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Longitudinal studies have been critical in understanding the characteristics of

chronic diseases or interventions. Since many processes have natural multi-categorical re-

sponses over time, multi-state stochastic models have been used to estimate the transition

rates between stages. Some multi-state models applied in practice assume the Markov

property. The Markov property constrains the sojourn distribution to be exponentially

distributed. While useful theoretical properties arise by the Markov assumption, we

will consider a more flexible framework by allowing arbitrarily distributed waiting times.

This describes a semi-Markov process which has already been applied to various fields

in Public Health. Similar to Markov model developments, semi-Markov models have

been extended to add covariate e↵ects on each transition intensity for better estimation.

Statistical inference methods for semi-Markov chains are still being developed for unique

problems for e�cient estimation and computational feasibility. Particularly, in this dis-

sertation, we have developed a partial likelihood based approach under a semi-Markov

framework. First, we will consider estimating parameters for a three to four stage process

by a partial likelihood approach and examining the sensitives of the transition intensity

estimates with models that have a gamma or Weibull sojourn time. This approach will

estimate the hazard rates between discrete stages. Secondly, we will extend the semi-

Markov model to include covariate e↵ects on the transition rates and again, analyze its

results with models assuming the gamma or Weibull sojourn time. Two applications will
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be considered to illustrate our method: A caregiver stress-level study from the Baylor’s

Alzhemier’s Disease and Memory Disorders Center and a depression severity level study

from the Hispanic Established Population for the Epidemiological Study of the Elderly

(HEPESE).
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Chapter 1

Introduction

1.1 Literature Review

1.1.1 Importance of Multi-State Models

Multi-state models extend the classical survival model to analyze multiple tran-

sient stages or levels of disease [1]. Particularly, these type of models have been utilized

in various fields to investigate the natural course of a variety of biological processes.

There are a variety of longitudinal studies that focus on chronic diseases or interventions

that have an observable multi-categorical response over time. Some common examples

that can be modeled by a multi-state stochastic model are breast cancer [2, 3], HIV

[4–6], Alzheimer’s disease [7, 8], cirrhosis [9], asthma [10], and bipolar disease [11]. The

multi-state model is an e↵ective method in Public Health in estimating the transition

rates between two discrete states or stages. By modeling the categorical disease or inter-

vention stages, this can aid in improving prognosis, drug development, and clinical trial

design.

1.1.2 The Underlying Idea of Semi-Markov Models

The Markov chain model has over 50 years of developed theory that allow the

Markovian process to have a clear and convenient method to understanding various sci-

entific insights [12]. In the statistical field, we define a Markov process as a stochastic
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process that satisfies the Markov property. In simple terms, the Markov property holds

if the probabilistic behavior of the future state depends only on the present state and

disregards the past history of the chain [13]. Since the history of the chain does not a↵ect

the future evolution, many also have called this the memoryless property of the Markov

process. Due to this fact, estimating the transition rates is easy and computationally

feasible. However, this property also assumes the distribution of the sojourn time is ex-

ponentially distributed in the continuous case or geometrically distributed in the discrete

case. In practice, these distributions may not realistically apply to all situations in Public

Health. For instance, by assuming the waiting times are exponential, the time until a

state change is likely to be instant or very short which may not be true of the underlying

process [14]. For this reason, the Markov framework was then generalized to allow for

arbitrary sojourn time distributions.

Semi-Markov processes were first introduced independently by Levy [15], and

Smith [16] at the International Congress of Mathematics, and in the same year, Takács

also characterized a stochastic process of the same type [17]. These papers detailed an

inaugural class of stochastic processes that generalized the well-known Markov chain with

finite state spaces. The motivation to develop this methodology was both theoretical and

application based. Particularly, Levy was interested in understanding how the behavior of

the sample paths would change if the sojourn time distribution was any general function

(i.e. the sojourn time was not assumed to be exponentially distributed). For Smith,

he sought to develop the theory of regenerative stochastic processes by applying it to

a general form of the Markov chains. Alternatively, coincidences in particle counting

problems provoked Takacás to study this type of a recurrent process, however, he never

formally named the process. Rather, he classified the stochastic recurrent process as ”of

a Certain Kind”. From 1954 on, these works started as the foundation to many other

groundbreaking theoretical results and allowed semi-Markov processes to be constructed

for a wide breadth of applications [18].
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In the literature, the terms semi-Markov process (SMP) and Markov renewal

process (MRP) are often used interchangeably, however, di↵erentiate in definition. The

MRP was first coined by Pyke and others in the 1960s who studied processes similar

in nature to the semi-Markov processes [19–21]. In simple terms, a MRP is identical to

the SMP except that each state is only defined at the jump time points whereas a SMP

is defined for every given time. Because of this subtle mathematical di↵erence, these

terms over time in research have become synonyms for one another. Throughout this

dissertation, we will refer to this general stochastic process as SMP and will formally

define this process in Chapter 2.

1.1.3 Applications & Developments for Semi-Markov Models

In many applications, the semi-Markov model is a powerful tool because of its

relaxed assumptions of the Markov property. Weiss and Zelen proposed a semi Markov

model by assuming a gamma sojourn distribution to study right-censored observations

in a clinical trial [14]. Foucher and others introduced a semi-Markov model to study HIV

disease based on a Generalized Weibull distribution as the waiting time distribution [22].

Kang and Lagakos explored a semi-Markov process in a HPV study setting where they

proposed a likelihood base approach for panel data [23]. Cao and others compared a

Cox Markov model versus semi-Markov model in a study heart failure disease manage-

ment to find sensible balance between model parsimonious and computational complexity

[24]. Additionally, hidden semi-Markov models have been applied to a number of various

areas such as speech recognition/synthesis, fMRI brain mapping, and handwriting recog-

nition [25]. These examples illustrate the potential applications and use for semi-Markov

models.

Semi-Markov models also have been extended to consider special types of data.

Anderson and others proposed a Cox semi-Markov model to add covariate e↵ects to each

transition intensity for an application in bleeding episodes and mortality in liver cirrhosis
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[26]. Titman presented a new statistical likelihood method to estimate transitions rates

from panel data using phase-type approximations [27]. Shu and others utilized large sam-

ple theory to develop asymptotic theory for the Cox semi-Markov model to investigate

the robustness and e�ciency of semi-Markov estimators [28]. Aralis and Brookmeyer

proposed a stochastic estimation procedure for panel observation data with back tran-

sitions while assuming a non-exponential distribution [29]. Yu has also extended the

semi-Markov theory to consider misclassification in observed states called the hidden

semi-Markov model (HSMM) [25]. Semi-Markov theory and estimation procedures con-

tinue to be developed for better estimation and unique practice situations.

1.2 Data Description for the Alzheimer’s Disease Care-
giver Stress Application

In this longitudinal study, caregiver stress-level was recorded over a 21 year period by

the Baylor Alzheimer’s Disease and Memory Disorders Center [30]. The primary aim of

the study was to collection socio-demographic information as well as neuro-psychological

information to evaluate probable Alzheimer’s Disease. As a secondary interest, a cohort

of Alzheimer’s Disease (AD) caregivers, representing a family member or friend, were

recruited to provide information on their health and well-being. The stress level was

recorded on four levels: none, mild, moderate, and severe. Patients involved in the

study were diagnosed with AD and cared for by family members and/or friends. Self-

reported information on the caregiver stress-level over a 21 year period (1990 - 2011)

was collected. The time between visits for each caregiver varied widely along with the

number of recorded observations.

For this longitudinal analysis, we will use a continuous-time semi-Markov model to

learn about that movements through the various caregiver stress-levels. We will include

individuals with at least two recorded stress levels and complete covariate information.
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Additionally, we could analyze how the caregiver covariate information a↵ects the tran-

sition rates between stress-levels. Our proposed partial likelihood approach will be used

to estimate the model parameters under an exponential, Weibull, and gamma wait time

distribution. The final model will be determined through statistical measures and graphic

overlays of the raw data. The transitions rates and sojourn times could be invaluable

information to the literature of Alzheimer’s disease and help promote awareness in AD

caregiver stress.

1.3 Data Description for the HEPESE Application

The longitudinal data analysis will be based on eight waves of data from the Hispanic

Established Population for the Epidemiological Study of the Elderly (HEPESE). The

HEPESE contains Mexican Americans aged 65 and older, who live in five southwestern

states: Texas, New Mexico, Colorado, Arizona, and California [31]. The original study

started in 1993 -1994 with 3050 subjects with a response rate of 83%. Additional follow-

ups occurred every two years post baseline: Wave 2 in 1995 - 1996 (M = 2438), Wave 3

in 1998-1999 (M = 1980), Wave 4 in 2000 - 2001 (M = 1682), Wave 5 in 2004 - 2005 (M

= 2069), Wave 6 in 2007 (M = 1542), Wave 7 in 2010 - 2011 (M = 1078), and Wave 8 in

2012 - 2013 (M = 744). Wave 5 added 905 new respondents that were aged 75 and older

and followed up with the original cohort.

For this longitudinal analysis, we will include individuals who have more than

1 observation, are not missing depression information, and have depressive symptoms.

We will categorize the Center for Epidemiological Studies Depression Scale [32] by the

following criteria: not depressed (0 - 9 points), mildly depressed (10 - 15 points), mod-

erately depressed (16 - 24 points), and severely depressed (more than 25 points)[33]. A

continuous-time semi-Markov model is used to capture dynamic nature of the depression

levels over time. The partial likelihood methodology will be utilized to estimate the

5



transition rates under an exponential, Weibull, and gamma wait time distribution. The

appropriate model will be determined through statistical measures like AIC and good-

ness of fit test. Lastly, we will interpret the hazard model in the context of the HEPESE

application and discuss its potential contribution to the mental health literature.

1.4 Public Health Significance

Statistical inference in the area of semi-Markov models continues to grow as more

complex problems arise. Specifically, there is a continual need for the development of

e�cient estimators and computationally feasible methods to study dynamic disease/in-

tervention behaviors in Public Health. By observing repeated outcome variables over

time, a researcher can learn about an individual’s trajectory dynamics in a continuous-

time setting. This type of information is captured in longitudinal studies. Many times,

longitudinal studies also collect explanatory variables which can be utilized in the model

to potentially get better estimates on the transition rates. For this reason, longitudinal

categorical data play an integral part in expanding the knowledge of multi-level dis-

ease/interventions. Accordingly, this research proposal is to develop a partial likelihood

method considering the semi-Markov framework for categorical longitudinal data. This

inaugural methodology will (1) estimate the transition rates between disease/interven-

tion stages for a given sojourn distribution and (2) extend this approach to additionally

account for subject covariate information. This proposed partial likelihood approach will

greatly contribute to the semi-Markov literature. First, the structure of the partial like-

lihood method is familiar and simple as in the classical survival analysis. The redefined

probabilistic statements in the partial likelihood allow for the complexity of the semi-

Markov process to be analyzed. Secondly, by utilizing Rcpp package [34], and doParallel

package [35] in R, we will develop an computationally e�cient way to estimate the param-

eters from the semi-Markov process. The Rcpp package connects the C++ programming
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language and R by allowing R to call C + + functions easily into R code. This tool will

help us improve computation time quickly and conveniently. Similarly, the doParallel

package will improve computation speed by performing multi-core computing. Thirdly,

we thoroughly analyzed two non-exponentially sojourn time distributions: Weibull and

gamma distribution. Both of these distributions have been studied for unique survival

problems because of the fact that the are generalization of the exponential distribution.

By assuming either the Weibull or gamma as the waiting time distribution, we have

the flexibility in the CTSMM to have multiple types of shapes for the hazard of the

semi-Markov process which allows us to study a wide range of Public Health longitudinal

applications.

1.5 Specific Aims

The specific aims of this proposed research are:

Specific Aim #1: To develop a partial likelihood estimation method for esti-

mating parameters in a continuous time semi-Markov model with longitudi-

nal data of three or four outcome categories and to compare its results with

models that have a gamma or Weibull sojourn time.

In many research settings, a disease/intervention outcome had multiple levels

measured over time. These multi-categories can be natural stages like no disease to pre-

clinical disease to disease or scaled level states such as no pain to some pain to much pain.

We will develop a partial likelihood approach to estimate the hazard rates between stages

considering a non-exponential distribution. Specifically, we will compare an exponential

sojourn distribution (i.e. Markov process) to (1) a Gamma sojourn distribution and

(2) a Weibull sojourn distribution. This methodology will be applied to an Alzheimer’s

Disease caregiver stress level example.
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Specific Aim #2: To extend the partial likelihood method in aim 1 to include

covariate e↵ects on the transition intensities while its outcome process is

under a semi-Markov framework.

In addition to recording a categorical outcome over time, several studies many

will collect patient information that can be used to further understand the covariate

e↵ects on the transition rates. These covariate hazard rates are helpful in interpreting

the scientific associations. We will extend the partial likelihood approach to estimate

the baseline hazard rates between stages and the covariate e↵ects considering a non-

exponential distribution. As before, we will compare an exponential sojourn distribution

(i.e. Markov process) to (1) a Gamma sojourn distribution and (2) a Weibull sojourn

distribution. To illustrate the proposed method, we will consider a longitudinal outcome

as care-giver stress-level while incorporating some predictors.

Specific Aim #3: To examine the dynamic behavior in depression levels

among older adults of Mexican descent from the Hispanic Established Pop-

ulation for the Epidemiological Study of the Elderly (HEPESE) by using

a continuous-time semi-Markov model and applying the partial likelihood

methodology in the first two aims.

The methodology developed in aim 1 and aim 2 will be utilized in a depression-

level application among Mexican elderly to determine the baseline transition rates, and

covariate e↵ects while considering three semi-Markov models assumptions for the sojourn

time distribution: 1) an exponential sojourn time distribution (i.e. Markov Model), 2) a

gamma sojourn distribution and 3) a Weibull sojourn distribution. Each model will be

compared to one another using appropriate statistical tests to find the most appropriate

model for the data.
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Chapter 2

Estimation Method of a
Continuous-Time Semi-Markov
Model for Longitudinal Categorical
Outcomes: A Partial Likelihood
Approach

Authors: Kusha A. Mohammadi, Wenyaw Chan, and Valory Pavlik

2.1 Abstract

In public health, longitudinal studies have been paramount to studying dynamic diseases

and interventions. Many statistical developments through the years have contributed to

improvements in modeling the dynamics of transitions among disease states. The multi-

state Markov model, for example, has been most often utilized to estimate the transition

rates between multi-categorical responses. Although, the Markov model may not be

realistic in practice due to the Markov property, which assumes the sojourn time to be

exponential distributed. The model proposed in this research considers the semi-Markov

framework to analyze longitudinal categorical outcomes that allow for unspecified waiting

time distributions. To estimate the parameters of the continuous-time semi-Markov

model (CTSMM), we develop a partial likelihood approach for a three to four stage
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process. We evaluated our method assuming the sojourn time follows a gamma, Weibull

or exponential distribution and examined their sensitivities to our method. Simulations

show relatively low bias and similar standard deviation and standard error calculations

for both three and four state CTSMMs. The coverage probabilities was lower than the

expected 95%, however, the CTSMM assuming a gamma wait time had the highest

coverage across the rate parameters. A longitudinal application of Alzheimer’s disease

care-giver stress level was used to illustrate the proposed partial likelihood approach.

Keywords: Semi-Markov Model, Longitudinal Data, Categorical Outcomes, Partial

Likelihood Method

2.2 Introduction

In many public health settings, the Markov multi-state model has become an e↵ective

approach to analyze categorical events over a given time period. Particularly, it is a useful

way to describe the natural course of a variety of biological processes by estimating the

rates of transition between states. Some recent applications include breast cancer [2,

3], HIV [4–6], Alzheimer’s disease [7, 8], cirrhosis [9], asthma [10], and bipolar disease

[11]. This convenient model, however, implies the Markov property which describes

the probabilistic behavior of the future state depending only on the present state and

disregarding the history of the chain [13]. Due to the Markov property, the distribution

of the sojourn time is assumed to be exponentially distributed in the continuous-time

case. This suggests the time until a state transition is likely to be instant or very short,

which may not be realistic in practice [36]. It is preferred to have a framework that allows

the sojourn time distribution to be unspecified.

Semi Markov models have become a flexible alternative to the Markov framework

because it allows for arbitrary waiting time distributions. Weiss and Zelen utilized the

semi-Markov framework by investigating right-censored observations in a clinical trial
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assuming a gamma sojourn distribution [14]. Foucher and others assumed a general-

ized Weibull distribution for the wait time to analyze a HIV application [22]. To find

a sensible balance between model parsimony and computational complexity, Cao and

others compared a cox Markov model versus a cox semi-Markov model to comprehend

heart disease failure [24]. These examples spotlight the potential applications in medical

research for semi-Markov models.

Approaches to analyze longitudinal categorical outcome data under a semi-Markov

model continue to grow as more intricate applications arise. Ouhbi and Limnios consid-

ered a non-parametric estimation method for semi-Markov kernels and its hazard function

[37, 38]. To account for interval censoring and truncation, Sternberg and Satten proposed

a discrete-time non-parametric estimation procedure for a semi-Markov model to HIV

applications [39]. Damerdji presented a maximum likelihood estimation approach to cal-

culate the transition rates of the generalized semi-Markov process [40]. To estimate the

transition intensity and survival function for a three state semi-Markov model, Joly and

Commenges described a penalized likelihood approach with censor and truncated data

[41].

In this paper, we develop an alternative estimation method to analyze longitudi-

nal categorical outcome data with three to four stages. We propose a partial likelihood

estimation method for estimating parameters in a continuous-time semi-Markov model

with longitudinal data. Specifically, we will assume semi-Markov models with exponen-

tial, Weibull, and Gamma sojourn time distributions and examine their sensitives with

our method. The proposed estimation method provides a more flexible and realistic tool

than the Markov model and extends to biological processes with three to four stages.

To illustrate our method, we will apply the method to Alzheimer’s care-giver stress level

application.

The remainder of the paper is organized as follows. Section 2.3 defines a semi-

Markov process, the sojourn time distributions, and the partial likelihood function. A
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simulation study will be used to evaluate the statistical properties of the partial likelihood

method in section 2.4 and applied to an Alzheimer’s care-giver stress level example in

section 2.5. Lastly, the paper concludes with a discussion in section 2.6

2.3 Methods

2.3.1 Semi-Markov Model

We will consider a random process that is a continuous-time multi-state stochastic process

with a finite state space, � = {1, 2, . . . , b}. For n = 1, . . . , D, let T = (Tn)n2N denote

the consecutive states transition time points where D is the total number of transitions.

T0 = 0 is defined as the time of the origin for the stochastic process. Let Sn = Tn � Tn�1

denote the sojourn times where we set S0 = 0. Then, let S = (Sn)n2N be the successive

sojourn times in the visited states. Also, let X = (Xn)n2N be the sequence of observed

states for the nth transition where the state Xn(t) is defined for t 2 [Tn, Tn+1] and

has an initial distribution !i = P (X0 = i), i 2 �. This sequence forms an embedded

homogeneous Markov chain. Then (X, T ) is a homogeneous semi-Markov process if the

two assumptions hold true. First, as a subject enters state i, we assume the next state the

subject enters is state j with probability, pij, i, j 2 �. Second, given that the following

state is j, the time until the next transition from i to j has distribution Fij (i.e. an

arbitrary sojourn distribution).

