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Longitudinal studies have been critical in understanding the characteristics of
chronic diseases or interventions. Since many processes have natural multi-categorical re-
sponses over time, multi-state stochastic models have been used to estimate the transition
rates between stages. Some multi-state models applied in practice assume the Markov
property. The Markov property constrains the sojourn distribution to be exponentially
distributed. While useful theoretical properties arise by the Markov assumption, we
will consider a more flexible framework by allowing arbitrarily distributed waiting times.
This describes a semi-Markov process which has already been applied to various fields
in Public Health. Similar to Markov model developments, semi-Markov models have
been extended to add covariate effects on each transition intensity for better estimation.
Statistical inference methods for semi-Markov chains are still being developed for unique
problems for efficient estimation and computational feasibility. Particularly, in this dis-
sertation, we have developed a partial likelihood based approach under a semi-Markov
framework. First, we will consider estimating parameters for a three to four stage process
by a partial likelihood approach and examining the sensitives of the transition intensity
estimates with models that have a gamma or Weibull sojourn time. This approach will
estimate the hazard rates between discrete stages. Secondly, we will extend the semi-
Markov model to include covariate effects on the transition rates and again, analyze its

results with models assuming the gamma or Weibull sojourn time. Two applications will
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be considered to illustrate our method: A caregiver stress-level study from the Baylor’s
Alzhemier’s Disease and Memory Disorders Center and a depression severity level study
from the Hispanic Established Population for the Epidemiological Study of the Elderly
(HEPESE).
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Chapter 1

Introduction

1.1 Literature Review

1.1.1 Importance of Multi-State Models

Multi-state models extend the classical survival model to analyze multiple tran-
sient stages or levels of disease [1]. Particularly, these type of models have been utilized
in various fields to investigate the natural course of a variety of biological processes.
There are a variety of longitudinal studies that focus on chronic diseases or interventions
that have an observable multi-categorical response over time. Some common examples
that can be modeled by a multi-state stochastic model are breast cancer [2; 3], HIV
[4-6], Alzheimer’s disease [7, 8], cirrhosis [9], asthma [10], and bipolar disease [11]. The
multi-state model is an effective method in Public Health in estimating the transition
rates between two discrete states or stages. By modeling the categorical disease or inter-
vention stages, this can aid in improving prognosis, drug development, and clinical trial

design.

1.1.2 The Underlying Idea of Semi-Markov Models

The Markov chain model has over 50 years of developed theory that allow the
Markovian process to have a clear and convenient method to understanding various sci-

entific insights [12]. In the statistical field, we define a Markov process as a stochastic



process that satisfies the Markov property. In simple terms, the Markov property holds
if the probabilistic behavior of the future state depends only on the present state and
disregards the past history of the chain [13]. Since the history of the chain does not affect
the future evolution, many also have called this the memoryless property of the Markov
process. Due to this fact, estimating the transition rates is easy and computationally
feasible. However, this property also assumes the distribution of the sojourn time is ex-
ponentially distributed in the continuous case or geometrically distributed in the discrete
case. In practice, these distributions may not realistically apply to all situations in Public
Health. For instance, by assuming the waiting times are exponential, the time until a
state change is likely to be instant or very short which may not be true of the underlying
process [14]. For this reason, the Markov framework was then generalized to allow for
arbitrary sojourn time distributions.

Semi-Markov processes were first introduced independently by Levy [15], and
Smith [16] at the International Congress of Mathematics, and in the same year, Takdcs
also characterized a stochastic process of the same type [17]. These papers detailed an
inaugural class of stochastic processes that generalized the well-known Markov chain with
finite state spaces. The motivation to develop this methodology was both theoretical and
application based. Particularly, Levy was interested in understanding how the behavior of
the sample paths would change if the sojourn time distribution was any general function
(i.e. the sojourn time was not assumed to be exponentially distributed). For Smith,
he sought to develop the theory of regenerative stochastic processes by applying it to
a general form of the Markov chains. Alternatively, coincidences in particle counting
problems provoked Takacas to study this type of a recurrent process, however, he never
formally named the process. Rather, he classified the stochastic recurrent process as ”of
a Certain Kind”. From 1954 on, these works started as the foundation to many other
groundbreaking theoretical results and allowed semi-Markov processes to be constructed

for a wide breadth of applications [18].



In the literature, the terms semi-Markov process (SMP) and Markov renewal
process (MRP) are often used interchangeably, however, differentiate in definition. The
MRP was first coined by Pyke and others in the 1960s who studied processes similar
in nature to the semi-Markov processes [19-21]. In simple terms, a MRP is identical to
the SMP except that each state is only defined at the jump time points whereas a SMP
is defined for every given time. Because of this subtle mathematical difference, these
terms over time in research have become synonyms for one another. Throughout this
dissertation, we will refer to this general stochastic process as SMP and will formally

define this process in Chapter 2.

1.1.3 Applications & Developments for Semi-Markov Models

In many applications, the semi-Markov model is a powerful tool because of its
relaxed assumptions of the Markov property. Weiss and Zelen proposed a semi Markov
model by assuming a gamma sojourn distribution to study right-censored observations
in a clinical trial [14]. Foucher and others introduced a semi-Markov model to study HIV
disease based on a Generalized Weibull distribution as the waiting time distribution [22].
Kang and Lagakos explored a semi-Markov process in a HPV study setting where they
proposed a likelihood base approach for panel data [23]. Cao and others compared a
Cox Markov model versus semi-Markov model in a study heart failure disease manage-
ment to find sensible balance between model parsimonious and computational complexity
[24]. Additionally, hidden semi-Markov models have been applied to a number of various
areas such as speech recognition/synthesis, fMRI brain mapping, and handwriting recog-
nition [25]. These examples illustrate the potential applications and use for semi-Markov
models.

Semi-Markov models also have been extended to consider special types of data.
Anderson and others proposed a Cox semi-Markov model to add covariate effects to each

transition intensity for an application in bleeding episodes and mortality in liver cirrhosis



[26]. Titman presented a new statistical likelihood method to estimate transitions rates
from panel data using phase-type approximations [27]. Shu and others utilized large sam-
ple theory to develop asymptotic theory for the Cox semi-Markov model to investigate
the robustness and efficiency of semi-Markov estimators [28]. Aralis and Brookmeyer
proposed a stochastic estimation procedure for panel observation data with back tran-
sitions while assuming a non-exponential distribution [29]. Yu has also extended the
semi-Markov theory to consider misclassification in observed states called the hidden
semi-Markov model (HSMM) [25]. Semi-Markov theory and estimation procedures con-

tinue to be developed for better estimation and unique practice situations.

1.2 Data Description for the Alzheimer’s Disease Care-
giver Stress Application

In this longitudinal study, caregiver stress-level was recorded over a 21 year period by
the Baylor Alzheimer’s Disease and Memory Disorders Center [30]. The primary aim of
the study was to collection socio-demographic information as well as neuro-psychological
information to evaluate probable Alzheimer’s Disease. As a secondary interest, a cohort
of Alzheimer’s Disease (AD) caregivers, representing a family member or friend, were
recruited to provide information on their health and well-being. The stress level was
recorded on four levels: none, mild, moderate, and severe. Patients involved in the
study were diagnosed with AD and cared for by family members and/or friends. Self-
reported information on the caregiver stress-level over a 21 year period (1990 - 2011)
was collected. The time between visits for each caregiver varied widely along with the
number of recorded observations.

For this longitudinal analysis, we will use a continuous-time semi-Markov model to
learn about that movements through the various caregiver stress-levels. We will include

individuals with at least two recorded stress levels and complete covariate information.



Additionally, we could analyze how the caregiver covariate information affects the tran-
sition rates between stress-levels. Our proposed partial likelihood approach will be used
to estimate the model parameters under an exponential, Weibull, and gamma wait time
distribution. The final model will be determined through statistical measures and graphic
overlays of the raw data. The transitions rates and sojourn times could be invaluable
information to the literature of Alzheimer’s disease and help promote awareness in AD

caregiver stress.

1.3 Data Description for the HEPESE Application

The longitudinal data analysis will be based on eight waves of data from the Hispanic
Established Population for the Epidemiological Study of the Elderly (HEPESE). The
HEPESE contains Mexican Americans aged 65 and older, who live in five southwestern
states: Texas, New Mexico, Colorado, Arizona, and California [31]. The original study
started in 1993 -1994 with 3050 subjects with a response rate of 83%. Additional follow-
ups occurred every two years post baseline: Wave 2 in 1995 - 1996 (M = 2438), Wave 3
in 1998-1999 (M = 1980), Wave 4 in 2000 - 2001 (M = 1682), Wave 5 in 2004 - 2005 (M
= 2069), Wave 6 in 2007 (M = 1542), Wave 7 in 2010 - 2011 (M = 1078), and Wave 8 in
2012 - 2013 (M = 744). Wave 5 added 905 new respondents that were aged 75 and older
and followed up with the original cohort.

For this longitudinal analysis, we will include individuals who have more than
1 observation, are not missing depression information, and have depressive symptoms.
We will categorize the Center for Epidemiological Studies Depression Scale [32] by the
following criteria: not depressed (0 - 9 points), mildly depressed (10 - 15 points), mod-
erately depressed (16 - 24 points), and severely depressed (more than 25 points)[33]. A
continuous-time semi-Markov model is used to capture dynamic nature of the depression

levels over time. The partial likelihood methodology will be utilized to estimate the



transition rates under an exponential, Weibull, and gamma wait time distribution. The
appropriate model will be determined through statistical measures like AIC and good-
ness of fit test. Lastly, we will interpret the hazard model in the context of the HEPESE

application and discuss its potential contribution to the mental health literature.

1.4 Public Health Significance

Statistical inference in the area of semi-Markov models continues to grow as more
complex problems arise. Specifically, there is a continual need for the development of
efficient estimators and computationally feasible methods to study dynamic disease/in-
tervention behaviors in Public Health. By observing repeated outcome variables over
time, a researcher can learn about an individual’s trajectory dynamics in a continuous-
time setting. This type of information is captured in longitudinal studies. Many times,
longitudinal studies also collect explanatory variables which can be utilized in the model
to potentially get better estimates on the transition rates. For this reason, longitudinal
categorical data play an integral part in expanding the knowledge of multi-level dis-
ease/interventions. Accordingly, this research proposal is to develop a partial likelihood
method considering the semi-Markov framework for categorical longitudinal data. This
inaugural methodology will (1) estimate the transition rates between disease/interven-
tion stages for a given sojourn distribution and (2) extend this approach to additionally
account for subject covariate information. This proposed partial likelihood approach will
greatly contribute to the semi-Markov literature. First, the structure of the partial like-
lihood method is familiar and simple as in the classical survival analysis. The redefined
probabilistic statements in the partial likelihood allow for the complexity of the semi-
Markov process to be analyzed. Secondly, by utilizing Repp package [34], and doParallel
package [35] in R, we will develop an computationally efficient way to estimate the param-

eters from the semi-Markov process. The Repp package connects the C'++ programming



language and R by allowing R to call C' + + functions easily into R code. This tool will
help us improve computation time quickly and conveniently. Similarly, the doParallel
package will improve computation speed by performing multi-core computing. Thirdly,
we thoroughly analyzed two non-exponentially sojourn time distributions: Weibull and
gamma distribution. Both of these distributions have been studied for unique survival
problems because of the fact that the are generalization of the exponential distribution.
By assuming either the Weibull or gamma as the waiting time distribution, we have
the flexibility in the CTSMM to have multiple types of shapes for the hazard of the
semi-Markov process which allows us to study a wide range of Public Health longitudinal

applications.

1.5 Specific Aims

The specific aims of this proposed research are:

Specific Aim #1: To develop a partial likelihood estimation method for esti-
mating parameters in a continuous time semi-Markov model with longitudi-
nal data of three or four outcome categories and to compare its results with

models that have a gamma or Weibull sojourn time.

In many research settings, a disease/intervention outcome had multiple levels
measured over time. These multi-categories can be natural stages like no disease to pre-
clinical disease to disease or scaled level states such as no pain to some pain to much pain.
We will develop a partial likelihood approach to estimate the hazard rates between stages
considering a non-exponential distribution. Specifically, we will compare an exponential
sojourn distribution (i.e. Markov process) to (1) a Gamma sojourn distribution and
(2) a Weibull sojourn distribution. This methodology will be applied to an Alzheimer’s

Disease caregiver stress level example.



Specific Aim #2: To extend the partial likelihood method in aim 1 to include
covariate effects on the transition intensities while its outcome process is

under a semi-Markov framework.

In addition to recording a categorical outcome over time, several studies many
will collect patient information that can be used to further understand the covariate
effects on the transition rates. These covariate hazard rates are helpful in interpreting
the scientific associations. We will extend the partial likelihood approach to estimate
the baseline hazard rates between stages and the covariate effects considering a non-
exponential distribution. As before, we will compare an exponential sojourn distribution
(i.e. Markov process) to (1) a Gamma sojourn distribution and (2) a Weibull sojourn
distribution. To illustrate the proposed method, we will consider a longitudinal outcome

as care-giver stress-level while incorporating some predictors.

Specific Aim #3: To examine the dynamic behavior in depression levels
among older adults of Mexican descent from the Hispanic Established Pop-
ulation for the Epidemiological Study of the Elderly (HEPESE) by using
a continuous-time semi-Markov model and applying the partial likelihood

methodology in the first two aims.

The methodology developed in aim 1 and aim 2 will be utilized in a depression-
level application among Mexican elderly to determine the baseline transition rates, and
covariate effects while considering three semi-Markov models assumptions for the sojourn
time distribution: 1) an exponential sojourn time distribution (i.e. Markov Model), 2) a
gamma sojourn distribution and 3) a Weibull sojourn distribution. Each model will be
compared to one another using appropriate statistical tests to find the most appropriate

model for the data.
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Chapter 2

Estimation Method of a
Continuous-Time Semi-Markov
Model for Longitudinal Categorical
Outcomes: A Partial Likelihood
Approach

Authors: Kusha A. Mohammadi, Wenyaw Chan, and Valory Pavlik

2.1 Abstract

In public health, longitudinal studies have been paramount to studying dynamic diseases
and interventions. Many statistical developments through the years have contributed to
improvements in modeling the dynamics of transitions among disease states. The multi-
state Markov model, for example, has been most often utilized to estimate the transition
rates between multi-categorical responses. Although, the Markov model may not be
realistic in practice due to the Markov property, which assumes the sojourn time to be
exponential distributed. The model proposed in this research considers the semi-Markov
framework to analyze longitudinal categorical outcomes that allow for unspecified waiting
time distributions. To estimate the parameters of the continuous-time semi-Markov

model (CTSMM), we develop a partial likelihood approach for a three to four stage
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process. We evaluated our method assuming the sojourn time follows a gamma, Weibull
or exponential distribution and examined their sensitivities to our method. Simulations
show relatively low bias and similar standard deviation and standard error calculations
for both three and four state CTSMMs. The coverage probabilities was lower than the
expected 95%, however, the CTSMM assuming a gamma wait time had the highest
coverage across the rate parameters. A longitudinal application of Alzheimer’s disease

care-giver stress level was used to illustrate the proposed partial likelihood approach.

Keywords: Semi-Markov Model, Longitudinal Data, Categorical Outcomes, Partial
Likelihood Method

2.2 Introduction

In many public health settings, the Markov multi-state model has become an effective
approach to analyze categorical events over a given time period. Particularly, it is a useful
way to describe the natural course of a variety of biological processes by estimating the
rates of transition between states. Some recent applications include breast cancer |2,
3], HIV [4-6], Alzheimer’s disease [7, 8], cirrhosis [9], asthma [10], and bipolar disease
[11]. This convenient model, however, implies the Markov property which describes
the probabilistic behavior of the future state depending only on the present state and
disregarding the history of the chain [13]. Due to the Markov property, the distribution
of the sojourn time is assumed to be exponentially distributed in the continuous-time
case. This suggests the time until a state transition is likely to be instant or very short,
which may not be realistic in practice [36]. It is preferred to have a framework that allows
the sojourn time distribution to be unspecified.

Semi Markov models have become a flexible alternative to the Markov framework
because it allows for arbitrary waiting time distributions. Weiss and Zelen utilized the

semi-Markov framework by investigating right-censored observations in a clinical trial
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assuming a gamma sojourn distribution [14]. Foucher and others assumed a general-
ized Weibull distribution for the wait time to analyze a HIV application [22]. To find
a sensible balance between model parsimony and computational complexity, Cao and
others compared a cox Markov model versus a cox semi-Markov model to comprehend
heart disease failure [24]. These examples spotlight the potential applications in medical
research for semi-Markov models.

Approaches to analyze longitudinal categorical outcome data under a semi-Markov
model continue to grow as more intricate applications arise. Ouhbi and Limnios consid-
ered a non-parametric estimation method for semi-Markov kernels and its hazard function
[37, 38]. To account for interval censoring and truncation, Sternberg and Satten proposed
a discrete-time non-parametric estimation procedure for a semi-Markov model to HIV
applications [39]. Damerdji presented a maximum likelihood estimation approach to cal-
culate the transition rates of the generalized semi-Markov process [40]. To estimate the
transition intensity and survival function for a three state semi-Markov model, Joly and
Commenges described a penalized likelihood approach with censor and truncated data
[41].

In this paper, we develop an alternative estimation method to analyze longitudi-
nal categorical outcome data with three to four stages. We propose a partial likelihood
estimation method for estimating parameters in a continuous-time semi-Markov model
with longitudinal data. Specifically, we will assume semi-Markov models with exponen-
tial, Weibull, and Gamma sojourn time distributions and examine their sensitives with
our method. The proposed estimation method provides a more flexible and realistic tool
than the Markov model and extends to biological processes with three to four stages.
To illustrate our method, we will apply the method to Alzheimer’s care-giver stress level
application.

The remainder of the paper is organized as follows. Section 2.3 defines a semi-

Markov process, the sojourn time distributions, and the partial likelihood function. A
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simulation study will be used to evaluate the statistical properties of the partial likelihood
method in section 2.4 and applied to an Alzheimer’s care-giver stress level example in

section 2.5. Lastly, the paper concludes with a discussion in section 2.6

2.3 Methods

2.3.1 Semi-Markov Model

We will consider a random process that is a continuous-time multi-state stochastic process
with a finite state space, ® = {1,2,...,b}. Forn =1,...,D, let T = (T,,)nen denote
the consecutive states transition time points where D is the total number of transitions.
Ty = 0 is defined as the time of the origin for the stochastic process. Let S, =T, — T},
denote the sojourn times where we set Sy = 0. Then, let S = (S, )nen be the successive
sojourn times in the visited states. Also, let X = (X,,),en be the sequence of observed
states for the n'® transition where the state X, (t) is defined for t € [T}, T, 1] and
has an initial distribution w; = P(Xy = i),i € ®. This sequence forms an embedded
homogeneous Markov chain. Then (X, T') is a homogeneous semi-Markov process if the
two assumptions hold true. First, as a subject enters state i, we assume the next state the
subject enters is state j with probability, p;;, ¢,j € ®. Second, given that the following
state is j, the time until the next transition from ¢ to j has distribution Fj; (i.e. an
arbitrary sojourn distribution).

