
ABSTRACT

Title of dissertation: EMERGING OPPORTUNITIES
AND CHALLENGES
IN HARDWARE SECURITY

Yuntao Liu
Doctor of Philosophy, 2020

Dissertation directed by: Professor Ankur Srivastava
Department of Electrical and
Computer Engineering

Recent years have seen the rapid development of many emerging technologies

in various aspects of computer engineering, such as new devices, new fabrication

techniques of integrated circuits (IC), new computation frameworks, etc. In this

dissertation, we study the security challenges to these emerging technologies as well

as the security opportunities they bring. Specifically, we investigate the security

opportunities in double patterning lithography, the security challenges in physical

unclonable functions, and security issues in machine learning.

Double patterning lithography (DPL) is an emerging fabrication technique

for ICs. We study the security opportunities that DPL brings at the layout level.

DPL is used to set up two independent mask development lines which do not need

to share any information. Under this setup, we consider the attack model where

the untrusted employee(s) who has access to only one mask may try to infer the

entire circuit design or insert additional malicious circuitry into the design. As a

countermeasure, we customize DPL to decompose the layout into two sub-layouts in

such a way that each sub-layout individually exposes minimum information about

the other and hence protects the entire layout from any untrusted personnel.

Physical unclonable functions (PUF) are a type of circuits for which each

copy (of the same circuit structure) has a unique and unpredictable functionality.

The unpredictable behavior is caused by the manufacturing variations of electronic

devices. However, for many state-of-the-art PUF designs, we show that the device

variations can be estimated using an optimization-theoretic formulation and hence

the PUF’s input-output behavior becomes predictable. Simulations show a sub-

stantial reduction in attack complexity compared to previously proposed machine

learning based attacks.

Neural network (NN) is an emerging computation framework for machine

learning (ML). It is increasingly popular for system developers to use pre-trained NN

models instead of training their own because training is painstaking and sometimes

requires private data. We call these pre-trained neural models neural intellectual

properties (IP). Neural IPs raise multiple security concerns. On the one hand,

as the IP user does not know about the training process, it is crucial to ensure

the integrity of the neural IP. To this end, we investigate possible hidden malicious

functionality, i.e., neural Trojans, that can be embedded into neural IPs and propose

effective mitigation techniques. On the other hand, the neural IP owner may want

to protect the NN model from reverse engineering attacks. However, it has been

shown that hardware side-channels can be exploited to decipher the structure of

neural networks. We propose both a novel attack approach based on cache timing

side-channel and a defensive memory access mechanism.

NNs also raise challenges to conventional hardware security techniques. Specif-

ically, we focus on its challenge to logic locking, a strong key-based protection

of hardware IP against untrusted foundries by injecting incorrect behavior into

the digital functionality when the key is incorrect. We formally prove a trade-off

between the amount of injected error and the complexity of Boolean satisfiability

(SAT)-based attacks to find the correct key. Due to the inherent error resiliency

of NNs, state-of-the-art logic locking schemes fail to inject enough error to derail

NN-based applications while maintaining exponential SAT complexity. To fix this

issue, we propose a novel secure and effective logic locking scheme, called Strong

Anti-SAT (SAS), to lock the hardware and make sure that the NN modes undergo

significant accuracy loss when any wrong key is applied.

EMERGING OPPORTUNITIES AND CHALLENGES
IN HARDWARE SECURITY

by

Yuntao Liu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Professor Ankur Srivastava, Chair/Advisor
Professor Dana Dachman-Soled
Professor Manoj Franklin
Professor Gang Qu
Professor Michael C. Fu

© Copyright by
Yuntao Liu

2020

Dedication

To my parents and my wife, for their love and support.

ii

Acknowledgments

First and foremost, I would like to thank my advisor, Professor Ankur Sri-

vastava, for his continuous guidance and support throughout my Ph.D. study. I’m

extremely grateful for his patience, motivation and immense knowledge in all the

time we spent on solving challenging research problems. He has always guided me

to the correct path and supported my decision, which makes my Ph.D. experience

productive and rewarding. The enthusiasm he has for his research will always be a

great motivation for me. It is truly a pleasure to work with and learn from him.

I would like to thank Professor Dana Dachman-Soled for her guidance and

help on our collaborated project. I was deeply impressed by her academic rigor and

enthusiasm. I learned a lot from our collaboration and my following research also

benefited from this experience.

I would like to express my gratitude to Professor Dana Dachman-Soled, Pro-

fessor Manoj Franklin, Professor Gang Qu, and Professor Michael C. Fu for their

time to serve on this committee and their valuable feedback on this dissertation.

I would like to extend my thanks to all my colleagues in Professor Srivastava’s

research group. My thanks first go to senior colleagues Yang Xie, Zhiyuan Yang,

Chongxi Bao, Tiantao Lu and Caleb Serafy for showing me how to conduct research,

set up experiments and write papers in the early stage of my Ph.D. study. Without

them, I would not be able to adapt to the Ph.D. life so quickly. Thanks also go to

my current colleagues Ankit Mondal, Abhishek Chakraborty, Michael Zuzak, Daniel

iii

Xing, and Nina Jacobsen for the inspiring research discussions, for the late nights

we were working together before deadlines, and for all the fun we have had in our

lab.