The continuous-time semi-Markov kernel, Qij(t), corresponds to the probability

of jumping toward state j between time t and t+�t after being in state i:

Qij(t) = P (Xn+1 = j, t  Sn+1|⇤n�1)

= P (Xn+1 = j, t  Sn+1|Xn = i)
(2.1)

where ⇤n = {(X0, T0); . . . ; (Xn, Tn)} denotes the history of the semi-Markov chain, i, j 2

�, and t 2 [Tn, Tn+1].
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The transition probabilities, pij, from state i to j is formally defined as

pij = lim
t!1

Qij(t) = P (Xn+1 = j|Xn = i) (2.2)

where 0  pij  1 8 i, j 2 �, and
P

j pij = 1.

Lastly, the distribution function of the waiting time determines the amount of

time t that a subject stays in state i before transitioning to state j:

Fij(t) = lim
�t!0+

P [t  Sn+1 < t+�t|Xn+1 = j,Xn = i]

�t
(2.3)

where i, j 2 �, and t 2 [Tn, Tn+1]. The marginal probability distribution of the sojourn

time is derived from equation 2.2 and 2.3 and written in the following way

Fi(t) =
X

i 6=j

pijFij(t) (2.4)

By these relations, we have the following model:

Qij(t) = pijFij(t) (2.5)

where i, j 2 �. From distribution function, Fij(t), we can easily derive the probability

density function (fij(t)), survival function (Sij(t)), and hazard function, ⌫ij(t)). The

hazard of the semi-Markov process is then defined as the probability of transitioning to

a state j between time t and t+�t, given the previous state is i for a duration t,

hij(t) = lim
�t!0+

P (Xn+1 = j, t  Sn+1 < t+�t|Sn+1 � t,Xn = i)

�t
(2.6)

Using all these relations, we can relate hij(t) to the hazard function of the sojourn

time, survival function of the sojourn time, and transition probabilities,

hij(t) =
pij⌫ij(t)Sij(t)

Si(t)
(2.7)
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2.3.2 Distributions of the Sojourn Time

By using classical survival relations, we can deduce the hazard function of the sojourn

time, ⌫ij(t), from equation 2.3:

⌫ij(t) = lim
�t!0+

P [t  Sn+1 < t+�t|Sn+1 � t,Xn+1 = j,Xn = i]

�t
(2.8)

where t represents the time in a particular state. We will consider three di↵erent sojourn

distributions in continuous-time semi-Markov model. By assuming these various distri-

butions, the semi-Markov model can be applied to a wide set of problems within Public

Health.

Exponential Distribution (�ij)

The hazard function for the exponential distribution with rate parameter, �ij, is constant

over time and is given by

⌫ij(t) = �ij (2.9)

where t > 0, 8�ij > 0, i, j 2 �. By assuming the waiting time is exponentially dis-

tributed, the processes reduces to the well-known Markov model.

Gamma Distribution (⇠,�ij)

The hazard function for the 2-parameter gamma distribution can be viewed as a gener-

alization of the exponential distribution. The hazard function with rate parameter, �ij,

and shape parameter, ⇠, is defined as

⌫ij(t) =
�⇠ijt

⇠�1e��ijt

�(⇠)� �(⇠,�ijt)
(2.10)

where t > 0, 8�ij > 0, i, j 2 �, ⇠ > 0,
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�(a, x) =

Z x

0

za�1e�zdz

for a > 0, is the incomplete gamma functions, and

�(a) =

Z 1

0

za�1e�zdz

is the gamma function.

For simplicity, we will assume the shape parameter, ⇠, is constant across all tran-

sitions from i to j.

Weibull Distribution (k,�ij)

The hazard function for the 2-parameter Weibull distribution can also be viewed as a

general form of the exponential distribution. The hazard function with rate parameter,

�ij, and shape parameter, k, is defined as follows

⌫ij(t) = k�ijt
k�1 (2.11)

where k > 0, 8�ij > 0, i, j 2 �, and t > 0.

Additionally, for simplicity, we will assume that the shape parameter, k, is con-

stant across all transitions from i to j.

2.3.3 Construction of the Partial Likelihood

In this section, we outline the construction of the partial likelihood that will allow us

to estimate ⌦ = {�ij, ⇠⇤, k⇤} where ⇤ represents if the shape parameter needs to be

estimated based on the sojourn distribution. For m subjects, m = 1, . . . ,M , we have a

longitudinal data based on the jump times, T nm and respective state transition, Xnm .

We will order all the data for M individuals based on the transition times and will be

represented by (T (n), X(n)) for the nth transition, n = 1, . . . , D. We will define the risk

set, R(⌧�), as all the subjects who are still being observed prior to time, ⌧ , where for
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simplicity of notation, we let ⌧ = T (n). Let IXl(⌧�)(u) denote the current state, u, for

subject l prior to time ⌧ . Let S(n) be the ordered time the individual is in a particular

state, i, before transitioning to state j (i.e. sojourn time). Let ' be the time already

spent in a particular state, u, for a subject l. Thus, the probability that an subject

transitions at time ⌧ given one individual l transitions in Rl(⌧�) at time ⌧ is

hij(S(n)|⌦)P
l2R(⌧�)

P
u2� hu('|⌦)IXl(⌧�)(u)

(2.12)

where i, j, u 2 �, and hij(·|·) is the hazard parametric model for the transition i to j

depending on the sojourn distribution chosen. For hazard functions, refer back to section

2.2. Then the partial likelihood is formed by multiplying all the conditional probabilities

over all the transitions D. This is given by

L(⌦) =
DY

n=1

hij(S(n)|⌦)P
l2R(⌧�)

P
u2� hu('|⌦)IXl(⌧�)(u)

(2.13)

The partial likelihood is analogous to the classical Cox partial likelihood developed

in 1972 [42]. In some applications, we may encounter ties in the set of transition times.

While there are various constructions to take into account event ties, we will consider

Breslow’s ties method [43]. With this modification, the partial likelihood is as follows

L(⌦) =
DY

n=1

Q
g2dn higjg(S

(n)
g |⌦)

hP
l2R(⌧�)

P
u2� hu('|⌦)IXl(⌧�)(u)

idn (2.14)

where dn is the number of events at a given transition time, ⌧ and g represents one of

the dn transitions (i ! j) at time ⌧ . We can estimate the parameters ⌦ by maximizing

equation 2.14 or by using its logarithmic transformation as shown
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l(⌦) =
DX

n=1

X

g2dn

log
⇥
higjg(S

(n)
g |⌦)

⇤

�
DX

n=1

dnlog

2

4
X

l2R(⌧�)

X

u2�

hu('|⌦)IXl(⌧�)(u)

3

5
(2.15)

where hu(t) =
P

r2� hur(t|�) . hij(t) is the hazard of the semi-Markov process

and can have an exponential, gamma, or Weibull sojourn time distribution outlined in

Section 2.3.2.

In a typical setting, the maximum likelihood estimates are attained by taking the

log of the likelihood function and setting the first derivative to zero. However, the first

derivative of the partial likelihood is not possible to derive with respect to ⌦ due to

the complexity of the hazard functions. We utilized a non-linear optimization method

that is derivative free to maximize the log partial likelihood function. Since the second

derivative is not available in closed form, we attained non-parametric bootstrap samples

to estimate the standard errors of each parameter of interest. In each bootstrap sample,

we re-sampled M subject’s with replacement, applied the likelihood function defined by

equation 2.15, and calculated each standard error by using all the bootstrap samples. All

analysis used R 3.6.2 [44], Rcpp package [34], and doParallel package [35].

2.4 Simulation

Simulation studies were conducted to assess the partial likelihood method outlined in

section 2.3. Specifically, we simulate two semi-Markov process cases: first, a three-state

continuous-time process assuming an exponential, Weibull, and gamma sojourn time

distribution and second, a four-state continuous-time process assuming an exponential,

Weibull, and gamma sojourn time distribution. For each model, we obtained 1000 sim-

ulations and 50 non-parametric bootstrap samples to calculate the standard errors. For
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comparability, we determined a common mean between the gamma and Weibull distri-

bution and set the exponential mean to this common mean. Nelder-Mead’s non-linear

optimization was used to estimate parameters of the log partial likelihood in equation

2.15. We evaluated our proposed estimation procedure by the bias, standard deviation,

standard error, mean square error (MSE), and 95% coverage probability. Statistical bias

is a measure of distance between the expected value and underlying true value. In sim-

ulations, we would expected the standard deviation and standard error to be relatively

close to indicate the standard error represents the true sampling variation. The mean

square error measures the average of the square of the errors. We also view it as a

combination of the variation and bias squared. Lastly, coverage probability will help us

measure the proportion of the time that the confidence interval contains the true value.

For our simulations, we would expect the coverage probability to be close to 95%.

The simulations results for the semi-Markov three-state process and four-state

process are summarized for each model in tables 2.1 and 2.2, respectively. By choosing a

non-exponential sojourn distribution (Weibull or gamma), the 3-state semi-Markov model

assuming a Weibull wait time distribution had the lowest mean square error across all

the rate parameters (Table 2.1). In terms of 95% coverage probability, all 3-state models

under-performed in terms of capturing the true parameter 95% of the time. Using parallel

computing, the full simulations studies for the exponential, Weibull, and gamma case on

20 cores required 10.81, 27.17, and 25.31 hours to run, respectively. Table 2.2 refers

to the summary of simulation results for the four-state semi-Markov model. Similar to

the 3-state model, the 4-state Weibull simulation shows the lowest mean square error

compared to the semi-Markov model assuming a gamma sojourn distribution. While

the 95% coverage probability was not met, the gamma case had the highest overall

coverage across the rate parameters. In terms of computation time, the model assuming

an exponential distribution on 20 cores took 13.60 hours, assuming a Weibull distribution

on 30 cores took 25.86 hours, and assuming a gamma distribution on 30 cores took 24.24
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hours. In the 3-state and 4-state simulation, the exponential sojourn case (i.e. the

Markov Model) performed computationally faster with low bias and variance. In tables

2.3 and 2.4, Markov chain simulations for a full likelihood approach using the multi-state

model (msm) [45] in R and our proposed likelihood approach are analyzed. For bias and

mean square error, both the Markov likelihood methods are compatible. For the standard

error and standard deviation, the partial likelihood method is slightly better than the

full likelihood approach but the coverage probability is worse for the partial likelihood

method. The full likelihood approach had around 95% coverage probability using the

asymptotic standard errors (i.e. from the Hessian matrix) for the confidence interval.

2.5 Longitudinal Application

We applied the partial likelihood approach to a caregiver stress-level application that was

recorded over a 21 year period by the Baylor Alzheimer’s Disease and Memory Disorders

Center [30]. The primary aim of the study was to collect socio-demographic information

as well as neuro-psychological information to assess probable Alzheimer’s Disease. As

a secondary interest, a cohort of Alzheimer’s Disease (AD) caregivers, representing a

family member or friend, were recruited to provide information on their health and well-

being. The care-giver stress level was recorded on four levels: none (state 1), mild

(state 2), moderate (state 3), and severe (state 4). The time between visits for each

caregiver varied widely along with the number of recorded observations. We included

individuals with at least two recorded stress levels (M = 681 subjects). The longest

observation time was 13.78 years. We re-categorized the stress level as follows: none or

mild (state 1), moderate (state 2), and severe (state 3). We utilized a continuous-time

semi-Markov model to learn about that movements through the various caregiver stress-

levels. Employing various sojourn time distributions, we analyzed the best model using

a likelihood ratio test that follows a chi square distribution.
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Table 2.5 and 2.6 shows the frequencies of transition between 3-level and 4-level

caregiver stress. The most transitions occurred from none/mild stress level to moderate

stress levels (303 transitions) in the 3-level case. In the 4-stress level example, 255

transitions went from mild to moderate stress level. Figure 2.1 and Figure 2.2 summarize

the dynamic behavior of transitions between caregiver stress levels for 3 states and 4 states

over time, respectively. Over the 14 year period, we observed a decline in the number in

the none/mild stress level and an increase in the other levels (Figure 2.1). Similarly, in

the four state analysis, we observe that the moderate and severe states increase steadily

over time while the other two lower states steadily decrease.

To understand the behavior of caregiver stress level over time, we applied a

continuous-time semi Markov model and estimated the parameters of the model by the

partial likelihood function for a three and four state process. The results are presented

in table 2.7 and 2.8 for each process, respectively. Before we analyzed the final results,

we carefully found which model closely follows the data. In figure 2.1, the sojourn time

within each transition (i to j) is plotted for the 3-stress level application. Using the pa-

rameter estimates, the exponential distribution (red line), Weibull distribution (orange

line), and gamma distribution (green line) are overlaid onto the data density curve. Over-

all, it suggests the semi-Markov model assuming a gamma sojourn distribution closely

fits the caregiver stress-level data. From figure 2.2, we find a similar trend where the

semi-Markov model assuming the gamma wait time distribution closely resembles the

data curves across all transitions. For a more quantitative comparison, we calculated the

Akaike’s information criterion (AIC) for each model. For the three state process assum-

ing exponential, Weibull, and gamma sojourn time, the AIC was 12494.77, 12368.73, and

12290.37, respectively. The AIC for the 4 state-process for each model was 15077.69,

14888.21, and 14757.50, respectively. The smallest AIC value indicates the better model

which suggests the semi-Markov model with a gamma sojourn time is the preferred model

in both cases. Based on these results, we can utilize the semi-Markov model defined in
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equation 2.5 or 2.7 to find the hazard rate for each transition from one stress level to

the next under a gamma sojourn time distribution. Figure 2.5 and 2.6 gives an visual

representation of the hazard of the semi-Markov process using the model estimates for

a 3-state process and 4-state process, respectively. Lastly, we summarized the estimated

probability transition matrix in table 2.9 and 2.10 for the 3-state and 4-state applications.

2.6 Discussion

In this paper, we detailed and assessed the partial likelihood approach to analyzing longi-

tudinal categorical outcomes using a continuous-time semi-Markov model. We explored

various sojourn distributions including the exponential sojourn time distribution which

reduces the semi-Markov model to a Markov Model. Simulations demonstrate relatively

low bias and variance across each model considered under a 3 or 4 state process. Overall,

the mean square error was marginally higher in the semi-Markov model that assumes a

gamma sojourn distribution compared to the others. Computationally, the complexity

of the hazard function of the semi-Markov process presented some di�culties in perform-

ing the simulations e�ciently. By utilizing Rcpp package and doParallel package in R,

we found the total time greatly reduced to run 1000 simulations and 50 non-parametric

bootstrap samples. Bootstrap samples were calculated to obtain the standard errors of

the estimate since the fisher’s information matrix was unable. These bootstrap standard

errors were used to calculate the 95% coverage probability for all the parameters. Nearly

all the 95% coverage probabilities were observed to be in the range of 78% - 90%. This

indicates the 95% confidence interval may be too narrow to capture the true underlying

estimate. To explain this result, we compared Markov models using the full likelihood

and the partial likelihood (Table 2.3 and 2.4). We observed a slightly lower standard

deviation and standard error from the partial likelihood, although, poor coverage prob-

ability for both the 3-state and 4-state Markov chain process. This may be due to the
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unstable estimates in the partial likelihood from possibly outlying datasets that were

generated and using the non-parametric boostrap approach to compute the confidence

intervals. We reason these are why the partial likelihood approach for the semi-Markov

model had under-performing coverage probabilities for the exponential, Weibull, and

gamma sojourn times.

Our results are not without limitations. The derivative of the log partial likeli-

hood is not available in closed and instead, we had to consider a derivative free numerical

optimization approach. This proves to be a di�cult optimization problem. The Nelder-

Mead (NM) non-linear optimizer needs to satisfy certain properties in order to converge

to the maximizing point (i.e. the optimal parameters). While we observed convergence

(convergence code = 0), there is the possibility the NM optimization determined a local

maximum rather than a global maximum. Other optimizations methods may need to

be considered to understand this non-linear problem. Secondly, we observed the 95%

coverage probabilities to be less than what was expected. The non-parametric bootstrap

procedure may not be appropriate for this approach. We re-sampled from the subjects

with replacement and re-estimated the parameters to get a bootstrap distribution. We

used 50 bootstrap samples to obtain the standard errors which seemed reasonable. How-

ever, the marginally low 95% coverage suggests we obtained a narrow 95% Confidence

Interval. Some potential solutions are to consider a parametric bootstrap sample such

as in the R package called, ’msm’ [45], or find an optimization method to estimate the

hessian matrix.

We applied the partial likelihood approach to an Alzheimer’s Disease caregiver

stress level application done by the Baylor Alzheimer’s Disease and Memory Disorders

Center [30]. This application provides an excellent example where the time spent be-

fore transition may not be exponentially distributed. Three semi-Markov models were

considered for this example while considering the data as a 3-state process and 4-state

process. The results suggested the semi-Markov model assuming a gamma wait time
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distribution is the most appropriate mode for both cases. We can use this information to

understand the how the stress-level behaves in a cohort of Alzheimer’s Disease caregivers.

To build on these results, further investigation into other sojourn time distributions are

needed to find other models that can consider bi-modal distributions like those seen in

figure 2.1 and 2.2. For illustration purposes, we graphed the hazard of the semi-Markov

process for a 3-state and 4 state process in figure 2.5 and 2.6, respectively. We observed

that a participant who is caring for an Alzheimer’s disease patient is at higher risk of

transitioning to a higher stress level than progressing back.