The continuous-time semi-Markov kernel, @);;(t), corresponds to the probability

of jumping toward state j between time ¢t and t + At after being in state 1:

Ql](t) = P(Xn+1 =7t < Sn+1|An71>

= P(Xn+1 =7t < Sn+1|Xn = Z)

(2.1)

where A, = {(Xo,T);...; (Xn, T,)} denotes the history of the semi-Markov chain, i, j €
(I), and t € [Tn7Tn+1]-
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The transition probabilities, p;;, from state ¢ to j is formally defined as

pyy = im Qy(t) = P(Xop1 = j|Xn = 1) (2.2)
where 0 < p;; <1Vi,j € ®, and ), p; = 1.
Lastly, the distribution function of the waiting time determines the amount of

time t that a subject stays in state ¢ before transitioning to state j:

Plt < At X =17.X =1
E(t): lim [t_Sn+1<t+ t| n+1 Js An Z]

2.
At—0t At ( 3)

where 7,7 € ®, and ¢ € [T},,T,,+1]. The marginal probability distribution of the sojourn

time is derived from equation 2.2 and 2.3 and written in the following way

Fi(t) =) piFi(t) (2.4)
i#]
By these relations, we have the following model:

Qij(t) = pi; Fi(t) (2.5)
where ¢,j € ®. From distribution function, Fj;(t), we can easily derive the probability
density function (f;;(t)), survival function (S5;;(t)), and hazard function, v;;(¢)). The
hazard of the semi-Markov process is then defined as the probability of transitioning to

a state j between time ¢ and t + At, given the previous state is ¢ for a duration t,

P(Xpi1 = j,t < Spuy <t+At|Sq >t X, =i
hi(t) = lim (Xng1 =t < Snpa + At]Sh 1 i)

2.
At—0+ At ( 6)

Using all these relations, we can relate h;;(t) to the hazard function of the sojourn

time, survival function of the sojourn time, and transition probabilities,

hij (t) = p—z‘sz'éf()tSij ®) (2.7)
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2.3.2 Distributions of the Sojourn Time

By using classical survival relations, we can deduce the hazard function of the sojourn

time, v;;(t), from equation 2.3:

P[t < SnJrl <t+At|Sn+1 > t’Xn+1 :j,Xn = ’l]

2.
At—0+ At ( 8)

where t represents the time in a particular state. We will consider three different sojourn
distributions in continuous-time semi-Markov model. By assuming these various distri-

butions, the semi-Markov model can be applied to a wide set of problems within Public

Health.
Exponential Distribution (\;;)

The hazard function for the exponential distribution with rate parameter, \;;, is constant

over time and is given by

vij(t) = Ayj (2.9)
where t > 0, VA;; > 0, 4,7 € ®. By assuming the waiting time is exponentially dis-
tributed, the processes reduces to the well-known Markov model.

Gamma Distribution (§,)\;))

The hazard function for the 2-parameter gamma distribution can be viewed as a gener-
alization of the exponential distribution. The hazard function with rate parameter, A;;,
and shape parameter, &, is defined as
€ 161\,
/\l-jté Le=Xist

") = T — T 210

where t > 0, VA;; >0,1,5 € ®, £ >0,
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I'(a,x) :/ 2 lem*dz
0

for a > 0, is the incomplete gamma functions, and

is the gamma function.
For simplicity, we will assume the shape parameter, &, is constant across all tran-

sitions from 7 to j.
Weibull Distribution (k, \;;)

The hazard function for the 2-parameter Weibull distribution can also be viewed as a
general form of the exponential distribution. The hazard function with rate parameter,

Aii, and shape parameter, k, is defined as follows

179

Vl'j<t> = k')\ijtkil (211)

where & > 0, VA;; > 0,4,7 € @, and t > 0.
Additionally, for simplicity, we will assume that the shape parameter, k, is con-

stant across all transitions from ¢ to j.

2.3.3 Construction of the Partial Likelihood

In this section, we outline the construction of the partial likelihood that will allow us
to estimate @ = {\;;,£*, k*} where x represents if the shape parameter needs to be
estimated based on the sojourn distribution. For m subjects, m = 1,..., M, we have a
longitudinal data based on the jump times, 7™ and respective state transition, X"m.
We will order all the data for M individuals based on the transition times and will be
represented by (7™, X)) for the n* transition, n = 1,...,D. We will define the risk

set, R(7—), as all the subjects who are still being observed prior to time, 7, where for
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simplicity of notation, we let 7 = T™. Let I x,(r—)(u) denote the current state, u, for
subject [ prior to time 7. Let S™ be the ordered time the individual is in a particular
state, i, before transitioning to state j (i.e. sojourn time). Let ¢ be the time already
spent in a particular state, u, for a subject [. Thus, the probability that an subject

transitions at time 7 given one individual [ transitions in R;(7—) at time 7 is

hi (S™]Q)
ZZGR(Tf) Eue@ hu(QD‘ Q)[Xl () (U)

(2.12)

where 4, j,u € ®, and h;;(+|-) is the hazard parametric model for the transition ¢ to j
depending on the sojourn distribution chosen. For hazard functions, refer back to section
2.2. Then the partial likelihood is formed by multiplying all the conditional probabilities

over all the transitions D. This is given by

- hii (S™])

_ (2.13)
n=1 ZZER(T—) Zue@ hu(¢|Q)IXl(T*) (U)

L(Q)

The partial likelihood is analogous to the classical Cox partial likelihood developed
in 1972 [42]. In some applications, we may encounter ties in the set of transition times.
While there are various constructions to take into account event ties, we will consider

Breslow’s ties method [43]. With this modification, the partial likelihood is as follows

D (n)
[yea, Migis (S 1€2)
L) =] g€dn _ tolg 79 — (2.14)
w1 | Tierroy Lueo hul el ) Lo (1)

where d,, is the number of events at a given transition time, 7 and g represents one of
the d,, transitions (i — j) at time 7. We can estimate the parameters 2 by maximizing

equation 2.14 or by using its logarithmic transformation as shown
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D

() =) log [hi;, (S59)]

n=1 gedn,
- (2.15)
— Z d,log Z Z hu(@|$2) I, (r—) (u)
n=1 leR(r—) ued

where h,(t) = >, cq hur(t|—=) . hij(t) is the hazard of the semi-Markov process
and can have an exponential, gamma, or Weibull sojourn time distribution outlined in
Section 2.3.2.

In a typical setting, the maximum likelihood estimates are attained by taking the
log of the likelihood function and setting the first derivative to zero. However, the first
derivative of the partial likelihood is not possible to derive with respect to €2 due to
the complexity of the hazard functions. We utilized a non-linear optimization method
that is derivative free to maximize the log partial likelihood function. Since the second
derivative is not available in closed form, we attained non-parametric bootstrap samples
to estimate the standard errors of each parameter of interest. In each bootstrap sample,
we re-sampled M subject’s with replacement, applied the likelihood function defined by

equation 2.15, and calculated each standard error by using all the bootstrap samples. All

analysis used R 3.6.2 [44], Repp package [34], and doParallel package [35].

2.4 Simulation

Simulation studies were conducted to assess the partial likelihood method outlined in
section 2.3. Specifically, we simulate two semi-Markov process cases: first, a three-state
continuous-time process assuming an exponential, Weibull, and gamma sojourn time
distribution and second, a four-state continuous-time process assuming an exponential,
Weibull, and gamma sojourn time distribution. For each model, we obtained 1000 sim-

ulations and 50 non-parametric bootstrap samples to calculate the standard errors. For
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comparability, we determined a common mean between the gamma and Weibull distri-
bution and set the exponential mean to this common mean. Nelder-Mead’s non-linear
optimization was used to estimate parameters of the log partial likelihood in equation
2.15. We evaluated our proposed estimation procedure by the bias, standard deviation,
standard error, mean square error (MSE), and 95% coverage probability. Statistical bias
is a measure of distance between the expected value and underlying true value. In sim-
ulations, we would expected the standard deviation and standard error to be relatively
close to indicate the standard error represents the true sampling variation. The mean
square error measures the average of the square of the errors. We also view it as a
combination of the variation and bias squared. Lastly, coverage probability will help us
measure the proportion of the time that the confidence interval contains the true value.
For our simulations, we would expect the coverage probability to be close to 95%.

The simulations results for the semi-Markov three-state process and four-state
process are summarized for each model in tables 2.1 and 2.2, respectively. By choosing a
non-exponential sojourn distribution (Weibull or gamma), the 3-state semi-Markov model
assuming a Weibull wait time distribution had the lowest mean square error across all
the rate parameters (Table 2.1). In terms of 95% coverage probability, all 3-state models
under-performed in terms of capturing the true parameter 95% of the time. Using parallel
computing, the full simulations studies for the exponential, Weibull, and gamma case on
20 cores required 10.81, 27.17, and 25.31 hours to run, respectively. Table 2.2 refers
to the summary of simulation results for the four-state semi-Markov model. Similar to
the 3-state model, the 4-state Weibull simulation shows the lowest mean square error
compared to the semi-Markov model assuming a gamma sojourn distribution. While
the 95% coverage probability was not met, the gamma case had the highest overall
coverage across the rate parameters. In terms of computation time, the model assuming
an exponential distribution on 20 cores took 13.60 hours, assuming a Weibull distribution

on 30 cores took 25.86 hours, and assuming a gamma distribution on 30 cores took 24.24
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hours. In the 3-state and 4-state simulation, the exponential sojourn case (i.e. the
Markov Model) performed computationally faster with low bias and variance. In tables
2.3 and 2.4, Markov chain simulations for a full likelihood approach using the multi-state
model (msm) [45] in R and our proposed likelihood approach are analyzed. For bias and
mean square error, both the Markov likelihood methods are compatible. For the standard
error and standard deviation, the partial likelihood method is slightly better than the
full likelihood approach but the coverage probability is worse for the partial likelihood
method. The full likelihood approach had around 95% coverage probability using the

asymptotic standard errors (i.e. from the Hessian matrix) for the confidence interval.

2.5 Longitudinal Application

We applied the partial likelihood approach to a caregiver stress-level application that was
recorded over a 21 year period by the Baylor Alzheimer’s Disease and Memory Disorders
Center [30]. The primary aim of the study was to collect socio-demographic information
as well as neuro-psychological information to assess probable Alzheimer’s Disease. As
a secondary interest, a cohort of Alzheimer’s Disease (AD) caregivers, representing a
family member or friend, were recruited to provide information on their health and well-
being. The care-giver stress level was recorded on four levels: none (state 1), mild
(state 2), moderate (state 3), and severe (state 4). The time between visits for each
caregiver varied widely along with the number of recorded observations. We included
individuals with at least two recorded stress levels (M = 681 subjects). The longest
observation time was 13.78 years. We re-categorized the stress level as follows: none or
mild (state 1), moderate (state 2), and severe (state 3). We utilized a continuous-time
semi-Markov model to learn about that movements through the various caregiver stress-
levels. Employing various sojourn time distributions, we analyzed the best model using

a likelihood ratio test that follows a chi square distribution.
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Table 2.5 and 2.6 shows the frequencies of transition between 3-level and 4-level
caregiver stress. The most transitions occurred from none/mild stress level to moderate
stress levels (303 transitions) in the 3-level case. In the 4-stress level example, 255
transitions went from mild to moderate stress level. Figure 2.1 and Figure 2.2 summarize
the dynamic behavior of transitions between caregiver stress levels for 3 states and 4 states
over time, respectively. Over the 14 year period, we observed a decline in the number in
the none/mild stress level and an increase in the other levels (Figure 2.1). Similarly, in
the four state analysis, we observe that the moderate and severe states increase steadily
over time while the other two lower states steadily decrease.

To understand the behavior of caregiver stress level over time, we applied a
continuous-time semi Markov model and estimated the parameters of the model by the
partial likelihood function for a three and four state process. The results are presented
in table 2.7 and 2.8 for each process, respectively. Before we analyzed the final results,
we carefully found which model closely follows the data. In figure 2.1, the sojourn time
within each transition (i to j) is plotted for the 3-stress level application. Using the pa-
rameter estimates, the exponential distribution (red line), Weibull distribution (orange
line), and gamma distribution (green line) are overlaid onto the data density curve. Over-
all, it suggests the semi-Markov model assuming a gamma sojourn distribution closely
fits the caregiver stress-level data. From figure 2.2, we find a similar trend where the
semi-Markov model assuming the gamma wait time distribution closely resembles the
data curves across all transitions. For a more quantitative comparison, we calculated the
Akaike’s information criterion (AIC) for each model. For the three state process assum-
ing exponential, Weibull, and gamma sojourn time, the AIC was 12494.77, 12368.73, and
12290.37, respectively. The AIC for the 4 state-process for each model was 15077.69,
14888.21, and 14757.50, respectively. The smallest AIC value indicates the better model
which suggests the semi-Markov model with a gamma sojourn time is the preferred model

in both cases. Based on these results, we can utilize the semi-Markov model defined in
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equation 2.5 or 2.7 to find the hazard rate for each transition from one stress level to
the next under a gamma sojourn time distribution. Figure 2.5 and 2.6 gives an visual
representation of the hazard of the semi-Markov process using the model estimates for
a 3-state process and 4-state process, respectively. Lastly, we summarized the estimated

probability transition matrix in table 2.9 and 2.10 for the 3-state and 4-state applications.

2.6 Discussion

In this paper, we detailed and assessed the partial likelihood approach to analyzing longi-
tudinal categorical outcomes using a continuous-time semi-Markov model. We explored
various sojourn distributions including the exponential sojourn time distribution which
reduces the semi-Markov model to a Markov Model. Simulations demonstrate relatively
low bias and variance across each model considered under a 3 or 4 state process. Overall,
the mean square error was marginally higher in the semi-Markov model that assumes a
gamma sojourn distribution compared to the others. Computationally, the complexity
of the hazard function of the semi-Markov process presented some difficulties in perform-
ing the simulations efficiently. By utilizing Repp package and doParallel package in R,
we found the total time greatly reduced to run 1000 simulations and 50 non-parametric
bootstrap samples. Bootstrap samples were calculated to obtain the standard errors of
the estimate since the fisher’s information matrix was unable. These bootstrap standard
errors were used to calculate the 95% coverage probability for all the parameters. Nearly
all the 95% coverage probabilities were observed to be in the range of 78% - 90%. This
indicates the 95% confidence interval may be too narrow to capture the true underlying
estimate. To explain this result, we compared Markov models using the full likelihood
and the partial likelihood (Table 2.3 and 2.4). We observed a slightly lower standard
deviation and standard error from the partial likelihood, although, poor coverage prob-

ability for both the 3-state and 4-state Markov chain process. This may be due to the
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unstable estimates in the partial likelihood from possibly outlying datasets that were
generated and using the non-parametric boostrap approach to compute the confidence
intervals. We reason these are why the partial likelihood approach for the semi-Markov
model had under-performing coverage probabilities for the exponential, Weibull, and
gamma sojourn times.

Our results are not without limitations. The derivative of the log partial likeli-
hood is not available in closed and instead, we had to consider a derivative free numerical
optimization approach. This proves to be a difficult optimization problem. The Nelder-
Mead (NM) non-linear optimizer needs to satisfy certain properties in order to converge
to the maximizing point (i.e. the optimal parameters). While we observed convergence
(convergence code = 0), there is the possibility the NM optimization determined a local
maximum rather than a global maximum. Other optimizations methods may need to
be considered to understand this non-linear problem. Secondly, we observed the 95%
coverage probabilities to be less than what was expected. The non-parametric bootstrap
procedure may not be appropriate for this approach. We re-sampled from the subjects
with replacement and re-estimated the parameters to get a bootstrap distribution. We
used 50 bootstrap samples to obtain the standard errors which seemed reasonable. How-
ever, the marginally low 95% coverage suggests we obtained a narrow 95% Confidence
Interval. Some potential solutions are to consider a parametric bootstrap sample such
as in the R package called, 'msm’ [45], or find an optimization method to estimate the
hessian matrix.

We applied the partial likelihood approach to an Alzheimer’s Disease caregiver
stress level application done by the Baylor Alzheimer’s Disease and Memory Disorders
Center [30]. This application provides an excellent example where the time spent be-
fore transition may not be exponentially distributed. Three semi-Markov models were
considered for this example while considering the data as a 3-state process and 4-state

process. The results suggested the semi-Markov model assuming a gamma wait time
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distribution is the most appropriate mode for both cases. We can use this information to
understand the how the stress-level behaves in a cohort of Alzheimer’s Disease caregivers.
To build on these results, further investigation into other sojourn time distributions are
needed to find other models that can consider bi-modal distributions like those seen in
figure 2.1 and 2.2. For illustration purposes, we graphed the hazard of the semi-Markov
process for a 3-state and 4 state process in figure 2.5 and 2.6, respectively. We observed
that a participant who is caring for an Alzheimer’s disease patient is at higher risk of
transitioning to a higher stress level than progressing back.

While we used a stress-level example in this paper, the partial likelihood approach
can be applied to any longitudinal categorical outcome data. Our method can handle 3
or 4 state processes with the ability to use a continuous-time semi-Markov model. The
model and approach can assume three different parametric distributions: exponential,
Weibull, or Gamma. This allows the partial likelihood approach to be applicable to

many different public health areas.
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Table 2.1: Simulation Results for a three-state Semi-Markov Model

True Estimate Bias SD SE

MSE 95% CP

Ezponential Sojourn Time!
A2 047 0.4716 0.0016 0.0302 0.0225
A1z 0.68 0.6835 0.0035 0.0463 0.0356
A1 0.49 0.4914 0.0014 0.0289 0.0225
Ao 0.63 0.6316 0.0016 0.0288 0.0215
As1 0.52 0.5237 0.0037 0.0394 0.0311
As2 0.63 0.6312 0.0012 0.0271 0.0205

Weibull Sojourn Time?
A2 1.9 1.9334 0.0334 0.0666 0.0702
Az 1.3 1.3412 0.0412 0.0574 0.0672
Aoy 1.8 1.8340 0.0340 0.0638 0.0656
Aos 1.4 1.4378 0.0378 0.0440 0.0549
As1 1.7 1.7359 0.0359 0.0714 0.0767
A3 1.4 1.4367 0.0367 0.0411 0.0544
k 2.0 2.0012 0.0012 0.0396 0.0333

Gamma Sojourn Time®

A1z 1.90 1.9631 0.0631 0.1642 0.1638
Az 1.30 1.3618 0.0618 0.1288 0.1282
Ao1 1.80 1.8638 0.0638 0.1616 0.1482
Ao 1.40 1.4556 0.0556 0.0966 0.1052
As1 170 1.7701 0.0701 0.1794 0.1780
Az2  1.40 1.4567 0.0567 0.0932 0.1044
P 0.89 0.8926 0.0026 0.0324 0.0272

0.0009 0.841
0.0022 0.854

0.0008 0.863
0.0008 0.851
0.0016 0.878
0.0007 0.857
0.0056 0.857
0.0050 0.803
0.0052 0.830
0.0034 0.786
0.0064 0.862
0.0030 0.786
0.0016 0.895
0.0309 0.874
0.0204 0.849
0.0302 0.830

0.0124 0.849
0.0371 0.882
0.0119 0.843
0.0011 0.875

1 300 subjects in each simulation for 10 time units long; On 20 cores,

hours.

computation time was 10.81

2 200 subjects in each simulation for 5 time units long; On 20 cores, computation time was 27.17 hours.

