

A significant limitation to this study is the lack of available information regarding 

concentrations of OSCs and other chemicals in the beach environment. Without routine 

sampling, it is difficult to predict which OSCs reach and persist in shorelines following a 

spill, and how these OSCs are distributed across the different regions of the beach (sand 

dunes, intertidal zone, etc.). In this risk assessment, it was assumed that children would be 

exposed to these chemical concentrations via all three exposure pathways. However, some 

OSCs do not contribute to risk as significantly as others in all exposure pathways. Risk 

assessments can try to include every possible chemical contaminant, but routine sampling 

data would help narrow the scope to focus on chemicals of greatest concern while 

concurrently providing an informed risk estimate that takes into consideration tangible 

environmental concentrations. Fate and transport modeling has begun to address the lack of 

chemical data, but there are limitations to each model.  

In conclusion, risk assessment practices can provide information that advises policy 

protecting public health during an environmental disaster event. Methods used for risk 

assessment can be modified to address child-specific behaviors and increased susceptibility 

to hazards. Exposure factors, such as days spent at the beach, higher rates of mouthing and 

crawling behaviors, and increased physical activity in young children playing in the beach 

environment can drive risk estimates; this should be considered when communicating risk to 
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local communities who use these environments regularly. Finally, risk assessments are 

limited by available data regarding the toxicity of OSCs, as well as concentrations and 

distributions of chemical hazards in the beach environment.    
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APPENDICES 

Appendix A: List of acronyms used in this document.  

BEACH - BEACHES ENVIRONMENTAL ASSESSMENT AND COASTAL HEALTH 

ACT 

BEACHES – BEACH EXPOSURE AND CHILD HEALTH STUDY 

BEACON - BEACH ADVISORY AND CLOSING ONLINE NOTIFICATION SYSTEM 

BCE – BEACH CLOSURE EVENT 

CERCLA - COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, 

AND LIABILITY ACT 

CWA – CLEAN WATER ACT 

DWH – DEEPWATER HORIZON 

EPA – ENVIRONMENTAL PROTECTION AGENCY 

GOM – GULF OF MEXICO 

GOMRI – GULF OF MEXICO RESEARCH INITIATIVE 

MCA – MONTE CARLO ANALYSIS 

NCCA – NATIONAL COASTAL CONDITION ASSESSMENT 

NCP – NATIONAL CONTINGENCY PLAN 

NOAA – NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION  

OSC – OIL SPILL CHEMICAL 

OPA – OIL POLLUTION ACT 

PAH – POLYCYCLIC AROMATIC HYDROCARBON 

PRA – PROBABILISTIC RISK ASSESSMENT 
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QMRA – QUANTITATIVE MICROBIAL RISK ASSESSMENT 

RA – RISK ASSESSMENT 

RI/IS - REMEDIAL INVESTIGATION AND FEASIBILITY STUDY 

SVOC – SEMI-VOLATILE ORGANIC COMPOUND 

TCEQ – TEXAS COMMISSION ON ENVIRONMENTAL QUALITY 

USCG – UNITED STATES COAST GUARD 

USGS – UNITED STATES GEOLOGICAL SURVEY 

VOC – VOLATILE ORGANIC COMPOUND 
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Appendix B: UTSPH CPHS IRB approval letter.  

 
Appendix C:  Survey for Beach Exposures given to parents of child participants of 

BEACHES study. Spanish version also available at time of study.   
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