While we used a stress-level example in this paper, the partial likelihood approach

can be applied to any longitudinal categorical outcome data. Our method can handle 3

or 4 state processes with the ability to use a continuous-time semi-Markov model. The

model and approach can assume three di↵erent parametric distributions: exponential,

Weibull, or Gamma. This allows the partial likelihood approach to be applicable to

many di↵erent public health areas.
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Table 2.1: Simulation Results for a three-state Semi-Markov Model

True Estimate Bias SD SE MSE 95% CP

Exponential Sojourn Time1

�12 0.47 0.4716 0.0016 0.0302 0.0225 0.0009 0.841

�13 0.68 0.6835 0.0035 0.0463 0.0356 0.0022 0.854

�21 0.49 0.4914 0.0014 0.0289 0.0225 0.0008 0.863

�23 0.63 0.6316 0.0016 0.0288 0.0215 0.0008 0.851

�31 0.52 0.5237 0.0037 0.0394 0.0311 0.0016 0.878

�32 0.63 0.6312 0.0012 0.0271 0.0205 0.0007 0.857

Weibull Sojourn Time2

�12 1.9 1.9334 0.0334 0.0666 0.0702 0.0056 0.857

�13 1.3 1.3412 0.0412 0.0574 0.0672 0.0050 0.803

�21 1.8 1.8340 0.0340 0.0638 0.0656 0.0052 0.830

�23 1.4 1.4378 0.0378 0.0440 0.0549 0.0034 0.786

�31 1.7 1.7359 0.0359 0.0714 0.0767 0.0064 0.862

�32 1.4 1.4367 0.0367 0.0411 0.0544 0.0030 0.786

k 2.0 2.0012 0.0012 0.0396 0.0333 0.0016 0.895

Gamma Sojourn Time3

�12 1.90 1.9631 0.0631 0.1642 0.1638 0.0309 0.874

�13 1.30 1.3618 0.0618 0.1288 0.1282 0.0204 0.849

�21 1.80 1.8638 0.0638 0.1616 0.1482 0.0302 0.830

�23 1.40 1.4556 0.0556 0.0966 0.1052 0.0124 0.849

�31 1.70 1.7701 0.0701 0.1794 0.1780 0.0371 0.882

�32 1.40 1.4567 0.0567 0.0932 0.1044 0.0119 0.843

 0.89 0.8926 0.0026 0.0324 0.0272 0.0011 0.875

1
300 subjects in each simulation for 10 time units long; On 20 cores, computation time was 10.81

hours.
2

200 subjects in each simulation for 5 time units long; On 20 cores, computation time was 27.17 hours.
3

150 subjects in each simulation for 5 time units long; On 20 cores, computation time was 25.31 hours.
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Table 2.2: Simulation Results for a Four-State Semi-Markov Model

True Estimate Bias SD SE MSE 95% CP

Exponential Sojourn Time1

�12 0.47 0.4756 0.0056 0.0425 0.0343 0.0018 0.858

�13 0.68 0.6816 0.0016 0.0476 0.0380 0.0023 0.870

�14 0.81 0.8124 0.0024 0.0573 0.0421 0.0033 0.857

�21 0.49 0.4935 0.0035 0.0452 0.0342 0.0021 0.864

�23 0.63 0.6352 0.0052 0.0505 0.0384 0.0026 0.868

�24 0.74 0.7461 0.0061 0.0565 0.0437 0.0032 0.851

�31 0.52 0.5241 0.0041 0.0397 0.0308 0.0016 0.871

�32 0.63 0.6329 0.0029 0.0442 0.0337 0.0020 0.863

�34 0.39 0.3935 0.0035 0.0362 0.0279 0.0013 0.857

�41 0.74 0.7435 0.0035 0.0475 0.0385 0.0023 0.875

�42 0.44 0.4430 0.0030 0.0375 0.0290 0.0014 0.863

�43 0.49 0.4925 0.0025 0.0388 0.0298 0.0015 0.856

Weibull Sojourn Time2

�12 1.9 1.9512 0.0512 0.1094 0.1105 0.0146 0.846

�13 1.3 1.3402 0.0402 0.0598 0.0699 0.0052 0.836

�14 1.1 1.1390 0.0390 0.0506 0.0638 0.0041 0.823

�21 1.8 1.8527 0.0527 0.0992 0.1060 0.0126 0.862

�23 1.4 1.4518 0.0518 0.0679 0.0811 0.0073 0.815

�24 1.2 1.2486 0.0486 0.0577 0.0751 0.0057 0.810

�31 1.7 1.7626 0.0626 0.0842 0.0977 0.0110 0.797

�32 1.4 1.4554 0.0554 0.0663 0.0843 0.0075 0.800

�34 2.3 2.3532 0.0532 0.1314 0.1303 0.0201 0.864

�41 1.2 1.2487 0.0487 0.0552 0.0717 0.0054 0.815

�42 2.0 2.0550 0.0550 0.1022 0.1100 0.0135 0.866

�43 1.8 1.8587 0.0587 0.0907 0.0987 0.0117 0.817
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Table 2.2: Simulation Results for a Four-State Semi-Markov Model (continued)

True Estimate Bias SD SE MSE 95% CP

k 2.0 1.9950 -0.0050 0.0423 0.0305 0.0018 0.887

Gamma Sojourn Time3

�12 1.90 2.0232 0.1232 0.3160 0.2879 0.1150 0.874

�13 1.30 1.4129 0.1129 0.1780 0.1914 0.0444 0.850

�14 1.10 1.1994 0.0994 0.1421 0.1668 0.0301 0.834

�21 1.80 1.9116 0.1116 0.2808 0.2723 0.0913 0.890

�23 1.40 1.5187 0.1187 0.1995 0.2070 0.0539 0.866

�24 1.20 1.3080 0.1080 0.1568 0.1846 0.0362 0.853

�31 1.70 1.8304 0.1304 0.2371 0.2419 0.0732 0.866

�32 1.40 1.5219 0.1219 0.1813 0.2043 0.0477 0.863

�34 2.30 2.4513 0.1513 0.3752 0.3543 0.1637 0.889

�41 1.20 1.3069 0.1069 0.1571 0.1734 0.0361 0.837

�42 2.00 2.1240 0.1240 0.3123 0.3005 0.1129 0.900

�43 1.80 1.9201 0.1201 0.2524 0.2585 0.0781 0.869

 0.89 0.8979 0.0079 0.0416 0.0369 0.0018 0.886

1
300 subjects in each simulation for 10 time units long; On 20 cores, computation time was 13.60

hours.
2

100 subjects in each simulation for 10 time units long; On 30 cores, computation time was 25.86

hours.
3

100 subjects in each simulation for 5 time units long; On 30 cores, computation time was 24.24 hours.
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Table 2.5: Observed Transitions between 3-Levels
of Caregiver Stress

To State

From State Stress Level 1 2 3

1 None/Mild 0 303 49

2 Moderate 234 0 205

3 Severe 61 170 0

Table 2.6: Observed Transitions between 4-Levels of
Caregiver Stress

To State

From State Stress Level 1 2 3 4

1 None 0 78 48 8

2 Mild 63 0 255 41

3 Moderate 40 194 0 205

4 Severe 18 42 170 0
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Table 2.7: Alzheimer’s Disease Caregiver 3-Level Stress Model Estimates

Estimate Sojourn Time 95% Bootstrap CI

Exponential Sojourn Time

�12 0.4625 2.1620 (0.4235, 0.5015)

�13 0.5463 1.8209 (0.452, 0.6406)

�21 0.5701 1.7540 (0.5187, 0.6216)

�23 0.6001 1.6664 (0.5478, 0.6524)

�31 0.5921 1.6888 (0.5249, 0.6593)

�32 0.4643 2.1539 (0.406, 0.5225)

Weibull Sojourn Time

�12 0.7497 1.2076 (0.6303, 0.8692)

�13 0.8195 1.1094 (0.6562, 0.9827)

�21 0.9241 0.9798 (0.7672, 1.081)

�23 0.9433 0.9598 (0.7865, 1.1001)

�31 0.8481 1.0675 (0.7136, 0.9827)

�32 0.7946 1.1394 (0.6525, 0.9368)

k 1.4658 - (1.3811,1.5504)

Gamma Sojourn Time

�12 1.7269 1.6235 (1.5136, 1.9402)

�13 1.9081 1.4693 (1.5782, 2.238)

�21 2.1542 1.3015 (1.9226, 2.3858)

�23 2.2574 1.2420 (2.0052, 2.5096)

�31 2.0888 1.3422 (1.8161, 2.3615)

�32 1.9538 1.4350 (1.6852, 2.2224)

 2.8036 - (2.5828,3.0244)
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Figure 2.1: Frequency of Transition between 3 Levels of Caregiver of Stress over Time
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Figure 2.2: Frequency of Transition between 4 Levels of Caregiver of Stress over Time
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Table 2.8: Alzheimer’s Disease Caregiver 4-Level Stress Model Estimates

Estimate Sojourn Time 95% Bootstrap CI

Exponential Sojourn Time

�12 0.5414 1.8471 (0.4741, 0.6087)

�13 0.475 2.1051 (0.3917, 0.5584)

�14 0.4195 2.3840 (0.2454, 0.5935)

�21 0.6371 1.5696 (0.561, 0.7133)

�23 0.4952 2.0196 (0.4566, 0.5337)

�24 0.5956 1.6789 (0.5061, 0.6852)

�31 0.5347 1.8703 (0.4637, 0.6056)

�32 0.5382 1.8581 (0.4825, 0.5938)

�34 0.5675 1.7620 (0.5145, 0.6206)

�41 0.5691 1.7570 (0.4716, 0.6667)

�42 0.5554 1.8006 (0.4791, 0.6317)

�43 0.4359 2.294 (0.3866, 0.4853)

Weibull Sojourn Time

�12 0.9958 0.9162 (0.7498, 1.2417)

�13 0.9780 0.9328 (0.7321, 1.2239)

�14 1.0542 0.8654 (0.6241, 1.4842)

�21 1.0617 0.8593 (0.8531, 1.2703)

�23 1.0014 0.9111 (0.7888, 1.214)

�24 1.0420 0.8755 (0.7743, 1.3098)

�31 1.0486 0.8701 (0.8568, 1.2403)

�32 1.0406 0.8767 (0.8716, 1.2096)

�34 1.0684 0.8539 (0.8802, 1.2565)

�41 1.0400 0.8772 (0.5748, 1.5052)

�42 1.1199 0.8146 (0.7745, 1.4654)

�43 1.0044 0.9083 (0.7702, 1.2386)
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Table 2.8: Alzheimer’s Disease Caregiver 4-Level Stress Model Estimates (continued)

Estimate Sojourn Time 95% Bootstrap CI

k 1.3913 - (1.1955, 1.5872)

Gamma Sojourn Time

�12 2.1626 1.4567 (1.7498, 2.5753)

�13 1.9590 1.6081 (1.5037, 2.4144)

�14 1.7527 1.7974 (-7.8255, 11.3308)

�21 2.4813 1.2696 (2.008, 2.9546)

�23 2.1800 1.4451 (1.7945, 2.5654)

�24 2.3765 1.3256 (1.8259, 2.9272)

�31 2.1908 1.4380 (1.7468, 2.6349)

�32 2.2356 1.4092 (1.7974, 2.6737)

�34 2.3162 1.3601 (1.8788, 2.7537)

�41 2.2922 1.3744 (1.5894, 2.995)

�42 2.3248 1.3551 (1.9415, 2.708)

�43 2.1246 1.4828 (1.7509, 2.4984)

 3.1503 - (2.7782, 3.5224)
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Table 2.9: Estimated Transition Probabilities of the
Embedded 3-State Markov Chain

To State

From State Stress Level 1 2 3

1 None/Mild 0.000 0.861 0.139

2 Moderate 0.533 0.000 0.467

3 Severe 0.264 0.736 0.000

Table 2.10: Estimated Transition Probabilities of the Embed-
ded 4-State Markov Chain

To State

From State Stress Level 1 2 3 4

1 None 0.000 0.582 0.358 0.060

2 Mild 0.175 0.000 0.710 0.114

3 Moderate 0.091 0.442 0.000 0.467

4 Severe 0.082 0.182 0.736 0.000
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Chapter 3

A Continuous-Time Semi-Markov
Model for Longitudinal Categorical
Outcome with predictors: A Partial
Likelihood Approach

Authors: Kusha A. Mohammadi, Wenyaw Chan, and Valory Pavlik

3.1 Abstract

A continuous-time semi-Markov models (CTSMM) can be utilized as an alternative to

studying longitudinal categorical outcomes to the classic transition model in cases where

the Markov assumption is too restrictive or unrealistic. Often longitudinal studies collect

subject covariate information to potentially better explain the outcome distributional

changes over time. However, when we consider a three-state semi-Markov processes

(SMP), we are limited to the statistical approaches to estimate the transition covari-

ate e↵ects under a semi-Markov model. To address this issue, we develop a partial

likelihood approach to incorporate predictors to evaluate the transition covariate e↵ects

while considering various sojourn-time distributions: exponential, gamma, and Weibull.

This method contributes to statistical inference in the area of semi-Markov models and

provides a computationally feasible approach to study a breadth of longitudinal appli-
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cations. We assessed the proposed method through extensive simulation studies and

examined their sensitives. The simulation results suggest accurate estimation with low

bias of the transition e↵ects for a CTSMM and coverage probability close to the excepted

95%. We applied our partial likelihood approach to a longitudinal example in which the

care-giver stress-level over time are used as outcome while incorporating some predictors.

Keywords: CTSMM, Covariate Transition E↵ects, Longitudinal Categorical Outcomes,

Partial Likelihood

3.2 Introduction

In many applications, continuous-time semi-Markov model (CTSMM) is a powerful tool

because it relaxes the strict Markov assumption. The Markov property implies that

the holding time has an exponential distribution. Fetter and Thompson revealed the

movement through various health states for an individual may not be Markovian for

many diseases [36]. For this reason, the semi-Markov framework is often considered to

allow for arbitrary sojourn time distributions.

Statistical inference in the area of semi-Markov models continues to grow as more

complex problems arise. Anderson and others proposed a Cox semi-Markov model to add

covariate e↵ects to each transition intensity for an application in bleeding episodes and

mortality in liver cirrhosis [26]. Titman presented a new statistical likelihood method to

estimate transitions rates from panel data using phase-type approximations [27]. Shu and

others utilized large sample theory to develop asymptotic theory for the Cox semi-Markov

model to investigate the robustness and e�ciency of semi-Markov estimators [28]. Aralis

and Brookmeyer proposed a stochastic estimation procedure for panel observation data

with back transitions while assuming a non-exponential distribution [29]. Yu has also

extended the semi-Markov theory to consider misclassification in observed states called

the hidden semi-Markov model (HSMM) [25]. While all these examples contributed
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greatly to the stochastic literature, there is still a continual need for the development

of e�cient estimators and computationally feasible methods to study multi-state semi-

Markov processes while incorporating covariate information.

In this article, we propose partial likelihood method to estimate the transition

covariate e↵ects under a semi-Markov model. Specifically, we will analyze a three cat-

egorical disease-state process while adjusting for some covariates over time. For each

CTSMM, we will assume three wait time distributions: exponential (i.e. Markov model),

gamma, and Weibull. The gamma and Weibull distributions are widely used in classical

survival analysis because they generalize the exponential distribution. By using these

distributions, we have a more flexible model to analyze a variety of longitudinal cate-

gorical disease problems. Additionally, our proposed estimation procedure will provide

critical information that can be used in studying dynamic disease/interventions in med-

ical research. To highlight our method, we will apply the partial likelihood approach to

an Alzheimer’s caregiver stress-level example after controlling for some covariates.

The remainder of the paper is organized as follows. Section 3.3 defines the semi-

Markov process and outlines the partial likelihood method that incorporates subject

covariate information. Extensive simulation studies are summarized in section 3.4 and

applied to 3-level outcome of care-giver stress in section 3.5. The paper concludes with

a discussion in section 3.6.

3.3 Methods

3.3.1 The semi-Markov Model

First, lets consider a Markov renewal process (Xn, Tn) where 0 = T0 < T1 < · · · < TD are

consecutive state transition time points to states Xn for D total number of transitions.

S = (Sn)n2N is defined as the successive holding times in the visited states. The sequence

X = ({Xn}) forms an embedded discrete-time homogeneous Markov chain for a discrete
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state space, � = {1, 2, . . . , b}. Given the initial distribution, !i = P (X0 = i), i 2 �, the

probability of moving from a state i to state j is pij = P (Xn+1 = j|Xn = i), pij > 0, for

i 6= j and pij = 0 for i = j. The semi-Markov kernel, Qij, satisfies the following

Qij(t) = P (Xn+1 = j, t  Sn+1|⇤n�1)

= P (Xn+1 = j, t  Sn+1|Xn = i)
(3.1)

where ⇤n = {(X0, T0); . . . ; (Xn, Tn)} denotes the history of the semi-Markov chain,

i, j 2 �, and t 2 R+.

The distribution function of the sojourn time, Fij, determines the amount of time

t 2 R+ an individual stays in state i before transitioning to state j:

Fij(t) = lim
�t!0+

P [t  Sn+1 < t+�t|Xn+1 = j,Xn = i]

�t
(3.2)

where i, j 2 �, and t 2 R+. We can relate the semi-Markov kernel to the distri-

bution function of the holding time through the transition probabilities:

Qij(t) = pijFij(t) (3.3)

where i, j 2 �. Using the classical survival relations, we can deduce the hazard

of the semi-Markov process which is the probability of moving to a state j between time

t and t+�t, given the previous state is i for a duration t,

hij(t) = lim
�t!0+

P (Xn+1 = j, t  Sn+1 < t+�t|Sn+1 � t,Xn = i)

�t

=
pijSij(t)⌫ij(t)

Si(t)
(3.4)

where i 6= j, i, j 2 �, hii(t) = �
P

j 6=i hij(t). The survival and hazard of the

sojourn time is denoted by Sij(t) and ⌫ij(t). Additionally, the survival function of the
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wait time, Si(t), is defined as
P

j2� pij(1� Fij(t)).

3.3.2 Incorporation of Covariates

To add the influence of covariates on the holding time distributions, we utilize a cox

proportional hazard model for p (p = 1, . . . , k) explanatory variables with some known

functional form of the covariates,  (·) [42]. Let T(1) < · · · < T(D) be the ordered transition

times of all the m individuals, m = 1, . . .M . Then, let Z(n)
ij (t) be a vector representing

the individual’s covariate information at nth transition from i to j at time t, i, j 2 �. The

general form for the hazard rates function while accounting for covariates is as follows,

⌫ij(t|Z(n)
ij (t)) = ⌫0,ij(t) (Z

(n)
ij (t))

From this general form, we will make few assumptions:

1. The proportionality of hazards holds within each i to j state transition but does

not hold between.

2. The vector of covariate e↵ects, �, is the same across all i ! j transitions (i.e.

�ij = �; Z(n)
ij (t) = Z(n)(t))

3. The covariates are independent of the transition time, t (i.e. Z(n)(t) = Z(n)).

4. The same baseline intensity distribution, ⌫0,ij(t), is assumed for each state transition

from i to j (e.g. Weibull distribution for 1 ! 2, 1 ! 3, etc.).

Under these assumptions, we have the following simplified hazard model that

integrate p predictors,

⌫ij(t|Z(n)) = ⌫0,ij(t)exp
�
�tZ(n)

�
(3.5)
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From equation 3.5, the regression coe�cients have the well-known interpretation

of relative risk given the assumptions hold. However, the covariate e↵ects on the semi-

Markov hazard function (i.e. equation 3.4) will be interpreted graphically due to it’s

intricacy.

3.3.3 Distributions of the Sojourn Time

We studied three di↵erent sojourn distributions in continuous-time semi-Markov model.

For simplicity, we will assume that the shape parameters (i.e. k,  ) is constant across all

transitions from i to j. The simplest distribution is the exponential distribution which

has constant hazard over time (equivalent to the Markov model) with a positive rate

parameter, �ij, i, j 2 �.

⌫ij(t) = �ij (3.6)

Secondly, the gamma distribution has the flexibility of dealing with many di↵erent

distribution shapes in practice. This generalized form of the exponential distribution

defines the hazard function of the waiting time with positive rate parameter, �ij, i, j 2 �,

and positive shape parameter, ⇠ as

⌫ij(t) =
�⇠ijt

⇠�1e��ijt

�(⇠)� �(⇠,�ijt)
(3.7)

where �(a) is the gamma function, and �(a, x) is the incomplete gamma function,

a > 0.

