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In recent years, technological advancements, such as next-generation sequencing and 

single-cell interrogation techniques, have enriched our understanding in tumor heterogeneity. By 

dissecting tumors and characterizing clonal lineages, we are better understanding the intricacies 

of tumor evolution. Tumors are represented by the presence of and dynamic interactions 

amongst clonal lineages. Each lineage and each cell contributes to tumor dynamics through 

intrinsic and extrinsic mechanisms, and the variable responses of clones to perturbations in the 

environment, especially therapeutics, underlie disease progression and relapse. Thus, there 

exists a pressing need to understand the molecular mechanisms that determine the functional 

heterogeneity of tumor sub-clones to improve clinical outcomes.  

Clonal replica tumors (CRTs) is an in vivo platform created specifically to enable robust 

tracing and functional study of clones within a tumor. The establishment of CRTs is built upon 

our current concept of tumor heterogeneity, intrinsic cancer cell hierarchy and clonal self-renewal 

properties. The model allows researchers to create large cohorts of tumors in different animals 

that are identical in their clonal lineage composition (clonal correlation amongst tumors >0.99). 

CRTs allow simultaneously tracking of tens of thousands of clonal lineages in different animals 

to provide a high level of resolution and biological reproducibility. CRTs are comprised of 

barcoded cells that can be identified and quantified. A critical feature is that we have developed 

a systematic method to isolate and expand essentially any of the clonal lineages present within 
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a CRT in their naïve state; that is, we can characterize each sub-clonal lineage at the molecular 

and functional levels and correlate these findings with the behavior of the same lineage in vivo 

and in response to drugs.  

Here, based on the CRT model and its concept, we studied differential chemo-resistance 

among clones, where we identified pre-existing upregulation in DNA repair as a mechanism for 

chemo-resistance. Furthermore, through stringent statistical testing, we demonstrated orthotopic 

CRTs to be a powerful and robust model to quantitatively track clonal evolution. Specifically, we 

longitudinally tracked clones in models of pancreatic ductal adenocarcinoma (PDAC) from 

primary tumor expansion through metastasization, where we captured unexpected clonal 

dynamics and “alternating clonal dominance” naturally occurring in unperturbed tumors. 

Moreover, by characterizing pro- and none-metastasizing clones, we were able to identified key 

clonal intrinsic factors that determined the nature of tumor metastases. Finally, I will discuss 

distinct clonal evolution patterns that emerged under different environmental pressures, leading 

to the hypothesis of “tumor clonal fingerprint”, where the characteristic of a tumor could be 

defined by actively maintained ratio of different tumor lineages, which could provide measurable 

insights to how we approach treatments.  

Within this thesis, I provide detailed technical and analytical descriptions to establish the 

relevance of CRTs as a model, as well as experimental data generated to test hypotheses 

regarding tumor functional heterogeneity and evolution. This thesis includes three chapters, 

which all interconnect to form one large picture on how tumor cells behave. Each chapter 

contains key backgrounds to facilitate the reading experience and so each chapter may be read 

independently.   
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Introduction - observation of a piece of land 

There is a piece of land in front of MD Anderson, south campus, where I would pass by 

whenever I go to the animal facility from my office. The lot of land was flourished with greens, 

flowers, little lizards, crickets and butterflies, it was a beautiful sight and full of life. One day, to 

my surprise, everything on that land turned yellow. It turns out that weeding treatment were 

applied to that lot and it killed everything. I was stunned by how fast the landscape changed. 

Instead of what it once was, it is now filled with lifeless and brittle plants. The land is now “silent”, 

as if it has taken a break and halted in time.  

 As the sun rises and falls, as tides come and goes, life moves on. Gradually, resurgence 

of sprinkled hues of vibrant green started to appear. Notably, a single kind of plant was seen to 

expand and steadily spread throughout the land. The barren was resilient, and life has returned.  

 

From my green point of view, I continued to monitor the landscape throughout the years. 

From the initial monoclonal type of grass dominating the entire field, other types of grass and 

eventually flowers started to emerge.  Spatially apart, and heterogeneous patches composed of 

homogeneous plants start to sprout out of the ground and colonize everywhere. Evening 

primrose, white thistle, dandelion, yellow wood sorrows, black-eyed Susan, clover…life is in full 

bloom.  

As the weather changes and “Houston level” heat rises, most of the flowers starts to 

diminish, and progressively, the land is dominated by fewer types of plants, thriving in their own 
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specific niche. “Epi-flora” wise, insects and birds have returned, crickets can be heard during 

dusk, the ecosystem has re-balanced itself.  

 I cannot help but think of the uncanny similarities between this land and cancer. Just like 

the land is comprised of various species of plants, cancer, as a whole, is made up of 

heterogeneous sub-clones with different functional phenotypes. The unbiased treatment of 

“weed killing chemicals” mirrors chemotherapies targeting proliferating cancer cells; the initial 

proliferating mono-species grass post treatment mirrors chemo-resistant clones relapsing; and 

the inter-species competition to specific niches supporting growth mirrors intra-tumor clonal 

diversifying and competition for resource and tumorigenic niches. Furthermore, in the end, as a 

whole system, clonal equilibrium is established by unique interactions between inter-clonal 

dynamics. Just like this piece of land, cancer, is an ever-evolving system based on intricate 

dynamics among clones establishing a balance under different environmental perturbations. 

 

           

 

To understand how cancer evolve and adapt to external perturbations such as treatment 

response and metastasization outgrowth, it is logical to breakdown the tumor and study their 

fundamental components, which are sub-clones with functionally diverse phenotypes. However, 

at the same time, we should be cautious to study these sub-clones within the context of natural 
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tumor progression and environment. Here, in this thesis, I will discuss how we aim to create a 

high resolution and sensitive model for unbiased tracking of clonal evolution in the whole tumor 

longitudinally, from tumor progression to metastasis, as well as relapse post-chemotherapy with 

good biological reproducibility. I hope through this study, we could capture and recognize the 

natural rules and dynamics amongst tumor lineages.  
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Chapter 1 

Pre-existing Functional Heterogeneity of Tumorigenic Compartment as origin of 

Chemoresistance in Pancreatic Tumors 

Abstract 

Adaptive drug-resistance mechanisms allow human tumors to evade treatment through 

selection and expansion of treatment-resistant clones. Here, studying clonal evolution of tumor 

cells derived from human pancreatic tumors, we demonstrate that in vitro cultures and in vivo 

tumors are maintained by a common set of tumorigenic cells that can be used to establish clonal 

replica tumors (CRTs) - large cohorts of animals bearing human tumors with identical clonal 

composition. Using CRTs to conduct quantitative assessments of adaptive responses to 

therapeutics, we uncovered a multitude of functionally heterogeneous subpopulations of cells with 

differential degrees of drug sensitivity. High-throughput isolation and deep characterization of 

unique clonal lineages showed genetic and transcriptomic diversity underlying functionally diverse 

subpopulations. Molecular annotation of gemcitabine-naïve clonal lineages with distinct 

responses to treatment in the context of CRTs generated signatures that can predict the response 

to chemotherapy, representing a potential biomarker to stratify patients with pancreatic cancer.  

Introduction  

Tumors are complex ecosystems composed of sub-clones with diverse mutational 

landscapes driving cancer evolution 

Sequencing technologies has made huge strides over the last several years. Researchers 

are no longer restricted to Sanger sequencing, where fragments of DNA must be amplified and 

decoded individually by capillary electrophoresis1. In 2005, pyrosequencing came to market, 

where it adapted the concept of sequencing by synthesis and can sequence massive amounts of 
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different DNA fragments in parallel2-3. The biotechnology sector continues to push the limits of 

next-generation sequencing (NGS) by creating advanced platforms of NGS, each with its own 

unique merits for suitable applications4-8. Echoing Moore’s law, the exponential improvement over 

cost and throughput has made NGS a key technological platform for molecular characterization 

in biology research, and it is one of the representative technologies in the 21th century9-11.  

While NGS propelled the scale and speed, on the sample preparation side, breakthroughs 

for sensitivity such as extreme high-multiplexed PCR assays and low-sample quantity 

requirements for biological materials were made concurrently12-14. To name a few, a milestone of 

single-tube 23,000 plex PCR chemistry for target amplification of whole human exome with 10ng 

DNA input15-17, random degenerate oligos as unique molecular identifier for improved uniformity 

and accurate biological representation19, and microfluidics droplet-based nanoscale reactions for 

high throughput sample processing20-22. Advances such as single-cell sequencing have allowed 

researchers to study cancer at an unprecedented resolution23-27. Both single-cell genomic and 

transcriptomic characterization of tumors have started to shed light on the complex, dynamic 

bionetwork of tumors, wherein populations of cells harboring a unique mutational landscape 

coexist and progressively drift from a founder clone accumulating functional diversity28-30. 

“Acquired genetic lability permits stepwise selection of variant sublines and underlies tumor 

progression – Peter C. Nowell”, in 1976, describes the clonal evolutionary process well with much 

foresights 28.  As the disease progresses, clones may acquire genetic and epigenetic mutations, 

which may lead to functional growth advantages for sub-clones within the tumor while under 

selective pressure that direct the evolution of the tumor as a whole31. Clonal selection and 

expansion are apparent in the context of adaptive resistance to chemotherapy. During 

chemotherapy, the tumor mass often reduces; however, post therapy, minimum residual disease 

composed of a fraction of resistant clones may survive and eventually re-establish the tumor32. 

The relapsed tumor becomes more resistant due to its new clonal composition. A striking example 

is resistance to vemurafenib, a BRAF inhibitor, in melanoma, where the patient shows significant 
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treatment response initially, but residual tumor clones with adapted or innate resistance 

mechanisms expand, causing relapse in merely months33.  

Clonal progression and selection are also observed during metastasization. As tumors 

progress to late stage, clones with advantageous features disseminate to distal organs through 

the metastasization cascade and resides in specific niches that supports propagation34-37. Studies 

focusing on clonal characterization have yielded informative models regarding the time of seeding 

(early vs. late dissemination), latency (seeding vs. outgrowth) and corporation among clones 

during metastasis (cluster migration, poly- or mono-clonal lesions), as well as reduction in clonal 

heterogeneity in metastasis38-42. These observed genetic clonal bottle necks and clonal diversity 

each contribute to the selection process in cancer evolution during different stages of the disease, 

and are shown to be impacted by the treatment regimen43.  

 

Limitations of experimental models for clonal characterization and validation  

Resolution and accurate representation of the entire tumor 

Clone-level resolution of molecular profiling for clinical samples is often hindered by the 

cost and reduced level of sample representation of the entire disease. To be cost effective, only 

a fraction of the tumor is often profiled. To maintain single-cell resolution, profiling is usually 

achieved through droplet-based PCR or through FACS cell sorting after the tumor is processed 

and dissociated. Practically, the number of cells one can characterize is in the hundreds to 

thousands, which is generally represents only a small fraction of the entire tumor. Thus, while this 

approach can provide a general picture of the molecular composition within a tumor, it cannot 

capture the tumor in its entirety without sacrificing resolution. To capture the molecular profile with 

reduced resolution, regional or compartmentalized sequencing is commonly used44-45. Instead of 

single cell resolution, a tumor is divided into small sections and each processed for molecular 

profiling. The molecular profile of individual sections of the tumor are then pieced together to 
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represent the entire tumor profile. However, again, limited sampling prevents scientist from 

obtaining the full scope of tumor subclonal interactions and evolution. This problem is well 

discussed by Alves and Co., where limited sampling obtained (multiregional) tumor evolution trees 

are not phylogenies due to biased and limited sampling representation141. Furthermore, notably, 

functional definition of clones is not fully predicted by genomic and/or transcriptomic profiles; 

epigenetic signatures and other factors contribute as well39. Unfortunately, with current methods 

for tumor profiling, choices must be made regarding which analyses should be performed, with 

many interesting questions left unanswered after the tissue is used up.  

 

Single time-point snap shot of the disease  

Performing epi/genomic or transcriptomic profile of a tumor is informative; however, it only 

characterizes the current state of the tumor, with no information regarding how the tumor once 

were or how it might progress in the future. This is a common challenge in the field, as continuous 

re-sampling of solid tumors in the patient is limited. In addition, even though fine needle biopsy 

allows for re-sampling, besides the technical inherited problem of lacking in sample 

representation, the biopsy procedure perturbs the natural progression of the tumor. Preventing 

us from profiling tumor in its entirety as well as monitoring its progression in an unbiased manner. 

Therefore, to study clonal evolution, it is imperative to find a good experimental model that 

captures the relevant context of the disease.   

 

Animal models for tumor clonal evolution 

Genetically engineered mouse models (GEMMs) are useful to deconvolute specific 

aspects of the disease under study; however, GEMMs do not fully recapitulate the degree of 

complexity in a human tumor, which often evolves and accumulates mutations over a long period 

of time. Conversely, patient-derived xenograft (PDX) models can retain the histological and 

genetic features of the primary tumor, and these models are extensively used to evaluate tumor 
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therapeutic response in a pre-clinical setting46. Combining PDXs and lentiviral barcoding 

technology has proven to be an effective method to trace clonal lineages and study tumor 

evolution, as well as delineate normal tissue stem cell hierarchy46-53. But, barcode characterization 

of PDXs is overwhelmed with problems such as the inability to establish biological replicates, 

therefore, lacking in reproducibility and power to draw confident conclusions. This reproducibility 

issue prevent researchers from designing meaningful, statistically sounds experiments. In 

addition, following lineage tracing experiment, there lack a method for researchers to functional 

study or validate of clones of interest.  

 

Current state of pancreatic ductal adenocarcinoma  

Pancreas is the organ that regulates our body’s digestion and glucose homeostasis. 

Majority of the pancreatic mass is comprised of exocrine functional cells, such as acinar cells and 

ductal cells, which secrete enzymes for digestion. The remaining portion of the pancreas is 

comprised of cells related to the endocrine system, the islet cells, which secrete hormones 

through the bloodstream to regulate glucose usage in our body. Pancreas is an organ that is vital 

in maintaining and supporting our body’s metabolism and energy homeostasis54.  

PDAC has relatively defined stages based on histology and mutational landscape in each 

pancreatic intraepithelial neoplasia (PanIN stages I to IV). Histologically, normal pancreatic ductal 

structure becomes less and less defined as disease progresses accompanied by KRAS mutation, 

CDKN2A, TP53 and SMAD4 loss of function54-55. It is estimated that the pancreatic carcinogenesis 

progression takes more than 12 years, and another 7-10 years to develop metastasis56. However, 

due to the typical asymptomatic characteristics of the disease, most patient are diagnosed at a 

late stage of the disease, where tumor cells have already disseminated. This leads to PDAC being 

one of the worst prognoses rates with only ~7% 5-years survival rate, 4th leading cause of cancer 

death in US57.  
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 There is currently no cure for PDAC. Patients diagnosed with pre-metastasis by clinical 

standard has the option for pancreaticoduodenectomy (~20%) in combination with neoadjuvant 

therapy; however, ~80% of the patients have recurrence after surgery with a 5-year survival rate 

of less than 20%. Patients diagnosed with advanced tumor (metastatic) are given treatment as a 

palliative measure. Treatments include chemotherapy (gemcitabine, abraxane), radiation, 

erlotinib (TKI), FOLFIRINOX; targeted therapy includes herceptine, erbitux.  Nonetheless, tumor 

resistance occurs within 6-8 months. Drugs with 2-5weeks of prolonged survival are being 

approved by FDA for patients with advanced PDAC 58-59.  

  

Replicating tumor heterogeneity – creating clonal replica tumors 

To overcome the limitation of lacking biological replica tumors in experimental cohorts with 

the identical clonal composition, we developed a novel molecular barcoding approach to model 

tumors in transplantation.  

Focusing our studies on pancreatic cancer, we used lentiviral barcoding to barcode patient 

derived xenograft cell lines with a high complexity of barcode library60-61. Then, we track the 

evolution of the same barcode lineages (clonal lineages) under different environmental conditions, 

in vitro passage in culture and in vivo serial transplantation in recipient mice, in parallel over a 

long period of time. As time goes by, we observed that the clonal populations eventually come to 

an equilibrium state, where subsequent passages would contain relatively similar barcode 

composition and their relative abundance. Furthermore, through this continuous passaging 

process, it is revealed that lineages in vivo and in vitro share a similar evolutionary trajectory, 

where a common set of lineages that are endowed with long-term self-renewal (LTSR) ability can 

maintain the tumor in vivo, as well as the culture in vitro over time.  
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These clonal lineages with LTSR properties are able expand in vitro almost indefinitely. 

Using these cells, we can create large cohorts of animals baring tumors with identical clonal 

composition. We call these tumors Clonal Replica Tumors (CRTs).  

CRTs allow the exploration of clonal evolution at a very high level of resolution and provide 

the biological reproducibility and statistical power from experimental replicates that is needed in 

the study of tumor heterogeneity. CRTs enable the evaluation of clonal differential response to 

single agent or combination therapy, where we could track individual sub-clonal populations in 

independent tumors (independent animals) with high precision.  

In addition to high-resolution tracking of clonal evolution, the CRT system enables the 

isolation and functional characterization of essentially any sub-clone of interest based on its 

behavioral phenotype in the in vivo CRT experiment. Upon identifying tumorigenic clonal lineages 

with extreme therapeutic response via CRT cohorts, we employ a high throughput clonal isolation 

approach to isolate and expand clones of interest at a treatment-naïve state for further functional 

characterization. From the deep characterization of these individual treatment naïve clones with 

different degrees of response to chemotherapy, we demonstrate that the tumorigenic clonal 

lineages that sustain tumor and their evolution are genomically and transcriptomically diverse and 

display differential response to different external perturbations. Finally, differentially expressed 

transcriptomic profiles from the isolated treatment naïve clones with various degrees of sensitivity 

to chemotherapy generated a molecular profile that can predict therapeutic response to standard-

of-care in patients with pancreatic cancer. 
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Figure 1. Schematic overview of clonal replica tumor establishment and functional 
characterization of lineage specific gemcitabine sensitivity. High-complexity lineage tracing 
enables the generation of large cohorts of Clonal Replica Tumors (CRTs). Applying the CRT 
technology to pancreatic cancer reveals functional clonal heterogeneity in response to 
therapeutics. Specifically, characterization of gemcitabine-naïve clones identifies a molecular 
signature able to predict chemotherapy resistance in patients. 

 

Results  

Barcoding PDX derived PDAC tumor cells  

 To establish clonal lineage tracing through an unbiased marker, we employed a highly 

complex barcoded lentiviral tracking library62. Each barcode in the library consists of two 

segments of 18bp and 18bp degenerate bases, and the combined sequence makes up for a 

unique ID. The variation of the barcode library is ~ 10 million. As for the tumor of study, we chose 

early passage of PDX cells from human PDAC primary tumor, which were directly embedded in 

mouse immediately after resection from patients. These well-characterized PDX derived cell 
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model after re-transplantation in mouse retains and mirror patient tumor’s morphological features 

and molecular characteristics. Besides, the PDX derived cell are efficient to culture, expand and 

have high engraftment efficiency, which are essential characteristics to minimize variabilities in 

experiments and building a robust clonal tracking system63, 64. Here, in this thesis, we will mainly 

discuss two PDX derived cell lines, PATC124 and PATC53. 

 To retain as much of the original tumor heterogeneity, we used around 30 million cells and 

transduced them with the barcode library at a low multiplicity of infection (MOI ≤ 0.25). The logic 

is based on Poisson’s distribution, where majority of the cells will have no barcode integrated, 

which increases the chance of one barcode integrant per cell (barcoded cells express RFP 

protein, the percentage of positive integration is checked by FACS analysis). With low MOI and a 

high complexity of barcode variations, we can ensure that most of each progenitor cells that 

establishes subsequent lineage carries a unique barcode ID, which is critical in clonal tracing 

experiments. Then, the infected cells were selected with puromycin and allowed to expand and 

passaged. During passaging, we split the culture with a minimum dilution of 1:2 to preserve as 

much heterogeneity as possible and to minimize the effects of passaging on clonal composition 

of the culture. The barcoded cells can then be processed (DNA extracted and barcode region 

amplified) for assessment of barcode identity through NGS readout.  
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Figure 2. Schematics of barcoding of PDX derived tumor cell lines. Early passage of PDAC patient 
PDX derived cell lines are infected with lentiviral barcode library (10M unique barcode types). 
Using a low MOI (Poisson distribution), vast majority of the cells will have one unique barcode 
integrant. Then, puromycin was used to select for cells with barcode (barcode vector also contains 
puromycin resistance and red florescent protein). 
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Figure 3. Clonal tracking vector and barcode region’s design sequence. Barcodes consists of two 
segments of degenerate 18bp nucleotides, which provides up to ~10M unique combination of 
barcodes for high complexity clonal tracking. This figure is adapted from Cellecta™ (Top and 
bottom left); Barcoded cells also express RFP. Bottom right is a representation figure of tumor 
cell line (PATC53) post infection and puromycin selection, where all barcoded cells are red.  
 

Enabling quantitative assessment of barcodes  

Tracing barcodes alone can tell us the relative abundance between clones in the tumor, 

and thus, allow us to study dynamics amongst them. However, just by looking at “relative 

abundance” between lineages fail to capture the absolute quantity of the clones present in a 

tumor. The questions relating to “how many cells” cannot be addressed sufficiently by just looking 

at relevant ratios of lineages.  

To be able to assess each barcode lineages quantitatively, and not just by relative 

abundance, we created a “NGS read to cell number conversion scale” which is spiked into the 

sample of interest while processing for barcode readout. The “scale” is composed of a set of 
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known number of cells (i.e. 5 cells, 50 cell, 500 cells, 5,000 cells, 50,000 cells) with each of their 

own unique barcodes that are not in the clonal tracking barcode library. By spiking the same scale 

alongside each of the samples during processing, the scale acts as an internal reference point 

and can be used to normalize clonal abundance across all samples. Furthermore, it allows us to 

convert individual barcode’s NGS read into cells, which give us the quantitative aspect of clonal 

tracking. By doing so, we can now answer how many “cells” is in each clonal lineage.  

In addition, the “scale” also serves as a function to gauge the detection sensitivity from 

the entire workflow, which is around 1 cell out of 7 x 107 cells from this study. It also helps us to 

define a “cell based “cut-off for accurate quantification across samples (i.e. 50 cells). Furthermore, 

the size of the “scale” in terms of cell number is adjustable, for a more sensitive application, the 

scales size could be adjusted downwards as needed.   

  

         

Figure 4. Schematic for the Conversion Scale spike-in to enable quantitative aspect of clonal 
tracking. Pools of 5 incremental number of cells (5, 50, 500, 5,000, and 50,000) are generated by 
mixing precise amounts of cells independently infected with 5 unique barcodes (A-E) not 
represented in the tracking library. Added to each sample before processing, the Conversion 
Scale can be leveraged to accurately convert barcode read counts into number of cells (Left); 
Fitting line for the sequencing counts (normalized) generated by the Conversion Scale mixed with 
the barcoded PDAC samples for PATC124 and PATC53 (right).  
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A common subset of lineages endowed with LTSR and tumorigenic potential maintain 

primary cell cultures in vitro and tumors in vivo  

Since the barcode process is unbiased and universally applied to the entire population of 

tumor cells, clonal tracking is a suitable way to assess cell and lineage intrinsic differential self-

renewal and tumor initiating potential. If a cell has self-renewal potential, we expect to see the 

barcode associated with the cell to increase in representation over time; conversely, if a cell that 

is differentiated, and not able to establish a lineage of its own, we expect to see the barcode 

associated with that cell to dropout over time. Based on this, we designed a functional study to 

survey the cell’s LTSR potential by culturing the barcoded cells in parallel in both in vitro and in 

vivo conditions and study the clonal evolution.  

Right after positive selection of barcoded cells, the cell is expanded (passage 2), collected 

and split into two pools with identical barcode composition. One half of the barcoded cells are 

subjected to continuous passaging in vitro (with 1:2 passage ratio from one passage to the other, 

~50 million cells) for 8 weeks (P1 to P21), and eventually transplanted in vivo (at passage 26) to 

measure their clonal tumorgenicity; the other half of the barcoded cells are serially transplanted 

in vivo in NSG mice over 32 weeks (F1 to F4, 1:2 ratio from one passage to the next). Each 

passage in vitro and tumors in vivo are collected, and their clonal composition assessed via NGS 

barcode readout.  
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Figure 5. Schematics of in vitro and in vivo clonal tracking experiments. Barcoded cells were 
expanded and split into two experimental arms – in vivo and in vitro. For the in vivo serial 
transplantation, each passage consists of five mice. Between passages, all tumors were 
combined and mixed.  Half of the mixed tumor is passaged to the next generation amongst five 
mice in equal amount. A total of four passages were done from F1 to F4 over a span of 32 weeks. 
As for the in vitro passaging, the cells were passaged at a 1:2 ratio to preserve as much clonal 
heterogeneity as possible. The in vitro passages were carried out for over 8 weeks and for 21+ 
passages before injecting into mouse.  
 

PDAC are sustained by clones with LTSR potential and display cellular proliferation potential 

hierarchy 

 Following the clonal evolution from the in vivo serial transplantation experimental arm, 

initially, we can see a drastic reduction in barcode complexity (~ 2M initial barcodes) of ~80% 

drop in the first-generation tumor (F1). The reduction in barcode complexity continues to drop as 

the passages increase, eventually, with only around 0.67% of the initial barcode complexity left in 

F4.  See Figure 6 below, each line represents a unique lineage. By following the clonal dynamics 

over the passages, we can see that most of the lineages fail to engraft and are exhausted over 

time (represented by blue); we can also observe lineages displaying transit amplification 

characteristics, where clonal expansion is observed initially, but followed by eventual exhaustion 

(represented by green); we also observe lineages that maintain the tumor over time and are 



15 
 

increasing in representation (represented by red). Finally, a subgroup of lineages that seems to 

be “dormant” in the initial passages F1 to F3 with low abundance and eventually starts to expand 

(represented by orange).  

In vivo serial transplantation represents a universal recognized functional assay to 

determine cellular long-term self-renewal properties and stem-like cells in both normal tissue and 

tumors 65. From the experiment, the clonal evolution pattern (from F1 to F4) where clonal lineages 

display differential sustainable expansion capability, ending with only a fraction of the clonal 

lineages carry the ability to sustain the tumor’s long-term growth. These “cellular hierarchy” 

observation is consistent with the observations from studies in both solid tumors and leukemia66-

74.   This set of data supports these cellular hierarchy in terms of differential proliferation capability 

exists in PDAC, and with barcode tracking, we can identify these clones with LTSR capability.  

 

 

Figure 6. Tracing clonal complexity and individual clonal dynamics in in vivo serial transplantation. 
The left graph shows the percentage of unique barcodes detected in percentages normalized to 
P1 (P1 has ~2M unique barcodes). Only a portion of the clones have the ability to “engraft” and 
form tumor (19.05% in F1, and only a small fraction of the clones have the ability to sustain tumor 
(F3, F4 with 0.44% and 0.67%) ; The right graph shows the differential clonal dynamics over serial 
passages in vivo (F1, F2, F3, F4): functionally exhausted clones (blue), transiently engrafting 
clones (green), long term self-renewing clones (red), early passage low represented/undetected 
clones enriched upon in vivo transplantation at passage F4 (orange). 
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PDAC culture (in vitro) are sustained by LTSR clones and follows similar cellular hierarchy 

structure in vivo   

On the other hand, in vitro clonal evolution is captured the same way by sequencing 

passages P1, P5, P11, P15, P21 in vitro, as well as the in vivo tumor transplanted at passage 26. 

The clonal dynamic behaves in a similar fashion where it displays clonal-specific differential 

proliferation potential. Notably, barcode complexity drops sharply in the initial passages and 

eventually comes to an equilibrium, where the culture is sustained by only a fraction of the initial 

clonal lineages (~3.6%). Throughout passages, there are clones that exhaust over time (blue); 

transit amplification lineages where initially expand and eventually exhaust (green); and fraction 

of the lineages that sustain the culture and can engraft to initiate tumor (red). As seen from the 

data, the engrafted clonal lineages represent only about 1.67% of the initial clonal complexity, 

however, those clonal lineages make up the majority (~94.5%) of the stabilized culture after 

~passage 15 to 16. In addition, the common lineages present in the in vivo tumor (injected at P26) 

and the in vitro culture (P21) makes up the majority of the tumor and culture mass. This 

demonstrates that these clonal lineages, albeit cultured outside physiological conditions, are 

endowed with LTSR potential and are functionally important in representing the majority of the 

cell culture. Furthermore, these clones can engraft in vivo to form tumor. This data also 

demonstrates cell hierarchy in terms of differential sustained proliferation potential exists in the in 

vitro condition and reflects the intrinsic tumor cell properties.  
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Figure 7. Tracing clonal complexity and individual clonal dynamics in in vitro passages. 
Percentage of initial unique barcodes (clonal lineages, normalized to P1, which has ~2M barcode 
types) detected at previous sequential passages in vitro (red: P1, P5, P11, P15, P21) and upon 
transplantation in vivo (cyan) (top left); Percentage of reads represented by all clonal lineages 
detected in vivo (cyan), at the previous sequential passages in vitro (red: P1, P5, P11, P15, P21) 
(top right); Differential clonal dynamics identified during sequential passages in vitro (P1, P5, P11, 
P15, P21): functionally exhausted clones (blue), transiently amplifying clones (green), long term 
proliferating clones sustaining tumor in vivo (red), and in vitro low represented clones enriched 
upon transplantation in vivo (orange) (bottom). 

 

A common subset of lineages with LTSR properties with tumorigenic potential maintain primary 

cell cultures in vitro and tumors in vivo  

From clonal tracing in parallel in both in vitro and in vivo conditions, we see that over time, 

the culture becomes stable and the clonal composition comes to an equilibrium. To compare 

whether the clonal evolutionary dynamic in both the experimental conditions (in vitro and in vivo) 

are similar, we represented the clonal behavior over time using t-distributed stochastic neighbor 

embedding (t-SNE) method. Essentially, all the lineages are represented in the t-SNE as 

individual “dots”, and these lineages are “clustered” based on dynamic over time. For instance, 
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clones that display relative high dominance in the tumor/culture consistently, would be clustered 

close to each other.  From the t-SNE plot, while each dot representing a clone, we also highlight 

their behavior with “red” representing the lineage is persistent and “grey” representing exhaustion 

of particular lineages. Interestingly, large set of clones that exhaust over passages are largely 

shared between the two experimental passaging conditions. Furthermore, the lineages identified 

to have LTSR property from the in vivo serial transplantation experiment (F4) are also found in 

the cluster of lineages maintaining the culture in vitro. From looking at these behavior trends over 

time in both the experimental arms, we identified common patterns of evolution. This suggests 

that despite the environment of passaging methods being different, overall, the tumor cells retain 

intrinsic behaviors that display differential hierarchy.  

 

                       

Figure 8. t-SNE representation of barcode dynamics for in vitro and in vivo clonal tracking showing 
convergence of long-term self-renewal clones over time. Each of individual small dots represents 
an unique barcode, while the colors represent whether or not a barcode is present in a particular 
time point and sample (red = present, gray = not present), a total of 88K lineages are represented 
in the graph out of 2.2M. Time points start from left to right, where all barcodes are present in “P1” 
(all dots are red). In two different conditions, in vivo (bottom lane) and in vitro (top lane), the 
majority of the same barcodes (clones) are exhausted over time (i.e. in “P21” vs. “F2”), and 
eventually, the long-term self-renewal clones (comparing “in vivo” and “F4”) at the upper right 
corner of the t-SNE plot converge.  
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Furthermore, we assessed these cells’ tumor engraftment efficiency by comparing in vitro 

culture at passage 21 to the in vivo tumor transplanted at passage 26. We see that the P21 and 

the in vivo tumor shares a common set of barcodes, and those barcodes makes up almost the 

entire culture of P21 and in vivo tumor’s tumor mass (n=5863 barcodes in common; 96.8% of 

culture; 99.8% of the tumor). In addition, if we compare the clonal composition of serially 

transplanted tumors (F4) to the clonal composition of tumors derived from in vitro stabilized 

cultures (in vivo), we identified a set of common barcodes (801 barcodes). These set of common 

lineages represent a large proportion of F4 tumors (~67.9% of the tumor mass), as well as 

represent almost the entire mass of tumors derived from stabilized cultures (~96.5% of the in vivo 

tumors injected from in vitro passages cells). This data demonstrates that the in vitro primary 

cultures and in vivo tumors are sustained mostly by the same set of clones endowed with LTSR 

potential. In other word, this again shows that the intrinsic lineage self-renewal property is 

maintained despite the passaging condition in this experiment.  

 

                                           

Figure 9. Venn diagram of the number of clonal lineages detected in vitro (red, P21) and in vivo 
(cyan); pie-charts of the percentage of sample/tumor mass represented by common clones above 
50 cells (grey, 5863 clones) (left); Venn diagram representing the number of clonal lineages 
detected in vivo upon serial transplantations (F4, purple) and in vivo upon in vitro expansion and 
stabilization (in vivo, cyan); pie-charts of the percentage of tumor mass represented by common 
clones above 50 cells (grey, 801 clones) (right). 
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Generation of Clonal Replica Tumors through clonally stabilized culture 

We have demonstrated that: 1. Majority of the lineages will exhaust over time; 2. The 

clonal composition of the culture (and tumor) will eventually come to an equilibrium and “stabilize”, 

where the culture is maintained by a fraction of the clonal lineages; 3. These clonal lineages, by 

functional definition (from the in vivo serial transplantation) have tumorigenic and LTSR potential; 

4. These LTSR clonal lineages represent the majority of the tumor mass (in vivo) and cell culture 

representation (in vitro) and are what is functionally maintaining the tumor / culture. Based on 

these concepts, once the in vitro “clonally-stabilized” culture is achieved (at around passage 16), 

we can expand these cell cultures, which is enriched in tumor maintaining lineages with 

tumorigenic potential and create a cohort of tumor baring mice via subcutaneous transplantation. 

This is exactly what we have done. Moreover, by monitoring these cohorts of animal with 

“stabilized” cells injected, we observed a similar growth rate in these tumors.  

Once these tumors have reached significant size (~0.8cm X 0.8 cm), we collect them and 

process each tumor independently for barcode readout.  By assessing the individual tumors from 

independent mouse of their clonal composition and their relative abundance (tumor 

representation in %), we find these tumors established through “stabilized” culture are essentially 

identical in their clonal composition both qualitatively and quantitatively.   

As an example, we established two independent cohorts of “clonally stabilized” tumors in 

mice derived from two PDAC patients (PDX1 and PDX2). Within each cohort, we compare three 

individual tumors collected from independent mouse and assess their clonal composition. We find 

the tumors all share a common set of clonal lineages (PDX1 = 1499 barcodes; PDX2 = 3063 

barcodes), and those common set of lineages makes up almost the entire tumor mass (PDX1 

tumors 97%, 98%, and 98% respectively; PDX2 tumors 99%, 99% and 99% respectively). 

Additionally, we see high correlation of each clone’s relative intra-tumor abundance amongst 

tumors (PDX1 Pearson’s correlation >0.98; PDX2 Pearson’s correlation close to 100% for all three 
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tumors). Furthermore, due to the spike in of the “NGS read to cell conversion scale” during the 

sample processing, we can quantitatively analyze each tumor’s barcodes relative abundance in 

“cells” respectively. As seen in the Figure 10, amongst the three tumors from the same cohort, 

quantitatively, the clonal lineages with high abundance is high across all tumors, and vice versa, 

clonal lineages at low abundance are equally low across the tumors.  

Therefore, with the process “stabilization”, which naturally enrich in clones with LTSR 

property, we can create cohorts of animals baring tumors that are extremely similarly in their 

clonal composition, both qualitatively and quantitatively. Since these tumors are essentially clonal 

replicas with each tumor’s heterogeneity replicated within a cohort of animals, we termed these 

tumor “clonal replica tumors” (CRTs). 

Essentially, CRTs are biological research models which provides robust reproducibility 

within an experimental cohort. This opens the door for reliable study of tracking and identification 

of a common set of clones in different animals subjected to different experimental conditions, 

which was not possible before. 
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Figure 10. Barcode complexity and abundance correlations in clonal replica tumors. Venn 
diagram highlighting the common number of clonal lineages detected in three independent CRTs; 
pie-charts of the percentage of tumor mass represented by common clones above 50 cells (grey, 
1499 clones) (top); Heat-map of the clonal lineage abundance of three CRTs (5683 common 
clones) (Log10CPM); Contribution of each lineage can be estimated as cell number using the 
reference scale (left: 5, 50, 500, 5,000, 50,000 cells) and as relative contribution to the totality of 
the tumor (right: cumulative percentage represented by clones below that lineage) (middle); 
Pearson’s correlation amongst the three CRTs (bottom). The data shown are from two 
independent CRT cohorts based on left and right.  
 

Systematic evaluations of clonal dynamics in CRTs inform of differential drug response 

exist in the tumorigenic compartment 

The CRT platform, by having biological tumor replications, provides the unique chance to 

systematically and quantitatively model tumor behavior in vivo, study clonal response dynamics 

to extrinsic factors such as treatment at high confidence.  

To demonstrate the effectiveness of the CRT platform, we evaluated PDACs clonal 

response with standard of care agent gemcitabine75. With the cohort of CRT tumors, we allow the 

transplanted tumors to grow and apply gemcitabine to the experimental mice. Consistent to 

clinical observations, the tumor size shrinks during the gemcitabine treatment, but relapse follows 

after drug suspension. This observation is essentially describing tumor resistance, where the 

treatment fails to eradicate the entire tumor, allowing residual tumor cells to expand and causing 

cancer relapse. Besides gemcitabine, we investigated the effects of targeted therapeutic agents 

such as AZD6244 (MEK1 inhibitor) and BEZ235 (PI3K/mTOR inhibitor) for distinct dynamics of 

clonal adaptation mechanisms. For the targeted therapeutic agents, we observed in general, a 

similar tumor resistance pattern in all the CRT tumors, where relapse occurred after treatment 

cessation.   
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Figure 11. Treatment regimen of CRTs with gemcitabine and graphical representation of analysis 
approach. Schematic of tumor size (mm3) and IVIS detection of CRTs treated with Gemcitabine 
for two weeks and washout to allow for relapse (left); Relative clonal treatment response captured 
by comparing the percentage of clonal representation post- and pre-treatment (right).  

 

          

Figure 12. Tumor growth inhibition and relapse for CRTs (T1-T5) in response to Gemcitabine 
(n=5), BEZ235 (n=5), AZD6244 (n=5); CRTs are subjected to treatment 14 days with 
Gemcitabine, BEZ235 and AZD6244 in independent cohorts of animal followed by wash out to 
allow for relapse. Each line represents a unique mouse in the CRT cohorts. All tumors behave in 
similar dynamics, where tumors shrink in volume under treatment and relapse. On a side note, 
AZD6244 treated tumors seems to relapse faster compared to gemcitabine and BEZ235 treated 
tumor.      

 

To identify the relative clonal sensitivity to specific therapeutic agents, we convert each 

clone’s barcode read to percentage representation in a particular sample. By comparing the 
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difference of each clone’s tumor representation in the relapsed tumor to the control tumor 

(untreated), we could calculate the relative fold change of each clone. For example, a positive 

fold change would indicate a particular clone has gained more tumor representation in the 

relapsed tumor, indicating a relatively more resistant phenotype. On the contrary, if the treatment 

is effective to a clone, the clonal tumor representation is expected to decrease or even disappear 

in the relapsed tumor. Furthermore, since the treatment group has biological replicas, we can 

assess the consistency of each clonal behavior among tumors, and therefore, assign a confidence 

value of how well we capture the specific clonal response to treatment. As an illustration, if a clone 

has similar “fold change of 2” across multiple animals in the cohort, that specific clone displays a 

more consistent “resistant” response to drugs, as well as technically, having a higher confidence 

that we are capturing such response more accurate.  

 

Treatment effects on clonal complexity  

We can represent the data in volcano plots, where each dot represents a specific 

barcoded clone. For the volcano plot, the X-axis represents the clonal fold-change when 

comparing the relapsed CRT tumor to the untreated CRT tumor, while Y-axis indicating the false-

discovery rate calculated by the consistency on drug response across the CRT cohorts.  

The CRT tumors in the control group has a high clonal abundance correlation amongst 

each other (Pearson’s correlation >0.99); post treatment, the clones in the relapse group also has 

a high correlation (Pearson’s correlation ~0.95). This demonstrates not only the tumor replica 

aspect the CRT platform brings, but also reflects the clonal lineage intrinsic factors shaping the 

response to treatment; hence the high correlation for post-treatment samples.  

For gemcitabine specifically, the treatment effectively depleted clones that were 

responsible for ~20.3% of the populations (blue dots), but most of the clones (~73%) remained 
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relatively unchanged (grey dots). On the other hand, pre-existed clones (~6.0%) in the untreated 

tumor are enriched in the relapsed tumors, indicating clonal survival and selection advantage 

upon gemcitabine treatment.  

For AZD6244 and BEZ235, the target therapies’ effects on clonal complexity are similar 

to that of gemcitabine, where 17.3% and 29.6% sub-population is effectively depleted by 

AZD6244 and BEZ235, respectively. On the other hand, ~3.9% of the pre-existing clonal 

population is expanded in the relapsed tumor in both the cases of CRT cohorts treated with either 

AZD6244 or BEZ235.  

Following the clonal relative tumor representation, we found that chemotherapy does 

perturb the relevant abundance of clones, but the overall effect in depleting the tumor’s clonal 

complexity remained minimal.  After chemotherapy regimen, most of the clones remained 

relatively unchanged in terms of tumor representation in relapsed vs. untreated. This observation 

could be specific to the treatment routine and duration, however, it provided us with a mean to 

observe and study drug effectiveness at a clonal level. Here, using CRTs, we demonstrated that 

mechanistically different drugs display similar effects on tumor size shrinkage and relapse, 

moreover, the degree of tumor eradication and the dynamics at a clonal level is surprising similar.   

Furthermore, for all three drugs (gemcitabine, AZD6244 and BEZ235), the clonal lineages 

that display relative sensitivity is evenly spread across all quantiles of the tumor representation. 

This hinted that intrinsic clonal specific properties contributing to different susceptibility and fitness 

under treatment is a significant factor shaping tumor’s evolution, and not necessarily determined 

by abundance.  
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Figure 13. Volcano plot of clonal lineage response to gemcitabine, BEZ235 and AZD6244. Each 
dot in the plot represents a unique clone. X-axis represents the log2 fold change of comparing 
the % representation of each clones post- to pre-treatment. Y-axis represents the false discovery 
rate (FDR), where a smaller value indicates a higher confidence in the response.  
 

             

Figure 14. Plot of relative clonal fold change (log2 FC, Y-axis) comparing post- to pre-treatment 
for GEM, BEZ235, and AZD6244 to individual clonal tumor representation in the untreated (control 
tumor, CTRL). The color red indicates clones that are relatively more resistant, while blue clones 
are relatively sensitive to treatment. The color scheme is in align with the volcano plot in Figure 
13.  

 



28 
 

Table 1. Tumor clonal correlation of relapsed tumor treated with gemcitabine. Three CRTs treated 
with gemcitabine and allowed for relapse (“GEM1”, “GEM2”, “GEM3”) vs. three control CRTs 
receiving vehicle (“V1”, “V2”, “V3”) and their barcode relative abundance Pearson’s correlation 
value.  
 

               

 

Clonal intrinsic pre-existing differential response to treatments 

By analyzing the CRT cohorts all together for all three treatments, we identified subsets 

of clonal lineages, within the same tumor, that exhibit distinct drug susceptibility profiles. For 

example, subsets of clones that are more resistant (or sensitive) to either only gemcitabine, or, 

AZD6244, or BEZ235.  

For a more comprehensive view of all the clones in the tumor, we used constrained 

correspondence analysis (CCA) 76. In short, the CCA plot reduces multivariate data into a two-

dimensional graphical form while keeping the relative correlation amongst data points. In the CCA 

plot, tumors are represented by triangles and each dot represents an individual barcode lineage. 

We observe that the control untreated tumors are distant from either the treated tumors on axis1 

(CC1), and that the three independent drug treated tumors are spread across the axis 2 (CC2). 

This tells us that treatment does indeed affect intra-tumoral clonality, and that there is only partial 

overlap of clones amongst different treatments. Furthermore, looking at the relative enrichment 

of tumor abundance by comparing relapsed tumor to untreated tumor (the color red representing 

positive enrichment, while blue representing negative enrichment), in other words, clone’s relative 

resistance, we can see that clonal lineages displaying resistance (red) to a specific drug is far 

away from the lineages displaying resistance to other drugs.  
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This observation suggests that tumor harbors heterogeneous lineages functionally 

displaying a diverse spectrum of sensitivity to different external perturbagens. Once the 

equilibrium of these lineages is perturbed by pharmaceutical agents, sub-population of clones 

with fitness advantage may drive the relapsed tumor and form a new equilibrium amongst clones. 

Most importantly, since we demonstrated that the population of clones resistant to treatment are 

different depending on the agent used, this indicates that the clonal composition of relapsed tumor 

is associated with the type of pharmaceutical agents used.  

        

Figure 15. Representation of clones displaying a various degree of sensitivity to different drugs. 
Each line represents one unique clone and Y-axis indicates normalized counts per million of 
individual barcode. The top portion are representative clonal dynamics that are displaying 
selective resistance to one particular drug, or, to all drugs. The bottom portion are representative 
clonal dynamics that are displaying selective susceptibility to one particular drug, or, to all drugs. 
 

 

Figure 16. Constrained correspondence analysis (CCA) plot for clonal differential sensitivity to 
GEM, BEZ and AZD. Differential clonal dynamics as detected using constrained correspondence 
analysis (CCA), upon treatment (GEM, BEZ235, AZD6244) in comparison with untreated tumors 
(CTRL); Tumors are represented using triangles and points represent lineages, with control 
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tumors (left) further from treated (right) in each biplot. A higher logFC indicates a more resistant 
clonal phenotype (in red), while more sensitive clones to a particular treatment is bluer.  
 

“Tissue culture-to-NGS library” workflow enables high-throughput isolation of clones of 

interest identified via CRT experiments  

CRTs enabled us to see precisely individual clone’s distinct phenotype to different 

treatments in an in vivo setting, providing a reliable mean for detailed clonal dynamic observation. 

However, being able to observe the clonal specific post-treatment phenotype is one thing, while 

being able to answer what is the underlying molecular features of treatment naïve clones that is 

driving such phenotype in vivo, and being able to functionally test and validate them is where we 

could really expand knowledge towards developing a better treatment strategy.  

 

 

Figure 17. Schematics of “treatment response informed” clonal isolation. Through analysis of 
post- treatment clonal relative fold change (compared to untreated control), we identify clones 
displaying resistance or sensitive phenotype to gemcitabine (left); The goal is to isolate pure 
(treatment naïve) clones identified from the parental population of thousands of unique barcoded 
cells (right).  
 