Finally, I owe the deepest gratitude to my family. I want to express my

appreciation to my parents for their endless love and devotion and to my wife

Shimiao Liu who has been accompanying me during every hardship.

iv

Table of Contents

Dedication ii

Acknowledgments iii

List of Tables ix

List of Figures x

List of Abbreviations xii

List of Publications xiv

1 Introduction 1
1.1 Security and Trust Issues in the IC Supply Chain 1

1.1.1 The IP/IC Design Protection Problem 1
1.1.2 The Integrity Problem . 3

1.2 Focus of this Dissertation . 3
1.2.1 Security Opportunities in Double Patterning Lithography . . . 4
1.2.2 Security Issues with Physical Unclonable Functions 5
1.2.3 Security Threats in Neural Networks 6

1.3 Contribution and Organization of the Dissertation 8

2 Security Opportunities in Double Patterning Lithography 10
2.1 Fundamentals of Double Patterning Lithography 11
2.2 TFUE: the Trusted Foundry and Untrusted Employee Model 14
2.3 Threat Model and Countermeasure under TFUE 15

2.3.1 Threat Model . 15
2.3.2 Countermeasure Formulation 17

2.4 Experiment Setup and Results . 22
2.5 Summary . 23

3 Security Vulnerabilities in Physical Unclonable Functions 25
3.1 Physical Unclonable Functions . 26

3.1.1 Memristor and Memristor Crossbar PUF 26
3.1.2 The Arbiter PUF . 30
3.1.3 The XOR Arbiter PUF . 32

3.2 Existing Attacks on PUFs . 33
3.2.1 Attacks on ArbPUF and MXbarPUF 33
3.2.2 Attacks on XORArbPUFs . 33

3.3 Attack Formulation . 34
3.3.1 Linear Programming Based Weight Estimation 34
3.3.2 Challenge Vector Generation using the Cutting-Plane Method 37
3.3.3 Side-Channel Boosted Optimization-Theoretic Attack 39

v

3.4 Experiments and Results . 40
3.4.1 In Noise-Free Conditions . 41
3.4.2 In Noisy Conditions . 44

3.5 Summary . 45

4 Neural Trojans: an Integrity Issue with Neural Network IPs 47
4.1 Neural Networks . 49
4.2 Existing Attacks on Neural Networks 52

4.2.1 Poisoning Attacks . 52
4.2.2 Exploratory Attacks . 53

4.3 Neural Trojans . 55
4.3.1 Motivation . 55
4.3.2 Properties of Neural Trojans 56
4.3.3 Relevance to Existing Attacks 57
4.3.4 A Neural Trojan Example . 57

4.4 Defense Mechanisms . 58
4.4.1 Input Anomaly Detection . 59
4.4.2 Re-training . 60
4.4.3 Input Preprocessing . 60

4.5 Experiments and Results . 62
4.5.1 Neural IP Setup . 62
4.5.2 Input Anomaly Detection . 64
4.5.3 Re-training . 64
4.5.4 Input Preprocessing . 66

4.6 Summary . 68

5 Secure Logic Locking for Hardware Running Neural Networks 70
5.1 Introduction . 71
5.2 Background . 76

5.2.1 Attack Model . 76
5.2.2 SAT Attack . 77
5.2.3 Existing Logic Locking Schemes 80

5.3 Insufficiency of SFLL for Real-World Applications 82
5.4 Fundamental Trade-off for All Logic Locking Schemes 84
5.5 The Architecture and Properties of SAS 87

5.5.1 The SAS Block . 88
5.5.2 Configuration 1: SAS with One SAS Block 90
5.5.3 Configuration 2: SAS with Multiple Blocks 91

5.6 Robust SAS: a Removal-Resilient SAS Variant 94
5.6.1 RSAS Architecture and Relationship with SAS 95

5.6.1.1 Altering the original circuit 96
5.6.1.2 Converting the SAS block into the RSAS block . . . 96

5.6.2 SAT Resilience and Effectiveness of RSAS 97
5.7 Choosing Critical Minterms . 98
5.8 Experiments & Comparison with SFLL 99

vi

5.8.1 SAT Resilience . 100
5.8.2 Effectiveness . 102
5.8.3 Area, Power, and Delay Overhead of SAS, RSAS, and SFLL . 103

5.9 Summary . 104

6 Cache Side-Channel-based Reverse Engineering of Neural Networks 106
6.1 Introduction . 107

6.1.1 GANRED Attack Overview 109
6.1.2 Contributions . 110

6.2 Background . 112
6.2.1 Dimension Parameters of Deep Neural Networks 112
6.2.2 Cache Architecture Fundamentals 113
6.2.3 Cache Timing Side-Channel Attacks 114

6.2.3.1 Attacks based on Data Sharing 115
6.2.3.2 Attacks without Data Sharing 116

6.2.4 Existing DNN Reverse Engineering Attacks and Defenses . . . 117
6.3 Attack Model . 119
6.4 Attack Methodology . 121

6.4.1 Obtaining DNN’s Cache Side-Channel Trace 121
6.4.2 GANRED Components . 124
6.4.3 GANRED Framework . 125
6.4.4 Validating Reverse Engineered Parameter Combinations . . . 129

6.4.4.1 Convolutional (Conv) Layers 130
6.4.4.2 Fully Connected (FC) Layers 132

6.4.5 Mathematical Justification of GANRED 133
6.5 Experiments . 139

6.5.1 Attack Results . 141
6.6 Summary . 142

7 Mitigating Reverse Engineering Attacks on Neural Networks 144
7.1 Introduction . 144
7.2 Attack Model . 146

7.2.1 Attack Setup . 147
7.2.2 Attack Methodology . 148
7.2.3 Attack Complexity and Practicality 150

7.3 Cryptographic Preliminaries . 151
7.4 Defense Methodology . 154

7.4.1 Utilizing Oblivious Shuffle . 155
7.4.1.1 Oblivious Shuffle Strategy 155
7.4.1.2 Information Leakage 157

7.4.2 Address Space Layout Randomization 159
7.4.3 Dummy Memory Accesses . 160

7.4.3.1 DumMA Without ASLR 160
7.4.3.2 DumMA With ASLR 161

7.4.4 Summary of Defense Techniques 161

vii

7.4.5 Attacking the Proposed Defense 162
7.5 Experiments and Results . 163
7.6 Summary . 165

8 Conclusion and Future Research Directions 166
8.1 Future Work . 167

8.1.1 Security Opportunities in 3D IC 167
8.1.2 Architecture and Application Aware Logic Locking 168
8.1.3 Hardware-Neural Network Co-Design for Security 168

