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THE ROLE OF HUMAN CAPITAL IN THE STRUCTURAL CHANGE 

PROCESS 

Michele Aparecida Nepomuceno Pinto1 

Edinaldo Tebaldi2 

Marina Silva da Cunha3 

RESUMO 

O objetivo deste artigo é verificar se o capital humano é um determinante importante da mudança 

estrutural nos diferentes setores da economia e se este pode acelerar a velocidade dessa transformação 

estrutural. Este artigo contribui com a literatura ao desenvolver um teste empírico do modelo proposto 

por Li et al. (2019) e ao utilizar o Método Generalizado de Momentos (GMM), que considera o 

problema de endogeneidade encontrado nas variáveis de capital humano. O artigo também utiliza 

duas proxies para capital humano e mudança estrutural, a fim de verificar se elas afetam ou não a 

variável de interesse e também para fornecer resultados robustos. Os resultados encontrados 

mostraram que o capital humano tem um papel essencial no processo de transformação estrutural da 

economia, uma vez que afeta a participação relativa dos setores no valor agregado total ou no emprego 

total. Além disso, o capital humano mostrou-se como um potencial acelerador dessa transformação 

estrutural. 

Palavras-chave: Capital Humano, Mudança Estrutural, GMM. 

ABSTRACT 

The main of this paper is to verify if human capital is an important determinant of structural change 

in the different sectors of the economy and if it can accelerate the speed of this structural 

transformation. This paper contributes to the literature once it develops an empirical test of the model 

proposed by Li et al. (2019) and it uses the generalized method of moments (GMM) which considers 

the problem of endogeneity found in human capital variables, it also uses two proxies for human 

capital and structural change in order to verify whether or not they affect the variable of interest and 

also to provide robust results. Results showed that human capital has an essential role in the structural 

transformation process of the economy, since it has an effect on the relative participation of the sectors 

on total added value or on total employment. Also, human capital proved to be a potential accelerator 

of this structural transformation. 
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1 Introduction 

The structural change of a country can be understood as a process of transformation of the 

economy with profound implications for the growth and development of society. As industrialization 

and modernization take place, countries cease to be based on low-productivity agriculture and become 

urbanized with modern, dynamic and more technological sectors. The service sectors develop and 

start to play an important role in the economy, as it accounts for the largest share of the gross domestic 

product. Human capital plays an important role in this process, since, as the educational level and the 

skills of the population increase, the labor productivity and the capacity for innovation exponentially 

develops, which accelerates the process of structural transformation of the economy. However, there 

is still much to be studied about the role of human capital in this process of structural transformation, 

therefore, this study is the main objective of this paper. 

Structural change is a process linked to the growth and development of nations which 

countries experience over time. As countries grow richer, secular shifts can be observed in their 

allocation of labor and expenditure across broad sectors (ŚWIĘCKI, 2017). As a rule, when countries 

get urbanized, they first reallocate employment, production and consumption of the agricultural sector 

to the industrial and service sectors. Subsequently, resources are often reallocated from industry to 

services (ALONSO-CARRERA and RAURICH, 2018)4.  

The reallocation of labor happens when countries begin to shift their development patterns 

toward more technological levels, thereby changing the participation (and importance) of agriculture, 

manufacturing and services in the country’s economy. Not only does structural change stimulate 

economic growth, it can also lead to a sustained growth path (MARTINS, 2019). Countries that 

experience changes in productive structures to a greater share of technology/knowledge-intensive 

activities tend to observe higher economic growth (TEIXEIRA and QUEIRÓS, 2016). 

Most of the literature is focused on analyzing the role of structural change on economic 

growth, but there is also a large body of literature that examines how this process happens and what 

are its main determinants. There is theoretical and empirical evidence that structural changes are 

driven by technological progress (Freeman et al., 1982; Święcki, 2017), openness to international 

trade (Matsuyama, 2009; Uy et al., 2013; Rodrik, 2016), changes in the demand structure as a result 

of income effects (Gollin et al., 2007; Duarte and Restuccia, 2010; Boppart, 2014), and relative price 

effects as a result of the introduction of heterogeneous sectoral production functions into the multi-

sector growth models (Alvarez-Cuadrado and Poschke, 2011; Grossmann, 2013). Chenery (1960) 

argued that in addition to demand-related factors, changes in supply conditions like the capital stock 

per worker and skill levels should be considered when looking at the determinants of structural 

change.  

Human capital, which is one of the main determinants of economic growth (Schultz, 1961; 

Becker, 1964; Barro, 1991), has been overlooked in the literature as a determinant of structural 

change. A large body of literature in growth theory is dedicated to examining human capital 

accumulation and structural change separately, but few works focus on their empirical and theoretical 

relationship (Li et al., 2019). One way to progress in the understanding of the effects of human capital 

on growth is to focus on channels through which such effects could work (CICCONE and 

PAPAIOANNOU, 2009) and one of these channels is through structural change. 

Kongsamut et al. (1997, 2001), seeking to explain the Kuznets facts, developed a three sectors 

nonbalanced growth model and concluded that structural change occurs due to the difference in 

income elasticity of demand for the final goods of the three main sectors - agriculture, manufacturing 

and services. In order to investigate the relationship between human capital and structural change, Li 

et al. (2019) developed a theoretical model proposing the combination of the structural change model 

 
4 This is the classical definition of structural change and can be seen in more detail in the works of Kuznets (1966, 1971), 

Chenery and Syrquin (1975), Robinson and Syrquin (1986). 
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developed by Kongsamut et al. (1997, 2001) with the endogenous growth model proposed by Romer 

(1990). The authors suggest that by introducing Romer's (1990) endogenous technological change 

into the multi-sector growth model pioneered by Kongsamut et al. (1997, 2001), human capital can 

accelerate the structural change of the economy.  

Ciccone and Papaioannou (2009) found evidence of a positive relationship between human 

capital and structural change because added value and employment growth in school-intensive 

industries was significantly faster in economies with higher initial levels of schooling. Also, 

according Li et al. (2019), there is a positive and statistically significant relationship between the 

stock of human capital and the speed of structural change. One reason would be that accumulation of 

human capital expands the role of Research and Development (R&D) in the economies (BODMAN 

and LE, 2013) and affects the technological progress of countries (ROMER, 1990; CASELLI and 

COLEMAN, 2006). Thus, as the stock of human capital of the countries increases, the productivity 

and skill of the workers increases, leading to an acceleration of the structural change of the country.  

Considering that there are few papers devoted to studying the human capital as a source of 

structural change and that empirical works usually use only three sectors in the analysis, it is 

understood that this article, when testing a theoretical model that discusses those connections, fit 

within the literature in a novel way to offer insights on how to enhance the structural change of the 

economy. Given the important role of human capital and structural change in the economic growth 

of countries and that little is discussed about the impact of human capital on structural change, the 

question this article seeks to answer is: Is human capital an important determinant of structural change 

in the different sectors of the economy and can it accelerate the speed of this structural 

transformation? 