The technical challenge here is essentially how to pick out specific clones harboring a 

unique barcode sequence (~36bp) in its genome among tens of thousands of barcode variations 

differing in few nucleotides. To achieve a minimally purebred, high-throughput workflow to isolate 

clonal lineages of interest, we developed a workflow that is highly sensitive and efficient. In brief, 

the isolation steps involve “enrichment of clones of interest”; “establish conditions of single cell 
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cultures” with FACs; creating “single clone culture replica plate”; detection of clonal barcode 

enabled by a one-tube “cell culture-to-NGS-library” chemistry, where NGS library is directly built 

in the wells of trypsinized cell culture; and using multiplexed “NGS indices” for deconvolution and 

identifying single clones and their relative position in the culture plate (“positional sequencing”). 

Here I will describe in brief the workflow in a stepwise manner. For detailed work and rationale of 

the isolation method, please see the method section.  

 

Enriching the clones of interest from a mixed population 

The cell cultures used for the CRT in vivo experiments could be re-established at any time 

from liquid nitrogen. Since the barcode complexity of the cell culture is very high, we first must 

narrow down our scope for an efficient isolation of single clone. Thus, we first partitioned the cell 

cultures into multiple tissue culture wells (96-well plate) and allow them to expand. Once the 

expanded culture reaches near confluence, the culture is then split into two equal halves. Half of 

the culture will remain in the tissue culture while keeping its original 96-well position, while the 

other half of the culture will go through DNA extraction and build NGS libraries with unique indexes 

for each well to identify the barcode composition present in each well using a “cell-culture-to-

NGS-library chemistry” (discussion in later section). Once the barcode composition in each of the 

96-wells is identified, we then look for the wells that are enriched with the clone of interest. The 

wells that are enriched with the clones of interest is then used to create isogenic clonal culture 

through FACs. This procedure will increase the chance of creating clonal cultures of interest.  
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Figure 18. Schematics for enrichment of identified clones of interest. Barcoded cells were cultured 
at 5K cells per well and sequenced. The right heat-map represents the clone of interest (ID 
4646_5209) and its relative abundance across the plate (white is absent, light blue has a higher 
abundance). The most abundant wells with clones of interest (circled in red) are further FACs 
single cell sorted in new tissue culture plate to establish pure isogenic culture.  
 

Establishing clonal culture from single cells: only a fraction of single cells are able to establish 

new cultures while others exhaust or fail to proliferate 

Cells from the identified wells are sorted into multiple of 96-well plates and allowed to 

expand. These plates with single cell in each well are then placed in incubators coupled with a 

high-content imaging system. Interestingly, we observed multiple phenotypes of morphology and 

different degree of proliferation rate from these clonal cultures. Moreover, only a minor fraction of 

the cells are capable of establishing a new culture, while the others either stop proliferating after 

initial expansion, or completely fail to proliferate at all. To dissect this observation further, we 

found out that most of the hyperploid cells (based on Hoechst dye) fail to proliferate, and the cells 

that are able to grow and establish new colonies are relatively independent of cell cycle (~10% of 

the cells can establish a new colony, while ~75% of the cells fail to proliferate). This observation 

is in line with the cell hierarchy data we saw from the in vitro serial transplantation of barcoded 

cells from F1 to F4, where only a fraction of the clonal lineages are endowed with long-term self-

renewal potential. Furthermore, we then tested whether or not the culturing media condition would 

affect the ratio of cells that are able to establish a new colony. By comparing the ratio of cells that 

proliferate in conditioned media vs. fresh media and monitor via live imaging (Incucyte TM), we see 

a very similar ratio of cells that are able to proliferate (~15%). This suggests that tumor cells are 
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mainly organized through hierarchy, and that certain cells are intrinsically endowed with the ability 

to self-renew and establish a new colony.  

 

                           

Figure 19. Isolated clonal population growth dynamic monitoring using high-content imaging 
system. Continuous monitoring of single clone growth using high-content imaging system 
(Operetta™). Growth dynamics and pattern of single clones can be monitored for all isolated 
colonies. In well “A”, clone exhibit a smaller cell size phenotype and grew faster compared to 
clone in well “B” (over 24 days of growth). Clones in well “C” also exhibit a different growth rate 
(faster) compared to clones in well “B” (slower).  Both clones in well “B” and “C’s” growth pattern 
are more clustered than clone in well “A”.  
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Figure 20. Percentage of total flow-sorted live single cells based on growth dynamics. Tumor cell 
line was single cell sorted for “live cells” (using Sytox™) and monitored for proliferation over time 
in tissue culture plates. In this particular tumor, only a fraction of single cell grew and formed new 
colonies (~20-30%), while the majority of the sorted cells did not grow (in black).  Amid the cells 
that grew, around half of the colonies would eventually exhaust (light grey bar) and never grew to 
confluence (over 8 weeks period, n=384). 
 

                             

Figure 21. Single cell proliferation dynamics by cell cycle. Single cell sorted based on cell cycle 
G0/G1, S, G2/M, and polyploid population (top left graph n=864).  In this tumor, majority of the 
sorted cells could not re-establish new colonies.  Around half of the population that grew into 
colonies will eventually stop proliferating and exhaust. In particular, the polypoid single cells fail 
to establish new colonies (1 out of 96 grew, but eventually exhaust).  
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Figure 22. Hypothetical model of observed clonal hierarchy organization based on barcode 
lineages tracing. Left graph shows representative lineage dynamics across 32 weeks of in vivo 
serial transplantation, a functional assay to determine cells with self-renewal capability. Right 
graph is a suggested (based on lineage tracing data) graphical representation of cell hierarchy 
model in tumor. Barcode inserted in cells with limited or exhausted replicative potential are lost 
over time (B, C, and D). Instead, barcodes inserted in cells with self-renewal capability can persist 
and eventually re-establish self-renewal equilibrium.  
 

Different tumors have different ratio of cells with ability to establish a new culture 

Intrigued by the observation that only about ~15% of the PDX derived tumor cells were 

able to give rise to a new colony from single cell sorting, we wondered if this holds true with other 

PDXs. Thus, using the same setup, we sorted single cells (live cells) in 960 wells from another 

tumor (PATC124) and monitored its proliferation latency for 5 weeks. Every 4-5 days, we recorded 

the population in terms of proliferation and its relative confluence. We observed a wide range of 

clonal dynamics in terms of the time it took for the cells to divide after sorting (initiation) and their 

relative expansion rate and exhaustion rate (proliferation rate). Similar to the other tumor’s 

observation, 87.81% (843/960 wells) of the cells failed to initiate expansion and remained single 

cell; 12.19% (117/960 wells) of the cells went through initial expansion. Out of those cells that 

could initiate expansion, they exhibited different expansion dynamic (captured below) with only 

5.94% of the cells were able to establish a full colony without exhaustion. This experiment was 

repeated 2 more times and the result is consistent.  
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Comparing PATC124 vs. PATC53, while both tumors display similar cell hierarchy, where 

only a fraction of the cells can establish a colony, the ratio of those cells with self-renewal 

properties are different. PATC124 tumor displays a lower percentage of self-renewal cells (~6%) 

versus PATC53 (~10%). The ratio of the self-renewal cells could very well reflect the 

aggressiveness of the disease, as PATC53 was derived from a liver metastasis from the patient, 

whereas PATC124 was derived from a primary tumor. However, whether or not this is true 

requires further characterization.  

 

                                      

Figure 23. Isogenic clonal proliferation and expansion dynamics in vitro. Each line represents an 
isogenic lineage established from one cell. X-axis represents the days after incubation and the Y-
axis represents the relative confluence over time. Data obtained from PATC124 cells.  
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Figure 24. Bar graph comparing the percentages of cells with ability to re-establish culture 
between two patient tumors derived cell lines. The bar graph shows the % of cells after single cell 
FACs that could establish a new isogenic line, as well as % of cells that eventually exhaust or 
never divided. Comparing the two tumors, albeit following a similar trend where most cells 
exhaust, the percentage of cells with capability to re-establish colonies are different (PATC53 
~10%, PATC124~5%). 
 

Self-renewal hierarchy exists in isogenic clones and is reflective of its parental population’s 

Next, we were curious whether or not, intra-isogenic clonal culture (established from a 

single cell) also display self-renewal hierarchy. Using the same colony monitoring assay by 

culturing single cells in individual wells, we sorted plates from four individual isogenic clones. 

Interestingly, individual clones displayed a higher percentage of cells that are able to initiate cell 

division and expand compared to the parental population (~2 fold), but many of them eventually 

exhaust and fail to sustain the culture indefinitely. Interestingly, each of the four isogenic clonal 

culture displayed similar percentages (10.7%, 11.7%, 13.3%, and 7.7%) of cells that were able to 

re-establish culture. The percentages cells that were able to re-establish culture were comparable 

to the parental heterogeneous population where these four clones were derived from (11.6%). 
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Figure 25. Intra-clonal cell’s capability to re-establish a culture is heterogeneous. Isogenic clone’s 
cell % that could re-establish an entire culture in bar-graph format (top) and table with detailed 
data (bottom). This suggests the “self-renewal” (ability to re-establish culture) hierarchy exists. 
 

Colonies established by single cells with self-renewal capability can initiate tumors in vivo 

To test the tumor initiating capability of these clonal cultures expanded from single cells, 

we transplant these clones in immuno-deficient mouse (NSG) via subcutaneous injection. Indeed, 

these isolated clones are able to initiate and establish tumors in vivo. These clones display a wide 

range of tumor growth rate and morphological phenotype characterized by tumor size and cellular 

activity (Ki67) and histology.  
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Figure 26. In vivo tumor growth rate and histology of seven isogenic clones. Tumor volume over 
time for isolated clones and histology stained with Ki67 and vimentin are diverse amongst the 
seven individual isogenic clones. Experiments performed by Denise Corti.  
 

A highly sensitive “culture-to-NGS-library” chemistry tailored for low cell numbers to identify 

cellular barcode identity 

From the above characterization of clonal culture established via a high-throughput 

workflow, we established means to isolate single clones from a mixture of cell populations. To 

identify the hundreds of isolated clones’ barcode ID in a time and cost-efficient manner, we 

tailored a new chemistry and workflow to identify all the barcode ID across all the wells 

simultaneously with one NGS run.   

In brief, the single cells were sorted into multiple 96-well plates and allowed to expand. 

After allowing the cells to grow for 2-3 weeks, some wells would approach 80-90% confluence, 

while other wells would have much fewer cells (10-100 cells). At this stage, all the wells were 

trypsinized regardless of individual well’s cell number. The trypsinized cells from each well were 

split in half: one half re-plated in 96-well tissue culture plate and allowed to expand, while the 

other half into a 96-well PCR plate used to identify their barcode identity. These two plates are 
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essentially replica plates, with the same clones in their relative matched well positions. The 

rationale is to use one plate to identify the clone’s ID in each well; once the barcode ID is known 

for each well, we can go back to the 96-well tissue culture plate and expand the clones of interest 

from the identical well position.   

The technical challenge lies in the fact where in some wells, after trypsinization, there are 

only few cells present. Extracting DNA from wells with few cells are neither not practical nor 

efficient, where most likely there would be a loss of material due to the DNA extraction process. 

Therefore, to prevent material loss, the logical approach is to combine the cell lysis step together 

with the PCR amplification step. This way, after trypsinization, the whole process of cell lysis, 

barcode amplification via PCR, building NGS library would be in the same reaction tube from start 

to finish. Through optimization of each experimental steps, I was able to optimize a reaction 

condition that achieves building NGS library from tripsinized cell culture by addition of reagents 

only (no liquid replacement).  

 

                       

Figure 27. Step-wise rationale breakdown of direct single tube “culture-to-NGS” chemistry. 
“Tissue culture-to-NGS” lysis solution can effectively and consistently lyse cells. In addition, the 
post-lysis reaction is compatible with PCR reactions. 
 

We need a cell lysis condition that can achieve complete lysis of cells while cells are in 

trypsin and media with FBS, as well as, a lysis condition strong enough to degrade histones to 

allow for linear DNA. At the same time, the lysis buffer needs to inactivate trypsin (a potent PCR 

inhibitor). In addition, the entire lysate would need to be PCR compatible. Finally, due to the 
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minute amount of starting material (~10 – 100 cells), we need to achieve the above without any 

liquid replacement; instead, by addition of components on top of the previous reactions.  

We decided on an NP-40 based lysis solution with protein kinase (PK) as the final 

condition to achieve the above goals. For the lysis capability, we compared the PK lysis solution 

to several other conditions, including a commercially available lysis buffer that is advertised to be 

compatible with downstream PCR reactions. We used Hoechst dye to stain for nucleus and 

microscope to gauge the effectiveness of lysis. We found the PK lysis condition can completely 

lyse the cells and release the DNAs from its heterochromatin state while the other conditions 

cannot. Then, to test the reproducibility of the PK lysis buffer, we used a TaqMan™ assay 

targeting RNase P region of the genome (1 copy per genome) to amplify 8 replicates of cell lysate. 

We found the PK lysis condition gave the most efficiency and reproducibility (8 replicates, Cq = 

24.22; STD 0.17). 

 

           

Figure 28. Microscope and PCR validation of direct single-tube “culture-to-NGS” lysis buffer 
efficiency. PCR compatible lysis condition (Upper left panel): PK lysis solution effectively lyses all 
cells as seen by the lack of Hoechst dye positive nuclei; Cell lysis reproducibility (Upper right 
panel): cells (~15,000 per well) are directly lysed (in same wells) with addition of PCR mastermix 
and DNA primers/probe targeting RNase P. PK lysis buffer has the highest lysis efficiency and 
reproducibility (8 replicates, Cq = 24.22; STD 0.17);  
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PK is potent PCR inhibitor. Therefore, PK must be inactivated before we could add the 

PCR components for downstream amplification. Indeed, without proper inactivation of PK, the 

PCR reaction does not work as seen from our result using the same RNase P TaqMan™ assay. 

However, after heat inactivation of PK, the entire cell lysate is now compatible with PCR with high 

amplification efficiency of 95.49%. Consequently, we now have a complete workflow that is 

compatible with low cell number, and a condition where we could amplify the barcodes and 

generate NGS libraries directly after trypsinization of the cells without DNA extraction.  

 

        

Figure 29. PCR efficiency of direct lysis protocol: Human gDNA reference and GAPDH assay is 
used to measure % PCR efficiency under various lysis conditions. The lysis buffer with inactive 
PK has minimum effect on PCR (PCR efficiency = 97.78%); Trypsin inhibits PCR reaction (no Cq 
observed); PK effectively inhibits trypsin and overall PCR efficiency remains high (PCR efficiency 
= 95.49%) 
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A schematic summary of clonal isolation workflow  

 

                                                     

Figure 30. Two-step high-throughput individual clone isolation strategy (1st step – de-complex of 
mixed culture and identify wells enriched in clones of interest, 2nd step - identify clonal barcodes 
from single-cell sorted wells identified in the 1st step): Frozen high-complexity barcoded cells 
originally used to generate CRTs are thawed and expanded in 96-well plates at 5,000 cells per 
well in order to decrease complexity. After cell expansion, the de-complexed plates are split into 
two replica plates - one plate is kept in culture for clonal isolation and the other processed via 
“direct cell culture to NGS” workflow for barcode identification. Via NGS read analysis, heat-maps 
of clones (barcodes) of interest are generated and the well positions with relative higher 
abundance identified. From the corresponding wells in the replica plate, single cells are sorted 
into multiple 96-well plates and allowed to grow. Isolated clones, once expanded, are split to 
create two sister replica plates – one for storage/culture, and one processed for NGS using 
positional sequencing (built-in plate and well index) to identify coordinates of wells that correspond 
to specific clones of interest. This workflow enables cost effective, rapid identification of thousands 
of single clonal barcodes with extremely high sensitivity.  
 

Isolation of gemcitabine resistant and sensitive clones identified through in vivo CRTs 

experiment  

Using the high-throughput isolation strategy, we restarted the barcoded cell cultures used 

to generate CRTs. During the first de-complexing stage, (5,000 cells per well), we were able to 

capture all the differential clonal lineage behaviors in response to gemcitabine in vivo as seen 
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from the volcano plot, where enriched clones after relapse highlighted in red and the depleted 

clones highlighted in blue (LogFC = Log2 fold-change, Gem vs CTRL, FDR<0.25).  The position 

of 19 clones of interest (7 enriched and 12 depleted) is highlighted in the volcano plot. Then, from 

the de-complexed plate, we generated heat maps of relative abundance of the clones of interest. 

As an example, one of the depleted clone 5125_5793 (LogFC = -1.26, FDR = 0.20 and one of the 

enriched clone 13767_14001 (LogFC = +2.00, FDR = 0.07) were picked from their most abundant 

wells as seen from the heat map of the de-complexed plate. Wells containing higher 

representation of the two clones were picked for single-cell sorting (circled wells). The, multiple 

single-cell sorted plates were processed for NGS library in parallel and combined for one NGS 

sequencing run. The well-coordinates of the isolated two clones of interest were traced back using 

‘positional’ sequencing well and plate NGS indexes (bottom part); NGS barcode identification was 

extremely specific, where average read depth used for barcode identification were 122456 reads, 

the no template control (NTC) reaction had only an average of 4 read counts; chromatogram of 

Sanger sequencing for the isolated clones confirmed NGS determined barcode identities. 

Barcode identity of individually isolated clones were then confirmed by Sanger sequencing as 

seen from the chromatogram, matching the barcode sequence identified by NGS. Here, we 

isolated a total of 53 clones with one pass of the isolation workflow that spans across the treatment 

response, including the 19 clones of interest displaying strong relative gemcitabine sensitivity.  
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Figure 31. Schematics for informed isolation of clones of interest and validation of clonal barcode 
identity. Volcano plot from culture plates at 5,000 cells/well for differential clonal lineage behaviors 
upon Gemcitabine treatment; enriched clones highlighted in red; depleted clones highlighted in 
blue (LogFC = Log2 fold-change, Gem vs. CTRLs, FDR<0.25); Clones of interest (depleted clone: 
5125_5793, LogFC = -1.20; enriched clone: 2211_135, LogFC = 1.18) (top left); (right graph) Heat 
maps of relative abundance of two clones (blue = relatively sensitive, red = relatively resistant to 
treatment) from the de-complexed (5,000 cells/well) plate (upper two graphs). Wells with the most 
representation of the two clones were picked for single-cell sorting (circled wells); Well-
coordinates of the isolated two clones traced back using positional sequencing of multiple single-
cell sorted plates using well and plate NGS indices (bottom two graphs); Bottom left graph: 
Chromatogram of Sanger sequencing of isolated clones to validate barcode identified by NGS. 
 

Functional gemcitabine sensitivity validation of isolated treatment naïve clones of interest 

To illustrate whether or not the isolated clones would behave similar to the phenotype 

observed in the CRT in vivo cohorts, we took the two most representative clones at both end of 

the gemcitabine sensitivity spectrum (ID 5125_5793 being sensitive, and ID 13767_14001 being 

resistant) for functional characterization. Individually, the treatment naïve clones were cultured 

and treated with Gemcitabine for 48 hours and wash out. Mimicking the in vivo setting, we allowed 

the culture to grow back (relapse). As we can see from the figure and crystal violet staining and 
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viability quantification (absorbance, means of 4 measurements +/- SD), clone 13767_14001 

displayed, intrinsically stronger resistance and ability to grow back than clone 5125_5793.  

 

                     

Figure 32. Isolated clones exhibit differences in tolerance to gemcitabine treatments. Crystal violet 
staining for the two isolated clones 5125_5793 and 2211_135 prior to treatment with 10nM 
gemcitabine (left “control”) for 5 days and relapse (17 days) after gemcitabine washout (right 
“relapsed”); Crystal violet 570nm absorption readout (normalized to highest OD, n=4) for each 
condition (right). Prior to treatment, 2211_135 had 1.17X more OD measurement than 
5125_5793; after 17 days of relapse, 2211_135 had 16.5X more OD measurement than 
5125_5793.  
 

Furthermore, we tested the clonal relevant resistance to gemcitabine while the two clones 

were mixed together. The sensitive clone was re-infected with vectors expressing 5125_57923 

(GFP+) and mixed together with 13767_14001 (GFP-) equally (75,000 cells) and plated in 2D 

culture.  The mixed culture was then treated with different concentrations of Gemcitabine (0nM, 

100nM and 500nM) for 5 days and then washed-out. Then, the culture was left for relapse for 14 

days. The relative abundance of the two clones were determined by FACs analysis. The result 

showed that without treatment, the two clones behaved and grew similarly after two weeks (43.8% 

GFP+, vs. 54.0% GFP-). For the group under treatment, FACs analysis showed clone 

13767_14001 exhibiting more tolerance to gemcitabine and faster relapse rate than 5125_5793 

(4.2% vs. 4.9% after relapse at 500nM) and displayed dosage dependent response.  

This data set validates the lineages that maintain tumors, never exposed to gemcitabine 

treatment, intrinsically display differential gemcitabine resistance. Moreover, the clonal 
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gemcitabine sensitivity phenotype obtained via CRTs cohorts can be reproduced in an in vitro 

setting. The possibility of being able to isolate clones that is treatment naïve and characterize 

them, coupled with the treatment phenotype information (via in vivo CRT experiments) opens up 

a unique opportunity to determine clonal intrinsic molecular mechanism contributing to drug 

resistance.  

 

 

Figure 33. Co-culturing of resistant and sensitive clones under gemcitabine treatment. Mixed 
clones’ treatment response; 5125_5793 (GFP) and 13767_14001 were mixed equally (75,000 
cells each) and plated in 2D culture. Top group was treated with 500nM gemcitabine for 5 days 
and followed by wash-out and allowed for regrowth.  Bottom group was not treated and allowed 
to grow to confluence.  FACs analysis showed clone 13767_14001 exhibits more tolerance to 
gemcitabine and faster relapse than 5125_5793 (95% vs. 4.9% after relapse). The clonal relative 
representation of the culture was analyzed through FACs to determine GFP+ vs. GFP- 
populations (top right). For untreated culture, two clones are relatively equal in representation 
(~44% for “sensitive clone 5125_5793” vs ~55% for “resistant clone 13767_14001”). Under 
gemcitabine treatment, the “resistant clone 13767_14001” dominates the “relapsed” culture and 
displayed gemcitabine dosage dependent response from (0nM, 100nM and 500nM) (bottom 
right).  
 

Genomic and transcriptomic analysis of isolated treatment-naïve clones displaying 

differential drug response determined via CRTs in vivo experiment 

The isolated clonal cultures span across the entire gemcitabine sensitivity spectrum as 

determined from the CRTs in vivo experiment. In the figure below, we display 12 of the clones 
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across the gemcitabine resistance spectrum from sensitive to resistance and their relative position 

in the volcano plot. To study the strength of the relative chemotherapy resistance phenotype 

associates with the genomic or transcriptomic profile, we submitted these clones for molecular 

profiling (WES, RNAseq, RPPA).  

 

       

Figure 34. 12 isogenic gemcitabine resistance clones isolated. Position in the volcano plot of 
twelve isolated clones with differential gemcitabine sensitivity in PDX2-derived CRTs (red = 
enriched, blue = depleted, grey = not significantly modified). Each dot represents a clone (unique 
barcode). Clonal sensitivity to gemcitabine is calculated by comparing the relative fold-change of 
abundance in gemcitabine relapsed CRT tumors vs. controls (X-axis); false discovery rate (FDR) 
of treatment response change is calculated for each clone (Y-axis); number in the boxes indicate 
the unique clonal barcode ID of isolated clones; alignment of 12 isolated clones spanning across 
the continuum of response (logFC = log2 fold-change) to gemcitabine treatment; clonal lineages 
are displayed as red dots, with size representing the confidence in the treatment response (–
log10 FDR) (right). 
 

Clonal heterogeneity exhibited at the genomic level and does not have significant correlation with 

treatment response 

Through copy number variance (CNV) analysis of the clones from WES data, we observed 

many of the chromosomal events shared amongst the clones. Common chromosomal events 

such as the deletion of SMAD4 on hr18 and KDM6A on chrX. Besides the common events, clonal 

specific events were also observed. As an example, on chromosome 4, a region containing 33 

genes was detected to be amplified in the parental population as well as with 9 other clones. In 
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addition, we also used SNP6 array (Affymetric) to measure copy number variation alongside CNV 

data obtained from WES. The CNV data from both technologies infers the parental cells in this 

model are triploidy/pseudo-tetraploidy. 

 

     

Figure 35. Heatmap of genetic alterations (WES) and clustering of copy number variation (CNV) 
of the isolated 12 clones. Genetic alterations are gene-level log2 ratios. Bottom panel shows a 
zoomed in version of a region in chr4 (Positions: 37245842- 41962589, number of genes: 33) 
which is amplified in parental population and 9/12 clones; The right panel shows PICNIC 
(predicting absolute allele copy number variation with microarray cancer data) for the clones and 
parental population, it specifically estimates normal contamination and ploidy and background 
hybridization levels, and arrives at a Bayesian prior distribution of ploidy (red point at 2.7); 
Genome level copy number (log2ratio, right panel) changes across all chromosomes as derived 
from SNP6 array on the parental PDX sample, aligns well with parental cell line data. 
 

From SNP and allele frequency (AF) analysis, we observed many genetic alterations with 

genes that were known drivers of PDAC, genes such as TP53 that were shared amongst all 

clones, as well as the parental population. Taking a deeper look, we observed clonal 

heterogeneity in AF variations in KRASG12D amongst clones (min= 0.41, max=1.0, the parental = 

0.76). This show that the parental population harbors clones with different copies of KRAS 

mutation, which is in line with PDAC patient genomic data. Furthermore, we observed that many 

SNPs that has a low AF in the parental population, but high AF in the individual clones. This 

suggest that these clones were genetically drifted from a common ancestor as seen from the 
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phylogenetic trees generates based on SNP and CNV. Interestingly, by cross referencing the 

genomic profiles and defined molecular state of individual clones to their in vivo treatment 

response, individual clonal growth kinetics, or relative tumor abundance, we did not find any 

genomic traits that could predict the drug treatment response. This suggests the different degree 

of drug resistance could be associated more with their clonal specific epigenetic and 

transcriptomic state.  

 

                     

Figure 36. Heat-map of the single nucleotide variants (SNV) of 12 isolated clones. SNP included 
somatic mutations existing in at least one of the samples and previously detected in TCGA and 
ICGC cohorts, AF = allele frequency.  
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Figure 37. Allele frequency clustering of 12 isogenic clones and phylogenetic trees based on SNP 
and CNV data. Heat-map highlighting the k means clustering (k=4) of somatic alterations (AF = 
allele frequency) detected in PDX-derived parental population (TOT) and 12 independent isolated 
clones: cluster a. mostly clonal all three copies, cluster b. mostly 2 copies, cluster c. mutations 
with single copy in the majority of clones, cluster d. mutations detected in single copies in few of 
the clones. Right graph shows the unsupervised clustering substantiates a condition of 
triploidy/pseudo-tetraploidy for this PDAC model (data also corroborated by SNP6 array). 
Phylogenetic trees based on various –omics platforms (SNV, CNV).   
 

 

Clonal differential transcriptomic profile associates with gemcitabine treatment response - DNA 

damage is a major mechanism of adaptive resistance to chemotherapy in pancreatic cancer 

Through analyzing clonal transcriptomic profiles, we found strong correlations between 

their individual transcriptomic profiles and their relative sensitivity to gemcitabine in vivo through 

GSEA pathway analysis. Intrinsically, molecular pathways such as - DNA damage repair, 

oxidative phosphorylation, MYC/E2F targets, and folate biosynthesis are selectively enriched in 

gemcitabine-resistant clone.  
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Figure 38. Pathway analysis (KEGG, Hallmark) of 12 isogenic clones and their gemcitabine 
resistance phenotype. Association of molecular pathway scores (ssGSEA) with gemcitabine 
response (logFC = log2 fold-change) for 12 isolated clonal lineages (Left graph). Y-axis 
represents t-statistic, with gemcitabine logFC as response variable and pathway scores as an 
independent variable (left, KEGG; right, Hallmark); (Right graph) Heat-map highlighting molecular 
pathways significantly enriched (NES) in gemcitabine resistant or sensitive clones (aligned by 
logFC to gemcitabine). 

 

In line with these findings, upon in vitro validation of chemo-sensitivity, we took the top 

four clones with the most differential gemcitabine sensitivity in vivo for further characterization 

(two resistant and two sensitive). Consistent with the findings where the resistant clones have 

intrinsic upregulation in DNA damage repair, we demonstrate that the two resistant clones have 

a lower basal level of phosphorylated histone H2AX (γH2AX). γH2AX, phosphorylated by DNA 

damage check point proteins (ATM or ATR), is responsible for recruiting DNA damage repair 

proteins to DNA double strand break foci. Therefore, a lower level of phosphorylated γH2AX 

indicates the basal level of DNA damage in the two resistant clones is lower than the two sensitive 

clones. We further hypothesize that the gemcitabine-resistant clones, upon exposure to 

gemcitabine, due to having a higher DNA repair capacity, would maintain the DNA damage at a 

lower level by comparison to the gemcitabine-sensitive clones. The experimental result shows 

exactly that. Upon 24 hours of gemcitabine treatment, both the resistant and sensitive clones’ 

DNA damage level increases (measured by γH2AX) compared to their untreated counterparts; 

furthermore, the resistant clones have definitively lower levels of DNA damage than those 
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detected in the sensitive clones. In addition, staining for RAD51, a protein that is actively involved 

in DNA damage repair, we found the nuclear localization of Rad51 at γH2AX foci in the resistant 

clones with lower levels of DNA damage post treatment, which further supports that DNA damage 

repair plays a key role in cell recovery and survival. Treating the resistant clones with AZD-6738, 

a potent ataxia telangiectasia and rad3-related (ATR) inhibitor, a critical master regulator of DNA 

damage response, sensitized the gemcitabine resistant cells to gemcitabine77. This suggests that 

cell intrinsic elevation in DNA damage repair is a key mechanism in cells adapting to gemcitabine 

treatment in pancreatic cancer.  

 

            

Figure 39. Differential γH2AX level of gemcitabine resistant and sensitive clones by FACs and IF. 
Flow cytometry analysis of basal level γH2AX signal of isolated clones with differential 
gemcitabine sensitivity (CL12 and CL1 are relatively resistant (red); and CL9 and CL11 are 
relatively sensitive (blue) (Left graph); Resistant (CL1, CL12) and sensitive (CL9, CL11) clonal 
lineages were treated with or without 1 μM gemcitabine for 24 hours (bottom and upper panels 
respectively) followed by immunostaining of γH2AX in red and DAPI in blue (Right graph). Scale 
at 100 µm.  
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Figure 40. RAD51 and γH2AX staining (IF image) of gemcitabine resistant clones’ post exposure 
to gemcitabine. Co-immunostaining of RAD51 (Green), γH2AX (Red) and DAPI (Blue) of resistant 
clones (CL12 and CL1) after 24 hours treatment with 1 μM gemcitabine followed by 3 hours 
recovering. 
 

                         

Figure 41. Colony formation assay of resistant clones under treatment of GEM, ATRi and in 
combination. Resistant clones (CL12 and CL1) were pre-treated with 1 μM ATRi AZD6738 for 3 
hours followed by co-incubation with 1 μM gemcitabine for another 24 hours. Scale bar at 20 µm. 
 

 

Gene signature identified through isolated clones predicts patient response to chemotherapy 

Based on the 12 isolated clones’ differential sensitivity to gemcitabine in vivo and their 

differential gene expression profile, we identified a molecular signature based on 200 most 

differential expressed genes. Using this gene set, matching with TCGA PDAC data-set, we were 
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able to detect pre-existing resistant populations of cells in pre-treated tumors; furthermore, it 

allows for prognostic stratification of PDAC patients in terms of disease-free and overall survival. 

 

  

Figure 42. Top 100 most enriched and depleted genes (total 200) were prioritized to create a 
gene-signature. TCGA pancreatic cancer tumors (n = 179) were subtyped using this gene 
signature, with genes in rows and samples in columns. Top annotation bar represents the final 
class of each tumor, with each cell representing normalized expression of a specific gene in a 
tumor, clustered into two sets (enriched/resistance/1 or depleted/sensitive/-1). 
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Figure 43. Survival analysis of TCGA pancreatic cancer patients, classified according to the gene-
expression signature informed by gemcitabine-treated CRTs (red: gem resistant, blue: gem 
sensitive, green: others). Two panels show Kaplan-Meier curves using overall survival (Log-rank 
p=0.013) and progression-free survival (Log-rank p=0.0025), in left and right respectively. 

 

Chapter Summary and Discussion  

Chemo-resistance has been one of the major challenges in achieving complete remission 

in cancer treatment, during which a fraction of the tumors has the capability to escape treatment 

or adapt to external perturbagens. Tumors, which shrink and decrease in mass under treatment 

regimens, often grow back upon cessation of treatment. Furthermore, relapsed tumors usually 

become more aggressive and more resistant to drugs. The molecular mechanism underlying such 

resistance has long been a major and necessary focus in the field of cancer research.  With 

advancements in molecular biology techniques in cellular genomic and transcriptomic profiling, 

the field has gained insights to another level of tumor complexity. Tumors can be viewed as 

complex ecosystems, where heterogeneous cells co-evolve and acclimate to environment. Thus, 

tumor heterogeneity, in which a wide array of genetic or epigenetic events have been acquired 

during tumor development, contributes to the relative functional resistance of these tumor cell 

sub-populations that drive relapse 78-80. Currently, in concordance with clinical studies81, it has 
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been widely accepted that tumor evolution and adaptation are inherited properties of cancer and 

plays a pivotal role in treatment resistance and tumor relapse. However, merely measuring tumor 

volume to determine the long-term efficacy of treatments is grossly insufficient 82. To fully 

understand how a tumor responds to treatment and to pinpoint the mechanism of resistance, it is 

essential for researchers to study tumor’s functional heterogeneity at the clonal level. To achieve 

this, we need a robust experimental model that can accurately measure tumor clonal complexity 

upon treatment.  

To facilitate the understanding of chemo-resistance tumor heterogeneity, cellular 

barcoding lineage tracing experiments are particularly useful, as they are a relatively unbiased 

empirical method for interrogating tumor sub-clonal architecture and dynamics upon exposure to 

pharmacological agents. In addition, they can precisely identify small sub-groups of tumor cells 

that exhibit a resistant phenotype under treatment. Nonetheless, current methods for lineage 

tracing have severe drawbacks in terms of resolution, complexity, and lack of functional 

characterization beyond -omics profiling, as well as, the inability to trace the same clonal lineages 

in parallel animals due to low reproducibility of tumor clonal compositions amongst animals. These 

limitations, therefore, confound the questions that we can empirically answer through 

experimental design. In order to improve applicability, reproducibility of pre-clinical research 

results, and overcome these limitations, we demonstrate a patient-derived xenograft (PDX) 

transplantation model that is suitable for the robust tracing of complex tumor lineage dynamics 

when exposed to treatment. We call this model “clonal replica tumors” (CRTs), where, in a cohort 

of animals, each animal bears tumors that are essentially identical in their clonal compositions 

and, thereby, provide a high level of biological reproducibility.  

By barcoding early passage, patient derived, pancreatic tumor cell lines and following their 

individual clonal dynamics throughout in vivo serial transplantation (F1 – F4, over 8 months 

period), we unveiled the hierarchal organization amongst clones. In terms of clonal ability to 
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sustain tumor growth in vivo, our data suggest that solid pancreatic tumors are organized in a 

manner similar to hematopoietic stem cell hierarchy, where most lineages exhaust over time with 

only a fraction of clones having the self-renewal capability to sustain tumors over long periods of 

time (~2% of cells). This observation is further confirmed with in vitro culturing of single cells and 

by monitoring the fraction of cells with the ability to proliferate and form new colonies. Echoing 

the in vivo serial transplantation data, we observed that only a fraction of the single cells could 

give rise to new culture and engraft in vivo (~7-12%), while other cells displayed dynamics of 

transient amplification or exhaustion or were unable to initiate proliferation. Furthermore, the 

percentage of such long-term potentiating lineage compartments are tumor dependent; 

specifically, the PDAC tumor cell lines PATC124 and PATC53 have ~5% and ~12% self-renewal 

cells, respectively. These data, which were measured by a TIC assay, agree with the higher 

percentage of tumor initiating cells found in relatively more malignant tumors.   

During the in vitro passaging of barcoded cells, we observed a clonal dynamic similar to 

that observed from the in vivo serial transplantation. Over time, the culture reached an equilibrium 

state and was sustained by a fraction of the initial lineages, whereas the majority of the lineages 

would exhaust. Remarkably, we observed overlap when comparing the lineages that were 

enriched at the equilibrium state in vitro to the lineages endowed with long-term self-renewal 

ability obtained functionally through in vivo serial passaging. The initial 2M unique variations of 

barcoded lineages, after 8 months of passaging in vivo and 24 weeks of passaging in vitro, 

converged to a common set of barcoded lineages (~801 lineages). Furthermore, the overlapping 

set of common barcoded lineages represented the majority (96.5%) of the tumor mass after the 

mouse received a subcutaneous injection of in vitro “passage 26” cells, as well as represented 

the majority (67.9%) of the tumor mass of the serially transplanted in vivo tumors at 8 months. 

Contrary to the common belief that in vitro 2D cultures are not usually seen as optimal conditions 

for enriching tumor “long-term self-renewal” cells (or “cancer stem cells” in terms of long-term 
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potentiation ability) through the in vitro “stabilization” process, we were able to obtain tumor 

lineages that naturally achieved an equilibrium state and were enriched in cell lineages that could 

sustain tumors long-term. Moreover, through repeated experiments and in multiple models, the 

tumor consistently followed similar evolutionary configurations, where the barcoded clonal 

population eventually resulted in a hierarchical equilibrium organization state, irrespective of 

different culturing conditions and external stress. This suggests a model of tumor evolution is 

guided fundamentally by pre-defined sub-clonal hierarchical compositions, where external 

pressure plays a role in influencing tumor evolution routes through the kinetics of clonal 

exhaustion. By comparing in vitro serial passaging vs. in vivo serial transplantation, we observed 

much faster kinetics of exhaustion in vitro, where the same lineages that are functionally 

exhausted drop out at a much faster rate compared to their counterparts in vivo. This suggests 

that external conditions can influence a sub-clone’s rate of exhaustion, but have limited influence 

on its core clonal hierarchical equilibrium amongst lineages. Obviously, our model has limitations 

in terms of representation, such as barcoding PDX derived cell lines that have undergone a 

selection of cells and can grow outside of their tissue of origin. However, our data may be hinting 

at the possibility that pancreatic cancer, and perhaps other cancers in general, are governed by 

the common rules of hierarchical equilibrium amongst tumorigenic lineages 83. 

Utilizing the self-renewal, hierarchical nature of these tumor cells, we expanded these 

post-serial passaging barcoded cells (stabilized in clonal equilibrium) and created a large cohort 

of models bearing tumors that were enriched for long-term self-renewal lineages. Indeed, when 

comparing the lineage composition of tumors in a cohort, we found that these tumors were 

essentially identical in both clonal composition and their relative abundance (common barcodes 

made up >98% of individual tumor, Pearson’s correlation value between tumors were >98%). In 

another words, the tumor’s clonal heterogeneity was replicated in multiple independent mice—

hence the name, clonal replica tumors (CRTs). In essence, we can use CRTs to study the 
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dynamic responses of tumors with precision and at the clonal level of resolution because they 

allow the ability to interrogate the same tumor (or sub-clones) in parallel animals potentially under 

different external perturbations. 

Studies on the treatment resistant subpopulations of cells that have common features of 

quiescence, stemness, higher level of tolerance to DNA damage and detoxification capacity have 

resulted in a persuasive model in how tumors escape and survival pharmacological agents 84. 

Here, we subjected CRTs, which were enriched in self-renewal lineages, to chemotherapy 

treatment to study their clonal dynamic response and evolution after relapse. Under gemcitabine 

treatment, we saw a minimum disturbance in clonality in the relapsed tumor despite observing a 

drastic impact of treatment on tumor mass. In other words, despite inducing a temporary 

regression, the transient effect of gemcitabine failed to penetrate the tumor’s long-term self-

renewal compartment (“stem cell like compartment”), and thus, most of the tumor-sustaining 

lineages were able to re-enter the cell cycle upon cessation of treatment. Interestingly, when 

applying targeted therapy (AZD and BEZ) in parallel animals within the same CRT cohort, we 

observed the fitness of different sub-clonal lineages being affected in a drug dependent manner. 

Certain lineages were susceptible to a specific drug more than the others, and overall, we 

observed a wide spectrum of lineage-dependent differential drug sensitivity. The result suggests 

that the tumorigenic, self-renewal compartment of tumors are functionally diverse under the 

context of various therapeutic regimens. Overall, upon considering the tumor clonal evolutionary 

dynamic from barcoding to stabilization, and the differential clonal response to drugs of different 

mechanism of action, our data depict a model where clonal equilibrium can be achieved over 

time. Further, our data indicate that it is under different external perturbagens that clonal evolution 

and their newly established equilibrium (relapsed tumor) can be fully appreciated. It also depicts 

the differential functional response of intrinsic tumorigenic cells to therapy, and the competition in 

fitness amongst pre-existing clones as a major determinant in shaping tumor resistance and its 



61 
 

evolution. These lineage-dependent differential drug responses are especially important for 

combinatorial therapeutic applications, a rationale that was introduced by Frei in the year 1965 86.  

While adaptive therapeutic resistance—during which new genetic mutational events lead to an 

increase in fitness and eventually contribute to the newly established clonal equilibrium—can 

certainly occur, it was not a part of the original experimental design; however, it could be 

addressed and explored in future experiments by surveying clonal specific –omics profiles pre- 

and post-therapy. 

Through isogenic clonal isolation and detailed –omics characterization, we demonstrated 

that an incredibly high degree of molecular heterogeneity exists within the tumorigenic populations 

of cells. This genomic and transcriptomic diversity may account for the wide spectrum of 

differential functional phenotype and responses to pharmacological agents, and “long-term self-

renewal” clonal lineages may drive distinct tumor evolution in response to treatments. This 

concept is also corroborated by recent findings in glioblastoma multiforme (GBM), in which there 

exists sub-populations of tumorigenic cells that may be responsible for shaping tumor evolution 

when exposed to temazolomide 85.  The orthogonal approach of being able to isolate clones that 

are treatment naïve and obtain molecular profiles that could be corroborated with an unbiased 

lineage dynamic response to treatment through barcoding can lead to the identification of clonal 

intrinsic properties contributing to drug resistance. We discovered that clonal intrinsic enhanced 

tolerance to DNA damage by DNA damage repair is one of the top features in pancreatic cancer 

resistant cells when exposed to gemcitabine. Interestingly, while we found that the genetic profiles 

of isolated clones did not correlate with resistance phenotype, we generated a 200-gene 

transcriptomic signature that is predictive of therapeutic response in PDAC patients. Although the 

predictive application of this gene signature is debatable and is limited by the number of clonal 

samples in the analysis that it is based on, our method of starting from an unbiased barcoding of 

early passage PDX derived cell lines, creating a cohort of CRTs, treating tumors in vivo, and 
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ultimately isolating clones for validation and profiling to obtain gene signatures that correspond 

well to clinical therapeutic responses is extremely encouraging and provide evidence that the 

CRTs are a biologically relevant model. Furthermore, while our findings are limited in scope, they 

encourage the further study of combinatory treatments of DNA damage response inhibitors, such 

as ATRi with gemcitabine, which may further sensitize chemotherapy resistant cells in PDAC 

patients and lead to better standard-of-care response.   
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Chapter 2 

Looking through a Phenakistiscope: Modeling Lineage Crescendos & Decrescendos 

during Tumor Expansion and Dissemination through Unperturbed Longitudinal Clonal 

Tracing 

Abstract  

Tumors can be viewed as a complex ecosystem where multiple sub-clones harboring 

specific functional phenotype compete and co-evolve. To quantitatively capture the interplay of 

lineages during tumor expansion and dissemination in an unbiased and unperturbed fashion, we 

created an orthotopic clonal lineage tracing model by establishing clonal replica tumors. Using 

PDX derived cell lines from pancreatic cancer patients, the model revealed the complex and 

dynamic alternating dominance nature of cancer expansion. Regarding dissemination, the model 

captured distinctive, organ specific clonal dynamic profiles amongst distal sites and revealed the 

stochastic and explosive nature of local clonal expansion. Further lineage tracing experiment 

reveals that the cells with intrinsic self-renewal properties are likely to be responsible for distal 

tumors dissemination. Through molecular characterization of isolated clonal lineages that have 

differential potential for expansion and dissemination, we identified constitutive N-methyl-D-

aspartate (NMDA) receptor upregulation in clones that are more aggressive and invasive. 

Treating reconstituted tumors with a non-competitive NMDA antagonist (memantine) effectively 

reduced tumor expansion and dissemination. Furthermore, we identified a set of molecular 

signatures enriched in more aggressive and invasive lineages that could potentially inform on 

clinical outcome.  
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Introduction  

Cancer is not a static disease, rather can be regarded as a complex ecosystem wherein 

either diverse sub-lineages (or clones) and their environment co-adapt and evolve. Clonal 

evolution is involved in multiple stages of cancer development from the beginning to end 43, 44. 

Examples of cancer clonal evolution include, pre-malignant clonal expansion 87, gain of fitness 

associated mutations driving clonal dominance, selection of sub-population of clones with ability 

to disseminate and metastasize to distal organs 88, 92, 93, as well as treatment induced selection of 

resistant clones able to sustain tumor relapse 81, 89. Competition amongst lineages and adaptation 

to tumor intrinsic or extrinsic environmental perturbations, selecting for clones with survival 

advantages, is one of the fundamental mechanisms driving tumor progression and tumor 

heterogeneity 91, 94.  