Lastly, the Weibull distribution generalizes exponential case by allowing a second

parameter to alter the shape of the distribution. This adaptable feature has allowed this

distribution to be used in many practical applications. The hazard of a two-parameter

Weibull distribution with positive rate parameter, �ij, i, j 2 �, and positive shape pa-

rameter, k is as follows
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⌫ij(t) = k�ijt
k�1 (3.8)

All these distributions allow the semi-Markov model to be adaptable to a broad

set of longitudinal categorical studies.

3.3.4 The Partial Likelihood by Adding Covariates

We collect data based on the triple (T nm , Xnm ,Znm) for nm transitions for themth subject,

m = 1, . . . ,M . Let (T (n), X(n),Z(n)) be the ordered data based on the transition times, t,

where T (n) is the nth transition time, X(n) is the transitioning state (i.e. state j), and Z(n)

is the vector of covariate information at the nthtransition. The ordered data combines all

M subjects by their transition time. For convenience, we will let ⌧ = T (n). We define the

risk set, R(⌧�), as the set of all individuals who are still under study at a time prior to

⌧ . We denote, IXl(⌧�)(u), to identify the current state, u, of subject l prior to transition

time ⌧ . Let S(n) be the time spent in a particular state, i, before transitioning to state j

(i.e. sojourn time) for the nth transition. Let ' be the time already spent in a particular

state, u, for a subject l. For each possible n transitions, the probability that there is a

nth transition (i ! j) at time ⌧ with covariates Z(n) given that one subject transition in

the risk set at that time is

hij(S(n)|Z(n))
P

l2R(⌧�)

P
u2� hu('|Z(l))IXl(⌧�)(u)

(3.9)

where hij(·|·) is transition rate function defined by equation 3.4.

Let the parameters of interest be defined by ⇥ = {�,�ij, ⇠⇤, k⇤} where ⇤ indicates

the parameter that needs to be estimated depending on the sojourn distribution (defined

in Section 3.3.3). Then the partial likelihood is formed by multiplying all the conditional

probabilities over all the transitions D. This is given by
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L(⇥) =
DY

n=1

hij(S(n)|Z(n),⇥)
P

l2R(⌧�)

P
u2� hu('|Z(l),⇥)IXl(⌧�)(u)

(3.10)

where i, j, u 2 �, hu(t) = �
P

j 6=i hij(t). The numerator of the likelihood function

depends only on the individual’s explanatory variables who is currently transitioning

from state i ! j. The denominator of the likelihood includes all the information of the

subjects who are still at risk prior to time ⌧ .

A special case to consider is when there are ties present. In practice, it is common

to collect many subject’s information at a common calendar time (e.g. every year). We

will consider one method constructed by Breslow [43] where there are ties among the

events. The partial likelihood can be expressed as

L(⇥) =
DY

n=1

Q
g2dn higjg(S

(n)
g |Z(n),⇥)

hP
l2R(⌧�)

P
u2� hu('|Z(l),⇥)IXl(⌧�)(u)

idn (3.11)

where dn is the number of events at a given transition time, ⌧ , for the nth transition.

Parameter estimation can be carried out by optimizing the likelihood function or

equivalently, the log likelihood, l(⇥),

l(⇥) =
DX

n=1

X

g2dn

log
h
higjg(S

(n)
g |Z(n),⇥)

i

�
DX

n=1

dnlog

2

4
X

l2R(⌧�)

X

u2�

hu('|Z(l),⇥)IXl(⌧�)(u)

3

5
(3.12)

Ordinarily, the parameters of interest are acquired by deriving the first derivative

of the likelihood function and setting it to zero. Due to the complex structure of the

semi-Markov hazard function, the first derivative is not available in closed form and the
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fisher’s information matrix is not easily computed. This presents a di�cult optimization

problem where we need a derivative-free numerical optimization approach to obtain the

estimates for the CTSMM. Non-parametric bootstrap samples are used to estimate the

standard errors for the parameters in ⇥. For each bootstrap sample, M individuals were

re-sampled with replacement and new estimates for the CTSMM were collected. All

analysis used R 3.6.2 [44], Rcpp package [34], and doParallel package [35].

3.4 Simulation

To evaluate the performance of the proposed partial likelihood estimator, we describe a

simulation study to examine a three-state CTSMM in this section. Three semi-Markov

processes are simulated to represent the hold time distributions, Fi,j outlined in subsec-

tion 3.3.3 (i.e. exponential, gamma, and Weibull). A general simulating algorithm for a

semi-Markov process up to a time t = T is given [25]:

1. Supply pij and Fij

2. Choose an initial state, i0. Set t = 0.

3. Set i = i0

4. Generate the following state, j ⇠ pi0,k;

5. If t < T , then

a. Generate a sojourn time, Si,j ⇠ Fi,j

b. Set t = t+ Si,j.

c. Set i = j;

d. Generate a new state j =⇠ pi,k.

6. Else, stop.

In words, the semi-Markov process randomly determines the following state j

based on the transition probabilities, pij, after entering a state i. Then it randomly

determines the amount of time spent, Sij, in a state i before transitioning to a state j
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based on the sojourn time distribution, Fij. The process continues until we reach a max-

imum observe time, T . For each simulation, the algorithm was run for 400 subjects and

1000 simulations. The standard errors were approximated by using 50 non-parametric

bootstrap samples and used to calculate the 95% bootstrap confidence intervals. The

hazard of semi-Markov process were dependent on one continuous (�1) and one binary

covariate, �2 as described in subsection 3.3.2. The Nelder-Mead method was used to

maximize the partial log likelihood function in equation 3.12. We assess our proposed

method by the bias, standard deviation, standard error, mean-square error (MSE), and

95% probability coverage. Briefly, the bias describes the distance between the estimated

value and the true value, and the standard deviation represents how close the numbers

are to the mean. The standard error will explain how far the sample statistic deviates

from the actual population parameter. In simulations, we would expect the standard

deviation and standard errors to be relatively close to one another. The mean square

error combines these two components of bias and variability to imply the mean di↵erence

between the estimated and observed parameters. Generally, a relatively low MSE value

indicates a well-fitted model. Lastly, the 95% coverage probability refers to the number

of times the true parameter is in the confidence interval. It is desirable to have coverage

probabilities near 95% to indicate an e�cient estimation method.

The simulations results for the three semi-Markov models were summarized in

table 3.2. Among all three models, the bias remained relatively low (< 0.09) with the

exception of one rate parameter, �31, in the SMM assuming a gamma sojourn time. The

highest variability was observed in the estimation of the beta coe�cients (�1 and �2)

for the exponential and Weibull sojourn time. Most rates, shape, and beta coe�cient

estimates had relatively low MSE with the variance (i.e. standard deviation squared)

driving higher values in some numbers. In the last column, the 95% bootstrap coverage

probability is given. By assuming a Weibull or gamma wait time distribution, the results

showed most of the estimates hovering around the expected 0.95 range. The Markov
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model (i.e. exponential sojourn) exhibited some low coverage probabilities in 80 percent

range and one in the 70 percent range. Low coverage indicate either biased estimates or

anti-conservative standard errors and should be considered when assuming an exponential

holding time distribution. Some estimates showed standard deviations much larger than

the standard errors in the exponential and weibull sojourn time models.

3.5 Caregiver Stress Application

In this section, we describe how our method can be implemented in a caregiver stress-

level example. The Baylor Alzheimer’s Disease and Memory Disorders Center recruited

individuals to evaluate probable Alzheimer’s Disease using the criteria from the National

Institute of Neurological and Communicative Disorders and Stroke [30]. Over a 21 year

period, socio-demographic and neuro-psychological information was collected from par-

ticipants to better understand the progression from a non-clinical neurological state to

an Alzheimer’s Disease state. A second interest of the study was to focus on the health

and well-being of the family members or friends who cared for the Alzheimer’s Disease

patients. Caregivers were asked to fill out a questionnaire where self-reported stress-level

was documented. No stress, mildly stressed, moderately stressed, and severely stressed

were the four possible categories given to self-evaluate their stress level. Demographic

characteristics were also gathered to describe and highlight possible di↵erences between

certain components. Using the data, we will conduct a longitudinal study where we treat

the self-reported stress-level as a semi-Markov chain with three potential outcomes (i.e.

None/mildly stressed, moderately stressed, and severely stressed). Additionally, patient

sex and age at baseline were incorporated in the model to potentially better explain the

behavior of caregiver stress level over time. Caregivers who have at least one transition

and complete demographic information were included in the study. To find the best fit

for the data, we calculate the Akaike’s information criterion (AIC) for each model and
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choose the the model with the lowest AIC value.

Table 3.1 shows the number of transitions, i ! j, within the Alzheimer’s Disease

dataset. The lowest number of transitions occurred between severe to None/Mild and

None/Mild to Severe (61 and 49 transitions, respectively). The most transitions seem

to occur from moderate to none/mild and back to moderate (234 and 303 counts, re-

spectively). To illustrate the changes in each stress level, we graphed the frequency of

transitions by sex in figure 3.1. In the initial years of observation, females tend to be in

the transition out of the lower two levels and move into the higher stress levels. For men,

there was steady increase in the two highest levels as time progresses forward indicating

some form of higher stress levels while caring for an Alzheimer’s Disease patient.

In table 3.3, we presented the results of the continuous-time semi-Markov model

that incorporated covariate e↵ects. Three di↵erent sojourn time distributions were con-

sidered for the semi-Markov model. To find the most best model, the AIC were calculated

for each model. The lowest AIC (11884.7) was found for the SMM assuming a gamma

sojourn time compared to the exponential and Weibull sojourn (12330 and 12197.75,

respectively). Regardless of the model, all suggest that the sex covariate e↵ect (�1) was

statistically insignificant due to the fact the 95% bootstrap confidence interval contained

zero. This suggests that the risk between males and females are the same and can be

excluded from the model. The second coe�cient, the age (�2) e↵ect, was found to be

statistically significant. Since we standardized age, we would interpret the transition

from a moderate to severe state in the following way: One standard deviation increase

in age increases the risk of transitioning from a moderate to severe stress level by 1.59

(i.e. exp(0.4664)). Since we assumed the beta coe�cient to be the same across all levels,

the interpretation is similar. To highlight the di↵erences across age, figure 3.2 gives a

visual context to the hazard of the semi-Markov process for various ages. Within each

transition, we can conclude the risk of transitioning to a higher stress level is greater for

older caregivers than younger ones within the first few years (i.e. compare the blue line
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to green line).

Table 3.1: Observed Transitions between 3-Levels
of Caregiver Stress

To State

From State Stress Level 1 2 3

1 None/Mild 0 303 49

2 Moderate 234 0 205

3 Severe 61 170 0

3.6 Discussion

In this paper, we proposed a partial likelihood approach for a continuous-time semi-

Markov chain model that includes covariate e↵ects on the hazard function. The CTSMM

helps us model the transitions between discrete disease states and allows us to examine

how demographic or environmental factors a↵ect the transition rates. An Alzheimer’s

disease caregiver stress application was a natural example to exemplify the use of a

CTSMM. Additionally, by using a CTSMM, we have the flexibility to specifying an

arbitrary sojourn distribution. We explored three sojourn distributions: exponential (i.e.

Markov model), Weibull, and gamma distributions. Both the Weibull and gamma are

generalization of the exponential distribution with the added benefit of allowing a shape

parameter to alter the distribution. By utilizing a cox hazard model, we can incorporate

covariate e↵ects on the hazard of transition. The partial likelihood method was then

constructed and evaluated through some simulations. The simulation performance of the

partial likelihood suggested relatively e�cient estimation in models assuming a Weibull

or gamma sojourn time distribution. Both models exhibited relatively low bias and

mean square error. However, for some rates parameters, the standard deviations were

much larger than the standard errors. From Chapter 2, one result suggested that the
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partial likelihood approach may be unstable for some rate estimates due to some outlying

datasets in the simulations. We reason that this is the source of the discrepancy between

standard deviation and standard errors for some transition rates in these simulations.

Additionally, all estimates showed coverage probabilities around the expected 95% range.

All in all, the partial likelihood approach seems to be a reasonable method to estimate

the parameters in a 3-level CTSMM incorporating covariate e↵ects on the hazard rates.

The longitudinal caregiver example demonstrates the type of analysis that can be

conducted with a multi-level categorical outcome. We modeled 3 stress-levels (none/mild,

moderate, and severe) as semi-Markov chain and investigated how the patients age and

sex a↵ect the transition rates. By explored three di↵erent holding time distributions, we

were able to find the most appropriate model to fit the caregiver stress data. The AIC

values suggested that the time until transitioning to another state was modeled best when

assuming a gamma distribution than a Weibull or exponential distribution. This serves

as an example where Markov model may not be realistic. As in any analysis, we can

interpret the significant coe�cients as relative risk by exponentiating the beta estimates

and graph the hazard of the semi-Markov process as in figure 3.2. Our longitudinal

analysis suggests that the age of a caregiver a↵ects the transitioning rate through the

three levels of stress.

The work presented are not without some limitations. First, we had a complex

optimization problem such that we needed to find a non-linear optimizer for the log par-

tial likelihood. A Nelder-Mead optimization was used for its ability to find the optimal

parameters without the derivative. However, depending on the initial parameters, the

partial log likelihood may converge to a local minima or not at all. Additional non-linear

optimization methods need to be consider to understand how reliable the Nelder-Mead

estimates are for this approach. Secondly, we limited our research to three parameter

distributions. We used the language of ’most appropriate’ model because it is not clear

whether it is the best model. From our simulation results, we find non-exponential dis-
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tribution performing relatively well with this partial likelihood approach. More research

is needed to expand the number of distributions we can have to explore unique data dis-

tributions. For instance, the raw sojourn times in the caregiver stress example for each

transition suggested a bi-modal shape than uni-modal. Although, we would argue this

phenomenon occurred in this example because of the varied interview times and inability

to capture the time spent in each stress level. Further research into these matters will

develop the robustness of the partial likelihood approach.

In this paper, we proposed a partial likelihood method that incorporates covariate

information on the the transition rates of a continuous-time semi-Markov chain. A nat-

ural extension of the proposed approach is to consider a four state process and explore

other parametric and non-parametric sojourn times.
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Table 3.2: Simulation Results for a Three-State Semi-Markov Model with the Inclusion
of Covariates1

True Estimate Bias SD SE MSE 95% Coverage

Exponential

�12 0.47 0.4896 0.0196 0.1019 0.0728 0.0108 0.914

�13 0.68 0.6925 0.0125 0.1370 0.1075 0.0189 0.879

�21 0.49 0.5082 0.0182 0.1053 0.0775 0.0114 0.908

�23 0.63 0.6495 0.0195 0.3120 0.0706 0.0978 0.892

�31 0.52 0.5444 0.0244 0.1218 0.1045 0.0154 0.926

�32 0.63 0.6379 0.0079 0.0998 0.0642 0.0100 0.904

�1 0.50 0.5941 0.0941 0.7790 0.0819 0.6157 0.769

�2 1.00 1.0092 0.0092 0.3415 0.0828 0.1167 0.877

Weibull

�12 0.47 0.4736 0.0036 0.0787 0.0549 0.0062 0.942

�13 0.68 0.6865 0.0065 0.1877 0.0838 0.0353 0.933

�21 0.49 0.5032 0.0132 0.3488 0.0594 0.1218 0.933

�23 0.63 0.6352 0.0052 0.1338 0.0632 0.0179 0.921

�31 0.52 0.5288 0.0088 0.0917 0.0768 0.0085 0.953

�32 0.63 0.6305 0.0005 0.0735 0.0544 0.0054 0.932

k 2.00 2.0298 0.0298 0.1292 0.1278 0.0176 0.911

�1 0.50 0.5671 0.0671 1.1238 0.0916 1.2675 0.972

�2 1.00 1.0045 0.0045 0.4144 0.0824 0.1717 0.961

Gamma

�12 1.9 1.9856 0.0856 0.2881 0.3613 0.0903 0.931

�13 1.3 1.3660 0.0660 0.2239 0.2722 0.0545 0.907

�21 1.8 1.8843 0.0843 0.2917 0.3443 0.0922 0.940

�23 1.4 1.4334 0.0334 0.1595 0.2070 0.0265 0.927

�31 1.7 1.8336 0.1336 0.3760 0.4691 0.1592 0.946
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Table 3.2: Simulation Results for a Three-State Semi-Markov Model with the Inclusion
of Covariates (continued)

True Estimate Bias SD SE MSE 95% Coverage

�32 1.4 1.4327 0.0327 0.1607 0.1913 0.0269 0.926

 2.0 2.0745 0.0745 0.1066 0.1799 0.0169 0.902

�1 0.5 0.5088 0.0088 0.0459 0.0687 0.0022 0.974

�2 -1.0 -0.9935 0.0065 0.0592 0.0778 0.0036 0.919

1
For each CTSMM, we simulated 400 subjects for 4 time units long.
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Chapter 4

Trajectories in Depression
Symptoms among Elderly Mexican
Americans with Chronic Health
Conditions: A Longitudinal Data
Analysis

Authors: Kusha A. Mohammadi, and Wenyaw Chan

4.1 Abstract

Background:

Depression is one of the most prevalent mental health issues among older Mexican-

Americans populations. Hispanic Americans are facing a mental health crisis where

research is needed to understand the behaviors of depression symptoms while coping

with one or multiple chronic illnesses such as heart disease, cancer, diabetes mellitus,

stroke, hypertension, and kidney disease.

Methods:

Eight waves of data from the Hispanic Established Population for the Epidemiologic

Study of the Elderly (HEPESE) which spans 20 years (1993 - 2013) was studied. We

categorized the CES-D score into four categories to describe the level of severity of depres-
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sion: Not depressed, mildly depressed, moderately depressed, and severely depressed. A

continuous-time semi-Markov model was used to describe the dynamic severity depres-

sion level over two decades and a partial likelihood approach obtained the parameter

estimates.

Results:

Respondents (n = 3,079) were shown to naturally progress toward higher depression levels

after beginning in the not depressed state within the first 7 years. From the semi-Markov

model, we identified that an elderly Hispanic person with any of the six chronic illnesses

will spend about 15 years in the severely depressed level which is about 3-4 year longer

than the other depression levels. We also report that there is a high risk of transitioning

from non-depressed level back to a higher depressed level (mild, moderate, and severe)

upon entering.

Conclusions:

Our current study indicates elderly Hispanics coping with one or multiple of the six

chronic illnesses are likely to spend the most time in mild to severe depressed levels and

have a higher risk of transitioning to a more severe depression level from a non-depressed

level upon entering.

Keywords: Depressive Symptoms, HEPESE, CTSMM, Partial Likelihood Method

4.2 Introduction

Many recent longitudinal studies have investigating factors associated with risk of de-

pressive symptoms among Hispanics. One study used multivariate logistic regression to

determine the associations between depressive symptoms and sociodemographics, chronic

health conditions, disability, and cultural factors [46]. Another research team found

that social network characteristics have a direct link between depressive symptoms and

chronic health conditions [47]. There is additional evidence that social support and
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church attendance were protective factors against increase depressive symptoms during

pre-widowhood [48]. Further, age-adjusted odds of depressive symptoms in Hispanic

women was 2.11 times the odds of non-Hispanic women while the men did not have a sig-

nificant odds ratio [49]. Oh and others illustrated a relationship between depression and

negative family interaction among cancer Hispanic individuals whom also experienced

depression [50].