This paper contributes to the literature by: i) developing an empirical test of the model 

proposed by Li et al. (2019); ii) expanding on previous work by broadening the analysis by using ten 

sectors of the economy5 and, when using the generalized method of moments (GMM) instead of the 

fixed effects panel used by the author, it also considers the problem of endogeneity found in human 

capital variables; iii) using two proxies for human capital: the main purpose of using two different 

measures of human capital is to do an exploratory analysis of these alternative measures in order to 

verify whether or not they affect the variable of interest and also to provide robust results. More 

specifically, the objective of the paper is to estimate the direct effects of human capital on structural 

change, considering two different measures of human capital, while controlling for other determinants 

found in the literature.  

Seeking to meet these objectives, this paper uses system GMM estimates to examine the model 

proposed by Li et al. (2019). The dynamic panel data model was chosen due to the problems of 

endogeneity and heterogeneity that can be found in human capital empirical studies (ZHANG and 

ZHUANG, 2011; TEIXEIRA and BARROS, 2019). The data used comes from several sources: 

GGDC 10-Sector Database; Penn World Table; World Development Indicators from World Bank 

and schooling data from Barro and Lee (2013) and covers 40 countries with annual data from 1950 

to 2013. Results showed that human capital has an essential role in the structural transformation 

process of the economy, since it has an effect on the relative participation of the sectors on total added 

value or on total employment. Also, human capital proved to be a potential accelerator of this 

structural transformation.  

 
5 The sectors used in this paper follow the ten main sectors of the economy as defined in the International Standard 

Industrial Classification, Revision 3.1 (ISIC rev. 3.1): agriculture (includes agriculture, hunting, forestry and fishing); 

mining (includes mining and quarrying); manufacturing; utilities (includes electricity, gas and water supply); 

construction; trade services (includes wholesale and retail trade, hotels and restaurants); transport services (includes 

transport, storage, and communication); finance services (includes finance, insurance, real estate and business services); 

government services and personal services (includes community, social and personal services). 
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The rest of the paper is structured as follows: section 2 presents the literature review about 

structural change and human capital, section 3 presents the model and the methodology used, section 

4 presents the results and discussion, and section 5 concludes and summarizes the paper’s results. 

 

2 Literature review and theoretical background 

 

Structural change can be understood as a process that occurs as countries advance in the 

development of their economies. It occurs when countries develop dynamic agricultural, 

manufacturing and services sectors and, consequently, experience a significant increase in income 

levels. Human capital has an important role in this process, since as people's educational level 

increases as well as their skills, the country's productivity grows and, with that, there is an acceleration 

of the structural change process. However, there is still much to be explored in the relationship 

between these two variables, so this section aims to summarize the main features of structural 

transformation and human capital. 

Structural change is a process of qualitative transformation of the structure of employment 

and production of an economy (sequential rearrangement of economic activity that accompanies the 

process of economic development over time), presenting itself not only as a by-product of the 

economic growth, but as one of its main drivers. Although the process of structural change is a central 

feature of economic development, its pace and direction vary substantially from economy to economy 

(KUZNETS, 1966). The discussion of structural change began in the literature with the seminal works 

of Fisher (1939), Kaldor (1961), Kuznets (1966, 1971), Chenery and Syrquin (1975), Chenery et al., 

(1986). 

This process is a reality that has been taking place for decades in countless countries around 

the globe. The reallocation of labor happens when countries begin to shift their development patterns 

toward more technological levels, thereby changing the participation (and importance) of sectors in 

each country’s economy. The performance of an economy depends on its ability to promote structural 

change from trends in reallocating inputs and outputs from less productive sectors to those with 

greater technological and demand dynamics (CHENERY, 1960; KALDOR, 1961; KUZNETS, 1966; 

1971; BAUMOL, 1967; McMILLAN and RODRIK, 2011).  

For a long time, the process of structural change did not play a relevant role in economic 

growth studies. However, in recent years, there has been a resurgence of interest in the study that 

encompasses the role of structural change in the process of economic growth and development 

(TEMPLE, 2005; McMILLAN and HEADY, 2014), from, for example, dual models of growth, 

assuming the coexistence of a relatively advanced sector and a relatively backward sector in the 

economy, whether modern/traditional, industry/agriculture, capitalist/subsistence, formal/informal 

(CASELLI, 2005; TEMPLE and WÖßMANN, 2006; DUARTE and RESTUCCIA, 2010; 

HERRENDORF et al., 2014).  

As countries move forward in the process of structural change, the relative importance of 

different sectors and, hence, sectoral employment shares changes. Initially, change occurs in the 

primary sector, where workers are released due to technological advances and migrate to the 

manufacturing sector. Secondly, employment shares rise steadily with increasing per capita income 

in the tertiary sector, which is also becoming a more technological and productive sector. 

Transformation in sectoral composition is continuous, constantly observing an increase in the 

importance of some sectors in the economy as well as the decline of others (TEIXEIRA and 

QUEIRÓS, 2016). However, in some developing countries in recent years, there seems to be a process 

of “direct” structural change, where workers are migrating from the direct agricultural sector to the 

tertiary sector, i.e. these countries are “skipping” the phase of manufacturing development. 

Considering the role of structural change in the economic growth of countries, as well as these new 
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patterns of structural change, where technology increasingly plays an important role, the importance 

of studying the role of human capital as a driver of structural change is reinforced. 

Human capital can be broadly defined as the stock of knowledge, skills and other personal 

characteristics embodied in people that help them to be more productive (BOTEV et al., 2019; 

GOLDIN, 2016). This set of intangible resources is associated with knowledge and skills gained 

through education, experience, health care and migration (SCHULTZ, 1961; BECKER, 1962; 

TEIXEIRA and QUEIRÓS, 2016). According Acemoglu (2009), the term was coined because many 

of those attributes are accumulated by workers through investments. 

The literature points to two mechanisms through which human capital can affect economic 

growth. First, education increases the human capital of the workforce, which increases labor 

productivity and, consequently, leads to a higher level of equilibrium production (ROMER, 1990; 

BODMAN and LE, 2013). Second, following endogenous growth theories, a higher educational level 

increases the capacity for innovation in the economy, leads to the development of new technologies, 

products and processes, and thus promotes economic growth (ROMER, 1990; HANUSHEK and 

WOESSMANN, 2008). 

Despite advances in empirical research on the role of human capital, there is still no consensus 

on which measure of human capital is the most appropriate. The most commonly used proxy of human 

capital is the average years of schooling provided by Barro and Lee (2013), particularly because of 

its wide country coverage. However, Mulligan and Sala-i-Martin (1995) pointed out that average 

years of schooling are a weak proxy for human capital because it assumes that workers are perfect 

substitutes regardless of their field of activity, differences in productivity among workers are 

proportional to years of schooling regardless of their salary differences and that a year of study 

generates the same skill increase, regardless of the quality of education or area of study; it also 

assumes the constant elasticity of substitution among workers, even if they are of different categories. 

In addition, using school attainment as a measure of human capital in an international setting 

presents huge difficulties because it does not include the differences in skills learned across countries, 

and it implies that an additional school year increases human capital at a constant rate 

(WOESSMANN, 2003; HANUSHEK, 2013). Despite these problems, the average years of schooling 

is the most common proxy of human capital used in the literature (Lee and Barro, 2001; Moral-Benito, 

2012; Haraguchi et al., 2019).  