Clonal lineage tracing is a powerful experimental approach to gain insights into how tumor 

sub-clones naturally evolve and respond to perturbations 95. However, currently there are no in 

vivo model to robustly trace clonal lineages over time, nor ways to functionally characterize 

specific lineages beyond static –omics profiling. The challenges arise from multiple technical 

aspects of clonal detection such as perturbation of system (tumor) during re-sampling, inadequate 

sample size for uniform tumor representation, and the lack of clonal detection resolution 96, 97. For 

instance, the serial biopsy or serial sampling process itself from the same tumor disrupts the tumor 

ecosystem; furthermore, the regions sampled may not necessarily represent the clonal makeup 

of the entire tumor. To the same point, surveying few metastasis lesions fails to inform on the 

degree of dissemination and clonal dynamics in the distal organ as a whole. More importantly, 

most models provide only a descriptive and qualitative depiction of complexity, lacking the ability 

to capture quantitative information, such as clonal cell number. For these reasons, most 

experiments extrapolate models of clonal evolution from endpoint analyses of cohorts of 

independent experimental subjects taken over time.  
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To bridge this technological gap, we created a barcoding-based longitudinal clonal tracing 

model to quantitatively capture in a high-resolution and robust manner the clonal progression of 

the entire tumor in vivo without perturbing the system. Using human pancreatic ductal 

adenocarcinoma (PDAC) patient-derived xenograft (PDX)-derived cells we generated orthotopic 

clonal replica tumors (CRTs), which are cohorts of animals bearing human tumors that are 

essentially identical in their clonal composition. Orthotopic CRTs enables us to treat individual 

clones across different animals as interchangeable single variables, and therefore, providing the 

means to track the entire population’s clonal dynamics over time through different animals without 

perturbing the tumor’s ecosystem during expansion. Through this model, by surveying the entire 

tumor clonal abundance present in the pancreas and other organs over time, we observed 

multiple distinct clonal dynamics, as well as a high degree of Alternating Clonal Dominance (ACD) 

during tumor expansion. Furthermore, we observed distinct populations of clones displaying 

unique organotropism in the context of seeding and outgrowth, as well as the oligoclonal with 

monoclonal dominance nature of metastasis lesions. Through analyzing the relationship of 

metastasis clonal lineages and their counterparts in the primary tumor, our data strongly suggests 

cell intrinsic ability for long-term self-renewal is a critical property of metastatic clones. 

Furthermore, a unique capability of the CRT approach is our ability to expand clones of interest 

that are of relevance for this current work and are metastasis naïve– for functional 

characterization. Synergistic with the longitudinal clonal tracing model, to functionally study clones 

displaying various degrees of fitness and their pro-metastatic potentials observed, through a high-

throughput clonal isolation workflow, we generated isogenic cell lines from the same population 

of barcoded cells used in the CRT model. Upon molecular characterization and functional 

validation of pre-metastasis isolated lineages, we identified key pathways, such as N-methyl-D-

aspartate (NMDA) receptor, constitutively upregulated in clones that are more aggressive and 

invasive. Targeting cancer cells with a non-competitive antagonist of NMDAR (memantine), 

effectively reduced the tumor expansion and degree of invasion. Finally, through differential gene 
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expression analysis between clones with various degree of dissemination potential, we generated 

a set of pro-metastatic gene signatures that can potentially predict patient clinical outcome and 

inform choice of therapeutic regimen. 

 

 

Figure 44. Limitations in current clonal evolution models. Currently, there are no models to 
continuously track clonal evolution without perturbing or acquiring enough sample size for 
adequate tumor representation. Schematic shows (assuming different color representing 
functionally diverse subclones), when performing serial sampling, each sampling of the tumor 
creates an artificial perturbation to the tumor, as well as lacking the ability to capture the clonal 
composition/ dynamics of the entire tumor. It is due to these practical limitations, capturing good 
representation of tumor expansion and dissemination clonal distribution or dynamics through 
serial biopsy is impossible.  
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Figure 45. Orthotopic Clonal Replica Tumor longitudinal clonal evolution models. If we could 
establish clonally identical tumors, we could bypass the limitations of serial sampling and trace 
longitudinal clonal progression through parallel replica tumors. This method would give us an 
inclusive view of the entire clonal dynamic during tumor expansion and dissemination with good 
sample representation. 

 

Pancreatic cancer and metastasis 

PDAC has one of the worst prognoses among all cancer types with a 5-year survival rate 

of only ~5% 98. Several factors contribute to this, including the fact that PDAC typically cannot be 

detected until it is at an advanced stage, frequently after invasion of nearby and distant organs 

has occurred. As a result, close to 90% of patients die due to obstruction or organ failure related 

to the metastatic disease99. Currently, it is generally believed that metastases occur late in tumor 

progression as tumor cells acquire new genetic alterations that confer invasiveness and survival 

advantages. This model seems to be corroborated by genomic studies where secondary lesions 

showed higher mutational load with respect to primary tumors, although no specific genes driving 

the metastatic process have been identified so far39, 100. Conversely, studies identified gene 

expression signatures of primary tumors that correlate with and are predictive of metastasis and 
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poor patient survival101, 102. These studies suggest that metastatic potential is established early 

during tumor progression and that metastases are probably driven by the same genetic alterations 

that drive tumorigenesis100. In other word, what is driving metastasis could be very much 

correlated to tumor fitness101. To gain clarity around these findings and gain perceptions in pro-

metastasis factors to inform therapeutic strategies, a deep functional characterization of molecular 

mechanisms leading to the development of metastatic pancreatic cancer is urgently needed.  

 

Focusing on the characterization of primary tumor cells with the potential to metastasize 

prior to dissemination  

In order for metastasis to occur from a primary tumor, cells must undergo a multi-layered 

selection pressure despite the route of dissemination (i.e. vasculature, perivascular, nerve, or 

lymphatic system). The selection pressure could be both mechanical and molecular based, where 

cells must survival the external pressure during dissemination (i.e. shear pressure in blood), as 

well as adapting to tissue specific micro-environment (i.e. chemokines and growth factors), 

eventually establish or find a niche that supports metastasis outgrowth 56, 102, 103, 121. Indeed, via 

studies of molecular characterization of paired metastasis samples and their primary tumors, a 

bottle-neck effect in terms of clonal heterogeneity was observed at metastatic sites 106, 107. Studies 

also found metastatic site-specific mutations that were not present in the primary tumor 56, which 

suggests the nature of continuous evolution of tumor cells that are able to metastasize (parallel 

evolution). This posted a practical challenge for researchers, where characterizing and comparing 

established metastasis tumors with primary tumors might not be enough to determine key cell 

intrinsic factors driving metastasization. As illustrated below in Figure 46, where comparing distal 

tumor (mix of blue and red) with primary tumor (blue), with the color red representing potential 

post-metastasis acquired phenotype, may not necessarily reveal factors driving initial 

dissemination.    
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In line with the same concept, functional characterization of cells derived from metastatic 

sites is limited in informing us on aspects of the tumors post metastasis, where the tumor cells 

potentially undergone transformation due to the external selective pressure from the metastatic 

cascade and distal organ specific microenvironments.  By only focusing on the study of these 

metastasis-site derived cells may confound our view in determining the driving factors that are 

inherited in the primary tumor toward a metastasis phenotype.  

In our study, we focus our efforts on identifying clonal lineages that are pro-metastatic, as 

well as provide functional characterization on such clonal lineages that has the potential to 

metastasize, but are “metastasis naïve”. In our experimental model, we choose early passages 

of cell lines derived from primary tumors as an effort to preserve tumor’s natural diversity. These 

tumors are from patients that went through pancreaticoduodenectomy at stage III of the disease, 

where minimum to zero dissemination were clinically observed at the time of surgery, but 

eventually develop relapse months after surgery at distal sites. This indicates the cell lines derived 

from the primary tumor partly consist of cell lineage responsible for the recurrence in patients, 

and hence, having the potential to metastasize (pro-metastatic cell lineages, but are metastasis 

naïve).                      
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Figure 46. Schematic of tumor cells of study and the relative time frame of disease progression. 
The tumor cell lines in our study are derived from patient primary tumors with no clinical 
metastasis, however, eventually experienced distal metastasis relapse. Therefore, part of the 
tumor cells we focus our study on should contain clones (cells depicted in blue) that have the 
potential to metastasize, while the grey cells/clone representing the cells/clone that are “not able” 
(or significantly less able) to metastasize. Furthermore, such lineages (blue) derived from primary 
tumor has not gone through the metastatic cascade and acquire potential metastasis specific 
alterations (cells depicted in bluish red in the metastasis site). 

 

 

Results 

Orthotopic injection model to study metastasis progression 

To establish a good representative model to study PDAC metastasis, I used an orthotopic 

(pancreas) transplantation approach due to its relevant organ microenvironment and blood 

circulation anatomy in the body.  Mouse pancreas anatomy is different from that of a human, as 

the structure of the organ is less defined and dispersed throughout the peritoneal111.  Therefore, 

the orthotopic injection is technically challenging and must be performed with high precision to 

avoid breaking any major vessels. When performing the injection, it is best to spread the pancreas 

apart on a sterilized cotton tip and inject near the lobes of the pancreas in a direction away from 

the vessels. This is to avoid injection associated vessel breakage and to insure the metastasis 

phenotype is not confounded by cells artificially leaking into the blood stream.  
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Figure 47. Illustration of mouse pancreas. Mouse pancreas structure is less defined and 
dispersed throughout compared to human pancreas, which has defined structures of 
head, body and tail. Illustration adapted from Denny Liggitt, Suzanne M. Dintzis, 
in Comparative Anatomy and Histology (Second Edition), 2018.  
 
 
Experimentally, to gauge the potential cell leakage into the blood stream during injection, 

I used a cell line ASPC1 (from ATCC) derived from a metastatic site (ascites) and performed 

orthotopic injection (cells in FBS-free medium with 50% matrigel) while avoiding breaking the 

vessels in NSG mouse (n=3) 108. After surgery, I waited 15 minutes for the matrigel to solidify in 

the pancreas. Afterward, I cauterized out and removed the injected cells alongside with tissues 

surrounding the injection site. Comparing to the animal that did not receive cauterization after 

injection (n=2), at the same time point post-transplantation, day 36, the cauterized animal has no 

visible metastasis, while the un-cauterized mouse has a massive degree of metastasis in the liver, 

lung and ascites confirmed by microscopy. This result serves as a validation on the injection 

technique, which is often overlooked, as well as provide confidence that the orthotopic 

transplantation model mimic physiological tumor dissemination originating from primary tumor.  

 

https://www.sciencedirect.com/book/9780128029008
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Figure 48. Orthotopic pancreas injection model experimental procedure positive and false-
positive controls. A) Cells derived from human ascites were injected in the pancreas of mouse 
followed by removal of injected cells and part of the pancreas via ligation and cauterization. B) 
Mouse without removal post injection develop ascites, which have swollen abdomen. C) H&E 
staining of mouse liver for the groups without removal. Mouse without removal post injection 
developed liver metastasis indicated by yellow arrow. D) H&E staining of mouse lung. Mouse 
without removal post injection develop lung metastasis. E) Ascites collected from mouse without 
removal post injection (injected cells express RFP). Groups with post injection cauterization has 
no visible metastasis. Pictures are not shown.   

 

Moreover, on the topic of choosing the right transplantation model to study metastasis, 

splenic injection (or tail vein injection, seeding) model is inadequate in recapitulating the natural 

process of liver metastasis and phenotype. Splenic injection, which is a common method used 

among researchers to enrich for cells with “metastasis” potential in the liver. In fact, cells enriched 

in the liver through splenic injection bypass many biological steps in the metastatic cascade. To 

name a few, the biological aspects of metastasization that are bypassed include stromal selection 

pressure and their fitness and vasculature distribution in primary tumor during expansion, 

selective pressure of extravasation, mechanic stress during the blood/lymphatic system, 

extravasation into distal organs and localization at metastatic friendly niche, and so on. An 

example below shows how liver metastasis lesions of a splenic seeding injection vs. an orthotopic 

injection model look like. The orthotopic liver metastasis matches clinical observations while the 

splenic injection does not. For all the aforementioned reasons, orthotopic transplantation model 

is best to study clonal dynamics during tumor expansion and dissemination. 
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Figure 49. Splenic vs. pancreatic injection of PDAC cells and their liver dissemination phenotype 
comparison. A) Liver “metastasis” using splenic injection. Splenic injection bypass many natural 
mechanisms of dissemination. Cells injected is directly drained to the liver. As seen from the 
picture, many cells are mechanically trapped in the liver and does not recapitulate what is clinically 
observed.  B) Liver metastasis through pancreatic injection. Metastasis indicated by yellow 
arrows. The metastasis phenotype obtained from orthotopic injection mimics the metastasis 
pattern observed clinically, where cells must originate from the primary tumor in the pancreas and 
undergo the metastasization cascade to disseminate.    

 

Subcutaneous injection does not reproduce clinical metastatic phenotype 

To have an idea of whether or not subcutaneous injection model is good for studying tumor 

dissemination, we did a comparison between subcutaneous vs. orthotopic transplantation of 

tumor cells in mouse and monitored their metastasis phenotype. The same amount of cells 

derived from PDAC patient liver metastasis tumor (PATC53) was injected subcutaneously, or 

orthotopically in the pancreas in individual NSG mouse. After allowing the tumors to grow for one 

month, there were no visible metastasis lesions by eye in the liver of subcutaneous injected 

animal; on the other hand, there were significant liver metastasis in the orthotopically transplanted 

mouse. Thus, orthotopic injection model is more suitable for us to study clonal dissemination 

pattern originated from pancreas, while subcutaneous transplantation model is not.  
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Figure 50. Picture of subcutaneous injection vs. orthotopic injection of human tumor cells in 
mouse and their metastasis phenotype in liver. Subcutaneous injected animal’s liver after one 
month (left) versus orthotopic injection (pancreas) animal’s liver after one month (right). Both 
“primary tumors” are comparable in size when the picture is taken. As seen in the picture, 
subcutaneous injection is not suited for studying tumor dissemination for pancreatic cancer.  

 

Orthotopic PDAC transplantation model display inter-tumor heterogeneity in terms of 

metastatic latency and organotropism 

To establish a representative model to study PDAC metastasis, I am using an orthotopic 

transplantation approach due to its relevant organ microenvironment and blood circulation 

anatomy in the body. ATCC cell lines and PDX cell lines derived from pancreatic lesions known 

for their metastatic potential were chosen. Specifically, for ATCC cell lines, PANC-1 and CAPAN-

2 (cell lines derived from primary tumors with literature reports of metastatic potential) and AsPC1 

(derived from a local invasion site) were chosen, with KP-1N (derived from a liver metastasis) 

included as a positive control108. PDX derived cell line models PATC124 and PATC69 were 

chosen based on patients relapse sites, where patients developed liver and lung metastasis after 

surgery respectively61, 109. To evaluate metastatic potential and latency, I transduced each cell 

line with a lentiviral vector encoding luciferase, and then injected orthotopically in 

immunocompromised animals (NGS). Subsequently, tumor progression is monitored by in vivo 

spectrum imaging (IVIS) to detect luciferase-positive tumor cells. 

 



75 
 

  

Figure 51. Summary of the PDAC cell lines and their respective sites of derivation and metastasis 
latency measured by IVIS. Information of PDAC cell lines chosen for validation of orthotopic 
transplantation model to study metastasis (left); An example of continuous IVIS monitoring of 
tumor cells (PATC124) expressing luciferase on the same cohort of orthotopically transplanted 
(pancreas) immune deficient mouse (right). In this experiment, metastasis in the liver is observed 
(detectable by IVIS) around day 70 post injection. The liver of the mouse was removed and put 
on petri dish to verify the signal was originated from mouse liver disseminated from primary tumor.  

 

Concurrently, primary tumor, liver, and lung were collected at different time points and 

samples analyzed by H&E, immunohistochemistry (IHC) and immunofluorescence (IF) to detect 

for human cells, as well as to assess the extent and morphology of metastatic lesions. Through 

serial sectioning of FFPE blocks, we were able to determine the precise time points of micro-

metastasis in the cohort for each specific cell line. Interestingly, through IF imaging staining for 

HLA, we observed clones from the same cell line displaying distinct levels of HLA expression co-

localized adjacently; moreover, these clones display various degrees of morphology in terms of 

“invasive pattern” from defined to irregular “intrusive” boarder phenotype surrounded by 

hepatocytes (Figure 52).  
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Figure 52. Representative immune-fluorescent image for micro-liver metastasis and intra-tumor 
HLA expression heterogeneity in the liver metastasis. Histology of PANC1 cells in liver stained 
with HLA (red), Ki67 (bright green) and DAPI (blue). The fluorescent background has been 
artificially increased to appreciate tissue structure. In the left graph, the white arrows indicate 
micro-metastasis in the liver. The right graph shows adjacent clones exhibit differential HLA 
expression and morphology. In this image, the top “clone” has a low HLA expression level and 
exhibit a more “irregular, invasive” pattern with peripheral cells more integrated into the liver. On 
the other hand, the adjacent clone expression high HLA (more red) has a more defined border. 
Scale = 100 micron.  

 

Based on the combined analytical methods mentioned above, in our model, metastatic 

latency is highly variable among cell lines, ranging from 30 days (PANC1 and ASPC1) to 90 days 

(PATC69).  
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Figure 53. Summary of average metastasis latency amongst different tumor cell lines.  

 

Last but not least, across tumors, we saw various degree of metastasis towards the liver 

or lung. We observed PATC124 metastasized primarily to the liver, while PATC69 metastasized 

primarily to the lung. Notably, in the PDX orthotopic transplantation model, the pattern of 

organotropism was consistent with the site of disease recurrence observed form the patient. In 

other word, the model could recapitulate clinical organotropic phenotype.  

These inter- and intra- cell line heterogeneous phenotypes underscore the relevance of 

the research, wherein barcode tracking of distinctive clonal behaviors during tumor progression 

and metastasization may reveal unique molecular profiles relevant to their respective phenotypes.  

Most importantly, from the above results, I conclude that an orthotopic transplantation model in 

the pancreas is a valid model to study primary tumor expansion and capture distinct tumor 

dissemination patterns.  
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Figure 54. CRT tumor cell lines recapitulate patient metastasis site during relapse. Liver and lung 
after 2 months post orthotopic transplantation of PDAC PDX derived tumor cells. H&E staining of 
liver and lung (top) and pictures of the entire organ (bottom). PATC124 (left) developed mainly 
liver metastasis, while PATC69 (right) mainly developed lung metastasis. The organotropic 
phenotype is consistent with individual patient site of relapse. 

 

Establishing long-term self-renewal barcoded cell lines to create orthotopic CRTs 

To create a cohort of mouse bearing clonally identical human tumors in the pancreas, we 

followed a pre-established lentiviral barcoding workflow discussed in previous chapter. In brief, 

we took an early passage PDX derived cell line from patient’s primary tumor (PDAC) and infected 

the cells with a pool of highly complex barcode library (~10M unique variations) at a very low 

molarity of infection (0.1-0.2 M.O.I) to ensure each cell ended up with one unique barcode 

integrant. Once the barcode has integrated in a cell, the barcode would be continuously passed 

on to its progenies, and hence allowing us to track cell lineages. The barcoded cell culture was 

then treated with antibiotics to select for positive barcode integrated cells (the barcoded cells are 

puromycin resistant and express RFP).  The barcoded cells were then passaged at a 1:2 ratio in 

vitro for ~21 passages. During the in vitro passages, the cell culture would naturally enrich in cell 

lineages that are endowed with long-term self-renewal properties while most of the other lineages 

exhaust (~99%), the culture would eventually achieve equilibrium and stabilization in clonal 
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composition. Once the culture achieves stabilization, it could be expanded and transplanted 

orthotopically in a cohort of animals.  

                       

Figure 55. Schematics of the orthotopic clonal replica tumors workflow. Primary tumor cell lines 
were established from patient’s primary tumors. Early passage of each cell line was infected with 
high complexity of barcodes at a low MOI to ensure one unique barcode per cell. Barcoded cells 
were stabilized through serial passages in vitro at a 1:2 passaging ratio for natural enrichment of 
long-term self-renewal clonal lineages. Stabilized cells were expanded and injected orthotopically 
into cohorts of mouse. A pair of mice with tumor were sacrificed at different time points, where 
barcode composition and abundance where measured via NGS for lineage tracing of clones over 
time.  

 

                          

Figure 56. Barcode complexity during “stabilization”. An example of clonal lineage complexity 
drop during in vitro culturing and enrichment of clonal lineages that are able to sustain culture. 
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Barcode complexity drops over time, which is contributed by lineage exhaustion and natural 
enrichment of clones that are able to sustain culture / tumor long term. This observation was 
consistent with what was observed and discussed in chapter one, where barcoded culture will 
come to a natural equilibrium, enriching in tumor-maintaining lineages.  
 

 

Lineages in post stabilized culture continue to maintain tumor growth long-term in vivo 

From the previous chapter, we have concluded empirically that post stabilization, lineages 

that remain in the culture has the ability for self-renewal and maintain the tumors long-term109. As 

a short summary of the experiment to determine the self-renewal nature of stabilized cell lineages, 

starting from passage 1 after barcoding, the cells were passaged in parallel by serial passage in 

vitro and serial transplantation in vivo. Over time, the lineages in both experimental arms converge 

with identical set of barcode lineages representing majority of the tumor mass (in vivo, after 8 

months) and cell culture (in vitro, after 21 passages).  

Since I am using the stabilized culture to generate a longitudinal CRT model to study 

clonal dynamics, it would be important to know whether the lineages in the clonal replica tumors 

post transplantation are indeed relevant in terms of sustaining tumor growth. In order to evaluate 

whether or not the cell lineages use in the model would indeed engraft and continue to maintain 

tumor long-term, we performed in vivo serial transplantation of the tumor (post stabilization) for 

three generations (F1 to F3 for 6 months, subcutaneous transplantation) and evaluated the 

barcoded lineages present in F3. By analyzing the lineages in F3, we could validate whether or 

not the lineages post stabilization has the capacity to continue to sustain tumor.  

First, comparing the subcutaneous tumor F1 to F3, the tumors share ~1,606 common 

lineages, where those common lineages makes up almost the entire tumor mass in both F1 and 

F3 (97.48% and 99.99% respectively). This informs us the lineages used in the model can 

continuously engraft and form tumor in vivo, and that they are indeed long-terms self-renewal 

lineages.  
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Comparing the serial transplanted tumor at F3 to orthotopically transplanted tumors at two 

independent time points (day 50 and day 114), we observed ~1,300 common barcode lineages 

shared amongst F3 and orthotopic tumors (1327 and 1390 common barcodes respectively). The 

common barcodes make up almost the entire tumor mass of F3 (>99.8%), day 50 orthotopic tumor 

(87.1%), and day 114 orthotopic tumor (96.77%). This data indicates the orthotopic tumors 

created through the barcode stabilization process are made up of almost entirely tumor sustaining 

cell lineages, and that they are endowed with long-term self-renewal properties.  

 

 

Figure 57. Experimental schematics to measure post-stabilization culture used to create CRTs 
for studying clonal dynamics are composed of lineages with long-term self-renewal (LTSR) 
properties. Post-stabilized barcoded cell culture was expanded and subjected to in vivo serial 
transplantation for six months (F1 to F3) to functionally measure lineages with LTSR; the same 
population of stabilized cell were injected in cohorts of mouse orthotopically in parallel. Orthotopic 
tumors were collected at day 50 and day 114. By comparing the barcode composition of the 
orthotopic tumor to the serially transplanted tumor F3 informs us of the LTSR nature of lineages 
in orthotopic tumors.  
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Figure 58. Clonal makeup of orthotopic CRTs vs. serial transplanted tumors to gauge the LTSR 
nature of lineages in orthotopic CRTs. Number of common barcode lineages and their relative 
tumor representation shared amongst CRTs (F1, orthotopic tumor, which are tumors generated 
right after in vitro stabilization) and serially transplanted tumor, F3. The barcode cutoff criteria 
used in this analysis is more “inclusive”, where barcodes with reads above 2 are included. In the 
most left graph, it showed the “F1” tumor and “F3” tumor shared ~1,606 common barcodes, and 
those common barcodes makes up essentially the entire tumor mass of both “F1” and “F3” tumor. 
In the middle and right graph, “F3” tumor (informs of LTSR lineages) shared ~1,300 to 1,400 
clones with orthotopically generated tumors. Furthermore, amongst those common clones, they 
make up essentially the entire tumor mass in “F3” and orthotopic tumors (day 50 = 97.1% and 
day 114 = 96.77%). This indicates that orthotopic tumors (CRTs) are made up of essentially all 
lineages endowed with LTSR which can sustain tumors long-term.  

 

 

Barcoded early passage PDX derived primary tumor cell line is heterogeneously diverse 

To assess the biological heterogeneity present in the primary tumor cells lines used in the 

longitudinal clonal tracing model, we submitted single cell sequencing of post-barcoded cells 

(~5,000 cells) and looked at their genomic copy number variance profile.  This is to ensure that 

the barcoded culture used for clonal tracking is not a homogeneous culture. As shown in Figure 

59 below, the barcoded culture (at passage 4) indeed consists of multiple CNV diverse clones. 

Furthermore, to assess whether the “stabilization” (in vitro passaging of barcoded cells at a 1:2 
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ratio) process is relatively neutral in preserving the biological heterogeneity, concurringly, I 

sequenced ~5,000 single-cells from a late passage (at passage18) and look at the overall copy 

number change by comparing to passage 4. From the analysis, the overall CNV profile from early 

and late passage are very similar, aside from small regions on chromosome 4 and 12, which tells 

us there are some degree of clonal enrichment, however, the “stabilization” process over all is 

relatively neutral in disturbing the CNV profiles of the tumor culture.   

                                        

                

 

Figure 59. Early passage vs. late passage single cell CNV profile comparison during stabilizaton. 
Single-cell CNV data from early passage of barcode cells (passaged 1:2 each passage) derived 
from PDAC PDX. The top indicating chromosome number and the color red indicates gain in copy 
number while blue represents loss of copy number. The bottom profile represents the average 
CNV profile of all the cells (top left graph). A higher resolution view of individual clusters of CNV 
profile, the number on the left indicates cell number associated with specific profile (top right 
graph). Comparison of the average CNV profile between early passage and late passage 
barcoded cells (bottom graph). The data informs us that the stabilization process is relatively 
neutral and maintains tumor’s biological heterogeneity.  
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The barcoding process is neutral to barcoded cells in terms of cell proliferation   

To gauge the effects of the barcoding process on the barcode-inserted cells in terms of 

expansion fitness relative to the overall cell culture, we performed the barcoding process on an 

aggressive cell line (KPC cells) at 0.1 molarity of infection without antibiotic selection and 

passaged the cell culture 2:1 for eighteen (18) passages. At passage 2, 5, 11, and 18, we 

measured the relative percentage of RFP positive cells (barcoded cells express RFP) amongst 

overall cell culture both in terms of total cell population and live cell population.  We found the 

percentage of relative passages to be 4%, 3.9%, 3.1%, 2.7% of total live cell population (see table 

below). Considering that the loss of florescent protein expression is a common phenomenon, and 

the fact the relative RFP+ population to be relatively stable (3-4%) over 18 in vitro passages, we 

could conclude that a gain of fitness due to barcoding was not observed.  We could be relatively 

confident that the barcoding process, overall, is neutral to the fitness of the cells. Obviously, this 

experiment was only aimed at assessing whether or not, in general, barcoding have an effect on 

drastic fitness change relative to the entire population and not on a genomic/gene level. To obtain 

the precise location of insertion of barcodes, primers could be designed to extend outwards from 

the inserted vectors and the amplified regions mapped to genome, which is an ongoing effort in 

the lab.  
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Figure 60. Experimental setup to gauge the effect of barcoding on fitness. The barcoded cells 
were co-cultured with the parental population over 18 passages (1:2 ratio, left); FACS analysis of 
barcoded cell population over 18 passages (RFP+ population, right). The barcoded population 
stayed relatively stable at 3-4% over 18 passages. Indicating no drastic gain of fitness. 

 

                     

Figure 61. Barcoded cells’ relative fitness in cell culture by FACS. Examples of FACS of infection-
null cell line (top left) and barcoded cells (top right). The barcoded cells express RFP, where non-
barcoded cells do not express RFP. Bottom table is the % RFP positive percentages in the context 
of total population and live cells throughout passages.  
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Clonal growth in subcutaneous injection vs. orthotopic injection are similar  

Subcutaneous injection of tumor cell lines is commonly used in the research community 

as in vivo studie110.  A subcutaneous transplantation model fulfils criteria of cell engraftment and 

growth in an in vivo setting with relatively simple procedures compared to orthotopic 

transplantation.  It is also commonly used as a model to study for drug response due to the ease 

of monitoring tumor size in response to therapy.   

In our model, we ask the question, “for the PDAC cell lines consists of long-term self-

renewal lineages, how different, or, similar would these lineages behave in an orthotopic setting 

vs. a subcutaneous setting?” This information would help us understand the nature of these 

lineages under study and have a deeper understanding of our model.  

The experiments consist of the stabilized CRT cell lines from PATC124 after barcoding.  

Cells were split into two groups, one group for orthotopic pancreas injection (~3M cells, n=2) and 

the other for subcutaneous injection (~20M cells, n=3). The tumors were collected after 1 month 

and processed for barcode readout.  In brief, DNA from tumors were extracted with spiked-in 

scales of known cell count with unique barcodes ranging from 50,000 cells to 5 cells; then, 

barcodes were amplified via PCR with a common set of primers and sequenced via NGS.  Each 

barcode was then normalized to “percent representation per sample” by dividing individual 

barcode counts by total read count of the particular sample. The barcode representation at this 

point can be interpreted as “clonal representation in tumor”; furthermore, the barcode 

representation was averaged between samples in each injection condition cohort before 

comparison.  

By looking at the barcodes composing of the top 99.5% of the tumors, the barcode 

complexity is 1,402 barcodes in the orthotopic setting and 9,233 in the subcutaneous setting. The 

entire set of barcodes in the orthotopic tumors could be found in the subcutaneous tumor as 
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shown in the Vann diagram. This was likely due to a smaller sub-set of cells were transplanted 

orthotopically (3M vs. 20M). Comparing the relative tumor mass representation of the common 

sets of barcodes (1,402 barcodes) they make up 100% of the orthotopic and 98.7% of the 

subcutaneous tumor mass respectively. This indicates that the majority of the tumor mass from 

different sites were made up by the same set of clones.  

By plotting the XY scatter plot of each barcode’s representation of orthotopic vs. 

subcutaneous tumors, we could see each clone’s relative representation in the tumor were highly 

correlated (Pearson’s =98.34%).  The data suggests that in the CRT model, with the stabilized 

cells containing long-term self-renewal lineages, the clonal engraftment properties from orthotopic 

injection and subcutaneous injection are highly similarity.  

Since the goal is to create “clonal identical” tumors in different animals, this experimental 

result suggests that in our model, the CRT clonal lineages are indeed robust tumor maintaining 

clonal lineages, and that the cell intrinsic engraftment and proliferation capability are strongly 

preserved despite different transplantation sites in vivo.  However, this does not indicate that the 

orthotopic and the subcutaneous environments are the same and would not influence clonal 

behavior over time (i.e. designing serial transplantation of orthotopic tumor vs. subcutaneous 

tumors would answer this question). All in all, we can conclude that in terms of lineage intrinsic 

engraftment and proliferation capability, these stabilized lineages have similar behavior under 

subcutaneous and orthotopic setting.  
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Figure 62. Subcutaneous vs. orthotopic tumor clonal composition and correlation. Comparing the 
common barcode lineages and their relative abundance correlation between orthotopic and 
subcutaneous transplanted tumors using stabilized clonal tracking cell lines. X-Y scatter plot of 
common barcodes and their relative abundance (%) in orthotopic and subcutaneously injected 
tumor. Each dot representing a unique barcode lineage (left); Converting each lineage into cell 
number through a spiked in scale, and then overlaying of each barcode lineage’s representation 
ranked from low to high from left to right. Blue represents subcutaneous tumor lineages, while red 
represents orthotopic tumor lineages (top right); Common barcode lineage and their relative tumor 
representation between subcutaneous vs. orthotopic tumors (bottom right).  

 

Orthotopic CRTs are maintained and progress similarly over time   

From previous sections, we now have a better understanding that the tumor cells 

transplanted orthotopically are derived from long-term self-renewal cells and are biologically 

diverse; in addition, these lineages will continue to sustain tumor growth in vivo long term.   

To briefly recap on the experimental design, a cohort of animals were injected with ~3M 

stabilized barcoded cells orthotopically. Two tumors were collected at week4, week6, week10, 

and week 12 respectively and their lineage composition determined by barcode read out through 

NGS.  

 



89 
 

                                         

Figure 63. Experimental design of longitudinal clonal tracking model. Cohorts of animals 
orthotopically transplanted with stabilized barcoded cell lines were established. Tumors were 
collected at various time points post injection in pairs (left); Pictures of the tumors in parallel 
mouse at 4 weeks were similar in size (top right); Two independently barcoded (PATC124) 
orthotopic experimental cohorts and their survival curve (bottom right).   

 

 

Figure 64. Orthotopic CRT clonal correlations over time. Numbers of animals collected per time 
point (Top); Barcodes in common and shared between parallel animals at a particular time point 
and their relative culture/tumor representation (%) (middle); X-Y scatter plot (log scale) of 
individual barcodes and their (%) correlation value (bottom) in parallel mouse at the same time 



90 
 

point. The CRTs stayed relatively similar and maintaining high correlation until week 12, where 
we observe a natural divergence amongst CRT animals. The degree of spread and divergence 
reflects the unpredictability of tumor expansion, considering we injected the same cells in the 
beginning.  

 

Looking at the barcode complexity from two of the many replica vials of cell aliquots for 

injection (each animal received one vial of ~3M cells during injection), the two vials of “what is 

injected” shared around 15,696 barcodes. Those common barcodes represent almost the entire 

content (>99.9%) of cells in each vial. Furthermore, each of the barcode’s abundance were highly 

correlated (Pearson correlation 0.9987). This indicates the tumor cells transplanted into each 

animal were basically clonally identical in both composition as well as relative abundance.  

Following established orthotopic tumors and comparing two tumors at week 4, we see 

there are ~4,653 barcodes in common. A reduction of barcodes comparing to “what is injected” 

indicating not all lineages could engraft and expand under this specific experimental setting. The 

4,653 common barcodes represent majority of the tumor mass in both tumors (99.7% and 99.8%) 

and have high correlation (0.9914). This indicates that these two tumors are essentially identical 

in their clonal composition and individual lineage’s relative abundance is essentially the same. In 

other words, when a barcode lineage is highly represented in one tumor, it is also highly 

represented in the other tumor. Therefore, this satisfy the criteria of establishing clonal replica 

tumors.  

Furthermore, analyzing lineage composition and relative abundance of tumors collected 

at week 6 ( 3,216 common clones, common clones makes up 99.8% of tumor mass, correlation 

of barcodes in two tumors 0.9038), week 10 ( 2,903 common clones, common clones makes up 

99.4%-99.8% of tumor mass, correlation of barcodes in two tumors 0.9381) and week 12 ( 1,378 

common clones, common clones makes up 98.4%-99.6% of tumor mass, correlation of barcodes 

in two tumors 0.7337), the data indicates that the CRTs were maintain throughout their 

progression. However, interestingly, throughout the tumor progression, we see natural clonal 
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reduction from initial ~4,653 barcodes at week4 down to ~1,378 barcodes at week 12, indicating 

clonal competition and clonal dropout during tumor expansion. Furthermore, we observed the 

degree of nature divergence of tumor lineage expansion. This was indicated by the drop of 

correlation from >90% to ~70% from week 10 to week 12 and by observing the increase in spread 

of clones in the X-Y scatter plot over time. In other words, in our experimental model, the CRT 

tumors progress very similarity over time, however, each clonal lineage also progressively diverge 

over time. This observation showcases the unproductiveness of cancer growth and the possible 

extrinsic factors shaping tumor progression.  

 

Longitudinal clonal progression between CRTs are similar over time through statistical 

robust test 

To further validate CRTs for longitudinal lineage tracing, we applied a series of statistical 

analysis to test for aspects of the CRTs in terms of their similarities over time: (This section was 

performed by Delia Wang).  

Statistics 1 (T1) measures the sum of common barcodes shared amongst the two subject 

(tumors) at the same time point. For example, samples A and B. Therefore, the larger the value 

of T1 the more A and B are similar. This informs us of the lineage composition aspect of CRTs.  

                                                        

Statistics 2 (T2) measures the Pearson correlation coefficient between barcode 

populations from sample A and B (PA
 and PB). The closer T2 is close to 1, the more similar the 

barcode populations are between A and B. This informs us about the relative abundance similarity 

between CRT animals.  
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Statistics 3 (T3) measures the Euclidean distance between PA
 and PB. The closer the value 

of T3 is to zero (0), the more similar A and B are. This informs us of how closely related CRTs’ 

clonal differences are as a whole at each given time point.  

                      

For the above statistical tests, we used Bootstrap resampling approach to perform 

similarity test (1,000X). The criteria we used to guide the simulation’s parameter was based on 

the empirical obtained differences from the two technical replicas vials of cells of “what is injected”, 

which is the most stringent criteria we could empirically achieve.  

In Figure 65 below, the curves represent the simulated expected true distribution value 

based on the stringent criteria of similarity and the two CRT samples/tumors, and the dotted line 

representing the observed value at day 0 (“what in injected”), week 4, week 6, week 10 and 

week12 from top to bottom. We see that before week 12, for all three statistics, the observed 

value either falls within or close to the value that indicates similarities between the two samples. 

This means we cannot say these CRTs, before week 12, are not similar under these simulation 

criteria.   

 

 

Figure 65. Statistical robust test for paired orthotopic tumors over time. From left to right, the 
statistical tests on simulated data: common barcodes shared between tumors (left), the Pearson’s 
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correlation of each of the barcode abundance (middle), and finally, the Euclidean distance 
between the individual tumor’s barcode analyzed as a whole (right). The distribution curve in each 
panel at each time points represents the simulated “true” value (1,000 times) by bootstrap method. 
The dotted line in each panel represents the observed value. If the experimental (observed) value 
falls within the “true” distribution or above (for “common” and “Pearson”, the higher the value, the 
more similar) or below (for “Euclidean distance”, the smaller the distance, the more similar), we 
do not have enough evidence to say these samples are different.   

 

Interestingly, as previously described, although CRT tumors as a whole behaves similarly 

over time, we observe a natural divergence of clonal expansion over time as well.  Such as, under 

this stringent criterion of the similarity test, week 12’s CRTs, as a whole, are not “similar”. Taken 

into consideration that we injected essentially clonally identical tumor cells in every animal, this 

observation captured the degree of the unpredictability and randomness nature of tumor 

progression.  

Last but not least, keep in mind that the simulation is conducted on criteria of similarity 

guided by a very stringent set of data (two technical replica of aliquot vials of cells post 

stabilization). Therefore, even though week12’s tumors as a whole reject the null hypothesis and 

are shown to be “not similar” in this set of robust test, they are still considered to be CRTs in 

nature given the common barcodes shared (n=1,378) representing 98.4%-99.6% of the entire 

tumor mass. On this note, from the analysis below, where the difference of the relative 

representation (in %) of each unique barcode between the two CRT samples/tumors are 

calculated and graphed out. We can see the vast majority of the barcode lineages are similar (that 

makes up >99.9 of the tumor mass), while only part of the barcoded lineages diverges gradually 

over time. 
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Figure 66. The difference of distance of barcodes in paired CRT mouse by time. Each dot 
representing a barcode and the Y-axis indicates the % difference of the same barcode in two 
different CRT tumors collected at the same time point. The data are analyzed based on 
quantitative analysis of the barcodes (cell units). The difference between each clone amongst 
CRTs at the same time point from day 0 to week 12 was calculated. Left graph was analyzed with 
50 cells as cutoff, whereas the right graph used 5 cells as cutoff. We could see the majority of the 
barcodes remain very similar in abundance in CRT animals over time. Analysis by Delia Wang. 

 

 

Figure 67. Representation of natural clonal divergence in unperturbed tumor expansion. Graphical 
representation of CRTs are maintained over time, with vast majority of the clonal lineages 
behaving similarly in replica tumors, while a subset of clones becomes more divergent and 
behaves differently starting around week10 post injection (left); X-Y scatter plot of the second 
cohorts of all the orthotopic CRT’s primary tumor (each tiny dot is a unique barcode, value plotted 
in % representation, in log scale) from day 0 to day 114, from top to bottom and left to right 
orientation, where a general trend of decrease in clonal abundance correlation (right).  
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Orthotopic CRTs are maintained over time and the model is reproducible  

To verify the orthotopic CRT model is reproducible, using the same PDAC cell lines 

(PATC124), we independently performed the entire process from barcoding, stabilization, to 

independent transplantation in another cohort of animals and collected tumors at various time 

points. This time, we extended the time points to week 16, which was the limit before animal 

subjects die of tumor burden.  

For each paired tumors collected at each time point, we performed the same statistic 

robust test described in the previous sections. The conclusions were the same: orthotopic CRTs 

were well maintained over time as a whole. Natural tumor divergence over time was also observed 

with the vast majority of the barcode lineages that makes up the essentially the entire tumor mass 

behaves similarly over time. All in all, we are confident of the robustness and reproducibility of the 

orthotopic CRT process and outcome. Since these CRTs are maintained over time, we could 

exploit this property to track longitudinal clonal dynamics in parallel CRT animals.  
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Figure 68. Experimental workflow schematics of two independent cohorts of animals carrying 
orthotopic CRTs. Using the same cell line derived from the same patient, through independent 
barcoding and stabilization, we created two independent cohorts of orthotopic CRTs. In the first 
cohort, the longitudinal study spans 12 weeks, while in the second cohort, the study lasts 16 
weeks. The mice subjects bearing CRTs die around 12 - 16 weeks of metastasis throughout the 
body in general.  

 



97 
 

                     

                                           

Figure 69. CRT robust test on the second independently generated orthotopic animal cohort. The 
same simulation of “common barcode types”, “Pearson’s correlation”, and “Euclidean distance” 
(top panels from left to right) was applied to the second cohort of orthotopic CRT mice using a 
stringent criteria of similarity. The observation was in concordance with the CRT cohort 1, where 
orthotopic CRT tumors progress similarly till around week 9. In this cohort, while most of the 
lineage progress similarly, we also observe the natural divergence of tumor expansion between 
replica tumors over time (bottom panels, the red dot clones).  
 

Majority of the clonal trends are similar amongst CRTs in terms of gain or loss in fitness  

To further gauge the similarities of how CRT behaves in the context of individual clones 

gain or loss of fitness over time, we look at early vs. late time point CRTs (week 4 and week12) 

and compare the change in relative abundance change per lineage. For example, if a barcode 

abundance difference between week 12 and week 4 has a positive value, it indicates that the 

particular barcode has a gain in fitness over the 8 weeks span; vice versa, if the difference in 

value is negative, it indicates that particular barcoded clonal lineage lost fitness. Using this 

criterion, we can obtain four values for each barcode from the difference between “week 12 mouse 

#1 and week4 mouse #1”, “week 12 mouse #2 and week4 mouse #1”, “week 12 mouse #1 and 
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week4 mouse #2” and “week 12 mouse #1 and week4 mouse #2”. Then, we further transform 

these four values into a simple “positive” or “negative” categories, where a positive value (gain in 

fitness) will be assigned a new value of “1”, and a negative value will be assigned a new value of 

“0”.  Afterwards, we take the summation of these four values to gain five possible values of “0”, 

“1”, “2”, “3”, “4”, where each value gives an indication of how consistent each barcode’s behavior 

are. For example, if the summation is “4”, it means consistently, for that barcode, comparing week 

12’s relative tumor representation (in either CRT animal) to that particular barcode’s relative tumor 

representation at week 4 (either week4’s CRT animal), it all indicates a positive gain in fitness. 

Therefore, a category of “0” and “4” indicates a most consistent outcome (all loss in fitness, or all 

gain in fitness), where “2” indicates there are discrepancies amongst individual CRTs.  

Using the analytic methods described above, looking at the top 1,000 barcodes from week 

4,  around 82% of the barcode lineages’ relative fitness trends are consistent amongst the four 

CRT animals (category “0” and “4”, where 79% loss of fitness, 3% gain of fitness); 5% of the 

barcode lineages (category “1”, “3”) has partial in consistency; lastly, ~13% of the barcodes have 

inconsistency in gain or loss of fitness (category “2”). While this analytic method is somewhat 

crude, where we don’t consider the absolute value of the differences, or, whether or not if the 

difference is significant, the set of data indicates that majority of the barcode trends amongst 

CRTs are somewhat consistent. As for the 13% of lineages fitness trends that are “inconstant” 

(category 2), if we consider the observation where clonal divergence happens naturally over time 

during tumor expansion,  we might be measuring the same randomness of clonal behaviors in 

tumor. In other words, it is possible that “13%” of the clonal lineages will behave randomly, or, 

“13%” of the tumor in this particular setting are unpredictable due to unidentified factors.  
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Figure 70. Category of clones that share consistent fitness dynamics between CRT tumors. 
Category to measure “consistency” of clonal loss or gain of fitness from week 4 to week 12, where 
the left number on each bar-graph indicates the count of barcodes in that category, while the right 
number indicates the % (n = 1,000). The X-axis, category “0” (loss of fitness, total n= 787, 79% 
of the clones) and “4” (gain of fitness, n= 34, 3 % of the clones) indicates the fitness trends are 
consistent amongst individual CRT animals. Category “1”, “2” and “3” indicates clones that are 
partially consistent amongst replica tumors. The mosaic colored side way bar-graph at the bottom 
(blue and red) conveys the same information, where the numbers represent % of the total clones 
that falls into each bin (78.8% + 3.4% = 82.2% of the clones share consistent fitness trends in 
replica animals).    

 

Orthotopic CRTs robustly replicates clonal tumor heterogeneity in vivo amongst individual 

animals from the same cohort and enables the orthogonal tracking of complex lineage 

dynamics and evolution  

So far, we have validated that the orthotopic injection is a valid model to study tumor 

expansion and dissemination. Through barcoding and stabilization of the cell culture (consists of 

long-term self-renewal lineages), we are able to create cohorts of clonally identical tumors in 

terms of composition and relative abundance. Moreover, through statistical simulation robust test 

(using a stringent criterion as similarity baseline) and clonal trend (gain or loss of fitness) test, we 

validated that CRTs are maintained over time during unperturbed progression. On a side note, 

the CRTs clonal behavior diverges over time, where it is especially prominent during the late stage 
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of the tumor transplantation. This observation indicates yet to be identified factors (i.e. spatial 

vasculature distribution, hypoxia, nutrient deprivation) could drive and influence clonal evolution. 

Furthermore, considering clonally identical cell population were transplanted into each animal in 

the CRT cohort, this set of data also captures the natural unproductiveness of tumor expansion.  

Due to the clonal biological replica nature of CRTs, it provides a way to accurately 

measure clonal evolution behavior while monitoring lineage abundance in independent animals 

longitudinally. Much like a cartoon flip book, without perturbing the tumor’s growth, we can analyze 

individual clonal abundance in the CRTs at different time point and string them together to survey 

their dynamics over time. With this method, we are able to empirically obtain, and not by modeling 

nor extrapolation, an accurate representation of clonal lineage evolution pattern during tumor 

expansion.  