3 150 subjects in each simulation for 5 time units long; On 20 cores, computation time was 25.31 hours.
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Table 2.2: Simulation Results for a Four-State Semi-Markov Model

True Estimate Bias SD SE MSE 95% CP

Ezponential Sojourn Time!
A2 047 0.4756 0.0056 0.0425 0.0343 0.0018 0.858
Az 0.68 0.6816 0.0016 0.0476 0.0380 0.0023 0.870
Mg 081 0.8124 0.0024 0.0573 0.0421 0.0033 0.857
A1 0.49 0.4935 0.0035 0.0452 0.0342 0.0021 0.864
A2 0.63 0.6352 0.0052 0.0505 0.0384 0.0026 0.868
Aoy 0.74 0.7461 0.0061 0.0565 0.0437 0.0032 0.851
Az 0.52 0.5241 0.0041 0.0397 0.0308 0.0016 0.871
As2 0.63 0.6329 0.0029 0.0442 0.0337 0.0020 0.863
Asg 0.39 0.3935 0.0035 0.0362 0.0279 0.0013 0.857
A 074 0.7435 0.0035 0.0475 0.0385 0.0023 0.875
A2 0.44 0.4430 0.0030 0.0375 0.0290 0.0014 0.863
A3 049 0.4925 0.0025 0.0388 0.0298 0.0015 0.856
Weibull Sojourn Time?
A2 1.9 1.9512 0.0512 0.1094 0.1105 0.0146 0.846
Az 1.3 1.3402 0.0402 0.0598 0.0699 0.0052 0.836
A 11 1.1390 0.0390 0.0506 0.0638 0.0041 0.823
Ao1 1.8 1.8527 0.0527 0.0992 0.1060 0.0126 0.862
Aos 1.4 1.4518 0.0518 0.0679 0.0811 0.0073 0.815
Aoy 1.2 1.2486 0.0486 0.0577 0.0751 0.0057 0.810
A3 L7 1.7626 0.0626  0.0842 0.0977 0.0110 0.797
A2 14 1.4554 0.0554 0.0663 0.0843 0.0075 0.800
Asg 2.3 2.3532 0.0532 0.1314 0.1303 0.0201 0.864
A 1.2 1.2487 0.0487 0.0552 0.0717 0.0054 0.815
A2 2.0 2.0550 0.0550 0.1022 0.1100 0.0135 0.866
Az 1.8 1.8587 0.0587 0.0907 0.0987 0.0117 0.817
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Table 2.2: Simulation Results for a Four-State Semi-Markov Model (continued)

True Estimate Bias SD SE MSE 95% CP
k 2.0 1.9950 -0.0050 0.0423 0.0305 0.0018 0.887

Gamma Sojourn Time’®
Az 1.90 2.0232 0.1232 0.3160 0.2879 0.1150 0.874
Az 1.30 1.4129 0.1129 0.1780 0.1914 0.0444 0.850
Ay 110 1.1994 0.0994 0.1421 0.1668 0.0301 0.834
Ao1 1.80 1.9116 0.1116  0.2808 0.2723 0.0913 0.890
Aoz 1.40 1.5187 0.1187 0.1995 0.2070 0.0539 0.866
Aoy 1.20 1.3080 0.1080 0.1568 0.1846 0.0362 0.853
Az 1.70 1.8304 0.1304 0.2371 0.2419 0.0732 0.866
Azz 140 1.5219 0.1219 0.1813 0.2043 0.0477 0.863
Az 2.30 2.4513 0.1513 0.3752 0.3543 0.1637 0.889
A 1.20 1.3069 0.1069 0.1571 0.1734 0.0361 0.837
A2 2.00 2.1240 0.1240 0.3123 0.3005 0.1129 0.900
Az 1.80 1.9201 0.1201  0.2524 0.2585 0.0781 0.869
P 0.89 0.8979 0.0079 0.0416 0.0369 0.0018 0.886

1 300 subjects in each simulation for 10 time units long; On 20 cores, computation time was 13.60
hours.

2 100 subjects in each simulation for 10 time units long; On 30 cores, computation time was 25.86
hours.

3 100 subjects in each simulation for 5 time units long; On 30 cores, computation time was 24.24 hours.
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Table 2.5: Observed Transitions between 3-Levels
of Caregiver Stress

To State
From State Stress Level [ 2 3

1 None/Mild 0 303 49
2 Moderate 234 0 205
3 Severe 61 170 O

Table 2.6: Observed Transitions between 4-Levels of
Caregiver Stress

To State
From State Stress Level I 2 3 4

1 None 0 78 48 8
2 Mild 63 0 255 41
3 Moderate 40 194 0 205
4 Severe 18 42 170 0
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Table 2.7: Alzheimer’s Disease Caregiver 3-Level Stress Model Estimates

Estimate Sojourn Time 95% Bootstrap CI

Exponential Sojourn Time

A2 0.4625 2.1620 (0.4235, 0.5015)
A13 0.5463 1.8209 (0.452, 0.6406)
21 0.5701 1.7540 (0.5187, 0.6216)
23 0.6001 1.6664 (0.5478, 0.6524)
As1 0.5921 1.6888 (0.5249, 0.6593)
As2 0.4643 2.1539 (0.406, 0.5225)
Weibull Sojourn Time
A2 0.7497 1.2076 (0.6303, 0.8692)
A13 0.8195 1.1094 (0.6562, 0.9827)
o1 0.9241 0.9798 (0.7672, 1.081)
23 0.9433 0.9598 (0.7865, 1.1001)
As1 0.8481 1.0675 (0.7136, 0.9827)
A2 0.7946 1.1394 (0.6525, 0.9368)
k 1.4658 - (1.3811,1.5504)
Gamma Sojourn Time
A12 1.7269 1.6235 (1.5136, 1.9402)
A13 1.9081 1.4693 (1.5782, 2.238)
o1 2.1542 1.3015 (1.9226, 2.3858)
23 2.2574 1.2420 (2.0052, 2.5096)
As1 2.0888 1.3422 (1.8161, 2.3615)
32 1.9538 1.4350 (1.6852, 2.2224)
(0 2.8036 - (2.5828,3.0244)
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Table 2.8: Alzheimer’s Disease Caregiver 4-Level Stress Model Estimates

Estimate Sojourn Time 95% Bootstrap CI

Exponential Sojourn Time

A2 0.5414 1.8471 (0.4741, 0.6087)
A13 0.475 2.1051 (0.3917, 0.5584)
A4 0.4195 2.3840 (0.2454, 0.5935)
o1 0.6371 1.5696 (0.561, 0.7133)
o3 0.4952 2.0196 (0.4566, 0.5337)
Aoy 0.5956 1.6789 (0.5061, 0.6852)
A31 0.5347 1.8703 (0.4637, 0.6056)
A32 0.5382 1.8581 (0.4825, 0.5938)
34 0.5675 1.7620 (0.5145, 0.6206)
A1 0.5691 1.7570 (0.4716, 0.6667)
12 0.5554 1.8006 (0.4791, 0.6317)
A3 0.4359 2.294 (0.3866, 0.4853)
Weibull Sojourn Time
A2 0.9958 0.9162 (0.7498, 1.2417)
A3 0.9780 0.9328 (0.7321, 1.2239)
A4 1.0542 0.8654 (0.6241, 1.4842)
o1 1.0617 0.8593 (0.8531, 1.2703)
A23 1.0014 0.9111 (0.7888, 1.214)
Aog 1.0420 0.8755 (0.7743, 1.3098)
A1 1.0486 0.8701 (0.8568, 1.2403)
A32 1.0406 0.8767 (0.8716, 1.2096)
34 1.0684 0.8539 (0.8802, 1.2565)
Aa1 1.0400 0.8772 (0.5748, 1.5052)
12 1.1199 0.8146 (0.7745, 1.4654)
A3 1.0044 0.9083 (0.7702, 1.2386)
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Table 2.8: Alzheimer’s Disease Caregiver 4-Level Stress Model Estimates (continued)

Estimate Sojourn Time 95% Bootstrap CI
k 1.3913 - (1.1955, 1.5872)
Gamma Sojourn Time

A2 2.1626 1.4567 (1.7498, 2.5753)
A13 1.9590 1.6081 (1.5037, 2.4144)
A4 1.7527 1.7974 (-7.8255, 11.3308)
A2t 2.4813 1.2696 (2.008, 2.9546)

A23 2.1800 1.4451 (1.7945, 2.5654)
A24 2.3765 1.3256 (1.8259, 2.9272)
A31 2.1908 1.4380 (1.7468, 2.6349)
A32 2.2356 1.4092 (1.7974, 2.6737)
A34 2.3162 1.3601 (1.8788, 2.7537)
Aa1 2.2922 1.3744 (1.5894, 2.995)

A2 2.3248 1.3551 (1.9415, 2.708)

A43 2.1246 1.4828 (1.7509, 2.4984)
(0 3.1503 - (2.7782, 3.5224)
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Table 2.9: Estimated Transition Probabilities of the
Embedded 3-State Markov Chain

To State
From State Stress Level 1 2 3
1 None/Mild  0.000 0.861 0.139
2 Moderate 0.533 0.000 0.467
3 Severe 0.264 0.736 0.000

Table 2.10: Estimated Transition Probabilities of the Embed-
ded 4-State Markov Chain

To State
From State Stress Level 1 2 3 4
1 None 0.000 0.582 0.358 0.060
2 Mild 0.175 0.000 0.710 0.114
3 Moderate 0.091 0.442 0.000 0.467
4 Severe 0.082 0.182 0.736 0.000
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Chapter 3

A Continuous-Time Semi-Markov
Model for Longitudinal Categorical
Outcome with predictors: A Partial
Likelihood Approach

Authors: Kusha A. Mohammadi, Wenyaw Chan, and Valory Pavlik

3.1 Abstract

A continuous-time semi-Markov models (CTSMM) can be utilized as an alternative to
studying longitudinal categorical outcomes to the classic transition model in cases where
the Markov assumption is too restrictive or unrealistic. Often longitudinal studies collect
subject covariate information to potentially better explain the outcome distributional
changes over time. However, when we consider a three-state semi-Markov processes
(SMP), we are limited to the statistical approaches to estimate the transition covari-
ate effects under a semi-Markov model. To address this issue, we develop a partial
likelihood approach to incorporate predictors to evaluate the transition covariate effects
while considering various sojourn-time distributions: exponential, gamma, and Weibull.
This method contributes to statistical inference in the area of semi-Markov models and

provides a computationally feasible approach to study a breadth of longitudinal appli-
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cations. We assessed the proposed method through extensive simulation studies and
examined their sensitives. The simulation results suggest accurate estimation with low
bias of the transition effects for a CTSMM and coverage probability close to the excepted
95%. We applied our partial likelihood approach to a longitudinal example in which the

care-giver stress-level over time are used as outcome while incorporating some predictors.

Keywords: CTSMM, Covariate Transition Effects, Longitudinal Categorical Outcomes,
Partial Likelihood

3.2 Introduction

In many applications, continuous-time semi-Markov model (CTSMM) is a powerful tool
because it relaxes the strict Markov assumption. The Markov property implies that
the holding time has an exponential distribution. Fetter and Thompson revealed the
movement through various health states for an individual may not be Markovian for
many diseases [36]. For this reason, the semi-Markov framework is often considered to
allow for arbitrary sojourn time distributions.

Statistical inference in the area of semi-Markov models continues to grow as more
complex problems arise. Anderson and others proposed a Cox semi-Markov model to add
covariate effects to each transition intensity for an application in bleeding episodes and
mortality in liver cirrhosis [26]. Titman presented a new statistical likelihood method to
estimate transitions rates from panel data using phase-type approximations [27]. Shu and
others utilized large sample theory to develop asymptotic theory for the Cox semi-Markov
model to investigate the robustness and efficiency of semi-Markov estimators [28]. Aralis
and Brookmeyer proposed a stochastic estimation procedure for panel observation data
with back transitions while assuming a non-exponential distribution [29]. Yu has also
extended the semi-Markov theory to consider misclassification in observed states called

the hidden semi-Markov model (HSMM) [25]. While all these examples contributed
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greatly to the stochastic literature, there is still a continual need for the development
of efficient estimators and computationally feasible methods to study multi-state semi-
Markov processes while incorporating covariate information.

In this article, we propose partial likelihood method to estimate the transition
covariate effects under a semi-Markov model. Specifically, we will analyze a three cat-
egorical disease-state process while adjusting for some covariates over time. For each
CTSMM, we will assume three wait time distributions: exponential (i.e. Markov model),
gamma, and Weibull. The gamma and Weibull distributions are widely used in classical
survival analysis because they generalize the exponential distribution. By using these
distributions, we have a more flexible model to analyze a variety of longitudinal cate-
gorical disease problems. Additionally, our proposed estimation procedure will provide
critical information that can be used in studying dynamic disease/interventions in med-
ical research. To highlight our method, we will apply the partial likelihood approach to
an Alzheimer’s caregiver stress-level example after controlling for some covariates.

The remainder of the paper is organized as follows. Section 3.3 defines the semi-
Markov process and outlines the partial likelihood method that incorporates subject
covariate information. Extensive simulation studies are summarized in section 3.4 and
applied to 3-level outcome of care-giver stress in section 3.5. The paper concludes with

a discussion in section 3.6.

3.3 Methods

3.3.1 The semi-Markov Model

First, lets consider a Markov renewal process (X,,,T,) where 0 = Ty < T} < --- < Tp are
consecutive state transition time points to states X,, for D total number of transitions.
S = (Sy)nen is defined as the successive holding times in the visited states. The sequence

X = ({X,}) forms an embedded discrete-time homogeneous Markov chain for a discrete
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state space, ® = {1,2,...,b}. Given the initial distribution, w; = P(Xo, = 1), i € ®, the
probability of moving from a state i to state j is p;; = P(X,41 = j|X,, = 1), p;; > 0, for

i # 7 and p;; = 0 for ¢ = j. The semi-Markov kernel, @);;, satisfies the following

Q’L](t) = P(Xn+1 = ]7t < Sn+1|An—1)

= P(Xn—H =J,t < Sn+1|Xn = Z)

(3.1)

where A,, = {(Xo,Tp); - - - ; (Xn, T,) } denotes the history of the semi-Markov chain,
1,7 € P, and t € RT.
The distribution function of the sojourn time, Fj;, determines the amount of time

t € Rt an individual stays in state ¢ before transitioning to state j:

Pt <S8, t+ At X, 1 =4, X, =1
Fz’j(t> = Alim+ [t < Sha <t At| +1 = J 1
t—0

(3.2)

where 7,7 € ®, and ¢t € RT. We can relate the semi-Markov kernel to the distri-

bution function of the holding time through the transition probabilities:

Qij(t) = pij Fij(t) (3.3)
where 7,7 € ®. Using the classical survival relations, we can deduce the hazard

of the semi-Markov process which is the probability of moving to a state j between time

t and t + At, given the previous state is ¢ for a duration ¢,

P(Xn+1 = j,t S Sn+l < t+ At|5n+]_ Z t,Xn - Z)

hijlt) = A}tl—{r(lﬁ At
Pig Si ()vi5 ()
= -———— 3.4
S0 0
where i # j, i,j € ®, h;(t) = — >, hij(t). The survival and hazard of the

sojourn time is denoted by S;;(t) and v;;(t). Additionally, the survival function of the
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wait time, Si(t), is defined as > g pi; (1 — Fij(t)).
3.3.2 Incorporation of Covariates

To add the influence of covariates on the holding time distributions, we utilize a cox
proportional hazard model for p (p = 1,...,k) explanatory variables with some known
functional form of the covariates, ¥(-) [42]. Let T(1y < --- < T(py be the ordered transition
times of all the m individuals, m = 1,... M. Then, let Zgj (t) be a vector representing
the individual’s covariate information at n'* transition from i to j at time ¢, i, j € ®. The

general form for the hazard rates function while accounting for covariates is as follows,

Vi (HZE () = o5 ()0(Z3 (1)

From this general form, we will make few assumptions:

1. The proportionality of hazards holds within each ¢ to j state transition but does

not hold between.

2. The vector of covariate effects, 3, is the same across all ¢ — j transitions (i.e.

By =B 2 (1) = 2"(1))
3. The covariates are independent of the transition time, ¢ (i.e. Z™(t) = Z™).

4. The same baseline intensity distribution, 14 ;;(t), is assumed for each state transition

from i to j (e.g. Weibull distribution for 1 — 2, 1 — 3, etc.).

Under these assumptions, we have the following simplified hazard model that

integrate p predictors,
sz(t|Z(")) = VO,z‘j(t)el‘p (Btz(”)) (35)
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From equation 3.5, the regression coefficients have the well-known interpretation
of relative risk given the assumptions hold. However, the covariate effects on the semi-
Markov hazard function (i.e. equation 3.4) will be interpreted graphically due to it’s

intricacy.
3.3.3 Distributions of the Sojourn Time

We studied three different sojourn distributions in continuous-time semi-Markov model.
For simplicity, we will assume that the shape parameters (i.e. k, 1) is constant across all
transitions from ¢ to 5. The simplest distribution is the exponential distribution which
has constant hazard over time (equivalent to the Markov model) with a positive rate

parameter, \;;, 1,7 € ®.

vij(t) = Aij (3.6)

Secondly, the gamma distribution has the flexibility of dealing with many different
distribution shapes in practice. This generalized form of the exponential distribution
defines the hazard function of the waiting time with positive rate parameter, \;;, 7,5 € @,

and positive shape parameter, & as

/\fjtf_le_’\ijt

vij(t) = [(€) — T(&, \ijt)

(3.7)

where I'(a) is the gamma function, and I'(a, z) is the incomplete gamma function,
a > 0.

Lastly, the Weibull distribution generalizes exponential case by allowing a second
parameter to alter the shape of the distribution. This adaptable feature has allowed this
distribution to be used in many practical applications. The hazard of a two-parameter
Weibull distribution with positive rate parameter, \;;, 7,7 € ®, and positive shape pa-

rameter, k is as follows
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Vﬁ(f) = k')\ijtkil (38)

All these distributions allow the semi-Markov model to be adaptable to a broad

set of longitudinal categorical studies.

3.3.4 The Partial Likelihood by Adding Covariates

We collect data based on the triple (T, X" Z"") for n,, transitions for the m'" subject,
m=1,...,M. Let (T, X™) Z(")) be the ordered data based on the transition times, t,
where T is the n'” transition time, X " is the transitioning state (i.e. state j), and Z™
is the vector of covariate information at the n'*transition. The ordered data combines all
M subjects by their transition time. For convenience, we will let 7 = 7™ . We define the
risk set, R(7—), as the set of all individuals who are still under study at a time prior to
7. We denote, Ix,-—y(u), to identify the current state, u, of subject [ prior to transition
time 7. Let S™ be the time spent in a particular state, i, before transitioning to state j
(i.e. sojourn time) for the n'* transition. Let ¢ be the time already spent in a particular
state, u, for a subject [. For each possible n transitions, the probability that there is a
n'h transition (i — j) at time 7 with covariates yAR given that one subject transition in

the risk set at that time is

hiy(S™|Z™)
ZZGR(Tf) Zue@ hu(QO‘ Z(l) )IXZ (r=) (U)

(3.9)

where h;;(+|-) is transition rate function defined by equation 3.4.

Let the parameters of interest be defined by ® = {8, \;;, £*, k*} where * indicates
the parameter that needs to be estimated depending on the sojourn distribution (defined
in Section 3.3.3). Then the partial likelihood is formed by multiplying all the conditional

probabilities over all the transitions D. This is given by
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D (S™|Z™
H hi (S]277, ©) (3.10)
n=1 leR( -) Zue@ (§0|Z ) @)le (r— )( )

where 4, j,u € @, h,(t) = — >, hi;(t). The numerator of the likelihood function
depends only on the individual’s explanatory variables who is currently transitioning
from state ¢ — j. The denominator of the likelihood includes all the information of the
subjects who are still at risk prior to time 7.

A special case to consider is when there are ties present. In practice, it is common
to collect many subject’s information at a common calendar time (e.g. every year). We
will consider one method constructed by Breslow [43] where there are ties among the

events. The partial likelihood can be expressed as

— l_D[ HgEdn higjq(sén)|z(n)’ 9)
w1 | Cieriro) Sueo hulelZ%, ©) L e (1)

(3.11)

dn

where d,, is the number of events at a given transition time, 7, for the n** transition.
Parameter estimation can be carried out by optimizing the likelihood function or

equivalently, the log likelihood, I(®),

D
= Z Z log [higjg(sé(,")|z(”), @)]

n=1 g€d,

b (3.12)
—) " dylog Z > hu(p|ZY,©) Iy, ()

n=1 IER(T—) ued

Ordinarily, the parameters of interest are acquired by deriving the first derivative
of the likelihood function and setting it to zero. Due to the complex structure of the

semi-Markov hazard function, the first derivative is not available in closed form and the
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fisher’s information matrix is not easily computed. This presents a difficult optimization
problem where we need a derivative-free numerical optimization approach to obtain the
estimates for the CTSMM. Non-parametric bootstrap samples are used to estimate the
standard errors for the parameters in ®. For each bootstrap sample, M individuals were
re-sampled with replacement and new estimates for the CTSMM were collected. All

analysis used R 3.6.2 [44], Repp package [34], and doParallel package [35].

3.4 Simulation

To evaluate the performance of the proposed partial likelihood estimator, we describe a
simulation study to examine a three-state CTSMM in this section. Three semi-Markov
processes are simulated to represent the hold time distributions, F; ; outlined in subsec-
tion 3.3.3 (i.e. exponential, gamma, and Weibull). A general simulating algorithm for a

semi-Markov process up to a time ¢t = T is given [25]:

1. Supply pi; and Fj;

Choose an initial state, ig. Set ¢t = 0.
Set 7 = 1y

Generate the following state, j ~ pi, x;

Ift < T, then

AR el R

a. Generate a sojourn time, S;; ~ Fj ;
b. Set t =t +.5; ;.

c. Set i = j;

d. Generate a new state j =~ p; .