Another proxy commonly used in the literature is primary, secondary and tertiary school 

enrollment rates, also provided by Barro and Lee (2013). This proxy considers the highest level 

attained percentage of the population aged 15 and over and has been used in numerous studies (i.e. 

Barro, 1991; Levine and Renelt, 1992; Bruns and Ioannidis, 2020). 

In recent years numerous other measures of human capital have emerged. However, most of 

these proxies use quantitative data and they do not give an indication of the skill level of the 

workforce. According to Benos and Zotou (2014), one solution in order to account for qualitative 

differences across education systems, is to focus on quality education measures such as educational 

expenditure, student/teacher ratios, and test scores. However, data available which address the quality 

of education is limited to a few countries or a few time periods, which makes cross-country analysis 

difficult. 

The above discussion shows that all available education measures have advantages and 

disadvantages, and this must be considered when the effect of education is analyzed (BENOS and 

ZOTOU, 2014). Therefore, when aiming to analyze the role of human capital, using more than one 

measure of analysis may be the way to obtain more robust empirical results that better explain the 

real world. 

Considering that the objective of the article is to study the role of human capital in the 

structural transformation process of the economy, this paper used the theoretical model proposed by 
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Li et al. (2019) where the author introduces Romer (1990)’s endogenous technological change into 

the multi-sector growth model pioneered by Kongsamut et al. (1997, 2001). 

The authors start from an economy with three sectors (a final-goods sector, an intermediate-

goods sector, and a research sector) and show that the rate of economic growth depends on the total 

stock of human capital, time discount rate and technological parameters of the research and final-

goods sectors. The larger the total stock of human capital in the economy is, the more the human 

capital employed in the research sector becomes and the faster knowledge accumulates. 

Consequently, the rate of economic growth will be higher. 

They demonstrate that there are aggregate effects of human capital on structural change. Thus, 

an increase of human capital accelerates the shrink of the agricultural sector and the expansions of 

the manufacturing and services sectors, concluding that an increase of human capital accelerates the 

structural transformation of the economy. 

 

 

4 Methods and data 

 This section provides the general methodology used in this paper, which is the dynamic panel 

data model and the databank collected in order to do so. 

 

4.1 General method 

 

 This section presents an empirical model that seeks to test the predictions of the theoretical 

model proposed by Li et al. (2019)6. Due to the possible problems of endogeneity and heterogeneity 

that can be found in human capital empirical studies (Bond et al., 2001), this paper uses a dynamic 

panel data model, where differences between countries are captured across and over time. The 

parameters of the following dynamic specification are estimated: 

𝑠𝑐𝑖𝑡 = 𝛿𝑠𝑐𝑖,𝑡−1 + 𝛽′𝑋𝑖𝑡 + 𝜆ℎ𝑐𝑎𝑝𝑖𝑡 + 𝜃′𝐷𝑖𝑡 + 𝑢𝑖𝑡                                               (12) 

where 𝑠𝑐𝑖𝑡 is the structural change variable in either of the ten sectors used in this paper: it was used 

two different measures of structural change: the employment share and the added value at constant 

2005 national prices share. 𝑋𝑖𝑡 is a 𝐾 𝑥 1 vector of the linear explanatory variables (physical capital 

per worker, population density, international trade). The variable ℎ𝑐𝑎𝑝𝑖𝑡 represents the variable of 

interest and shows the impact of a changing proportion of human capital (considering the two 

different measures proposed) on the structural change variable in either of the ten sectors. Besides 

that, 𝐷𝑖𝑡 is a vector of the cross-sectional fixed effects, 𝑠𝑐𝑖,𝑡−1is the first lag of the dependent variable, 

which was included in order to consider its temporal correlation, and 𝑢𝑖𝑡 is the component error 

vector.  

In the presence of the fixed effects estimation of the parameters of the dynamic panel data 

model is subject to estimation bias (Nickell, 1981). As the solution to it, a number of panel data 

estimators have been proposed, including the instrumental estimator of Anderson and Hsiao (1982) 

that uses the first-differences of the data in order to eliminate the fixed effects. 

Arellano and Bond (1991) expanded the Anderson and Hsiao (1982) estimator and found that 

there are many more instruments available within the GMM framework than used by conventional 

instrumental variable estimation. The GMM estimator of Arellano and Bond (1991) is the twostep 

estimator. In the first step, the parameters are estimated using the identity matrix for weighting the 

 
6 For a detailed analysis of the theoretical model used in this paper, see Li et al. (2019). 
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moment conditions. In the second step, an asymptotically more efficient estimation is conducted by 

optimal weighting of the moment condition using the first-step estimation results. 

The second equation that forms the system is the following difference equation: 

Δ𝑠𝑐𝑖𝑡 = 𝛿Δ𝑠𝑐𝑖,𝑡−1 + 𝛽′Δ𝑋𝑖𝑡 + 𝜆Δℎ𝑐𝑎𝑝𝑖𝑡 + Δ𝑢𝑖𝑡                                                (13) 

where Δ is the first-difference operator. The problem of instrument quality is minimized by using lags 

of the dependent variable as instruments for the first equation and the lags of the variables in 

differences for the second equation (Arellano and Bond, 1981; Arellano and Bover, 1995; Blundell 

and Bond, 1998). 

In addition to the difference-GMM, which can show persistence in the series, and 

consequently, the level variables become weak instruments for the difference equation, implying bias 

and low precision in finite samples (BLUNDELL and BOND, 1998), the system-GMM can be used. 

In the system-GMM estimation, the model itself and the first difference of the model are estimated 

as a “system”. Thus, system-GMM is formed by the level equation, which uses difference lags as 

instruments, and the difference equation which uses level-lagged variables as instruments. Blundell 

and Bond (1998) present evidence that this estimator, for finite samples, would perform better than 

the difference-GMM estimator both in terms of bias and efficiency. 

Furthermore, as one of the mains of this paper is to verify whether human capital, in addition 

to affecting structural change, is able to accelerate the speed with which such change occurs, after 

initial estimates new estimates are made from the primary results obtained, that is, the second 

derivative of the model is obtained, which allows to verify the rate of change (speed) of the structural 

transformation. The rate of change is calculated according to the following equation (14): 

𝑔𝑠𝑐𝑡
=

𝑙𝑛(𝑠ℎ𝑠𝑐𝑖,𝑡
𝑠ℎ𝑠𝑐𝑖,𝑡−5

⁄ )

5
                                                            (14) 

where 𝑔𝑠𝑐𝑡
is the speed of the structural change (rate of change), 𝑔𝑠𝑐𝑡

 is the share of each sector on 

total employment or added value and 𝑠ℎ𝑠𝑐𝑖,𝑡−5
 is the share of each sector on total employment or 

added value in time t-5.  