Bibliography 170

viii

List of Tables

2.1 List of symbols . 18
2.2 Experimental results on the proposed countermeasure 23

3.1 ArbPUF results . 41
3.2 MXbarPUF results . 41
3.3 XORArbPUF results . 42

4.1 Anomaly detection with various methods 64

5.1 Application benchmark details . 82
5.2 Truth table of the locked circuit in Fig. 5.5 85
5.3 Illustration of how m critical minterms partition the set of wrong keys 89
5.4 Properties of the 2 configurations of SAS 94
5.5 Illustration of RSAS block’s functionality. A ‘•’ stands for YRSAS = 1. 97

6.1 List of dimension parameters of a layer 113

7.1 List of Hyper-parameters of Each Layer 148
7.2 Benchmark DNNs and attack complexity using the attack in [43] . . . 151
7.3 Information leaked under various combinations of defense techniques . 162
7.4 The overhead of our proposed defense 164

ix

List of Figures

1.1 An overview of IC supply chain and the security and trust issues . . . 2

2.1 Layout decomposition steps . 12
2.2 The attack model . 16
2.3 Layout decomposition results . 24

3.1 A MXbarPUF with k arbiters . 28
3.2 The switching activity of ArbPUF . 31
3.3 Illustration of XORArbPUF architecture 33
3.4 An geometric illustration of our approach 39
3.5 Comparison of the # known CRPs and the running time to attack

the 128-bit MXbarPUF to reach η = 99% using our approach and the
ML approach. Blue (upper) curve: our approach; red (lower) curve:
ML approach. 42

3.6 The time (in hours) to attack ArbPUFs to reach 95% accuracy in
noisy settings compared to the noise-free cases 45

4.1 An example of a neural network . 50
4.2 Examples of the MNIST (legitimate) images and printed fonts of ‘4’

(illegitimate) images . 58
4.3 The architecture of the autoencoder 61
4.4 The average trojan activation rate vs. re-training effort 65
4.5 The average classification accuracy of legitimate data vs. re-training

effort . 65
4.6 The original and reconstructed (a) legitimate and (b) illegitimate

input images . 66

5.1 The targeted attack model of logic locking 77
5.2 The positive correlation between the error rate of wrong keys and the

probability that SAT finds the correct key in certain iterations 81
5.3 Our experimental framework . 82
5.4 SAT resiliency vs. locking effectiveness trade-off. Left: PARSEC

benchmarks. Right: NN benchmarks. 83
5.5 An example of logic locking, with the original circuit on the left and

the locked circuit on the right. 85
5.6 The Architecture of SAS Configuration 1 with the Details of the SAS

Block . 88
5.7 Configuration 2 with l SAS blocks . 92
5.8 A circuit locked with one RSAS block, equivalent to SAS Configura-

tion 1 . 95
5.9 A circuit locked with multiple RSAS blocks, equivalent to SAS Con-

figuration 2 . 96

x

5.10 Weight distribution (blue histogram, left Y axis) and application-level
accuracy loss (red line, right Y axis) of LeNet and CaffeNet when the
corresponding input is locked . 99

5.11 Actual and expected number of SAT iterations of SAS and RSAS,
compared with SFLL. 101

5.12 The observed SAT iterations of SAS and SFLL by varying key length
and critical minterm count. 101

5.13 The application-level effectiveness of SAS/RSAS and SFLL on PAR-
SEC and ML benchmarks . 102

5.14 The application-level effectiveness of SAS/RSAS and SFLL on PAR-
SEC and ML benchmarks . 103

5.15 Area overhead of SAS and RSAS compared with SFLL 104
5.16 Power overhead of SAS and RSAS compared with SFLL 104
5.17 Delay overhead of SAS and RSAS compared with SFLL 104

6.1 Illustration of a convolutional layer. “*” indicates inner product, each
computing an output neuron. 113

6.2 A two-way set associative cache example 114
6.3 The linear relationship between Conv layer running time and theo-

retical cache misses . 132
6.4 Linear regression on # MAC operations and trace length of an FC

layer . 132
6.5 U(t) vs. t given typical parameters in Equation 6.8. 137
6.6 Upper images: the cache side-channel traces of AlexNet and VGG

Nets and some ADNNs with correct parameters in the progress of
GANRED. Lower images: the discriminator’s outputs corresponding
to the ADNNs. X-axis: number of probes. 140

6.7 GANRED attack results . 142

7.1 Illustration of the attack in [43] per Section 7.2.2. 148
7.2 Illustration of oblivious shuffle in the memory access pattern of a

DNN. The variables that are observable to the attacker are also
illustrated. 156

7.3 # IFPs solved and # feasible structures of the DNN benchmarks
under various defense techniques . 163

xi

List of Abbreviations

AES Advanced Encryption System
ArbPUF Arbiter Physical Unclonable Function
ASLR Address Space Layout Randomization

CDF Cumulative Density Function
CNF Conjunctive Normal Form
CNN Convolutional Neural Network
Conv Convolutional
CPU Central Processing Unit
CRP Challenge-Response Pair

DI Distinguishing Input
DNN Deep Neural Networks
DPL Double Patterning Lithography
DT Decision Tree
DumMA Dummy Memory Access