Furthermore, by sampling individual barcode population in the blood (~800ul to 1mL), liver 

and lung (entire organ) of the CRT cohorts at different time points, we could gain insights to the 

clonal evolution dynamic of tumor dissemination.  
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Figure 71. Graphical representation of longitudinal clonal tracking application by establishing 
clonal replica tumors. Top graph shows the key characteristics of CRTS, where it consists of long-
term self-renewal lineages; and have the ability to simultaneously track a high complexity of 
lineages; can create a large cohort of CRT animals for experiments; also, by surveying CRTs over 
time, we could longitudinal trace clonal evolution in an in vivo setting without perturbing the 
tumor’s system. Bottom graph shows the study of clonal dynamics over time is not limited to 
primary tumor, but clonal dissemination dynamics in the entire organism as well.   
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Figure 72. Schematic representation of experimental design for the longitudinal tracking 
of clonal dynamics using orthotopic CRTs. At each time point, at each time point relating 
to tumor progression, a pair of CRTs’ (reproducibility) clonal composition (via barcode 
analysis) in primary tumor (pancreas), blood (for CTC) and liver and lung could be 
obtained to gain insights to the unperturbed clonal dynamics during tumor expansion and 
dissemination.  
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Figure 73. Graphical representation of hypothetical analysis of clonal evolution during tumor 
expansion and dissemination to distal organs. Simplified representation of four barcoded sub-
clones in blue, green, red and yellow. The mixed clones are injected orthotopically into the 
pancreas of mouse to generate CRT cohorts. By analyzing the barcode abundance over time at 
different sites (primary tumor/pancreas, blood, liver and lung) we could trace each clone’s unique 
expansion and dissemination pattern. For example, in the pancreas, the blue clone gradually 
expand and dominate the primary tumor over time (from “Time 1” to “Time 5”); enters the blood 
at an early time point (“Time 1”); Does not disseminate to the lung, however, is detected and 
dominate the liver metastasis from “Time3” to “Time 4”. On the contrary, we may also identify 
clones such the yellow clone, while significantly present in the primary tumor, however, does not 
metastasize. Data in this figure are hypothetical examples.  

 

Qualitative longitudinal analysis of top representing lineages revealed an unexpected 

degree of clonal expansion  

By looking at the top few most abundant clones from day 0 to week 10 in the primary 

tumor, we see a high degree of clonal expansion. To look at the relative clonal abundance in a 

tumor, each barcode has been converted to % tumor representation at each time point. Briefly, 

the qualitative tumor representation is calculated by dividing each clone’s read by the sum of total 

barcode reads detected in a sample. I.e. if barcode “A” has 100 reads detected, and the total 
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tumor’s barcode read sum is 10,000, then barcode “A” represents 1% of the tumor mass. From 

the graph below, we can see the top 12 clones in the tumor each represents around 1.4% to 3% 

of the population at day 0 (what is injected); however, after 4 weeks post injection, one of the 

clones went through an explosive expansion from 3% (day0) initially to ~6% (week4/day 28), to 

~8.8% (week6/day40), to ~8.2% (week10/day70) of the tumor representation, while the other 

clones maintained at 1-2% of tumor representation at week4 and gradually decrease in tumor 

representation over time. By connecting each clone’s % representation over time, we observed 

within the top 12 clones, the expansion patterns are diverse. Looking at the graph below, some 

clones experience initial expansion followed by decrease in representation, while some clones 

seems to be continuously dropping in tumor representation over time. Keep in mind these are 

empirically obtained clonal growth dynamics where tumors are left unperturbed and not 

extrapolated model of dynamics. For the first time, relying on the CRT’s robust biological clonal 

reproducibility across cohorts, we are able to gain insights to clonal dynamics during natural tumor 

expansion.  

 

  

Figure 74. Qualitative analysis (% tumor representation) of top abundant clones in the primary 
tumor over 70 days of unperturbed expansion. Top 12 most abundant clones in the primary tumor 
and their relative tumor representation from day0 (injection) to day70 is displayed. X axis indicates 
time of collection (n=2 tumors for each time point) and Y-axis indicates % representation of the 
entire tumor. The graph on the right shows the continuum between clonal percent tumor 
representations across time points with barcode ID information. Each bar on the graph represents 
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a unique clone. Clone ID “4611_12634” (the green clone), compared to other clones, displayed a 
burst of clonal expansion once injected in vivo (“injected” ~3%, “28 days” ~ 5.8%, “day 40” ~8.8% 
and “day 70” ~8.2%).  

 

Qualitative longitudinal analysis of top abundant clones reveals 6 major patterns of clonal 

dynamics during tumor expansion 

T-SNE clustering was performed on the top 500 clones (represents majority of the tumor 

mass) in the primary tumor based on their tumor representation (%) over time112. From the 

analysis (Figure 75 below), we observed 6 major patterns of clonal dynamics over a 10-week 

period. Major patterns include clones having sharp decrease in fitness within 4 weeks post 

injection, leading to a decrease in tumor representation from day 0 to week4 and then maintained 

at a lower % till week 10 (green); clones that display a relatively slower loss of fitness, where the 

rate of loss of fitness gradual from day 0 to week 6, and then maintained relative fitness till week 

10 (red); clones that maintain relative fitness through week4, and then experiencing gradual loss 

of fitness till week 10 (yellow); clones that continuously have gain in relative fitness throughout 

the 10 weeks (blue); clones with initial gain of fitness but eventually stabilize (teal); and clones 

that have sharp gain in relative fitness, plateaus and followed by sharp decrease in relative fitness 

(pink).  
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Figure 75. t-SNE clustering of distinct clonal dynamics in primary tumor (qualitative analysis in 
clonal % representation of tumor). t-SNE plot of the top 500 clones in the primary tumor based on 
relative tumor representation (%) over 60 days. Each box represents the parallel plot of individual 
clones from a cluster (each line is a unique clone, with y-axis in %, x-axis in time). For the top 500 
clones, there are roughly six distinct growth patterns within the first 2 months of primary tumor 
expansion. Graph by Yinsen Miao.  

 

Qualitative analysis - a look into early time point vs. late time point lineage that gain or 

loss fitness distribution stratified by quartiles of primary tumor mass at week12 

Let us analyze the overall net gain or net loss of fitness of each sub-clones over the entire 

longitudinal study (this data set is analyzed with >1 read, primary tumor must have value at all 

times). Stratifying the primary tumor into four quartiles, we see most of the clones at the higher 

quartiles have an overall net gain in fitness, whereas the relatively lower representation clones 

have a harder time gaining fitness overall.  
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Figure 76. Primary tumor stratification into four quartiles based on value. Total 1336bc, blue=315, 

yellow = 701, red = 320.  
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Figure 77. Qualitative analysis of overall fitness gain or loss stratified by quartiles of primary tumor 
at week 12.  
 

 

Comprehensive view of primary tumor clonal dynamics during unperturbed tumor 

expansion 

Clustering of similar clonal relative fitness dynamic (% tumor representation) in the primary 

tumor revealed a plethora of unique competitive interactions amongst sub-clones. Revealing that 

intra-tumor clonal competition is a dynamic process that occurs naturally during unperturbed 

tumor expansion. We will discuss each specific dynamics patterns in detail in the later sections. 



109 
 

 

Figure 78. Qualitative analysis of clonal fitness evolution over time in the primary tumor. Y axis 
indicates the % representation of individual sub-clones, while each line represents a unique sub-
clone. The color of the lines indicates the relative quartiles at week 12’s primary tumor.  
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Figure 79. Qualitative analysis of clonal fitness evolution over time in the primary tumor. Y axis 
indicates the % representation of individual sub-clones, while each line represents a unique sub-
clone. The color of the lines indicates the relative quartiles at week 4’s primary tumor. Each panel 
is separated by quartiles at week 12’s tumor.  
 

 

Quantitative analysis reveals alternating clonal dominance and the ever-expanding nature 

of tumor  

Converting each unique barcoded to “cell” unit using the spiked in “NGS read-to-cell” 

conversion scale during sample processing, it enables us to trace clonal dynamics in a 

quantitative manner. Here, we used a tiered-clustering (three rounds of clustering) approach to 
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analyze the data. First, all the barcodes that pass the noise filter is retained and clonal lineage 

dynamic clustered via KLM clustering113. In the first round of clustering, we see mainly three 

dynamics. The cluster “A” (in red) are the lineages with lower abundance. Cluster “B” (in green) 

representing the clones that are expanding over time since the beginning, and continue to be well 

adapted as reflected by the steady increase in their “cell” number. And then, there is the 

interesting clonal behavior in cluster “C” (in blue), where these clones are relatively low in 

abundance (almost dormant) for long periods of time (weeks), and then starting from week 9, all 

of a sudden went through an explosive degree of expansion. Most interestingly, these clones in 

cluster “C”, after displaying a high degree of expansion, the quantity of these clones even 

surpassed those clones that were dominating the tumor during the initial few weeks (cluster “B”). 

We term this observed dynamic “alternating clonal dominance (ACD)”, where lineages switch in 

tumor dominance naturally during natural, unperturbed expansion.   

Since the clones in cluster “A” are low in abundance, it is hard to appreciate their evolution 

dynamics. To overcome this, we applied a second round of clustering on the lineages in cluster 

“A”. The re-clustering of cluster “A” lineages (now named “AA”) has four major clonal dynamics, 

as seen in the middle of the figure: cluster “AC” (in baby blue) represents clones that expand 

rapidly from the beginning, where near week 7, it starts to lose fitness and gradually decrease in 

number; cluster “AB” (in green) represents the clones that steadily expand and gain abundance 

over the entire timespan; cluster “AD” (in purple) represents clones that are relatively dormant in 

the first few weeks and expand exponentially at the later time points. In addition, looking at 

individual lineages in panel “AA” and “AB”, we can appreciate that at any given time points 

sampled, there are clones with relatively lower abundance starting to proliferate and expand; 

however, it seems like most of those clones fail to continue to expand and eventually decrease in 

abundance at the following time point. This observation suggests the ever competing nature 

between clones, where lowly abundant clones are persist throughout and ever trying to initiate 
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clonal expansion. At the same time, for the clones that dominates throughout the longitudinal 

study, at a certain time point, may experiences a dramatic shift and lose its competitiveness and 

be taken over by other clones. This quantitative analysis data set also supports the alternating 

clonal dominance (ACD) observation mentioned in the previous section. The factors inducing the 

ACD phenomenon is under study.  

 

 

Figure 80. Tiered KLM clustering of clonal lineages in “cell number” over time. Bold line 
representing means of clusters. All lineages were clustered into three clusters (most left panel), 
where the mean of the clusters are highlighted. Behaviors such as clones with higher fitness over 
time (in bright green “B”) and clones that have lower fitness throughout (red “A”), as well as clones 
exhibit lower fitness followed by outburst of gain of proliferation (in blue “C”) were observed. In 
addition, alternating clonal dominance were observed, where the blue clones “C” over take the 
dominant position of the initially dominant clones “B” during later time points; re-clustering the 
initial cluster for higher resolution (the right panels) revealed alternating clonal dominance is also 
exhibited in lineages with lower abundance in the tumor (i.e. mid panel, bottom figure “AA”), as 
well as perpetual rising of low abundance lineages throughout tumor expansion. This data 
suggests the highly competitive nature amongst intra-tumor lineages, as well as a rich repertoire 
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of lineages, potentially with different intrinsic functional features consistantly trying to pop up. 
Representative data set from cohort 2. Graph analysis by Faezeh Darbaniyan.  

 

 

Quantitative analysis of cumulative clonal abundance in primary tumor vs. distal sites 

reveals the rapid expansion nature of tumor cells outside its primary site 

Looking at the summation of total “cells” of all lineages in the primary tumor, as well as in 

the blood, liver, lung and ascites at each time point, we can see that the total number of “tumor 

cells” are accumulating over time in different organs (below figure). In addition, the rate of tumor 

cells accruing at distal sites are exponentially rising over time while the primary tumor remained 

relatively similar in cell number. This observation is in line with the ever-expanding nature of tumor 

cells outside of the primary tumor site, where at the late stage of the tumor progression, the 

abundance of tumor cells at distal sites increases exponentially. Multiple factors could contribute 

to this, such as different spatial constrains, passive shedding of tumor cells from the primary 

tumor, clonal expansion at later time point.  
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Figure 81. Cumulative cell number at each site (primary, blood, lung, liver) over time. Y-axis is “ 
cells” in order of ranks (top); X-axis represents samples surveyed at different time points. 
Quantitative aspect of orthotopic CRTs allow us to survey sub-clonal accumulated mass in the 
tumor, as well as those that disseminate. Overall, the disseminated lineages accumulate in mass 
over time. At the late time point, the tumor mass accumulated in the liver metastasis, as well as 
the population in the peritoneal (ascites) could be comparable to that of the primary tumor’s mass.  

 

Statistical robust test of lineages that are able to disseminate outside of primary tumor 

For the lineages that are able to disseminate, to reaffirm and be confident that they behave 

similarly in CRT animals for longitudinal tracking, an independent analysis of the statistical 

analysis was performed on this subset of clones. Using the same criteria described in previous 

sections, these clones in individual CRT animals indeed maintain and progress similarly. The 

natural clonal divergence over time is also observed in this subset of clonal lineages that has the 

ability to disseminate outside of the primary tumor.  
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Figure 82. Statistical robust test on clones that are able to disseminate. Pearson correlation (left) 
and Euclidean distance (right). All sub-clonal lineages’ qualitative data pass the statistical robust 
test, therefore, we have high confidence in the dynamics of these clones reflecting true biological 
dynamics.  Analysis by Delia Wang.  
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Figure 83. Difference (%) between sub-clones in replica CRTs primary tumor that are able to 
disseminate.  Most lineages that are able to disseminate have a difference between replica 
animals within 1%. Throughout time, more clones diverge and have increased difference between 
replica animals of ~4% at week 12. Analysis by Delia Wang. 

 

Tumor cells that disseminate into the blood increases up to 2,000-fold comparing early 

phase to late phase of tumor expansion 

Analyzing the clonal abundance detected in the blood and compare the relative fold 

change from early stage (week4, where a solid mass of tumor is formed) to late time point tumor 

(week 14, where tumor burden was too much for the animal), we see an ever increasing dynamic 

in clonal abundance in the blood, as seen from the volcano-plot below comparing week 4 vs week 
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14. Also, the expansion of circulating tumor cells (work flow surveys CTC) in the blood seems to 

expand exponentially during the later stage of the time points. This could be seen from comparing 

CTC abundance increased from week 10 to week 14, where most of the increase in fold change 

has been observed.  

 

            

Figure 84. Volcano plot of individual clonal lineage fold change in the blood by comparing late 
stage animal (week 14) vs. early stage animal (week 4); as well aslate stage animal (week 14) 
vs. animal at week 10. The Y-axis indicates FDR and X axis indicates log2 fold change comparing 
week 14 to week 4 (right) and week 14 to week 10 (left). This data indicates the total abundance 
of circulating tumor cells is always increasing over time in blood.  

 

Longitudinal CRT model enables quantitative analysis of clonal complexity and clonal 

abundance in different organs 

Our model allows us to assess the degree of dissemination by counting the number of unique 

clones and cell abundance observed in each organ. For example, there are ~200 unique clones 
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that has the ability to disseminate to the liver, and those ~200 clones makes up a total of ~10M 

cells at the last time point (week 12). On the other hand, ~1,500 unique clones exists in the primary 

tumor at week 12, and their total abundance is ~100M cells. This is a representative data to 

showcase the quantitative analytical aspect of the orthotopic CRT model, which can obtain 

accurate “cell count” of tumor mass with high resolution.     

 

 

                 

Figure 85. Cumulative cell number of tumors detected at different sites at the last time point. Liver 
metastasis at week 12 is ~10% of the primary tumor mass. Lung metastasis at week 12 is ~1.6% 
of the primary tumor mass. This is a representative data to showcase the quantitative analytical 
aspect of the orthotopic CRT model, which can obtain accurate “cell count” of tumor mass with 
high resolution.     
 

By tracing clonal complexity in different organs over time, we see that in the primary tumor, 

the clonal heterogeneity decreases over time. The disseminated clones detected at distal sites 

experiences a “bottle-neck” effect where only a sub portion of clones having the ability to 

disseminate (roughly 1% of the barcode complexity). The clonal complexity at distal sites 

increases over time, suggesting continuous seeding and outgrowth of unique clones at distal 

sites.  
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Figure 86. Clonal complexity present at different organs over time. Suffix ending with “Pan” or 
“panc” indicate pancreas primary tumor; suffix ending in “D” indicating “blood”; suffix ending in “G” 
indicates “lung”; suffix ending in “R” indicates “liver”; suffix ending in “As” indicates ascites. The 
number on top of each bar graph indicates unique barcode complexity.  
 

 

Of those clones that can disseminate, most clones decrease in cell abundance in the 

primary tumor – quantitative analysis 

Figure 87 below indicates the clonal cell abundance in week12 and week4’s primary 

tumors. Of those clones that can disseminate, most clones decrease in cell number comparing 

week 12 vs. week 4 in the primary tumor. This could suggest that at week 12, while the tumor 

becomes more necrotic, the tumor mass might actually decrease despite the tumor size from the 

outside remain relatively stable (as measured by caliper, Figure 88). Further experiments are 

ongoing to address this point.  
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Figure 87. Quantitative - overall gain or loss of abundance per lineage comparing late stage 
(week12) vs. early stage primary tumor (week4). Breaking the primary tumor at week 12 in to 
quartiles (each panel represents a quartile) and plotting out all clones that have the ability to 
metastasize and whether or not the abundance decrease (in red) or increase (in blue) from week 
4 to week 12.  
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Figure 88. Orthotopic tumor volume measured by ruler. Orthotopic CRT cohorts’s tumor volume 
measured (cm3) over weeks. Week 0 assume volume = 0 (cell pellets).  

 

The lineages that are able to disseminate have diverse evolutionary dynamics in the 

primary tumor  

Out of the clonal lineages that have the capability to metastasize, we take a deeper look 

into their lineage dynamics in the primary tumor over time. Below sections will be focused on 

clustering lineages with similar behaviors and presenting it in a visually simplistic manner.  

High volatility in clonal specific abundance during tumor expansion - quantitative analysis 

of clonal lineages 

Figure 89 below shows the quantitative analysis of clonal lineages that were able to 

disseminate out of primary tumor. The clustering was done by dividing the primary tumor at the 

last time point (week 12) into quartiles (25% increments, the four big boxes) based on lineage 

accumulative tumor abundance. Each line represents a unique lineage dynamic over time, while 

the color of the line indicates the week 4’s tumor representation quartile of that lineage.  This way, 
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we could also be informed on the different clonal dynamics of lineages that are highly abundant 

vs. lowly abundant in the particular tumor. From the analysis, we can see clonal dynamic patterns 

that we logically think exists, such as a smooth gradual decrease (or increase) in clonal 

abundance over time. However, there are certain clonal dynamics we did not previously expect 

to see. The interesting patterns such as the alternating of intra-clonal fluctuating gain and loss of 

fitness, resulting in a general “W”, “M”, “sigmoidal”, or “V” pattern. These patterns may seem 

perplexing or counter intuitive at first, however, considering that these data were obtained in an 

unbiased fashion and analyzed under the same stringent method and criteria, the pattern we are 

seeing here should reflect the true dynamics in the tumor during expansion. Especially given that 

if we accept certain generic clonal dynamic patterns, such as “a smooth gradual increase or 

decrease” over time, due to dogma, or simply that they are easier to believe.  

From the plots below, for quartiles 0% - 25%, we can see that at week 12, there are no 

clones that exhibit a “dormancy and out growth during late time points” dynamics. However, most 

of the lineages in this quartile exhibit a “gradual decrease and a continuous loss of fitness” 

dynamic. Also, notice that there are no clones that are highly represented in early stage tumor 

(week4, 75%-100%). In addition, there are clones that seem to have a transient amplification 

dynamic (cluster 1, 2, 8), which suggests that most clones in this quartile failed to gain lasting 

fitness or adapt to the tumor environment albeit having the ability to expand initially.  

As for quartile 25%-50%, we observe a more versatile lineage dynamics. There are 

lineages that experienced a longer phase of expansion continuously, however, due to unidentified 

factors, lost its competitiveness and started to gradually decrease (clusters 2, 3, and 6). There 

are also clones that display “cyclic gain and loss” of fitness throughout each time points (cluster 

1 and 5); as well as, lineages that gradually lose fitness over time (cluster 4).  

As for lineages in the quartile 50%-75% of the primary tumor at week 12, we see most of 

them exhibit the “alternating gain and loss of fitness” over time. This “alternating gain and loss” of 
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fitness could be reflecting the clones’ higher intrinsic ability to change and constantly adapt to 

environmental changes (clusters 2, 4, 5, 6, and 7) compared to the lineages in the 0-25% quartile, 

where most clones exhibit “transient” expansion and are not able to regain fitness and exhibiting 

a continuous loss of abundance over time. Furthermore, interestingly, we see a subgroup of 

lineages that exhibit “dormancy” in the early time points followed by exponential growth during 

the last time point (cluster 3), suggesting that there are lineages “hiding” and maintaining low 

abundance and eventually break out.  

As for lineages we see more of the same dynamics as the quartile 50% -75%. However, 

most of the clones in quartile 75%-100% have a higher abundance at week 4, suggesting clones 

that gain fitness early on have advantages in maintaining that fitness. Interestingly, there are also 

clones that exhibit “alternating loss and gain” of fitness initially but breaks out and continue to gain 

fitness (cluster 6), suggesting clones may have to go through a phase of adaptation before gaining 

fitness over competing clones; on the contrary, there are clones that exhibit “alternating gain and 

loss” of fitness but eventually continue to lose fitness (cluster 2, 3, 5). Lastly, there are clones that 

maintain a relative stable fitness and eventually breakout and grow exponentially (cluster 4).  

All these dynamics were analyzed the same way across the samples and represents an 

unperturbed picture of how complex tumor lineages interact and compete with each other during 

tumor expansion.  
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Figure 89. Longitudinal clonal dynamics in the primary tumor of clones that are able to 
metastasize. KLM clustering of individual clonal abundance based on quartiles of week 12’s 
primary tumor. Individual line color reflects the abundance of clones at week 4, which is also 
stratified in quartiles.  
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Independent cohort of lineage tracing experiment reveals similar alternating clonal 

dominance dynamics (CRT cohort 2) - quantitative analysis 

Quantitative analysis of orthotopic CRT cohort #2 reveals similar clonal dynamics seen in 

cohort #1. By analyzing the longitudinal clonal dynamics over 16 weeks, we see that in this cohort 

of tumors, they display all the major clonal dynamics as seen in the week 12 cohort. Notably, the 

“dormant followed by proliferation at later time point” clonal dynamic, the “transient amplified” 

dynamic, as well as the “alternating clonal dominance” dynamic around week 9. 

 

Figure 90. Clonal dynamics in the primary tumor of clones that are able to metastasize in an 
independent orthotopic CRT cohort. KLM clustering of individual clonal abundance based on 
quartiles of week 16’s primary tumor. Individual line color reflects the abundance of clones at 
week 4, which is also stratified in quartiles.  
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clonal evolution in the primary tumor – clones with ability to metastasize display high level of 

alternating clonal fitness during tumor expansion - qualitative analysis  

 

Converting the lineages into relative percent representation of the primary tumor at week 

12 (end stage) allow us to look into the “relative fitness” amongst clones. Clustering the lineage 

relative fitness dynamics over time revealed the highly dynamic nature of clonal competition, as 

well as alternating clonal dominance naturally occurring during tumor expansion.  

Here, we break down the clustering into quartile of the week 12’s primary tumor 

representation (0-25%, 25%-50%, 50% - 75% and 75% to 100%); furthermore, at the same time, 

indicating the relative abundance of each lineage during week 4 tumor, also represented in 

quartiles (0-50%, 50% -75%, 75-100%) for clustering. For the lower quartile lineages (at week 

12), clones display mainly four types of fitness dynamics: 1. Transient gain of fitness followed by 

loss of fitness after week 4; 2. Gain-loss-gain of fitness; 3. Dormancy followed by sudden gain of 

fitness towards the later time point; 4. Gradual loss of fitness over time (Figure 91).                                                           
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Figure 91. Clonal relative fitness dynamics in the lower quartile of the primary tumor in terms of 
abundance. Y-axis indicates % representation of each lineage; X-axis indicate time; each line 
indicates a unique sub-clone. The color of the line indicates the relative abundance of particular 
lineage at week 4. Four main cluster dynamics observed: 1. Transient gain of fitness followed by 
loss of fitness after week 4; 2. Gain-loss-gain of fitness; 3. Dormancy followed by sudden gain of 
fitness towards the later time point; 4. Gradual loss of fitness over time. 
 

As for the 50%-70% tumor representing lineages, clones display mainly five types of 

fitness dynamics: 1. Transient gain of fitness followed by graduate loss of fitness; 2. Gradual loss 

of fitness over time; 3. Gain– loss –“big gain” –“big loss” of fitness dynamic; 4. Dormancy followed 

by sudden gain of fitness towards the later time point; 5. Gain – loss – loss – “big gain” of fitness. 

(Figure 92). Interestingly, from clusters 3 and 5, at the time of week 10, clones in this particular 

set of data display a large alternating fitness switch, resulting in a change of relative dominance 

of clones in the primary tumor.  

 

                             

Figure 92. Clonal relative fitness dynamics relating to 50%-70% abundance of the primary tumor. 
Y-axis indicates % representation of each lineage. Each line indicates a unique sub-clone. The 
color of the line indicates the relative abundance of particular lineage at week 4. Five main cluster 
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dynamics observed: 1. Transient gain of fitness followed by graduate loss of fitness; 2. Gradual 
loss of fitness over time; 3. Gain-loss-GAIN-LOSS of fitness dynamic; 4. Dormancy followed by 
sudden gain of fitness towards the later time point; 5. Gain – loss – loss – GAIN of fitness.  
 
 
 
 
 
 As for the 75%-100% tumor representing lineages, clones display mainly 

eight types of fitness dynamics: 1. Gradual loss of fitness over time followed by a small gain of 

fitness towards the end at week 10, but continue to drop in fitness afterward; 2. A relatively stable 

fitness overall followed by slight gain of fitness at week 10; 3. Gradual increase in fitness followed 

by sudden loss of fitness at week 10; 4. A sigmoidal shaped dynamic where slight increase 

followed by loss of fitness from week4 to week 10, then, an aggressive gain in fitness after week 

10 ; 5. Gain – loss – gain – loss of fitness; 6. Stable but slight increase of fitness overtime followed 

by slight drop in relative fitness; 7. Gradual drop of fitness followed by a sudden gain of fitness at 

week 10; 8. A persistent gain of fitness over time (Figure 93). From Figure 93, clusters 3 and 4, 

we also see lineages display an alternating fitness switch.  
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Figure 93. Clonal fitness dynamics displayed relating to 75%-100% of the primary tumor 
abundance. Y-axis indicates % representation of each lineage. Each line indicates a unique sub-
clone. The color of the line indicates the relative abundance of particular lineage at week 4. Eight 
main cluster dynamics observed: 1. Gradual loss of fitness over time, followed by a small gain of 
fitness towards the end at week 10, but continue to drop in fitness afterward; 2. A relatively stable 
fitness overall followed by slight gain of fitness at week 10; 3. Gradual increase in fitness followed 
by sudden loss of fitness at week 10; 4. A sigmoidal shaped dynamic where slight increase 
followed by loss of fitness from week4 to week 10, then, an aggressive gain in fitness after week 
10 ; 5. Gain – loss – gain – loss of fitness; 6. Stable slight increase of fitness overtime followed 
by slight drop; 7. Gradual drop of fitness followed by a sudden gain of fitness at week 10; 8. A 
persistent gain of fitness over time. 
 

 

Another independent clustering (base on the quartiles of the injected population) of lineage 

fitness dynamics in the primary tumor reveals similar observation of diverse, unique dynamics of 

relative clonal fitness evolution and alternating clonal fitness naturally occurring in the tumor 

(Figure 94). For a comprehensive clustering, please see the methods section on clustering.   
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Figure 94. Clonal fitness dynamics of the primary tumor in quartiles of the injected population. Y-
axis indicates % representation of each lineage. Each line indicates a unique sub-clone.  
 

 

Longitudinal tracking of liver and lung clonal dynamics reveals the unpredictable 

explosive growth nature of metastasis and the existence of transient amplified sub-

populations  

We analyzed the clone’s abundance fold change of late stage vs. early stage of tumor 

expansion (week 14 vs. week 4), and plotted a volcano plot (Figure 95 below), where each dot 

represents a unique clone found in the liver. On the plot, the x-axis represents log2fold change of 

each clone’s abundance fold change between week 14 and week 4, and the y-axis represents 
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the false discovery rate (-log P value, the larger the number the more difference there is and 

consistent between the CRT animals).  

From our model, there is a sub-set of lineages that are able to expand ~215 times 

throughout the 10-week period in the liver and the lung. Furthermore, looking at the volcano plot, 

within those lineages that were able to expand ~220 fold in 10 weeks, the ones that have a high –

log(p value) means those clones behave similarly in both the CRT animal, while the low –log(p 

value) clones only appeared in one of the two CRT animals. Considering these lineages in the 

CRT primary tumors being similar, the “inconsistency” for the metastasis fold-change phenotype 

may be the degree of randomness introduced by the criteria required for a metastasis expansion.  

Besides the massive metastasis outgrowth population, there are clones that display a 

relatively static in abundance dynamic without much expansion (clones with fold-change ~ 0), 

which infers to the phenotype of seeding and dormancy. Moreover, interestingly, we observe a 

sub-set of clones that have a higher abundance initially at week 4 then at week 14 in both the 

liver and the lung (the lineages that have a negative log FC in the volcano plot). This could be 

suggesting the scenario where clones that “seed” in the liver or lung early on, but could never 

establish a fitness towards growth, resulting in a transient amplification dynamic. This data 

suggests only those lineage that could adapt to the organ microenvironment will continue to 

dominate and form metastasis. 
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Figure 95. Volcano plot of the fold change of individual clones detected in the liver and the lung 
(Left= liver; Right = lung); Y-axis = FDR, X-axis = log2FC. Fold Change is calculated by lineage 
abundance at week 12 divided by week 4.  

 

A look into the primary tumor’s lineage dynamics correlation with metastasis fitness 

Metastasis in liver – many clones can “seed”, but only certain clones would metastasize and grow 

at distal sites 

Figure 96 below is the volcano plot from plotting the lineage abundance fold difference of 

liver metastasis week 14 vs. week 4 in terms of log2 fold change (X-axis) and its P-value (Y-axis). 

From this graph, we can see there are clones that gained fitness over the 10 weeks in liver 

(positive logFC), and there are clones with decreased fitness (negative log FC); also, there are 

clones that maintained their relative abundance over time (|logFC| close to zero).  
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Figure 96. Volcano plot of the fold change of individual clones detected in the liver(week14 / week 
4); Y-axis = FDR, X-axis = log2FC.  

 

To probe into the relationship of specific lineage dynamic in the primary tumor contributing 

to liver metastasis, we plotted lineage dynamics in the primary tumor of all the lineages (passed 

the statistical robust test) that can be found in the liver. Furthermore, we bin the clones into four 

quartiles based on their relative abundance representation of week 12’s primary tumor (0-25%, 

25%-50%, 50%-75% and 75% - 100%); and then for each quartile, we performed clustering based 

on individual lineage dynamics. At the same time, each lineage’s relative abundance at early 

stage (week 4) is indicated by color (0-25% in purple, 25% - 50% in blue, 50% - 75% in green, 

and 75%-100% in yellow). 

From Figure 97 below, we can see that the lineage dynamics of “loss of fitness in the liver 

over 10 weeks period” mostly belongs to the 0%-50% primary tumor group (the blue color 
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lineages, with “FC < -10”); however, this dynamic is not exclusive to this quartile and could be 

found in all four quartiles of abundance in the primary tumor. This suggests that, regardless of 

their cell abundance in the primary tumor, many clones, at week 4, can “seed” and “anchor” in the 

liver but not necessarily thrive. Moreover, most clones that lose fitness in the liver (blue lineages) 

does seem to lose fitness in the paired primary tumor over time as well. This is especially apparent 

in the lineages that are in the 0-25% quartile, with exceptions of few (blue) lineages in the more 

abundant (50% - 75%, 75-100%) quartile. This suggests that a lineage’s fitness in the primary 

tumor does have a positive correlation even after dissemination to distal organs.  

On the other hand, the clones that display a “gained fitness” in the liver (depicted by the 

red lines) can be found spreading across all quartiles of the primary tumor. This indicates that 

although there certain clones are at low abundance in the primary tumor, can still seed and 

expand well in the liver. That being said, in general, we do see the majority of clones that gained 

thousands fold in abundance in liver over time mostly lies in the 50%-75% quartile in the primary 

tumor, suggesting that clonal primary tumor abundance is also a key factor contributing to the 

chance for lineage expansion in liver. As for the relationship of clonal fitness in the primary tumor 

vs. liver metastasis, whether or not it is an intrinsic property, we will delve into that in the next 

section.  

As for the clones that did not show extreme fold change of abundance in the liver over 

time (|logFC| >10, the yellow clones), we suspect that these clones maintain relatively high in 

abundance from seeding to late stage in the liver (week 4 to week 14). This is due to the volcano 

plot emphasize only on the fold difference, and the fact that most of the yellow colored lineages 

are from the 75%-100% quartile in the primary tumor.  
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Figure 97. Lineage dynamics in the primary tumor (quartiles based on week 12 primary tumor) of 
the clones that are able to metastasize. Blue lineages indicate the clonal lineages that lose fitness 
in the liver from week 4 to week 14 (log2FC < -10); red lineages indicate the lineages that gained 
fitness (log2FC >10); the yellow lineages indicate clones with |log2FC| <10). 

 

Lineages that display loss of fitness in the primary tumor also exhibit a loss in fitness in 

the liver metastasis 

Figure 98 below plots the dynamics of the lineages in the primary tumor that have the 

ability to metastasize based on the abundance of primary tumor at week 12 in quartiles, with each 

quartile further clustered to appreciate distinct lineage dynamics. The color of the lineage 

indicates whether the lineage has a loss (blue) or gain (red) a significant level of fitness. From 

Figure 98, we can see that most of the lineages that has a loss in fitness over time in the liver 

(blue) falls in the primary tumor abundance quartiles of 0-25%, and most lineage dynamics in that 
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quartile display a transient amplification, or, a continuous loss of fitness over time. On the other 

hand, most lineages that has significant gain of fitness and abundance over time in the liver 

metastasis falls in the quartiles of 50%-75% or 75% - 100% primary tumor abundance, where 

most dynamics display an alternative gain and loss of fitness, with some lineages gradually 

gaining abundance over time.   

 

 

Figure 98. Lineage dynamics in the primary tumor that have the ability to metastasize to liver. 
Data stratified in four quartiles based on the abundance of primary tumor at week 12, and each 
quartile are further clustered to appreciate distinct lineage dynamics. The color of the lineage 
indicates whether the lineage has loss (blue) or gained (red) a significant level of fitness 
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Intrinsic lineage properties guiding the growth of metastasis that is independent of 

seeding abundance 

By plotting out the cell number of clones that are in the liver at week 4 and week 12, and 

then stratify the data into 3 bins based on liver metastasis abundance (0-50%, 50%-75% and 75% 

to 100%), we can see that most clones that are able to disseminate to the liver can grow. 

Furthermore, this phenotype of growth seems independent of the initial “seeding” abundance at 

week 4, where lower abundant clones could also actually gained in cell number over time. On the 

other hand, there are clones with initially higher number “seeded” cells that actually decreased in 

abundance over time. This suggests there are intrinsic lineage properties guiding the growth of 

metastasis, independent of seeding abundance.  

                   

Figure 99. Cell number of clones that are in the liver from week 4 and week 12. The data is 
stratified into 3 bins based on liver metastasis relative abundance representation (0-50%, 50%-
75% and 75% to 100%). Green represent lineages gained in cell abundance; red represents 
lineages that lost abundance comparing week 12 to week 4.  
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Liver metastasis lineages mostly exhibit a burst and exponential growth dynamic, and the 

burst in growth might be linked to primary tumor dynamics 

By plotting the clones that are able to metastasize to the liver and their cell abundance 

over time, and then binning into three bins based on liver metastasis relative abundance 

representation in % (0-50%, 50%-75% and 75%-100%), we observe that most clones, once 

disseminated into the liver stayed relatively stable followed by a burst of exponential outgrowth at 

week 10.  

 

              

Figure 100. Lineage growth dynamics in the liver over time. This data is to be looked alongside 
the volcano plot in the previous section. Clones that have extreme change in abundance are 



139 
 

displayed in different colors (red = positive fold change of log2FC > 10, blue = log2FC < -10, yellow 
= |log2FC| <10, grey are deemed not significant).  

 

Liver metastasis clonal growth dynamic seems to be more straight-forward, where no alternating 

dominance observed 

By clustering the lineage dynamics over time in the liver ( 

Figure 101) and overlay the clusters on top of the volcano plot (log2FC between week 12 

vs. week4 and their FDR, Figure 102), we can see in the clusters of lineages with log2FC >10, 

which are the lineages responsible for metastasis outgrowth, mostly exhibit one type of growth 

pattern – initially dormant until week 10, and then followed by explosive exponential growth. As 

for the lineages in the cluster with log2FC <-10, which are the “transient metastasis” lineages, they 

display the dynamic of decrease in cell number over time. Considering most metastasis lesions 

in this model are comprised of monoclonal or oligoclonal lesions, this may suggest the competition 

amongst clones in the liver are not as complex as the clones in the primary tumor. The relatively 

long dormancy before outgrowth could be contributed by the lag in adapting to a new niche 

favoring growth, and also the fact that seeding in the liver is likely spatially sparse. 
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Figure 101. Longitudinal clonal dynamics in the liver (quantitative analysis). Lineage that 
metastasize to the liver in cell number are clustered based on the overall abundance fold change 
comparing week 12 vs. week 4. Color represents lineage representation in the liver (yellow =more 
abundant, blue=lowly abundant).  
                      

  

Figure 102. Longitudinal clonal dynamics in the liver (quantitative analysis) overlay onto the 
volcano plot displaying lineage fold change comparing week 12 vs. week 4 in liver. The volcano 
plot: Each dot represents a unique sub-clone, the fold change (FC) of lineage dynamics in the 
primary tumor according to the increase or decrease in abundance at the liver from week 4 to 
week 14. False discovery rate is calculated and displayed on y-axis (“Significant” – indicating high 
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confidence in a change, or “not significant” – indicating not confidant in the observed change). 
The lineage dynamics in the each black box are matched dynamics of those clones in the liver 
over time. The lineage dynamics of the out growing metastasis is straight forward, where it went 
through long dormancy followed by sudden outburst of proliferation (upper right box). The clones 
that displayed “transient metastasis” displayed also a straight forward dynamic of loss of 
abundance over time. Right schematic is a cartoon representation of the growth dynamic in the 
liver.   

 

Liver and Lung metastasis longitudinal clonal fitness dynamics - qualitative analysis of 

clonal dynamics in terms of relative fitness  

Instead of analyzing clonal abundance quantitatively (in “cell units”) over time across the 

CRT cohorts. Here, we analyze each clone in terms of their relative fitness (percent 

representation). Looking at clonal abundance quantitatively (in “cell unit”) gives us a more 

accurate representation of the tumor’s “expansion dynamics in mass”. On the other hand, by 

analyzing the clonal abundance qualitatively (in % representation of sample) allows us to 

appreciate the relative fitness amongst clones, and therefore, provide data in the context of “which 

clones are dominating”, or in other words, “who is winning” in a particular sample regardless of 

the total tumor mass. Qualitative analysis of clonal dynamics across tumors would reflect a 

normalized clonal behavior in terms of “tumor composition” and provide insights more related to 

the clonal “competition dynamics” longitudinally.  

Again, the normalization process of barcode is straight forward, when we sequence 

barcoded tumors using NGS, it will provide a “read number” for each unique barcode. To 

normalize each barcode to “percent representation of the total sample”, we divide the “read 

number” of a particular barcode by the “total sum of all reads” of all the barcodes. For instance, if 

a tumor has only two barcodes “A” and “B” and the NGS read of clone “A” and “B” is 100 and 50 

reads respectively, then, clone “A’s” relative % tumor representation is 100 ÷ (100+50) = 66.6%, 

and clone “B” is 33.3%.  
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Metastatic clones may gain a unique dynamic of fitness once in a different environment – 

qualitative analysis 

Analyzing data in terms of clonal relative fitness of primary tumor. Of those sub-clonal 

lineages with the ability to metastasize, we observe that there are clones, in the primary tumor 

that have a dynamic of loss in fitness, as well as clones that have a gain in fitness overall. This 

suggests that overall clonal fitness loss or gain alone may not be enough to be used as an 

indicator to determine sub-clone’s ability to disseminate and grow. This also suggests clones may 

gain a unique dynamic of fitness once in a different environment.  

           

Figure 103. Liver metastasis clones’ overall gain or loss of abundance in the primary site. Breaking 
the primary tumor in week 12 in to quartiles, plotting out all clones that have the ability to 
metastasize to the liver and whether or not the fitness decrease (in red) or increase (in green) 
from week 4 to week 12.  
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Liver metastasis – a comprehensive view of lineage dynamics in liver 

Here we cluster the entire clonal relative fitness dynamics over time in the liver. A few 

major clonal fitness dynamics were observed (Figure 104): 1. Gradual loss of fitness; 2. 

Alternating fitness dynamic of gain-loss-gain; 3. Gradual loss and followed by significant gain in 

fitness; 4. A relative stable fitness overall.  

                     

             

Figure 104. Relative clonal fitness dynamics in the liver over time. Each line represents a unique 
lineage, where the Y axis indicates relative % of liver metastasis representation. The color of the 
line indicates the relative abundance of a lineage in the primary tumor at week 12.  
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Lung metastasis – a comprehensive view of lineage dynamics in liver 

Here we cluster the entire clonal relative fitness dynamics over time in the lung. A few 

major clonal fitness dynamics were observed (Figure 105): 1. Loss of fitness; 2. Loss of fitness 

followed by gain of fitness; 3. Sudden gain of fitness at a certain time point; 4. Gradual increase 

in fitness; 5. Dormancy followed by significant gain of fitness. This data also reflects the stochastic 

nature of the lung metastasis, where some of the fitness dynamic may not seem as smooth or 

gradual as those observed in the primary tumor.  

 

Figure 105. Relative clonal fitness dynamics in the lung over time. Each line represents a unique 
lineage, where the Y axis indicates relative % of lung metastasis representation. The color of the 
line indicates the relative abundance of a lineage in the primary tumor at week 12. 
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A comparison of the complexity of lineage dynamics across primary tumor, liver and lung 

metastasis – liver and lung display a lesser degree of clonal competition with simpler 

dynamic   

Here we generate a clonal fitness matrix plot by looking at each lineage’s gain or loss of 

fitness comparing to its previous time points or collection. From Figure 106 below, each dot 

represents a unique clone, and with the colors representing gain (red), loss (blue), or unchanged 

(green) in fitness. In the primary tumor, at each time point, the matrix plot has a relatively mixed 

pattern of lineages gaining (red) or losing fitness (blue), or relatively unchanged (green). On the 

other hand, liver and lung display a much simpler and uniform change in dynamic at each time 

point. For example, almost all clones experience a decrease or unchanged fitness (blue and 

green) before week 10, then almost every clone experience a gain in fitness (red). This suggests 

at each time point, overall, clonal fitness dynamics in the primary tumor are more complex than 

those in the liver or the lung. This also suggests clones in liver or lung experiencing a lesser 

degree of clonal competition; however, this also suggests the clones in liver or lung may have to 

overcome environmental pressure before expansion.                                
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Figure 106. Lineage matrix plot showcasing the degree of overall clonal fitness dynamics in the 
primary, liver and lung. Each dot represents a unique clone, and each color represents gain (red), 
loss (blue) or unchanged (green) in fitness comparing to the previous time point.  
 
 
 

For most lineages, abundance in the primary tumor has a significant positive correlation 

with dissemination 

Overview of clonal abundance over time vs. liver metastasis represented by t-SNE 

For a high level overview of how the clonal lineages evolve, we transformed the clonal 

data point into t-SNE plot. In the t-SNE plot, each dot represents a unique clone and the color 

indicating the abundance of the clones (red = higher, grey = exhaust). We can see that over time, 

there is a decrease in the level of clonal heterogeneity (grey clones exhausting) and that only a 

sub-cluster of the clones dominating the primary tumor until week 12. Interestingly, the clonal 

complexity seems to stabilize around week 10 and did not change much from week 10 to week 

12. By looking at the clones that metastasized into the liver at week 12, we see that most clones 

of the clones, if not all, belong to a subset of the lineages that are more abundant in the primary 

tumor at week 10 and week 12. From this analysis, it seems to suggest that the relationship of 

clones that are able to expand and dominate the primary tumor vs. the clones that are able to 

establish distal metastasis in the liver are positively correlated.  
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Figure 107. T-SNE plot of clones and their abundance over 12 weeks post injection. Red color 
represents the clones with higher representation in the tumor; the grey color represents the clones 
losing fitness and exhausting (plot by Nick Yen).  

 

Tumor representation in the primary site (pancreas) of lineages that are able to 

disseminate – abundance has a positive correlation 

To assess the relationship between clones that are able to disseminate (that can be found 

outside of the primary tumor) vs. clones that cannot be found outside of the primary tumor, we 

separate the two populations of clones and look at their relative accumulated abundance in the 

primary tumor. In addition, we plot each individual clone’s relative tumor representation (%, last 

day’s primary tumor) and look at their distribution in the primary tumor. From the analysis, we can 

see that, in general, clones that are able to disseminate have a higher accumulated primary tumor 

representation. However, despite that most of the clones that can disseminate having positive 

correlation with their primary tumor abundance, there also exists clones with low abundance that 

could disseminate, as well as, clones that are highly represented in the primary tumor that does 

not disseminate. This suggests clonal abundance could increase the chance of dissemination in 

general, however, there also exist lineage intrinsic factors guiding the process of dissemination 

and metastasis.  
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Figure 108. Relationship between lineage abundance vs. dissemination. Clones are separated 
into two categories: “able to disseminate” and “not able to disseminate”. Left plot looks at 
individual lineage and their individual relative tumor representation (%) in the primary tumor (last 
time point); Right graph shows the distribution of clones and their relative tumor representation in 
the two groups. X-axis indicates % representation bins in log scale; Y-axis indicates the count of 
clones that falls into each specific bin.  

 

Majority of the lineages that make up most of the tumor mass are found in the liver and/or 

the lung  

 

                                            

Figure 109. Diagram displaying primary tumor abundance representation of clones that are able 
to metastasize to the liver and/or the lung. Using another set of cutoff to analyze the data (NGS 
read>1, primary tumor must have value at all the time points, as well as appended an extra data 
set at week 10 for liver and lung metastasis); the conclusion remains the same, where the 
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accumulative % representation in the primary tumor of those lineages having the ability to 
metastasize to either liver and/or lung are high (92.66% for liver and lung lineages, 95.26% for 
liver or lung lineages).  