4.2 Data 

Considering that one of the objectives of this paper is to work with a larger number of sectors 

besides the three normally used in the literature (agriculture, manufacture and services), the main 

dataset we used is the GGDC 10-Sector Database (TIMMER et al., 2015), which provides a long-run 

internationally comparable dataset on sectoral productivity performance for 40 countries7 and 

includes annual data from 1950 to 2013. This dataset covers the ten main sectors of the economy as 

defined in the International Standard Industrial Classification, Revision 3.1 (ISIC rev. 3.1): 

agriculture; mining; manufacturing; utilities; construction; trade services; transport services; business 

services; government services and personal services. Physical capital per worker and population 

density data were collected from Penn World Table 9.1. International trade data comes from the 

World Development Indicators data base of the World Bank. 

 
7 The countries in the sample are: Argentina, Bolivia, Botswana, Brazil, Chile, China, Hong Kong (China), 

Colombia, Costa Rica, Denmark, Egypt, Ethiopia, France, Ghana, India, Indonesia, Italy, Japan, Kenya, 

Malawi, Malaysia, Mauritius, Mexico, Netherlands, Nigeria, Peru, Philippines, Republic of Korea, Senegal, 

Singapore, South Africa, Spain, Sweden, Taiwan, Thailand, Tanzania, United Kingdom, United States, 

Venezuela and Zambia. 
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Due to the fact that there is no consensus in the literature on which would be the most 

appropriate measure for human capital, another aim of this paper is to use and test two different 

measures of human capital in order to verify which one is the most appropriate to explain the process 

of structural change. The first measure used is the average years of schooling provided by Barro and 

Lee (2013) and it is the most commonly used proxy of human capital (Temple and Wöβmann, 2006; 

Bodman and Le, 2013). 

The second measure of human capital is the Penn World Table index based on the average 

years of schooling from Barro and Lee (2013) and Cohen and Soto (2007) and an assumed rate of 

return to education, based on Mincer equation estimates around the world (Psacharopoulos, 1994). 

This is a relatively new measure of human capital, however, is considered a superior measure in 

capturing multidimensional facets of human capital (Feenstra et al., 2015). Murphy and O’Rilley 

(2019) and Bruns and Ioannidis (2020) are examples of papers that used this proxy. 

The structural change variables (employment share and added value share) come from GGDC 

database, this dataset provides country-level data from 1950-2013 for 42 countries. However, 

considering that human capital data provided by Barro and Lee (2013) has a 5-year interval between 

observations, it was used the same interval for the Penn World Table index data, so, it is possible to 

compare the results and the control variables were linearized. The number of observations used in 

this paper was 344. 

 

5 Results 

5.1 The human capital role on the structural change of the sectors 

As the first aim of this paper it is to analyze the human capital role in the structural 

transformation of the sectors, Table 1 shows the results of the GMM model for the Added Value share 

of the ten sectors analyzed considering the Penn World Table index as a proxy for human capital. All 

GMM results were obtained using GMM-style instruments that were replaced with their main 

components using the method developed by Mehrhoff (2009), Kapetanios and Marcellino (2010) and 

Bai and Ng (2010) and all models include time dummies8. 

Importantly, although the models for each sector are independents9, they all have satisfied all 

the requirements of the Arellano-Bond AR(1) and AR(2) tests. The AR(1) correlation is positive and 

statistically significant in all models, but the AR(2) correlation is not significant at standard levels. 

Also, the Sargan Overidentification test presented the expected results. Thus, the results of these three 

tests suggest that the instruments are valid for all regressions reported in Table 110. Considering the 

results in Table 1, it is possible to verify that, of the 10 sectors analyzed, six sectors presented 

significant results for the human capital index: Mining, Manufacturing, Utilities, Construction, Trade 

and Financial services. 

The coefficients of the mining and utilities sectors were both significant and negative, 

showing that, for these sectors, human capital is an important element to explain structural change 

but its impact is negative, that is, the increase in the level of human capital it is contributing to the 

reduction of structural change in these sectors (as workers acquire more human capital, they migrate 

to other sectors, which contributes to reducing the share of added value related to these sectors). 

 
8 A 5-year interval was used in all regressions since it is understood in the literature that human capital does not change 

sharply from one year to another, thus, a longer period allows a more concrete analysis of the impact of this variable on 

structural transformation. 

9 The models are considered independent because they were run separately, where each model structure (number of lags 

and/or orthogonality condition) is unique for each sector. 
10 Among all the regressions run, only two models did not pass the validity tests of the instruments: mining sector and 

utilities sector considering employment share and PWT as human capital index, both are in the Table 2. 
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Table 1 – Dependent Variable: Added Value share of each sector, human capital index: Penn World Table, 1950-2010 (5-year interval) 

(GMM-style instruments replaced with their principal components) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

L.Employment share  0.792*** 0.837*** 1.076*** 0.990*** 0.674*** 0.871*** 1.025*** 0.798*** 0.842*** 0.919*** 

 [11.38] [10.03] [25.59] [13.52] [9.09] [10.74] [11.30] [17.76] [15.16] [28.77] 

Human capital index -0.486 -10.46** 3.616** -0.488** 1.518* 2.852** -1.107 2.559** 2.101 0.662 

 [-0.22] [-2.28] [2.06] [-2.22] [1.96] [2.00] [-1.62] [2.15] [1.37] [0.55] 

Ln physical capital -0.409 1.158 -2.658*** 0.301** -0.529 -1.105 0.328 0.229 0.0386 0.750 

 [-0.37] [0.61] [-2.72] [2.36] [-1.08] [-1.33] [1.24] [0.52] [0.05] [0.85] 

Ln Population density 0.725 0.403 0.408 0.0353 -0.442* -0.234 0.296 -0.0398 -0.191 -0.549** 

 [1.28] [0.51] [1.29] [0.58] [-1.81] [-0.72] [1.52] [-0.43] [-1.37] [-2.48] 

Ln Exportation -1.255 -0.542 0.503 -0.0853 -0.272 1.854** -0.446* 0.182 0.0448 1.038 

 [-1.52] [-0.48] [1.07] [-0.87] [-0.51] [2.31] [-1.87] [0.75] [0.17] [1.32] 

Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 326 326 336 336 336 336 325 305 235 315 

# Instruments 47 49 44 47 46 50 37 38 37 49 

p-values for           

AR(1) 0 0 0 0 0 0 0 0 0 0 

AR(2) 0.583 0.545 0.843 0.299 0.804 0.460 0.836 0.128 0.872 0.953 

Sargan Overid 0.152 0.568 0.375 0.127 0.390 0.395 0.378 0.162 0.402 0.367 

Notes: Each model refers to the added value share of a sector: (1) Agriculture; (2) Mining; (3) Manufacturing; (4) Utilities; (5) Construction; (6) Trade; (7) Transportation 

services; (8) Financial services; (9) Government and (10) Community and personal services.  

t statistics in brackets, *p< 0.10, **p< 0.05, ***p< 0.01 

All regressions are estimated using a one-step system GMM estimator and include time dummies. Also, GMM-style instruments are replaced with their principal instruments 

components using the methods developed by Mehrhoff (2009); Kapetanios and Marcellino (2010) and Bai and Ng (2010) and are implemented in Stata using the command 

xtabond2. 