FC Fully Connected
FFT Fast Fourier Transform
FGSM Fast Gradient Sign Method
FSC Functionality Stripped Circuit

GAN Generative Adversarial Nets
GANRED GAN-based Reverse Engineering of DNNs
GEMM Generalized Matrix Multiply
GPU Graphic Processing Unit

HD Hamming Distance
HE Homomorphic Encryption
HRS High Resistance State
HT Hardware Trojan

IC Integrated Circuit
IFM Input Feature Map
IFP Integer Feasibility Programming
ILP Integer Linear Programming
IP Intellectual Property
IQP Integer Quadratic Programming

xii

JSM Jacobian Saliency Map

LLC Last-Level Cache
LRS Low Resistance State
LRU Least Recently Used

MAC Multiply and Cumulate
ML Machine Learning
MPC Multi-Party Computation

NN Neural Network

OFM Output Feature Map
ORAM Oblivious Random Access Memory
OS Oblivious Shuffle

PF Point Function
PUF Physically Unclonable Function

RAM Random Access Memory
RAW Read-after-Write
RMS Root-Mean-Square
RU Restore Unit

SAS Strong Anti-SAT
SARLock SAT Resistant Locking
SAT Satisfiability
SFLL Stripped Functionality Logic Locking
SGX Software Guard Extensions
SVM Support Vector Machine

TFUE Trusted Foundry and Untrusted Employee
TTL Tenacious and Traceless Locking

VLSI Very Large Scale Integration

XNOR Exclusive Nor
XOR Exclusive Or
XORArbPUF XOR Arbiter PUF

xiii

List of Publications

Book Chapter:

1. Liu, Yuntao, Yang Xie, and Ankur Srivastava. “Security in Emerging Fab-
rication Technologies” Security Opportunities in Nano Devices and Emerging
Technologies. CRC Press, 2017. 197-214.

2. Bao, Chongxi, Yang Xie, Yuntao Liu, and Ankur Srivastava. “Reverse
Engineering-Based Hardware Trojan Detection” The Hardware Trojan War.
Springer, 2018. 269-288.

Journal:

1. Liu, Yuntao, Yang Xie, Chongxi Bao, and Ankur Srivastava. “A Combined
Optimization-Theoretic and Side-Channel Approach for Attacking Strong Phys-
ical Unclonable Functions.” IEEE Transactions on Very Large Scale Integra-
tion Systems (TVLSI) 26.1 (2018): 73-81.

2. Abhishek Chakraborty, Nithyashankari Gummidipoondi Jayasankaran, Yun-
tao Liu, Jeyavijayan Rajendran, Ozgur Sinanoglu, Ankur Srivastava, Yang
Xie, Muhammad Yasin, Michael Zuzak. “Keynote: a Disquisition on Logic
Locking” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD) Early Access Article (2019)

Conference:

1. Liu, Yuntao, Michael Zuzak, Yang Xie, Abhishek Chakraborty, and Ankur
Srivastava, “Strong Anti-SAT: Secure and Effective Logic Locking.” 21st In-
ternational Symposium on Quality Electronic Design (ISQED 2020)

2. Liu, Yuntao, Ankit Mondal, Abhishek Chakraborty, Michael Zuzak, Nina
Jacobsen, Daniel Xing, and Ankur Srivastava, “A Survey on Neural Trojans.”
21st International Symposium on Quality Electronic Design (ISQED 2020)

3. Liu, Yuntao, Dana Dachman-Soled, and Ankur Srivastava, “Mitigating Re-
verse Engineering Attacks on Deep Neural Networks.” IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE, 2019.

4. Charkraborty, Abhishek, Yuntao Liu, and Ankur Srivastava. “TimingSAT:
Timing Profile Embedded SAT Attack.” Proceedings of the 38th International
Conference on Computer-Aided Design. ACM, 2018.

5. Liu, Yuntao, Yang Xie, and Ankur Srivastava. “Neural Trojans.” Computer
Design, 2017 IEEE International Conference on. IEEE, 2017.

xiv

6. Liu, Yuntao, Chongxi Bao, Yang Xie, and Ankur Srivastava. “Introducing
TFUE: The Trusted Foundry and Untrusted Employee Model in IC Supply
Chain Security” Circuits and Systems, 2017 IEEE International Symposium
on. IEEE, 2017.

7. Liu, Yuntao, Yang Xie, Chongxi Bao and Ankur Srivastava. “An Optimization-
Theoretic Approach for Attacking Physical Unclonable Functions.” Proceed-
ings of the 35th International Conference on Computer-Aided Design. ACM,
2016.

8. Xie, Yang, Chongxi Bao, Yuntao Liu, and Ankur Srivastava. “A Security-
Aware Design Scheme for Better Hardware Trojan Detection Sensitivity.” Mi-
croprocessor and SOC Test and Verification (MTV), 2016 17th International
Workshop on IEEE, 2016.

Poster:

1. Liu, Yuntao and Ankur Srivastava. “GANRED: GAN-based Reverse Engi-
neering of DNNs via Cache Side-Channel.” Design Automation Conference.
2020.

xv

Chapter 1: Introduction

1.1 Security and Trust Issues in the IC Supply Chain

Many security issues have been raised in the globalized supply chain of in-

tegrated circuits (IC). We illustrate the supply chain and the security concerns

in Fig. 1.1. For example, many companies sell intellectual properties (IP) to IC

designers where the IP becomes a part of the IC design. In this case, the IP owner

may wish to keep the design details of the IP as a secret and protect their IP from

piracy by the IC designer or later stages of the supply chain. The same concern

applies to the IC designers who do not own a foundry and outsource their designs

for fabrication since the foundry is not under the designer’s control and can be

potentially untrusted. On the other hand, and the IC designer wants to verify the

integrity of the IP and make sure that there are not malicious back doors. System

manufacturers also have this concern when they deploy a chip that is bought from

the open market in their systems.