 

 

Looking at individual lineage’s clonal abundance in the primary tumor vs. in the liver  

Below heat map shows the % abundance of each clone in the primary tumor from day0 to 

week 12, as well as the clonal abundance in the liver at the last time point (week 12). The heat 

map is further sorted based on the abundance of liver metastasis representation from high to low. 

From this analysis, we can gauge in the relative correlation of individual clone’s abundance vs. 

their abundance in the liver. As we can see, the clonal abundance seems to have a positive 

correlation, consistent with the various analysis before; however, very importantly, not all of the 

clonal lineages abide by this rule. Once again, there are clones that are highly abundant in the 

primary tumor but are not able to expand in the liver; on the other hand, there are clones that are 

lowly represented in the primary tumor but are able to establish a relatively dominant presence in 

the liver. The X-Y correlation graph below show a similar story, where in general, there seems to 

be a positive abundance correlation between primary tumor and liver. The right most plot in Figure 

110 shows the Venn diagram of overlapping clones and their cumulative tumor representation in 

the two CRT animals at the last time point. As seen from the analysis, the overlapping clones in 

the two CRTs makes up ~97% of the primary tumor mass, whereas the overlapping clones in the 

lung and liver represents 63% and 68% of the primary tumor mass. In other words, clones that 

makes up 63% of the primary tumor could be found in the lung, and clones that makes up 68% of 

the primary tumor could be found in the liver.  
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Figure 110. Graphs showing clonal abundance vs. dissemination outcome. In the left heatmap, 
from left to right on the X-axis, indicates primary tumor day 0, week 4, week 6, week 10 and week 
12, as well as the week 12 liver on the right, where lineage abundance is sorted according to the 
liver sample. Each row represents a unique lineage. The red color indicates clones that are more 
abundant (left graph); XY - plot of clonal abundance (cells) found in liver vs. clonal abundance in 
the primary tumor. Color indicates the barcode count that falls into specific bin (red = high, blue = 
low). From the figure, we see a general positive correlation between the clone abundance in 
primary vs. liver metastasis (middle graph); the right most graph shows the two CRT mouse’s 
common clones’ cumulative tumor representation (averaged between n=2).  
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Additional data – cell abundance heaTCFP  

 

 

 

 

 

 

 

 

                                       

Figure 111. Heat map of clonal relative fitness in the primary tumor vs. liver (left)/lung(right) 
metastasis outcome. Heat map displaying the relative clonal fitness in the primary tumors at late 
time point (week13) for two CRT mice (mouse 504 and mouse 589). The metastasis outcome in 
the livers (left)/lung (right) in both mouse is indicated at the left side of the heat map. The 
metastasis outcome in both CRT mouse in the livers are consistent in general, however, there 
are also stochastic nature observed in metastatic outcome, indicating metastasis could be 
influenced both by clonal intrinsic and extrinsic factors. 

 

Analysis of common clones shared amongst different dissemination organs – blood, liver, 

lung and primary  

In order to have an idea of the clonal overlapping pattern between different metastasis 

sites, we took the clones that make up 99.5% of the primary tumor mass and performed clonal 

complexity overlapping analysis between blood, liver, lung, and primary tumor. We also displayed 

the number of clones shared amongst different sites and their cumulative relative primary tumor 

representation (%). In this analysis, the two CRT animals collected at each time points are 

analyzed independently. From the Venn diagram below, we can see that clones that make up the 

majority of the primary tumor mass (~85% to 88%) can be found in the liver, lung or blood. The 
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common clones between lung and liver make up a large portion of the primary tumor (61.6-

62.8%). Liver has more unique clones that are in common with the primary tumor.  

 

 

Figure 112. Venn diagram of the number of common lineages shared between primary tumors, 
blood, live and lung at last time point of clonal tracking experiment. The top graphs represent CRT 
mouse tag#504 while the bottom represents mouse tag#589. The left diagrams’ number indicates 
the count of unique lineages shared; the right diagrams show the cumulative % primary tumor 
representation of those common clones.  

 

Other analysis was performed that captured the unpredictability of metastasis growth in 

the liver and lung, however, it is not discussed here in detail due to the complex nature of the 

data. An example of interesting observation suggests that liver metastasis reflects the primary 
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tumor’s clonal distribution more than the lungs. Also, the clonal correlations between liver vs. liver 

in the CRT animals at the same time point are higher than the clonal correlation between lung vs. 

lung, which suggests lung metastasis is more stochastic than that of the liver. 
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Figure 113. Pearson correlation of all samples in the CRT cohorts, including in vitro passaging 
and serial transplantation. Clonal abundance converted into “cells”. Suffix ending with “Pan or 
“panc” indicates pancreas primary tumor; suffix ending in “D” indicat “blood”; suffix ending in “G” 
indicates “lung”; suffix ending in “R” indicates “liver”.  

 

Primary tumor, nearby vessels and duct metastasis tumor nodules are high in lineage 

complexity 

In a few animals in the CRT cohorts, we observed “local” invading metastasis along 

vessels and ducts in proximity to the primary tumor. In order to survey and have an idea of the 

clonal composition of these locally invasive tumor nodules, we collected them and sequenced its 

barcode. Summarized in Table 2, looking at the Pearson’s correlation of individual lineage 

abundance between each samples (primary, liver, lung, blood and local invasive vessel/duct 

nodules), we see the highest correlation value between the primary tumor and the liver (Peasron’s 

~0.93). This is consistent with the observations across different animals that liver recapitulates 

the clonal abundance representation of what is in the primary tumor better than lung (Peasron’s 

~0.77)  or blood (Peasron’s ~0.8). As for the locally invasive nodules along the vessels and duct, 

it also has a high correlation value with the primary tumor (Pearson’s ~0.86), as well as a high 

correlation with of those lineages found in the blood (Peasron’s ~0.9).  

Moreover, looking at the barcode complexity and their distribution correlation in the X-Y 

scatter plot (Figure 115), we see there are many barcodes present in the locally invasion nodules. 

Albeit visually, from the picture during surgery (Figure 114), where we see only a few large 

nodules present, the barcoding data suggests that they are high in tumor lineage complexity. In 

addition, the lineages found in the local tumor nodules have high correlation with the lineages 

found to disseminate into the blood and in the primary tumor.   
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Figure 114. Image of the locally invasive tumor nodules along duct and vessels. The primary 
tumor is circled in green dotted line and with a green arrow pointed at it. The yellow arrows indicate 
the “locally” invasive tumor mass along vessels and duct.  

 

 

Table 2. Paired analysis Pearson’s correlation of clonal abundance between primary tumor, liver, 
lung, blood and locally invasive nodules. All samples are derived from one CRT in one mouse at 
week 10 post injection.  
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Figure 115. Pair-wise X-Y scatter plot of week 10 primary tumor, liver, lung, local invasive nodes 
and blood clonal abundance (in % representation). Within one single CRT (one of the week10 
tumor CRT), we sequenced their primary tumor, blood, lung and liver, as well as the locally 
invading tumor nodules. The barcodes are converted to % representation within each sample. 
The axis is in log scale with the top abundant clones present in blood highlighted in “magenta” 
color.  

 

Clonal fitness vs. gemcitabine sensitivity  

Lineages with less fitness are more susceptible to gemcitabine treatment  

Building upon the longitudinal clonal tracing aspect of the model, one question we could 

asking is: “Are there a specific clonal dynamic that correlates to clonal gemcitabine response?” 

To answer this, we treated, in parallel, another cohort of CRTs created with the same stabilized 
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barcoded cell lines that was used in the longitudinal metastasis study (PATC124) with 

gemcitabine (refer to Chapter 1 treatment condition). In this set of cohorts, barcoded cells were 

injected subcutaneously instead of orthotopically for ease of measurement of tumor volume vs. 

drug response. In addition, in the previous sections we demonstrated orthotopic tumor and and 

subcutaneous tumor have high correlation. The mouse baring tumors were treated with 

gemcitabine (Syd Labs) 100mg/kg IP every three days. After treatment for 2 weeks, the treatment 

was stopped and the tumor was allowed to relapse. By comparing individual clonal lineage’s 

abundance change between relapsed and treatment null control, we can get a relative phenotype 

of the clonal sensitivity to gemcitabine. For example, if the clonal abundance is increased by at 

least 2-fold in the relapsed tumor compared to the none-treated tumor, we consider the clone is 

relatively more resistant to the drug, and vice versa.  Therefore, by pairing the information 

together, for each uniquely barcoded lineage, we have a gemcitabine sensitivity phenotype that 

can associate with their longitudinal growth dynamics.  

The histogram below captures the distribution of the treatment response in log2 fold 

change.  The longitudinal tracing of relative clonal abundance in the primary tumor, from Day 0 to 

day 28, day 40, day 70 and day 98, are clustered and shown in the graph.  

First of all, from the data, most of the clonal lineages have a negative value of fold change 

(the grey histogram), indicating that most of the lineages does have a decrease in representation 

and only a subgroup of lineages can dominate the relapsed tumor.  

By looking at Figure 116 below, gemcitabine seems to be more effective on the clones 

that are being out competed throughout the three months growth period (the cluster of lineages 

with an overall downward trend has a gemcitabine sensitivity of negative value in fold change 

comparing relapsed tumor vs. untreated control tumor. I.e. the brown cluster).  This could suggest 

that gemcitabine acts like an accelerator in helping the clones that have more fitness to dominate 

the tumor faster by inhibiting clonal growth of those that are less competitive.  
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Figure 116. Clonal lineage dynamics and their intrinsic gemcitabine sensitivity. By clustering the 
clonal dynamics over 12 weeks (in “cell unit”), we obtain six major clusters (top left graph indicates 
the six clusters, and the middle left parallel plots are the average lineage dynamics of those six 
clusters). The cumulative number of lineage intrinsic sensitivity to gemcitabine distribution are 
shown in histograms (bottom left graph), where the X–axis indicates the log2fold change of 
individual clone’s tumor representation comparing relapsed tumor vs. control tumor (positive value 
= resistant, negative value = sensitive).  The height of each bar indicates relatively how many 
lineages falls into the log2fold change value. The right portion of the figure combines the lineage 
dynamic and the relative sensitivity to gemcitabine together. The shaded portion in the histogram 
indicates the lineage with gemcitabine sensitivity information in a particular cluster. 

 

Not all lineages that have the ability to metastasize to the liver are more intrinsically resistant to 

gemcitabine 

Furthermore, let us ask the question: “For the clones that have the ability to metastasize 

to the liver, are they more resistant to gemcitabine treatment?” To answer this question, let us 

plot the distribution of all the clones that are able to metastasize to the liver and look at the 

gemcitabine sensitivity distribution. From Figure 117 below, the grey colored histogram exhibits 

a normal distribution centered at log2 fold change at the value “0”, indicating that not all the 

lineages that have the ability to metastasize to the liver are more intrinsically resistant to 



160 
 

gemcitabine. Furthermore, to look at the relationship of clonal dynamics and resistance, let us 

cluster the clonal dynamics in terms of “cell” unit and treat the gemcitabine sensitivity as the end 

point of the lineage’s dynamics. From Figure 117 below, we see that there are mainly four clusters, 

and again, the cluster of lineages with the dynamic of “decreasing in cell abundance over time 

“being more sensitive to gemcitabine, which is indicated by the negative fold change in tumor 

representation comparing relapsed tumor to control tumor (the purple and blue clusters). As for 

the cluster of lineages that could maintain cell abundance over time, the lineages with more 

relative fitness, are more intrinsically resistant to gemcitabine (lineages in red and brown clusters). 

This suggests most gemcitabine resistance could come from clones already with higher fitness.  

 

 

Figure 117. Liver metastasis clonal lineage dynamics and their intrinsic gemcitabine sensitivity. 

By clustering the liver metastasis clonal dynamics over 12 weeks (in “cell unit”), we obtain four 

major clusters (top left graph indicates the four clusters, and the middle left parallel plots are the 
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average lineage dynamics in those four clusters). The cumulative number of lineage intrinsic 

sensitivity to gemcitabine distribution are shown in the grey histograms, where the X–axis 

indicates the log2fold change of individual clone’s tumor representation comparing relapsed tumor 

vs. control tumor (positive value = resistant, negative value = sensitive). The height of each bar 

indicates relatively how many lineages falls into the log2fold change value; the right portion of the 

figure combines the lineage dynamic and the relative sensitivity to gemcitabine together. The 

shaded portion in the histogram indicates the gemcitabine sensitivity in the particular cluster. 

 

Lineage intrinsic long-term self-renewal property (from “cancer stem cells”) is a key factor 

determining clonal fitness and metastasis 

To get a better understanding of the observed positive correlation between clonal primary 

tumor abundance and their likelihood to metastasis, I designed an experiment to test the 

metastasis outcome when the lineages are relatively equal in abundance. One of the potential 

confounding factors surrounding the clonal abundance vs. metastasis correlation is the 

unbalanced distribution of lineage population used for injection. In the longitudinal experiment, 

the relative clonal abundance was inherited from the clonal equilibrium established post in vitro 

stabilization. In other words, although “stabilization” was critical in establishing CRTs, the lineages 

we transplanted in the animals were not equal in representation, with some higher than the others. 

Here, in the interest of studying lineage intrinsic factors leading to metastasis, we have to equal 

the playing field for all the clones in terms of relative abundance.  To do this, we orthotopically 

transplanted cells in NSG mouse right after barcoding with minimum expansion, when the cells 

population were composed of more complexity of barcodes and were relatively equal in 

abundance. Then, we could survey the distal sites after a period of time to see which clones have 

more ability to metastasize.  
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Figure 118. Schematics of inherited lineage abundance bias in previous experimental setting.  

 

 

Additionally, we focus on the intrinsic long-term self-renewal property as a key factor for 

metastasis potential as a hypothesis. Therefore, in parallel to the orthotopic transplantation, we 

took the same pool of barcoded cells (equal clonal abundance) and performed in vivo serial 

transplantation to identify which barcoded cells in the beginning can give rise (to LTSR lineages) 

and sustain tumor long term. By piecing the two experiments, we could measure each barcoded 

cell’s LTSR intrinsic properties (cancer stem cells) and their correlation to metastasis.  
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Figure 119. Schematics of cell intrinsic LTSR properties and their correlation with metastasis 
potential.  

 

Serial transplantation in vivo reveals which cells were cancer stem cells  

Currently, cancer stem cells are identified mostly through sphere formation assays in 3D 

culture and then the tumor cell’s ability to engraft in vivo, as well as using identified “stem cell 

markers”. As an example for the stem cell markers, a list of “CSC” markers are shown in the table 

below (for PDAC) 114. However, these CSC markers are insufficient in capturing the cancer stem 

cell population in an unbiased fashion, as CSCs can (transiently) express lower amount of such 

individual surface marker and could be influenced by environmental factors. Therefore, the only 

way to identify cells that are endowed with CSC properties is through functional in vivo serial 

transplantation. If a cell and its lineage could re-establish a whole tumor and sustained it 

throughout multiple in vivo transplantations, by functional definition, that cell is endowed with 

LTSR ability 115-119. Here, we use serial transplantation assay to identify cells (barcoded) that are 

CSCs in nature, and in parallel, assess their metastasization potential.  

As discussed in the prior chapter, starting from 2M unique barcoded “single cells”, only a 

few thousands of these cells will survive and sustain tumor after 8 months of serial transplantation. 
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If we think about it, the few hundred barcoded cells in the beginning must be “tumor initiating cells” 

or “cancer stem cells”, while the other few millions of barcoded cells “exhaust” and could not be 

detected (above detection threshold) in the F4 generation of mouse after 8 months. This assay 

therefore not only measures which clonal lineages are endowed with LTSR properties, but also 

reveals during the initial barcoding (1 barcode per cell) which individual cell in the population are 

CSCs that give rise to clonal lineages that sustain tumor.  

 

 

       

Figure 120. Schematics of the logic behind how to identify initial cancer stem cells that give rise 
to tumor sustaining lineages through in vivo serial transplantation.  
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Table 3. A list of published cancer stem cell markers. Adapted from Ishiwata, T., Matsuda, Y., 
Yoshimura, H. et al. Pathol. Oncol. Res. (2018) 24: 797. 

                                          

 

Transplanting minimally passaged post-barcoded cells allows us to track clonal dynamics 

during tumor expansion and metastasis when all barcodes are relatively equal in 

abundance 

 We have shown that CRTs’ metastasis clones have a significant positive correlation with 

their abundance and fitness in the primary tumor. In other words, the more fitness and abundant 

a certain lineage had in the primary tumor, the more likely we can observe that lineage 

disseminating and grow in distal sites. To measure clonal metastasis potential when they are 

equal in abundance, we transplant minimally amplified post-barcoded cells orthotopically at 

passage 4. At this stage, all the barcode lineages are relatively equal in abundance, therefore, 

eliminating the clonal abundant bias in the previous longitudinal metastasis experiment. In other 

words, the clonal growth and metastasis phenotype here would be more related to “cell intrinsic 

properties”.  We focus our hypothesis on the LTSR as an intrinsic property for fitness and 

metastasis. Therefore, in parallel, using the same passage 4 barcode cells, we perform serial 
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transplantation for four passages in vivo (F1 to F4, 6 months) to identify which cells/lineages could 

sustain the tumor long term. Combining the lineage specific metastasis phenotype and the LTSR 

properties obtained empirically, we could answer whether or not LTSR is a key factor in 

determining fitness and metastasization.   

 The experimental schematic is shown below. The reason we choose passage 4 is due to 

only ~8-10% of the cells could give rise to another colony (discussed later in the single cells 

isolation section, empirically obtained number specifically for this cell line), and passage 4 is 

estimated to have gone through 10 doubling events. This would provide enough cells/CSCs to 

satisfy the experiment design in each group and replicates.  

 

 

Figure 121. Schematics of the logic behind how to identify initial cancer stem cells through serial 
transplantation. 
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Figure 122. The metastasis lesions obtained from orthotopic injection of minimally expanded 
passaged barcoded cells. The left schematic represents the experimental design, while the right 
graphs shows the primary tumor (pancreas), liver, and lung (from left to right); bottom two shows 
the enlarged picture of liver and lung where the nodes of metastasis could be appreciated.  

 

 

A subset of LTSR “cells” that could re-populate majority of the tumor mass also give rise 

to majority of the metastasis distal tumor 

Analysis of clones (barcodes) in common and their relative tumor mass representation 

The data shows (removing 4 reads as detection threshold) the initial clonal complexity at 

is ~200,000 barcodes (“P4 what is injected”) in the parallel experimental arms. Between “F4 

tumor” after 6 months and “P4 primary tumors”, they share 468 common barcoded lineages. 

Looking at the tumor representation of those 468 common lineages, we see that it makes up 

~96% of the “F4” tumor and ~82% of the “P4 primary tumor”. This indicates that those initially 

barcoded 468 “CSCs” can sustain tumor long term (as seen from F4), as well as, have higher 

relative fitness (out of total ~2M barcodes) give rise to 82% of the tumor mass (P4 primary tumors). 

This suggests that, the majority of the tumors are comprised of cancer stem cell derived lineages.   
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By looking at the common barcodes that are overlapped between the “P4 liver metastasis”, 

the “P4 lung metastasis” and the LTSR lineages from “F4”, we see that there is a sub set of 

lineages (n=187) that are able to metastasize to both the liver and the lung.  

 

                

Figure 123. Common barcode lineages between F4 and P4 primary tumor, liver metastasis, lung 
metastasis. Comparing the common barcodes (n=468) between “F4” and “P4” tumor, the common 
barcodes makes up majority of both of the tumors at 95.8% and 81.8% respectively (left); Venn 
diagram of common barcodes shared between “F4” tumor and P4 liver and lung metastasis.  
 

Consider that in the beginning, there were 200,000 individual barcoded lineages that were 

relatively equal in abundance. However, after six months, there were only 1,379 barcodes left. 

Out of those 1,379 barcodes, 187 of them has the ability to metastasize. From Figure 124 below, 

if we track those 187 barcodes that can metastasize and look at their relative representation in 

each populations, we see those 187 lineages only consists of 1.093% of the “P4 (what is injected 

into animals)”, whereas they represent 93.9% of the “F4” tumor. Furthermore, those 187 clones 

make up 71.4% of the “P4 primary tumor” mass, as well as 98.3% of the liver metastasis, and 

72.5% of the lung metastasis tumor mass. The fact that the clones that are able to metastasize 

and dominate the distal sites are the same clones that make up essentially the entire tumor mass 

after six months of serial transplantation indicates that cancer stem cells (LTSR cells) and their 
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lineages have more fitness, and that they are more inclined to disseminate and grow at distal 

organs.  

 

                       

Figure 124. Diagram of barcode complexity throughout different samples.  

 

In terms of barcode distribution for each sample, below is an analysis of the number of 

clones and relative clonal representation distribution in each sample. The Y-axis represents %, 

(in log scale) and the number next to each bar represents the count of barcodes that falls into the 

bin of a particular representation. If we look at the most left sample, “P4 what is injected”, and 

compare it to “F4” and “P4 primary tumor”, we see that the individual barcode distribution is 

relatively equal and does not have clones that dominate the population. As for “F4” or “P4 tumor”, 

we see there are clones that are highly abundant, which represents up to 3-5% of the tumor mass 

each. If we look at the “P4 liver” and “P4 lung”, we can see metastasis lesions are dominated by 

only a few clones, with each representing up to 15-20% of the metastasis tumor mass. In addition, 
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in the figure, we track the 187 clones that are able to disseminate to the liver and lung and shaded 

their representation darker in each the bar graph.  We can see that the most abundant clones in 

the “F4” and “P4 primary tumor” are all able to metastasize. However, we also observe clones 

that are lower in abundance with the ability to metastasize as well.  

 

Figure 125. Bar graph showing the relative clonal abundance distribution in each sample. The Y 
axis shows the relative percentage representation in a sample (in log scale); X-axis shows the 
density. As we can see, passage four (the most left plot) all the clones are relatively equal in 
representation, whereas F4, there clearly are clones that are more abundant then the other.  

 

To look at the distribution of the clones that are able to metastasize relative to the “what 

is injected” entire barcode distribution, in the dotted plot below, we show the 187 metastasis 

clones in red and the entire 200,000 barcodes in “P4 what is injected” and their relative 

distribution. We see that the clones that are able to metastasize is evenly spread across the 

sample, from high to low abundant clones (Figure below).  

This result shows that the tumor cells that are able to gain relative strong fitness in the 

primary tumor and able to metastasize in both liver and lung are derived from cells that have 
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LTSR capability. Therefore, this puts the capability of lineages that are able to metastasis and 

grow to the cell intrinsic LTSR property. In other words, metastasis capability originates from the 

cancer stem cell compartment.  

 

                                                                     

Figure 126. Dot plot for clones that are able to metastasize and their relative abundance (%) in 
“P4 what is injected”. Red dots represent the 187 clones that are able to metastasize to the lung 
and liver; grey dots represent the clones in “P4 what is injected”. The y-axis represents the relative 
representation in the sample displayed in log scale. The red dots are evenly spread across.  
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Figure 127. Figure showing the shared barcode number and their relative representation in “P4 
primary tumor”. For example, there are 174 barcodes shared between “F4”, “P4 primary”, “P4 
liver” and “P4 lung”, and their cumulative abundance makes up 71.4% of the primary tumor mass. 

 

 

An assessment of spatial clonal heterogeneity in the orthotopic CRT tumor  

As we know from studies involving autochthonous model and multiregional sequencing, 

clonal expansion occurs during tumor formation; and spatially, regions could be made up of 

different clonal lineages (with respect to mutational landscape), resulting in a “patchy” pattern in 

clonal distribution39,122. Clinically, these regional expansions of clones can provide challenges in 

terms of how well core biopsies represent the composition and characteristics of the entire tumor.  

Understanding how clones distribute and interact with stroma is an important aspect to 

understanding tumor evolution and behavior characteristic.  

Transplantation model using cell lines derived from patient tumors is widely used amongst 

research communities. However, little is known about tumor lineage spatial distribution in such 

model. How closely can the injected tumor cells recapitulate clonal expansion and regional 

distribution of what has been observed in patient’s remains unclear. Knowing this not only would 
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help us better understand the model we use as a researcher, but also help us understand the 

intrinsic behavior of clonal expansions.  

The clonal replica tumor model presents a unique opportunity in charactering spatial clonal 

expansion of tumor. While injecting the barcoded lineages, the cells were mixed evenly into a 

homogenous population; therefore, the physical distribution of “barcoded cells” (lineages) should 

be evenly distributed in the injection mixture. With the injected lineages homogeneously mixed, 

will the tumor derived from this also display an “evenly distributed” phenotype resembling a 

“spotty” clonal distribution pattern? Or, will it resemble a “patchy” regional distribution pattern, 

where, although initially the lineages are homogeneously distributed, certain regions of the tumor 

will expand much faster than the rest?  If it is the former observation, it would tell us that the cells 

intrinsic engraftment/proliferation capability are relatively comparable across all cells in a lineage, 

and that, in our model, environmental pressure has a minimal effect. If it is the latter observation, 

it would suggest that there might be a portion of the cells that have greater 

engraftment/proliferation capability then the other cells, as well as inferring that the cell extrinsic 

factor playing an important role in shaping the clonal expansion and the tumor’s clonal 

composition spatially.  

                      

Figure 128. Illustration of clonal spatial distribution models. Evenly mixed cell lines containing 
heterogeneous clones (most left) transplanted into animal hosts and develop tumor over time; 
whether it would develop into a “spotty” pattern or a “patchy” regional distribution pattern remains 
unknown.  

 

To sample clonal spatial distribution across the tumor, we first fix the tumor in FFPE blocks 

and sectioned it at 10-micron slices at the midsection of the tumor and stained with H&E. Using 
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laser capture microdissection (LCM), we sectioned 41 regions across the tumor as seen in Figure 

129, where each square represents a LCM region. At the same time, on an adjacent FFPE slice, 

we stained for HLA (in red), ECAD (in green) and DAPI (in blue), which would provide functional 

context to the tumor.  

 

 

Figure 129. LCM sectioning regions of a transplanted pancreatic tumor. Left figure shows the H&E 
of cross sections of pancreas injected tumor; Right figure shows the IF image of the adjacent 
cross section of pancreas injected tumor, where green = ECAD, red = HLA staining. The square 
indicates independent LCM section’s relative position. LCM and staining performed by Nick Yen. 

 

Once each of the LCM regions were collected into individual tubes, we used a one-tube, 

FFPE-to-NGS library sample preparation workflow developed by me to obtain the barcode 

composition information in each LCM sections (proprietary) . In brief, each LCM region are fully 

lysed in an optimized condition so that the DNA is released into solution. To minimalize sample 

loss, in the same reaction tube, lysis buffer is inactivated and the barcode PCR reaction is 

performed in the same tube by addition of reagents. Each PCR primer for individual LCM sections 

has a unique index to allow for de-multiplexing after pooling all the PCR products together; as 

well as, containing NGS adaptor for sequencing. The multiplexed library is then purified and 

sequenced in one NGS run (NextSeq). The barcodes were analyzed via an in-house pipeline 

 

 

 
 

  

  

 

 

  

 

   

 

   

  

    

 

 

 

 

 
   

  

    

 
 

 



175 
 

determined by me and data filtered for noise and analyzed by Nick Yen. This section of the thesis 

is a collaboration between Nick Yen and I-Lin Ho.  

                                 

Characterization of LCM sections’ clonal composition  

As an example of how barcoded clonal lineages distribute in each LCM section, we focus 

on the first four sections. Each LCM section’s barcode composition and relative abundance is 

characterized and can be cross referenced with protein expression level via IF staining.  

For example, LCM section #2 is mostly dominated by one barcode clonal lineage, LCM 

section #3 is co-dominated by two clones, and LCM section #4 is represented by multiple clones; 

furthermore, from the IF image, the level of expression of protein functional markers could be 

quantified for each section.  

 

 

Figure 130. Barcode composition and functional marker for each LCM section. IHC of cross 
section of PATC124 primary tumor with LMC position in square (Left);  IF staining and higher 
magnification of a section of primary tumor (green ECAD, red HLA, blue DAPI) with 4 LCM 
sections cut out for barcode analysis (2nd left); Quantification of staining intensity in each section, 
1 to 4 (bottom right);  Barcodes detected and their relative representation in each section (top 
right); Section 1 comprised mainly of 4 clones; Section 2 is mainly monoclonal; Section 3 is mainly 
bi-clonal; Section 4 has a mixture of many clones. 
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After compiling the barcode data for each of the 41 LCM sections and perform 

unsupervised clustering of the top barcode lineages found in each section. We can see the clonal 

regional distribution in its entirety.  In terms of clonal distribution, there are roughly six different 

regions composed of different sets of clones. For example, on the top right of the heat-map, 29 

sections share relatively high abundance of common 17 clones that are not found in the other 

sections. Also, two sections immediately adjacent to those are composed of essentially every 

clone. Furthermore, within each of the six regional clonal distribution patterns, the individual 

clone’s relative abundance are highly correlated and consistent. This data suggests that tumors, 

despite the cell lineage initially during injection were evenly mixed, do indeed, expand in a regional 

pattern; stressing the possibility environmental pressure, or clonal clusters that cooperate /or 

compete during expansion.    

 

                     

Figure 131. LCM regions vs. clonal abundance distribution. X-axis are composed of 41 LCM 
regions and Y-axis unique lineages (each line represents an individual barcode). The color of 
represents the relative abundance of each barcode (red=high, blue = low). Analysis done by Nick 
Yen.  
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Clonal lineage distribution pattern in tumor are both patchy and spotty  

A patchy regional distribution pattern of how clones expand is only part of the picture. In 

our model, each clone does expand regionally, however, the clonal lineage can actually be found 

across the entire tumor. Thus, combining the two observed phenotypes, we concluded a model 

of “spotty” distribution of “patchy expansion” for individual clones.  As an example, if we look at 

barcode #514, and #288 individually in terms of distribution of abundance across the entire tumor, 

we see exactly a spotty but patchy phenotype.  

This purpose of this data is partly to gain an understanding of how our tumor model clonally 

distribute spatially and how closely do they mimic a naturally developed tumor in vivo. In addition, 

the data serves as a feasibility data for future hypothesis generation while linking clones with 

functional marker to study interactions between specific clones with stroma, other cell types, other 

clones, as well as, specific clonal intrinsic functional properties that link to phenotype.  

This set of experimental data also ties into the observation of divergence in clonal 

abundance as tumor expands mentioned in the previous sections, where spatially different micro-

environment differences could contribute to the unpredictability nature of cancer clonal expansion.  

 

Figure 132. Geographical distribution of specific barcoded cell lineage (#514 and #288) in the 
primary tumor. By reconstructing cell lineage spatial distribution, we can observe grow dynamic 
and expansion pattern and possible clonal inter-dependency. Analysis by Nick Yen.  
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LCM sectioning of metastasis lesions in the liver reveals majority of metastasis lesions 

are composed of monoclonal lineages in tumor mass and oligoclonal in composition 

From the same set of CRT tumor samples (part of the CRT longitudinal cohort), we also 

survey paired liver metastasis lesions with LCM and sequence their clonal composition. Since the 

tumors are from the same animal, we could trace individual metastasis lesion’s spatial origin in 

the primary tumor section.  

From the data, we can see that most of the liver metastasis lesions are composed of 

monoclonal barcoded lineages. For example, from the right graph below, looking at the liver 

metastasis column, metastasis node #1,3,6,7,8,11 are all composed by barcode #514 (middle 

column), and the barcode #514 could be found almost everywhere in the 41 LCM regions of the 

primary tumor FFPE slide. Another example is liver metastasis node #5, where is it composed of 

three clones (barcode #22, 1049 and 736), and those barcodes only comes from ~10 out of 40 

sections, ¼ of the primary tumor in a spatial context.  

    

Figure 133. FFPE slices of paired liver and primary tumor from the same CRT mouse stained with 
H&E (top liver, bottom primary). The black boxes on the primary tumor indicate the LCM region 
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sampled. The right graph shows the connection and barcode composition between primary tumor 
and liver metastasis nodes. Analysis by Nick Yen.  

 

Clonal metastasis mass does not necessarily correlate with clonal primary tumor 

representation 

From the same LCM data above, we took the four most abundant liver metastasis lesions 

and calculated their relative tumor representation in the primary tumor. We found two of the big 

metastasis lesion barcodes are highly represented in the primary tumor (barcode ID 4611_12634 

and 5304_9756), whereas the other two metastasis lesions are composed of clones that are not 

highly representative of primary tumor. This data aligns with what was seen from the previous 

sections, where in general, there is an abundance correlation with primary tumor and liver 

metastasis, however, clones that are lowly represented in the primary tumor could still give rise 

to relatively large liver metastasis nodes.  

 

                              

Figure 134. Four clonal ID identified through large liver metastasis nodes via LCM and their 
relative clonal representation in the paired primary tumor. The ID “504”, “589” and “subq” indicates 
different mouse’s tumor. “504” and “589” are two orthotopic CRTs, while “subq” refers to the 
subcutaneous tumor using the same barcoded cell line. The percentage represents how much 
percent representation of the specific lineage represents in those samples.  
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Large metastasis nodes are comprised of oligoclonal lineages, however, only one clone 

dominate the metastasis lesion mass 

While the LCM data determined that majority of the metastasis lesions are monoclonal in 

nature, it is derived from a 2-D section of the liver lesions. To gain a more confident representation 

of metastasis lesions, we sequenced the entire individual metastasis lesions of three (3) of the 

CRT animals at day114.  

Figure 135 below is a representative picture of the size and the relative scale of individual 

metastasis nodes and mouse liver (in which the tumors were excised from). From the barcode 

analysis, the big nodes in each individual animal are comprised of monoclonal barcodes. The 

barcodes that are able to grow into the big lesions also make up of the rest of the barcodes 

detected in the rest of the liver.  

  

 

 

 

Figure 135. Metastasis liver clones are oligoclonal in composition but monoclonal dominance in 
nature. Bottom left, a representation of liver metastasis node size. Five nodes were excised out 
from the liver, all samples were sequenced (nodes and the rest of the liver); Parallel plots of the 
lineages shared across the three CRT mouse and liver metastasis nodes and “liver rest” (the rest 
of the liver). The X-axis represent relative abundance of the clones (represented by lines), the 
higher the line is, the more representation it has. In CRT 1, the liver population as well as the 
large metastasis node are all dominated by the “blue clone”. The CRT2 and CRT3 mouse, in the 
same manner, are dominated by the red clone (it has been determined that the two barcodes 
belongs to the same clone, a dual-barcoded lineage). Majority of the large metastasis lesions are 
monoclonal dominance in mass, but oligo clonal in composition (shown in the pie charts).    
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Establishment of isogenic clones for functional characterization of metastasis vs. non-

metastasis prone lineages 

To functionally characterize clonal lineages with distinct phenotypes observed from the 

CRT longitudinal model. Through clonal isolation (described in previous chapters, which involved 

single cell sorting into tissue culture plates), we isolated six clones with differential tumor fitness 

and metastasis phenotype identified through the longitudinal tracing experiment. Three (3) of the 

clones display higher fitness in the primary tumor and metastasize, whereas the other three 

clones do not metastasize at all. The isolated clone’s primary tumor abundance over time and 

their dissemination patterns in the blood, liver and lung from the CRTs longitudinal study are 

shown below. In addition, we performed subcutaneous injections of these six individual clones in 

nude and NSG mouse and found that these six clones all have the ability to engraft and form 

large tumors. In other words, all isogenic clones isolated are tumorigenic.  

 

Figure 136. Six isogenic clones with tumorigenic potential and their abundance over time in the 
primary tumor from the CRT longitudinal tracing experiment. 
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Figure 137. Six isogenic clones with tumorigenic potential and their relative abundance (%) over 
time in the primary tumor, blood, liver and lung from the CRT longitudinal tracing experiment. The 
scale is in log scale (left); Spider plot of the 6 clones and their relative abundance representation 
at 4w, 6w, 10w, and 12w data points are in the 12, 3, 6, and 9 o’clock position.  

 

Isolated clones are heterogeneous in terms of mutational landscape and CNV profile  

We performed whole exome sequencing for each of the six clones and analyzed their 

mutational landscape and copy number variance (CNV) profile. As see by the analysis on 

mutations in cancer hallmark genes, all clones share the same mutation of common drivers KRAS 

and TP53, DNA damage checkpoint ATM, ATR. As for the other genes, each clone has a more 

heterogeneous mutational profile. Furthermore, from CNV analysis, it shows these 6 clones are 

also heterogeneous in chromosome copy number states. There are not enough samples to 

conclude whether or not a specific genetic profile is correlated with metastasis phenotype.  
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Figure 138. Cancer hallmark gene mutation in each of the 6 isogenic clones and their parental 
population. Isogenic clones with differential metastasis potential indicated by the orthotopic 
longitudinal CRT model are isolated from the parental cell population and submitted for whole 
exome sequencing and mutations analyzed. By Zhao Li.  

 

 

Figure 139. Copy number profiling on the 6 isogenic clones (copy number gain in red, copy 
number loss in blue, top graph). By Zhao Li. 

Red: Copy gain 

Blue: Copy loss 
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No Met 
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Figure 140. Copy number profile across all chromosomes of the six isogenic clones. Log2 ratio 
(with respect to a normal diploid genome) of the copy number variations (CNV) mapped to the 
corresponding chromosomal coordinates for all clones (black), and segmented CNV (red)By Zhao 
Li. 
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Clones with pro-fitness and metastasis potential are upregulated in NMDA pathway 

Using supervised-clustering of differential expressed genes based on their metastasis 

potential, we identified a set of 200-gene signature that are up-regulated in either the “pro-met” 

or “non-pro-met” group. Suggesting there are indeed expression differences that could be linked 

to the phenotypes. Furthermore, through gene set enrichment analysis, we identified enrichment 

of pathways such as N-methyl-D-aspartate (NMDA) receptor, α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor, and long-term potentiation pathways enriched in pro-

metastasis clones123.  

 

             

Figure 141. Differential gene expressed from “pro-mets” vs. “non-pro-mets” isogenic clones using 
supervised clustering (top 100 and bottom 100 gene).Left heat map; GSEA analysis for “pro-mets” 
vs. “non-pro-mets” clones, top right to top bottom showing NMDAR, AMPAR, Long-term 
potentiation pathways enriched in “pro-met clones”. By Zhao Li. 
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NMDAR is an ionotropic type of glutamate receptor. It is found in the central nervous 

system where it is directly involved in synaptic signaling, where when active, causes calcium influx 

into the cytosol 124. It has been reported that glial tumors has an excess level of glutamate. In 

addition, an increase in glutamate concentration is correlated with tumor aggressiveness by in 

vitro and xenograft models. In none CNV cells, glutamate level has also been demonstrated to be 

correlated to aggressiveness, invasion phenotype in breast cancer, prostate cancer, lung cancer, 

and pancreatic neuroendocrine tumors (PNET) as well as PDAC 125,126. Specifically, NMDAR has 

been observed to have increased expression level at the tumor periphery in GEMM models by 

immunochemistry and upregulation of NMDAR causes a MAPK, CaMK dependent invasive 

phenotype 78-79, 127-128.  From Cbio portal, pancreatic cancer in specific, there exists about 1% of 

the patient which carries NMDAR mutation (GRIN2A subunit). Looking at the location of 

mutations, most mutations are spread out and does not seem to correlate with protein expression 

nor survival, leading to speculation that the overexpression could also be contributed by 

epigenetic modifications. 
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Figure 142. NMDA receptor activation schematics. Adapted from “Anti-N-methyl-D-aspartate 
Receptor Encephalitis – A Synopsis” 129. 

 

 

 

NMDAR upregulation in “pro-metastasis” clones is validated in vitro  

Taking the two most distinct “pro-metastasis” (12SG, 30FG) and two “non-pro-metastasis” 

(FR-13, 16SG) clones, we tested their mRNA expression level by qPCR. As seen from the figure 

below, GRIN2A (NMDAR, subunit 2A), GRIA2 (AMPA) and CaMK4 (calmodulin-dependent 

protein kinase type IV) all have significant upregulation in the “pro-metastasis” clones. The gene 

to normalization used is GAPDH for each sample.  
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Figure 143. Relative mRNA expression of GRIN2A (NMDAR, subunit 2A), GRIA2 (AMPA) and 
CaMK4 (calmodulin-dependent protein kinase type IV) in four isogenic clones using GAPDH as 
normalization. Experiment by I-Lin Ho.  

 

Taking the “pro-metastasis” (12SG, 30FG, 32FR) and “non-pro-metastasis” (FR-13, 

16SG) clones, we tested their relative protein expression level by Western blot. As seen from the 

figure below, NMDAR2A has relatively more expression level in the “pro-metastasis” clones than 

in the “non-pro-metastasis” clones (using FR13 as normalization). Glial tumor cell lines were used 

as a control for the level of protein expression.  
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Figure 144. Relative protein expression of NMDAR by Western blot, subunit 2A between isogenic 
clones (normalized to FR13). Experiment by I-Lin Ho.  

 

 

                   

Figure 145. Intracellular basal level calcium concentration. Two of the isogenic clones isolated 
with higher fitness (12SG, 30FG) that express higher level of NMDAR also have higher level of 
intracellular calcium concentration compared to the non-metastatic clones. Experiment by I-Lin 
Ho.  
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Furthermore, we tested the clone’s basal level of invasion ability. Using an invasion assay, 

testing the top and bottom two most pro-metastasis and non-metastasis clones, we demonstrated, 

at the baseline level, the pro-metastasis clones do invade more.  

                 

Figure 146. Clonal basal level measured by invasion assay.  

Isogenic clones’ invasion capability matches their CRT in vivo experiment phenotype. Left graph 
is the image of cells that could migrate, the more cells indicate a higher invasive capability. Right 
graph is a quantification of the image in bar graph format. By I-Lin Ho. 

 

 

Memantine suppress primary tumor growth of in vitro  

We identified a FDA approved drug named memantine, which is a non-competitive NMDA 

antagonist that could potentially have an effect on reducing the invasive phenotype of pro-

metastatic clones. We first titrated a drug concentration (measured by MTT assay) that would not 

cause apoptosis. Using such concentration, we apply the drug on individual isolated clones. 

Through invasion assay comparing treated vs. non-treated conditions, we see that memantine 

effectively reduced the invasion phenotype of pro-metastasis clones.  
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Figure 147. Cell viability assay (MTT assay) vs. memantine concentration. All four clones despite 
of their fitness or metastasis phenotype (in CRT experiment) all display sensitivity to memantine. 
At 50µM concentration memantine, the drug has minimum impact to cell viability. Using a dosage 
less than 50µM to test the drug’s efficacy on clones’ invasion ability is concluded from this 
experiment. Experiment by I-Lin Ho.  

 

   

 

Figure 148. Invasion assay under the effect of memantine on pro-metastatic clones. Testing the 
most metastasis clones (12SG and 30FG) under the treatment of memantine. The left image are 
images from invasion assay, where cell amount correlates positively with cell’s capability to 
invade. Right graph is the quantitated result of the images. Here, it demonstrates memantine can 
reduce the invasive ability of the most metastatic clones. Experiment by I-Lin Ho. 
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Memantine suppress primary tumor growth of In vivo reconstructed tumor 

To test the effect of memantine on tumor growth in an in vivo setting. We orthotopically 

injected a total of 3 million cells composed of equal amounts (25% each) of isolated sub-clones 

“12SG”, “30FG”, “16SG”, and “FR13”, where “12SG” and “30FG” having a strong fitness and 

metastasis phenotype, and “16SG” and “FR13” having low fitness and low metastasis phenotype 

according to the CRT longitudinal data set. The experimental group were treated via intra-

peritoneal injection of memantine at 11.54mM, ~200-250µL per mouse (10mg/Kg), q.d. for 5 days 

a week, 2 days off, while the control group receives 200uL PBS. The experiment lasted for 2 

months. 

 We observed a significant decrease in tumor weight between the controls (n=4) vs. the 

treated cohort (n=7). Indicating memantine can effectively impact tumor growth. 
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Figure 149. Tumor weight in vivo of memantine vs. control group. Tumor weight were measured 
(g) after 2 months individually. Between the control group and the memantine treated group, there 
is a significant decrease in the tumor weight of the memantine treated tumor.  
 

Memantine reduce metastasis of in vivo reconstructed tumor 

 With the same cohort described in the previous section. The livers were collected at the 

same time to survey the metastasis abundance for both the non-treated control group and 

memantine treated group. Visually, by eyes, there were obvious liver metastasis lesions in the 

liver of the non-treated group. On the other hand, the memantine treated cohort had zero to little 

visible (by eye) liver metastasis lesions. The observations is consistent across the cohort.  

                   

Figure 150. Representative picture of liver of reconstitute tumor cohort with memantine treated 
vs. control group. The left picture is a representative picture of the liver from orthotopically injected 
reconstituted tumor that received memantine treatment, where little visible liver metastasis was 
seen; right picture is a representative picture of the control group, where many liver metastasis is 
seen (indicated by yellow arrow). The observation is consistent across experimental and control 
cohort. Samples were collected on the same day.  
 

Utilizing a more sophisticated quantitative method to assess the effects of memantine on 

tumor growth and metastasis, we processed the entire primary tumor, liver and the lung for DNA 

along with the spiked in scale (known cell number with unique barcodes). Then, through PCR 

amplification of barcodes and normalizing each barcode read to the spiked in scale’s read 
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number, we could determine how many cells are present in the primary tumor, liver, as well as 

the lung. From the below figure, we could see the inhibitory effects of memantine on the 

reconstituted tumor’s primary tumor expansion (~1/3rd smaller, from ~160M down to ~60M cells), 

as well as reduction of the amount of metastasis tumor in the liver (~1/7th, from ~11M down to 

~sub-2M cells) and the lung (1/9th, from ~900K cells down to ~sub-100K cells).  Therefore, we 

validated that in vivo, intrinsic upregulation of NMDAR pathway in clones that have more fitness 

and metastasis potential is targetable through memantine.  

      

   

 

Figure 151. Quantitative assessment of tumor volume in the primary tumor, liver and the lung of 
reconstitute tumor cohort comparing memantine treated vs. control group. The top pie charts 
indicate the tumor volume’s relative ratio detected in the primary tumor (pancreas), liver and lung 
(from left to right), in both the memantine treated (n=3) and the control group (n=3); The bottom 
bar graphs indicate the tumor volume in quantitative cell number (converted by normalizing scale 
during sample DNA processing). 
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Moreover, let us look at whether or not the reconstituted tumor lineages retain similar 

functional properties in terms of fitness and metastasization potential in vivo. As a reminder, we 

orthotopically injected a total of 3 million cells composed of equal amounts (25% each) of isolated 

sub-clones “12SG”, “30FG”, “16SG”, and “FR13”, where “12SG” and “30FG” having a strong 

fitness and metastasis phenotype, and “16SG” and “FR13” having low fitness and low metastasis 

phenotype from the longitudinal CRT data set. After two months post-injection, from the below 

figure, if we look at the primary tumors (Primary tumor control), we can see the two clones that 

had more fitness and metastasis potential (color in shades of red) dominating the reconstituted 

tumors’ representation (>95%); on the other hand, the clones with lower fitness and less 

metastatic potential only represents a small portion of the primary tumor (color in shades of blue). 