Specifications: Models (1) and (2): 1 lag for the share variable, 1 lag for the explanatory variables (human capital, physical capital and populational density), time variable and 

exportation considered exogenous and with 1 lag. Models (3), (4), (5) and (6): 1 lag for the share variable, 1 lag for all the explanatory variables, time variable considered 

exogenous e with 1 lag. Model (7): 1 lag for the share variable, 1 lag for the explanatory variables (human capital and populational density), time variable, physical capital and 

exportation considered exogenous with 1 lag. Models (8) and (9): 1 lag for the share variable, 1 lag for the explanatory variables (human capital and physical capital), time 

variable, populational density and exportation considered exogenous with 1 lag. Model (10): 1 lag for the share variable, 1 lag for the explanatory variables (human capital, 

physical capital and exportation), time variable and populational density considered exogenous e with 1 lag.  

Source: Author’s elaboration. 
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Table 2 – Dependent Variable: Employment share of each sector, human capital index: Penn World Table, 1950-2010 (5-year interval) 

(GMM-style instruments replaced with their principal components) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

L.Employment share  1.024*** 0.903*** 0.925*** 0.868*** 0.580*** 1.091*** 1.039*** 0.904*** 0.986*** 1.032*** 

 [12.32] [24.32] [16.86] [16.01] [6.52] [15.62] [12.89] [17.65] [15.50] [9.39] 

L2.Employment share      0.243***     -0.147 

     [2.75]     [-1.63] 

Human capital index -5.222 -0.151 -0.466 0.178** -1.590* 3.257*** 1.321** 1.200 2.880* -2.455*** 

 [-1.64] [-0.68] [-0.30] [2.56] [-1.89] [2.97] [2.15] [1.20] [1.81] [-2.60] 

Ln physical capital 2.217 -0.0997 -1.828** -0.109*** 0.855* -1.750*** -0.752** 0.242 -0.267 0.276 

 [1.63] [-0.67] [-2.11] [-2.89] [1.90] [-3.00] [-2.15] [0.41] [-0.35] [0.43] 

Ln Population density 2.459*** 0.0238 0.224 -0.0145** 0.0320 -0.794** -0.403* 0.0727* -0.237 -0.0746 

 [3.32] [0.38] [0.73] [-2.17] [0.45] [-2.57] [-1.72] [1.87] [-1.56] [-0.55] 

Ln Exportation -1.905 0.204 2.295** 0.0749*** -0.131 1.644** 1.075*** 0.182 -0.134 0.0847 

 [-1.22] [1.62] [2.46] [3.44] [-0.53] [2.41] [3.34] [0.68] [-0.24] [0.15] 

Time Dummies Yes yes yes yes yes yes Yes Yes yes yes 

Observations 335 335 335 307 298 335 335 307 251 289 

# Instruments 55 63 54 50 49 42 43 40 43 53 

p-values for           

AR(1) 0 0 0 0 0 0 0 0 0 0 

AR(2) 0.853 0.469 0.954 0.449 0.847 0.181 0.304 0.545 0.297 0.336 

Sargan Overid 0.530 0 0.932 0 0.181 0.284 0.912 0.332 0.504 0.142 

Notes: Each model refers to the employment share of a sector: (1) Agriculture; (2) Mining; (3) Manufacturing; (4) Utilities; (5) Construction; (6) Trade; (7) Transportation 

services; (8) Financial services; (9) Government and (10) Community and personal services.  

t statistics in brackets, *p< 0.10, **p< 0.05, ***p< 0.01 

All regressions are estimated using a one-step system GMM estimator and include time dummies. Also, GMM-style instruments are replaced with their principal instruments 

components using the methods developed by Mehrhoff (2009); Kapetanios and Marcellino (2010) and Bai and Ng (2010) and are implemented in Stata using the command 

xtabond2. 

Specifications: Models (1), (2) and (3): 2 lags for the share variable, 1 lag for all the explanatory variables, time variable considered exogenous and with 1 lag. Models (4), (5), 

(8) and (10): 2 lags for the share variable, 1 lag for the explanatory variables (human capital and physical capital), time variable, populational density and exportation considered 

exogenous e with 1 lag. Models (6) and (7): 1 lag for the share variable, 1 lag for all the explanatory, time variable considered exogenous e with 1 lag. Model (9): 1 lag for the 

share variable, 1 lag for the explanatory variables (human capital, physical capital and exportation), time variable and populational density considered exogenous e with 1 lag. 

Source: Author’s elaboration. 



11 

 

The sectors that showed a positive sign and were statistically significant were 

Manufacturing, Construction, Trade and Financial services. For these four sectors, human 

capital is relevant to explain the structural change that they underwent during the analysis 

period. The control variables, for the most part, did not present significant coefficients. 

The negative or positive impacts of human capital on each sector separately shows the 

general transformation that the countries underwent in the analyzed period. The sectors 

with negative impact are those that have become less important in the productive sphere, 

while those that have had a positive impact are those that, over time, have demanded more 

human capital: in general, the more technological sectors. 

When considering the structural change of the sectors from the perspective of 

employment share (Table 2), it can be seen that the Construction and Community services 

sectors presented negative and significant coefficients while Trade, Transportation and 

Government sectors presented positive and significant coefficients, these three sectors 

maintained the benchmark results. Thus, it is possible to affirm that human capital has a 

positive effect on the structural change occurred in these sectors. 

The results found when the human capital index of Barro and Lee (2013) was used 

can be found in Table A1 of the annex of this paper and corroborate the results found for 

the Penn World Table index. Considering employment share, the sectors that presented 

positive and significant coefficients were Agriculture, Utilities and Trade, which means 

that, for these sectors, the increase in the level of human capital impacts on the increase 

of the structural change in this sector. Analyzing the results of the added value share for 

the same index (Table A2), the results were less satisfactory because most of the 

regressions were not significant. 

The results show that the human capital role on the structural change of the sectors 

has some specific trends, regardless the human index used: the relative participation of 

each sector in the economy is affected by human capital in different ways. When the 

regressions have sectors with negative impact it means that they are losing relative 

participation in the economy and when the sectors have positive impact it means that they 

had an increase in their relative participation in the added value or in the employment. 

Thus, in the analyzed period, the countries showed a tendency to lose the relative 

participation of the primary and secondary sectors and to increase the relative 

participation of the more technological service sectors.  

Analyzing the set of results it is possible to verify that, in general, the results found 

are disparate, that is, human capital may not be affecting only the level of structural 

change, but rather the speed of this transformation, so that the next subsection presents 

the results of regressions in GMM considering the speed of structural change in the 

sectors as a dependent variable. 