6. Else, stop.

In words, the semi-Markov process randomly determines the following state j
based on the transition probabilities, p;;, after entering a state <. Then it randomly

determines the amount of time spent, S;;, in a state ¢ before transitioning to a state j
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based on the sojourn time distribution, F;;. The process continues until we reach a max-
imum observe time, T'. For each simulation, the algorithm was run for 400 subjects and
1000 simulations. The standard errors were approximated by using 50 non-parametric
bootstrap samples and used to calculate the 95% bootstrap confidence intervals. The
hazard of semi-Markov process were dependent on one continuous () and one binary
covariate, [y as described in subsection 3.3.2. The Nelder-Mead method was used to
maximize the partial log likelihood function in equation 3.12. We assess our proposed
method by the bias, standard deviation, standard error, mean-square error (MSE), and
95% probability coverage. Briefly, the bias describes the distance between the estimated
value and the true value, and the standard deviation represents how close the numbers
are to the mean. The standard error will explain how far the sample statistic deviates
from the actual population parameter. In simulations, we would expect the standard
deviation and standard errors to be relatively close to one another. The mean square
error combines these two components of bias and variability to imply the mean difference
between the estimated and observed parameters. Generally, a relatively low MSE value
indicates a well-fitted model. Lastly, the 95% coverage probability refers to the number
of times the true parameter is in the confidence interval. It is desirable to have coverage
probabilities near 95% to indicate an efficient estimation method.

The simulations results for the three semi-Markov models were summarized in
table 3.2. Among all three models, the bias remained relatively low (< 0.09) with the
exception of one rate parameter, \3;, in the SMM assuming a gamma sojourn time. The
highest variability was observed in the estimation of the beta coefficients (8; and fs)
for the exponential and Weibull sojourn time. Most rates, shape, and beta coefficient
estimates had relatively low MSE with the variance (i.e. standard deviation squared)
driving higher values in some numbers. In the last column, the 95% bootstrap coverage
probability is given. By assuming a Weibull or gamma wait time distribution, the results

showed most of the estimates hovering around the expected 0.95 range. The Markov
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model (i.e. exponential sojourn) exhibited some low coverage probabilities in 80 percent
range and one in the 70 percent range. Low coverage indicate either biased estimates or
anti-conservative standard errors and should be considered when assuming an exponential
holding time distribution. Some estimates showed standard deviations much larger than

the standard errors in the exponential and weibull sojourn time models.

3.5 Caregiver Stress Application

In this section, we describe how our method can be implemented in a caregiver stress-
level example. The Baylor Alzheimer’s Disease and Memory Disorders Center recruited
individuals to evaluate probable Alzheimer’s Disease using the criteria from the National
Institute of Neurological and Communicative Disorders and Stroke [30]. Over a 21 year
period, socio-demographic and neuro-psychological information was collected from par-
ticipants to better understand the progression from a non-clinical neurological state to
an Alzheimer’s Disease state. A second interest of the study was to focus on the health
and well-being of the family members or friends who cared for the Alzheimer’s Disease
patients. Caregivers were asked to fill out a questionnaire where self-reported stress-level
was documented. No stress, mildly stressed, moderately stressed, and severely stressed
were the four possible categories given to self-evaluate their stress level. Demographic
characteristics were also gathered to describe and highlight possible differences between
certain components. Using the data, we will conduct a longitudinal study where we treat
the self-reported stress-level as a semi-Markov chain with three potential outcomes (i.e.
None/mildly stressed, moderately stressed, and severely stressed). Additionally, patient
sex and age at baseline were incorporated in the model to potentially better explain the
behavior of caregiver stress level over time. Caregivers who have at least one transition
and complete demographic information were included in the study. To find the best fit

for the data, we calculate the Akaike’s information criterion (AIC) for each model and
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choose the the model with the lowest AIC value.

Table 3.1 shows the number of transitions, ¢ — 7, within the Alzheimer’s Disease
dataset. The lowest number of transitions occurred between severe to None/Mild and
None/Mild to Severe (61 and 49 transitions, respectively). The most transitions seem
to occur from moderate to none/mild and back to moderate (234 and 303 counts, re-
spectively). To illustrate the changes in each stress level, we graphed the frequency of
transitions by sex in figure 3.1. In the initial years of observation, females tend to be in
the transition out of the lower two levels and move into the higher stress levels. For men,
there was steady increase in the two highest levels as time progresses forward indicating
some form of higher stress levels while caring for an Alzheimer’s Disease patient.

In table 3.3, we presented the results of the continuous-time semi-Markov model
that incorporated covariate effects. Three different sojourn time distributions were con-
sidered for the semi-Markov model. To find the most best model, the AIC were calculated
for each model. The lowest AIC (11884.7) was found for the SMM assuming a gamma
sojourn time compared to the exponential and Weibull sojourn (12330 and 12197.75,
respectively). Regardless of the model, all suggest that the sex covariate effect (1) was
statistically insignificant due to the fact the 95% bootstrap confidence interval contained
zero. This suggests that the risk between males and females are the same and can be
excluded from the model. The second coefficient, the age (53) effect, was found to be
statistically significant. Since we standardized age, we would interpret the transition
from a moderate to severe state in the following way: One standard deviation increase
in age increases the risk of transitioning from a moderate to severe stress level by 1.59
(i.e. exp(0.4664)). Since we assumed the beta coefficient to be the same across all levels,
the interpretation is similar. To highlight the differences across age, figure 3.2 gives a
visual context to the hazard of the semi-Markov process for various ages. Within each
transition, we can conclude the risk of transitioning to a higher stress level is greater for

older caregivers than younger ones within the first few years (i.e. compare the blue line
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to green line).

Table 3.1: Observed Transitions between 3-Levels
of Caregiver Stress

To State
From State Stress Level ! 2 3

1 None/Mild 0 303 49
2 Moderate 234 0 205
3 Severe 61 170 O

3.6 Discussion

In this paper, we proposed a partial likelihood approach for a continuous-time semi-
Markov chain model that includes covariate effects on the hazard function. The CTSMM
helps us model the transitions between discrete disease states and allows us to examine
how demographic or environmental factors affect the transition rates. An Alzheimer’s
disease caregiver stress application was a natural example to exemplify the use of a
CTSMM. Additionally, by using a CTSMM, we have the flexibility to specifying an
arbitrary sojourn distribution. We explored three sojourn distributions: exponential (i.e.
Markov model), Weibull, and gamma distributions. Both the Weibull and gamma are
generalization of the exponential distribution with the added benefit of allowing a shape
parameter to alter the distribution. By utilizing a cox hazard model, we can incorporate
covariate effects on the hazard of transition. The partial likelihood method was then
constructed and evaluated through some simulations. The simulation performance of the
partial likelihood suggested relatively efficient estimation in models assuming a Weibull
or gamma sojourn time distribution. Both models exhibited relatively low bias and
mean square error. However, for some rates parameters, the standard deviations were

much larger than the standard errors. From Chapter 2, one result suggested that the
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partial likelihood approach may be unstable for some rate estimates due to some outlying
datasets in the simulations. We reason that this is the source of the discrepancy between
standard deviation and standard errors for some transition rates in these simulations.
Additionally, all estimates showed coverage probabilities around the expected 95% range.
All in all, the partial likelihood approach seems to be a reasonable method to estimate
the parameters in a 3-level CTSMM incorporating covariate effects on the hazard rates.

The longitudinal caregiver example demonstrates the type of analysis that can be
conducted with a multi-level categorical outcome. We modeled 3 stress-levels (none/mild,
moderate, and severe) as semi-Markov chain and investigated how the patients age and
sex affect the transition rates. By explored three different holding time distributions, we
were able to find the most appropriate model to fit the caregiver stress data. The AIC
values suggested that the time until transitioning to another state was modeled best when
assuming a gamma distribution than a Weibull or exponential distribution. This serves
as an example where Markov model may not be realistic. As in any analysis, we can
interpret the significant coefficients as relative risk by exponentiating the beta estimates
and graph the hazard of the semi-Markov process as in figure 3.2. Our longitudinal
analysis suggests that the age of a caregiver affects the transitioning rate through the
three levels of stress.

The work presented are not without some limitations. First, we had a complex
optimization problem such that we needed to find a non-linear optimizer for the log par-
tial likelihood. A Nelder-Mead optimization was used for its ability to find the optimal
parameters without the derivative. However, depending on the initial parameters, the
partial log likelihood may converge to a local minima or not at all. Additional non-linear
optimization methods need to be consider to understand how reliable the Nelder-Mead
estimates are for this approach. Secondly, we limited our research to three parameter
distributions. We used the language of 'most appropriate’ model because it is not clear

whether it is the best model. From our simulation results, we find non-exponential dis-
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tribution performing relatively well with this partial likelihood approach. More research
is needed to expand the number of distributions we can have to explore unique data dis-
tributions. For instance, the raw sojourn times in the caregiver stress example for each
transition suggested a bi-modal shape than uni-modal. Although, we would argue this
phenomenon occurred in this example because of the varied interview times and inability
to capture the time spent in each stress level. Further research into these matters will
develop the robustness of the partial likelihood approach.

In this paper, we proposed a partial likelihood method that incorporates covariate
information on the the transition rates of a continuous-time semi-Markov chain. A nat-
ural extension of the proposed approach is to consider a four state process and explore

other parametric and non-parametric sojourn times.
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Table 3.2: Simulation Results for a Three-State Semi-Markov Model with the Inclusion
of Covariates!

True Estimate Bias SD SE MSE 95% Coverage

Ezxponential
A12 0.47 0.4896 0.0196 0.1019 0.0728 0.0108 0.914
A13 0.68 0.6925 0.0125 0.1370 0.1075 0.0189 0.879
A21 0.49 0.5082 0.0182 0.1053 0.0775 0.0114 0.908
o3 0.63 0.6495 0.0195 0.3120 0.0706 0.0978 0.892
A31 0.52 0.5444 0.0244 0.1218 0.1045 0.0154 0.926
As2 0.63 0.6379 0.0079 0.0998 0.0642 0.0100 0.904
51 0.50 0.5941 0.0941 0.7790 0.0819 0.6157 0.769
Ba 1.00 1.0092 0.0092 0.3415 0.0828 0.1167 0.877

Weibull
A12 0.47 0.4736 0.0036 0.0787 0.0549 0.0062 0.942
A13 0.68 0.6865 0.0065 0.1877 0.0838 0.0353 0.933
A2t 0.49 0.5032 0.0132 0.3488 0.0594 0.1218 0.933
o3 0.63 0.6352 0.0052 0.1338 0.0632 0.0179 0.921
As1 0.52 0.5288 0.0088 0.0917 0.0768 0.0085 0.953
As2 0.63 0.6305 0.0005 0.0735 0.0544 0.0054 0.932
k 2.00 2.0298 0.0298 0.1292 0.1278 0.0176 0.911
B4 0.50 0.5671 0.0671 1.1238 0.0916 1.2675 0.972
Ba 1.00 1.0045 0.0045 0.4144 0.0824 0.1717 0.961

Gamma
A12 1.9 1.9856 0.0856 0.2881 0.3613 0.0903 0.931
A3 1.3 1.3660 0.0660 0.2239 0.2722 0.0545 0.907
A21 1.8 1.8843 0.0843 0.2917 0.3443 0.0922 0.940
A3 1.4 1.4334 0.0334 0.1595 0.2070 0.0265 0.927
As1 1.7 1.8336 0.1336 0.3760 0.4691 0.1592 0.946
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Table 3.2: Simulation Results for a Three-State Semi-Markov Model with the Inclusion
of Covariates (continued)

True Estimate Bias SD SE MSE 95% Coverage
A32 1.4 1.4327  0.0327 0.1607 0.1913 0.0269 0.926
(0 2.0 2.0745 0.0745 0.1066 0.1799 0.0169 0.902
51 0.5 0.5088 0.0088 0.0459 0.0687 0.0022 0.974
Ba -1.0 -0.9935  0.0065 0.0592 0.0778 0.0036 0.919

1 For each CTSMM, we simulated 400 subjects for 4 time units long.
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Chapter 4

Trajectories in Depression
Symptoms among Elderly Mexican
Americans with Chronic Health

Conditions: A Longitudinal Data
Analysis

Authors: Kusha A. Mohammadi, and Wenyaw Chan

4.1 Abstract

Background:

Depression is one of the most prevalent mental health issues among older Mexican-
Americans populations. Hispanic Americans are facing a mental health crisis where
research is needed to understand the behaviors of depression symptoms while coping
with one or multiple chronic illnesses such as heart disease, cancer, diabetes mellitus,
stroke, hypertension, and kidney disease.

Methods:

Eight waves of data from the Hispanic Established Population for the Epidemiologic
Study of the Elderly (HEPESE) which spans 20 years (1993 - 2013) was studied. We

categorized the CES-D score into four categories to describe the level of severity of depres-
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sion: Not depressed, mildly depressed, moderately depressed, and severely depressed. A
continuous-time semi-Markov model was used to describe the dynamic severity depres-
sion level over two decades and a partial likelihood approach obtained the parameter
estimates.

Results:

Respondents (n = 3,079) were shown to naturally progress toward higher depression levels
after beginning in the not depressed state within the first 7 years. From the semi-Markov
model, we identified that an elderly Hispanic person with any of the six chronic illnesses
will spend about 15 years in the severely depressed level which is about 3-4 year longer
than the other depression levels. We also report that there is a high risk of transitioning
from non-depressed level back to a higher depressed level (mild, moderate, and severe)
upon entering.

Conclusions:

Our current study indicates elderly Hispanics coping with one or multiple of the six
chronic illnesses are likely to spend the most time in mild to severe depressed levels and
have a higher risk of transitioning to a more severe depression level from a non-depressed

level upon entering.

Keywords: Depressive Symptoms, HEPESE, CTSMM, Partial Likelihood Method

4.2 Introduction

Many recent longitudinal studies have investigating factors associated with risk of de-
pressive symptoms among Hispanics. One study used multivariate logistic regression to
determine the associations between depressive symptoms and sociodemographics, chronic
health conditions, disability, and cultural factors [46]. Another research team found
that social network characteristics have a direct link between depressive symptoms and

chronic health conditions [47]. There is additional evidence that social support and
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church attendance were protective factors against increase depressive symptoms during
pre-widowhood [48]. Further, age-adjusted odds of depressive symptoms in Hispanic
women was 2.11 times the odds of non-Hispanic women while the men did not have a sig-
nificant odds ratio [49]. Oh and others illustrated a relationship between depression and
negative family interaction among cancer Hispanic individuals whom also experienced
depression [50].

In 2010, the elderly Hispanic population (65 years and older) made up about
seven percent of the United States population and is projected to rise to about twenty
percent by 2050 [51]. Because of the rise in the elderly Hispanic population, it has
been of interest to expand the knowledge of changes in depressive symptoms over time.
Katon indicated a higher incidence and prevalence of major depression in individuals
with chronic medical illness [52]. The odds of increased depressive symptoms for those
living with specific chronic illness like heart attack was significantly higher (OR = 1.86; p-
value =0.03) than those with low depressive symptoms among Mexican-American adults
aged 65 and older [53]. Another investigation reported that Mexican Americans had
significantly earlier onset major depressive disorder as compared with African Americans
[54]. Monserud and Markides highlighted church attendance was associated with a slower
increase in depressive sypmtoms and greater social support was related to more depressive
symptoms in the context of widowhood [48]. Changes in depression symptoms among
older Mexican-Americans continues to be at the forefront of research.

In this paper, we investigate the dynamic changes of four levels of depression
among elderly Mexican Americans with chronic health illnesses over time. We analyze
eight time points of data from the Hispanic Established Population for the Epidemio-
logic Study of the Elderly (HEPESE) on adults 65 years and older. The present study
contributes to Hispanic mental health literature in the following ways. First, we will
be able to better describe the natural course between depressive level symptoms over

time using a continuous-time semi-Markov model. This type of longitudinal data anal-
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ysis will provide a more complex illustration of depression symptom patterns over time
among older adults of Mexican descent by offering the rate of transition from one level
to another, estimating the time spent in each depression severity level, and graphically
depicting the hazard of transition. Secondly, the study addresses the mental health crisis
for Mexican-American who experience changes in depressive symptoms while coping with
certain chronic conditions. These chronic illnesses include heart attack, diabetes mellitus,
cancer, stroke, hypertension, and kidney disease. Lastly, the study has the potential to
inform future policy to develop depression programs to aid elderly Mexican-Americans

coping with the chronic illness.

4.3 Methods

4.3.1 Elderly Hispanic Study Sample

We based our analysis on the Hispanic Established Population for the Epidemiologic
Study of the Elderly (HEPESE). The HEPESE contains Mexican Americans aged 65
and older, who live in five southwestern states: Texas, New Mexico, Colorado, Arizona,
and California [31]. The original study started in 1993 -1994 with 3050 subjects with a
response rate of 83% [55] (Figure 4.1). Additional follow-ups occurred every two years
post baseline: Wave 2 in 1995 - 1996 (M = 2438) [56], Wave 3 in 1998-1999 (M = 1980)
[57], Wave 4 in 2000 - 2001 (M = 1682) [58], Wave 5 in 2004 - 2005 (M = 2069) [59],
Wave 6 in 2006 - 2007 (M = 1542) [60], Wave 7 in 2010 - 2011 (M = 1078) [61], and Wave
8 in 2012 - 2013 (M = 744) [62]. Wave 5 added 905 new respondents that were aged
75 and older and followed up with the original cohort. The interviews took place inside
the respondent’s home in both Spanish or English based on their preference. The sur-
vey consisted of questionnaire elements of self-reported sociodemographic, cultural, and
health-realted measures. We used six chronic illness items to determine if the respondent

was diagnosed with one or more chronic illnesses (Heart attack, diabetes mellitus, cancer,

70



stroke, hypertension, and kidney disease). We included those from the original cohort
who had more than 1 observation (CES-D measure), and those who at lease on of the
six chronic illnesses. Additionally, we made use of the new respondents in Wave 5 and
included them with the same criteria. Overall, we had a sample size of 3,079 subjects

that were analyzed.

4.3.2 Categorical Outcome Measure

We based the depression symptoms on the Center for Epidemiological Studies Depression
Scale (CES-D) [32] and categorized by the following criteria[33]: not depressed (0 - 9
points), mildly depressed (10 - 15 points), moderately depressed (16 - 24 points), and
severely depressed (more than 25 points). CES-D score is comprised of 20 questions
experienced during the past week. For each item, the answers vary in score from 0
(none/rarely) to 3 (most of the time). Respondents with a CES-D of 16 imply more
psychological distress [63]. For every respondent’s observations, we classified the CES-D
score within four possible categorical outcomes to obtain a full trajectory of depression

level over time.

4.3.3 Statistical Analysis

A continuous-time semi-Markov model (CTSMM) was used to capture dynamic nature
of the depression levels over the duration of the HEPESE. The models for this analysis
were un-adjusted models, meaning they did not consider any subject information on the
transition rates. We used a partial likelihood approach to estimate the parameters from
the CTSMM. To find the final model, the changes in depression severity over time were
examined from models with different waiting time assumptions. Based on the Akaike
information criterion (AIC), we proceed with the model with the lowest value. We
interpreted the hazard of the CTSMM in the context of the elderly Hispanic Americans

with one or more multiple chronic illnesses and discussed its potential contribution to
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the mental health literature. All analysis were carried out in R 3.6.2.

4.4 Results

The baseline characteristics of the 3,079 respondents overall and by depression level
are presented in Table 4.1. Overall, the elderly Mexican-American’s are about 69%
women, 74 years old, 54% married, and 40% very satisfied with life. The vast majority
of individuals were diagnosed with hypertension (2372 individuals) compared to all other
chronic illnesses. At baseline, most of the participants are classified as not depressed
(1168 subjects) whereas mildly depressed, moderately depressed, and severely depressed
are close in sample size (785, 623, 503, respectively). Among severely depressed, 35%
of them are widowed - not divorced, 28.5% are somewhat to not at all satisfied with
life, 74.2% had hypertension, and 40.8% are diabetic. Within the moderately depressed
stage, 74% are women, 8.7% had a stroke, 77.7% were hypertensive, and 14.4% had
a heart attack. The lower depression levels (not depressed and mildly depressed) had
similar percentages across all the characteristics in Table 4.1.