In 2010, the elderly Hispanic population (65 years and older) made up about

seven percent of the United States population and is projected to rise to about twenty

percent by 2050 [51]. Because of the rise in the elderly Hispanic population, it has

been of interest to expand the knowledge of changes in depressive symptoms over time.

Katon indicated a higher incidence and prevalence of major depression in individuals

with chronic medical illness [52]. The odds of increased depressive symptoms for those

living with specific chronic illness like heart attack was significantly higher (OR = 1.86; p-

value =0.03) than those with low depressive symptoms among Mexican-American adults

aged 65 and older [53]. Another investigation reported that Mexican Americans had

significantly earlier onset major depressive disorder as compared with African Americans

[54]. Monserud and Markides highlighted church attendance was associated with a slower

increase in depressive sypmtoms and greater social support was related to more depressive

symptoms in the context of widowhood [48]. Changes in depression symptoms among

older Mexican-Americans continues to be at the forefront of research.

In this paper, we investigate the dynamic changes of four levels of depression

among elderly Mexican Americans with chronic health illnesses over time. We analyze

eight time points of data from the Hispanic Established Population for the Epidemio-

logic Study of the Elderly (HEPESE) on adults 65 years and older. The present study

contributes to Hispanic mental health literature in the following ways. First, we will

be able to better describe the natural course between depressive level symptoms over

time using a continuous-time semi-Markov model. This type of longitudinal data anal-
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ysis will provide a more complex illustration of depression symptom patterns over time

among older adults of Mexican descent by o↵ering the rate of transition from one level

to another, estimating the time spent in each depression severity level, and graphically

depicting the hazard of transition. Secondly, the study addresses the mental health crisis

for Mexican-American who experience changes in depressive symptoms while coping with

certain chronic conditions. These chronic illnesses include heart attack, diabetes mellitus,

cancer, stroke, hypertension, and kidney disease. Lastly, the study has the potential to

inform future policy to develop depression programs to aid elderly Mexican-Americans

coping with the chronic illness.

4.3 Methods

4.3.1 Elderly Hispanic Study Sample

We based our analysis on the Hispanic Established Population for the Epidemiologic

Study of the Elderly (HEPESE). The HEPESE contains Mexican Americans aged 65

and older, who live in five southwestern states: Texas, New Mexico, Colorado, Arizona,

and California [31]. The original study started in 1993 -1994 with 3050 subjects with a

response rate of 83% [55] (Figure 4.1). Additional follow-ups occurred every two years

post baseline: Wave 2 in 1995 - 1996 (M = 2438) [56], Wave 3 in 1998-1999 (M = 1980)

[57], Wave 4 in 2000 - 2001 (M = 1682) [58], Wave 5 in 2004 - 2005 (M = 2069) [59],

Wave 6 in 2006 - 2007 (M = 1542) [60], Wave 7 in 2010 - 2011 (M = 1078) [61], and Wave

8 in 2012 - 2013 (M = 744) [62]. Wave 5 added 905 new respondents that were aged

75 and older and followed up with the original cohort. The interviews took place inside

the respondent’s home in both Spanish or English based on their preference. The sur-

vey consisted of questionnaire elements of self-reported sociodemographic, cultural, and

health-realted measures. We used six chronic illness items to determine if the respondent

was diagnosed with one or more chronic illnesses (Heart attack, diabetes mellitus, cancer,
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stroke, hypertension, and kidney disease). We included those from the original cohort

who had more than 1 observation (CES-D measure), and those who at lease on of the

six chronic illnesses. Additionally, we made use of the new respondents in Wave 5 and

included them with the same criteria. Overall, we had a sample size of 3,079 subjects

that were analyzed.

4.3.2 Categorical Outcome Measure

We based the depression symptoms on the Center for Epidemiological Studies Depression

Scale (CES-D) [32] and categorized by the following criteria[33]: not depressed (0 - 9

points), mildly depressed (10 - 15 points), moderately depressed (16 - 24 points), and

severely depressed (more than 25 points). CES-D score is comprised of 20 questions

experienced during the past week. For each item, the answers vary in score from 0

(none/rarely) to 3 (most of the time). Respondents with a CES-D of 16 imply more

psychological distress [63]. For every respondent’s observations, we classified the CES-D

score within four possible categorical outcomes to obtain a full trajectory of depression

level over time.

4.3.3 Statistical Analysis

A continuous-time semi-Markov model (CTSMM) was used to capture dynamic nature

of the depression levels over the duration of the HEPESE. The models for this analysis

were un-adjusted models, meaning they did not consider any subject information on the

transition rates. We used a partial likelihood approach to estimate the parameters from

the CTSMM. To find the final model, the changes in depression severity over time were

examined from models with di↵erent waiting time assumptions. Based on the Akaike

information criterion (AIC), we proceed with the model with the lowest value. We

interpreted the hazard of the CTSMM in the context of the elderly Hispanic Americans

with one or more multiple chronic illnesses and discussed its potential contribution to
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the mental health literature. All analysis were carried out in R 3.6.2.

4.4 Results

The baseline characteristics of the 3,079 respondents overall and by depression level

are presented in Table 4.1. Overall, the elderly Mexican-American’s are about 69%

women, 74 years old, 54% married, and 40% very satisfied with life. The vast majority

of individuals were diagnosed with hypertension (2372 individuals) compared to all other

chronic illnesses. At baseline, most of the participants are classified as not depressed

(1168 subjects) whereas mildly depressed, moderately depressed, and severely depressed

are close in sample size (785, 623, 503, respectively). Among severely depressed, 35%

of them are widowed - not divorced, 28.5% are somewhat to not at all satisfied with

life, 74.2% had hypertension, and 40.8% are diabetic. Within the moderately depressed

stage, 74% are women, 8.7% had a stroke, 77.7% were hypertensive, and 14.4% had

a heart attack. The lower depression levels (not depressed and mildly depressed) had

similar percentages across all the characteristics in Table 4.1.

In table 4.2, we find the total transitions over the observed time period within

this dataset. For instance, there was 205 elderly Mexican-American respondents who

transitioned from a moderate depression level to a severe depression level. The other

observed transitions can be interpreted similarly. From figure 4.2, we observe how the

counts in each depression level over the 20 year changed over the study duration. Overall,

we examined a steep decrease in the number of respondents transitioning out of the not

depressed stage to the higher stress level categories. After 15 years, we still notice a

steady increase in the moderately depressed (CES-D score 16 - 24 points) level. This

indicates that the elderly Mexican-American respondents tend to eventually go towards

to third stress level after a number of years.

Table 4.3 refers to the probability changing to another depression severity state
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at the time of transition. The estimated probability of transitioning from not depressed

to mildly depressed and mildly depressed to moderately depressed are 46.5% and 27.0%,

respectively. Additionally, we find there is a 26.2% chance of moving from a not depressed

state to a severely depressed level and 24.4% chance of moving from a severely depressed

level to a moderately depressed level.

From the CTSMM, we investigated three sojourn distributions: exponential,

Weibull, and gamma distribution. After optimizing the partial likelihood functions,

the AIC was calculated to find the most appropriate model. The AIC was 28318.47,

27844.53, and 27617.36 for the CTSMM which assumed the waiting time distributions

to be exponential, Weibull, and gamma, respectively. This indicates that the model that

specifies the gamma sojourn time is the most appropriate model for the elderly Hispanic

data. Refer to the appendix A to view the raw sojourn times for each transition while

overlaying each distribution over and model based estimates for the other models. Table

4.4 represents the parameter transition rate estimates of the CTSMM that describes the

changes in depressive symptoms among chronically ill elderly Mexican-Americans. Using

the mean of the gamma distribution, we can find the estimated time we would expect

to spend in each depressive state. The expected time spent in the not depressed, mildly

depressed, moderately depressed, and severely depressed levels were 10.79, 12.61, 12.53,

and 15.16 years, respectively. This suggests an elderly Mexican American living with

chronic disease spent the longest time in the severely depressed state before transitioning

back to a less severe level which is about 3 to 4 years longer than the other depression

levels. Figure 4.3 illustrates the hazard of the semi-Markov process assuming a gamma

sojourn time transitioning from one state to another. All hazards reflect a negatively

(left) skewed shape. A higher curve indicates a greater risk of transitioning out of that

depression level, whereas a flatter curve indicates a lower risk of moving out of that de-

pression level. Particularly, the risk of transitioning from a not depressed level to a more

severe state (2, 3, or 4) was high soon after entering the level. Additionally, the risk of
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a respondent moving from a severely depressed level back to any of the lower states was

relatively low upon entering that level.

4.5 Discussion

In this paper, we described the trajectory of multi-categorical depressive process among

elderly Mexican-Americans coping with one or multiple chronic illnesses. We constructed

a semi-Markov chain model to analyze the behavior through a series of states and to

give some quality insight to risk of transitioning to a worse depression level. The 3079

respondents included in this study showed a high percentage (> 39%) of life satisfaction

(i.e. very satisfied) across all classification of depressive symptoms. This could indicate

two explanations for the HEPESE Data. First, there is a presence of respondent bias

where the respondents are not truthfully answering the questions. Second, the CES-D

score may not be a representative indicator for depressive symptoms. In the latter case,

we would need to consider a di↵erent measure for depressive symptoms. However, in

2017, Moon and others determined CES-D to be an adequate screening instrument for

depression in adults with high predictive power (area under the ROC: 0.92) [33]. It is also

important to note that the outcome measure for depressive symptoms were self-reported

and not from medical exams or records.

Based on the eight-waves of the HEPESE longitudinal study, participants were

shown to naturally progress toward the higher depression levels after beginning in the

not depressed level within the first 7 years (figure 4.2). Thereafter, participants tended

to stabilize in each depression state, however, there was still a tendency to transition to

the moderately depressed state as time progressed on. The most appropriate model was

found by calculating the AIC for each model. The gamma sojourn distribution closely

resembled the HEPESE time until transition for each state movement. Although, the

time spent in a particular depression state from the HEPESE dataset was revealed to
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have had a bi-modal shape rather than uni-model shape (see appendix A). Recall, the

HEPESE follow-ups were collected bi-yearly from baseline. Further, some waves were

not consistently observed in two year increments, rather, the participants were followed

up with 3 or 4 years between interviews. Because the study procedure was collected in

this way, the exact duration a respondent spent in each state may not be known or may

vary greatly. We strongly believe this explains the bi-modal distributions present in the

HEPESE example. Despite the finding, the gamma distribution does closely capture the

natural distribution of the data. From the semi-Markov model, we identified that an

elderly Hispanic person with some chronic illness will spend most of their time in the

severely depressed state upon transitioning to that state (table 4.4). Additionally, we

observed that an individual from the HEPESE is at higher risk of transitioning to a higher

depression level (i.e. mildly depressed, moderately depressed, or severely depressed) from

being classified as not depressed (figure 4.3). We also report that there is a lower risk of

transitioning from severely depressed state back to a not depressed level. This indicates

elderly Hispanics coping with any of these six chronic illnesses are likely to exhibit mild

to severe depression symptoms as time progresses forward.

Our study is not without it’s limitations. First, the HEPESE study collected 8

waves of data every two to three years. If observations were collected more frequently,

we could better understand the expected time a particularly respondent would spend

in any given depressive categorical state. Second, the results are not generalizable to

a general population of elderly adults. In this current study, we did not weight the re-

spondent’s outcome measure at each of the eight waves. To make population inferences,

we would need to consider a weighted analysis to make general conclusions about the

pattern of depression severity over time. Lastly, we did not adjust for any confounders

on the transition rates of the CTSMM. There are potentially many risk factors for de-

pression symptoms that were also collected from each subject. Therefore, it is not clear

if the association in this analysis are indeed accurate due to the lack of confounders and
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potential covariates.

The current research is a first look at the dynamic changes of depressive symptoms

among Mexican-Americans who are chronically ill utilizing the HEPESE. Additionally,

it’s one of the first studies to utilize a semi-Markov model to examine the changes through

a series of depressive symptom states over eight waves of observations in HEPESE.
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Table 4.2: Observed Transitions between 4-Levels of Caregiver Stress

To State

From State Depression Level 1 2 3 4

1 None 0 362 212 204

2 Mild 296 0 138 78

3 Moderate 169 98 0 96

4 Severe 173 78 81 0

Table 4.3: Probability of Moving to Another Depression Stage at Time
of Transition

To State

From State Depression Level 1 2 3 4

1 Not Depressed - 0.465 0.272 0.262

2 Mildly Depressed 0.578 - 0.270 0.152

3 Moderately Depressed 0.466 0.270 - 0.264

4 Severely Depressed 0.521 0.235 0.244 -
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Table 4.4: Elderly Mexican-American 4-Level Depression
Model-Based Parameter Estimates assuming a Gamma So-
journ Distribution

Estimate Sojourn Time1 95% Bootstrap CI

�12 0.8307 4.05 (0.7619, 0.8996)

�13 0.8475 3.97 (0.7696, 0.9253)

�14 1.2132 2.77 (1.1135, 1.3129)

�21 0.5959 5.65 (0.5396, 0.6523)

�23 0.9307 3.61 (0.8452, 1.0161)

�24 1.0038 3.35 (0.8485, 1.159)

�31 0.6346 5.30 (0.5545, 0.7148)

�32 0.9380 3.59 (0.8287, 1.0473)

�34 0.9244 3.64 (0.7728, 1.0759)

�41 0.5135 6.55 (0.4443, 0.5827)

�42 0.7643 4.40 (0.6227, 0.9059)

�43 0.8000 4.21 (0.7010, 0.8989)

 3.3643 - (3.1788,3.5497)

1
The time spent (in years) in state i before transitioning to a state j
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Chapter 5

Future Works

When studying longitudinal categorical outcomes, many studies tend to use a

multi-state Markov approach to analyze the behavior through a series of discrete states.

Although, the Markov property may not be realistic since it imposes the holding time

to be exponentially distributed. By this reasoning, a semi-Markov model seems more

applicable because of its flexibility for an arbitrary sojourn time distribution. However,

depending on the sojourn time distribution, the estimation method may computationally

di�cult and ine�cient for higher state semi-Markov processes. This problem motivates

the work presented in this dissertation. We have constructed a partial likelihood method

that has the ability to study the dynamics of a process as a semi-Markov chain which

includes incorporating covariate e↵ects on the transition rates. The partial likelihood

approach utilized familiar survival analysis properties to develop an analogous form to

estimate the parameter estimates of a semi-Markov process. This approach has a cou-

ple of advantages. First, the structure of the partial likelihood method is familiar and

simple as in the classical survival analysis. The redefined probabilistic statements in

the partial likelihood allow for the complexity of the semi-Markov process to be ana-

lyzed. Provided that the simulation were acceptable, we have shown our method to

apply to three to four state semi-Markov processes. Secondly, by utilizing Rcpp package

[34], and doParallel package [35] in R, we developed an computationally e�cient way
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to estimate the parameters from the semi-Markov process. The Rcpp package connects

the C + + programming language and R by allowing R to call C + + functions easily

into R code. This tool helped us improve computation time quickly and conveniently.

Similarly, the doParallel package helped us improve computation speed by performing

multi-core computing. Thirdly, we thoroughly analyzed two non-exponentially sojourn

time distributions: Weibull and gamma distribution. Both of these distributions have

been studied for unique survival problems because of the fact that the are generalization

of the exponential distribution. By assuming either the Weibull or gamma as the waiting

time distribution, we have the flexibility in the CTSMM to have multiple types of shapes

for the hazard of the semi-Markov process. In both our applications, we found the time

until transition to be non-exponential (i.e. Markov model is not appropriate). Lastly,

our approach is applicable to a multitude of longitudinal categorical settings in public

health.

The limitations outlined in the dissertation will be considered for our future re-

search directions. First, due to the complexity of the hazard of the semi-Markov process,

the derivative of the partial likelihood was not available in closed form. Typically, with

the first derivative, we are able to derive the maximum likelihood estimates and stan-

dard errors from the fisher’s information matrix. In the absence of the first derivative,

this proved to be a complicated optimization problem where we needed a derivative free

optimization approach. For all three aims, we considered the Nelder-Mead (NM) non-

linear optimization to find the optimal estimates. While we observed convergence (i.e.

convergence code = 0), there is still a possibility that we may be in a local maximum

rather than a global maximum. For future research, we need to explore other optimiza-

tion methods to further investigate the convergence we observed. Secondly, we used a

non-parametric bootstrap method to estimate the standard errors for each parameter of

the CTSMM. In chapter 3, we observed the coverage probabilities to be lower than the

expected 95% which indicated that confidence interval was not capturing the true value
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95% of the time. This might suggest we need to reconsider the approach to estimating

the standard errors. However, the results in aim 2 suggested the coverage probabilities

to be closer to the expected 95%. For future research, we would compare and contrast

(1) a parametric bootstrap sampling procedure and (2) an optimization method to ap-

proximate the hessian matrix. Lastly, we recognize our proposed method was limited

to two sojourn distributions: Weibull and gamma. For future work, we would extend

this to consider other parametric distributions such as double exponential, normal, and

Pareto. We also desire to investigate non-parametric distributions for the holding time

of the CTSMM.
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Appendix A: Supplementary
Materials for Chapter 4

Supplementary Materials for

Trajectories in Depression Symptoms among Elderly Mexican

Americans with Chronic Health Conditions: A Longitudinal

Data Analysis
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Appendix B: Code

B.1 Written in R 3.6.2 - ”Dark and Stormy Night”

Listing B.1: The Functions used to Implement the Partial Likelihood Approach, Simu-
lation, and Output

#’ Simulate Dataset of a Semi Markov Process
#’
#’ @description
#’ To simulate a three or four stage semi -markov process for a

given time distribution.
#’ Sojourn distributions are exponential or gamma. Simulation

inputs are p0 (initial
#’ distribution), pij (probaility matrix), and Fij (sojourn

distribution).
#’
#’ @param pij Probability matrix (i X j)
#’ @param Rij Matrix (i X j) of rate parameters
#’ @param p0 Initial State (if one not supplied , a random one

will be choosen)
#’ @param Tmax Max time to observe patients (10 years)
#’ @param nsubj Number of simulated subjects (defaulted to 700

subjects)
#’ @param distn Sojourn Distribution ("exp" = exponential , "gamma

" = gamma , "weibull" = Weibull)
#’ @param covar the covariates are needed set to TRUE (defaulted

to FALSE)
#’ @param beta vector of true parameters for covariates (

defaulted to 0 for no covariates)
#’ @param psi true gamma shape parameter constant for all

transition i to j
#’ @param k true weibull shape parameter constant for all

transition i to j
#’ @param Tmin Minimum start time for each subject (defaulted to

0)
#’ @param binprob Simulating binomial random draw for dictomous

variable (default p = 0.5)
#’ @param umin Simulating uniform random draw for continuous
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variable (lower bound); (default min = 10)
#’ @param umax Simulating uniform random draw for continuous

variable (upper bound) (default max = 20)
#’ @param nobs If there are panel observations , give number of

observations (defaulted to NULL)
#’ @param censorTmax If the last observation time needs to be set

to Tmax
#’ @return DF A simulated dataset of n subjects
#’ @importFrom stats rexp rgamma rweibull runif rbinom
#’ @export
SemiMarkovSim <- function(pij , Rij , p0 = NA, Tmax = 5, nsubj =