 

5.2 The human capital as an explanatory factor for the speed of structural 

change in the sectors 

This subsection presents the results of regressions in GMM considering the speed 

of structural change as a dependent variable (considering employment share and added 

value share) and, again, using two indices for human capital: data from Penn World Table 

and Barro and Lee (2013). The speed was calculated as the second derivative of the model 

proposed. Table 3 presents the results of the GMM regression for speed of the 

employment share of each sector using the Penn World Table data as a proxy for human 

capital. The other regressions are included in the annexes to this paper. 
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Table 3 – Dependent Variable: Speed of the employment share of each sector, human capital index: Penn World Table, 1950-2010 (5-year interval) 

(GMM-style instruments replaced with their principal components) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

L.Employment share  0.428** 0.0225 0.538** 0.0788 -0.0167 0.188 0.172 -0.0539 0.254 0.157 

 [2.52] [0.10] [2.40] [0.47] [-0.11] [0.99] [1.26] [-0.29] [1.39] [0.79] 

L2.Employment share  0.0647  0.00352 0.0718 0.00259  -0.163* 0.116   

 [0.38]  [0.03] [0.68] [0.03]  [-1.88] [1.08]   

Human capital index -0.137 0.872*** -0.199* 0.0575 0.300* 0.180* -0.0970 0.295** 0.116 -0.158 

 [-1.40] [2.80] [-1.67] [0.46] [1.81] [1.83] [-0.88] [2.07] [1.40] [-1.30] 

Ln physical capital 0.0949* -0.417*** 0.0359 -0.0392 -0.204** -0.102** -0.00442 -0.0797* -0.0244 0.104 

 [1.79] [-2.94] [0.71] [-0.58] [-2.43] [-2.47] [-0.08] [-1.76] [-0.48] [1.59] 

Ln Population density 0.0340 -0.0330 0.0210 -0.0242 0.00648 -0.0157 0.0372 -0.0141 -0.0119 0.00829 

 [1.13] [-1.31] [0.87] [-1.53] [0.37] [-1.27] [1.26] [-1.24] [-1.54] [1.00] 

Ln Exportation -0.0933** -0.00483 -0.0407 0.104 0.0431 0.0440 -0.0204 0.0433 0.00931 -0.0881** 

 [-2.56] [-0.04] [-1.22] [1.35] [0.52] [0.91] [-0.55] [1.52] [0.42] [-2.52] 

Time Dummies Yes yes yes Yes yes Yes yes Yes yes yes 

Observations 290 308 289 288 288 308 290 281 235 289 

# Instruments 43 40 44 51 50 39 45 42 36 35 

p-values for           

AR(1) 0 0 0 0 0 0 0 0 0 0 

AR(2) 0.273 0.937 0.913 0.664 0.233 0.420 0.955 0.150 0.144 0.143 

Sargan Overid 0.346 0.549 0.915 0.240 0.711 0.779 0.113 0.365 0.113 0.680 

Notes: Each model refers to the speed of the added value share of a sector: (1) Agriculture; (2) Mining; (3) Manufacturing; (4) Utilities; (5) Construction; (6) Trade; (7) 

Transportation services; (8) Financial services; (9) Government and (10) Community and personal services.  

t statistics in brackets, *p< 0.10, **p< 0.05, ***p< 0.01 

All regressions are estimated using a one-step system GMM estimator and include time dummies. Also, GMM-style instruments are replaced with their principal instruments 

components using the methods developed by Mehrhoff (2009); Kapetanios and Marcellino (2010) and Bai and Ng (2010) and are implemented in Stata using the command 

xtabond2. 

Specifications: Models (1) and (7): 2 lags for the share variable, 1 lag for all the explanatory, time variable considered exogenous and with 1 lag. Models (2) and (6): 1 lag for 

the share variable, 1 lag for the explanatory variables (human capital, physical capital and exportation), time variable and populational density considered exogenous e with 1 

lag. Model (3): 2 lags for the share variable, 1 lag for the explanatory variables (human capital and populational density), time variable, physical capital and exportation 

considered exogenous with 1 lag. Models (4) and (5): 2 lags for the share variable, 1 lag for the explanatory variables (human capital, physical capital and exportation), time 

variable and populational density considered exogenous with 1 lag. Model (8): 2 lags for the share variable, 1 lag for the explanatory variables (human capital and physical 

capital), time variable, populational density and exportation considered exogenous e with 1 lag. Models (9) and (10): 1 lag for the share variable, 1 lag for the explanatory 

variables (human capital and physical capital), time variable, populational density and exportation considered exogenous e with 1 lag. 

Source: Author’s elaboration. 
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Table 4 – Dependent Variable: Speed of the employment share of each sector, human capital index: Barro and Lee (2013), 1950-2010 (5-year interval) 

(GMM-style instruments replaced with their principal components) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

L.Employment share  0.346 -0.378 0.359** 0.0550 -0.270 0.0187 0.0517 -0.0499 0.269** 0.0557 

 [1.63] [0.02] [2.18] [0.32] [-1.55] [0.12] [0.47] [-0.31] [2.36] [0.29] 

L2.Employment share     0.0877   -0.147* 0.0832 0.0681 -0.00507 

    [0.81]   [-1.67] [0.76] [0.73] [-0.04] 

Human capital index -0.0480 0.013 0.00595 -0.0292 0.0673* 0.0539** -0.0238 0.0529** 0.0174 -0.0499 

 [-1.43] [0.70] [0.23] [-1.09] [1.74] [2.06] [-1.25] [2.00] [1.37] [-1.56] 

Ln physical capital 0.0389 -0.122 -0.111** -0.0270 -0.209*** -0.179*** -0.0301 -0.133*** -0.0407* 0.0524 

 [0.81] [0.09] [-2.46] [-0.56] [-3.05] [-3.25] [-0.78] [-3.27] [-1.74] [1.12] 

Ln Population density 0.0166 -0.005 -0.0142 0.0734** -0.00724 -0.00667 -0.00498 -0.00301 0.00315 0.0723** 

 [0.70] [0.89] [-1.29] [2.40] [-0.47] [-1.12] [-0.53] [-0.23] [0.52] [2.51] 

Ln Exportation -0.0527* 0.004 0.101** 0.0176 0.189** 0.0835*** 0.0582 0.105* 0.0111 -0.109*** 

 [0.08] [0.95] [0.02] [0.77] [0.03] [0.00] [0.13] [0.09] [0.39] [0.00] 

Time Dummies yes yes yes yes Yes yes yes yes yes Yes 

Observations 291 291 291 282 289 281 273 273 213 266 

# Instruments 38 38 46 57 42 34 52 55 46 45 

p-values for           

AR(1) 0 0 0 0 0 0 0 0 0 0 

AR(2) 0.153 0.153 0.975 0.740 0.772 0.701 0.697 0.495 0.547 0.400 

Sargan Overid 0.135 0.135 0.318 0.228 0.265 0.148 0.344 0.127 0.119 0.417 

Notes: Each model refers to the speed of the employment share of a sector: (1) Agriculture; (2) Mining; (3) Manufacturing; (4) Utilities; (5) Construction; (6) Trade; (7) 

Transportation services; (8) Financial services; (9) Government and (10) Community and personal services.  

t statistics in brackets, *p< 0.10, **p< 0.05, ***p< 0.01 

All regressions are estimated using a one-step system GMM estimator and include time dummies. Also, GMM-style instruments are replaced with their principal instruments 

components using the methods developed by Mehrhoff (2009); Kapetanios and Marcellino (2010) and Bai and Ng (2010) and are implemented in Stata using the command 

xtabond2. 