In table 4.2, we find the total transitions over the observed time period within
this dataset. For instance, there was 205 elderly Mexican-American respondents who
transitioned from a moderate depression level to a severe depression level. The other
observed transitions can be interpreted similarly. From figure 4.2, we observe how the
counts in each depression level over the 20 year changed over the study duration. Overall,
we examined a steep decrease in the number of respondents transitioning out of the not
depressed stage to the higher stress level categories. After 15 years, we still notice a
steady increase in the moderately depressed (CES-D score 16 - 24 points) level. This
indicates that the elderly Mexican-American respondents tend to eventually go towards
to third stress level after a number of years.

Table 4.3 refers to the probability changing to another depression severity state
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at the time of transition. The estimated probability of transitioning from not depressed
to mildly depressed and mildly depressed to moderately depressed are 46.5% and 27.0%,
respectively. Additionally, we find there is a 26.2% chance of moving from a not depressed
state to a severely depressed level and 24.4% chance of moving from a severely depressed
level to a moderately depressed level.

From the CTSMM, we investigated three sojourn distributions: exponential,
Weibull, and gamma distribution. After optimizing the partial likelihood functions,
the AIC was calculated to find the most appropriate model. The AIC was 28318.47,
27844.53, and 27617.36 for the CTSMM which assumed the waiting time distributions
to be exponential, Weibull, and gamma, respectively. This indicates that the model that
specifies the gamma sojourn time is the most appropriate model for the elderly Hispanic
data. Refer to the appendix A to view the raw sojourn times for each transition while
overlaying each distribution over and model based estimates for the other models. Table
4.4 represents the parameter transition rate estimates of the CTSMM that describes the
changes in depressive symptoms among chronically ill elderly Mexican-Americans. Using
the mean of the gamma distribution, we can find the estimated time we would expect
to spend in each depressive state. The expected time spent in the not depressed, mildly
depressed, moderately depressed, and severely depressed levels were 10.79, 12.61, 12.53,
and 15.16 years, respectively. This suggests an elderly Mexican American living with
chronic disease spent the longest time in the severely depressed state before transitioning
back to a less severe level which is about 3 to 4 years longer than the other depression
levels. Figure 4.3 illustrates the hazard of the semi-Markov process assuming a gamma
sojourn time transitioning from one state to another. All hazards reflect a negatively
(left) skewed shape. A higher curve indicates a greater risk of transitioning out of that
depression level, whereas a flatter curve indicates a lower risk of moving out of that de-
pression level. Particularly, the risk of transitioning from a not depressed level to a more

severe state (2, 3, or 4) was high soon after entering the level. Additionally, the risk of
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a respondent moving from a severely depressed level back to any of the lower states was

relatively low upon entering that level.

4.5 Discussion

In this paper, we described the trajectory of multi-categorical depressive process among
elderly Mexican-Americans coping with one or multiple chronic illnesses. We constructed
a semi-Markov chain model to analyze the behavior through a series of states and to
give some quality insight to risk of transitioning to a worse depression level. The 3079
respondents included in this study showed a high percentage (> 39%) of life satisfaction
(i.e. very satisfied) across all classification of depressive symptoms. This could indicate
two explanations for the HEPESE Data. First, there is a presence of respondent bias
where the respondents are not truthfully answering the questions. Second, the CES-D
score may not be a representative indicator for depressive symptoms. In the latter case,
we would need to consider a different measure for depressive symptoms. However, in
2017, Moon and others determined CES-D to be an adequate screening instrument for
depression in adults with high predictive power (area under the ROC: 0.92) [33]. It is also
important to note that the outcome measure for depressive symptoms were self-reported
and not from medical exams or records.

Based on the eight-waves of the HEPESE longitudinal study, participants were
shown to naturally progress toward the higher depression levels after beginning in the
not depressed level within the first 7 years (figure 4.2). Thereafter, participants tended
to stabilize in each depression state, however, there was still a tendency to transition to
the moderately depressed state as time progressed on. The most appropriate model was
found by calculating the AIC for each model. The gamma sojourn distribution closely
resembled the HEPESE time until transition for each state movement. Although, the

time spent in a particular depression state from the HEPESE dataset was revealed to
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have had a bi-modal shape rather than uni-model shape (see appendix A). Recall, the
HEPESE follow-ups were collected bi-yearly from baseline. Further, some waves were
not consistently observed in two year increments, rather, the participants were followed
up with 3 or 4 years between interviews. Because the study procedure was collected in
this way, the exact duration a respondent spent in each state may not be known or may
vary greatly. We strongly believe this explains the bi-modal distributions present in the
HEPESE example. Despite the finding, the gamma distribution does closely capture the
natural distribution of the data. From the semi-Markov model, we identified that an
elderly Hispanic person with some chronic illness will spend most of their time in the
severely depressed state upon transitioning to that state (table 4.4). Additionally, we
observed that an individual from the HEPESE is at higher risk of transitioning to a higher
depression level (i.e. mildly depressed, moderately depressed, or severely depressed) from
being classified as not depressed (figure 4.3). We also report that there is a lower risk of
transitioning from severely depressed state back to a not depressed level. This indicates
elderly Hispanics coping with any of these six chronic illnesses are likely to exhibit mild
to severe depression symptoms as time progresses forward.

Our study is not without it’s limitations. First, the HEPESE study collected 8
waves of data every two to three years. If observations were collected more frequently,
we could better understand the expected time a particularly respondent would spend
in any given depressive categorical state. Second, the results are not generalizable to
a general population of elderly adults. In this current study, we did not weight the re-
spondent’s outcome measure at each of the eight waves. To make population inferences,
we would need to consider a weighted analysis to make general conclusions about the
pattern of depression severity over time. Lastly, we did not adjust for any confounders
on the transition rates of the CTSMM. There are potentially many risk factors for de-
pression symptoms that were also collected from each subject. Therefore, it is not clear

if the association in this analysis are indeed accurate due to the lack of confounders and
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potential covariates.

The current research is a first look at the dynamic changes of depressive symptoms
among Mexican-Americans who are chronically ill utilizing the HEPESE. Additionally,
it’s one of the first studies to utilize a semi-Markov model to examine the changes through

a series of depressive symptom states over eight waves of observations in HEPESE.

76



€10¢ ©%

C66T WOIJ PaIS[[0d dIom eyRp JO

soAem S “A[19P[H oY) Jo Apnig orSojorwepids] o1y 0] uoryendoJ paysijqe)ss] otuedsif] o)} Jo aul[owly oy [, :1'§ 2Insi

T 9ABA\ WOJJ SWdY
103]|02 0} PANUIIUOD)
syalgns
80T PIMIIAIDJU]  »
:dn-moj|o4 £ anep

5303[qns 506 PappY  »

€T0C

T SABAN WOJ) SWaY
123]|02 03 PANUIUOD)
sya3lgns
Y7/ POMIIAIDIU]  »
:dn-moj|04 8 anep

'$92IAJRS dwoy Suisinu
pue ‘|eyidsoy ‘|eyusp

T AR\ WOJ) SW) T SABA\ WOJ) SW)Y| JO 35N pue ‘suonipuod
103]|00 0} PANUIIUOD) 103||02 03 PANUIIUOD) yieay ‘sonsiiaoeseyd
syalgns syalgns JiydesSowap payds|0) .
6907 PAM3IAIBIU|  » 086T PIMIIAISIU| $303[qNs 0GOE PaINIIBY
:dn-mojjo4 § aAep :dn-moj|04 € anem '353d3H Jo Hels
I I I
| ! - [
800¢ \ €00 8661
T SABAN WOL4 SW) T SABAN\ WOUH SW) T 9ABA\ WOJ) SWIY
199|102 0} PaNUIUOD 199||02 03 PaNUIUOD 199|020 0} paNUIUOD)
s323[gns sya3lgns s323[gns
VST PAMIIAISIU] 789T PAIM3IIAIBIU| 8EYT PAMIINIDIU|
:dn-moj|04 9 aneM :dn-moj|o4 ¢ aABM :dn-mo||04 Z aAeM

7



(0g) o1 (¢e) v1 (€2) 81 (8¢) €€ (ve) aL ouUIIBPIO] ‘SOX
(807) S0¢ (rLe) €€t (v'8¢) 10€ (¢Le) gev (1°8¢) vLIT Appyruyop ‘sox
((%) N) snnIPIN sesaqer(q
(00) 0 (o)1 (00) 0 (1o) 1 (10) 2 Sussy
(o)1 (¢o) 1 (00) 0 (o) e (10) ¥ Aoy 9,uo(
(0g) 01 (81) 11 (61) ¢t (1) 9t (L1) 2 e[qissod 10 joedsng
(¢°6L) 00% (¢'€8) 0z¢ (878) 999 (8°¢8) 626 (e7€8) 9992 ON
(€'81) @6 (rv1) 06 (ge1) vor (971) 021 (871) 9¢¥ LIS
((%) N) 3Peny 1resy
¥¥) 2o (0%) g (LT) 12T (e¢) 8¢ (ve) 901 Sussiy
(o)1 (90) ¥ (¥0) € (¢0) e (€0) 01 amouy j,.uoq
(87) 72 (¢e) vt (¢1) et (L1) 02 (€2) 02 poysyes [[e 3e JoN
(L€2) 611 (¢'10) €81 (z'61) TST (67¢1) 981 (1°61) 689 poysyes jeymourog
(0°ze) 191 (L82) 6LT (gee) €92 (g6¢) 197 (97¢) v901 poysnyes Apjordwo)
(0°ge) 9L1 (0°¢¥) 89¢ (Lev) gee (g6¢) 197 (e°07) oFar poystyes L1oA
((%) N) uoneystyeg oyrry
(00) 0 (00) 0 (To)1 (1o) 1 (10) 2 Sussty
(00)0 (€0) e (o) 1 (00)0 (o) ¢ Aoy 9,uo(
(0°ge) 9.1 (8-¢e) €5 (6°¢€) 99¢ (e°1€) 99¢ (gge) Te0T POMOPIM
(9°¢) 81 (ze) ot (L¢) 6T (8¢) ¥v (9°¢) 111 POLLIEW 19ADN]
(9°¢) 81 (g¢) 22 (1'¢) v (82) €€ (¢¢) L6 pogeredog
(¢9) 1€ (1°9) 8¢ (g9) ev (9°9) 99 (Lg) LL1 POOIOAL(
(L°19) 092 (0°19) 81¢ (9°€9) 1C¥ (7°99) 629 (8°€9) 8991 poLLIely
((%) N) snyerg oSerrrely
(9°22) 6€1 (0°92) 91 (e718) 9%¢C (gve) cov (6°0¢) 096 oleIN
(7'gL) 798 (0'7L) 9% (L°89) 6€¢ (g'¢9) g9L (1'69) 6212 o[ewa ]
((%) N) o8
(62°9) 99°€L (89°9) TGV (92°9) 0072 (¢€9) 69°€L (8¢9) 16°¢L ((as)uvapy) 98y
€08 €29 =) 89TT 6.0€ N
passaado(q A[oaaaag poassoado(q A[9jeropoJN passaxdo AIP[IIN possexda( 10N easAQ

outseq ye HSHAHH Ul SyNPY oruedsif [10p[H Jo sonsuoprrey) ¥ o[qRL,

78



(¢'69) 86T (9°29) 06€ (L°19) ¥8¥ (8°29) €€ (6°19) S06T Sussty
(01) ¢ (80) ¢ (ro1r (8°0) 6 (0'1) 08 amouy g,u0(
(9°¢¢) 691 (9°1€) L61 (8¢¢) 99¢ (1-¢¢) L8¢ (1°¢€) 810T oN
(¢9) 1€ (0¢9) 1€ (¢¢) g¢ (e¢) 6¢ (1%) 921 S0
((%) N) esessiq Loupry
(z0) 1 (o)1 (To) 1 (To) 1 (10o) v amousy g,uo(
(01) g (80) ¢ (6°0) L (1D er (6°0) 63 orqssod 10 goadsng
(L¥2) ver (e'12) €e1 (9°6T) 741 (g2e) €92 (6°12) 729 ON
(e¥7L) €Le (L°2L) ¥8¥ (v6L) €29 (7'9L) 768 (0°2L) TLET Sox
((%) N) easuagrodA
(00) 0 (co) 1 (00) 0 (To) 1 (10) 2 Surssiy
(91) 8 (o)1 (6°0) 2 (¢0) 9 (L'0) 2z o[qssod 10 j0adsng
(g'06) gsv (0'16) L9g (0'16) ¥IL (6'06) 2901 (6°06) 86,2 oN
(0'8) oF (L8) 7§ (€'8) 79 (¢'8) 66 (€8) 292 SOX
(%) N) o018
(#0) ¢ (To) 1 (ro)t (00) 0 (ro) ¥ aous| ,uo(
(zo) 1 (00) 0 (00) 0 (o) ¢ (10) € e[qissod 10 joedsng
(6°06) LSV (¢726) 9.8 (¢°16) 91L (g'16) 6901 (¢°16) 818¢ oN
(g'8) €¥ (L) 9% (L'8) 89 (£'8) L6 (¢'8) vae SN
((%) N) 1e0ue)
(To) 1 (¢0) ¥ (¥o) e (@0 e (€0) 6 mouy| j,uo(
(1°29) L8¢ (669) €L8 (0°69) €97 (869) 869 (1°69) 18T ON
passaado(q A[oaaaag poassoado(q A[9jeropoJN passaxdo AIP[IIN possexda( 10N easAQ

(ponuguoo) sureseq 18 JSHJHH Ul SHNPY otuedsty A[I0p[H JO so1IsLojdRIey) 1§ o[qe],

79



0¢

owIL], 10A0 sWO}dAG 9ATsSoIdo(] JO S[PAQT F U0aM)aq UOIYISURIT, Jo Aduenbalq :z'§ oIns1q

<t

0c

0c

0c

<t

<t

<t

(sTeak) auury,
)8

(sTeak) auury,
0t

(s1ealk) swry,
01

(srealk) awry,
0t

passaxdaq AJ10A0g #

081

(=1
—
[a\]

(=}
<
(o]
passaxda( A[oreIapoN #

0ve
09¢

ATPTUN #

08¢ @
0]
00€

d

0ze

passalx

0sT
00€
0s€ =
00% rm
0S¥

009

ON #

d

passa.

80



Table 4.2: Observed Transitions between 4-Levels of Caregiver Stress

To State
From State Depression Level I 2 3 4

1 None 0 362 212 204
2 Mild 296 0 138 78
3 Moderate 169 98 0 96
4 Severe 173 78 81 0

Table 4.3: Probability of Moving to Another Depression Stage at Time
of Transition

To State
From State Depression Level 1 2 3 4
1 Not Depressed - 0.465 0.272 0.262
2 Mildly Depressed 0.578 - 0.270 0.152
3 Moderately Depressed 0.466 0.270 - 0.264
4 Severely Depressed ~ 0.521 0.235 0.244 -
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Table 4.4: Elderly Mexican-American 4-Level Depression
Model-Based Parameter Estimates assuming a Gamma So-
journ Distribution

Estimate Sojourn Time! 95% Bootstrap CI

Az 0.8307 4.05 (0.7619, 0.8996)
Az 0.8475 3.97 (0.7696, 0.9253)
A 1.2132 2.77 (1.1135, 1.3129)
Aot 0.5959 5.65 (0.5396, 0.6523)
Xos  0.9307 3.61 (0.8452, 1.0161)
Aoy 1.0038 3.35 (0.8485, 1.159)
A3 0.6346 5.30 (0.5545, 0.7148)
Az 0.9380 3.59 (0.8287, 1.0473)
Az 0.9244 3.64 (0.7728, 1.0759)
Au 05135 6.55 (0.4443, 0.5827)
Az 0.7643 4.40 (0.6227, 0.9059)
Az 0.8000 4.21 (0.7010, 0.8989)
¢ 3.3643 - (3.1788,3.5497)

1 The time spent (in years) in state 7 before transitioning to a state j
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Chapter 5

Future Works

When studying longitudinal categorical outcomes, many studies tend to use a
multi-state Markov approach to analyze the behavior through a series of discrete states.
Although, the Markov property may not be realistic since it imposes the holding time
to be exponentially distributed. By this reasoning, a semi-Markov model seems more
applicable because of its flexibility for an arbitrary sojourn time distribution. However,
depending on the sojourn time distribution, the estimation method may computationally
difficult and inefficient for higher state semi-Markov processes. This problem motivates
the work presented in this dissertation. We have constructed a partial likelihood method
that has the ability to study the dynamics of a process as a semi-Markov chain which
includes incorporating covariate effects on the transition rates. The partial likelihood
approach utilized familiar survival analysis properties to develop an analogous form to
estimate the parameter estimates of a semi-Markov process. This approach has a cou-
ple of advantages. First, the structure of the partial likelihood method is familiar and
simple as in the classical survival analysis. The redefined probabilistic statements in
the partial likelihood allow for the complexity of the semi-Markov process to be ana-
lyzed. Provided that the simulation were acceptable, we have shown our method to
apply to three to four state semi-Markov processes. Secondly, by utilizing Repp package

[34], and doParallel package [35] in R, we developed an computationally efficient way
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to estimate the parameters from the semi-Markov process. The Rcpp package connects
the C' + 4 programming language and R by allowing R to call C' + + functions easily
into R code. This tool helped us improve computation time quickly and conveniently.
Similarly, the doParallel package helped us improve computation speed by performing
multi-core computing. Thirdly, we thoroughly analyzed two non-exponentially sojourn
time distributions: Weibull and gamma distribution. Both of these distributions have
been studied for unique survival problems because of the fact that the are generalization
of the exponential distribution. By assuming either the Weibull or gamma as the waiting
time distribution, we have the flexibility in the CTSMM to have multiple types of shapes
for the hazard of the semi-Markov process. In both our applications, we found the time
until transition to be non-exponential (i.e. Markov model is not appropriate). Lastly,
our approach is applicable to a multitude of longitudinal categorical settings in public
health.

The limitations outlined in the dissertation will be considered for our future re-
search directions. First, due to the complexity of the hazard of the semi-Markov process,
the derivative of the partial likelihood was not available in closed form. Typically, with
the first derivative, we are able to derive the maximum likelihood estimates and stan-
dard errors from the fisher’s information matrix. In the absence of the first derivative,
this proved to be a complicated optimization problem where we needed a derivative free
optimization approach. For all three aims, we considered the Nelder-Mead (NM) non-
linear optimization to find the optimal estimates. While we observed convergence (i.e.
convergence code = 0), there is still a possibility that we may be in a local maximum
rather than a global maximum. For future research, we need to explore other optimiza-
tion methods to further investigate the convergence we observed. Secondly, we used a
non-parametric bootstrap method to estimate the standard errors for each parameter of
the CTSMM. In chapter 3, we observed the coverage probabilities to be lower than the

expected 95% which indicated that confidence interval was not capturing the true value
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95% of the time. This might suggest we need to reconsider the approach to estimating
the standard errors. However, the results in aim 2 suggested the coverage probabilities
to be closer to the expected 95%. For future research, we would compare and contrast
(1) a parametric bootstrap sampling procedure and (2) an optimization method to ap-
proximate the hessian matrix. Lastly, we recognize our proposed method was limited
to two sojourn distributions: Weibull and gamma. For future work, we would extend
this to consider other parametric distributions such as double exponential, normal, and
Pareto. We also desire to investigate non-parametric distributions for the holding time

of the CTSMM.
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Appendix A: Supplementary
Materials for Chapter 4

Supplementary Materials for

Trajectories in Depression Symptoms among Elderly Mexican
Americans with Chronic Health Conditions: A Longitudinal
Data Analysis
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Appendix B: Code

B.1 Written in R 3.6.2 - ”Dark and Stormy Night”

Listing B.1: The Functions used to Implement the Partial Likelihood Approach, Simu-
lation, and Output

#}
#I
#)
#1
#}
#)
#)
#}
#l
#I

#J
#}

#I

#1

#}

#)

#)

#l

#)

#)

Simulate Dataset of a Semi Markov Process

@description

To simulate a three or four stage semti-markov process for a
gtven time distribution.