700, distn = "exp", covar = FALSE , beta = 0, psi = NULL , k =
NULL , nobs = NULL , Tmin = 0, binprob = 0.5, umin = -1, umax =
1, censorTmax = FALSE) {

# Create dataframe to save all subject data
DF <- data.frame()

# If covar is TRUE , then simulate a dictomous and continuous
variable

if (covar == TRUE) {
X1 <- runif(n = nsubj , min = umin , max = umax) # The

continuous variable
X2 <- rbinom(n = nsubj , size = 1, prob = binprob) # The

binary variable
cov.l <- cbind(X1 , X2)
bcovs <- beta %*% t(cov.l)
#rates <- lapply (1:nsubj , function(c) Rij*exp(aij + bcovs[,c

]))
rates <- lapply (1:nsubj , function(c) Rij*exp(bcovs[,c]))

} else {
rates <- lapply (1:nsubj , function(g) Rij)
cov.l <- replicate(nsubj , cbind (0,0))

}

# If start state is given , then start with supplied state
# else start with random state
if(is.numeric(p0)) {

init.state <- rep(p0 , nsubj)
} else {

init.state <- replicate(nsubj , sample (1: nrow(pij), size = 1))
}

df <- lapply (1:nsubj , function(l) SMC(l, pij , rates[[l]], init.
state[l], distn , psi , k, Tmax , covar , cov.l[l,], Tmin , nobs ,
censorTmax))

DF <- do.call(rbind , df)

DF <- as.matrix(DF)
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return(DF)
}

#’ Simulate Panel Observations
#’
#’ @description
#’ Using simulate times and states , create a new vector of panel

observe times and states.
#’ For example , observations are to be once every year (e.g. 1,

2, 3).
#’
#’ @param states vector of transition states
#’ @param time vetor of transition times
#’ @param nobs Number of panel observations
#’ @return i.state vector of observe state (from i) for panel

times
#’ @return j.state vector of observe state (to i) for panel times
#’ @return int.time vector of panel observed times
#’
SimPanObs <- function(states , time , nobs) {

int.time <- 1:nobs
obs.state <- c(states [1])
for(k in 1:nobs) {

new.time <- time[which(time <= int.time[k])]
obs.state <- c(obs.state , states[which(time == max(new.time))

])
}
int.time <- c(0, int.time)
j.state <- obs.state

# Reduce data non -repeated states
ReduceData <- Reduce(j.state , int.time)
j.state <- ReduceData$State
int.time <- ReduceData$Time
int.stime <- c(0, diff(int.time))
i.state <- c(j.state [1], j.state [1:( length(j.state) -1)])

return(list(i.state = i.state , j.state = j.state , int.time =
int.time , int.stime = int.stime))

}

#’ Eliminate Repeated Adjacent Observe States
#’
#’ @description
#’ Function to deleting repeated observe states for each

individual , however , maintaining
#’ the visit time in each state (e.g. time = c(1,2,4); state = c

(3,3,4) -> time = c(1,4);
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#’ state = c(3,4)).
#’
#’ @param state Subject observed state ’s with adjacent repeated

states
#’ @param time Subject visit time for each corresponding observed

state
#’ @return State Subject observed state ’s without adjacent

repeated states
#’ @return Time Subject visit time for each corresponding

observed state
#’
Reduce <- function(state , time){

# Count the number of consecutive runs in the State vector
runs <- rle(state)

# Find positions in vector where runs are more than 1
myruns <- which(runs$lengths >= 1)

# Cumulative Sums of consecutive runs
runs.len <- cumsum(runs$lengths)

# Keep positions (indicies) that have single runs
end <- runs.len[myruns]

# Get observed state ’s without adjacent repeated states
new_state <- state[end]

# Get corresponding visit time
# If run on is at beginning of process , re-index
if(state [1] == state [2]) {end <- c(1, end[-length(end)])}
new_time <- time[end]

return(list(State = new_state , Time = new_time))
}

#’ Simulate a Simple Semi -Markov Chain Assuming A Sojourn
Distribution

#’
#’ @description
#’ To simulate one semi -markov chain assuming a exponential ,

weibull , or gamma sojourn
#’ distribution by supplying an initial distribution (p0),

probability matrix (pij), and
#’ Fij (sojourn distribution).
#’
#’ @param l indicator for the kth subject
#’ @param pij Probability matrix (i X j)
#’ @param Rij Matrix (i X j) of rate parameters
#’ @param init.state Initial State for the Markov Chain
#’ @param distn the specified distribution ("exp", "gamma", "

weibull ")
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#’ @param psi shape parameter constant for all transition i to j
#’ @param k shape parameter constant for all transition i to j
#’ @param Tmax Max time to observe patients (10 years)
#’ @param covar Boolean statement if covariates are included
#’ @param covs the simulated covariate vector
#’ @param Tmin Minimum start time for each subject (defaulted to

0)
#’ @param nobs If there are panel observations , give number of

observations (defaulted to NULL)
#’ @param censorTmax If the last observation time needs to be set

to Tmax
#’ @importFrom stats rexp rgamma rweibull runif rbinom
#’ @return df A simulated dataset for the kth subject
SMC <- function(l, pij , Rij , init.state , distn , psi = NULL , k =

NULL , Tmax = 10, covar = FALSE , covs = NULL , Tmin = 0, nobs =
NULL , censorTmax = TRUE) {

i.vec <- c(init.state) # Store initial state in "To
state" vector , i

j.vec <- c(init.state) # Store initial state in "From
state" vector , j

stime <- c(Tmin) # Set the initial
sojourn time to be 0

time <- c(Tmin) # Set the t to be Tmin

t <- Tmin # Set t value to Tmin
curr.state <- init.state # Set current state to initial

state

while(t < Tmax) {

# Sample a next state
next.state <- sample (1: nrow(pij), size = 1, prob = pij[curr.

state ,])

if (distn == "exp") {
# Draw a Exp R.V. for the current state
wait.time <- rexp(n = 1, rate = Rij[curr.state , next.state

])

} else if (distn == "gamma") {
# Draw a gamma R.V. for the current state
wait.time <- rgamma(n = 1, shape = psi , rate = Rij[curr.

state , next.state])

} else if (distn == "weibull") {
# Draw a Weibull R.V. for the current state
wait.time <- rweibull(n = 1, shape = k, scale = 1/Rij[curr.

state , next.state])
} else {

stop(paste("The Distribution", distn , "is not an option"))
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}

ctime <- t + wait.time # Cumlative time
i.vec <- c(i.vec , curr.state) # Store current state in i.

vec
j.vec <- c(j.vec , next.state) # Store next state in j.vec
time <- c(time , ctime) # Store time in a vector ,

time
stime <- c(stime , wait.time) # Store sojourn time in a

vector , stime

curr.state <- next.state # Set next state to current
state

t <- ctime # update time , t, to
current time

}

# If the last time observation is > observed time , then censor
time to max time

if (max(t) > Tmax & censorTmax == TRUE) {
nvec <- length(time)
time[nvec] <- Tmax
stime[nvec] <- Tmax - time[nvec - 1]

}

# If there are set interval time supplied , then resimulate
states & time

if (!is.null(nobs)){
obs <- SimPanObs(j.vec , time , nobs) # Obtain these states &

times
stime <- obs$int.stime
time <- obs$int.time # Save the new observed

times
i.vec <- obs$i.state # Save the i states for

each time t
j.vec <- obs$j.state # Save the j states for

each time t
}

ID <- rep(l, length(time)) # Create ID number for
subject k

# Save the data in a temporary subject datafame
df <- data.frame(ID = ID , time = time , i = i.vec , j = j.vec ,

stime = stime)

# If there is covariates , save the covariates as a dataframe
if (covar == TRUE) {

# Create a dataframe to attach to temporary subject dataframe
dfcovs <- data.frame(t(replicate(n = length(time), covs)))
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# Save covariates to the temporary subject dataframe
df <- cbind(df , dfcovs)

}

return(df)
}

#’ Simulate a Markov Chain and Estimate Transition Rates
#’
#’ @description
#’ Using msm package , we will simulate a markov chain and

estimate the transition rates
#’ using the full likelihood approach. The model uses the hessian

matrix to calculate the
#’ asmyptotic standard errors.
#’
#’ @param Qij Matrix (i X j) of transition rate parameters
#’ @param nsim The number of simulations to be run
#’ @param n.subj The number of subjects in the simulation study
#’ @param n.obs The number of observations for each subject
#’ @param seed Use any integer to set the seed for reproducible

results (default= 1234)
#’ @return est a vector of estimates , standard errors , lower and

upper confidence interval
#’ values
#’ @import msm
#’ @import doParallel
#’ @import doRNG
#’ @import svMisc
#’ @export
sim_mc <- function(Qij , nsim , n.subj = 300, n.obs = 11, seed =

1234){

registerDoRNG(seed = seed)
est <- foreach(b = 1:nsim , .combine = ’cbind’) %dopar% {

temp <- data.frame(subject = rep (1:n.subj , rep(n.obs ,n.subj)
), time = rep(seq(0, (n.obs - 1), 1), n.subj))

DF <- simmulti.msm(temp , qmatrix = Qij , start = sample (1: ncol
(Qij), n.subj , replace = T))

if(ncol(Qij) == 3) {
Q.init <- matrix(c(0.0, 0.6, 0.6, 0.6, 0.0, 0.6, 0.6, 0.6,

0.0), ncol = 3, nrow = 3, byrow = T)
} else {

Q.init <- matrix(c(0.0, 0.6, 0.6, 0.6,
0.6, 0.0, 0.6, 0.6,
0.6, 0.6, 0.0, 0.6,
0.6, 0.6, 0.6, 0.0), ncol = 4, nrow = 4,

byrow = T)
}
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tryCatch ({
# MSM model
ad.msm <- msm(state ~ time , subject , data = DF , qmatrix = Q.

init)

qmat <- qmatrix.msm(ad.msm)
qb.est <- t(qmat$estimates)[t(Qij) > 0]
qb.se <- t(qmat$SE)[t(Qij) > 0]
qb.lwr <- t(qmat$L)[t(Qij) > 0]
qb.upr <- t(qmat$U)[t(Qij) > 0]

c(qb.est , qb.se, qb.lwr , qb.upr)
}, error=function(e){})

}

return(est)

}

#’ Summarize the Markov Chain simulation results in a LaTex table
#’
#’ To take simulation results in matrix form and output quick

latex code
#’
#’ @param sim Matrix of Markov Chain (from sim.mc) simulation

results
#’ @param true Vector of true values (i.e. transition rate

parameters)
#’ @param nstate Number of states
#’ @return Latex code for summary table
#’ @importFrom stats var
#’ @import kableExtra
#’ @export
MakeTableMC <- function(sim , true , nstate = 3){

# Extract the raw simulation parameter results from the
confidence intervals

npar <- nstate*(nstate - 1)
simD <- sim [1:npar ,]
se <- sim[(npar + 1):(2*npar),]
lwr <- sim[(2*npar + 1):(3*npar),]
upr <- sim[(3*npar + 1):(4*npar),]

# Evaluate the simulation results from mean , bias , var , mse ,
and coverage probability

mean.s <- apply(simD , 1, mean)
bias.s <- sapply (1: nrow(simD), function(i) mean(simD[i,] - true
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[i]))
sd.s <- apply(simD , 1, sd)
mse.s <- sd.s^2 + bias.s^2

cov.s <- sapply (1: nrow(lwr), function(i) mean(lwr[i,] <= true[i
] & upr[i,] >= true[i]))

se.s <- apply(se , 1, mean)

# Collect results into a new matrix
sum.tab <- cbind(true , mean.s, bias.s, sd.s, se.s, mse.s, cov.s

)
sum.tab <- round(sum.tab , 4)
colnames(sum.tab) <- c("True", "Estimate", "Bias", "SD", "SE",

"MSE", "95\\% Coverage")
rownames(sum.tab) <- GreekLabels(nstate , "exp", 0, covar =

FALSE)

kTab <- kable(sum.tab , "latex", vline = "", escape = F, caption
= "Full Likelihood Results from Markov Chain", linesep = ""

, align = rep(’c’ ,7), position = "!ht")
return(kTab)

}

#’ Mean of F Distribution
#’
#’ Calculate the mean of the distribution
#’
#’ @param rate Rate parameter
#’ @param shape Shape parameter (if applicable)
#’ @param dist Distribution to calculate mean (options "exp", "

weibull", "gamma")
#’ @return mean value Returns mean value for the specified

distribution
#’ @examples
#’ mean_F(2, dist = "exp")
#’ mean_F(2, 3, "weibull ")
#’ mean_F(2, 2, "gamma")
#’ @export
mean_F <- function(rate , shape = NULL , dist) {

if (dist == "exp") {
R <- 1/rate

} else if (dist == "gamma") {
R <- shape/rate

} else if (dist == "weibull") {
R <- gamma (1 + 1/shape)/rate

}

if(is.matrix(R) == TRUE) {diag(R) <- 0}
return(round(R, 2))

}
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#’ Find Shape Parameters to Find Common Mean
#’
#’ @description
#’ To find gamma shape parameter for common mean between the

weibull and gamma
#’ distribution.
#’
#’ @param wei_shape weibull shape parameter
#’ @return Gamma Shape parameter
#’ @export
ShapeFind <- function(wei_shape) {

return(gamma (1 + 1/wei_shape))
}

#’ Hazard Function for Computation
#’
#’ @description
#’ To calculate the hazard values using either the exponential ,

weibull , or gamma
#’ distribution. The hazard function for the semi -markov process

is uses the probability
#’matrix (pij), sojourn pdf (fij), and sojourn cdf (Fij).
#’
#’ @param ri Vector of rate parameters for state i
#’ @param pij Probability transition matrix (i X j)
#’ @param i state from
#’ @param j state to
#’ @param s sojourn time spent in the previous state i
#’ @param distn Sojourn Distribution ("exp" = exponential , "gamma

" = gamma , "weibull" = Weibull)
#’ @param beta beta coefficient parameters
#’ @param covs covariate information vector for transitioning

subject
#’ @param psi shape parameter for the gamma distribution
#’ @param k shape parameter for the weibull distribution
#’ @param covar boolean statement if covariates are included
#’ @return hazard value from respective hazard function
#’ @importFrom stats dexp pexp dgamma pgamma pweibull dweibull
#’
hfunction <- function(ri, pij , i, j, s, distn , beta , covs , psi , k

, covar) {

# Hazard function = pij * fij / sum_j( pij (1 - Fij ) )

if (distn == "exp") {
# Exponential Hazard function using exponential pdf , cdf , and

pij
num <- pij[i, j] * dexp(s, ri[j])
den <- sapply(which (1: nrow(pij) != i), function(u) pij[i,u]*

101



(1 - pexp(s, ri[u])))
h <- num/sum(den)

} else if (distn == "gamma") {
# Gamma Hazard function using exponential pdf , cdf , and pij

num <- pij[i, j] * dgamma(s, psi , ri[j])
den <- sapply(which (1: nrow(pij) != i), function(u) pij[i,u]*

(1 - pgamma(s, psi , ri[u])))
h <- num/sum(den)

} else if (distn == "weibull") {
# Weibull Hazard function using exponential pdf , cdf , and pij
num <- pij[i, j] * dweibull(s, k, 1/ri[j])
den <- sapply(which (1: nrow(pij) != i), function(u) pij[i,u]*

(1 - pweibull(s, k, 1/ri[u])))
h <- num/sum(den)

} else {
# Send warning message if the distribution is not one of

these
stop(paste("The Distribution", distn , "is not an option"))

}

# If covariates (i.e. TRUE), modify hazard function by cox
model

#if (covar == TRUE) {h <- h*exp(as.numeric(aij[i,j] + beta %*%
covs))}

if (covar == TRUE) {h <- h*exp(as.numeric(beta %*% covs))}

return(h)

}

#’ Probability Transition Matrix from Data
#’
#’ To calculate the transition counts using the data.
#’
#’ @param state the observed state transition
#’ @param ID The subject ’s identification tag
#’ @param data the data frame with these variables
#’ @return matrix A matrix of observed probability transition

counts
#’ @export
#’ @importFrom msm statetable.msm
PijCount <- function(data) {

P <- statetable.msm(j, ID, data)
return(P/apply(P, 1, sum))

}
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#’ Parameter Preparation
#’
#’ To separate the rate parameters from the shape parameter
#’
#’ @param par vector of parameter estimates
#’ @param nstate number of states in the process (defaulted to 4)
#’ @param nBeta number of covariates
#’ @param distn Specify the distribution ("exp", "gamma", "

weibull ")
#’ @param covar boolean statement if covariates are included
#’ @return List of the parameters by matrix of rates , shape

parameter , beta coefficents , transition specific constants aij
.

#’
ParPrep <- function(par , nstate , nBeta , distn , covar) {

if (distn == "exp") {
nr <- nstate*(nstate - 1)
if (covar == TRUE) {

beta <- par[(nr+1):(nr+nBeta)]
#aij <- par[(nr+nBeta +1):length(par)]
#aMat <- Vec2Mat(aij , nstate)

} else {
beta <- rep(0, 2)
#aMat <- matrix(0, ncol = nstate , nrow = nstate)

}
par <- par[1:nr]
shape = 0

} else if (distn == "gamma" | distn == "weibull") {
nr <- nstate*(nstate - 1)
shape <- par[(nr+1)]
if (covar == TRUE) {

beta <- par[(nr+2):(nr+ nBeta + 1)]
#aij <- par[(nr+nBeta +2):length(par)]
#aMat <- Vec2Mat(aij , nstate)

} else {
beta <- rep(0, 2)
#aMat <- matrix(0, ncol = nstate , nrow = nstate)

}
par <- par[1:nr]

} else {
stop(paste("The Distribution", distn , "is not an option"))

}

rMat <- Vec2Mat(par , nstate)

#return(list(parM = rMat , shape = shape , beta = beta , aijM =
aMat))
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return(list(parM = rMat , shape = shape , beta = beta))
}

#’ Vector to Matrix
#’
#’ Take the parameter estimates to nstate X nstate matrix
#’
#’ @param par vector of parameter estimates
#’ @param nstate number of states in the process (defaulted to 4)
#’ @return A matrix from the vector form (i X j)
#’ @export
Vec2Mat <- function(par , nstate = 4) {

W <- matrix(1, nrow = nstate , ncol = nstate) # Create a Matrix
(nstate X nstate)

diag(W) <- 0 # Fill the
diagonals with 0s

W[W > 0] <- par # Fill parameters
estimates in Matrix

q <- t(W) # Transpose matrix
to realign elements

return(q)
}

#’ List of Prepared Data
#’
#’ To organize and separate data for partial likelihood
#’
#’ @param data A data frame in this order (ID, time , i, j, s,

covs ..)
#’ @param covar boolean statement if covariates are included
#’ @return A list of data needed for optimization; numData ,

denData , denTies , denTime , cov
#’
PrepData <- function(data , covar = FALSE) {

# Index for variables in data
ID <- 1; time <- 2; i = 3; j = 4; s = 5
pij <- PijCount(data)

df1 <- data[order(data[,time]) ,] # Order data by
transition time

df2 <- df1[df1[,time] > 0, ] # Data with transition
times greater than 0

Ttime <- df2[,time] # Obtain the ordered
transition times

UTime <- unique(Ttime) # Unique Transition times

# Count the number of ties in the data
dn <- sapply(UTime , function(t) sum(t == Ttime))

# Matrix of information (state i, state j, and sojourn time s)
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for the numerator
numData <- df2[,c(i, j, s)]

# List of data by subject for the denominator (transition time
t, state i, and state j)

denData <- sapply(unique(df1[,ID]), function(w) df1[which(df1[,
ID] == w), c(time ,i,j)])

if (covar == TRUE) {
# Matrix of Covariates for the numerator
ncov <- ncol(df2)
numCovs <- df2[,(s+1):ncov]

# List of Covariates for the denominator
denCovs <- sapply(unique(df1[,ID]), function(w) df1[which(df1

[,ID] == w) ,][1,(s+1):ncov])

} else {
numCovs <- matrix(0, ncol =2)
denCovs <- matrix(0, ncol = 2)

}

return(list(numData = numData , denData = denData , denTies = dn ,
denTime = UTime , numCovs = numCovs , denCovs = t(denCovs),

pij = pij))

}

#’ PARTIAL LOG LIKELIHOOD
#’
#’ @description
#’ To estimate the maximum likelihood estimates by maximizing the

partial log likelihood ,
#’ PLL.
#’
#’ @param par parameters needed for estimation
#’ @param data A dataset in matrix form and ordered format (e.g.