In addition, the reconstituted tumor model recapitulates the metastasis phenotype from the 

longitudinal CRT data set), where the two clones that are more pro-metastasis indeed dominate 

the tumor at distal sites.  Interestingly, although the memantine treatment has significant impact 

on tumor volume, it does not seem to have particular differential effects on particular clonal 

lineages (as seen from the table below, clonal relative ratio is similar between treated vs. control 

group). This could be due to the fact that the complexity of the barcodes in the reconstituted tumor 

is limited, hence, not able to fully evaluate the differential clonal response to memantine. 

Currently, we are treating the CRT tumors with higher barcode complexity with memantine to 

assess the differential clonal response in detail, as described in chapter one.  
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Figure 152. Qualitative assessment of lineage representation in the primary tumor, liver and the 
lung of reconstitute tumor cohort comparing memantine treated vs. control group. The top bar 
graph indicates the relative tumor representation (after two months) of the four clones (injected at 
equal amount). Barcodes “4611_12634”, “5304_9756” are the clones with more fitness and 
metastatic potential based on the longitudinal CRT empirical data set, which are in shades of the 
color red; clones “1592_6046” and “6023_6472” are the clones with less fitness and lower 
metastatic potential, color shaded in blue; the bottom table indicates the precise number of tumor 
representation of the four clones in each site.   
                         

Pro-Metastasis signatures pre-exist in primary tumor and is predictive of patient survival 

 From the differential expression of genes obtained from the metastasis (high fitness) and 

the non-metastasis (low fitness) isogenic clones, we established a 200-gene set signature 

associated with “pro-metastasis”. Matching the gene set signature to the TCGA pancreatic patient 

RNASeq data, we were able to separate out subgroups of patients having either enriched or 

decreased expression relative to the metastasis signature. Plotting the patient survival of these 

two groups, we find the “metastasis signature” can predict the prognosis of these two groups of 
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patients. Furthermore, by matching the metastasis gene signature to the single cell RNASeq data 

of the primary tumor cell line (PATC124), we found there are 453/3,397 cells already enriched in 

the signature.  

 

        

Figure 153. Pro-metastasis signature matched to TCGA patient cohort can predict clinical 
prognosis. The left graph indicates the patients from the TCGA cohorts (column) and the top and 
bottom DE genes from the metastasis signature. 30 patients (red box) matched the metastasis 
signature, and 16 patients (green box) matched the non-metastasis signature. The right graph is 
the Kaplan-Meier survival curve for patients that match the metastasis and the non-metastasis 
signature.  
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Figure 154. Pro-metastasis signature pre-exist in cells as measured by single cell RNA-Seq. 
Single cell RNAseq was performed on the parental PATC124 PDX-derived primary cell line. Out 
of 3,397 cells, 453 cells matches the pro-metastasis signature and 131 cells matches the non-
metastasis signature. This indicates that the gene expression profile pre-exists in the parental 
population at a significant level. Judging from the distribution of the cells that match either 
signature, the cells seems to be dispersed throughout the clusters and not belonging to a specific 
compartment of the tumor cells.   

  

 

 

 

 

 

 

Chapter Summary and Discussion 

Clonal competition is one of the major functional mechanisms that shape how tumors 

evolve. As a tumor develops and expands, cell intrinsic properties that translate to functional 

fitness in terms of proliferation define the makeup and characteristics of such tumor. Therefore, a 
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tumor can be viewed as a complex ecosystem where sub-clonal lineages inter-compete and co-

evolve, thus molding the tumor as a whole 32, 129,130, 134. To understand the tumor’s characteristics, 

it is logical for researchers to focus efforts on studying its building blocks – functional sub-clonal 

lineages – and how each of them responds to external pressure. Indeed, significant efforts in the 

field, with intentions to de-convolute how tumors progress and evolve over time, have been made 

to profile tumors at various stages of the disease. With genetic profiling of patient tumors, 

scientists have been able to determine main driver mutations that regulate progression in most 

types of cancers. For example, KRAS, CDKN2A, TP53, and SMAD4 are associated with PDAC 

and BRACA1, BRACA2, and TP53 with breast cancer 44, 132-135, 152-155. Although big data analysis 

has provided us with a valuable grand view of cancer as a disease, tumors are, in reality, far more 

complex and heterogeneous. Cancer should be viewed as a “dynamic” disease that has the ability 

to adapt. Each patient’s tumor sub-lineage may harbor unique mutations or modifications that 

may potentially influence a cell’s response and adaptation to external stress 80, 81, 137, 138. To be 

able to truly understand how a potential genetic or epigenetic change can influence a cell and its 

sub-lineage’s functional state, it is essential for researchers to have the ability to longitudinally 

follow the same sub-lineage’s progression over time.     

 Currently, there are no adequate in vivo models that allow for unperturbed longitudinal 

lineage tracing with good resolution and tumor representation 139-142. As a common example, serial 

biopsy through fine needle aspiration in combination with whole exome sequencing at a single 

cell level provides the longitudinal aspect and single cell resolution for lineage tracing, but is 

severely limiting in the scope of representing the composition of the entire tumor. Moreover each 

serial sampling perturbs the tumor’s ecosystem and the partial removal of the tumor may 

introduce artificial responses, which may prevent us from surveying the natural clonal dynamics 

of the tumor as it expands. Additionally, besides descriptive –omics profiling and an extrapolated 

lineage progression pattern, this method lacks the capability to functionally characterize clones of 
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interest and further investigate mechanisms related to specific clonal phenotypes. For reasons 

aforementioned, we aim to establish a high resolution, representative model that can 

quantitatively reflect clonal dynamics during tumor progression and dissemination without 

perturbing the tumor ecosystem.      

 Using human pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft (PDX)-

derived cells, we generated orthotopic clonal replica tumors (CRTs), which are cohorts of animals 

bearing human tumors that are essentially identical in their clonal composition 109. Additionally, 

we used a bootstrap simulation method, with a stringent criterion for similarity, and demonstrated 

that we could view each individual CRT in the same cohort as interchangeable, independent 

single variables over time 143. Therefore, by surveying independent CRTs and their entire sub-

clonal composition and abundance at multiple time points, we can empirically gain an unbiased 

representation of clonal dynamics during their natural expansion. In other words, similar to a 

cartoon flip book or a zoetrope, the model provides the capability to robustly trace lineage 

dynamics in parallel animals bearing clonally identical human tumors by creating a progressive 

time lapse video for each sub-clone based on additive snapshots.   

By analyzing the clonal dynamics in the primary pancreas tumors, we immediately 

observed one single clone exhibiting massive clonal expansion within the first four weeks of in 

vivo transplantation. Surprisingly, while all the top abundant clones were relatively similar in 

percent abundance at the time of injection, only one clone displayed such an aggressive 

proliferation post transplantation. A possible explanation relating to external influence for this 

observation is that under in vitro culturing conditions, environmental pressure is relatively even 

(i.e. oxygen content, nutrition concentration) compared to that under in vivo conditions. After 

transplantation, pockets of distinct microenvironment niches favoring growth are unevenly 

distributed (i.e. hypoxia, blood vessel distribution), which thus leads to this difference in clonal 

expansion. The uneven clustering spatial distribution of clonal growth is further validated through 
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laser capture microscopy (LCM) sectioning across the entire primary tumor, where we observed, 

intra-clonally, a somewhat “patchy” spatial distribution that was not entirely regional. Interestingly, 

the same dominate sub-clonal expansion is seen across all CRTs, suggesting a strong lineage 

intrinsic linkage in relative clonal fitness.  

Besides the clonal expansion dynamic, we also captured the “stochastic” divergent nature 

of tumor expansion by monitoring the sub-clonal abundance correlation between CRTs surveyed 

at the same time points. At early time points, each sub-clone of CRTs, progressed very similarly 

from week 4 to week 10 (correlation ~93.8%) despite becoming less and less concordant. It is not 

until the last time point, week 12, that we see a sudden increase in clonal divergence amongst 

CRTs (correlation ~73.4%). Keep in mind that we injected the same barcoded cells into all animals 

(correlation 99.9); however, over time, the clonal composition among tumors naturally becomes 

less and less similar. This suggests that any “minor” external factors amongst individual animals 

can shape lineage evolution, and that the difference can be appreciated and amplified with the 

progression of time.  

Looking comprehensively at all the dynamics of sub-clonal lineages, we observed an 

astonishing and unexpected degree of inter-clonal oscillation during unperturbed tumor expansion 

(Fig. 78, 79, 89-94). Dynamics included 1) clones that displayed gradual loss or gain of fitness 

over time, 2) clones that displayed transient amplification followed by gradual loss of fitness, 3) 

clones that were mostly dormant followed by dramatic aggressive outgrowth, 4) clones that 

displayed a sigmoidal progression with gain-loss-gain of fitness, 5) clones that gained fitness for 

most of the time then followed by a sudden drop in fitness, and 6) clones that displayed a “U” 

shape fitness progression, where loss of fitness was followed by gradual gain of fitness. Frankly, 

some of these empirically obtained dynamic patterns might seem hard to believe at first, but all 

data and lineages were treated and processed with the same criteria. Therefore, if one can believe 

a clonal dynamic pattern of a “gradual gain of fitness over time”, one should be open to believe 
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that the other observed clonal patterns, albeit unconventional, reflect true tumor biology. In 

addition, all of the above clonal progression dynamics were validated and observed in another 

independently barcoded CRT cohort, thus suggesting that these observed dynamics in the CRT 

model reflects sub-clonal tumor progression biology.  

Clustering of clonal dynamics revealed a high degree of alternating clonal dominance 

(ACD) during unperturbed tumor expansion. Certain clonal lineages that were progressively 

dominant over time would experience a sudden drop in fitness at around week 10. Concurrent 

with this pattern’s timeline, some clones that were low in abundance experienced sudden 

expansion and overtook the original dominating clones around week 10 (Fig.80). These ACD 

patterns were observed both with qualitative analysis (in clonal relative tumor % representation) 

and quantitative analysis (in absolute cell unit) of clonal abundance. These data again highlight 

the importance of viewing the tumor as an ever-changing entity, and that over time, different 

lineages would acquire different degrees of fitness in response to assumed variance in the 

microenvironment between individual mice as well as due to possible tumor self-induced 

environmental changes during progression. The potential cause of ACD in the tumor could be 

related to the tumor’s constant propensity to expand. During expansion, clonal lineages are 

competing for resources, and the clones with the best fitness dominate the tumor’s representation. 

However, by speculation, once a tumor reaches a certain size, necrosis, hypoxia, and nutrient 

deprivation start to factor into the clonal equilibrium equation, impacting clones with different 

intrinsic properties. Therefore, at this point, dominant clones may start to decrease in fitness, 

while other clones that are intrinsically better suited to adjust and adapt to the new environment 

will eventually become the more dominant population of the tumor. If this is true, one can expect 

the transcriptomic or epigenetic profile of the same clonal lineage in a tumor at an early stage to 

be drastically different than that at a late stage because the tumor itself could have gone through 

a radical shift in internal environmental properties and its clones must thus adapt and respond to 
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such changes. It also signifies that although tumor mass may stay relatively constant, the tumor 

sub-clonal composition may change drastically over time. This is in line with the concept of 

adaptive evolution as well as the concept of adaptive resistance in the context of treatment. Of 

note, adaptive evolution has been described by Rosenberg and colleagues, where under 

starvation, E. coli underwent loss-of-function mutations in proliferation associated genes and back 

mutated to allow for survival fitness 144-148, 224,225.  

Moreover, looking at the less represented lineages in tumors at each time point surveyed, 

there were clones that were constantly proliferating, gaining in fitness persistently throughout and 

popping up – which thus suggests a rich “reserve repertoire” of clones waiting to thrive (Fig. 80). 

This also revealed the highly competitive nature amongst clones at the bottom of the pyramid. 

This naturally occurring ACD also has practical implications. For instance, it suggests that clinical 

decisions should be made on recently acquired biopsy profiling information, as dominant clones 

could alter over time. In addition, the notion that targeting the contemporary dominant clones of a 

tumor is not enough, as there are presumably many other lineages with distinct intrinsic properties 

waiting to take over 149-150. Furthermore, the longitudinal CRT model that revealed alternating 

clonal dominance and the rich repertoire of low abundant sub-lineage’s persistent dynamics may 

also serve as a vital tool to refine treatment strategy concepts such as adaptive therapy, where 

lineage-specific functional characteristics are taken into consideration during treatment to prevent 

tumor resistance.  

In addition to studying the longitudinal lineage progression of the primary tumor, we also 

surveyed the all distal organs of CRT animals for the dissemination dynamics of tumor lineages 

over time. To this end, at each time point, we harvested the whole lung, liver, and blood from the 

same mouse in which CRTs’ primary tumors were collected. Using the same clonal barcode 

detection methods, we obtained both longitudinal qualitative (relative %) and quantitative (cell 

unit) information on specific sub-lineages that displayed unique patterns of dissemination, seeding 
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at distal organs, metastasis dormancy and latency, and organotropism. We were also able to 

catalogue the clonal composition of metastasis lesions and the degree of the stochastic nature of 

metastasis amongst different organs and their outgrowth patterns. From a grand point of view, 

only a fraction of the sub-clones had the ability to metastasize (~1%-5%); further, barcodes were 

detected in all organs as early as week four, suggesting that tumor cells can indeed seed early 

on 156-159. The number of tumor cells per lineage that sheds into the blood increases as the tumor 

progresses; however, for the liver and lung, we observed a sub-population of lineages that 

displayed a “transient metastasis” phenotype, of which the early stage (at week four) had more 

cells per lineage than late stage. In other words, some sub-clones may have the ability to 

disseminate early on and may even accumulate into a mass, but they can never be sustained and 

will eventually lose fitness over time. Looking at the clonal lineage progression dynamics in the 

distal organs (liver and lung), we see a more one dimensional dynamic than what has been 

observed in the primary tumor. In general, lineages that are responsible for metastasis in a distal 

organ displayed a long term “latency” of ~10 weeks. The fitness of each clone remained relatively 

stable even though the clone steadily increased in mass. After a long period of “latency”, the 

clones present at distal organs exhibited an explosive expansion, where the metastasis 

proliferated at a large degree (Fig. 102). In terms of tumor mass, the metastasis and ascites’ 

accumulative mass exceeded that of the primary tumor at late stage. By surveying the clonal 

composition of individual metastasis lesions (or nodes), we found that the metastasis lesions were 

oligoclonal but displayed monoclonal dominance in nature. Whether or not the oligoclonal lesions 

occur during seeding or after the establishment of metastasis nodes has yet to be characterized 

42, 160. However, one thing we are certain of is that the complexity of inter-clonal competition in the 

liver seems to be far less than what is occurring in the primary tumor, which corresponds with the 

observation of wider spatial distribution pattern of liver metastasis. Differences in selective 

environmental pressure between organs may also contribute to the latency of a clone to adapt 

before massive outbursts in growth.  
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Additionally, we observed an interesting correlation between the outburst of metastasis 

and the timing of ACD in the paired primary tumor. Most of the ACD in the primary tumor occurred 

around ~week 10, which was also when metastasis clones started to aggressively proliferate. 

While this was purely hypothetical at this time, I wondered if metastatic outgrowth might be linked 

to a change in the metabolic state of the primary tumor. In other words, as the primary tumor 

proliferated to a certain size, factors such as nutrient deprivation and hypoxia could increase, 

and/or the tumor could become more necrotic, resulting in a tumor growth self-induced internal 

microenvironment and tumor metabolic change. These changes in the primary tumor could 

influence distal metastasis lineages and stimulate growth through chemokines or exosomes. This 

hypothesis is in line with Notta and Co.’s paper in 2016, where through tracking CNV, the authors 

found that the majority of pancreatic tumors harbored complex genome rearrangement signatures 

related to mitotic error and that PDAC followed punctuated equilibrium as its main evolutionary 

trajectory 151. Further, Marusyk and Co’s paper in 2014 indicated that the sub-clonal population 

drove tumor expansion through enhancing the proliferative capability of other cells by overcoming 

extrinsic constraints—however, this could be outcompeted and lead to the collapsing of the tumor 

101. This hypothesis can be tested in the future to determine whether ACD-related tumor 

progression self-induced change in metabolic state is a major factor in triggering distal metastasis 

proliferation, and if the reverse of concomitant tumor resistance exists168.   

On the topic of organotropism, we observed that the sub-clones that metastasize in the 

lung only partially overlap to those of the liver. Multiple sub-clones thrive in an organ specific 

manner. By correlating two lungs or two livers collected at the same time point, we find that clonal 

lineage complexity overlaps ~60% in each distal organ (lung to lung, liver to liver). This suggests 

that metastasis progress is highly stochastic, although their paired primary tumor’s correlation 

is >90%. The analysis of sub-clonal abundance of lung vs. lung and liver vs. liver at the same 

time point suggests that metastatic outgrowth in the liver is more consistent than that in the lungs 



206 
 

(Fig. 112, 113). This highlights a possible mechanical aspect of tissue dependent cell entrapment 

or intercellular adhesion’s contributions to metastasis, as well as the existence of different organ 

specific niches161-166.    

By comparing sub-clonal abundance in the primary tumor versus the sub-clonal capability 

to metastasize, we determined that tumor lineage abundance had a high correlation with their 

ability to disseminate. However, although clonal abundance was a major factor, not all clones 

behaved in this way. In the CRT cohorts, we also observed multiple sub-clones that were lowly 

represented but could metastasize and proliferate, as well as multiple sub-clones that were highly 

represented in the primary tumor throughout the longitudinal study but did not metastasize. 

Therefore, the data suggest that the factors that contribute to metastasis sees to be both 

influenced by lineage fitness in the primary tumor, as well as by the intrinsic nature to disseminate 

in the sub-clone.  

To dive more into the nature of metastatic clones, an experiment was designed to 

normalize each sub-clone’s abundance (equal) in the primary tumor during injection and measure 

its ability to metastasize (orthotopic injection right after barcoding followed by minimal 

amplification). Additionally, in parallel, through in vivo serial transplantation and using the same 

population of cells right after barcoding, each lineage’s ability to sustain long term tumor growth 

was determined (4 generations, 6 months, generation F1 to F4). The data showed that lineages 

that were able to metastasize contributed to only a tiny fraction (1.093%) of the injected population 

and that their relative abundance in the injected population was equally spread throughout the 

entire abundance distribution (Fig. 124). This suggested that the metastatic potential of a sub-

clone was comparatively an intrinsic property and independent of the initial abundance.  

Furthermore, those same lineages that were able to metastasize contributed to 93.9% of the in 

vivo serial transplanted tumor mass in F4, indicating that part of the clonal lineages that could 

sustain tumor for long-term and contribute to the majority of the tumor mass had the intrinsic ability 
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to metastasize. In other words, the data strongly suggest that an intrinsic long-term self-renewal 

(LTSR) property is a crucial factor for metastasis. Therefore, the metastasis phenotype is 

governed by both intrinsic LTSR and fitness properties (abundance) of a lineage in the primary 

tumor, and those two factors are essentially intertwined 157-159, 169-171.  

Since the lineage’s intrinsic LTSR properties contribute to clonal fitness and potentially 

metastasis, we aimed to isolate isogenic clonal lineages that were metastatically naïve (yet to go 

through the dissemination process) and then perform functional characterization for mechanisms 

leading to the observed differential phenotypes in the CRT longitudinal study. Through a minimally 

perturbed high-throughput clonal isolation method, we generated multiple isogenic clones that 

displayed a wide array of clonal dynamics from the same CRT studies. We focused on six clones 

displaying the most extreme phenotype – three clones that had high fitness in the primary tumor 

and metastasized, and three clones that had low fitness in the primary tumor and did not 

metastasize. In vitro validation determined that the three pro-metastasis clones had a higher 

invasive phenotype than the non-metastasis clones, and that all six clones were able to engraft 

and establish tumors in vivo. Interestingly, the six clones all shared common PDAC driver 

mutations (KRAS, TP53), but all had unique diverse mutational landscapes as well as copy 

number profiles. Through differential expression of the RNAseq data, we identified N-methyl-D-

aspartate receptor (NMDAR, GRIN2A gene) to be constitutively activated and relatively highly 

expressed in the pro-metastatic clones. Treating the clones with memantine, a non-competitive 

antagonist of NMDAR, effectively decreased the invasive ability of the metastasis clones both in 

vitro, as well as in vivo through reconstituted tumor. This suggests that NMDAR is one of the 

major pathways regulating metastasis, and that targeting this pathway can potentially reduce the 

degree of metastasis in patients. Furthermore, based on the top differentially expressed genes 

amongst clones displaying differential metastasis phenotypes, we generated a “pro-metastatic” 

gene set signature. Matching the “pro-metastatic” signature back to the single cell RNAseq data 
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from the CRT tumor cell lines, we found a subset of cells that were already enriched in the 

signature (~13%), suggesting that part of the tumor derived from patients already had the 

tendency to metastasize. Finally, through matching the “pro-metastatic” signature to TCGA patient 

data, we found that the signature could effectively predict patient prognosis in the TCGA PDAC 

cohort.  

In conclusion, molecular technological advancements have revealed that tumors are much 

more complex than what we had initially thought, and that merely measuring tumor mass to 

determine or predict tumor behavior is vastly insufficient. The longitudinal CRT model provides 

the ability to not only measure the clonal heterogeneity of a tumor, but also the capability to probe 

into the longitudinal aspect of individual lineages of a tumor. This study has allowed us to 

appreciate the degree of functional diversity occurring naturally during tumor expansion, and 

demonstrates that tumors are a highly dynamic entity that is ever-evolving187, 188.   
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Chapter 3 Abundance independent preservation of clone-to-clone ratio in cancer and the 

prospective concept of “tumor clonal fingerprint” 

Introduction 

Tumor clonal fingerprint – tumors could be defined by intrinsically maintained clonal-to-

clonal lineages composition 

In this chapter, we discuss a prospective concept of tumors maintaining their functional 

characteristic through preserving sub-lineage hierarchy. Through tracing of tumor lineages that 

has been cultured and stabilized in in vivo or in vitro conditions (will go into detail later), we 

observed an interesting result. The result shows that a population of lineages displaying higher 

fitness in vitro and lower fitness in vivo; at the same time, there is another population of lineages 

displaying the opposite phenotype with higher fitness in vivo and lower fitness in vitro. However, 

for either population of lineages, independent of the fitness, within that population the relative 

clonal-to-clonal ratio is preserved. This suggests the possibility of an inherited tumor inter-clonal 

hierarchy, where the ratio amongst certain lineages is preserved independent of environment at 

an equilibrium state. In other words, there exists an inter-clonal ranking profile that could 

potentially represent the functional make up of a tumor; furthermore, the inter-clonal ranking 

profile is intrinsically maintained in the tumor at low abundance under unfavorable environments. 

This observed inter-clonal ranking could hypothetically be served as a tumor’s ID, a “Tumor Clonal 

Fingerprint” (TCFP), to help us define tumor in the context of functional sub-units (sub-lineages) 

make up as well as apply it to guide further treatment effectiveness strategies.   
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Figure 155. Perspective Tumor Clonal Fingerprint (TCFP) model concept schematics. Relative 
clonal ratio is maintained independent of environment. Under environment A, subset of clones 
would gain fitness and expand exponentially, as oppose to under environment B, the clones would 
lose fitness. However, the relative clonal ratio of each lineages is maintained; therefore, the 
tumor’s clonal “profile” in the context of functional sub units (clones) is preserved despite of 
environment.   

 

This concept of how a tumor’s functional characteristic may be defined and preserved by 

clonal lineages and their hierarchy (in terms of relative ratio) is in line with the clinical concept of 

“adaptive therapy”. Adaptive therapy refers to applying a controlled treatment regimen to tumor 

while avoiding the change in the tumor’s overall characteristic (sensitivity to treatment), as 

opposed to hitting the tumor with intense treatment resulting in minor population of resistant cells 

giving rise to an entire tumor that is “different” in characteristic and resistant. Considering adaptive 

therapy under the context of sub-lineages, which is the functional sub units of tumor, adaptive 

therapy aims to maintain the relative ratio between individual lineages; therefore, the functional 

characteristic of resistance of the tumor is preserved. This contrasts with having intense treatment 

that disrupt the relative clonal equilibrium, leading to the change of relative clonal ratio, where 

more resistant clones dominate the relapsed tumor. This is in line with the observation of TCFP. 

If this TCFP exists and can represent the accumulative functional compartments of tumor, we 
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could potentially use TCFP as a matric to measure the effect and follow tumor progression under 

treatment.  

                                  

Figure 156. “Illustration of the designed evolutionary dynamics in adaptive therapy. a,b The purple 
cells are sensitive to the treatment and the green cells are resistant. The graphs represent the 
simulated density of each population over time during treatment. The top row represents standard 
therapy in which the maximum tolerated dose is given continuously after initiation. The cells 
sensitive to treatment are eliminated quickly. This intensely selects for cells that are resistant to 
the treatment, in this case T− cells, and eliminates the competition effects of the T+ population, 
resulting in competitive release with rapid treatment failure and tumor progression. The bottom 
row represents an evolution-based strategy in which therapy is halted before all of the sensitive 
cells are eliminated. In the absence of therapy, the sensitive cells out-compete the resistant cells 
due to their fitness advantage. This “steers” the tumor back to the pretreatment so that it remains 
sensitive to treatment. The resistant cells, or T− population, will increase slightly with each cycle 
so that this treatment eventually fails. However, mathematical models demonstrate control may 
be durably maintained for up to 20 cycles - significantly longer than continuous therapy”. Figure 
and legend quoted from Zhang, J., Cunningham, J.J., Brown, J.S. et al. integrating evolutionary 
dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat Commun 8, 1816 
(2017). https://doi.org/10.1038/s41467-017-01968-5 

 

Here, I will walk through the experiments in a stepwise manner and discuss the results 

sequentially.  Part of the data has already been discussed during previous chapters; however, to 

make this an independent chapter for readers, I would reiterate the key experimental details. For 
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those who are familiar with the experimental details, you may skip directly to the analysis section: 

“Inverse correlation of clonal abundance from in vitro vs. in vivo stabilized experimental arms”.    

Results 

Lineage tracing via barcoding of tumor cells 

As discussed in the CRT section, by utilizing lentiviral barcoding technology on early 

passage of patient derived xenograft primary tumor cell line with a low multiplicity of infection and 

puromycin selection of barcoded cells (integrated vector contains puromycin resistance), we can 

create a culture of tumor cells each with a unique barcode integrated in the genome. Since the 

barcode sequence is integrated into the genome, once the cells proliferate and divide, the barcode 

sequence would be duplicated and passed onto daughter cells and their progenies. Due to this, 

we can use these barcodes to trace cell lineages over time.   

 

 

Figure 157. Schematics of barcoding of PDX derived tumor cell lines. Early passage of PDAC 
patient PDX derived cell lines are infected with lentiviral barcode library (~10M unique barcode 
types). Using a low MOI, most cells will get one unique barcode integrant. After puromycin 
selection of cells with barcode, we create a pool of cells that could be used for lineage tracing.   
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Parallel in vivo vs. in vitro tumor lineage tracing  

To measure which cell lineages are endowed with long-term self-renewal properties, after 

puromycin selection, we expanded the barcode tumor cells (“passage 1”) and then took half of 

the culture and performed serial transplantation in vivo for four passages over a period of 8 

months (F1, F2, F3, and F4). In vivo serial transplantation is a functional assay to measure which 

cell lineages could sustain tumor growth and re-engraft over a long period of time. Therefore, the 

barcode lineages that are still present in the F4 tumors after 8 months, by functional definition, 

should be the cell lineages that have long-term self-renewal properties.   

As for the other half of the “passage 1” barcoded cell culture (identical barcode population 

as the in vivo serial transplantation experiment), we continued to passage them in vitro (P2, P3, 

P4…P21) over a period of 8 weeks. At the end of the in vitro passaging, the cells were injected 

into NSG mouse to see which cell lineages, after in vitro passaging for a period of time, could 

engraft in vivo and form tumor.  

 

Figure 158. Parallel lineage tracing experiments in vitro and in vivo conditions. Barcoded PDAC 
cells are briefly expanded and subjected to two different long- term culturing conditions: in vivo or 
in vitro.  The in vivo serial transplantation from F1 to F4 (each generation has 5 animals) would 
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inform us of lineages with long-term self-renewal properties (what is left in F4), whereas the in 
vitro passages (p2 to p21) would allow us to expand cells efficiently to create clonal replica tumors.   

 

Tumor lineages established from in vitro stabilization is part of the long-term self-renewal 

compartment 

By tracking the barcode complexity (barcode lineages) from the in vivo serial 

transplantation experiments (F1 to F4), as well as the in vitro passaging P2 to P21 and finally in 

vivo injection, we can see that although the total barcode complexity started the same with 

~2,000,000 unique barcodes, as the passages increase, certain barcode lineages would 

disappear and exhaust (the blue lineages); certain lineages displayed transient amplification, 

where it would increase in abundance but eventually exhaust (green lineages); finally, there 

lineages that increase in tumor/culture representation and sustain most of the tumor volume and 

culture representation (in red, Figure 159). In terms of lineage behavior, both the in vivo and the 

in vitro experimental arms behave similarly, where >99% of the barcode lineages eventually 

exhaust and only a fraction of the lineages were able to sustain the tumor and culture over a long 

period of time. What is amazing is that, in the beginning, at “passage 1”, both the experimental 

arms started off with ~2,000,000 barcoded clonal lineages, and over time, the majority of the 

lineages eventually exhaust and a common set of lineages were present in both the in vivo and 

the in vitro arm of the experiment in the end. This is denoted by the t-SNE plot, where the grey 

portion are the lineages that were exhausted and the red portion represent the clones that 

sustained the culture and tumor, and that these clones converged over time. This suggests that 

a minor fraction of common clonal lineages are able to maintain the in vivo tumor or in vitro culture, 

and that this is a lineage intrinsic behavior independent of culturing environment (Figure 159).   

Furthermore, if we compare the “F4 tumor” clonal composition with the “in vivo tumor from 

in vitro stabilized cell culture”, we find a common set of clonal lineages that make up the majority 
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of both tumors (70% and 97% respectively). Simply put, the clonal lineages (n= 1204) that make 

up basically the entire tumor derived from the in vitro stabilized culture falls in the long-term self-

renewal compartment, as defined by functional in vivo serial transplantation experiment (those 

lineages present in F4 tumor).   

 

 

Figure 159. Barcode lineage tracing experiment in vitro and in vivo. Lineages reache equilibrium 
over time despite of culturing condition. Starting with the same population of barcoded cells, both 
in vitro and in vivo serial passaging display similar lineage dynamics over time, where most 
barcoded cells experience exhaustion (drop in barcode complexity) with only a portion of lineages 
sustain grow. The lineage complexity eventually becomes stabilized at 3.6% and 0.67% 
respectively (top left curves for in vitro, and top right curves for in vivo). Tracing the individual 
lineages abundance over time (bottom left and bottom right), we observe clonal exhaustion over 
time (in blue), as well as transient amplifying lineages (green) and the lineages sustaining tumor 
(red). T-SNE plot in the middle shows over time, regardless of in vitro or in vivo condition, the 
exhausted cells/lineages are the same (grey); also, the lineages that remain are also overlapping 
and converging (red).  
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Inverse correlation of clonal abundance from in vitro vs. in vivo stabilized experimental 

arms 

Now that we have established that tumor lineages from the in vitro and in vivo experimental 

arms are LTSR clonal lineages, an interesting observation is made regarding the relative 

abundance of those individual LTSR clones in these two experimental arms (in vitro vs. in vivo).  

From graphing out the “In vivo tumor (cells stabilized in 2D)” vs. the “F4 tumor (serial 

transplantation)” side by side and looking at individual clonal abundance in these tumors, we 

observed an inversed relationship between the two samples.  In other words, clones that are 

highly abundant in the “In vivo (2D)” tumor, is lowly represented in the “F4” tumor (Figure 160) 

and vice versa.  To further confirm this observation of abundance inverse relationship, I plotted 

an X-Y scatter plot of relative clonal abundance by ranking of “in vitro passage P21” vs. “In vivo 

(2D stabilized)” tumor (Figure 160, each dot on the plot representing a lineage). From the plot, as 

expected, we can see that the correlation of the “in vitro passage P21” vs. “In vivo (2D stabilized)” 

is relatively high, since the “In vivo (2D stabilized)” tumor is derived from the in vitro passages in 

the same experimental arm.  On the other hand, if I plot the same scatter plot for the “In vivo (2D 

stabilized)” vs. “F4”, we see that the two tumors’ clonal abundance, albeit being made up of the 

same LTSR clonal lineages, is evidently inversely correlated.   



217 
 

        

Figure 160. X-Y scatter plot of In vitro stabilized lineage and in vivo stabilized lineage abundance 
showing inverse correlation.   

 

Most importantly, what is perplexing to me is the order of the clones aside from their 

inverse abundance. From the X-Y scatter plot of “In vivo (2D)” tumor vs. “F4” tumor, we can 

noticeably see two populations, yet the ranking of each clone is relatively maintained regardless 

if they are low in abundance in one tumor or highly present in the other, resulting in two well-

correlated populations (Figure 160).   

Since these barcoded clonal lineages were cultured and passaged under different 

environments (starting out the same and then split into the two experimental arms, one in vivo, 

and the other in vitro 2D culture and then transplant in vivo), it is logical to assume certain lineages 

would adapt and thrive under one environment, while some lineages would adapt better in the 

other, and thus resulting in the inverse abundance of tumor representation from “in vivo (2D)” 

tumor vs. “F4” tumor.  However, I was not expecting to see clonal lineages retaining their relative 

ranking (clone-to-clone ratio) in such high correlation. I was expecting to see something less 

organized, where certain lineage population would grow better in the in vivo environment over 
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time, and vice versa in the in vitro environment, without the clonal lineages maintaining their 

relative order /ranking (Figure 161).  

 

         

Figure 161. Inverse correlation with and without maintaining relative ranking. Hypothetical scatter 
plot of inverse correlation without maintain relative clonal ranking (left) vs. what is observed, 
where in vitro and in vivo stabilized clones are inverse in abundance and also maintaining relative 
ranking (clone-to-clone ratio).  

 

 

                           

Figure 162. X-Y scatter of the lineage % representation of the last in vitro passage P21 vs. the 
injected tumor derived from P21. As an analysis control, a side by side comparison of in vitro 
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passage P21 vs. P21 derived “in vivo (2D stabilized) tumor” and in vivo F4 tumor vs. “in vivo (2D 
stabilized) tumor”. We expect the P21 having positive and good correlation with “in vivo (2D 
stabilized) tumor” and it is what the data shows.  

 

Longitudinal lineage tracing suggests clonal-to-clonal clonal ranking in tumors are 

preserved 

To further validate the observation of preservation in clonal ranking, I first plotted the 

lineages representation in both linear and log scale, as well as based on % tumor representation 

and relative ranking to confirm that there are two major populations that are indeed positively 

correlated. For example in Figure 163, lineages representing above 0.1% of the “in vivo (2D)” 

tumor mass and below 0.01% of the “F4” tumor mass has a Pearson’s correlation of 0.81 

(p=0.00001); while the lineages representing above 0.1% of the “F4” tumor mass and below 

0.01% of the “in vivo (2D)” tumor mass has a Pearson’s correlation of 0.86 (p=0.00001).  

 

       

Figure 163. X-Y scatter plot of in vitro vs. in vivo stabilized clonal relative abundance by ranks. 
Left plot shows in vitro vs. in vivo LTSR clones plotted by rank. Right graph shows the plot in 
relative % tumor representation value. Both plot shows an inverse correlation in abundance, but 
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with high correlation in relative ranking (0.81% - 0.859% Pearson’s correlation for clones that 
makes up 90% of the tumor mass).   

 

One possibility of artificially creating such phenotype where common clonal lineages that 

are inversely correlated in abundance but maintain highly correlated in terms of relative lineages 

ranking is contamination.  Imagine having two separate barcoded samples, and a tiny amount of 

“Sample No.1” got into the other sample “Sample No.2”. In this example, the contamination would 

cause a false positive read out in “Sample No.2” at a lower abundance; in addition, the relative 

clonal ranking would have high correlation with what is highly abundant in “Sample No.1” due to 

the contamination (coming from “Sample No.1”). However, the probability of the observed 

phenotype is due to contamination is not likely. During the experiment, the barcoded tumor / 

cultures were processed separately in multiple batches to prevent cross contamination. 

Furthermore, the PCR primers has separate indexes for each sample and therefore, further 

preventing false positives due to cross contamination. Moreover, looking at the X-Y scatter plot 

of lineages from “in vivo (2D stabilized)” tumor vs. “F1”, “F2”, “F3” and “F4” tumor longitudinally, 

we can clearly see that the two positively correlated populations have an organic (gradual) 

separation starting from “F1” to “F4” in a span of 8 months (Figure 164). This suggest that the 

observation we are seeing here is a natural behavior and not likely due to artificial reasons such 

as cross contamination of barcodes. Lastly, some of these lowly represented clones do come 

back up during late passages, regaining a certain degree of fitness, suggesting the dormancy 

nature of some of these lineages and that, once again, these barcodes are not present due to 

contamination.  
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Figure 164. Longitudinal tracking of clonal abundance gradual divergence in in vivo serial 
transplanted tumor. Fixing the X axis as the “2D stabilized” tumor and tracing individual LTSR 
clone’s relative abundance throughout the in vivo serial transplantation F1 to F4. The data shows 
a gradual shift over 8 months period of time in separation of the two inversely correlated clonal 
populations. 

 

Now that we are confident that the observation is true, we can ask interesting questions 

regarding the cause of the inverse in population abundance for lineages “stabilized” under 

different environments and how the clonal ranking relationship is maintained intrinsically 

independent of clonal abundance.   

 

Environmental influence on clonal equilibrium states in tumors 

To determine the environmental influence on clonal equilibrium states in tumors, the 

experiment started with the same pool of barcoded cells - half of the cells were passaged in vivo 

over time (“F1”, “F2”, “F3”, “F4”), while the other half were passaged in vitro over time and 

subsequently injected into mouse to form tumors (“in vivo 2D”). By looking at the dynamics (in 
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terms of abundance) of barcodes common in the tumors, we can cluster them in two main clusters 

using PCA analysis (Figure 165). For those two clusters of clones, we can see they are indeed 

separating over time as the serial transplantation passage increases (Figure 165, Figure 166). 

This indicates that the environmental factors, “in vivo” vs. “in vitro”, are causing specific groups of 

clonal lineages to gain or lose relative fitness in the tumor. This is quite interesting because by 

functional definition, all these clonal lineages are considered to be long-term self-renewal clones 

that have the ability to maintain the tumor over a long period of time. However, due to 

environmental factors and the conditions they are cultured in (specifically “in vitro” vs. “in vivo”), 

the degree of abundance in tumor is different under different environments. Similar to chemo-

resistant residual lineages, although low in abundance, are still important functionally and have 

the ability to give rise to relapse tumors and adapt to external perturbations.  

                                          

Figure 165. K-mean clustering of the LTSR lineages overtime. K-mean clustering shows that the 
two populations of LTSR lineages gradually separate over time during the 8 months of in vivo 
serial transplantation when plotted against the “2D stabilized” tumor.  
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Figure 166. Longitudinal tracking of clonal population divergence in in vivo serial transplanted 
tumor vs. In vitro stabilized tumor. Fixing the X axis as the “2D stabilized” tumor and tracing 
individual LTSR clone’s relative abundance throughout the in vivo serial transplantation F1 to F4. 
The data highlights a subpopulation the lineages that are highly abundant in F4 tumor. Tracing 
back in time (in F1), we see the separation of the populations are gradual, where initially the 
particular cluster is a part of the larger clusters in F1 tumor, but separating out over time. The 
stabilization of the equilibrium is a gradual process and takes time. 
 

                           

Figure 167. Parallel plot of LTSR lineage dynamics overtime in in vivo serial transplantation vs. 
“2D stabilized” tumor.Y-axis representing the relative abundance in tumor representation and X – 
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axis representing the tumors “F1”, “F2”, “F3”, “F4” and “in vivo 2D” tumor. Each line represents a 
unique LTSR lineage. Following the two populations of lineages in terms of % abundance in each 
tumor stabilized under different conditions. Green indicating lineages with low representation in 
F4 tumor, while red represents lineage with high representation in F4 tumor and vice versa. We 
can see that although these lineages are all present and is part of the LTSR compartment, the 
abundance is inversely correlated.  

 

Furthermore, by looking at individual lineage dynamics over time, we can appreciate that 

the tumors are naturally coming to an equilibrium state (Figure 167).  From tracing the clonal 

abundance in these two populations, we can see from the parallel plot that initially from “F1” to 

“F2” (Figure 167), there are roughly half the lineages increasing in fitness (red lineages), while 

the others have a loss in fitness (green lineages); although this trend of fitness continues on, it 

starts to correct itself as observed from “F2” to “F3”, where most of the lineages that have better 

fitness (red) continue to dominate the tumor representation, but a portion of those lineages starts 

to lose competitiveness. From “F3” to “F4”, we can see that the tumor is “stabilizing”, where the 

clonal change in fitness is less drastic from before and that the lineages that are being 

outcompeted (green lineages) start to maintain steadily at a low level of the tumor representation. 

On the other hand, the lineages that are dominating the tumor (red lineages) are also stabilizing, 

where majority of the lineages are not changing much in tumor relative abundanceFigure 167.  

This experimental observation suggests that tumor acts like an “organism” where internal 

clonal dynamics adapt to environmental conditions, and through internal clonal competition, the 

overall clonal fitness may eventually reach a steady state. In addition, the data suggests that 

functional clonal lineage is a significant factor in determining and shaping the tumor under 

differential external pressure. Since we are passaging cells in a way that keeps as much of the 

heterogeneity as possible between passages (0.5 fraction of previous passage) and allowing the 

tumor to expand under a constant environment for a long time with minimum perturbation of the 

system, we could gain insights to the latency a tumor requires to establish an equilibrium state. 
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For example, in this case, the tumor cell line requires at least 20 doubling events to establish inter 

clonal equilibrium.  

 

Bi-modal state of proliferation 

Another interesting observation from this data set is that we do not see a population of 

lineages that is growing well in both conditions. A subset of lineages either grow better in the in 

vivo condition or grow better in the in vitro condition. This suggests there might be a factor that is 

regulating or determining the proliferation signals. This is purely a speculation at this state, but 

interesting to think about nonetheless.   

 

Symmetric vs. asymmetric division could be a mechanism for maintaining clonal lineage 

rankings under differential environmental pressure 

Based on the observation, there are differential preference of clonal lineages under “in 

vitro” vs. “in vivo” environment.  If differential preference of environments is true and is reflected 

through relative lineage abundance, it is logical to think that there should be a population of 

lineages that is not growing well under both experimental conditions (since both in vitro and in 

vivo experimental setting are not the same as the original human tumor environment) – and this 

is exactly what we see. In the figure below, the highlighted population that is maintained at 0.01% 

of the tumor mass in both “F4” and “in vivo 2D stabilizes” tumor is not highly abundant, nor lowly 

represented in tumor (Figure 168).  These lineages that are not thriving in either the “in vivo” and 

“in vitro” experimental conditions must actively go through cell division in order to maintained 

tumor representation around 0.01% of the tumor mass. If these lineages are not actively dividing, 

their tumor representation would drop and eventually be outcompeted. Therefore, if these “0.01% 

lineages” are actively proliferating, the mechanism for these clonal lineages to maintain their 
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relative tumor representation is likely related to cell proliferation rate. And hence, it is possible 

that the mechanism of maintaining clonal relative ranking could be controlled by lineage intrinsic 

division rate under certain environments.  

 

                                         

Figure 168. Longitudinal tracking of clonal abundance divergence in in vivo serial transplanted 
tumor. Fixing the X axis as the “2D stabilized” tumor, and tracing individual LTSR clone’s relative 
abundance throughout the in vivo serial transplantation F1 to F4. The data highlights a 
subpopulation of LTSR lineages maintain at 0.01% relative tumor representation over time.  

 

We have previously demonstrated that there are indeed hierarchy amongst tumor cells, 

where only a fraction of the barcoded cells could give rise to LTSR lineages. Another data 

supporting tumor hierarchy came from isolating single cells via FACS sorter and culturing the 

single cells to generate isogenic clones (see “single cell colony formation” section). In that 

experiment, we observed only certain single cells can regenerate the full culture, while other 

single cells either fail to proliferate or can only sustain growth for a short period of time and 

eventually exhaust. In addition, from this single cell proliferation potential experiments, we learnt 
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that these “stem like” cells that can regenerate the entire culture is independent of cell cycle state 

and that different patient tumors consists of different percentages of these “stem like” cells (i.e. 

10% vs. 5% from two PDAC tumors).   

 

                                

Figure 169. Bar graph comparing the percentages of cells with ability to re-establish culture 
between two patient tumor cell lines. For the two patient tumor cell lines (PATC53 and PATC124), 
the bar graph shows the % of cells after single cell FACs that could establish a new isogenic line, 
as well as % of cells that eventually exhaust or never divide. Albeit both cell lines follow a similar 
trend where most cells will exhaust, the percentage of cells with capability to re-establish colonies 
are different (PATC53 ~10%, PATC124~5%). 

 

To answer the question whether this tumor cell hierarchy also exist within an isogenic 

clonal lineage, we performed another round of single cell sorting on each isogenic cultures and 

measured their single cell proliferation potential. We found that cell potentiation hierarchy also 

exist within a single clonal lineage, where only a portion of single cells would have the ability to 

regenerate the culture. Interestingly, similar to the finding that each tumor consists of different 

fractions of “cancer stem like cells”, we observed the percentages of “cancer stem like cells” also 

vary from lineage to lineage. Here, the “stem like” cells are discussed in the context of their 

functional ability to establish culture from a single cell. These data demonstrate that there are 

indeed “stem-like” cells in the tumor, and their % varies from lineage to lineage. 



228 
 

 

 

 

Figure 170. Clonal dependent intra-clonal cell proliferation and growth dynamics. Each panel 
represents a specific clone single cell sorted in 96-well tissue culture plate and observing 
individual cell’s proliferation capacity. Each line represents a category of abundance (culture 
confluence) observed. The numbers indicating the count of cells displaying such abundance 
(culture confluence). X-axis indicates time of culturing. Y-axis indicates confluence of cell culture 
wells.  
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Figure 171. Intra-clonal cells’ capability to re-establish a culture is heterogeneous. Isogenic 
clone’s cell % that could re-establish an entire culture is represented in bar-graph format (top) 
and table with detailed % data (bottom). This suggests the “self-renewal” (ability to re-establish 
culture) hierarchy exists and the ratio of “stem” cells are actively re-equilibrated from clones 
established from a single cell.  
 