Sojourn distributions are expomential or gamma. Simulation
inputs are p0 (initial

distribution), pij (probatlity matriz), and Fij (sojourn
distribution).

@param pij Probability matriz (¢ X 7)

@param Rij Matriz (i X j) of rate parameters

@param p0 Initial State (if one not supplied, a rTandom one
will be choosen)

@param Tmaxz Maxz time to observe patients (10 years)

@param nsubj Number of simulated subjects (defaulted to 700

subjects)
@param distn Sojourn Distribution ("exp" = ezponential, "gamma
" = gamma, "weibull" = Weibull)

@param covar the covariates are needed set to TRUE (defaulted
to FALSE)

@param beta vector of true parameters for covariates (
defaulted to 0 for mo covariates)

@param psi true gamma shape parameter constant for all
transttion % to J

@param k true weibull shape parameter constant for all
transition 1 to j

@param Tmin Minimum start time for each subject (defaulted to
0)

@param binprob Simulating binomial random draw for dictomous
variable (default p = 0.5)

@param umin Simulating uniform random draw for continuous
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variable (lower bound); (default min = 10)

#’ @param umaxz Simulating untform random draw for continuous
variable (upper bound) (default max = 20)

#’ @param nobs If there are panel observations, give number of
observations (defaulted to NULL)

#’ @param censorTmax If the last observation time needs to be set

to Tmaz

#’ @return DF A simulated dataset of m subjects

#’ @importFrom stats rexp rgamma rweidbull runif rbinom

#’ Q@ezport

SemiMarkovSim <- function(pij, Rij, pO = NA, Tmax = 5, nsubj =
700, distn = "exp", covar = FALSE, beta = 0, psi = NULL, k =
NULL, nobs = NULL, Tmin = O, binprob = 0.5, umin = -1, umax =
1, censorTmax = FALSE) {

# Create dataframe to save all subject data
DF <- data.frame ()

# If covar <s TRUE, then simulate a dictomous and continuous
variable

if (covar == TRUE) {
X1 <- runif(n = nsubj, min = umin, max = umax) # The
continuous wvartable
X2 <- rbinom(n = nsubj, size = 1, prob = binprob) # The

binary wvariable

cov.l <- cbind (X1, X2)

bcovs <- beta %*% t(cov.l)

#rates <- lapply (1:nsubj, function(c) Rij*xexp(aitj + bcovs/[,c
1))

rates <- lapply(l:nsubj, function(c) Rij*xexp(bcovs[,c]))

} else {
rates <- lapply(l:nsubj, function(g) Rij)
cov.l <- replicate(nsubj, cbind(0,0))

# If start state ts given, then start with supplied state
# else start with random state
if (is.numeric(p0)) {
init.state <- rep(pO, nsubj)
} else {
init.state <- replicate(nsubj, sample(l:nrow(pij), size

}

1)

df <- lapply(l:nsubj, function(l) SMC(l, pij, rates[[1]], init.
state[1], distn, psi, k, Tmax, covar, cov.l1l[1l,], Tmin, nobs,
censorTmax))

DF <- do.call(rbind, df)

DF <- as.matrix (DF)
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return (DF)

#’ Simulate Panel Observations
#)
#’ @description
#’ Using simulate times and states, create a mew vector of panel
observe times and states.
#7’ For exzample, observations are to be once every year (e.g. 1,
2, 3).
#}
#’ G@param states wector of transition states
#’ @param time wvetor of transition times
#’ @param nobs Number of panel observations
#7 @return i.state wvector of observe state (from %) for panel
times
#’ @return j.state vector of observe state (to t) for panel times
#’ Oreturn int.time vector of panel observed times
#1
SimPanObs <- function(states, time, nobs) {
int.time <- 1:nobs
obs.state <- c(states[1])
for(k in 1:nobs) {
new.time <- time[which(time <= int.timel[k])]
obs.state <- c(obs.state, states[which(time == max(new.time))
D
b
int.time <- c(0, int.time)
j.state <- obs.state

# Reduce data non-repeated states

ReduceData <- Reduce(j.state, int.time)

j.state <- ReduceData$State

int.time <- ReduceData$Time

int.stime <- c(0, diff(int.time))

i.state <- c(j.state[1], j.state[l:(length(j.state) -1)1)

return(list (i.state = i.state, j.state = j.state, int.time =
int.time, int.stime = int.stime))

#’ Eliminate Repeated Adjacent Observe States

#)

#’ @description

#’ Function to deleting repeated observe states for each
tndividual , however, maintaining

#’ the wvisit time in each state (e.g. time = c(1,2,4); state = ¢
(3,3,4) -> time = c(1,4);
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#’ state = c(3,4)).

#}

#’ @param state Subject observed state’s with adjacent repeated
states

#’ @param time Subject wisit time for each corresponding observed
state

#’ @return State Subject observed state’s without adjacent
repeated states
#’ Oreturn Time Subject wistit time for each corresponding
observed state
#J
Reduce <- function(state, time){
# Count the number of consecutive runs 1in the State wvector
runs <- rle(state)

# Find positions in vector where runs are more than 1
myruns <- which(runs$lengths >= 1)

# Cumulative Sums of consecutive Tuns
runs.len <- cumsum(runs$lengths)

# Keep positions (indicties) that have single runs
end <- runs.len[myruns]

# Get observed state’s without adjacent repeated states
new_state <- state[end]

# Get corresponding wvisit time

# If run on 1s at beginning of process, re-index

if (state[1] == state[2]) {end <- c(1, end[-length(end)])}
new_time <- time[end]

return(list (State = new_state, Time = new_time))

#’ Simulate a Simple Semi-Markov Chain Assuming A Sojourn
Distribution

#)

#’ @description

#’ To simulate ome semi-markov chain assuming a exponential,
weibull, or gamma sojourn

#7 distribution by supplying an initial distribution (p0),
probability matriz (pij), and

#7 Fi7 (sojourn distribution).

#l

#’ @param 1 indicator for the kth subject

#’ @param pij Probability matriz (< X j)

#7 @param Rij Matriz (i X j) of rate parameters

#’ @param tnit.state Initial State for the Markov Chain

#’ @param distn the spectified distribution ("exzp", "gamma", "
weibull")
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#’ @param psti shape parameter constant for all transtition %2 to J

#’ @param k shape parameter constant for all transition 7 to j

#’ @param Tmax Maxz time to observe patients (10 years)

#’ @param cowvar Boolean statement 1f covartiates are included

#’ @param covs the simulated covariate wvector

#7 @param Tmin Minimum start time for each subject (defaulted to
0)

#’ @param nobs If there are panel observations, give number of
observations (defaulted to NULL)

#’ Oparam censorTmaz If the last observation time needs to be set

to Tmaz

#’ @importFrom stats rexp rgamma rweidbull runif rbinom

#’ @return df A simulated dataset for the kth subject

SMC <- function(l, pij, Rij, init.state, distn, psi = NULL, k =
NULL, Tmax = 10, covar = FALSE, covs = NULL, Tmin = 0O, nobs =
NULL, censorTmax = TRUE) {

i.vec <- c(init.state) # Store initial state im "To
state" wector, 2

j.vec <- c(init.state) # Store initial state wn "From
state" wector, jJ

stime <- c(Tmin) # Set the initial
sojourn time to be 0

time <- c¢(Tmin) # Set the t to be Tmin

t <- Tmin # Set t walue to Tmin

curr.state <- init.state # Set current state to initial
state

while(t < Tmax) {

# Sample a mnext state

next.state <- sample(l:nrow(pij), size = 1, prob = pijlcurr.
state,])
if (distn == "exp") {
# Draw a Ezp R.V. for the current state
wait.time <- rexp(n = 1, rate = Rij[curr.state, next.state
D)
} else if (distn == "gamma'") {
# Draw a gamma R.V. for the current state
wait.time <- rgamma(n = 1, shape = psi, rate = Rijl[curr.

state, next.statel])

} else if (distn == "weibull") {
# Draw a Wetbull R.V. for the current state
wait.time <- rweibull(n = 1, shape = k, scale = 1/Rij[curr.
state, next.statel])
} else {

stop(paste("The Distribution", distn , "is not an option"))
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ctime <- t + wait.time

i.vec <- c(i.vec, curr.state)
vec

j.vec <- c(j.vec, next.state)

time <- c(time, ctime)
time

stime <- c(stime, wait.time)
vector, stime

curr.state <- next.state
state

t <- ctime
current time

# If the last time observation %s

time to max time
if (max(t) > Tmax & censorTmax
nvec <- length(time)
time [nvec] <- Tmax

stime [nvec] <- Tmax - time[nvec

Cumlative time
Store current state in <.

Store next state in j.wvec
Store time im a wvector,

Store sojourn time in a

Set next state to current

update time, t, to

> observed time, them censor

TRUE) {

1]

# If there are set interval time supplied, then resimulate

states & time
if (!is.null(nobs)){

obs <- SimPanObs(j.vec, time,
times

stime <- obs$int.stime

time <- obs$int.time
times

i.vec <- obs$i.state
each time t

j.vec <- obs$j.state
each time t

}

ID <- rep(l, length(time))
subject k

nobs) # Obtain these states &

# Save the new observed
# Save the t© states for

# Save the j states for

# Create ID number for

# Save the data imn a temporary subject datafame

df <- data.frame(ID = ID, time
stime = stime)

time, 1 = i.vec, j = j.vec,

# If there <s covariates, save the covariates as a dataframe

if (covar == TRUE) {

# Create a dataframe to attach to temporary subject dataframe

dfcovs <- data.frame(t(replicate(n
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# Save covariates to the temporary subject dataframe
df <- cbind(df, dfcovs)

¥
return (df)

3

#’ Simulate a Markov Chain and Estimate Transition Rates

#J

#’ @description

#’ Using msm package, we will simulate a markov chain and
estimate the transition rates

#° using the full likelihood approach. The model uses the hessian
matriz to calculate the

#’ asmyptotic standard errors.

#}

#7 @param Qij Matriz (i X j) of transition rate parameters

#’ @param nsim The number of simulations to be run

#’ Oparam n.subj The number of subjects in the simulation study

#’ @param n.obs The number of observations for each subject

#’ @param seed Use any integer to set the seed for reproductible
results (default= 1234)

#’ @return est a wvector of estimates, standard errors, lower and
upper confidence tnterval

#’ walwues

#’ @import msm

#’ @import doParallel

#’ @import doRNG

#’ @import svMisc

#’ Qezport

sim_mc <- function(Qij, nsim, n.subj = 300, n.obs = 11, seed =
1234) 1

registerDoRNG (seed = seed)

est <- foreach(b = 1l:nsim, .combine = ) %hdopar? {
temp <- data.frame(subject = rep(l:n.subj, rep(n.obs ,n.subj)
), time = rep(seq(0, (n.obs - 1), 1), n.subj))
DF <- simmulti.msm(temp, gmatrix = Qij, start = sample(l:ncol

(Qij), n.subj, replace = T))

if(ncol(Qij) == 3) {
Q.init <- matrix(c(0.0, 0.6, 0.6, 0.6 0.0, 0.6, 0.6, 0.6,
0.0), ncol = 3, nrow = 3, byrow = T)
} else {
Q.init <- matrix(c(0.0, 0.6, 0.6, 0.6,
0.6, 0.0, 0.6, 0.6,
0.6, 0.6, 0.0, 0.6,
0.6, 0.6, 0.6, 0.0), ncol = 4, nrow = 4,
byrow = T)



tryCatch ({

# MSM model

ad.msm <- msm(state -~ time, subject, data = DF, gmatrix = Q.
init)

qmat <- gmatrix.msm(ad.msm)

gb.est <- t(gqmat$estimates) [t(Qij) > O]
gb.se <- t(qmat$SE) [t(Qij) > 0]

gb.lwr <- t(qgmat$L) [t(Qij) > 0]

gb.upr <- t(qmat$U) [t(Qij) > 0]

c(gb.est, gb.se, gb.lwr, gb.upr)
}, error=function(e)q{})

return (est)

#’ Summarize the Markov Chain simulation results wn a LaTex table

#l

#’ To take simulation results in matriz form and output quick
latex code

#)

#7 @param sim Matriz of Markov Chatin (from sim.mc) simulation
results

#’ @param true Vector of true wvalues (i.e. transition rate
parameters)

#’ @param nstate Number of states

#’ @return Latex code for summary table

#’ @importFrom stats war

#’ @import kableExztra

#’ Q@ezport

MakeTableMC <- function(sim, true, nstate = 3){

# Extract the raw simulation parameter results from the
confidence intervals

npar <- nstatex(nstate - 1)

simD <- sim[1:npar,]

se <- sim[(npar + 1):(2*npar),]

lwr <- sim[(2*npar + 1) :(3*npar),]

upr <- sim[(3*npar + 1):(4*npar),]

# Evaluate the simulation results from mean, bias, wvar, mse,
and coverage probability

mean.s <- apply(simD, 1, mean)

bias.s <- sapply(l:nrow(simD), function(i) mean(simD[i,] - true
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[(i1))
sd.s <- apply(simD,
mse.s <- sd.s.2 +
cov.s <- sapply(1l:

1 & upr[i,] »>=

se.s <- apply(se, 1,

nrow (lwr),
truel[i]))

1, sd)

bias.s.2

function(i) mean(lwr[i,] <= trueli

mean)

# Collect results into a mew matrizc

sum.tab <-
)

sum.tab <- round(sum

colnames (sum.tab) <-
"MSE",

rownames (sum.tab) <-
FALSE)

kTab <- kable(sum.tab,
"Full Likelihood Results from Markov Chain",

, align
return (kTab)

rep(’c’

#I
#)
#J
#J
#)
#)
#I
wetbull", "gamma")
#J
distribution
@exzamples
mean_F (2,
mean_F (2,
#° mean_F(2,
#’ Qexzport
mean_F <-
if (dist "exp") {
R <- 1/rate
} else
R <-
} else
R <-
}

#)
#I
#)

dist
3,

2, "gamma

shape/rat

e
if (dist =

if (is.matrix (R)
return (round (R,

2))
}

cbind (true,

function(rate,

mean.s, bias.s, sd.s, se.s, mse.s, COV.S

.tab, 4)

c("True", "Estimate", "Bias", "SD", "SE",

"95\\7% Coverage")

GreekLabels (nstate,

"exp", 0, covar

"latex", vline

""", escape = F, caption

linesep

nn

,7), position = "!ht")

Mean of F Distribution
Calculate the mean of the distribution
@param rate Rate parameter

@param shape Shape parameter (if applicable)
@param dist Distribution to calculate mean (options

n

n emp " ,

@return mean value Returns mean value for the specified

n emp Il)
"weibull")

II)

shape NULL, dist) {

if (dist == "gamma") {

"weibull") {
gamma (1 + 1/shape)/rate

TRUE) {diag(R) <- 0%}
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#’ Find Shape Parameters to Find Common Mean
#I
#’ @description
#’ To find gamma shape parameter for common mean between the
weibull and gamma
#’ distribution.
#I
#’ @param wet_shape wetbull shape parameter
#’ @return Gamma Shape parameter
#’ Qezxport
ShapeFind <- function(wei_shape) {
return (gamma (1 + 1/wei_shape))

3

#’ Hazard Function for Computation

#J

#’ @description

#’ To calculate the hazard values using either the exponential,
weibull, or gamma

#’ distribution. The hazard function for the semti-markov process
15 uses the probability

#’matriz (pij), sojourn pdf (fij), and sojourn cdf (Fij).

#)

#’ @param 71 Vector of rate parameters for state <

#7 @param pij Probability transition matriz (i X j)

#’ @param 1 state from

#’ @param j state to

#’ @param s sojourn time spent in the previous state <

#’ @param distn Sojourn Distribution ("exzp" = exzponential, "gamma
" = gamma, "weibull" = Weibull)

#’ @param beta beta coefficient parameters

#’ @param covs covariate information wvector for transitioning
subject

#’ Oparam psi shape parameter for the gamma distridbution

#’ @param k shape parameter for the weidbull distridbution

#’ @param covar boolean statement t1f covariates are included

#’ @return hazard value from respective hazard function

#’ @importFrom stats dexzp pexp dgamma pgamma pwerdbull dweibdbull

#)

hfunction <- function(ri, pij, i, j, s, distn, beta, covs, psi, k
, covar) {

# Hazard function = pij *x fi5 / sum_j( pij (1 - Fi3 ) )

if (distn == "exp") {
# Exzponential Hazard function using exzponential pdf, cdf, and
pij
num <- pijli, jl * dexp(s, ril[jl)
den <- sapply(which(l:nrow(pij) != i), function(u) pijl[i,ulx
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#1
#)
#)
#I
#)
#J
#)
#)

#)

#
Pi

3

(1 - pexp(s, riful)))
h <- num/sum(den)

} else if (distn == "gamma") {
# Gamma Hazard function using ezxzponential pdf, cdf, and pij

num <- pijli, jl * dgamma(s, psi, ri[j])

den <- sapply(which(l:nrow(pij) != i), function(u) pijli,ulx*
(1 - pgamma(s, psi, ril[ul)))

h <- num/sum(den)

} else if (distn == "weibull") {
# Wetbull Hazard function using exponential pdf, cdf, and pij
num <- pijli, j] * dweibull(s, k, 1/ril[j])
den <- sapply(which(l:nrow(pij) != i), function(u) pijli,ulx*
(1 - pweibull(s, k, 1/ril[ul)))
h <- num/sum(den)

} else {
# Send warning message tf the distribution is not one of
these

stop(paste("The Distribution", distn , "is not an option'"))

}

# If covariates (i.e. TRUE), modify hazard function by cox
model

#if (covar == TRUE) {h <- hxezp (as.numertc(aijl[i,j] + beta J*)
covs))}

if (covar == TRUE) {h <- hxexp(as.numeric(beta %%’ covs))}

return (h)

Probability Transition Matrixz from Data
To calculate the transition counts using the data.

@param state the observed state transition
@param ID The subject’s identification tag
@param data the data frame with these wvariables
@return matrixz A matrixz of observed probabdbility transition
counts
Gezport
@importFrom msm statetable.msm
jCount <- function(data) {
P <- statetable.msm(j, ID, data)
return(P/apply (P, 1, sum))
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#’ Parameter Preparation

#I

#’ To separate the rate parameters from the shape parameter

#)

#’ @param par wvector of parameter estimates

#’ @param nstate number of states in the process (defaulted to 4)

#’ @param nBeta number of cowvariates

#’ Oparam distn Specify the distridbution ("exp", "gamma", "
wetbull")

#’ @param covar boolean statement t1f covariates are included

#’ @return List of the parameters by matriz of rates, shape
parameter, beta coefficents, transition specific constants aij

#J
ParPrep <- function(par, nstate, nBeta, distn, covar) {

if (distn == "exp") {
nr <- nstate*(nstate - 1)
if (covar == TRUE) {
beta <- par[(nr+1):(nr+nBeta)]
#a1j <- par[(nr+nBeta+1) :length(par)]
#aMat <- Vec2Mat (aij, nstate)
} else {
beta <- rep(0, 2)
#aMat <- matriz (0, mcol = nstate, nrow = nstate)
}
par <- par[l:nr]
shape = 0

} else if (distn == "gamma'" | distn == "weibull") {
nr <- nstate*(nstate - 1)
shape <- par[(nr+1)]
if (covar == TRUE) {
beta <- par[(nr+2):(nr+ nBeta + 1)]
#a1j <- par[(nr+nBeta+2) :length (par)]
#aMat <- Vec2Mat (aij, nstate)

} else {
beta <- rep(0, 2)
#aMat <- matriz (0, ncol = nstate, nrow = nstate)
}
par <- par[1l:nr]
} else {
stop(paste("The Distribution", distn , "is not an option'"))
}

rMat <- Vec2Mat (par, nstate)

#return(list (parM = rMat, shape = shape, beta = beta, aijM =
aMat))
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}

#)
#1
#)
#)
#I
#)
#J
#)
Ve

#)
#J
#)
#}
#}

#)
#J

#)
Pr

return(list (parM = rMat, shape = shape, beta = beta))

Vector to Matric
Take the parameter estimates to nstate X nstate matrizc

@param par vector of parameter estimates

@param nstate number of states in the process (defaulted to 4)
@return A matriz from the wvector form (i X j)
@ezport
c2Mat <- function(par, nstate = 4) {
W <- matrix(l, nrow = nstate, ncol = nstate) # Create a Matriz
(nstate X nstate)
diag(W) <- 0 # Fill the
diagonals with Os
W[w > 0] <- par # Fill parameters
estimates in Matriz
q <- t(wW) # Transpose matric

to realign elements
return (q)

List of Prepared Data
To organtize and separate data for partial likelihood

@param data A data frame in this order (ID, time, %, j, s,
covs..)