ID, time , i, j, sojourn time)
#’ @param distn Specify the distribution ("exp", "gamma", "

weibull ")
#’ @param nstate Number of states in the semi -Markov process (

defaulted to 4)
#’ @param nBeta number of covariates
#’ @param covar boolean statement if covariates are included
#’ @return The partial log likelihood value for a given set

parameters
#’ @import Rcpp
#’ @export
PLL <- function(par , data , distn = "exp", nstate = 4, nBeta = 2,

covar = FALSE) {
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# Before optimization prepare data by separating into mulitple
matricies

## List arguements: numData , denData , denTies , denTime
df <- PrepData(data , covar)

# Obtain parameters for PLL
Lpar <- ParPrep(par , nstate , nBeta , distn , covar)
rates <- Lpar$parM
shape <- Lpar$shape
beta <- Lpar$beta
#aij <- Lpar$aijM
#aij <- matrix(0, nstate , nstate)

# Probability transition matrix
pij <- df$pij

# Calculation of the partial likelihood
## Calculation of the numerator
## numData structure: (state) i, (state) j, (sojourn time) s
lnum <- apply(df$numData , 1, function(v) hfunction(rates[v

[1],], pij , v[1], v[2], v[3], distn , beta , df$numCovs[which(
v[3] == v[3]) ,], shape , shape , covar))

## Calculation of the denominator
## denData Structure: time (of transition), (state) i, (state)

j
## denTime: Vector of unique transition times
## denCovs: Matrix of covariate information
A <- df$denData
B <- df$denTime
C <- as.matrix(df$denCovs)
ldenom <- RiskSet(A, B, rates , pij , distn , beta , C, shape ,

shape , covar)

## Calculate the total of the partial log likelihood
l <- sum(log(lnum)) - sum(df$denTies * log(ldenom))

if(is.infinite(l)){l <- -1e6}
if(is.nan(l)){l <- -1e6}
return(-l)

}

#’ Simulation Optimization
#’
#’ @description
#’ To evaluate the partial log likelihood by nonlinear
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optimization using Lagrange method.
#’ Each simulation will also have bootstrap samples to collect

the standard errors.
#’
#’ @param pij Probability matrix (i X j)
#’ @param Rij Matrix (i X j) of rate parameters
#’ @param p0 Initial State (if one not supplied , a random one

will be choosen)
#’ @param Tmax Max time to observe patients (10 years)
#’ @param nsubj Number of simulated subjects (defaulted to 700

subjects)
#’ @param nsim Number of Simulations
#’ @param nboot Number of bootstrap samples
#’ @param nstate Number of states
#’ @param nBeta Number of coefficents
#’ @param distn Sojourn Distribution ("exp" = exponential , "gamma

" = gamma , "weibull" = Weibull)
#’ @param covar If covariates are needed (defaulted to FALSE)
#’ @param beta vector of true parameters for covariates (

defaulted to 0 for no covariates)
#’ @param psi true gamma shape parameter constant for all

transition i to j
#’ @param k true weibull shape parameter constant for all

transition i to j
#’ @param aij Transition specific intercepts matrix (i X j)
#’ @param Tmin Minimum start time for each subject (defaulted to

0)
#’ @param binprob Simulating binomial random draw for dictomous

variable (default p = 0.5)
#’ @param umin Simulating uniform random draw for continuous

variable (lower bound); (default min = 10)
#’ @param umax Simulating uniform random draw for continuous

variable (upper bound) (default max = 20)
#’ @param nobs If there are panel observations , give number of

observations (defaulted to NULL)
#’ @param censorTmax If the last observation time needs to be set

to Tmax
#’ @param control Control options for optim r
#’ @return estMat matrix of optimization estimates
#’ @return SeList A list of bootstrap estimates for each

simulation
#’ @importFrom stats optim sd
#’ @useDynLib PLSMM , .registration = TRUE
#’ @export
SimOptim <- function(pij , Rij , p0 = NA, Tmax = 5, nsubj = 700,

nsim = 500, nboot = 10, nstate = 4, nBeta = 2, distn = "exp",
covar = FALSE , beta = 0, psi = NULL , k = NULL , aij = NULL ,
nobs = NULL , Tmin = 0, binprob = 0.5, umin = -1, umax = 1,
censorTmax = FALSE , control = list(reltol = 1e-4)) {

LenPar <- nstate*(nstate - 1) + 1*(!is.null(psi) == T)*(length(
psi)) + 1*(!is.null(k) == T)*(length(k)) + 1*(all(beta != 0)
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)*(length(beta))
est <- matrix(NA , nrow = nsim , ncol = LenPar)
upr <- matrix(NA , nrow = nsim , ncol = LenPar)
lwr <- matrix(NA , nrow = nsim , ncol = LenPar)

for (b in 1:nsim) {
data <- SemiMarkovSim(pij , Rij , p0 , Tmax , nsubj ,

distn , covar , beta , psi , k, aij , nobs , Tmin ,
binprob , umin , umax , censorTmax)

par <- init.par(data , distn , nstate , nBeta , covar
)

est[b, ] <- optim(par = par , fun = PLL , data =
data , distn = distn , nstate = nstate , nBeta =
nBeta , covar = covar , method = "Nelder -Mead",
control = control)$par

res2 <- matrix(NA , nrow = nboot , ncol = length(
par))

for (v in 1: nboot){
data2 <- data[which(data[,1] %in% sample(

unique(data [,1]), size = nsubj ,
replace = TRUE)),]

par2 <- init.par(data2 , distn , nstate ,
nBeta , covar)

res2[v,] <- optim(par = par2 , fun = PLL ,
data = data2 , distn = distn , nstate =
nstate , nBeta = nBeta , covar = covar ,
method = "Nelder -Mead", control =
control)$par

}

lwr[b,] <- sapply (1: length(par), function(a) est[
b,a] - 1.96* sd(res2[,a]))

upr[b,] <- sapply (1: length(par), function(a) est[
b,a] + 1.96* sd(res2[,a]))

}

return(list(est = est , lwr = lwr , upr = upr))

}

#’ Simulation Optimization by paralleling loops
#’
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#’ @description
#’ To evaluate the partial log likelihood by Nelder -Mead method

optimization.
#’ Each simulation will also have bootstrap samples to collect

the standard errors.
#’
#’ @param pij Probability matrix (i X j)
#’ @param Rij Matrix (i X j) of rate parameters
#’ @param p0 Initial State (if one not supplied , a random one

will be choosen)
#’ @param Tmax Max time to observe patients (10 years)
#’ @param nsubj Number of simulated subjects (defaulted to 700

subjects)
#’ @param nsim Number of Simulations
#’ @param nboot Number of bootstrap samples
#’ @param nstate Number of states
#’ @param nBeta Number of coefficents
#’ @param distn Sojourn Distribution ("exp" = exponential , "gamma

" = gamma , "weibull" = Weibull)
#’ @param covar the covariates are needed set to TRUE (defaulted

to FALSE)
#’ @param beta vector of true parameters for covariates (

defaulted to 0 for no covariates)
#’ @param psi true gamma shape parameter constant for all

transition i to j
#’ @param k true weibull shape parameter constant for all

transition i to j
#’ @param aij Transition specific intercepts matrix (i X j)
#’ @param Tmin Minimum start time for each subject (defaulted to

0)
#’ @param binprob Simulating binomial random draw for dictomous

variable (default p = 0.5)
#’ @param umin Simulating uniform random draw for continuous

variable (lower bound); (default min = 10)
#’ @param umax Simulating uniform random draw for continuous

variable (upper bound) (default max = 20)
#’ @param nobs If there are panel observations , give number of

observations (defaulted to NULL)
#’ @param censorTmax If the last observation time needs to be set

to Tmax
#’ @param control Controls for optim
#’ @param seed Set the seed for repoducibility
#’ @return est A matrix of optimization estimates and confidence

intervals
#’ @importFrom stats optim sd
#’ @import doParallel
#’ @import doRNG
#’ @useDynLib PLSMM , .registration = TRUE
#’ @export
SimOptimPar <- function(pij , Rij , p0 = NA, Tmax = 5, nsubj = 700,

nsim = 500, nboot = 10, nstate = 4, nBeta = 2, distn = "exp",
covar = FALSE , beta = 0, psi = NULL , k = NULL , aij = NULL ,
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nobs = NULL , Tmin = 0, binprob = 0.5, umin = -1, umax = 1,
censorTmax = FALSE , control = list(reltol = 1e-4), seed =
1234) {

registerDoRNG(seed = seed)
est <- foreach(b = 1:nsim , .combine = ’cbind’, .packages

= ’PLSMM ’) %dopar% {

data <- SemiMarkovSim(pij , Rij , p0 , Tmax , nsubj , distn ,
covar , beta , psi , k, nobs , Tmin , binprob , umin ,

umax , censorTmax)

par <- init.par(data , distn , nstate , nBeta , covar
)

res <- optim(par = par , fn = PLL , data = data ,
distn = distn , nstate = nstate , nBeta = nBeta ,
covar = covar , method = "Nelder -Mead",

control = control)$par

bootres <- BootCI(data , res , distn , nstate , nsubj
, nBeta , nboot , covar)

c(res , bootres)
}

return(est)

}

#’ Bootstrap samples to find the 95\% Confidence Intervals
#’
#’ @description
#’ To find the 95\% Confidence intervals by bootstrap samples
#’
#’ @param data Simulated Semi -Markov Dataset
#’ @param res Best results from Nelder -Mead Optimization
#’ @param distn Sojourn Distribution ("exp" = exponential , "gamma

" = gamma , "weibull" = Weibull)
#’ @param nstate Number of states
#’ @param nsubj Number of subjects
#’ @param nBeta Number of coefficents
#’ @param nboot Number of bootstrap samples
#’ @param covar the covariates are needed set to TRUE (defaulted

to FALSE)
#’ @param control Control options for optim
#’ @return A vector of confidence intervals for each parameter in

order
#’ @importFrom stats optim sd
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#’ @import doParallel
#’ @export
BootCI <- function(data , res , distn , nstate , nsubj , nBeta , nboot ,

covar , control) {

res2 <- foreach(v = 1:nboot , .combine = ’cbind’, .
packages = ’PLSMM ’) %do% {

data2 <- data[which(data[,1] %in% sample(unique(data
[,1]), size = nsubj , replace = TRUE)),]

par2 <- init.par(data2 , distn , nstate , nBeta ,
covar)

optim(par = par2 , fn = PLL , data = data2 , distn =
distn , nstate = nstate , nBeta = nBeta , covar

= covar , method = "Nelder -Mead", control =
control)$par

}

CI <- sapply (1: length(res), function(a) res[a] + c(-1,1)
* 1.96* sd(res2[a,]))

return(c(CI[1,], CI[2,]))

}

#’ Summarize the simulation results in a LaTex table
#’
#’ To take simulation results in matrix form and output quick

latex code
#’
#’ @param sim Matrix of simulation results
#’ @param true Vector of true values (rate parameters , shape

parameters , coefficients , etc.)
#’ @param nstate Number of states
#’ @param distn The sojourn distribution (e.g. exp , weibull ,

gamma)
#’ @param nBeta Number of covariate parameters
#’ @param covar Boolean statement if covariates are present
#’ @return Latex code for summary table
#’ @importFrom stats var
#’ @import kableExtra
#’ @export
MakeTable <- function(sim , true , nstate = 4, distn = "exp", nBeta

= 2, covar = FALSE){

# Extract the raw simulation parameter results from the
confidence intervals

npar <- nstate*(nstate - 1)
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if(distn != "exp") {npar = npar + 1}
if(covar == TRUE) {npar = npar + nBeta}
simD <- sim [1:npar ,]
lwr <- sim[(npar +1):(npar+npar),]
upr <- sim[(npar + npar + 1):(npar + npar + npar),]

# Evaluate the simulation results from mean , bias , var , mse ,
and coverage probability

mean.s <- apply(simD , 1, mean)
bias.s <- sapply (1: nrow(simD), function(i) mean(simD[i,] - true

[i]))
sd.s <- apply(simD , 1, sd)
mse.s <- sd.s^2 + bias.s^2

cov.s <- sapply (1: nrow(lwr), function(i) mean(lwr[i,] <= true[i
] & upr[i,] >= true[i]))

se.s <- sapply (1: nrow(upr), function(i) median ((upr[i,] - true[
i]) / 1.96))

# Collect results into a new matrix
sum.tab <- cbind(true , mean.s, bias.s, sd.s, se.s, mse.s, cov.s

)
sum.tab <- round(sum.tab , 4)
colnames(sum.tab) <- c("True", "Estimate", "Bias", "Variance",

"SE", "MSE", "95\\% Coverage")
rownames(sum.tab) <- GreekLabels(nstate , distn , nBeta , covar)

kTab <- kable(sum.tab , "latex", vline = "", escape = F, caption
= "Simulation Results Assuming an Exponential Sojourn Time

Distribution", linesep = "", align = rep(’c’ ,7), position =
"!ht")

return(kTab)
}

#’ Make Greek Labels for Tables
#’
#’ To make row labels formatted for latex output
#’
#’ @param nstate Number of States in the System
#’ @param distn Sojourn Distribution ("exp" = exponential , "gamma

" = gamma , "weibull" = Weibull)
#’ @param nBeta Number of covariate parameters
#’ @param covar Boolean statement if covariates are present
#’ @return Vector of parameters in latex format
GreekLabels <- function(nstate , distn , nBeta , covar = FALSE) {

Vec <- c()
for (i in 1: nstate) {

for (j in which (1: nstate != i)) {
Vec <- c(Vec , paste("$\\ lambda_{",i, j,"}$", sep = ""))

}
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}
if (distn == "weibull") {Vec <- c(Vec , paste("$k$"))}
if (distn == "gamma") {Vec <- c(Vec , paste("$\\psi$"))}
if(covar == TRUE) {

for (p in 1: nBeta){
Vec <- c(Vec , paste("$\\beta_", p, "$", sep = ""))

}
}
return(Vec)

}

#’ Real Data Optimization by paralleling loops
#’
#’ @description
#’ To evaluate the partial log likelihood by Nelder -Mead method

optimization.
#’ The real data example will have bootstrap samples to calculate

standard errors.
#’
#’ @param data Real longitudinal data in the format of (ID, time ,

i, j, sojourn , X1 ,..,Xn)
#’ @param nboot Number of bootstrap samples
#’ @param nstate Number of states
#’ @param nBeta Number of coefficents
#’ @param distn Sojourn Distribution ("exp" = exponential , "gamma

" = gamma , "weibull" = Weibull)
#’ @param covar the covariates are needed set to TRUE (defaulted

to FALSE)
#’ @param control Control options for optim
#’ @param seed Set the seed for repoducibility
#’ @return est A matrix of optimization estimates and confidence

intervals
#’ @importFrom stats optim sd
#’ @useDynLib PLSMM , .registration = TRUE
#’ @export
PLLSMM <- function(data , nboot = 10, nstate = 4, nBeta = 2, distn

= "exp", covar = FALSE , control = list(reltol = 1e-4), seed =
1234) {

nsubj <- length(unique(data [,1]))

par <- init.par(data , distn , nstate , nBeta , covar)

res <- optim(par = par , fn = PLL , data = data , distn =
distn , nstate = nstate , nBeta = nBeta , covar = covar ,
method = "Nelder -Mead", control = control)$par

bootres <- BootCIPar(data , res , distn , nstate , nsubj ,
nBeta , nboot , covar , control , seed)
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est <- list(res = res , boot = bootres)

return(est)

}

#’ Bootstrap samples to find the 95\% Confidence Intervals by
Paralleling Loops

#’
#’ @description
#’ To find the 95\% Confidence intervals by bootstrap samples

using Parallel loops
#’
#’ @param data Simulated Semi -Markov Dataset
#’ @param res Best results from Nelder -Mead Optimization
#’ @param distn Sojourn Distribution ("exp" = exponential , "gamma

" = gamma , "weibull" = Weibull)
#’ @param nstate Number of states
#’ @param nsubj Number of subjects
#’ @param nBeta Number of coefficents
#’ @param nboot Number of bootstrap samples
#’ @param covar the covariates are needed set to TRUE (defaulted

to FALSE)
#’ @param control Control options for optim
#’ @param seed Set the seed for repoducibility
#’ @return A vector of confidence intervals for each parameter in

order
#’ @importFrom stats optim sd
#’ @import doParallel
#’ @import doRNG
#’ @export
BootCIPar <- function(data , res , distn , nstate , nsubj , nBeta ,

nboot , covar , control , seed) {

registerDoRNG(seed = seed)
res2 <- foreach(v = 1:nboot , .combine = ’cbind’, .

packages = ’PLSMM ’) %dopar% {

tryCatch ({
data2 <- data[which(data[,1] %in% sample(unique(data

[,1]), size = nsubj , replace = TRUE)),]

par2 <- init.par(data2 , distn , nstate , nBeta ,
covar)

optim(par = par2 , fn = PLL , data = data2 , distn =
distn , nstate = nstate , nBeta = nBeta , covar

= covar , method = "Nelder -Mead", control =
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control)$par
}, error=function(e){})

}

CI <- sapply (1: length(res), function(a) res[a] + c(-1,1)
* 1.96* sd(res2[a,]))

return(CI)

}

#’ Summarize the real data example results in a LaTex table
#’
#’ To take each Semi -Markov model results in matrix form and

output quick latex code
#’
#’ @param Results The Semi -Markov Model Results
#’ @param nstate The number of states
#’ @param distn The distribution of the sojourn time ("exp", "

weibull", "gamma")
#’ @param nBeta Number of covariate parameters
#’ @param covar Boolean statement if covariates are present
#’ @return Latex code for summary table
#’ @import kableExtra
#’ @export
ResTable <- function(Results , nstate = 3, distn , nBeta , covar =