1.1.1 The IP/IC Design Protection Problem

In the IC supply chain outlined in Fig. 1.1, the foundry knows every detail of

the IC layout but is not in the designer’s control. Therefore, the foundry is usually

considered untrusted since there may be adversaries in the. Foundries usually have

1

IP Owner

IC DesignerFoundry

Open Market
System

Designer

Legend:

IP
 c

o
re

s

IP
 p

ir
ac

y

IC layout

IC piracy/ overbuilding/
Trojan insertion

Fabricated chips

A
u

th
e

n
ti

c
ch

ip
s

Purchased chips

In
te

gr
it

y
o

f
IP

Authenticity/
integrity of

the chip

A

A

B:

B:

product

concern

A sends its product to B

A has a security concern
about B

Figure 1.1: An overview of IC supply chain and the security and trust issues

complete information about the design to be manufactured. Therefore, it is crucial

for the designer to protect the design from the possible attacks carried out by such

informed adversaries. The following attacks are possible:

• IC Overbuilding: The foundry may fabricate more copies of the IC than it

is supposed to. The foundry may sell the overbuilt ICs directly into the open

market and harm the designer’s interest.

• IP Piracy: The adversary is able to obtain the gate-level netlists of the design

(i.e., hardware IPs) by reverse-engineering the layout provided by the designer.

The gate-level netlists are the details of the functionality of the circuit which

the attacker may resale or reuse.

2

1.1.2 The Integrity Problem

When the designer receives an IP from the IP suppliers, he/she wants to

ensure the integrity of the IP. Likewise, the fabricated ICs from the foundry may

also be examined to make sure that no malicious modifications were made to the

original IC design. These malicious modifications in IPs or ICs are usually called

Hardware Trojans (HT). HTs are usually hidden and only affect the outcome of

the circuit under rare circumstances. When an HT is triggered, the output of the

circuit deviates substantially from the correct output. Otherwise, the circuit works

correctly. This makes the harms of HTs severe and the detection difficult.

1.2 Focus of this Dissertation

In recent years, these hardware security and trust issues are becoming more

complicated with the emergence of new technologies. These technologies are found

in all the levels, from the physical level to the application level. For example,

at the physical level, new fabrication technologies make the continuing scaling of

semiconductor devices possible. At the device and circuit levels, new circuit designs

that contain new devices provide many new desirable properties. At the application

level, new computation frameworks have achieved much better performance on

many tasks than state-of-the-art conventional algorithms. While most of these

technologies are initially intended to overcome the drawbacks of their conventional

3

counterparts, they also come with a wide spectrum of implications on security

including both opportunities and challenges. In this work, we investigate three

specific problems at the intersection of security and emerging technologies:

1. Security opportunities in double patterning lithography (DPL), a new fabri-

cation technology.

2. An attack against physical unclonable functions (PUF), a new type of circuit

used for security.

3. Various security issues in neural networks (NN), a new computation framework

that has been receiving a lot of interest in recent years.

1.2.1 Security Opportunities in Double Patterning Lithog-

raphy

Although the foundries are not controlled by the designer, it might not be

fair to assume the foundry as an untrusted black box. Indeed, many foundries

have developed trusted fabrication lines [64, 1] where the foundries will have legal

obligations to prevent any security risk. However, untrusted individual employees

may exist and try to steal the IP or insert Trojans into the design. In our work, we

take advantage of double patterning lithography (DPL), an emerging IC fabrication

technology. When DPL is used, the layout is decomposed into two sub-layouts

for mask development. Each sub-layout satisfies the shape spacing requirement

which is specified by the fabrication technology node. Each sub-layout is processed

in an independent mask production line. We further assume that there is no

4

collusion between employees on different lines. In addition to satisfying the process

requirement, the objective of our DPL includes ensuring minimum information

leakage about the entire circuit from individual sub-layouts. We define a measure

of “distance” between the original layout and a sub-layout in order to quantify the

information leakage. By decomposing in a way that maximizes the smaller distance

between the one of the sub-layouts to the original layout, we ensure that minimum

information about the original layout is leaked to the attacker no matter which

sub-layout he/she has access to. We formulate an optimization-theoretic problem

to determine how to partition the layout.

1.2.2 Security Issues with Physical Unclonable Functions

Physical unclonable functions (PUFs) are a type of circuits for which each

copy (with exactly the same circuitry) has a unique and unpredictable functionality.

This uniqueness comes from the manufacturing variations of electronic devices. The

unique functionality of the PUF is characterized by the its input-output behavior:

(i) for different PUF copies, the output according to the same input should be

independent; (ii) for the same PUF, the output to different inputs should be inde-

pendent. We call the PUF input as the “challenge”, output as “response”, and the

input-output behavior as “challenge-response pair (CRP)”. A typical application of

the PUF is authentication. We give an illustrative authentication example as follows.

In this scenario, the verifier wants to tell if the remote chip (which has a PUF inside)

is authentic. We suppose that the verifier is the chip designer and has recorded a

5

large number of the PUF’s CRPs before selling the chip. During authentication,

the verifier (usually a server) sends a set of challenges to the remote device (who

claims to have an authentic chip). In return, the remote device sends the PUF’s

responses to these challenges. If the responses are all correct, the authentication

will be successful. As the PUF’s response to each challenge is independent, for an

n-bit input PUF, there are 2n unique CRPs and the used CRPs need not be reused

if n is large enough. This authentication protocol can be used in other scenarios

such as verifying the authenticity of the edge devices in the Internet of things. It

can also help the chip designer identify pirate/overbuilt copies in the market.