 
 

 It has been observed that a percentage of cells in a given tumor have the capability to 

remain quiescent for long periods of time. These dormant cells in tumors are potentially a cause 

for relapse after treatment with drugs that target cell division.  These “stem-like” cells in cancer 

are more quiescent and proliferate at a less frequency and perform asymmetric division to give 

rise of its progenies. Asymmetric division is where the cell would only generate one daughter cell 

instead of generating two daughter cells. Furthermore, under certain conditions, the cells would 

alter between the states of performing symmetric and asymmetric division 199.  
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To verify that tumor cells in the experiment (PATC124) does indeed have cells dividing 

asymmetrically, we performed a cell division tracking experiment.  PATC124 cells were dyed with 

a cell membrane dye PKH26 (red) prior to 3D culturing. Each subsequent cell division would dilute 

the membrane dye; therefore, allowing us to track differential cell division frequencies amongst 

cells through cell to cell dye intensity difference. By plating single cells onto the 3D culture plate 

over time, we observed that about 10% of the cells give rise to spheroids while the majority of the 

single cells fail to proliferate. Amongst those spheroids, most of them have no red dye remaining, 

meaning that all the cells are actively dividing. However, a fraction of the spheroids retained a 

strong PKH26 red dye signal (Figure 172). The data demonstrated that within the experimental 

cell line, there are differential degree of symmetric vs. asymmetric division. Thus, clonal lineage 

abundance could be potentially regulated through asymmetric vs. symmetric cell division under 

an environmental dependent manner, offering a potential explanation on how relative clonal 

rankings are maintained in tumor.     

 

                       

Figure 172. Asymmetric division measured by PKH-26. PATC124 cultured in 3D with PKH dye 
(red) tracking differential cell division rate over time. Intensity of red PKH-26 dye correlates 
inversely with cell division rate. Red=PKH-26, blue = Hoechst.  
 
 



231 
 

 

Modeling of intrinsic and extrinsic factors leading to clustering of clonal population in 

tumor  

To model the impact of asymmetric vs. symmetric division on clonal representation over 

time, we performed a simple simulation. Assume that there are four clonal lineages, clone “A”, 

“B”, “C” and “D”, where clone “A” and “B” undergo symmetric division (giving rise to two 

progenitors) while the clone “C” and “D” undergo asymmetric division (giving rise to one progenitor 

cell). As these lineages divide over time, we can see from Figure 173 below that clones “A” and 

“B” grow exponentially, while clones “C” and “D” hover at a lower representation. In addition, 

irrespective of whether the clones undergo symmetric or asymmetric division, they could maintain 

their relative clonal tumor representation ranking as shown in the figure below, where clone “A” > 

“B” and “C” > “D” is maintained throughout cell divisions.   

 

                            

Figure 173. Simulation of linear vs. exponential amplification cell abundance. X-axis represents 
number of cell division and Y-axis represents the number of cells accumulated. Simulation 
demonstrates regardless of cells that go through symmetric or asymmetric division, relative clonal 
ranking can still be maintained (or clone-to-clone ratio).   
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Obviously, the actual cell proliferation scenario is much more complex than the 

assumptions made in the above simulation. The above simulation only assumed the extreme 

cases where differentiated cells will not divide and only progenitor cells will.  In cancer, the line 

between differentiated and undifferentiated cells and their ability to proliferate long term is more 

ambiguous, which will be discussed later in the discussion section. For modeling, we would lump 

all the above factors and call them “cell intrinsic factors”.  

With the help of Nick Yen, to model lineage intrinsic and environmental impact on clonal 

lineage populations, we assume that the cell growth is based on three factors: 1. Intrinsic factor 

“I” – a normal distribution of proliferation potential (discussed above); 2. Extrinsic factor “E” – 

where environment stimulation causes increase or decrease in fitness of certain clonal lineages 

(clones either favor environment A or environment B in the simulation); 3. Random factor “R” – 

factors that can contribute to difference that are not considered. If the number of cells is 

represented by “N” and cell division represented by “n”, the following equation could be used to 

describe the cell abundance vs. the above three factors: 

                                                             Nn+1 = Nn × 2 I×E + R 

If we simulate the cell division guided by the above equation over 50 divisions (P1 to P50), 

where if a clonal lineage favors an environment, the value of “E” would be larger and vice versa. 

From Figure 174 below, we can see that the lineage population separates over the span of P2 to 

P50 gradually over time. The simulation model we observed here resembles the empirical 

observation from the barcode lineage tracing experiment, where the environmental factor is either 

“in vivo” or “in vitro”. This simulation explains how lineage intrinsic bias towards a specific 

environment could cause the separation of lineages abundance into distinct populations.  
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Figure 174. Modeling of lineage abundance under environmental dependent proliferation rate 
difference.  

 

Clonal abundance in tumor under different environment is a dynamic process  

From the simulation above, we can see that if the clones have environmental preferences, 

those extrinsic factors could influence intrinsic clonal proliferation rate, and finally, is reflected 

through their relative tumor representation over time.  

To observe if this clonal shift in abundance is indeed a dynamic process, we performed 

another lineage tracing experiment. Using the same barcode strategy on the same tumor cell line 

(PATC124), we first stabilized the barcoded cells in 2D culture “In vitro” condition for 30 passages. 

Afterwards, we then injected those cells in vivo into NSG mouse and performed in vivo serial 

transplantation for three passages (F1, F2 and F3) that span across 24 weeks. After the tumors 

were collected, the barcode information was extracted via PCR and NGS by methods described 

in the previous chapters (Figure 175).  

By comparing the common barcodes from “F3” and in vitro passage “P30”, as well as a 

day 31 “in vivo tumor” created from in vitro passage 30, we can see that the clonal lineages start 

to separate out into distinct populations over time. This demonstrated that although the clones 
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are “stabilized” under one environment (In vitro from P1 to P30), once the environment shifts (from 

in vitro to in vivo), over time, these lineages would establish a new equilibrium. Moreover, the 

relative clonal ranking is also closely preserved.  

 

            

Figure 175. In vitro stabilized lineages shift in clonal equilibrium through serial in vivo 
transplantation. Switching external condition of the “in vitro stabilized” cell culture that has 
achieved clonal equilibrium by in vivo serial transplantation (left); observation of gradual clonal 
fitness separation post environmental switch from in vitro to in vivo over 24 weeks.  

 

Chapter Summary and Discussion 

To effectively trace clonal evolution longitudinally in an unbiased manner and study the 

effects of external culturing conditions, we took tumor cell lines derived from patient PDXs and 

barcoded each cell with a unique barcode. Then, we used the same set of barcoded tumor cells 

(shortly after barcoding) and subjected them into two different environments – in vitro passaging 

and in vivo serial transplantation. Throughout the passages under both conditions, the complexity 

of lineages dropped from ~2M lineages down to a few thousands over time. After a long period of 

time in culture (32 weeks in vivo, 8 weeks in vitro), which allows the cell population to naturally 

reach an equilibrium state, we found a common set of barcodes (lineages) maintained in both 
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environments. By functional definition, this set of common barcodes (~1,200 lineages) has long-

term self-renewal properties, which contribute to the maintainence of the in vivo tumor as well as 

in vitro cell culture over a long period of time. Moreover, in terms of tumor or total cell culture 

abundance representation, this set of the common lineages makes up most of the population in 

both experimental conditions (70% - 97%). The data strongly suggest that there is a common pool 

of long-term self-renewal (LTSR) lineages that maintain the tumor’s growth overtime, regardless 

of the environmental difference defined by the context of the experimental settings.        

Interestingly, these common LTSR lineages in the in vivo environment have an inverse 

relationship in terms of abundance representation to those in the in vitro environments at the 

equilibrium state. For example, the part of the LTSR lineages that had lower representation in in 

vivo stabilized tumors had higher representation in the in vitro stabilized tumor (in vitro stabilized 

and transplanted in NSG mouse) and vice versa. This observation is not entirely surprising, as 

the influence of environmental pressure on the selection of sub-clonal lineages has also been 

observed under clinical setting under treatment 29. However, further analysis of the correlation of 

the stabilized in vitro vs. in vivo abundance of these common LTSR lineages under equilibrium 

state showed that the clones were highly correlated in terms of relative clonal ranking (>0.8), 

despite whether or not they were the dominant or underrepresented populations (Figure 163). To 

summarize the observation in more simplistic terms:  

1. There is a common set of LTSR lineages maintaining both the in vitro culture 

and the long-term in vivo tumor.  

2. This common set of LTSR lineages can be separated into two main 

populations: one population dominants the sample (tumor/culture) and the other 

remains at low abundance.  
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3. At the equilibrium state, the dominant clonal population in one environment is 

the low-represented clonal population in the other environment, thus displaying 

an inversely correlated relationship.  

4. When comparing an individual clone to the clone’s counterpart within the 

sample population (i.e. lineages that are highly abundant in one environment and 

lowly represented in the other), we find that the correlation remains high amongst 

clone to clone abundances (or clone-to-clone relative ratio).  

The above observations may suggest the possibility that, regardless of the overall fitness, 

there may be an intrinsic mechanism that maintains the relative abundance between individual 

clonal lineages (or clone to clone ratio). In other words, regardless of whether the environment is 

favored by a specific set of clonal lineages within a tumor, there may exist a mechanism that 

preserves the relative clone-to-clone ratio.  

To understand whether or not this observation of “clone-to-clone ratio preservation” was 

gradually achieved over time, we followed these common lineages endowed with long-term self-

renewal properties longitudinally (from day 1 of the experiment). To this end, we compared 

individual lineage abundance from the in vivo tumors to the in vitro stabilized tumors (in vitro 

passage 26, injected in NSG mouse) at different time points (month 2, 4, 6, and 8). We found that 

over time, due to environmental differences, these lineages started to separate into two major 

populations based on relative tumor fitness (one favored the in vitro environment, while the other 

favored the in vivo environment). These two populations, in nature, were either composed of 

lineages that gained fitness and gradually dominated the tumor, or lineages that lost fitness and 

decreased in tumor representation in either environment. Through a gradual shift, these two 

populations’ dynamics started to become stable and eventually reached equilibrium (Figure 164). 

This observation of environmental differences’ influencing the gradual separation of two main 

LTSR populations over time provided confidence in what we observed (“abundance independent 
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preservation of clone-to-clone relative ratio”), and was indeed reflective of biological 

phenomenon.  

If the “abundance independent preservation of clone-to-clone relative ratio” is indeed a 

natural phenomenon and that the cumulative properties of individual lineages as a sum define the 

tumor’s functional characteristics, then it is possible that tumor characteristics can be actively 

maintained through the preservation of each sub-clone’s relative contribution (in other words, their 

relative ratio) even at a low level. As a metaphor, every human is born with a unique set of 

fingerprints, and that unique set of fingerprints remains throughout his or her life. Therefore, we 

could view this “abundance independent preservation of clone-to-clone relative ratio” as a 

potential “fingerprint” of a tumor – or, “tumor clonal fingerprint (TCFP)”. The discovery of TCFP 

revealed by this set of data may potentially be used to profile and define a tumor’s functional 

characteristics. A simplified illustration of TCFP is in the figure below.  

                                   

Figure 176. Model of “Tumor Clonal Fingerprint”. Relative clonal rankings retention under different 
environmental-dependent fitness changes. Assumes four different clones in a tumor “a”, “b”, “c”, 
and “d” in an abundance order of a< b < c < d. Under environment A, all clones have better fitness, 
and all proliferate while maintaining relative clonal ranks. In comparison, in environment B, all 
clones do not thrive and proliferate at lower rates but the relative clonal ranks are still retained.  
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To explore some of the possible mechanisms maintaining TCFP, we first investigated the 

intrinsic proliferation properties of a single lineage. Using a single cell proliferation assay, we 

determined that there were indeed a “stem-like” hierarchy in terms of the ability to re-establish the 

entire culture from a single cell (Figure 170, 171). The fraction of the cells that could re-establish 

an entire culture was different amongst lineages (ranging from 7.7% to 3.3%), and differed from 

tumor to tumor. For example, patient PDX derived cell line PATC124 had “stem-like” cells of 

~5.6% while PATC53 had >10% (Figure 169). To further solidify a potential explanation as to how 

LTSR lineages were persistently maintained even at low abundance while maintaining TCFP, we 

surveyed the cell for evidence of quiescence and populations of cells with different division rates. 

Using 3D-cell culture combined with a cell division tracking dye, we identified that there were 

indeed cells that were more quiescent than the others and divided at a lower frequency (Figure 

172). All these observations inferred the possibility that lineages in the long-term self-renewal 

compartment possessed differential division rates and used potential asymmetric vs. symmetric 

division as a mechanism (data using functional marker numb is not shown). Such differential 

division rates combined with a mechanism of asymmetric vs. symmetric division may be a part of 

the intrinsic factors that contribute to the regulation and maintenance of TCFP in tumors 189-198.  

 

                        

Figure 177. Model of asymmetric and symmetric divisions. 
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Figure 178. Model of alternating asymmetric and symmetric divisions within a lineage. 

 

Obviously, the intrinsic factors and the key mechanisms that govern the maintenance of 

the “tumor clonal fingerprint” requires a lot more experimental proof. Asymmetric and symmetric 

division contributing to the TCFP hypothesis represent only one of the many possible mechanisms 

contributing to this biological phenomenon. Although we do not currently know the exact 

mechanisms, the possible concept of TCFP is nonetheless fascinating. The idea of extrinsic 

factors’ influencing the ability of tumor cells to proliferate is not a new concept, as it has been 

described under the context of microenvironment niches for metastasis, mechanical stress, as 

well as DNA damage that alters symmetric vs. asymmetric division rates 199-202. For instance, 

different culturing media conditions can result in different number of colonies forming, and/or we 

different tumor initiation rates may arise under different genetic mouse backgrounds 203-205.  It is 

clear that the environment influences clonal fitness (division rate), as shown here by the shifts of 

the two populations of lineages in abundance over time. Working with Nick Yen and combining 

this with the potential symmetric vs. asymmetric division rates (exponential vs. linear), we came 

up with a simple equation to describe how the environmental influences the cell division rate –  
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                                                          Nn+1 = Nn × 2 I×E + R 

Where “N” represents number of cells, “I” represents cell intrinsic division rate decision, “E” 

represents external factors influencing proliferation rate, and “R” represents random factors 

cannot be taken into account.  

This concept of a “tumor clonal fingerprint”, where long-term self-renewal lineages reach 

different equilibriums under different environments while retaining relative clonal ranking, can help 

us how define cancer and understand the disease more accurately. Since the experimental 

observation here is obtained through an unbiased measurement of clonal lineages via barcodes, 

we can appreciate that tumors can be structurally defined by clonal lineages and their relative 

abundances. Under certain conditions, there are lineages that will expand exponentially and take 

over most of the tumor mass. While there are lineages that do not favor the current environment 

and decrease in relative tumor abundance, they are still actively dividing at a much slower rate 

while maintaining a very similar relative lineage ranking (i.e. expand in a linear fashion). In other 

words, although these lineages are low in abundance, they still retain the tumor characteristics 

defined by the composition and relative ratio of clonal lineages - the tumor clonal fingerprint. Since 

the tumor clonal fingerprint is preserved when shifting underrepresented lineages to a favorable 

environment, these lineages are expected to increase in proliferation potential and increase tumor 

representation. Furthermore, as demonstrated by re-transplanting in vitro stabilized cell 

populations in vivo and continuous serial transplantation for 6 months (Figure 175), the level of 

clonal fitness vs. environmental dependent equilibrium state is a dynamic process.  

 



241 
 

 

Figure 179. Model of clonal lineage fitness dynamics under environmental shift.  

 

From a clinical point of view, the concept of TCFP hints that the complexity and the 

character of a tumor may be preserved at relatively lower abundances. If we could actively monitor 

tumors in the context of a clone-to-clone ratio, this may aide us in surveying treatment 

effectiveness. For example, TCFP may help in monitoring the treatment effectiveness of 

chemotherapy. While chemotherapy can shrink tumor mass, it is poor at perturbing intratumoral 

clonal complexity, and therefore, may have minimum impact of eliminating resistant clonal 

lineages that are responsible for relapse 109. Finding suitable treatment regimens that can perturb 

the fitness of the “balanced ratio of collective lineages” in a tumor may be crucial in systematically 

breaking down the disease and preventing relapse. I believe this new concept of a “tumor 

fingerprint” and the empirical method to identify TCFP through CRT can aid in future research in 

targeted therapy and personalized treatment strategies.  
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Closing Summary and Future Directions 

  The tumor is a dynamic ecosystem comprised of multiple functionally diverse sub-

lineages that co-exist and evolve. Currently, clonal progression models based on genomic 

analysis are challenged by the practical shortcomings of sample representation and detection 

sensitivity. Furthermore, besides end point –omics profiling, experimental models to functionally 

test observed phenotypes as well as to generate and validate new hypothesis are also limited. 

To bridge this gap and develop the first longitudinal model of cancer evolution, we have 

established a unique clonal tracing platform by exploiting the hierarchical nature of human 

tumors – the Clonal Replica Tumor (CRT) platform. The CRT platform can generate a large 

experimental cohort of animals bearing clonally identical tumors, which provides a high degree 

of biological reproducibility that enables the precise temporal tracking of functionally diverse 

sub-lineages in parallel in different animals. Most importantly, along with a high throughput 

clonal isolation technique, this approach allows us to isolate clones of interest based on their 

specific behavior from the in vivo experiments for further functional characterization and 

validation.  

In chapter one, we demonstrated the robustness and the tumor maintaining properties of CRT 

lineages. Using CRTs to study chemo-resistance in the context of differential clonal responses, 

we uncovered a wide array of pre-existing functional diverse clones that displayed a variety of 

sensitivity to multiple drugs. These data allowed us to appreciate the wide spectrum of harbored 

tumor chemo-resistance and indicated that experiments designed to assess treatment efficacy 

through measuring tumor size alone is inadequate. By characterizing isolated treatment-naïve 

clones with differential sensitivities to chemotherapy, we identified a novel transcriptomic 

signature that could detect pre-existing chemo-resistant populations of cells in treatment-naïve 

tumors by delineating relevant molecular pathways, such as DNA damage repair and OXPHOS. 
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This signature represents a new biomarker of response as it enables the prognostic stratification 

of patients with regards to their disease-free status and overall survival.  

In chapter two, we elevated the CRT concept and added a temporal element to create a 

novel longitudinal clonal tracking model. Along with robust statistical simulations and under an 

orthotopic transplantation setting, we demonstrated the capability to longitudinally track lineage 

dynamics during tumor progression and dissemination. This longitudinal clonal tracking model 

had the unique aspect of overcoming the practical limitation of serial sampling, and thus allowed 

us, for the first time, to obtain a comprehensive picture of natural tumor expansion dynamics 

with good representation and unprecedented sensitivity. Through empirically obtained data, we 

observed a plethora of unique clonal dynamics that were previously undescribed. In particular, 

we found an unexpectedly high degree of clonal abundance fluctuations during unperturbed 

tumor growth, including the phenomenon of alternating clonal dominance (ACD) that occurred 

naturally during tumor expansion. In addition, due to the high precision and sensitivity of this 

approach, we were able to probe into the dynamics of lowly abundant lineages, which have 

been usually neglected due to technical detection limitations. We unexpectedly uncovered a rich 

underworld of underrepresented clones that were constantly and persistently competing 

throughout the entire lifespan of the tumor for the chance to rise. These data captured and 

demonstrated the full extent of clone-to-clone competition, interaction, and the ever-evolving 

nature of tumors. At the same time, we also identified several interesting clonal dissemination 

patterns, including monoclonal dominance and the oligo clonal nature of metastatic lesions, as 

well as quantitative profiling of the entire longitudinal dissemination process. Furthermore, by 

tracking clonal colonization and expansion patterns in secondary organs, such as liver and lung, 

we found that metastatic growth, represented mostly by a long-term dormancy followed by 

explosive expansion, was more simplistic compared to the dynamics in the primary tumor. 

Moreover, by demonstrating that only cells endowed with long term self-renewal can spread and 
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sustain growth in secondary sites, we definitively demonstrated the intrinsic relationships 

between stemness, clonal fitness, and metastasization. 

In chapter three, we explored the effects of different environments in shaping tumor 

clonality. Through serial passaging of lineages under different environment (in vitro and in vivo), 

we gained a deeper understanding of how environmental pressures could alter the abundance 

of tumor-maintaining lineages. Through this approach, we uncovered that tumors were always 

maintained by a defined pool of cells with long-term self-renewal irrespective of the 

environments that they are exposed to. Although the relative contribution of a single stem cell to 

the tumor mass could change in different growth conditions, we demonstrated that distinct 

environments exerted major effects on clonal relative abundance rather than on the overall 

clonal complexity of tumors. In other words, lineages that were lowly represented in one 

environment could gain fitness and expand when exposed to a new environment and vice 

versa. Interestingly, despite low representation, lineages that lose fitness with the change of the 

environment still constantly divide and persist over time as well as maintain an inter-clonal 

ranking very similar to that they had when they were dominant. This observation once again 

highlights the functional significance of underrepresented clones and their potential to contribute 

to disease progression or relapse at any time upon extrinsic perturbations, such as therapeutics 

or changes in the tumor microenvironment. This previously undescribed active preservation the 

clone-to-clone relative ratio in a tumor – or “tumor fingerprint” as we have named it — can aid 

in profiling tumor characteristics and be used to explore better treatment strategies in the 

context of functional sub-clones.  

 Combining what we have learned from all three chapters, we are able to have a grasp 

just how “plastic” and “dynamic” tumors really are, and can perhaps paint a picture of the 

challenges ahead for therapeutic stratagems. At the same time, these data also present an 

opportunity to realize the importance of conducting cancer research in the context of clonal 
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dynamics and interactions as well as with the understanding that tumors are complex 

ecosystems. Indeed, we plan to leverage the longitudinal CRT model’s strengths and apply it to 

new studies on different tumor models. One of the many ongoing studies involves longitudinal 

clonal tracing under the context of combination therapy. Instead of treating the tumor with one 

drug at a time, we aim to monitor the clonal response and their dynamics during and after 

treatment as well as upon relapse under the context of multiple pharmacological perturbations. 

What we observe could directly contribute to the understanding of differential clonal interactions 

and competition, expansion dynamics during combination treatments, as well as specific clonal 

vulnerability or resistance to combinatory drugs. Furthermore, using our high throughput clonal 

isolation platform, we can conduct isolation, deep molecular characterization, and subsequent 

reconstitution of tumors with isogenic clones to perform further functional drug and genetic 

screening to verify and explore lineage specific vulnerabilities. This will enable the design of 

“smart” combinations to overcome or delay resistance.  

Furthermore, the CRT platform is not restricted to the study of lineage dynamic tracing. 

Due to the robustness and biological reproducibility aspect of the model, we can apply it to the 

study of clonal interactions in a spatial context with high precision. As briefly demonstrated in 

chapter two, CRT models combined with histology and clonal geographical distribution analysis 

could allow us to study clonal-to-clonal spatial interactions and as well as clonal-stromal 

functional interactions. Questions such as clonal-specific associated stromal niches or the 

contribution of immune infiltration to treatment resistance can be answered by designing the 

proper experiments.  

In addition, building upon our observations from the longitudinal metastasis study, the 

seemly synchronized events of the sudden changes in clonality (alternating clonal dominance) 

in the primary tumor and the explosive growth of clones in the metastatic sites are worth further 

perusing. The idea that metastatic tumor outgrowth can be induced by naturally occurring intra-
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tumoral changes at the primary site during expansion is quite fascinating. To identify the factors 

changing in the primary tumor in concordance with expansion, we can serially sample entire 

tumors from parallel groups of animals in the same CRT cohort over synchronized time points. 

One group will be used to identify longitudinal clonal dynamics, while the other group will be 

processed for molecular profiling for both primary tumor and metastasis lesions (i.e. 

transcriptomic sequencing). Matching the transcriptomic changes with clonal dynamics may 

provide further hypotheses as to what is happening in the primary tumor at each time point of 

the longitudinal study. Furthermore, through histological analysis and immunostaining for 

functional molecular markers, we can validate and survey microenvironment changes such as 

perfusion, hypoxia, and nutrient deprivation during longitudinal tumor expansion at different time 

points. Moreover, performing multi-regional sectioning of tumors, coupled with barcode analysis 

as well as further cross-referencing with functional and histological data, can inform on clonal 

specific responses that relate to environmental changes in a high-resolution spatial context. The 

clinical implementation will be to identify the factors in the primary tumor that influence 

metastatic outgrowth in order to develop actionable prevention strategies. 

In this thesis, I primarily focused our discussion on the technical aspects of establishing 

and demonstrating the capability of a novel longitudinal CRT platform. This platform can be a 

useful tool for studying cancer evolution in the context of tumor functional heterogeneity, as well 

as provide the unique opportunity to further validate and characterize isolated clonal lineages. 

Now that the CRT platform has been established, we can expand and apply it to study different 

cancers. For example, in a preliminary experiment, we barcoded a melanoma derived primary 

tumor cell line and found the clonal behavior to be vastly different than PDAC. This particular 

melanoma cell line was very aggressive and had a relatively higher fraction of long-term self-

renewal cells, as well as displayed different inter-clonal dynamics during the stabilization and 
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serial passaging processes. Observations like this were not expected and could help us to form 

specific testable hypotheses under the context of different cancer types.  

All in all, we are just barely beginning to unveil the extent of the intricate tumor inter-

clonal behaviors and interactions. Now that we have a robust CRT platform that allows us to 

systematically and empirically measure clonal dynamics with high resolution, we can use it to 

discover new biological processes and generate new exciting hypothesis. After all, as scientists, 

we are always learning from our discoveries.  
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Method detail 

Generation of Clonal Replica Tumors (CRTs) 

Barcoding and generation of Clonal Replica Tumors. 

CellTracker 50M Lentiviral Double-Barcoded Library was purchased from Cellecta. After 

expansion isolated tumor cells were infected over night at low MOI (≤ 0.25) in presence of 

Polybrene (8μg/ml) in 245mm square plates (Corning) at 70% confluence. After 48 hours, cells 

were detached, and infection efficiency was evaluated by flow-cytometry (percentage of RFP) 

and cells plated in Puromycin at an optimal concentration able to achieve cell killing of control 

cells. When confluent, barcoded cells were trypsinized, washed and plated in two 245mm square 

plates, named as Passage 1. Medium was periodically changed, and cells were left to grow until 

confluency. When confluent, P1 plates were trypsinized, washed and pooled before being split in 

two equal parts: one stored for sequencing, the other plated in two 245mm square plates as 

Passage 2. When confluent, Passage 2 cells were detached, washed, pooled and split in two 

equal parts: one cryopreserved in BamBanker (Wako Chemicals), the other plated in two 245mm 

square plates as Passage 3. The procedure was repeated over and over again snap-freezing 

‘odd passages’ for sequencing, cryopreserving ‘even passages’ for culture re-propagation and 

isolation of clones. 

 

Quantitative Scale 

To calibrate, normalize and quantify sequencing results a five-log cell-spike in 

(‘Conversion Scale’) was added to each sample before DNA extraction. Basically, 293T cells were 

independently infected at very low MOI (≤ 0.25) with lentiviral particles encoding five custom 

double-barcodes not present in the tracking library but sharing the same plasmid backbone 

(pRSI16). After evaluation of infection by flow-cytometry (percentage of RFP+), infected cells 
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were selected in Puromycin and expanded. Limiting dilutions of each unique barcoded cells were 

prepared and equal volumes of diluted cells were mixed together. Pooled unique barcoded cells 

were then aliquoted in a multitude of 1.5ml vials, all containing the same number of barcoded 

cells represented as follow: BC.3063.3418 5x100, BC.4451.4842 5x101, BC.4858.5013 5x102, 

BC.5022.5430 5x103, BC.5993.6943 5x104. One vial of scale was systematically added to each 

sample before DNA extraction. After sequencing, reads generated by unique barcodes of the 

scale can be used to normalize reads generated by library barcodes, enabling conversion of reads 

to more interpretable numbers of cells. 

  

 

Figure 180. Sequence of the NGS read-to-cell conversion scale.  

 

In vivo Transplantation and Treatments 

All studies have been performed in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice 

purchased from Jackson Laboratory and under experimental protocols approved by the 

UTMDACC Institutional Animal Care and Use Committee. For CRTs cohort generation up to 50 

mice were injected subcutaneously with cells derived from stabilized cultures, 5x106 cells/mouse 

suspended in 1:1 DMEM/Matrigel (BD). For drug challenging CRTs mice bearing overt tumors 

were randomized and treated with Gemcitabine (Syd Labs) 100mg/kg IP every three days, 

AZD6244 (AbMole BioScience) 75mg/kg OG or BEZ235 (AbMole BioScience) 40mg/kg OG daily, 

for three weeks (Pettazzoni et al., 2015). When control and relapsed tumors reached 0.8-1 cm in 

size, animals were euthanized and whole tumors collected, weighed and snap-frozen in liquid 

Name Cells Number Double Barcode

P1 5 BC.3063.3418 CATGCACACAGTACACTGTTCGGTGTTGTGTGCAACTGAC

P2 50 BC.4451.4842 CAACGTTGTGACTGTGACTTCGGTGTGTCAGTACTGTGAC

P3 500 BC.4858.5013 GTGTCACAGTACTGACTGTTCGTGTGTGGTCAACTGTGAC

P4 5000 BC.5022.5430 GTCATGGTCAACTGTGACTTCGGTTGCAACTGTGTGACTG

P5 50000 BC.5993.6943 TGGTGTTGCATGTGACTGTTCGCACATGACCAGTTGTGAC

Sequence
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nitrogen. Tumors were assessed weekly and volume calculated using the following formula, V = 

L2 x W/2 (Length; Width). For serial transplantation, Passage 2 cells (50% of cells from P2 pooled 

plates) were injected subcutaneously in 4 NSG mice. When tumors reached 1 cm in size, mice 

were sacrificed, tumors collected, pooled and digested to single cells. One half of the recovered 

cells was reinjected in 4 animals, one half used for sequencing. Tumors were passaged for four 

times in vivo. 

 

CRT Sample Processing and Analysis 

Genomic DNA extraction and PCR for NGS library production 

Genomic DNA extraction and PCR for NGS library production was performed as 

previously described (Carugo et al., 2016). Briefly, frozen tumors were minced through 

mechanical procedure with sterile scalpels and suspended in Buffer P1 (QIAGEN, 1 mL 

Buffer/100 mg tumor) supplemented with 100 μg/mL RNase A (Promega). The dissociation step 

was performed in disposable gentleMACS M tubes (Miltenyi Biotech) with the gentleMACS 

homogenizer (Miltenyi Biotec). Cell pellets from in vitro samples were suspended in 1 mL Buffer 

P1/RNAse A. Before samples were transferred in a 15 mL polypropylene tube (Falcon) and lysed 

adding 1/20 volume of 10% SDS (Promega) and 1/20 volume of Proteinase K (QIAGEN), the 

scale was added. After mixing, the cell lysates were incubated at RT for 5 minutes and the tumors 

at 56°C for 20 minutes. Genomic DNA was sheared by passing the lysate 10-15 times through a 

22-gauge syringe needle. Then, a first genomic DNA extraction step was executed adding 1 

volume of Phenol:Chloroform:Isoamyl Alcohol (25:24:1 pH8.0, Sigma Aldrich). After centrifugation 

(12000 rpm, 12 minutes), the upper phase was transferred to a new tube and a second extraction 

step with Chloroform:Isoamyl Alcohol (24:1, Sigma Aldrich) was performed. Again, the upper 

phase was transferred to a new tube and added with 0.1 volumes of 3M NaOAc (Sigma Aldrich) 

and 0.8 volumes of Isopropanol (Fisher Scientific) to precipitate genomic DNA. Centrifugation of 
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tumor samples was performed at 14000 rpm for 20 minutes, the samples from in vitro cells were 

stored over-night at -20°C before centrifugation. DNA pellet was washed once in 70% Ethanol 

(Fisher Scientific) and centrifuged again for 5 minutes at 14000 rpm. The DNA pellet was finally 

air-dried and dissolved over-night in UltraPure distilled water (Thermo Fisher). The final DNA 

concentration was assessed by NanoDrop 2000 (Thermo Scientific) quantification. 

For NGS libraries generation, the barcodes were amplified starting from the total amount of 

genomic DNA in 2 rounds of PCR using the Titanium Taq DNA polymerase (Clontech-Takara) 

and pooling together the total material from the first PCR before proceeding with the second 

round. The first PCR reactions were performed for 16 cycles with 13K_R2 (5’- 

AGTAGCGTGAAGAGCAGAGAA-3’) and FHTS3 (5’-TCGGATTCAAGCAAAAGACGGCATA-3’). 

The second PCR reactions were performed for 12 cycles with P5_NR2 (5-

AATGATACGGCGACCACCGAGACGAGCACCGACAACAACGCAGA-3’) and Gx1_Bp (5’-

TCAAGCAGAAGACGGCATACGAAGACA-3’). Primers for the second PCR reactions were 

optimized in order to introduce the required adapters for Illumina NGS technology. PCR 

amplification products were analyzed by agarose gel electrophoresis (2.5%, Lonza) for the 

expected 279bp size. Amplified PCR products from 2 replicates of the second PCR reactions 

were pooled together and extracted from agarose gel with the QIAquick gel purification kit 

(QIAGEN). The amount of purified PCR product was quantified using the High Sensitivity DNA 

Assay (Agilent Technologies) for the Agilent 2100 Bioanalyzer. Barcode representation was 

measured by Next Generation Sequencing on an Illumina HiSeq2000 with 13K_Seq (5’-

AGAGGTTCAGAGTTCTACAGTCCGAA-3’) as sequencing primer. PCR biases in barcode 

detection and quantification were excluded comparing NGS sequencing runs of high-complex 

barcoded samples (P1) amplified in standard conditions or starting from more DNA template or 

through more cycles of first PCR reaction. 
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Testing the sensitivity of our model - quantitative detection down to single digit cells with 

high confidence  

Before setting up this orthotopic model, we know we wanted a method that is quantitative 

and sensitive enough to detect early events of metastasis, mainly seeding, micro-metastasis, or 

early circulating tumor cells, which are often minute in quantity compared to the mass of primary 

tumor.  An example of early micro-metastasis is shown below using PANC1 (PDAC ATCC cell 

line) in the mouse liver, where the metastatic lesion is around 10 cells in total (the sample is 

stained for HLA in red, Ki67 in green, and DAPI in blue, the background of the liver is brightened 

to appreciate histology of the liver).  

To address the quantitative aspect, we created a “cell conversion scale”, which contains 

known amount of cells carrying unique “scale barcodes” that is spiked in during sample DNA 

extraction.  This “cell conversion scale” acts as an internal reference during sample extraction 

and barcode amplification as it is processed alongside all the “lineage tracing barcodes”.  For 

example, if the sample only has an 80% yield on the DNA extraction, the spiked in “cell conversion 

scale” would also have an 80% yield since it is processed together.  After barcode amplification 

and sequencing the barcodes using NGS, in the end, the relative barcode of interest and its ratio 

to the “cell conversion scale” would stay relatively constant. Since we know the exact number of 

“cell conversion scale” we spiked in (in units of cells), we could use this scale to convert the 

“barcode (lineage) of interest” to cell number.   

In terms of how the “cell conversion scale” is created, we utilize five custom scales each 

with its own unique barcode ID that is not part of the lineage tracing barcode library that is used 

for experiment. With these five individuals “scale barcodes #1 – #5”, we created five individual 

cell lines, each infected with one of the scale barcodes at one barcode per cell ratio (infected at 

low MOI and puromycin selected for positive barcode integrated cells).  Then, by cell counter, I 

would create two sets of scales: A “small” scale, and a “large” scale. The “small” scale contains 
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smallest cell number starting from 10 cells of scale barcode#1, 100 cells of scale barcode #2, 1K 

cells of scale barcode# 3, 10K cells of scale barcode #4, and 100K cells of barcode #5.  Whereas 

the “large” scale, the smallest cell number started from 50 cells.  The “small” scale is used on 

samples to detect circulating tumor cells/ cell free DNA from the blood, as well as, early time 

points of lung and liver samples.  The “large scale” is used with primary tumor and late stage 

metastasis samples.  

Now that we have addressed the quantitative aspect of this model, we must carefully 

assess the S/N ratio to have an idea of how sensitive and confident we can trust our system to 

quantitatively assess biological phenotypes. This can be broken down into three parts: Sample 

preparation and amplification, Sequencing errors, and Data processing.  

In terms of sample preparation and amplification, we compartmentalize reagents and 

primers used for PCR and UV crosslink and wash pipettes between each unique samples; we 

check for none – specific PCR amplicons using a no template control (water), as well as, whole 

liver and lung from mouse that is not used in the experiment (no barcoded cells present) for 

amplification and NGS library building. We see no visible bands of supposed amplicon side by 

side of positive controls. In addition, sample DNA were amplified with as low PCR cycle numbers 

as possible and utilizes a nested PCR approach to ensure amplification uniformity.  

These no template controls (NTCs) were sequenced (by mimicking the same procedure 

as the positive control samples) and reveals that NTC and tissue background control only had 

very minute reads present.  Which confirms the sample processing workflow is clean and the 

human error contributing to the process is at a minimum. However, although NGS is extremely 

sensitive, it is not perfect.  The sequence in the end is an accumulation of all the “errors” 

introduced during PCR’s polymerase, amplification of primer-dimers, as well as sequencing’s 

chemistry and systematic errors. To have an insight into how to filter the NGS read data, I looked 

into the sequences that were miscalled, the distribution of barcodes with only 1 read and their 
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nature, as well as the linearity of the “cell conversion scale”.  In summary, most if not all of the 

barcodes with just 1 read have high level of miscalling and should be excluded (also, if a barcode 

is not called more than once, I do not have confidence in calling it). In addition, we can use a 

cutoff of cell number (after converting NGS reads to cells) for high confidence analysis.  The 

linearity of the scales is good with R close to 1 (within 5 cells – 500K cells), however, due to the 

limitation of how many cells we can spike-in during sample DNA extraction, we cannot guarantee 

the linearity of anything above 500K cells (high representing lineages with high read number).  In 

this case, the accuracy of cell quantification would be off for those highly abundant lineages.  

However, as a whole picture, it would not affect our conclusion, as the dominant clones would still 

be accurately represented (with slight degree of error) as they are in the biological sample 

representation.  

All in all, utilizing the sensitivity of PCR and NGS alongside negative control experiments 

and data analysis noise trimming, we have high confidence in our model system in quantitatively 

calling biological phenotypes down to single digit cell number and retain overall the relative 

abundance of each cell lineage and their relative biological representations in each sample. 

 

 

Figure 181. Barcode distribution in in vitro passage 5. X-axis = NGS read, red line highlighting the 
relative “cell” number converted by spiked in read-to-cell scale. Y-axis = count of barcodes.   
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An example of unfiltered barcode read distribution. By looking at how the barcode read 

distributes, we can have an idea of the amount of potential errors introduced by the sequencing 

workflow. In this histogram, taken from an in vitro passage, we see there are around 50,000 

unique barcodes with only 1 read in total, which falls outside of a normal distribution pattern of 

how the other barcodes behave.  After looking into what composes of these single read barcodes, 

many of which are barcodes similar by 1 base pair of the abundant barcodes in the sample.  

Alongside with that is the barcode is read only once and without a second read to verify within the 

samples, we will have more confidence in excluding any barcodes from analysis with only 1 read.  

 

 

Figure 182. Barcode distribution in culture.X-axis = NGS read, red line highlighting the relative 
“cell” number converted by spiked in read-to-cell scale. Y-axis = count of barcodes.   

 

Total barcode detected in “no template control (water)” and barcode null whole liver and 

lung background are few, indicating high specificity of the barcode detection workflow 

To test the specificity of the barcode detection workflow from beginning to finish, we 

harvested the liver and the lung individually from mouse without barcoded cells injected. Taking 

those liver and lung (also water as a reagent control), we went through the entire process from 

gDNA extraction to the final NGS library. As seen from the figure below, the amount of barcode 

reads detected by NGS, compared to the samples with liver and lung metastasis (in the 107 read 
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number), the no barcode liver and lung and “water NTC” only has a very minor fraction of “noise” 

detected (in the 10 to 100 range).  Since the barcode detected from no template control (water) 

and mouse liver and lung background is very minor, this indicates a high specificity and low noise 

for barcode detection in the barcode detection workflow.  

 

 

Figure 183. The total read number of barcode of liver/lung metastasis sample vs. the barcode-
null liver/lung samples. The left graph shows the total number of barcode reads detected in the 
liver metastasis sample is close to 60,000,000 while the “no barcode liver” and “water NTC” 
sample only produce 10-100 barcode reads (background noise). The right graph shows the total 
number of barcode reads detected in the lung metastasis sample is close to 10,000,000 while the 
“no barcode lung” and “water NTC” sample only produce 10-100 barcode reads (background 
noise). These experiments are set up using the same reagents and processed in parallel.  

 

The sensitivity of the barcode detection in the liver is calculated using the NGS to cell 

conversion scale 

For each sample during DNA extraction, we spiked in a set of scales with known number 

of cells carrying unique barcodes that is not in the lineage tracing barcode library. The linearity of 

the scale is shown in the figure below with R value >0.98 for both primary tumor and liver. 

Converting the “noise” level of barcode reads from the previous section into cells using this scale, 

the sensitivity we claim for this model is ~ 20 cells.  
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Figure 184. Cell conversion scale’s linearity and sensitivity. Scales of 10 cells, 100 cells, 1K cells, 
10K cells, and 100K cells are processed with primary tumor (#504 and #589, left graph) and 
scales of 50 cells, 500 cells, 5K cells, 50K cells, and 500K cells are processed with barcode-null, 
mouse liver.  The scales showed good linearity (R2 = 0.982, 0.981 and 0.985).   

 

Barcode analysis pipeline for spatial barcode detection 

 

Figure 185. Schematics of novel analysis pipeline workflow to identify single barcoded vs. multi-
barcoded cells.   
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High-throughput Clonal Isolation  

Isolation of individual barcoded clones. 

A major technical advancement of the CRT platform is that it enables the high-throughput, 

prospective isolation of nearly every in vivo computationally-identified clone by utilizing two rounds 

of NGS (Sup. Fig. 3a). Because barcoded cell cultures can be restarted at any time from cells 

used to generate CRTs stored in liquid nitrogen, we re-established cultures at lower clonal 

complexity by seeding barcoded cells in 96-well plates (5x103/well), a critical step toward the 

isolation of a pure population of treatment-naïve barcoded cells. When confluent, each seeded 

plate was replicated into two new plates (A and A’): one plate for sequencing and barcode 

detection (A), and the second plate for subsequent deconvolution and clone isolation (A’). The 

data from sequencing plate (A) provide a detailed map of the abundance (relative number of 

reads) of potential clones of interest across all wells, thus identifying “wells of interest” (i.e., wells 

with cultures characterized by relatively high contribution of a clone of interest). In the second 

round of NGS, wells of interest (from plate A’) were further deconvoluted by establishing clonal 

cultures into new plates and barcode identified via high-throughput ‘positional’ sequencing. 

Briefly, cells from wells of interest were single sorted in multiple 96-well plates and left to grow 

until colonies are detectable using a high-content imaging system. Then, irrespective of 

confluency and growth kinetics, each plate is split into two plates to support clone identification 

and aliquot freezing for subsequent expansion. For clone identification, we established a rapid 

workflow that integrates the construction of a NGS library directly from trypsinized cells after PCR 

without the need for DNA extraction (Sup. Fig. 3b). We also incorporated two indexes (one for 

plate and one for well identification) in the NGS library adaptors to fast track multiple clones across 

a multitude of plates and wells in one single NGS run. This workflow enables cost effective, rapid 

identification of thousands of single clonal barcodes with extremely high sensitivity. As one might 

expect, only a fraction of single sorted cells grows as colonies (20-30%) (Sup. Fig 3c). This is an 
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intrinsic characteristic of tumors independent on the cell-cycle phase, where cells were transiting 

during sorting instead related to their ploidy, and indeed hyperploid cells were never able to restart 

a culture (Sup. Fig. 3c and Sup. Table 3). Barcode identity of individually isolated clones is then 

confirmed by Sanger sequencing and clones can be now expanded for storing and deep 

characterization. 

A practical example of the unique opportunities provided by the CRT platform is shown in 

Supplementary Figure 3d-h, where we reported the isolation of 53 clones from de-complexed 

NGS run. Notably, the isolated clones capture the entire spectrum of drug response behaviors 

informed by in vivo CRT experiments (Sup. Fig. 3d and Sup. Tables 4-5) and include 19 clones 

of interest (7 gemcitabine resistant and 12 gemcitabine sensitive). After expansion and 

confirmation of their identity, as exemplified for two of them (Sup. Fig. 3f), clones can undergo 

multiple levels of characterization (Sup. Fig. 3g, h). 

Deconvolution of barcode complexity- from cell culture to NGS.  

Restarted barcoded cell cultures from previously frozen samples (‘even passages’, see 

Barcoding and generation of Clonal Replica Tumors) were left in incubator to allow recovery for 

1-2 days. Cells were then detached using 0.25% trypsin-EDTA (Gibco), washed and resuspended 

in complete medium before being counted using Nexcelom Cellometer Mini cytometer. After 

counting, 5,000 cells were aliquoted in each well of 96-well flat-bottom TC plates (Corning/Falcon) 

and allowed growth till ~80% confluency in order for plated cells to divide at least once. Once the 

wells reached ~80% confluency, medium is removed, and wells washed with PBS. After adding 

to each well 30μL of 0.25% trypsin-EDTA (Gibco) to cover the entire bottom, cells were gently 

detached by pipetting. Using a multichannel pipette, 10μL of cells-trypsin were then transferred 

matching the well position into 96-well PCR ‘sister’ plates (Bio-Rad) for later NGS library 

processing. 20μL of DMSO-FBS (20:80) freezing solution were then added to each well of the 

remaining plates, now containing 20μL of trypsinized cells, before plates were sealed with 
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Parafilm and frozen at -80oC in insulated boxes to allow slow temperature cooldown. Frozen 

plates will be later used for flow-activated sorting to isolate single clones. In order to detect the 

barcode composition of each well of the frozen plates we took advantage of the replica ‘sister’ 

plates. Since the well barcode composition information acting the basis for downstream workflow 

(isolation of single clones from identified wells on interest), a high sensitive DNA extraction 

method is critical to guarantee no possible drop out of barcodes during detection. Conventional 

DNA extraction by column purification is not feasible nor ideal since the yield is < 100% and DNA 

material lost due to transfer between reaction tubes. Therefore, we optimized a direct cell (after 

trypsinization)-to-NGS library workflow to capture the entire DNA content (barcode) present in all 

the cells in all wells with high sensitivity and minimum hands on time. The rationale behind the 

workflow involved the use of a protease K based strong lysis solution to lyse cells and release 

DNA from the nuclei and histones. At the same time, proteinase K inactivated trypsin, which is a 

strong known PCR inhibitor. Then, after heat inactivation of the protease, we used primers with 

tailed NGS adaptors (providing unidirectional reads) to amplify the regions of interest via PCR. 