FALSE){

# Extract the parameter estimates from the model
nrate <- nstate*(nstate - 1)
if(distn == "exp") {stime <- mean_F(Results$res[1: nrate],0,

dist = "exp")}
if(distn != "exp") {stime <- c(mean_F(Results$res[1: nrate],

Results$res[nrate+1], dist = distn), NA)}
sum.tab <- cbind(round(Results$res , 4), round(stime , 4), paste(

"(", round(Results$boot[1,], 4), ", ", round(Results$boot
[2,],4), ")", sep = ""))

colnames(sum.tab) <- c("Estimate", "Sojourn Time", "95\\%
Confidence Inteval")

rownames(sum.tab) <- GreekLabels(nstate , distn , nBeta , covar)

kTab <- kable(sum.tab , "latex", vline = "", escape = F, caption
= "Semi -Markov Model Assuming an Exponential Sojourn Time

Distribution", linesep = "", align = rep(’c’ ,3), position =
"!ht")

return(kTab)
}
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#’ Calculate the AIC for each model
#’
#’ Using the partial loglikelihood , we calculate the

corresponding AIC for the model
#’
#’ @param res The Semi -Markov Model parameter estimates
#’ @param data The real application data in the format (ID, time ,

i, j, stime)
#’ @param distn The distribution of the sojourn time ("exp", "

weibull", "gamma")
#’ @param nstate The number of states
#’ @param nBeta Number of covariate parameters
#’ @param covar Boolean statement if covariates are present
#’ @return aic The quality statistical measure to compare to

other models
#’ @export

AIC_PLL <- function(res , data , distn , nstate = 4, nBeta = 2,
covar = F) {

q <- nstate*(nstate - 1)
if(distn != "exp") {q = q + 1}
if(covar) {q = q + nBeta}
ll <- PLL(res , data , distn , nstate , nBeta , covar)
aic <- 2*ll + (2*q)
return(aic)

}

#’ Hazard Function for Graphical representation
#’
#’ @description
#’ To calculate the hazard values using either the exponential ,

weibull , or gamma
#’ distribution. The hazard function for the semi -markov process

uses the probability
#’ matrix (pij), sojourn pdf (fij), and sojourn cdf (Fij).
#’
#’ @param rij Matrix of rate parameters for all states i, j
#’ @param pij Probability transition matrix (i X j)
#’ @param i state from
#’ @param j state to
#’ @param s sojourn time spent in the previous state i
#’ @param distn Sojourn Distribution ("exp" = exponential , "gamma

" = gamma , "weibull" = Weibull)
#’ @param beta beta coefficient parameters
#’ @param covs covariate information vector for transitioning

subject
#’ @param psi shape parameter for the gamma distribution
#’ @param k shape parameter for the weibull distribution
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#’ @param covar boolean statement if covariates are included
#’ @return hazard value from respective hazard function
#’ @importFrom stats dexp pexp dgamma pgamma pweibull dweibull
#’ @export
hf <- function(rij , pij , i, j, s, distn , beta = 0, covs = 0, psi

= 0, k = 0, covar = FALSE) {

# Hazard function = pij * fij / sum_j( pij (1 - Fij ) )

if (distn == "exp") {
# Exponential Hazard function using exponential pdf , cdf , and

pij
num <- pij[i, j] * dexp(s, rij[i,j])
den <- sapply(which (1: nrow(pij) != i), function(u) pij[i,u]*

(1 - pexp(s, rij[i,u])))
h <- num/sum(den)

} else if (distn == "gamma") {
# Gamma Hazard function using exponential pdf , cdf , and pij

num <- pij[i, j] * dgamma(s, psi , rij[i,j])
den <- sapply(which (1: nrow(pij) != i), function(u) pij[i,u]*

(1 - pgamma(s, psi , rij[i,u])))
h <- num/sum(den)

} else if (distn == "weibull") {
# Weibull Hazard function using exponential pdf , cdf , and pij
num <- pij[i, j] * dweibull(s, k, 1/rij[i,j])
den <- sapply(which (1: nrow(pij) != i), function(u) pij[i,u]*

(1 - pweibull(s, k, 1/rij[i,u])))
h <- num/sum(den)

} else {
# Send warning message if the distribution is not one of

these
stop(paste("The Distribution", distn , "is not an option"))

}

# If covariates (i.e. TRUE), modify hazard function by cox
model

if (covar == TRUE) {h <- h*exp(as.numeric(beta %*% covs))}

return(h)

}

#’ Density plot of the sojourn time data appplication and various
sojourn ditributions

#’
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#’ @description
#’ To create a graphical representation of the raw data sojourn

time and overlay it with
#’ the semi -Markov model parameter estimates
#’
#’ @param data The real application data in the format (ID, time ,

i, j, stime)
#’ @param r state from
#’ @param s state to
#’ @param rate_e The matrix of rate estimates for the exponential

case
#’ @param rate_w The matrix of rate estimates for the weibull

case
#’ @param shape_w The shape parameter for the weibull case
#’ @param rate_g The matrix of rate estimates for the gamma case
#’ @param shape_g The shape parameter for the gamma case
#’ @return p1 A plot for the density for sojourn i to j
#’ @import ggplot2
#’ @importFrom stats dexp pexp dgamma pgamma pweibull dweibull
#’ @export
Density_Plot <- function(data , r, s, rate_e, rate_w, shape_w,

rate_g, shape_g){
df <- data %>% filter(i == r & j == s)
p1 <- ggplot(data = df , aes(x = stime)) +

geom_density(fill = "lightblue", color = "
lightblue", alpha = 0.4) +

xlim(c(0.01 ,10)) +
stat_function(fun = dexp , args = list(rate = rate

_e[r,s]), colour = "red") +
stat_function(fun = dweibull , args = list(shape =

shape_w, scale = 1/rate_w[r,s]), colour = "
darkorange") +

stat_function(fun = dgamma , args = list(shape =
shape_g, rate = rate_g[r,s]), colour = "green"
) +

labs(x = paste("Sojourn Time ", "(", r," to ", s,
")", sep = ""), y = "Frequency") +

theme_minimal () +
theme(text = element_text(family = "Palatino"))
return(p1)

}

#’ Plot of the hazard of the semi -Markov Model
#’
#’ @description
#’ To create a graphical representation of the hazard of the semi

-Markov model
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#’
#’ @param i state from
#’ @param j state to
#’ @param Rije The matrix of rate estimates for the exponential

case
#’ @param Rijw The matrix of rate estimates for the weibull case
#’ @param k The shape parameter for the weibull case
#’ @param Rijg The matrix of rate estimates for the gamma case
#’ @param psi The shape parameter for the gamma case
#’ @param beta beta coefficient parameters
#’ @param covs covariate information vector for transitioning

subject
#’ @param covar boolean statement if covariates are included
#’ @param realData boolean statement if real data example
#’ @return p1 A plot for the hazard of the semi -markov model from

i to j
#’ @import ggplot2
#’ @export
PlotHSMM <- function(i, j, s, pij , Rije = 0, Rijw = 0 , k = 0,

Rijg = 0, psi = 0, betae = 0, betaw = 0, betag = 0, covs = 0,
cseq , covar = FALSE , realData = FALSE) {

if (realData == FALSE) {
df <- data.frame(s = s,

he = hf(Rije , pij , i, j,
s, "exp", betae , covs ,
psi , k, covar),

hw = hf(Rijw , pij , i, j,
s, "weibull", betaw ,
covs , psi , k, covar),

hg = hf(Rijg , pij , i, j,
s, "gamma", betag ,
covs , psi , k, covar))

p1 <- ggplot(df, aes(x = s, y = he)) + geom_line(
colour = "red") +

geom_line(aes(x = s, y =
hw), colour = "
darkorange") +

geom_line(aes(x = s, y =
hg), colour = "green")
+

labs(x = paste("Time
Spent in ", i, "
before ", j, sep=""),
y = "") +

theme_minimal () +
theme(text = element_text

(family = "Palatino"))
} else if (realData == "Age") {

covs = cbind(rep(0, length(cseq)), cseq)
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df <- data.frame(s = s,
hg = hf(Rijg , pij , i, j,

s, "gamma", betag ,
covs[1,], psi , k,
covar),

hg2 = hf(Rijg , pij , i, j,
s, "gamma", betag ,

covs[2,], psi , k,
covar),

hg3 = hf(Rijg , pij , i, j,
s, "gamma", betag ,

covs[3,], psi , k,
covar),

hg4 = hf(Rijg , pij , i, j,
s, "gamma", betag ,

covs[4,], psi , k,
covar))

p1 <- ggplot(df, aes(x = s, y = hg)) + geom_line(
colour = "green") +

geom_
line(aes(x = s, y = hg2), colour = "red") +

geom_line(aes(x = s, y =
hg3), colour = "
darkorange") +

geom_line(aes(x = s, y =
hg4), colour = "blue")
+

labs(x = paste("Time
Spent in ", i, "
before ", j, sep=""),
y = "") +

theme_minimal () +
theme(text = element_text

(family = "Palatino"))

} else {
df <- data.frame(s = s,

hg = hf(Rijg , pij , i, j,
s, "gamma", betag ,
cov1 , psi , k, covar))

p1 <- ggplot(df, aes(x = s, y = hg)) + geom_line(
colour = "green") +

scale_y_continuous(limits
= c(0 ,0.006)) +

labs(x = paste("Time
Spent in ", i, "
before ", j, sep=""),
y = "") +

theme_minimal () +
theme(text = element_text
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(family = "Palatino"))
}

return(p1)

}

B.2 C++ Code written for Rcpp Package in R

Listing B.2: The Risk Set Function Translated into C++

#include <Rcpp.h>
using namespace Rcpp;

//’ @title
//’ Find the index of the next lowest number
//’
//’ @description Obtains the next lowest index in a vector
//’
//’ @param temp a vector of numbers
//’ @param tstar a number value for which to evalute the vector
//’ @return an index or position in the vector for the next

lowest value
int NextLow(NumericVector temp ,

double tstar) {
int nV = temp.size(); /* Find the size of the

temp vector */
NumericVector V(nV); /* Create a new vector of

size nV*/

for (int x = 0; x < nV; x++) { /* Fill the vector V with
index values */

V[x] = x;
}

NumericVector Y = V[temp < tstar ]; /* Find the indices which
is next lowest */

int K = max(Y); /* Index for the next
lowest time*/

return K;
}

//’ @title
//’ The hazard function defined by the sojourn distribution
//’
//’ @description Gives a hazard value for a the current state of

a subject
//’
//’ @param ri A vector of rates at the current state i
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//’ @param pij The probability matrix of the system
//’ @param state The current state of the subject at the

transition time
//’ @param sojourn The time spent at the current state
//’ @param distn The distribution specified for the system
//’ @param beta A vector of coefficents
//’ @param covs A vector of covariates for the subject
//’ @param psi Shape parameter for the gamma distribution
//’ @param k Shape parameter for the psi distribution
//’ @param covar A boolean statement to denote if covariates are

present
//’ @return a hazard value for the current state for subject m
double hfunction(NumericVector ri ,

NumericMatrix pij ,
double state ,
double sojourn ,
String distn ,
NumericVector beta ,
NumericVector covs ,
double psi ,
double k,
bool covar) {

/* Hazard function = pij * fij / sum_j (pij(1 - Fij))*/

if (distn == "exp") {
/* Exponential hazard function using exponential pdf , cdf ,

and pij */
int u = ri.length (); /* Obtain the

number of states */
NumericVector haz(u); /* Initiate hazard

total */

for (int e = 0; e<u; e++) {
double tempP = pij( state , e ); /*

Probability transition matrix value */
double rval = ri[e]; /* rate

value for the state e */
double scale = 1/rval; /* change

rate to scale value */
double d = R::dexp(sojourn , scale , false); /* pdf

for exponential distribution */
double num = tempP*d; /*

numerator calculation */

NumericVector hden(u); /*
initiate hazard denominator sum*/

for (int w = 0; w<u; w++) {
double tempP2 = pij( state , w ); /*

Probability Matrix value */
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double r2 = ri[w]; /*
rate value for the state e */

double s2 = 1/r2; /*
change rate to scale value */

double p = R::pexp(sojourn , s2 , true , false); /*
CDF for exponential distribution */

double den = tempP2 *(1-p); /*
one value for denominator sum*/

hden[w] = den; /*
sum the denominator sums */

}

double hij = num/sum(hden); /*
hazard from state i to state j*/

if (covar == true) {
double hijtemp = hij;
/* double aval = aij( state , e ); */

/* Obtain Transition specific constant */
double zb = sum(beta * covs); /*

Obtain the regression sum*/
double expz = exp(zb); /* Sum over

the aij and ZB*/
hij = hijtemp*expz; /*

Add covariates to hazard calculation */
}

haz[e] = hij; /*
Add to total hazard */

}
double haztot = sum(haz);
return haztot;

} else if (distn == "gamma") {
/* Gamma hazard function using exponential pdf , cdf , and pij

*/
int u = ri.length (); /* Obtain the

number of states */
NumericVector haz(u); /* Initiate hazard

total */

for (int e = 0; e<u; e++) {
double tempP = pij( state , e ); /*

Probability transition matrix value */
double rval = ri[e]; /*

rate value for the state e */
double scale = 1/rval; /*

change rate to scale value */
double d = R:: dgamma( sojourn , psi , scale , false); /*

PDF for the gamma distribution */
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double num = tempP*d; /*
numerator calculation */

NumericVector hden(u); /*
initiate hazard denominator sum*/

for (int w = 0; w<u; w++) {
double tempP2 = pij( state , w );

/* Probability Matrix value */
double r2 = ri[w];

/* rate value for the state e */
double s2 = 1/r2;

/* change rate to scale value */
double p = R:: pgamma( sojourn , psi , s2 , true , false);

/* CDF for the gamma distribution */
double den = tempP2 *(1-p);

/* one value for denominator sum*/
hden[w] = den;

/* sum the denominator sums */

}

double hij = num/sum(hden);
/* hazard from state i to state j*/

if (covar == true) {
double hijtemp = hij;
/* double aval = aij( state , e ); */

/* Obtain Transition specific
constant */

double zb = sum(beta * covs);
/* Obtain the regression sum*/

double expz = exp(zb); /* Sum
over the aij and ZB*/

hij = hijtemp*expz;
/* Add covariates to hazard calculation */

}

haz[e] = hij; /*
Add to total hazard */

}
double haztot = sum(haz);
return haztot;

} else if (distn == "weibull") {
/* Weibull hazard function using exponential pdf , cdf , and

pij */
int u = ri.length (); /* Obtain the

number of states */
NumericVector haz(u); /* Initiate hazard

total */
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for (int e = 0; e<u; e++) {
double tempP = pij( state , e ); /*

Probability transition matrix value */
double rval = ri[e]; /*

rate value for the state e */
double scale = 1/rval; /*

change rate to scale value */
double d = R:: dweibull( sojourn , k, scale , false); /*

PDF for the gamma distribution */
double num = tempP*d; /*

numerator calculation */

NumericVector hden(u); /*
initiate hazard denominator sum*/

for (int w = 0; w<u; w++) {
double tempP2 = pij( state , w );

/* Probability Matrix value */
double r2 = ri[w];

/* rate value for the state e */
double s2 = 1/r2;

/* change rate to scale value */
double p = R:: pweibull( sojourn , k, s2 , true , false);

/* CDF for the gamma distribution */
double den = tempP2 *(1-p);

/* one value for denominator sum*/
hden[w] = den;

/* sum the denominator sums */

}

double hij = num/sum(hden);
/* hazard from state i to state j*/

if (covar == true) {
double hijtemp = hij;
/* double aval = aij( state , e ); */

/* Obtain Transition specific
constant */

double zb = sum(beta * covs);
/* Obtain the regression sum*/

double expz = exp(zb); /* Sum
over the aij and ZB*/

hij = hijtemp*expz;
/* Add covariates to hazard calculation */

}

haz[e] = hij; /*
Add to total hazard */

}
double haztot = sum(haz);
return haztot;
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} else {
Rprintf("Warning: The Distribution given is not available")

;
double haztot = -99;
return haztot;

}

}

//’ @title Calculate the total hazard in the risk set
//’
//’ @description Using the data , the function will calculate the

total hazard for all the subejct currently at Risk
//’
//’ @param denData A list of by subject information
//’ @param denTime A vector of ordered transitioning times
//’ @param rij A matrix of rate parameters for each state i and

state j
//’ @param pij The probability matrix for the system
//’ @param distn The distribution specified for the system
//’ @param beta A vector of coefficents
//’ @param covs A vector of covariates for the subject
//’ @param psi Shape parameter for the gamma distribution
//’ @param k Shape parameter for the psi distribution
//’ @param covar A boolean statement to denote if covariates are

present
//’ @return The total hazard at the nth transition
// [[Rcpp:: export ]]
NumericVector RiskSet(List denData ,

NumericVector denTime ,
NumericMatrix rij ,
NumericMatrix pij ,
String distn ,
NumericVector beta ,
NumericMatrix covs ,
double psi = 0,
double k = 0,
bool covar = false) {

int Ti = 0; /* Index for the time column */
int I = 1; /* Index for the i state column

*/
int J = 2; /* Index for the j state column

*/

int nList = denData.size(); /* Size of the subject list*/
int nT = denTime.size(); /* Size of the transition time

vector */

126



NumericVector lden(nT); /* Initiallize the likelihood
denominator */

for (int a = 0; a < nT; a++) {

double tstar = denTime[a]; /* Obtain the current
transition time*/

double lt = 0; /* Temporary storage for
the denominator of the likelihood */

for (int m = 0; m < nList; m++) {

NumericMatrix subjM = denData[m]; /* Obtain the
information for the mth subject */

NumericVector time = subjM( _ , Ti ); /* Obtain the
time for the mth subject */

double tmax = max(time); /* Find the max
observation time for the mth subject */

if (tmax >= tstar) {

int A = NextLow(time , tstar); /* Get
the index for the next lowest time*/

double JumpT = time[A]; /* Last
jump time for subject m*/

int curstate = subjM( A , J ); /*
Obtain the current subject during transition */

if (JumpT == tstar) {curstate = subjM( A , I );} /* If
the trandistion time is the last obs , get j state*/

int state = curstate - 1; /* Re-
Index state to match c++ index */

double sojourn = tstar - JumpT; /*
Calculate the time already in current state */

NumericVector ri = rij( state , _ );
/* Obatin the vector rates for the current state */

NumericVector covV = covs( 0 , _ );
if (covar == true) {NumericVector covV = covs( m , _ );}

/* Obtain the covariate information for
subject m */

/* Calculate the hazard for specified distribution ,
current state of subject m*/

double ltemp = hfunction(ri , pij , state , sojourn , distn ,
beta , covV , psi , k, covar);

lt = lt + ltemp; /* Add
subject m hazard to total */

}
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}

lden[a] = lt; /* Store the total hazard for this
transition in a vector */

}

return lden; /* Return the vector subject likelihood
contribution */

}
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