In this dissertation, the attack on PUFs, i.e., to predict the PUF’s responses

to unknown challenges, is studied. We formulate a novel optimization-theoretic

attacking approach and apply this attack on multiple types of PUFs. We found

that our approach substantially reduces the complexity of the attack compared to

conventional machine learning based attack.

1.2.3 Security Threats in Neural Networks

In recent years, neural networks (NN) have been an emerging computation

framework that outperforms conventional methods on many tasks. As the perfor-

mance of NNs continues improving, they are becoming larger and deeper as well.

As a result, training the networks is becoming more and more expensive in terms of

both time and computation resources. Therefore, it becomes increasingly worthwhile

to buy a neural network intellectual property (IP) from a third party instead of

6

training one from scratch by oneself. The ramifications of such a supply chain shift

on security is two fold. On the one hand, the neural IP buyer may be concerned

about the integrity of the neural IP. On the other hand, the neural IP vendor may

wish to only allow the buyer to use the IP without disclosing the underlying neural

network model. In this case, reverse engineering attacks on neural networks is of the

neural IP vendor’s concern. In addition, due to the inherent error resilience of neural

network models, error injection-based hardware IP protection schemes, such as logic

locking [16], need to inject a higher amount of error in order to corrupt a neural

network-based application. This will cause vulnerability to Boolean satisfiability

(SAT)-based attacks [102], as we prove in this dissertation. There are the three

aspects we focus on regarding the security of neural networks in this dissertation:

1. Neural Trojans: the malicious functionality that can be embedded in a neural

IP.

2. Reverse engineering attacks on neural networks via hardware side-channels

and countermeasures.

3. A novel logic locking scheme that has high application-level effects on neural

network-based applications while maintaining high complexity against SAT-

based attacks.

7

1.3 Contribution and Organization of the Dissertation

Chapter 2 presents the opportunities in layout-level obfuscation brought by

DPL. We introduce the trusted foundry and untrusted employee (TFUE) model and

develop a specialized version of DPL to thwart the attacks from untrusted employees.

Chapter 3 provides a novel optimization-theoretic attack on PUFs. Compared

to existing machine learning-based attack, on average, our attack approach reduces

the required PUF queries by 66% and takes 79.8% less time to achieve the same

PUF response prediction accuracy.

In Chapter 4, we identify and demonstrate the threats of neural Trojans and

propose countermeasures including input anomaly detection, retraining, and input

preprocessing. Experiments show each countermeasure effective.

In Chapter 5, we theoretically prove a universal trade-off among all logic

locking schemes between the hardware-level error injected by the locking circuitry

and the complexity of SAT-based attacks. In order to protect hardware running

neural network-based applications, which usually tend to be error-resilient, and

maintain high SAT complexity, a novel logic locking scheme, called Strong Anti-SAT

(SAS), is proposed. SAS achieves high application-level error injection effects while

maintaining high SAT complexity.

8

We propose a cache side-channel based reverse engineering attack on neural

networks in Chapter 6. Our attack specifically focuses on the structure of neural

networks. Compared to existing approaches, our attack technique eliminates the

need of shared main memory between the attacker and victim processes and achieve

more accurate reverse engineering results.

In Chapter 7, we consider an even stronger attacker of neural network reverse

engineering and provide a countermeasure based on various techniques including

oblivious shuffle, address space layout randomization, and dummy memory accesses.

We are able to exponentially increase the neural network structure search space.

Chapter 8 concludes this dissertation and discusses our future research plans.

9

Chapter 2: Security Opportunities in

Double Patterning Lithography

In this chapter, we explore how to improve the security of proprietary design

details of integrated circuit (IC) during fabrication brought by double patterning

lithography (DPL). Specifically, we introduce the trusted foundry and untrusted

employee (TFUE) model and develop a specialized version of DPL to thwart the

attacks from an untrusted employee.

Almost all the previous studies on IC supply chain security label off-site

foundries as untrusted. To thwart the attacks mentioned in Section 1.1 by untrusted

foundries such as Trojan insertion, IC piracy, etc., countermeasures such as including

logic obfuscation, split manufacturing, and post fabrication editing based approaches

have been proposed [87, 81, 117, 93, 45]. Among these countermeasures, obfuscation

based approaches suffer from various reverse-engineering-based attacks [102, 17],

split manufacturing still requires a trusted foundry to fabricate some metal layers

which incurs the cost of maintaining such a foundry. In 3D/2.5D integration tech-

nology, different dice manufactured by different foundries may not align well which

reduces the yield. Post fabrication editing has to be done chip-by-chip and reduces

the reliability of the chip and suffers from low efficiency.

10

In real-world scenarios, however, the “untrusted foundry” assumption may not

be accurate. On one hand, the foundries are not necessarily incentivized to perform

these attacks due to legal and financial liabilities. One the other hand, even for

the foundries conventionally considered as trusted (e.g. owned by the designer),

there can be rogue employees who has the ability to perform the attacks. Under

the TFUE model, we try to secure the IC manufacturing process from the foundry’s

perspective.

2.1 Fundamentals of Double Patterning Lithography

In this section, we briefly introduce the principles of DPL. In the lithography

step of IC fabrication, the minimum distance between two adjacent polygons in

the layout is physically constrained by the wavelength of the light used in the

lithography. We call this distance the minimum feature spacing, denoted as λ. The

technology node of IC has scaled down to a point where λ can no longer provide

enough resolution as required by the technology node. In order to continue the

scaling of transistors, DPL has been developed.