To evaluate the robustness of cell lysis, cells were stained with Hoechst-33342 (Thermo Fisher) 

and tested against “PK lysis buffer”, “other commercial lysis buffer” and PBS and checked under 

the microscope. The optimized “PK lysis buffer” gives the most complete lysis of cells as seem 

by the lack of positive Hoechst stained cells (Sup. Fig. 3b). To test the reproducibility of the lysis 

conditions, eight replicates of 15,000 cells were lysed each with “PK lysis buffer”, “other 

commercial lysis buffer” and “water”, then used TaqMan RNAseP assay (Thermo Fisher) for PCR-

compatible DNA read out. The “PK lysis buffer” is proven to be extremely efficient and reliable 

giving the lowest average Cq of 24.22 and the lowest standard deviation of 0.17 Cq (Sup. Fig. 

3b). During the cell lysis step, another central function of protease K is to inactivate trypsin. To 

test the lysis condition’s effect on PCR, we used human gDNA control input DNA (Thermo Fisher) 

of 25ng, 5ng, 1ng, 0.2ng and TaqMan RNAseP assay (Thermo Fisher) to test each condition’s 

effect on PCR efficiency. In supplementary figure 3b, we show that PCR amplification efficiency 
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is impacted minimally after heat inactivation of protease K (efficiency of 97.78%, n=2). Also, 

trypsin, without the inactivation of protease K, inhibits PCR reaction completely (no Cq detected). 

And lastly, the entire “PK lysis buffer” workflow gives a high PCR efficiency of 95.49% (n=2). 

Using the optimized direct cells to NGS workflow, to detect the barcode composition of 

each well of the frozen plates, we added a total 4.7uL of lysis buffer (10mM Tris-HCl pH7.5, 10mM 

NaCl, 10mM MgCl2, 0.19% NP40, 2µg Proteinase K) to each well of the ‘sister’ replica plates 

containing 10μL cells-trypsin, and incubated at 50oC for 40 min, and then at 95oC for 15min to 

inactivate Proteinase K. 

Once the cells were lysed, the next step was to build NGS library directly in the same well. 

The rationale behind the tailed adaptor primer design is that, after PCR amplification, a uni-

directional read NGS library will be produced, therefore, maximizing the read throughput and cell 

barcodes interrogated on the Ion Torrent NGS platform. We choose Ion Torrent as an NGS 

platform for barcode screening, due to its fast turnaround time and the ability to handle low 

complexity libraries, which is also a critical feature for the clonal isolation step (see below). Based 

on the above rationale, to amplify the barcoded region with tailed primers containing NGS library 

adaptors, we added directly to each well PCR-reaction mastermix according to the manual from 

Titanium Taq PCR Kit (Clonetech) with individual forward primer with unique index Ion-A-BC-

GexBP1 (5’-

CCATCTCATCCCTGCGTGTCTCCGACTCAGXXXXXXXXXXGATTCAAGCAGAAGACGGCAT

ACGAAGACAG-3’, X bases refers to Ion Xpress 96 adaptor barcode sequence) and a common 

reverse primer GexSeqS-IonP1 (5'-

CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTGAGGTTCAGAGTTCTACAG

TC-3’) both at 600nM final concentration. Reactions were mixed (15-20μL) and PCRed with 

cycling profile of 95oC 3minutes, 6 cycles of 95oC-30 seconds, 56oC-10 seconds, 72oC-10 

seconds, followed by 22 cycles of 95oC-30 seconds, 62oC-10 seconds, 72oC-10 seconds, and 
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then final extension at 72oC for 2 minutes and 4oC hold. Now each well contained amplified 

barcodes with NGS compatible adaptors with unique well indexes. Then, 10μL of PCR products 

from each well were pooled together and 500μL of the pooled product took and concentrated 10 

fold with one time 1.8X AMPure XP purification (Beckman Coulter) by eluting with 50μL elution 

buffer. The 50μL of concentrated DNA were loaded on a 2% agarose gel for band purification. 

Expected bands (size ~185bp) were cut and DNA purified using QIAquick gel extraction kit 

(Qiagen). Following gel purification, DNA was purified with one time 1.8X AMPure XP purification 

(Beckman Coulter) and quantified, the library then was sequenced with Ion Torrent Proton NGS 

platform (Thermo Fisher). 

Isolation of single barcoded cells, flow-activated cell sorting and positional sequencing.  

After analysis of the NGS data from the de-complexed ‘sister’ plates and identification of 

the wells that have higher representation of clones of interest (applying read cutoff of 100 reads 

and considering % representation of the well), keeping plates on ice, thaw the identified wells 

from the 96-well TC plate previously frozen by adding 180μL of 37oC warm DMEM medium. 

Transfer the thawed cells to another 96-well TC plate and let the cell recover in the incubator. 

After two days, trypsinize, wash and suspend the cells in DMEM/FBS containing 1µg/mL Hoechst-

33342 and SYTOX Green (Thermo Fisher) to sort live single cells. Alternatively, cells can be 

sorted also according to their DNA content, excluding polyploid cells in maximizing chances of 

isolating growing cells. Cells are sorted in 96-well TC plates containing DMEM medium 

supplemented with 20% FBS, and 1% Pen Strep. Single cell colonies are then left to grow 

periodically monitoring the plates by high-content imaging using Operetta (Becton Dickinson). 

When wells reach ~50% confluency, cells are detached and split using the approach described 

above for “Deconvolution of barcode complexity”. As already described two/thirds of the 

trypsinized cells remain in the original 96-well TC plates where are slowly frozen in a final volume 

of 40μL for later re-culturing. The other third of the cells (10μL) is aliquoted into 96-well PCR 
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plates (‘sister’ plates) for barcode detection. Process multiple plates with clonal cell population at 

the same time following the lysis protocol describe previously. Since not all wells will have the 

same number of cells, the direct cell lysis method is used to ensure capturing the barcode 

information of wells with fewer cells. After cells are lysed, prepare the PCR reaction according to 

the manual described in Titanium Taq PCR Kit manual (Clonetech) using individual forward primer 

with unique index Ion-A-BC-GexBP1 (5’-

CCATCTCATCCCTGCGTGTCTCCGACTCAGXXXXXXXXXXGATTCAAGCAGAAGACGGCAT

ACGAAGACAG-3’, X bases refers to Ion Xpress 96 adaptor barcode sequence Thermo Fisher 

Cat.4474517) and for each plate a common unique indexed reverse primer GexSeqS-bc-IonP1 

(5' -

CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATYYYYYYYYCGAGGTTCAGAG

TTCTACAGTC-3’, Y refers to individual “plate index”, Tab. 1) both at 600nM final concentration. 

Mix the reaction and PCR with cycling profile of 95oC 3 minutes, 7 cycles of 95oC-30 seconds, 

56oC-10 seconds, 72oC-10 seconds, followed by 23 cycles of 95oC-30 seconds, 62oC-10 seconds, 

72oC-10 seconds, and then final extension at 72oC for 2 minutes and 4oC hold. The cycles of the 

PCR can be adjusted according to the number of plates pooled. Each well now contains amplified 

barcodes with NGS compatible adaptors with unique well indexes, as well as unique plate 

indexes. Pool together all the PCR products from each well and each plate and load 50uL on a 

2% agarose gel for band purification. Cut the expected band size ~190bp and purify DNA using 

QIAquick gel extraction kit (Qiagen). Following gel purification with one time 1.8X AMPure XP 

purification (Beckman Coulter) and sequence with Ion Torrent Proton NGS platform 

(ThermoFisher). 

Expansion of isolated clonal cultures and Sanger barcode validation. 

After analysis of NGS data we use plate and well indexes to trace back the correlated 

barcode with the well position from the frozen plates. Wells are thawed as previously described 
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and allowed to expand in TC dish for further Sanger validation of the barcode. Briefly, after 

expansion a fraction of clonal cells is directly lysed and genomic DNA used for PCR amplification 

(condition identical to the procedures described previously). For PCR reaction, use GEXBPi (5’- 

TCAAGCAGAAGACGGCATACGAAGACA-3’) and SangerNR2 (5’- 

ACGAGCACCGACAACAACGCAGA -3’) as forward and reverse primers at final concentration 

600nM, and follow cycling condition 95oC 3 minutes, 38 cycles of 95oC-30 seconds, 60oC-20 

seconds, 72oC-10 seconds, followed by final extension at 72oC for 2 minutes and 4oC hold. Purify 

PCR products using 2% agarose gel and cut expected band at 242bp. Purify DNA using QIAquick 

gel extraction kit (Qiagen) and followed by one time 1.8X AMPure XP purification (Beckman 

Coulter) for sanger sequencing. Use SangerNR2 as sequencing primer (5’- 

ACGAGCACCGACAACAACGCAGA -3’). In addition, a high throughput clonal screening can be 

integrated into this workflow. For example, during expansion of thawed plates for barcode 

validation, optionally, more replica plates can be generated for high throughput drug/compound 

screening purpose. 

In vitro clonal competition assay. 

Two isolated clones (5125_5793 and 13767_14001) were used to perform the in vitro 

reconstitution assay. One clone (5125_5793) was labeled with GFP, while the other clone 

(13767_14001) remained GFP-negative. The GFP-labeled clone was then mixed with the GFP-

negative clone with equal number (75,000 cells each) and treated with 0, 100nM or 500 nM 

gemcitabine (Selleckchem) for 5 days followed by washout and allowed for 2 weeks 

recovery.  The percentage of each clone in each group was analyzed by flow cytometry (Becton 

Dickinson Canto II Analyzer) (Sup. Fig. 3h). 
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Crystal Violet Cell Viability Assay.  

The crystal violet cell viability assay was performed as follow. In brief, cells were seeded 

in 6-well plate (5x104 cells/well) and incubated at 37oC for 24 hours. For gemcitabine-only 

treatment, cells were treated with or without 100 nM gemcitabine (Selleckchem) for 2 days 

followed by replacement of fresh medium, and then kept at 37oC for 2 weeks. At the endpoint of 

the experiment, cells were washed twice with PBS and stained with 1 mL of 0.5% crystal violet in 

each well for 20 minutes with gentle shaking. After washing with PBS for three times, the cells 

were air-dry for 2 hours at room temperature and then scanned for images. For the optical density 

quantification, 1 mL of methanol was added to each well and incubated at room temperature for 

20minutes with gentle shaking followed by detecting at 570 nm (OD570) with the POLARstar 

omega plate reader.  

For combination treatment of gemcitabine and ATRi AZD-6738, cells were pretreated with 

1 μM ATRi AZD-6738 (Selleckchem) for 3 hours and then co-incubated with 1 μM gemcitabine 

for another 24 hours; after changed with fresh medium, cells were kept at 37oC for 2 weeks. At 

the endpoint of each experiment, cells were washed twice with PBS and stained with 1 mL of 

0.5% crystal violet in each well for 20 minutes with gentle shaking. After washing with PBS for 

three times, the cells were air-dry for 2 hours at room temperature and then scanned for images.  

Analysis for basal DNA damage level by flowcytometry. 

The detection of basal DNA damage level in each clone was performed by using the 

fluorescent anti-γH2AX antibody (Alexa Fluor® 647 Mouse anti-H2AX (pS139), BD Biosciences) 

according to the manufacturer’s instructions. In brief, cells were seeded in 6 cm plates until they 

became 60-70% confluent. Cells were then detached, fixed and permeabilized followed by 

antibody staining for 20 minutes at room temperature. After washing for three times and DAPI 

staining, stained cells were analyzed with a Becton Dickinson Canto II Analyzer. 
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Immunofluorescence.  

Cells from each clone were seeded on cover slips two days before treatment. Cells were 

then treated with or without gemcitabine 1 µM (Selleckchem) for 24 hours followed by 3 hours 

recovering. After fixation, permeabilization and blocking with 3% BSA, 0.1% Triton-X 100 and 5% 

normal goat serum, cells were stained with mouse anti-γH2AX (abcam) and/or rabbit anti-RAD51 

(abcam) for overnight at 4°C. Secondary antibodies conjugated with rabbit Alexa-488 and mouse 

Alexa-594 (Molecular Probes) were used. After washing and DAPI staining, images were 

captured with a Hamamatsu C11440 digital camera, using a wide-field Nikon Eclipse-Ni 

microscope. 

Hematoxylin and Eosin staining 

Collected tissues were fixed overnight with buffered PFA followed by 70% ethanol and embedded 

in paraffin using Leica ASP300S processor. Tissue blocks were sectioned with microtome (Leica 

RM2235). Slides were then de-paraffined and stained with hematoxylin and eosin. Images were 

captured with a Nikon DS-Fi1 digital camera using a widefield Nikon Eclipse-Ci microscope. 

Invasion assay 

Invasion assay was performed with Corning® BioCoat™ Matrigel® Invasion Chambers according 

to the manufacturer’s instructions. In brief, cells were starved with serum-free medium for 24 

hours. 1-2x105 cells in 0.5 ml serum-free medium were added to the inserts, and medium plus 

10% FBS were added to the wells as chemoattractant with or without NMDAR agonist glutamate 

or antagonist memantine. After 27 hours, cells were fixed with 4% PFA followed by 0.5% crystal 

violet staining. Images were captured with a wide-field Nikon Eclipse-Ni microscope. The number 

of invaded cells was determined using Image J software. 

Reverse Transcription and Quantitative Real-Time PCR  

Total RNA from each clone was extracted with Qiagen RNeasy Mini Kit according to 

manufacturer’s instructions. 1 µg RNA was used to generate cDNA using Thermo Fisher 

SuperScript™ VILO™ Master Mix. 10 ng of cDNA was used for quantitative PCR using Applied 

Biosystems PowerUp SYBR Green PCR Master Mix with gene-specific primers. Gene relative 
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expression level was determined by the comparative CT (ΔΔCT) method and normalized to 

GAPDH.  

Intracellular Ca2+ assay  

Intracellular Ca2+ concentration was determined by Enzo FLUOFORTE® Calcium Assay Kit 

according to manufacturer’s instructions. In brief, 8 x 104 cells per well were plated in 96-well plate 

for overnight. The cells were then stained with FLUOFORTE® Dye for 1 hour at room temperature 

followed by fluorescence detection at Ex=490 nm/Em=525 nm using PHERAStar HTS microplate 

reader (BMG Labtech). 

 

 

Quantification and statistical analysis 

Barcode data processing. 

A custom analysis pipeline was used to quantify barcodes from FASTQ files. Reads were 

first filtered based on the presence of a 4bp spacer (TTCG) between the two barcodes, positions 

19-22 bp. Reads which had the spacer, within a hamming distance of 1 bp, were used for 

downstream analysis. 

The reads were then split into two separate Fastq files (1-18bp, 23-40bp), and both 

barcodes (BC1 and BC2) were aligned to the 13K library, preserving their pairing. Bowtie (v2.2.3) 

was used to perform the alignment allowing 1bp mismatch at either end of the barcode (Langmead 

and Salzberg, 2012). These parameters were optimized to enable maximal alignment, while 

minimizing alignment of reads to multiple barcodes. Furthermore, reads where both barcodes 

aligned to the library uniquely were preserved for counting. We used SAMtools to extract the 

reads and perform counting of paired reads (Li et al., 2009). 
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Barcode data analysis and normalization. 

Counts obtained using methods described above were normalized for library size, by 

calculating counts per million for each barcode (i): 

CPMi =
countsi

∑counts
106 

This enables comparisons of barcodes within and across samples. Furthermore, we used 

the quantitative scale to infer cell numbers represented by each barcode. For this, we used a log-

linear model to regress centered CPMs over cell numbers (Sup. Fig. 1b, c), to infer barcode counts 

represented by 5 to 50,000 (Scale1-5). Barcodes for 5 cells were detected in 8/12 samples from 

PDX1 and 11/11 samples from PDX2. We see a strong linear trend comparing log CPM vs number 

of cells, which improves for higher cell numbers. We used barcodes, inferred to represent >50 

cells for vitro-vivo (Fig. 1d and Sup. Fig. 1f) and vivo-serial transplantation (Fig. 1i) comparisons. 

For all pairwise analysis we used all barcodes common between the two samples, evaluated 

using Pearson correlation coefficient (Fig. 2c, f, i and Sup. Fig. 1i-k). For comparison of n>2 

samples, for in vitro dilutions of PDX2 (Fig. 2a) we used barcodes shared by all samples and for 

CRTs of PDX1 and PDX2 (Fig. 2d, g) we used barcodes above 50 cells of abundance. Mean 

barcode counts across replicates was compared with the quantitative scale, to infer cell counts 

for the heat-maps (Fig. 2b, e, h). 

Differential analysis of clonal lineage expansion  

We leveraged computational frameworks previously developed for differential gene 

expressions analysis to perform differential barcode representation analysis (Robinson et al., 

2010). Clonal lineages common between the three PDX2 CRTs (n=5683), were used for 

differential lineage expansion analysis. Different behaviors were interrogated for sensitivity and 

resistance to various pharmacological agents using the generalized linear modeling framework 
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provided by edgeR (Robinson et al., 2010) (Fig. 3b, c, d). Barcodes with FDR<0.2 were further 

manually curated before downstream validation and median centered for representation (Fig. 3e).  

We used constrained correspondence analysis 

(https://www.jstor.org/stable/1938672?seq=1#page_scan_tab_contents) to dissect lineages into 

clusters based on response, as implemented in R package vegan (https://CRAN.R-

project.org/package=vegan). Relative abundances were ordinated using CCA, constrained upon 

drug treatment (Fig. 3f). Log fold-change from edgeR was overlaid on the ordination to investigate 

the degree of overlap in terms of response to various treatments. We extracted lineages which 

were modulated by either treatment (FDR<0.25, FC>1 or FC<-1, n=2440), and 

compartmentalized them into eight quadrants in a 3-dimensional space (Fig. 3g and Sup. Fig. 2 

f-h).  

Simulations were performed to evaluate if the number of lineages observed in different 

categories of response can be expected by random sampling (Fig. 3h). We setup the in silico 

experiment to sample lineages determined significant in either direction (depleted or enriched), 

and any of the three treatments (GEM +/-, AZD +/-, BEZ +/-). Overlaps between sampled lineages 

were calculated and categorized according to response to the three drugs (+: enriched, -: 

depleted, 0: neutral), for 10,000 simulations (black boxplots, Fig. 3h). Estimates from simulations 

were then compared with observed values (red), and empirical p-values were calculated. 

 

Non-linear dimension reduction (tSNE) and mathematical modeling. 

Normalized counts (CPM) were used to filter barcodes representing >50 cells, by fitting 

observed reads counts to expected cell numbers (Sup. Fig. 1c). For each model, barcodes 

representing >50 cells, in more than one sample were retained for downstream analysis. 

Barcodes were then clustered using t-SNE 

https://www.jstor.org/stable/1938672?seq=1#page_scan_tab_contents
https://cran.r-project.org/package=vegan
https://cran.r-project.org/package=vegan
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(http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf) and plotted using 

ggplot2 (https://doi.org/10.1198/jcgs.2009.07098). Normalized counts were overlaid on, while 

preserving the same clustering to tracing fitness dynamics in the two experimental arms, vitro and 

vivo (Fig. 1h). 

To further understand the underlying mechanisms of fitness dynamics, we performed 

simulation experiments across passages, comparing the two experimental arms (vitro vs vivo). 

Specifically, we can argue that the barcode dynamics of a specific lineage, in subsequent 

passages is impacted by the state in previous passages, self-renewal ability and some stochastic 

behavior. Using this argument, we have described the barcode composition as follows 

𝑋𝑖𝑗~𝑋𝑖𝑗−1(1 + 𝑠𝑖 + 𝑧𝑖
𝑥) 

𝑌𝑖𝑗~𝑌𝑖𝑗−1(1 + 𝑠𝑖 + 𝑧𝑖
𝑦

) 

where, 𝑋𝑖𝑗 are counts in vitro for barcode 𝑖 and passage 𝑗 and similarly, 𝑌𝑖𝑗  represents counts in 

in vivo passaging. Here, 𝑠𝑖 represents fitness for barcode 𝑖 and 𝑧𝑖
𝑥 , 𝑧𝑖

𝑦
 are the fitnesses impacted 

by environment x and y, respectively. Furthermore, if we assume that the fitness between the two 

experimental arms (vitro vs vivo passaging) is not related, or 𝑠𝑖 = 0, we can arrive at the following 

equations: 

𝑋𝑖𝑗~𝑋𝑖𝑗−1(1 + 𝑧𝑖
𝑥) 

𝑌𝑖𝑗~𝑌𝑖𝑗−1(1 + 𝑧𝑖
𝑦

) 

We simulated draws from a previous passage (𝑋𝑖𝑗−1 𝑜𝑟 𝑌𝑖𝑗−1), assuming𝑠𝑖 = 0, and calculated the 

number of overlapping barcodes (over 1000 simulations). This null distribution is then compared 

with the observed values to estimate the empirical p-value (Sup. Fig. 1h). 

 

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://doi.org/10.1198/jcgs.2009.07098
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Barcode analysis of IonTorrent data. 

Fastq were de-multiplexed for row and column barcodes using Ion Torrent NGS software. 

A more stringent analysis strategy was used, considering differences in the sequencing platform 

and the nature of clonal sample. Subsequent analysis was performed using custom R scripts, 

developed using Bioconductor packages (Biostrings and ShortRead) (Morgan et al., 2009) 

(https://www.bioconductor.org/packages/release/bioc/html/Biostrings.html). Briefly, we extracted 

reads which follow the pattern "5’-

TCAAGCAGAAGACGGCATACGAAGACAGTTCGNNNNNNNNNNNNNNNNNNTTCGNNNNN

NNNNNNNNNNNNNTTCGGACTGTAGAACTCTGAACCTCRYYYYYYYY-3’", where Ns 

represent Barcode 2 and Barcode 1 respectively and Ys represent the plate barcode. Barcodes 

of each read were then compared with the library (CellTracker 50M Lentiviral Double-Barcoded 

Library, Cellecta), allowing for mismatches. Reads, where both barcodes aligned uniquely with 

the sequences in the library with minimum hamming distance, were used for downstream 

analysis. We then separated reads from different plates using the plate specific barcodes. A read 

number cutoff of 100 reads (n=1, no template negative control’s top barcode read is 37) is applied 

to remove false positive barcode ID from each of the 96 samples (well index). We chose wells 

where clones of interest represented a dominant fraction of reads, to increase the chances of their 

isolation. 

Further consideration was applied to Ion-Torrent data where each well was expected to 

have single barcodes (clonal isolation, step 2). In case same barcode is detected in multiple wells, 

wells with maximum percent representations that is higher than 75% was chosen for downstream 

expansion and isolation. At this point, all barcodes identified can be traced back to its frozen 

counterpart, knowing plate and well position.  It is possible, although exceptional, that more than 

one unique barcode is associated with each sample due to negligible percentage of double 

barcoding and the accuracy of flow-activated single cell sorting. 

https://www.bioconductor.org/packages/release/bioc/html/Biostrings.html)
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Table 4 Plate Indexes 

GExSeqS-

bc-IonP1 

5' 

CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATYYYYYYYYT

GAGGTTCAGAGTTCTACAGTC 

GExSeqS-

bc1-IonP1 

5' 

CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTATATCCAC

GAGGTTCAGAGTTCTACAGTC 

GExSeqS-

bc3-IonP1 

5' 

CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTATCCATAC

GAGGTTCAGAGTTCTACAGTC 

GExSeqS-

bc5-IonP1 

5' 

CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTCCATATAC

GAGGTTCAGAGTTCTACAGTC 

GExSeqS-

bc7-IonP1 

5' 

CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTATAGGTA

CGAGGTTCAGAGTTCTACAGTC 

GExSeqS-

bc9-IonP1 

5' 

CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTAGGTATA

CGAGGTTCAGAGTTCTACAGTC 
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Whole Exome Sequencing (WES) of isolated clones. 

Exome capture was performed on genomic DNA per sample based on KAPA library prep 

(Kapa Biosystems) using the Agilent SureSelect Human All Exon V4 kit according to the 

manufacturer’s instructions and paired-end multiplex sequencing of samples was performed on 

the Illumina HiSeq 2000 sequencing platform. Paired-end reads were generated by Illumina’s 

bcl2fastq application and aligned to human genome reference (hg19) using Burrows-Wheeler 

Aligner (BWA) with seed length of 40 and maximum edit distance of 3 (allowing for distance <=2 

in the seed) (Li and Durbin, 2009). BAM files produced by BWA were further processed according 

to GATK Best Practices, including removal of duplicate reads, realignment around indels and 

base recalibration (DePristo et al., 2011; Van der Auwera et al., 2013). Mutations were detected 

using Platypus (Rimmer et al., 2014) and MuTect (Cibulskis et al., 2013) by using an in-house 

normal reference created using 11 (normal) blood WES samples. Confident mutations were 

selected using an intersection of the two callers, and filtering out mutations with low depth (<20) 

and those annotations in dbSNP v129 and ESP-6500 [ref: http://evs.gs.washington.edu/EVS/]. All 

mutations detected in at-least one sample were kept, and mutation allele frequencies were re-

derived by interrogating reads from BAM files, for all mutations across all samples. Apart from 

mutations, CNV was also derived from the WES data. An in-house R package (exomecn) was 

used to calculate read counts for each exon, and log2ratios were called comparing each sample 

with an assay matched (previously sequenced normal reference). Thus derived, log2ratios were 

normalized for total mapped reads in that region, and segmented using circular binary 

segmentation (CBS), as part of DNAcopy package of Bioconductor.  

 

http://evs.gs.washington.edu/EVS/
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RNA Sequencing and transcriptomic analysis of isolated clones. 

The RNeasy Mini Kit (Qiagen, Inc., Valencia, CA) was used to extract total RNA from all 

samples. Quantity and quality were measured using the RNA Nano kit on the Agilent Bioanalyzer 

(Agilent Technologies, Inc., Santa Clara, CA). RNA sequencing reads were derived from 

Illumina’s intensity files as described in the WES section above. These were then aligned to hg19 

transcriptomic reference using kallisto (Bray et al., 2016). Gene level TPM counts for protein 

coding genes (as defined by HGNC) and expressed in at least 3/11 (TPM>1) were used for all 

downstream analysis. 

Gene level counts were resolved into pathway level enrichment scores using ssGSEA. 

These were then compared with response to different drugs (GEM, BEZ and AZD), using linear 

regression. Pathways associated with sensitivity and resistance were prioritized for downstream 

validation. In addition, we used the top resistant and sensitive clones and carried out differential 

gene expression analysis using edgeR. Top 100 most depleted and resistant genes were used to 

create a signature of response to gemcitabine. 

TCGA gene expression data and survival data were downloaded from GDC and 

processed as previously described (Cancer Genome Atlas Research Network. Electronic address 

and Cancer Genome Atlas Research, 2017). We used nearest-template-prediction (Hoshida, 

2010) to assign subtype scores to each sample, using the FDR threshold of 0.1. Survival curves 

for samples in the three categories (gemcitabine-resistant, gemcitabine-sensitive, un-

categorized), were compared using Cox-proportional hazards model. 

 

Phylogenetic analysis.  

Phylogenetic trees were derived for the 13 samples using 3 different metrics namely, copy 

number variation (CNV), single nucleotide variation (SNV) and RNASeq gene level expression 
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(RNA). Data were derived as described in the previous sections. We used Euclidean distance 

and hierarchical clustering in R to derive trees and then edited them in Adobe Illustrator. 

 

Estimating copy number variation in SNP6 array data. 

DNA copy number for PDX2-derived cells was calculated using Affymetrix SNP6.0 arrays 

by the tool PICNIC (predicting absolute allele copy number variation with microarray cancer data) 

(Greenman et al., 2010) in a two-step process. First, the data were preprocessed by normalizing 

individual sample variation to the total DNA measured by determine the allelic responses of each 

probe based on normal samples. This information was used to transform all tumor sample 

measurements into a copy number intensity and genotype intensity at each probe locus. Next 

step involved segmentation and genotyping of the loci by fitting a bayesian HMM in which the 

possible states were the possible total and minor copy numbers. 

 

Statistical testing and clustering 

By Delia Wang and Ruitao Lin (discussion with Kim Do, Andrea Viale, and Chieh-Yuan Li) 

Barcode cutoff procedure 

 For all barcodes, to remove potential noise caused by sequencing technically, we consider 

the below scenario for noise filtering:  

1. For all primary, any reads below or equal to 3 reads, treated it as “0”. 

2. For all metastasis samples, any reads below or equal to 1 reads, treated it as “0” 

For Primary tumor analysis:  

3. Keep if barcode count is not “0” at any one of time points (N=46839) 
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a. Calculate the prevalence rates (N=46839): 𝑝𝑥 =𝑥𝑖/∑𝑥𝑖 

b. Keep the barcode if percentage is not “0” at all the time points (N=1013) 

 

Similarity test 

We are using the similarity between “injected” (two of the aliquot tubes used to create CRTs) 

as a simulation criteria to gauge the similarity of clonal replica tumors at later time points. Using 

such criteria, we used bootstrapping (reference) method to simulate the data, then applying 

statistic T1 and T2, each informs on how similar the CRTs are at each time point. By statistical 

robust test, we have demonstrated that each CRTs indeed are similar at the same time point, as 

well as progressing similarly over time (until week10). Therefore, we can view CRTs in a cohort 

as an interchangeable single variable to satisfy the proposed longitudinal sample. This similarity 

test is demonstrate that the tumor growth patterns for different mice (CRTs) are similar in the 

beginning stage of the observation, while in the latter stage, the tumor growth diverges in different 

mice. 

1) Let X=(𝑥1,…, 𝑥𝑛) denote the observed barcodes counts for mouse A, and Y=(𝑦1,…, 𝑦𝑛) 

denote the observed barcodes counts for mouse B, where N is the total number of 

barcodes observed.  

2) In mathematics, the similarity between sample A and sample B can be quantified as 𝑝𝑋≈𝑝𝑌, 

i.e., the prevalence rates for “important” barcodes between A and B are similar.  Here 𝑝𝑋 

=( 𝑝𝑥1,..., 𝑝𝑥𝑛𝐴 ⋃ 𝐵
) (or 𝑝𝑌 =( 𝑝𝑦1,..., 𝑝𝑦𝑛𝐴 ⋃ 𝐵

)) is the vector of prevalence rates. 

3) We assume that X=(𝑥1,...,𝑥𝑛𝐴 ⋃ 𝐵
)∼Multi(𝑁𝑋, 𝑝𝑥) and Y=(𝑦1,...,𝑦𝑛𝐴 ⋃ 𝐵

)∼Multi(𝑁𝑌, 𝑝𝑦), where 

𝑁𝑋=∑𝑥𝑖 and 𝑁𝑌=∑𝑦𝑖 are the total numbers of reads for mouse A and mouse B, 

respectively. 
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4) We define two statistics, 𝑇1and 𝑇2 based on 𝑝𝑋 and 𝑝𝑌, to measure the similarity between 

two samples at each time point. 

a. Statistic 1: 𝑇1 is the Pearson correlation coefficient between 𝑝𝑋 and 𝑝𝑌. If 𝑇1 is close 

to 1, A and B is similar. 

b. Statistic 2: 𝑇2 is the Euclidean distance between 𝑝𝑋 and 𝑝𝑌, i.e., 𝑇2=||𝑝𝐴 − 𝑝𝐵||2, 

(𝑑𝐴,𝐵 = √∑ (𝑝𝐴 − 𝑝𝐵)2𝑛=𝐴 ⋃ 𝐵
𝑖=1 . If 𝑇2 is close to 0, A and B is similar. 

5) To get 𝑇1and 𝑇2, we use the bootstrap resampling approach to perform the similarity test, 

10,000 times at each time point. 

a. Denote logit(𝑥) = log(
𝑥

1−𝑥
) 

b. Generate �̃�𝑋 and �̃�𝑌 via �̃�=log[−logit(�̂�)]+ϵ where ϵ∼r∗N(0,𝜎1
2)+(1−r)∗N(0, 𝜎2

2) and 

r=1 if �̂�>10−6and r=0 if �̂� ≤ 10−6 

c. Generate �̃�∼Multi(𝑁𝑋, �̃�𝑋) and �̃�∼Multi(𝑁𝑌, �̃�𝑌) 

d. Perform the selection procedures on �̃� and �̃�, and obtain �̃�𝑋 and �̃�𝑌. Then calculate 

the test statistics 𝑡1̃ and 𝑡2̃. 

e. Repeat for 10,000 times and obtain the distributions of 𝑡1̃ and 𝑡2̃, respectively. 

6) Perform the Similarity test.  

a. Null hypothesis: Two samples are similar 

b. Reject the null hypothesis if Pr(�̃�𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 < �̃�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)<0.05 for 𝑇1 or Pr(�̃�𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 >

�̃�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)<0.05 for 𝑇2. 

 

Calibrate parameters (sigma1 and sigma2) based on the similarity between two mice at injected 

(Week0) 

We use the grid searching approach to determine parameters: sigma1 and sigma2. The rational 

of this calibration step is that samples are similar according to the experiment at injected (Week0). 
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1) Use observed prevalence rates, i.e., �̂�𝑋 and �̂�𝑌, that is not 0 at all points (N=46839) to 

simulate at each time point. 

c. Based on �̂�𝑋 and �̂�𝑌, we get �̃�∼Multi(𝑁𝑋, �̃�𝑋) and �̃�∼Multi(𝑁𝑌, �̃�𝑌), where via 

�̃�=log[−logit(�̂�)]+ϵ where ϵ∼r∗N(0,𝜎1
2)+(1−r)∗N(0, 𝜎2

2) and r=1 if �̂�>10−6and r=0 if 

�̂� ≤ 10−6. 

2) Perform the selection procedures on �̃� and �̃�, , and obtain �̃�𝑋 and �̃�𝑌. 

3) Use the grid searching approach to test each combinations of 4 sigma1 (0.05 to 0.11, by 

0.02) and 19 sigma2 (0.01 to 0.19, by 0.01). 

a. 𝑑𝑖𝑓𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the difference between the observed mean of mouse X and 

observed mean of mouse Y at injected (Week0), i.e., 𝑑𝑖𝑓𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 

mean(�̂�𝑋𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑒𝑑
) – mean(�̂�𝑌𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑒𝑑

) 

b. 𝑑𝑖𝑓𝑓𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 is the difference between the simulated mean of mouse X and 

simulated mean of mouse Y at injected (Week0), i.e., 𝑑𝑖𝑓𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 

mean(�̃�𝑋𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑒𝑑
) – mean(�̃�𝑌𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑒𝑑

) 

c. 𝑑𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒 = 𝑑𝑖𝑓𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 - 𝑑𝑖𝑓𝑓𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 

4) Select candidates for combinations of sigma1s and sigma2s that have closest observed 

difference and simulated difference at Injected (Week0), i.e., 𝑑𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒 is closed to 0. 

5) Compare the distributions of simulated data and observed data at each time point and 

finally decide the combination of sigma’s as sigma1=0.07 and sigma2=0.11. 
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Figure 186. Sigma selection and simulated data.  Left graph shows the different sigmas and their 
relative distribution across the difference of the means between the two injected vials of barcoded 
cells. The right graph shows the simulated data is well overlapped with the observed data based 
on selected sigma.  

Perform bootstrap resampling approach 10,000 times at each time point to test Statistic1 and 

Statistic2 by using sigma1=0.07 and sigma2=0.11 

Null hypothesis: Two samples are similar. Reject the null hypothesis if Pr(�̃�𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 <

�̃�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)<0.05 for 𝑇1 or Pr(�̃�𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 > �̃�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)<0.05 for 𝑇2. 

1) 𝑇1: Pearson correlation coefficient between 𝑝𝐴 and 𝑝𝐵. 

a. If 𝑇1is close to 1, then A and B is similar. 

b. If Pr(�̃�𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 < �̃�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)<0.05, reject the null hypothesis. Two samples are not 

similar. 

c. If Pr(�̃�𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 < �̃�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)>0.05, fail to reject the null hypothesis. We don’t have 

enough evidence to say that the two samples are not similar. 

 

2) 𝑇2: Euclidean distance between 𝑝𝐴 and 𝑝𝐵 , i.e., 𝑇2=||𝑝𝐴 − 𝑝𝐵||2 
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a. 𝑑𝐴,𝐵 = √∑ (𝑝𝐴 − 𝑝𝐵)2𝑛=𝐴 ⋃ 𝐵
𝑖=1 .  

b. If 𝑇2 is close to 0, A and B is similar. 

c. If Pr(�̃�𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 > �̃�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)<0.05, reject the null hypothesis. Two samples are not 

similar. 

d. If Pr(�̃�𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 > �̃�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)>0.05, fail to reject the null hypothesis. We don’t have 

enough evidence to say that the two samples are not similar. 

 

 

 

Figure 187. Simulated statistics of similarity.  Left graph shows the observed value (dotted lines) 
and the “true” distribution of statistics 1 (Pearson’s correlation); right graph shows the observed 
value (dotted lines) and the “true” distribution of statistics 2 (Euclidian distance). 

 

Clustering 

All primary tumor (reads>3, N=1013) 

Difference of distance between prevalence rates for all primary tumor (reads>3, N=1013) 

After selection procedures,  
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primary >3 at all time points, N=1013.  

primary >3 + (liver/lung) >1 at all time points, N=287.   

primary >3 + liver+ lung >1 at all time points, N=137.  

 

  

Figure 188. Distribution and counts of barcodes based on time and metastasis phenotype.   

 

In all 1013 barcodes (reads>3), 287 barcodes will mets to either liver or lung at Week 12, count 

for 92.23% of all barcodes (N=2017709) and In all 287 barcodes (reads>3) that can mets, 137 

barcodes will mets to both liver and lung at Week 12, count for 86.23% of all barcodes 

(N=2017709). 

 

1) Blue dots (N=1013-287=726): primary tumor cannot mets 

2) Yellow and red dots (N=287): primary tumor can mets to either liver or lung 

3) Red dots (N=137): primary tumor can mets to both liver and lung 
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Classify the quartiles of clonal relative fitness based on percentage ranking at Week4 and at 

Week12 for all primary tumor (reads>3, N=1013) 

Take average of percentage at each time point and quantify into four quartiles: [0-25%), [25-50%), 

[50-75%) and [75-100%] 

 

Figure 189. Quartiles of the primary tumor 

Change between Week4 and Week12 for all primary tumor (reads>3, N=1013) 

 

Figure 190. Analysis of barcodes at week12 vs. week 4. The red lines indicate lineages that has 
an overall gain in fitness. The green lines indicate lineages that has an overall loss in fitness.  

 Clustering for all primary tumor (reads>3, N=1013) 
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1) CLARA (Clustering Large Applications, (Kaufman and Rousseeuw 1990)) 223 is an 

extension to k-medoids (PAM) methods to deal with data containing a large number of 

objects. This is achieved using the sampling approach. 

a. The k-medoids algorithm is a clustering approach related to k-means clustering for 

partitioning a data set into k groups or clusters. In k-medoids clustering, each 

cluster is represented by one of the data point in the cluster. These points are 

named cluster medoids. 

b. The term medoid refers to an object within a cluster for which average dissimilarity 

between it and all the other the members of the cluster is minimal. These objects 

(one per cluster) can be considered as a representative example of the members 

of that cluster so it is a robust alternative to k-means clustering. This means that, 

the algorithm is less sensitive to noise and outliers, compared to k-means, because 

it uses medoids as cluster centers instead of means (used in k-means). 

c. Instead of finding medoids for the entire data set, CLARA considers a small sample 

of the data with fixed size (sample size) and applies the PAM algorithm to generate 

an optimal set of medoids for the sample. The quality of resulting medoids is 

measured by the average dissimilarity between every object in the entire data set 

and the medoid of its cluster, defined as the cost function. 

d. CLARA repeats the sampling and clustering processes a pre-specified number of 

times in order to minimize the sampling bias. The final clustering results 

correspond to the set of medoids with the minimal cost. 

2) In order to cluster based on the shape, rather than the average value of each barcode, we 

calculate the slopes between each time point first and then use CLARA to cluster “slopes” 

of barcodes. In addition, the use of slope indicates there is a progressive time dimension 

that is being analyzed.  
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3) We use total within sum of square (WSS) to get optimal number of clusters with good 

homogeneity. 

a. With-in-Sum-of-Squares (WSS): WSS is the total distance of data points from their 

respective cluster centroids. 

 

Figure 191. Clustering of all lineages in the primary tumor. Left shows the optimal cluster number. 
Right shows the clusters of lineages and their dynamics.  
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Cluster [0,25%] at Week 12 for all primary tumor (reads>3, N=254) 

1) CLARA

 

Figure 192. Clustering of all lineages in the primary tumor by quartiles. Left shows the optimal 
cluster number. Right shows the clusters of lineages and their dynamics.  
 

 

Cluster [25,50%) at Week 12 for all primary tumor (reads>3, N=254) 

1) CLARA
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Figure 193. Clustering of all lineages in the primary tumor by quartiles.Left shows the optimal 
cluster number. Right shows the clusters of lineages and their dynamics.  
 

Cluster [50,75%) at Week 12 for all primary tumor (reads>3, N=254) 

1) CLARA

 

Figure 194. Clustering of all lineages in the primary tumor by quartiles.Left shows the 
optimal cluster number. Right shows the clusters of lineages and their dynamics.  
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Cluster [75%,100%) at Week 12 for all primary tumor (reads>3, N=253) 

1) CLARA

 

Figure 195. Clustering of all lineages in the primary tumor by quartiles. Left shows the optimal 
cluster number. Right shows the clusters of lineages and their dynamics.  
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Primary tumor that can metastasize to either liver or lung (reads>3, N=287) 

Classify the quartiles of clonal relative fitness based on percentage ranking at Week4 and at 

Week12 for primary that can mets to either liver or lung (reads>3, N=287) 

Take average of percentage at each time point and quantify into four quartiles: [0-25%), [25-50%), 

[50-75%) and [75-100%]

 

Figure 196. Quartile distribution of barcodes in the primary tumor that can metastasize to either 
liver or lung.  
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Change between Week4 and Week12 for primary that can mets to either liver or lung (reads>3, 

N=287) 

 

Figure 197. Analysis of barcodes that could metastasize to lung or liver at week12 vs. week 4. 
The red lines indicate lineages that has an overall gain in fitness. The green lines indicate lineages 
that has an overall loss in fitness.  

 

Clustering for primary that can metastasize to either liver or lung (reads>3, N=287) 

1) CLARA

 

Figure 198. Clustering of all lineages in the primary tumor that could metastasize to lung or 
liver by quartiles. Left shows the optimal cluster number. Right shows the clusters of lineages 
and their dynamics.  
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Figure 199. Clustering of all lineages in the primary tumor that could metastasize to lung or 
liver by quartiles.  
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Primary tumor that can mets to both liver and lung (reads>3, N=137) 

Classify the quartiles of clonal relative fitness based on percentage ranking at Week4 and at 

Week12 for primary that can mets to both liver and lung (reads>3, N=137) 

Take average of percentage at each time point and quantify into four quartiles: [0-25%), [25-50%), 

[50-75%) and [75-100%] 

 

Figure 200. Quartile of barcodes in the primary tumor that could metastasize to lung and liver.  
 

Change between Week4 and Week12 for primary that can mets to both liver and lung (reads>3, 

N=137) 
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Figure 201. Analysis of barcodes that could metastasize to lung and liver at week12 vs. week 
4.The red lines indicate lineages that has an overall gain in fitness. The green lines indicate 
lineages that has an overall loss in fitness.  

Clustering for primary that can mets to both liver and lung (reads>3, N=137) 

1) CLARA  

 

Figure 202. Clustering of all lineages in the primary tumor that could metastasize to lung and 
liver by quartiles. Left shows the optimal cluster number. Right shows the clusters of lineages 
and their dynamics.  
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Figure 203. Clustering of all lineages in the primary tumor that could metastasize to lung and 
liver by quartiles.  

 

All Metastasis lineages  

1) In all 287 barcodes that will mets to either liver or lung, 236 barcodes will mets to liver at 

Week 12, count for 99.61% of all barcodes (N=2017709). 

2) In all 287 barcodes that will mets to either liver or lung, 188 barcodes will mets to lung at 

Week 12, count for 94.07% of all barcodes (N=2017709). 

3) In all 287 barcodes (reads>3) that can mets, 137 barcodes will mets to both liver and lung 

at Week 12, count for 86.23% of all barcodes (N=2017709). 
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Metastasis - liver (reads>1, N=236) 

Change between Week4 and Week12 for Mets liver (reads>1, N=236)  

 

Figure 204. Analysis of barcodes that metastasize to liver between week 12 and week 4.  

 Clustering for primary that can mets to both liver and lung (reads>1, N=236) 

1) CLARA

 

Figure 205. Clustering of clonal lineages in the liver. Left is the optimum of clusters; right is 
the clonal dynamics of metastatic clones in the liver over time.  
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Figure 206. Clustering of clonal lineages in the liver. The clonal dynamics of metastatic clones in 
the liver over time.  
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Mets - lung (reads>1, N=188) 

Change between Week4 and Week12 for Mets lung (reads>1, N=188) 

 

 

Figure 207. Analysis of barcodes that metastasize to lung between week 12 and week 4.   

 

Clustering for all Mets lung (reads>1, N=188) 

1) CLARA

 

Figure 208. Clustering of clonal lineages in the lung.Left is the optimum of clusters; right is the 
clonal dynamics of metastatic clones in the lung over time.  
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Figure 209. Clustering of clonal lineages in the lung. The clonal dynamics of metastatic clones in 
the lung over time. The clusters are stratified based on tumor representation at week 12.  
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Figure 210. Flow-chart workflow of simulation. By Delia Wang.   
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Figure 211. A comprehensive lineage dynamic in the primary tumor.  
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Figure 212. Heat-map for lineage primary tumor representation vs. metastasis outcome. As we 
can see from the heat-map, graphing the relationship of the metastasis outcome vs. lineage 
representation in the primary tumor (paired samples), abundance has a positive correlation with 
metastasis outcome; however, there are also lineage that are high represented that does not 
metastasize. This suggests that metastasis is not merely contribute by level of abundance.  
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Figure 213. A comprehensive lineage dynamic in the primary tumor, as well as in the liver. 
Superimposed lineage dynamics in the liver vs. in the primary tumor. Y axis represents the % 
representation of the lineage in either liver or the primary tumor.  
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Figure 214. A comprehensive lineage dynamic in the primary tumor, as well as in the lung. 
Superimposed lineage dynamics in the lung vs. in the primary tumor. Y axis represents the % 
representation of the lineage in either lung or the primary tumor.  
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