Specifications: Model (1): 1 lag for the share variable, 1 lag for the explanatory variables (human capital, physical capital and populational density), time variable and exportation 

considered exogenous and with 1 lag. Model (2): 1 lag for the share variable, 1 lag for all the explanatory variables, time variable considered exogenous and with 1 lag. Model 

(3): 1 lag for the share variable, 1 lag for the explanatory variables (human capital, physical capital and exportation), time variable and populational density considered exogenous 

and with 1 lag. Model (4): 2 lags for the share variable, 1 lag for all the explanatory variables, time variable considered exogenous and with 1 lag. Model (5): 1 lag for the share 

variable, 1 lag for the explanatory variables (human capital and exportation), time variable, physical capital and populational density considered exogenous and with 1 lag. 

Model (6): 1 lag for the share variable, 1 lag for the explanatory variables (human capital and physical capital), time variable, exportation and populational density considered 

exogenous and with 1 lag. Models (7) and (8): 2 lags for the share variable, 1 lag for all the explanatory variables, time variable considered exogenous and with 1 lag. Model 

(9): 2 lags for the share variable, 1 lag for the explanatory variables (human capital and physical capital), time variable, exportation and populational density considered exogenous 

and with 1 lag. Model (10): 2 lags for the share variable, 1 lag for the explanatory variables (human capital and populational density), time variable, exportation and physical 

capital considered exogenous and with 1 lag. 

Source: Author’s elaboration. 
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The results show that, when considering the impact of the level of human capital on the speed 

of structural change, the sectors of Mining, Construction, Trade and Financial Services present 

positive and significant coefficients. In other words, for these sectors, human capital impacts by 

accelerating their structural transformation. The Manufacturing sector was the only sector that 

presented a negative and significant coefficient, in this case, the increase in the level of human capital 

would be contributing to slow down the structural change in that sector. The other sectors were not 

significant. 

Comparing the results of Table 3 with the other model (Table 4) it is possible to reach some 

conclusions: when the speed of the added value is used as a proxy for structural change, both the 

human capital indices of the Penn World Table and that of Barro and Lee (2013) presented the same 

results, meaning that the models are robust. In addition, the Manufacturing sector presented a negative 

and significant coefficient in three of the four models, thus, it is possible to affirm that in fact there is 

a decrease in the speed of structural change with the increase of human capital in this sector. The 

financial sector, on the other hand, presented a positive and significant coefficient in the four 

specifications, so it is possible to affirm that, in this sector, the increase in the level of human capital 

accelerates its structural transformation. 

This positive impact of human capital (regardless of which human capital index is used) in 

Financial Services is important because it shows that, as human capital in this sector increases, its 

structural change accelerates. In other words, there seems to be a movement in the analyzed period 

in favor of the service sectors to the detriment of the primary and secondary sectors. This movement 

is expected when it comes to structural change, since, with the passage of time and evolution of human 

capital, it is expected that the employment share and the added value share of the service sectors will 

increase, as these results show that, in general, countries are on a path that leads to developed and 

modern economies. These results corroborate those found by Martins (2019): the author emphasizes 

that services are the main driver of economic performance and the key catalyst for structural change. 

The results altogether show that the human capital level proved to be very important to explain 

the structural transformation that occurred in the period as well as the rate of change of it. Thus, 

human capital shows itself as an important driver of the structural change that occurred in the period, 

which implies that countries that wish to accelerate their structural transformation must invest in 

increasing the levels of human capital, because following this path they not only foster economic 

development but reach it faster. 

 

6 Conclusion 

 

The determinants of the process of structural change that occurs in the economy have been 

the subject of an increasing portion of the economic literature. Human capital is among these 

determinants, whose role in explaining structural changes in the economy is still poorly studied. 

Considering this, this paper sought to find evidence to determine whether human capital is an 

important determinant of structural change in different sectors of the economy and whether it can 

accelerate the speed of this structural transformation. To answer this question, this article developed 

an empirical test of the model proposed by Li et al. (2019) using two proxies for human capital and 

applied the generalized method of moments to correct the endogeneity problem.  

First of all, the results showed the importance of using GMM when working with human 

capital. By correcting the problem of endogeneity present in this variable, the results became more 

consistent and reliable. Also, the regressions showed that the use of different proxies for the human 

capital variable and for the measurement of structural change were able to present satisfactory results, 

which means that the results were consistent regardless of which proxy was used. Therefore, it is 

possible to state that the choice of different proxies for the variables does not significantly alter the 

results, so the choice of one or the other becomes indifferent. 
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Human capital has shown to have an essential role in the structural transformation process of 

the economy, since this has an effect on the relative participation of the sectors on total added value 

or on total employment. Also, human capital proved to be a potential accelerator of this structural 

transformation. 

Special attention must be given to the financial sector. This paper provided evidence that in 

this sector, regardless of the proxy for human capital or structural change used, the coefficients were 

positive and significant, showing that, by increasing human capital levels, countries accelerate the 

structural change in this sector, which can be seen as the most modern and technological among the 

ten sectors analyzed. By accelerating the structural transformation of this sector, countries 

automatically accelerate their own developments, which will take them faster to more developed and 

complex economic levels. 

Based on these conclusions, the important role of human capital is reinforced in allowing this 

acceleration of structural change, which indirectly leads countries to economic growth and 

development. Also, considering that the results were robust due to the use of various proxies for 

human capital, the main policy implication of this paper is that what decision makers need to consider 

is what kind of structural transformation they want to make in their respective countries. This is not 

an easy task and begins with deciding which sectors need to accelerate or decelerate structural change 

most. Based on this decision, investment in human capital in specific sectors is important for the 

effectiveness of this planned structural change. 

As a suggestion for future research, it is understood as important and necessary the inclusion 

of squared human capital variables, as they would permit to capture non-linear relationships, as well 

as the inclusion, on the model, of the demand variables of the economy, as a way to expand the 

analysis, ensuring results that better explain the real world. In addition, it is suggested to create an 

index of structural change that covers both employment share and added value share in a way that 

allows a unified empirical analysis. 
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ANNEXS 

 

 
Table A1 – Dependent Variable: Employment share of each sector, human capital index: Barro and Lee (2013), 1950-2010 (5-year interval) 

(GMM-style instruments replaced with their principal components) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

L.Employment share  1.086*** 0.794*** 0.970*** 0.743*** 0.623*** 1.078*** 0.994*** 1.342*** 0.984*** 0.968*** 

 [19.84] [11.36] [19.89] [9.72] [3.19] [14.26] [6.26] [5.89] [12.79] [12.50] 

L2.Employment share      0.312*  0.0137 -0.419*   

     [1.73]  [0.10] [-1.68]   

Human capital index 0.897* -0.324*** -0.555* 0.0442*** -0.248 0.555* -0.0723 0.158 0.247 -1.037** 

 [1.65] [-2.95] [-1.65] [2.83] [-0.97] [1.86] [-0.57] [0.76] [0.56] [-2.19] 

Ln physical capital 0.833 0.583** -0.501 -0.0433 -0.518 -0.584 0.00174 0.173 0.580 0.614 

 [0.92] [2.14] [-0.72] [-1.28] [-0.97] [-1.19] [0.01] [0.72] [0.67] [0.79] 