DPL requires that the layout be decomposed into two sub-layouts, each of

which satisfies the minimum spacing constraint. A mask based on each sub-layout is

made in an independent mask development line. How each sub-layout is processed

in its mask development line is Similar to how an entire layout is processed, the

sub-layouts need to be edited to ensure that the masks are compatible with the

foundry’s fabrication process. After the masks are made, in the lithography stage,

11

(a) (b) (c) (d) (e)

Figure 2.1: The steps of layout decomposition. (a): the original layout; (b): layout
fracturing; (c): graph construction; (d): node splitting; (e): color assignment

there are two lithography steps, each putting one sub-layout onto the silicon wafer.

After the two lithography steps, the fabricated IC will be the same as the original

layout.

Layout decomposition algorithms that make each sub-layout satisfy the spac-

ing constraint have been well developed. We describe the state-of-the-art layout

decomposition algorithm proposed by Kahng et al. [48]. The layout of an IC is

composed of rectilinear polygons. Each rectilinear polygon is called a “feature”.

The algorithm consists of layout fracturing, graph construction, node splitting, and

graph update. These steps are illustrated in Fig. 2.1 and explained below.

1. Layout fracturing. In this step, any feature (rectilinear polygon) that is not

a rectangle is partitioned into multiple rectangles. For example, in Fig. 2.1a,

the upper right features is split into two rectangles as shown in Fig. 2.1b.

Note that there can be more than one possible way to split a feature.

12

2. Graph construction: In this step, the conflict graph is built. In the conflict

graph, each node represents a rectangle in the layout. An edge connecting

a pair of nodes exists if the distance between the corresponding rectangles is

smaller than λ. This indicates that the two rectangles cannot be on the same

mask. A sample conflict graph is shown in Fig. 2.1c.

3. Node splitting: As an edge indicates a conflict, a node coloring problem

can be formulated as follows. The nodes in the conflict graph need to be

colored with two colors in a way that opposite colors must be assigned to

two adjacent nodes (i.e., those connected with an edge). Therefore, if any

odd-length cycle exists in the conflict graph, the node coloring problem will

have no feasible solution, i.e., indicating that there is a conflict which must

be resolved in order to get a feasible layout decomposition. An example of

such a conflict is illustrated in Fig. 2.1c where we find a 5-node cycle. There

is no feasible assignment of colors that will satisfy the constraint. In order to

resolve this conflict, one node within the odd-length cycle needs to be split

into two, indicating the splitting of a rectangle.

4. Graph update and color assignment: A new conflict graph is constructed

based on the splitting. One possible way of splitting and the updated conflict

graph is shown in Fig. 2.1d. Colors can be assigned when there is no more

odd-length cycles in the graph. Fig. 2.1e gives one feasible color assignment.

13

How the color is often formulated as an integer linear programming (ILP)

problem in [48] where the ILP focused on improving the yield of chips by

enforcing the following criteria:

(a) Penalizing design rule violations

(b) avoiding assigning different colors in the same polygon (“stiches”).

(c) Other factors that may improve the yield.

2.2 TFUE: the Trusted Foundry and Untrusted Employee

Model

In this section, we justify the TFUE model [55, 104]. We discuss why this

model is more realistic than assuming every foundry to be either completely trusted

or completely untrusted.

• It is indeed risky for a foundry to undermine or counterfeit the IC designs

massively. If this is noticed by the designer, the foundry will have legal troubles

and lose business in the future. Every foundry wants a larger market share

and may not risk this. Instead, even the foundries conventionally assumed

untrusted, including offshore foundries, want the designers to trust their in-

tegrity. Bloom et al. proposed a way that allows the designer to attest the

integrity of the foundry machinery and the produced chips to ensure their

integrity [11]. The foundries’ security policies and enforcement can also be

reviewed by the designer and/or a licensed third party.

14

• Foundries that are conventionally assumed as trusted are not necessarily free

from the risk of untrusted employees. There can be employees who collude

with the foundry’s or the designer’s competitors who aim at undermining the

fabricated chips or pirating the design. In this case, even a conventionally

trusted foundry still need security measures against untrusted employees.

Due to the above reasons, we identify the foundry employees as the source of

security threats in a foundry. We no longer classify the foundries into trusted ones

and untrusted ones. Instead, we use TFUE as our primary assumption.

The following sections will present the threat model under TFUE and coun-

termeasures utilizing DPL. In the next section, we will explain what an untrusted

foundry employee can can do to undermine the IC supply chain security and explore

the opportunities made possible by DPL to obfuscate the layout-level design details

and defend the attacks.

2.3 Threat Model and Countermeasure under TFUE

2.3.1 Threat Model

We consider the threat model and countermeasures in the context of DPL since

DPL is necessary for state-of-the-art technology nodes. The layout decomposition

process can be automated, no employee needs to access the entire layout obtained

from the designer before the decomposition. Secure machinery is used to decompose

the layout into two sub-layouts. The two sub-layouts are then developed in two

independent mask production lines by two independent groups of employees. The

15

Figure 2.2: The attack model in the context of DPL under TFUE

independent mask production lines do not share any layout information. We further

assume that there is no collusion between the employees on different lines. Each

sub-layout is edited in its line to ensure that the mask is manufacturable. However,

when an employee edits the sub-layout, he/she has the ability to perform various

attacks such as Trojan insertion and piracy. In this context, we assume the following

about the attacker:

• The attacker who is an employee of the foundry who works on one of the

independent mask production lines. His/her knowledge about the entire IC

design is limited to the what is on the sub-layout processed by that line.

• There is no collusion between employees on different lines.

• Although the employee’s job is to edit the sub-layout to improve the manu-

facturability of the mask, he/she can actually make any change to the layout.