@param covar boolean statement if covariates are tncluded
@return A list of data needed for optimization,; numData,
denData, denTies, denTime, cov

epData <- function(data, covar = FALSE) {
# Index for wvariables in data

ID <- 1; time <- 2; i = 3; j = 4; s =5
pij <- PijCount(data)

df1 <- datalorder(datal,timel]),] # Order data by
transition time

df2 <- df1[dfi1[,time]l > 0, 1] # Data with transition
times greater than O

Ttime <- df2[,timel # Obtain the ordered
transition times

UTime <- unique(Ttime) # Unique Transition times

# Count the number of ties in the data
dn <- sapply(UTime, function(t) sum(t == Ttime))

# Matriz of information (state ©, state j, and sojourn time s)
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for the numerator
numData <- df2[,c(i, j, s)]

# List of data by subject for the denominator (transition time
t, state %, and state j)

denData <- sapply(unique(df1[,ID]), function(w) dfil[which(dfill[,
ID] == w), c(time,i,j)])

if (covar == TRUE) {
# Matriz of Covariates for the numerator
ncov <- ncol(df2)
numCovs <- df2[,(s+1) :ncov]

# List of Covariates for the demominator
denCovs <- sapply(unique(df1[,ID]), function(w) dfil[which(df1l

[,ID] == w),][1,(s+1):ncov])

} else {

numCovs <- matrix (0, ncol =2)

denCovs <- matrix (0, ncol = 2)
}
return(list (numData = numData, denData = denData, denTies = dn,

denTime = UTime, numCovs = numCovs, denCovs = t(denCovs),
pij = pij))

#’ PARTIAL LOG LIKELIHOOD

#)

#’ @description

#’ To estimate the mazimum likelthood estimates by mazimizing the
partial log likelihood,

#’ PLL.

#I

#’ @Oparam par parameters mneeded for estimation

#7 @Oparam data A dataset in matriz form and ordered format (e.g.
ID, time, %, j, sojourn time)

#7 @param distn Specify the distribution ("exp”, "gamma", "
weibull")

#’ @param nstate Number of states in the semi-Markov process (
defaulted to 4)

#’ @param nBeta number of covariates

#’ @param covar boolean statement t1f covariates are included

#’ @return The partial log likelthood walue for a given set
parameters

#’ Q@import Rcpp

#’ Qexzport

PLL <- function(par, data, distn = "exp", nstate = 4, nBeta = 2,
covar = FALSE) {
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# Before optimization prepare data by separating into mulitple
matricies

## List arguements: numData, denData, denTies, denTime

df <- PrepData(data, covar)

# Obtain parameters for PLL

Lpar <- ParPrep(par, nstate, nBeta, distn, covar)
rates <- Lpar$parM

shape <- Lpar$shape

beta <- Lpar$beta

#ai1j <- Lpar$aijM

#a1j <- matriz (0, nstate, nstate)

# Probability transition matriz
pij <- df$pij

# Calculation of the partial likelihood

## Calculation of the numerator

## numData structure: (state) i, (state) j, (sojourn time) s

lnum <- apply(df$numData, 1, function(v) hfunction(rates[v
(11,1, pij, vI[1], v([2], v[3], distn, beta, df$numCovs[which(
v[3] == v[3]),], shape, shape, covar))

## Calculation of the denominator

## denData Structure: time (of transition), (state) i, (state)
J

## denTime: Vector of unique transition times

## denCovs: Matrixz of covariate information

A <- df$denData

B <- df$denTime

C <- as.matrix(df$denCovs)

ldenom <- RiskSet(A, B, rates, pij, distn, beta, C, shape,
shape, covar)

## Calculate the total of the partial log likelihood
1 <- sum(log(lnum)) - sum(df$denTies * log(ldenom))

if(is.infinite(1)){1l <- -1e6}
if(is.nan(1l)){l <- -1le6}
return(-1)

#’ Simulation Optimization

#}

#’ @description

#’ To ewvaluate the partial log likelihood by mnonlinear
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#}
#I
#)
#1
#)

#I
#)
#)
#}
#}
#)
#)

#}
#}

#)

#)

#I
#)

#)

#}

#)

#}

#I

#1

#)

#)

#)

#J
#)

optimization using Lagrange method.
Each simulation will also have bootstrap samples to collect
the standard errors.

@param pij Probability matriz (i X 7)

@param Rij Matriz (7 X j) of rate parameters

@param p0 Initial State (if one not supplied, a rTandom one

will be choosen)

@param Tmax Max time to observe patients (10 years)

@param nsubj Number of simulated subjects (defaulted to 700

subjects)

@param nsim Number of Simulations

@param nboot Number of bootstrap samples

@param nstate Number of states

@param nBeta Number of coefficents

@param distn Sojourn Distribution ("exp" = exzponential, "gamma
" = gamma, "weibull" = Weibull)

@param covar If covartiates are needed (defaulted to FALSE)

@param beta vector of true parameters for covariates (

defaulted to 0 for mo covariates)

@param psi true gamma shape parameter constant for all
transttion 1 to J

@param k true weibull shape parameter constant for all
transition 1 to jJ

@param atj Transition specific intercepts matriz (i X j)

@param Tmin Minimum start time for each subject (defaulted to

0)

@param binprodb Simulating binomial random draw for dictomous

variable (default p = 0.5)

@param umin Simulating uniform random draw for continuous

vartable (lower bound); (default min = 10)

@param wumaz Simulating uniform random draw for continuous

variable (upper bound) (default maz = 20)

@param nobs If there are panel observations, give number of

observations (defaulted to NULL)

@param censorTmaxz If the last observation time needs to be set
to Tmaczx

@param control Control options for optim T

@return estMat matriz of optimization estimates

@return SeList A list of bootstrap estimates for each

simulation

@importFrom stats optim sd

OQuseDynLib PLSMM, .registration = TRUE

@ezxzport

SimOptim <- function(pij, Rij, pO = NA, Tmax = 5, nsubj = 700,

nsim = 500, nboot = 10, nstate = 4, nBeta = 2, distn s
covar = FALSE, beta = 0, psi = NULL, k = NULL, aij = NULL,

nobs = NULL, Tmin = O, binprob = 0.5, umin = -1, umax = 1,
c

censorTmax = FALSE, control = list(reltol = 1le-4)) {
LenPar <- nstatex(nstate - 1) + 1*x(!is.null(psi) == T)*(length(
psi)) + 1x(!is.null(k) == T)*(length(k)) + 1x(all(beta != 0)
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)*(length(beta))

est <- matrix(NA, nrow = nsim, ncol = LenPar)
upr <- matrix(NA, nrow = nsim, ncol = LenPar)
lwr <- matrix(NA, nrow = nsim, ncol = LenPar)

for (b in 1:nsim) {
data <- SemiMarkovSim(pij, Rij, pO, Tmax, nsubj,
distn, covar, beta, psi, k, aij, nobs, Tmin,
binprob, umin, umax, censorTmax)

par <- init.par(data, distn, nstate, nBeta, covar

)

est[b, ] <- optim(par = par, fun = PLL, data =
data, distn = distn, nstate = nstate, nBeta =
nBeta, covar = covar, method = "Nelder -Mead",
control = control)$par

res2 <- matrix(NA, nrow = nboot, ncol = length(
par))

for (v in 1:nboot){
data2 <- datalwhich(datal[,1] %in% sample(
unique (datal,1]), size = nsubj,
replace = TRUE)),]

par2 <- init.par(data2, distn, nstate,
nBeta, covar)

res2[v,] <- optim(par = par2, fun = PLL,
data = data2, distn = distn, nstate =
nstate, nBeta = nBeta, covar = covar,
method = "lNelder -Mead", control =
control) $par

}
lwr [b,] <- sapply(l:length(par), function(a) estl[
b,al] - 1.96% sd(res2[,al))
upr[b,] <- sapply(l:length(par), function(a) estl[
b,al] + 1.96% sd(res2[,al))
}

return(list (est = est, lwr = lwr, upr = upr))

#’ Simulation Optimization by paralleling loops
#I
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#’ @description

#’ To ewvaluate the partial log likelihood by Nelder-Mead method
optimization.

#’ Each simulation will also have bootstrap samples to collect
the standard errors.

#1

#’ @param pij Probability matriz (¢ X 7)

#’ @param Rij Matriz (i X j) of rate parameters

#’ @param p0 Initial State (if ome not supplied, a random one
will be choosen)

#7’ @param Tmaxz Maz time to observe patients (10 years)

#7 @param nsubj Number of simulated subjects (defaulted to 700
subjects)

#’ @param nsim Number of Simulations

#’ @param nboot Number of bootstrap samples

#’ @Oparam nstate Number of states

#’ @param nBeta Number of coefficents

#7 @param distn Sojourn Distribution ("exp" = ezponential, "gamma
" = gamma, "weibull" = Weibull)

#’ @param covar the covartates are needed set to TRUE (defaulted
to FALSE)

#’ @param beta wvector of true parameters for covariates (
defaulted to 0 for mo covariates)

#’ @param pst true gamma shape parameter constant for all
transition % to J

#’ Oparam k true weibull shape parameter constant for all
transttion % to J

#7 @param aij Transition spectific intercepts matriz (i X j)

#7 @param Tmin Minimum start time for each subject (defaulted to
0)

#’ @param binprob Simulating binomial random draw for dictomous
vartable (default p = 0.5)

#’ @param umin Simulating untform random draw for continuous
variable (lower bound); (default min = 10)

#’ @param umazxz Simulating untform random draw for continuous
vartable (upper bound) (default maz = 20)

#’ Oparam nobs If there are panel observations, give number of
observations (defaulted to NULL)

#’ @param censorTmax If the last observation time needs to be set
to Tmaz

#’ Oparam control Controls for optim

#’ @param seed Set the seed for repoducibilaty

#’ @return est A matrixz of optimization estimates and confidence
intervals

#’ @importFrom stats optim sd

#’ @import doParallel

#’ Q@import doRNG

#’ QuseDynLib PLSMM, .registration = TRUE

#’ Qexzport

SimOptimPar <- function(pij, Rij, p0O = NA, Tmax = 5, nsubj = 700,
nsim = 500, nboot = 10, nstate = 4, nBeta = 2, distn = s
covar = FALSE, beta = 0, psi = NULL, k = NULL, aij = NULL,
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#}
#)
#I
#)
#1
#)
#)
#I

#J
#)
#}
#l
#)

#J
#)

#I

nobs = NULL, Tmin = O, binprob = 0.5, umin = -1, umax =
censorTmax = FALSE, control = list(reltol = 1le-4), seed
1234) {

registerDoRNG(seed = seed)
est <- foreach(b = l:nsim, .combine = ’cbind’, .packages
= ’PLSMM’) Ydopar’ {

data <- SemiMarkovSim(pij, Rij, pO, Tmax, nsubj, distn,
covar, beta, psi, k, nobs, Tmin, binprob, umin,

umax, censorTmax)

par <- init.par(data, distn, nstate, nBeta, covar

)
res <- optim(par = par, fn = PLL, data = data,
distn = distn, nstate = nstate, nBeta = nBeta,
covar = covar, method = "Nelder -Mead",
control = control)$par

bootres <- BootCI(data, res, distn, nstate, nsubj
, nBeta, nboot, covar)

c(res, bootres)

3

return (est)

Bootstrap samples to find the 95\) Confidence Interwvals

@description
To find the 95\) Confidence intervals by bootstrap samples

@param data Simulated Semi-Markov Dataset

@param res Best results from Nelder-Mead Optimization

@param distn Sojourn Distribution ("ezxp" = ezxponential, "gamma
" = gamma, "weibull" = Weibull)

@param nstate Number of states

@param nsubj Number of subjects

@param nBeta Number of coefficents

@param nboot Number of bootstrap samples

@param covar the covariates are needed set to TRUE (defaulted
to FALSE)

@param control Control options for optim

@return A wvector of confidence intervals for each parameter in
order

@importFrom stats optim sd
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#’ @import doParallel

#’ Q@exzport

BootCI <- function(data, res, distn, nstate, nsubj, nBeta, nboot,
covar, control) {

res2 <- foreach(v = 1:nboot, .combine = ’cbind’,
packages = ‘PLSMM’) %do% {

data2 <- datalwhich(data[,1] %in% sample(unique(data
[,1]), size = nsubj, replace = TRUE)),]

par2 <- init.par(data2, distn, nstate, nBeta,
covar)

optim(par = par2, fn = PLL, data = data2, distn =
distn, nstate = nstate, nBeta = nBeta, covar
= covar, method = "Nelder -Mead", control =
control) $par

}

CI <- sapply(l:length(res), function(a) reslal] + c(-1,1)
* 1.96% sd(res2[a,]))

return(c(CI[1,], CI[2,]1))

#’ Summarize the simulation results in a LaTex table

#)

#’ To take simulation results in matrixz form and output quick
latex code

#}

#’ @param sim Matriz of simulation results

#’ @param true Vector of true wvalues (rate parameters, shape
parameters, coefficients, etc.)

#’ @param nstate Number of states

#7 @param distn The sojourn distribution (e.g. exp, weibull,
gamma)

#’ @param nBeta Number of cowvariate parameters

#’ @param cowvar Boolean statement i1f covariates are present

#’ @return Latex code for summary table

#’ @importFrom stats wvar

#’ @import kableExztra

#’ Q@ezxzport

MakeTable <- function(sim, true, nstate = 4, distn = "exp", nBeta

2, covar = FALSE)A{

# Extract the raw simulation parameter results from the

confidence intervals
npar <- nstatex*(nstate - 1)
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#I
#)
#J
#)
#)
#)

#J
#J
#)
Gr

if (distn != "exp") {npar = npar + 1}

if (covar == TRUE) {npar = npar + nBetal}

simD <- sim[1:npar,]

lur <- sim[(npar+1) :(npar+npar),]

upr <- sim[(npar + npar + 1):(npar + npar + npar),]

# Evaluate the simulation results from mean, bias, wvar, mse,
and coverage probability

mean.s <- apply(simD, 1, mean)

bias.s <- sapply(l:nrow(simD), function(i) mean(simD[i,] - true
[i1))

sd.s <- apply(simD, 1, sd)

mse.s <- sd.s.2 + bias.s-2

cov.s <- sapply(l:nrow(lwr), function(i) mean(lwr[i,] <= trueli
1 & uprl[i,] >= truelil))

se.s <- sapply(l:nrow(upr), function(i) median ((upr[i,] - truel

il) / 1.96))

# Collect results tnto a mew matriz

sum.tab <- cbind(true, mean.s, bias.s, sd.s, se.s, mse.s, COV.S
)

sum.tab <- round(sum.tab, 4)

colnames (sum.tab) <- c("True", "Estimate", "Bias", "Variance',
"SE", "MSE", "95\\% Coverage")

rownames (sum.tab) <- GreeklLabels(nstate, distn, nBeta, covar)

kTab <- kable(sum.tab, "latex", vline = "", escape = F, caption
= "Simulation Results Assuming an Exponential Sojourn Time
Distribution", linesep = "", align = rep(’c’,7), position =
”!ht”)

return (kTab)

Make Greek Labels for Tables
To make rTow labels formatted for latex output

@param nstate Number of States in the System
@param distn Sojourn Distribution ("exp" = exponential, "gamma
" = gamma, "weibull" = Weibull)
@param nBeta Number of covariate parameters
@param covar Boolean statement <f covariates are present
@return Vector of parameters in latex format
eeklLabels <- function(nstate, distn, nBeta, covar = FALSE) {
Vec <- cQ)
for (i in 1:nstate) {
for (j in which(l:nstate !'= 1)) {
Vec <- c(Vec, paste("$\\lambda_{",i, j,"}+$", sep = ""))
}
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}

if (distn == "weibull") {Vec <- c(Vec, paste("$k$"))}
if (distn == "gamma") {Vec <- c(Vec, paste("$\\psi$"))}
if (covar == TRUE) {
for (p in 1:nBeta){
Vec <- c(Vec, paste("$\\beta_", p, "$", sep = ""))
}
}

return (Vec)

#’ Real Data Optimization by paralleling loops

#)

#’ @description

#’ To evaluate the partial log likelihood by Nelder-Mead method
optimization.

#’ The real data exzample will have bootstrap samples to calculate
standard errors.

#)

#7’ @Oparam data Real longitudinal data in the format of (ID, time,
i, j, sojourn, X1,..,Xn)

#’ @param nboot Number of bootstrap samples

#’ @param nstate Number of states

#’ Oparam nBeta Number of coefficents

#7 @param distn Sojourn Distribution ("exzp" = ezponential, "gamma
" = gamma, "weibull" = Weibull)

#’ @param covar the covariates are needed set to TRUE (defaulted
to FALSE)

#’ @param control Control options for optim

#’ Oparam seed Set the seed for repoducidbility

#’ @return est A matriz of optimization estimates and confidence
intervals

#’ @importFrom stats optim sd

#’ QuseDynLib PLSMM, .registration = TRUE

#’ Qexzport

PLLSMM <- function(data, nboot = 10, nstate = 4, nBeta = 2, distn
= "exp", covar = FALSE, control = list(reltol = le-4), seed =
1234) A

nsubj <- length(unique(datal[,1]))
par <- init.par(data, distn, nstate, nBeta, covar)
res <- optim(par = par, fn = PLL, data = data, distn =

distn, nstate = nstate, nBeta = nBeta, covar = covar,
method = "Nelder-Mead", control = control)$par

bootres <- BootCIPar(data, res, distn, nstate, nsubj,
nBeta, nboot, covar, control, seed)
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#J

#)
#}
#)

#1
#}
#}
#I

#1
#)
#)
#I
#)

#)
#)
#}

#)
#J
#}
#)

est <- list(res = res, boot = bootres)

return (est)

Bootstrap samples to find the 95\) Confidence Intervals by
Paralleling Loops

@description
To find the 95\7 Confidence intervals by bootstrap samples
using Parallel loops

@param data Simulated Semi-Markov Dataset

@param res Best results from Nelder-Mead Optimization

@param distn Sojourn Distribution ("exp" = ezponential, "gamma
" = gamma, "weibull" = Weibull)

@param nstate Number of states

@param nsubj Number of subjects

@param nBeta Number of coefficents

@param nboot Number of bootstrap samples

@param covar the covariates are needed set to TRUE (defaulted

to FALSE)

@param control Control options for optim

@param seed Set the seed for repoducibility

@return A wvector of confidence intervals for each parameter <n
order

@importFrom stats optim sd

@import doParallel

@import doRNG

@ezxzport

BootCIPar <- function(data, res, distn, nstate, nsubj, nBeta,

nboot, covar, control, seed) {

registerDoRNG (seed = seed)
res2 <- foreach(v = 1l:nboot, .combine = ’chind’,
packages = ’PLSMM’) Ydopar’% {

tryCatch ({
data2 <- datal[which(data[,1] %in% sample(unique(data
[,11), size = nsubj, replace = TRUE)),]

par2 <- init.par(data2, distn, nstate, nBeta,
covar)

optim(par = par2, fn = PLL, data = data2, distn =

distn, nstate = nstate, nBeta = nBeta, covar
= covar, method = "Nelder-Mead", control =
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#)
#I
#)

#)
#)
#}
#I

#J
#)
#)
#I
#)
Re

control) $par
}, error=function(e){})

}

CI <- sapply(l:length(res), function(a) resla] + c(-1,1)
* 1.96% sd(res2[a,]))

return (CI)

Summartze the real data exzample results in a LaTex tabdble

To take each Semi-Markov model results in matriz form and
output quick latex code

@param Results The Semi-Markov Model Results

@param nstate The number of states

@param distn The distribution of the sojourn time ("exzp", "
weibull", "gamma")

@param nBeta Number of covariate parameters

@param covar Boolean statement <f covariates are present
@return Latex code for summary table

@import kableExtra
Qezport

sTable <- function(Results, nstate = 3, distn, nBeta, covar =
FALSE){

# Extract the parameter estimates from the model

nrate <- nstatex(nstate - 1)

if (distn == "exp") {stime <- mean_F(Results$res[l:nrate],O0,
dist = "exp")}

if (distn != "exp") {stime <- c(mean_F(Results$res[l:nratel],

Results$res[nrate+1], dist = distn), NA)}

sum.tab <- cbind(round(Results$res, 4), round(stime, 4), paste(
"(", round(Results$boot[1,], 4), ", ", round(Results$boot
[2,1,4), ")", sep = ""))

colnames (sum.tab) <- c("Estimate", "Sojourn Time", "95\\7
Confidence Inteval")

rownames (sum.tab) <- GreekLabels(nstate, distn, nBeta, covar)

kTab <- kable(sum.tab, "latex", vline = "", escape = F, caption
= "Semi-Markov Model Assuming an Exponential Sojourn Time
Distribution", linesep = "", align = rep(’c’,3), position =
”!ht”)

return (kTab)
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#’ Calculate the AIC for each model

#}

#’ Using the partial loglikelihood, we calculate the
corresponding AIC for the model

#)

#’ @param res The Semi-Markov Model parameter estimates

#’ @param data The real application data <in the format (ID, time,
i, J, stime)

#’ @param distn The distribution of the sojourn time ("ezp", "
weibull", "gamma")

#’ @param nstate The number of states

#’ @param nBeta Number of cowvariate parameters

#’ @param cowvar Boolean statement 1f covariates are present

#’ @return atc The quality statistical measure to compare to
other models

#’ Qexzport

AIC_PLL <- function(res, data, distn, nstate = 4, nBeta = 2,

covar = F) {
q <- nstatex(nstate - 1)
if (distn != ) {q = q + 1}

if (covar) {q = q + nBeta}

11 <- PLL(res, data, distn, nstate, nBeta, covar)
aic <- 2%11 + (2xq)

return (aic)

#’ Hazard Function for Graphical representation

#1

#’ @description

#’ To calculate the hazard wvalues using etther the exzponential,
weibull, or gamma

#’ distribution. The hazard function for the semi-markov process
uses the probabilzty

#7 matriz (pij), sojourn pdf (fij), and sojourn cdf (Fij).