Ln Population density 0.351 -0.0950* 0.0982 -0.0198* 0.425* -0.255 -0.0336 -0.0861 -0.148 -0.229 

 [1.03] [-1.80] [0.37] [-1.95] [1.81] [-1.52] [-0.50] [-0.37] [-1.08] [-0.67] 

Ln Exportation -0.393 -0.118 0.521 0.0732** -0.720 0.0626 0.222 0.205 -0.108 -0.368 

 [-0.45] [-1.05] [0.76] [2.29] [-1.16] [0.09] [0.87] [0.82] [-0.41] [-0.44] 

Time Dummies yes yes yes yes yes yes Yes yes yes yes 

Observations 316 289 316 299 301 299 291 290 233 306 

# Instruments 50 46 46 46 52 38 44 39 34 51 

p-values for           

AR(1) 0 0 0 0 0 0 0 0 0 0 

AR(2) 0.519 0.333 0.890 0.736 0.879 0.722 0.142 0.251 0.160 0.371 

Sargan Overid 0.139 0.132 0.659 0.149 0.599 0.314 0.464 0.321 0.164 0.964 

Notes: Each model refers to the employment share of a sector: (1) Agriculture; (2) Mining; (3) Manufacturing; (4) Utilities; (5) Construction; (6) Trade; (7) Transportation 

services; (8) Financial services; (9) Government and (10) Community and personal services.  

t statistics in brackets, *p< 0.10, **p< 0.05, ***p< 0.01 

All regressions are estimated using a one-step system GMM estimator and include time dummies. Also, GMM-style instruments are replaced with their principal instruments 

components using the methods developed by Mehrhoff (2009); Kapetanios and Marcellino (2010) and Bai and Ng (2010) and are implemented in Stata using the command 

xtabond2. 

Specifications: Models (1), (3) and (10): 1 lag for the share variable, 1 lag for all the explanatory variables, time variable considered exogenous and with 1 lag. Models (2), and 

(9): 1 lag for the share variable, 1 lag for the explanatory variables (human capital and physical capital), time variable, populational density and exportation considered exogenous 

e with 1 lag. Models (4) and (6): 1 lag for the share variable, 1 lag for the explanatory variables (human capital, physical capital and exportation), time variable and populational 

density considered exogenous e with 1 lag. Model (5): 2 lags for the share variable, 1 lag for all the explanatory variables, time variable considered exogenous e with 1 lag. 

Model (7): 2 lags for the share variable, 1 lag for the explanatory variables (human capital, physical capital and exportation), time variable and populational density considered 

exogenous e with 1 lag. Model (8): 2 lags for the share variable, 1 lag for the explanatory variables (human capital and populational density), time variable, physical capital and 

exportation considered exogenous e with 1 lag.  

Source: Author’s elaboration.  
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Table A2 – Dependent Variable: Added Value share of each sector, human capital index: Barro and Lee (2013), 1950-2010 (5-year interval) 

(GMM-style instruments replaced with their principal components) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

L.Employment share  0.933*** 0.619*** 1.010*** 1.045*** 0.566*** 0.902*** 1.125*** 1.052*** 0.829*** 0.846*** 

 [6.69] [8.14] [21.63] [9.46] [4.15] [10.91] [7.53] [4.87] [7.74] [11.17] 

L2.Employment share  -0.0255    0.0621  -0.161 -0.169   

 [-0.19]    [0.58]  [-1.12] [-0.90]   

Human capital index -0.261 -1.603** -0.0935 -0.0624 0.153 0.314 -0.0927 -0.249 0.909* -0.580 

 [-0.71] [-2.00] [-0.26] [-0.94] [0.78] [0.83] [-0.53] [-0.81] [1.88] [-1.26] 

Ln physical capital 1.102 1.437 -0.785 0.131 0.405 -0.572 -0.512 0.696 -0.825 1.051 

 [1.56] [0.99] [-0.94] [1.02] [0.74] [-0.75] [-1.19] [1.44] [-1.20] [1.51] 

Ln Population density 0.363 -1.275*** 0.891*** 0.00215 -0.205 -0.189 0.119 -0.847* -0.113 -1.006** 

 [0.91] [-3.29] [2.72] [0.07] [-0.99] [-0.91] [1.33] [-1.71] [-1.12] [-2.34] 

Ln Exportation -1.068** 1.334* 0.982* -0.0313 -0.887 2.149*** -0.0614 0.752 0.345 0.741 

 [-2.05] [1.84] [1.65] [-0.31] [-1.29] [3.41] [-0.14] [1.57] [1.24] [1.37] 

Time Dummies Yes Yes yes yes yes yes yes yes yes yes 

Observations 295 287 316 297 305 297 291 294 225 305 

# Instruments 54 42 47 45 57 47 54 44 30 42 

p-values for           

AR(1) 0 0 0 0 0 0 0 0 0 0 

AR(2) 0.611 0.424 0.827 0.318 0.199 0.614 0.434 0.920 0.837 0.834 

Sargan Overid 0.133 0.262 0.424 0.277 0.138 0.238 0.497 0.798 0.529 0.186 

Notes: Each model refers to the added value share of a sector: (1) Agriculture; (2) Mining; (3) Manufacturing; (4) Utilities; (5) Construction; (6) Trade; (7) Transportation 

services; (8) Financial services; (9) Government and (10) Community and personal services.  

t statistics in brackets, *p< 0.10, **p< 0.05, ***p< 0.01 

All regressions are estimated using a one-step system GMM estimator and include time dummies. Also, GMM-style instruments are replaced with their principal instruments 

components using the methods developed by Mehrhoff (2009); Kapetanios and Marcellino (2010) and Bai and Ng (2010) and are implemented in Stata using the command 

xtabond2. 

Specifications: Model (1): 2 lags for the share variable, 1 lag for the explanatory variables (human capital, physical capital and populational density), time variable and exportation 

considered exogenous and with 1 lag. Model (2): 1 lag for the share variable, 1 lag for the explanatory variables (human capital and physical capital), time variable, exportation 

and populational density considered exogenous and with 1 lag. Model (3): 1 lag for the share variable, 1 lag for all the explanatory variables, time variable considered exogenous 

and with 1 lag. Models (4) and (6): 1 lag for the share variable, 1 lag for the explanatory variables (human capital, physical capital and exportation), time variable and populational 

density considered exogenous and with 1 lag. Model (5): 2 lags for the share variable, 1 lag for all the explanatory variables, time variable considered exogenous and with 1 lag. 

Model (7): 2 lags for the share variable, 1 lag for the explanatory variables (human capital, physical capital and exportation), time variable and populational density considered 

exogenous and with 1 lag. (8): 2 lags for the share variable, 1 lag for the explanatory variables (human capital and populational density), time variable, physical capital and 

exportation considered exogenous and with 1 lag. Model (9): 1 lag for the share variable, 1 lag for the explanatory variables (human capital), time variable, physical capital, 

exportation and populational density considered exogenous and with 1 lag. Model (10): 1 lag for the share variable, 1 lag for the explanatory variables (human capital and 

populational density), time variable, physical capital and exportation considered exogenous and with 1 lag. 

Source: Author’s elaboration. 
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