#)

#’ @param rvj Matrixz of rate parameters for all states %, J

#’ @param pij Probability transition matriz (i X 7)

#’ @param 1 state from

#’ @param j state to

#’ @param s sojourn time spent in the previous state <

#’ @param distn Sojourn Distribution ("exp" = ezponential, "gamma
" = gamma, "weibull" = Weibull)

#’ Oparam beta beta coeffictent parameters

#’ @param covs covariate information wvector for transitioning
subject

#’ @param pst shape parameter for the gamma distribution

#’ @param k shape parameter for the wetbull distridbution
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#’ @param covar boolean statement t1f covariates are included

#’ @return hazard wvalue from respective hazard function

#’ @importFrom stats dexzp pexp dgamma pgamma pwerdbull dweibdbull

#’ Q@ezxzport

hf <- function(rij, pij, i, j, s, distn, beta = 0, covs = 0, psi
= 0, k = 0, covar = FALSE) A

# Hazard function = pij *x fi5 / sum_j( pij (1 - Fi3 ) )

if (distn == "exp") {
# Exzponential Hazard function using ezxzponential pdf, cdf, and
pij
num <- pijli, jl * dexp(s, rijli,jl)
den <- sapply(which(l:nrow(pij) != i), function(u) pijli,ulx*

(1 - pexp(s, rijli,ul)))
h <- num/sum(den)

} else if (distn == "gamma'") {
# Gamma Hazard function using exzponential pdf, cdf, and pij

num <- pijli, j] * dgamma(s, psi, rijli,jl)

den <- sapply(which(l:nrow(pij) != i), function(u) pijl[i,ulx*
(1 - pgamma(s, psi, rijli,ul)))

h <- num/sum(den)

} else if (distn == "weibull") {
# Weibull Hazard functionm using expomnential pdf, cdf, and pij
num <- pijli, j] * dweibull(s, k, 1/rijl[i,j1)
den <- sapply(which(l:nrow(pij) != i), function(u) pijli,ulx*
(1 - pweibull(s, k, 1/rijli,ul)))
h <- num/sum(den)

} else {
# Send warning message i1f the distribution %s not one of
these
stop(paste("The Distribution'", distn , "is not an option'"))

}

# If covariates (i.e. TRUE), modify hazard function by cozx
model

if (covar == TRUE) {h <- hxexp(as.numeric(beta %*’ covs))}

return (h)

#’ Density plot of the sojourn time data appplication and various
sojourn ditridbutions
#I
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#)

@description

#’ To create a graphical representation of the raw data sojourn
time and overlay 1t with
#’ the semi-Markov model parameter estimates
#)
#’ @Oparam data The real application data <in the format (ID, time,
i, j, stime)
#’ @param T state from
#’ @param s state to
#’ Oparam rate_e The matrixz of rate estimates for the exzpomential
case
#’ @param rate_w The matriz of rate estimates for the weibull
case
#’ @param shape_w The shape parameter for the wetbull case
#’ @param rate_g The matriz of rate estimates for the gamma case
#’ Oparam shape_g The shape parameter for the gamma case
#’ @return pl A plot for the demnsity for sojourn 7 to j
#’ @import ggplot2
#’ @importFrom stats dexp pexp dgamma pgamma pwerdbull dweibdbull
#’ Q@exzport
Density_Plot <- function(data, r, s, rate_e, rate_w, shape_w,
rate_g, shape_g){
df <- data %>% filter(i == r & j == s)
pl <- ggplot(data = df, aes(x = stime)) +
geom_density (£fill = "lightblue", color = "
lightblue", alpha = 0.4) +
x1im(c(0.01,10)) +
stat_function(fun = dexp, args = list(rate = rate
_elr,s]), colour = "red") +
stat_function(fun = dweibull, args = list(shape =
shape_w, scale = 1/rate_w([r,s]), colour = "
darkorange") +
stat_function(fun = dgamma, args = list(shape =
shape_g, rate = rate_glr,s]), colour = "green'
)+
labs(x = paste("Sojourn Time ", "(", r," to ", s,
")", sep = ""), y = "Frequency'") +
theme _minimal () +
theme (text = element_text(family = "Palatino"))
return(pl)
}
#’ Plot of the hazard of the semi-Markov Model
#J
#’ @description
#’ To create a graphical representation of the hazard of the semi

-Markov model
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#)

#’ @param 1 state from
#’ @param j state to
#’ @param Rije The matrixz of rate estimates for the exponential
case
#’ @param Rijw The matrixz of rate estimates for the wetbull case
#’ @param k The shape parameter for the weidbull case
#’ @param Rt1j9 The matrixz of rate estimates for the gamma case
#’ @param pst The shape parameter for the gamma case
#’ Oparam beta beta coeffictent parameters
#’ @param covs covariate information wvector for transitioning
subject
#’ @param covar boolean statement t1f covartiates are included
#’ @param realData boolean statement 1f real data exzample
#’ @return pl A plot for the hazard of the semi-markov model from
7 to j
#’ @import ggplot2
#’ Q@ezxport
PlotHSMM <- function(i, j, s, pij, Rije 0, Rijw = 0 , k = 0,
Rijg = 0, psi 0, betae = 0, betaw 0, betag = 0, covs = 0,
cseq, covar = FALSE, realData = FALSE) {
if (realData == FALSE) {
df <- data.frame(s = s,
he = hf(Rije, pij, i, j,
s, "exp", betae, covs,
psi, k, covar),
hw = hf (Rijw, pij, i, jJ,
s, "weibull", betaw,
covs, psi, k, covar),
hg = hf(Rijg, pij, i, j,
s, "gamma", betag,
covs, psi, k, covar))
pl <- ggplot(df, aes(x = s, y = he)) + geom_line(
colour = "red") +
geom_line (aes(x = s, y =
hw), colour = "
darkorange") +
geom_line(aes(x = s, y =
hg), colour = "green'")
+
labs(x = paste("Time
Spent in ", i, "
before ", j, sep=""),
yo= o+
theme _minimal () +
theme (text = element_text
(family = "Palatino"))
} else if (realData == "Age") {

covs = cbind(rep(0, length(cseq)), cseq)
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df <- data.frame(s = s,
hg = hf(Rijg, pij, i, jJ,
s, "gamma", betag,
covs[1,], psi, k,
covar) ,
hg2 = hf(Rijg, pij, i, j,
s, "gamma'", betag,
covs[2,], psi, k,
covar) ,
hg3 = hf(Rijg, pij, i, j,
s, "gamma'", betag,
covs[3,], psi, k,
covar) ,
hg4 = hf(Rijg, pij, i, J,
s, "gamma'", betag,
covs[4,], psi, k,
covar))

pl <- ggplot(df, aes(x = s, y = hg)) + geom_line(

colour = "green'") +
geom_
line(aes(x = s, y = hg2), colour = "red") +
geom_line(aes(x = s, y =
hg3), colour = "
darkorange") +
geom_line (aes(x = s, y =
hgd4), colour = "blue')
+
labs(x = paste("Time
Spent in ", i, "
before ", j, sep=""),
yo= e
theme _minimal () +
theme (text = element_text
(family = "Palatino"))
} else {
df <- data.frame(s = s,

hg = hf(Rijg, pij, i, j,
s, "gamma", betag,
covl, psi, k, covar))
pl <- ggplot(df, aes(x = s, y = hg)) + geom_line(
colour = '"green'") +
scale_y_continuous (limits
= ¢(0,0.006)) +
labs(x = paste("Time
Spent in ", i, "
before ", j, sep=""),

y = un) +
theme_minimal () +
theme (text = element_text

120



(family = ))
}

return (pl)

}

B.2 C+4+ Code written for Rcpp Package in R

Listing B.2: The Risk Set Function Translated into C++

#include <Rcpp.h>
using namespace Rcpp;

//°’ @title

//’ Find the index of the next lowest number

s

//’ @description Obtains the mnext lowest indexr in a vector
/77

//’ @param temp a vector of numbers
//? @param tstar a number wvalue for which to evalute the wector
//? @return an indexr or position in the wvector for the next
lowest walue
int NextLow(NumericVector temp,
double tstar) {

int nV = temp.size(); /% Find the size of the
temp vector*/
NumericVector V(nV); /* Create a new vector of

size nlVx*x/

for (int x = 0; x < nV; x++) { /* Fill the wector V with
inder values*/
VIix] = x;
}
NumericVector Y = V[temp < tstar]; /* Find the <indices which
s mext lowest*/
int K = max(Y); /% Index for the next

lowest timex/

return K;

}

//7 @title

//’ The hazard function defined by the sojourn distribution

/77

//’ @description Gives a hazard value for a the current state of
a subject

e

//’ @param ri A vector of rates at the current state %
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Vo
/77

/77
/77
VI
/77
/77
/77
/77

Va

@param pij The probability matriz of the system

@param state The current state of the subject at the
transition time
@param sojourn The time spent at the current state

@param distn The distribution specified for the system

@param beta A wvector of coefficents

@param covs A wvector of covariates for the subject

@param psi Shape parameter for the gamma distribution

@param k Shape parameter for the psi distribution

@param covar A boolean statement to denote if covariates are

present

@return a hazard value for the current state for subject m
double hfunction(NumericVector ri,

NumericMatrix pij,
double state,
double sojourn,
String distn,
NumericVector beta,
NumericVector covs,
double psi,

double k,

bool covar) {

/* Hazard function = pij * fij / sum_j (pij (1 - Fij))*/

if (distn == "exp") {
/* Ezponential hazard function using exponential pdf, cdf,
and pij */
int u = ri.lengthQ); /% Obtain the

NumericVector haz(u);

number of states */

total */

for (int e = 0; e<u; e++) {

double tempP = pij( state , e );
Probability transition matriz valuex*/

double rval = rilel;
value for the state e */
double scale = 1/rval;

rate to scale walue */
double d = R::dexp(sojourn, scale, false);
for ezponential distribution*/
double num = tempPx*d;
numerator calculation*/

NumericVector hden(u);
initiate hazard denominator sumx/
for (int w = 0; w<u; w++) {
double tempP2 = pij( state , w );
Probability Matriz value */
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double r2 = ril[w]; /*
rate wvalue for the state e */

double s2 = 1/r2; /*
change rate to scale wvalue */

double p = R::pexp(sojourn, s2, true, false); /*
CDF for exzponential distributionx*/

double den = tempP2*(1-p); /*
one wvalue for denominator sum*/

hden[w] = den; /*

sum the demnominator sums */

}

double hij = num/sum(hden); /*
hazard from state < to state j*/

if (covar == true) {

double hijtemp = hij;

/*double aval = a1j( state , e ); */
/% 0Obtain Transition specific conmstant */

double zb = sum(beta * covs); /*
Obtain the regression sum*/

double expz = exp(zb); /* Sum over
the aij and ZB*/

hij = hijtemp*expz; /*
Add covariates to hazard calculationx*/

}

haz[e] = hij; /*
Add to total hazard*/

}
double haztot = sum(haz);
return haztot;

else if (distn == "gamma") {
/% Gamma hazard function using exzponential pdf, cdf, and pij

*/

int u = ri.length(); /* Obtain the
number of states */
NumericVector haz(u); /* Initiate hazard
total */
for (int e = 0; e<u; e++) {
double tempP = pij( state , e ); /*
Probability transition matriz value*/
double rval = rile]l; /*
rate value for the state e */
double scale = 1/rval; /*
change rTate to scale wvalue */
double d = R::dgamma( sojourn, psi, scale, false); /*

PDF for the gamma distribution*/
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double num = tempPx*d; /*
numerator calculation */

NumericVector hden(u); /*
initiate hazard denominator sum*/
for (int w = 0; w<u; w++) {

double tempP2 = pij( state , w );

/* Probability Matriz value */
double r2 = rilw];

/* rate wvalue for the state e */
double s2 = 1/r2;

/* change rate to scale value */
double p = R::pgamma( sojourn, psi, s2, true, false);

/* CDF for the gamma distribution*/
double den = tempP2*(1-p);

/* one walue for denominator sum*/
hden[w] = den;

/% sum the demnominator sums */

3

double hij = num/sum(hden);
/* hazard from state i to state j*/

if (covar == true) {
double hijtemp = hij;
/*double aval = ai1j( state , e ); */
/* Obtatin Transition specific
constant */

double zb = sum(beta * covs);
/% Obtain the regression sum*/
double expz = exp(zb); /% Sum

over the atij and ZB*/
hij = hijtemp*expz;
/* Add covariates to hazard calculation*/

}

haz[e] = hij; /*
Add to total hazard*/

}
double haztot = sum(haz);

return haztot;

else if (distn == "weibull") {
/* Wetbull hazard function using ezponential pdf, cdf, and
pij */
int u = ri.lengthQ); /% Obtain the
number of states */
NumericVector haz(u); /* Initiate hazard
total */
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for (int e = 0; e<u; e++) {

double tempP = pij( state , e ); /*
Probability transition matriz value*/

double rval = rilel; /*
rate value for the state e */

double scale = 1/rval; /*
change Tate to scale wvalue */

double d = R::dweibull( sojourn, k, scale, false); /*
PDF for the gamma distributionx*/

double num = tempPx*d; /*

numerator calculationx*/

NumericVector hden(u); /*
initiate hazard demominator sum*/
for (int w = 0; w<u; w++) {

double tempP2 = pij( state , w );

/* Probability Matriz value */
double r2 = rilw]l;

/* rate value for the state e */
double s2 = 1/r2;

/* change rate to scale wvalue */
double p = R::pweibull( sojourn, k, s2, true, false);

/* CDF for the gamma distribution*/
double den = tempP2x*(1-p);

/* one wvalue for denominator sumx*/
hden[w] = den;

/* sum the demominator sums */

double hij = num/sum(hden) ;
/* hazard from state % to state j*/

if (covar == true) {
double hijtemp = hij;
/*double aval = a1j( state , e ); */
/% Obtain Transition specific
constant */

double zb = sum(beta * covs);
/* Obtain the regression sum*/
double expz = exp(zb); /* Sum

over the aij and ZB*/
hij = hijtempx*expz;
/* Add covariates to hazard calculation*/

}

haz[e] = hij; /*
Add to total hazardx*/

}

double haztot = sum(haz);
return haztot;
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} else {

Rprintf ("Warning: The Distribution given is not available")

)

double haztot =
return haztot;

-99;

/77
/77
/77

@description Using the data,

@tirtle Calculate the total hazard 2m the risk set

the function will calculate

total hazard for all the subejct currently at Risk

Vo
/77
/77
Vo

@param
@param
@param
state j
@param
@param
@param
@param
@param
@param
@param
present

VI
/77
/77
/77
/77
Vo
/77

Vo
// [[Rcpp::export]]

denData A list of by subject
denTime A wector of ordered transitioning times
ri7 A matriz of rate parameters for each state 7 and

@return The total hazard at the

tnformation

pi1j The probability matrixz for the system

distn The distribution specified for the system
beta A wvector of coefficents

covs A wector of covariates for the subject

pst Shape parameter for the gamma distridbution
k Shape parameter for the psi
covar A boolean statement to denote if covariates

distribution

nth transition

NumericVector RiskSet(List denData,

NumericVector
NumericMatrix
NumericMatrix

String distn,

NumericVector
NumericMatrix
double psi
double k
bool covar

int I = 1;
*/

int J = 2;
*/

int nList =
int nT = denTime.size();
vector*/

denData.size () ;
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are

denTime ,
rij,
Pij,
beta,
covs,
:0’
0,
= false) {
/* Index for the time column*/
/* Index for the % state column
/* Index for the j state column
/* Size of the subject list*/
/* Stze of the transttion time



NumericVector lden(nT); /* Initiallize the likelihood
denominator*/

for (int a = 0; a < nT; a++) {
double tstar = denTime[al]; /* Obtain the current
transition timex/
double 1t = 0; /% Temporary storage for

the denominator of the likelihood*/

for (int m = 0; m < nList; m++) {
NumericMatrix subjM = denDatal[m]; /* Obtain the
information for the mth subject*/
NumericVector time = subjM( _ , Ti ); /* Obtain the
time for the mth subject*/
double tmax = max(time); /* Find the macz

observation time for the mth subjectx*/

if (tmax >= tstar) {

int A = NextLow(time, tstar); /* Get
the index for the next lowest timex/
double JumpT = time[A]; /* Last

Jjump time for subject m*/

int curstate = subjM( A , J ); /*
Obtain the current subject during transition+*/

if (JumpT == tstar) {curstate = subjM( A , I );} /* If
the trandistion time is the last obs, get j statex/

int state = curstate - 1; /* Re-

Index state to match c++ index*/

double sojourn = tstar - JumpT; /*
Calculate the time already in current statex/
NumericVector ri = rij( state , _ );
/% 0Obatin the vector rates for the current state */
NumericVector covV = covs( O , _ );
if (covar == true) {NumericVector covV = covs( m , _ );}

/* Obtain the cowvariate information for
subject m */

/* Calculate the hazard for specified distribution,
current state of subject m*/

double ltemp = hfunction(ri, pij, state, sojourn, distn,
beta, covV, psi, k, covar);
1t = 1t + ltemp; /* Add

subject m hazard to total */

127



}

lden[a] = 1t; /* Store the total hazard for this
transition in a vector */

return lden; /* Return the wvector subject likelihood
contribution*/
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