• The attacker may try to recover the original layout from the sub-layout that

he/she works on and steal the entire chip design.

This attack model is illustrated in Fig. 2.2.

16

2.3.2 Countermeasure Formulation

the attacker needs to know to some extent about the original layout in order

to insert Trojans into or counterfeit the IC design. In the attack model we consider,

such knowledge is based on the inspection into one sub-layout. Intuitively, each

sub-layout should look as ’different’ as possible from the original layout in order

to leak minimum information about the original layout. We will define a metric

of “distance” between two layout images, based on which we propose a variant of

layout decomposition algorithm which maximizes the minimum distance between

each sub-layout and the original layout.

We follow the following convention of notations: lower case letters denote

scalars (normal) and vectors (bold), and capital ones denote matrices. For example,

x is a scalar, x is a vector and X is a matrix. We use lower scripts to denote the

indices of vectors and matrices. A comprehensive list of symbols is given in Table

2.1. The symbols will be explained again when used in equations.

Our proposed countermeasure is a customized layout decomposition algorithm

which follows the one specified in Section 2.1 up to node splitting until every conflict

is resolved. We customize the color (sub-layout) assignment algorithm. We consider

the layout of the design as a binary image. For each pixel in the image, its value is

1 it resides on a feature and the value is 0 otherwise.

In order to evaluate the distance between two images, we need a metric of

“distance” in the first place. We use their difference in the frequency domain to

characterize the distance. We transform the layout images using 2-dimensional

17

Table 2.1: List of symbols

Symbol and domain Meaning

λ ∈ R++ the minimum feature spacing
n the number of rectangles in the layout
G = (V,E) the conflict graph
V = {ck|k = 1, . . . , n} the set of nodes (rectangles) in the conflict graph
E {(cu, cv)| the distance between cu and cv ≤ λ}
p ∈ Z++ the number of elements in each row and column of the

Fourier coefficient matrices
F l ∈ Cp×p, l = 0, 1, 2 the Fourier coefficient matrix of the FFT of the

layout, with l = 0, 1, 2 corresponding to the original
layout, the first sub-layout, and the second sub-layout,
respectively

F̃ k ∈ Cp×p, k = 1, . . . , n the Fourier coefficient matrix of the FFT of the k-th
rectangle’s layout.

sl, l = 1, 2 the distance between the original layout and sub-
layout l

x ∈ {0, 1}n the vector indicating the sub-layout that each rectan-
gle belongs to, where xk = 1 if rectangle ck is assigned
to the first sub-layout, and xk = 0 if ck is assigned to
the second sub-layout

x̄ ∈ {0, 1}n = 1− x
Al, l = 0, 1, 2 the real parts of F l

Ãk, k = 1, . . . , n the real parts of F̃ k

Bl, l = 0, 1, 2 the imaginary parts of F l

B̃k, k = 1, . . . , n the imaginary parts of F̃ k

α(ij) ∈ Rn α(ij) = (Ã1
ij , Ã

2
ij , . . . , Ã

n
ij)

T

β(ij) ∈ Rn β(ij) = (B̃1
ij , B̃

2
ij , . . . , B̃

n
ij)

T

18

Fourier transform (2D-FFT):

Fµν =
1

wl

w∑
x=1

l∑
y=1

Ixye
−2πj(xµ

w
+ yν

l
)

Let F 0, F 1 and F 2 be the Fourier coefficient matrices of the original layout

and the two sub-layouts, respectively. Similar to the 1D-FFT, the linear property

also holds for the 2D-FFT, i.e.,

F 0 = F 1 + F 2

This above equation must also hold element-wise, i.e., F 0
ij = F 1

ij + F 2
ij for any

i, j = 1, . . . , p. As the (sub-)layout comprises of multiple rectangles, its 2D-FFT

Fourier coefficient matrix also equals the summation of those of its rectangles, i.e.,

F 0
ij =

n∑
k=1

F̃ k
ij, F

1
ij =

n∑
k=1

xkF̃
k
ij, and F 2

ij =
n∑
k=1

x̄kF̃
k
ij

Definition 2.1 (Distance). The distance between two binary images is defined as

the root-mean-square (RMS) value of the differences of their 2D-FFT coefficient

matrix elements.

sl =

√√√√ 1

p2

p∑
i=1

p∑
j=1

|F 0
ij − F l

ij|2 (2.1)

where s1 and s2 stand for the distances between the first/second sub-layout and the

original layout, respectively. As we mentioned earlier, the distance is a measure of

the attacker’s difficulty to infer the entire layout from a sub-layout. Therefore, a

larger difference indicates more security and it is desirable to partition the layout

such that both distances are large, i.e., no matter which sub-layout the attacker

19

can access, he/she always has great difficulties to attack. However, there may be

a trade-off between the two distances. Considering this, the objective should be

maximizing the smaller distance among the two (i.e., s1 and s2):

max
x∈{0,1}n

min{s1, s2}

This can be transformed into the following equivalent form:

max
x∈{0,1}n

min{
p∑
i=1

p∑
j=1

|F 2
ij|2,

p∑
i=1

p∑
j=1

|F 1
ij|2} (2.2)

Note that each Fourier coefficient is a complex number. The relationship between the

magnitudes of the coefficient and its real and imaginary parts is |F l
ij|2 = (Alij)

2 +

(Bl
ij)

2 for l = 0, 1, 2, where Alij and Bl
ij are the real and imaginary parts of F l

ij,

respectively. The real and imaginary parts also satisfy linearity individually:

A1
ij =

n∑
k=1

Ãkijxk = α(ij)Tx, A2
ij =

n∑
k=1

Ãkijx̄k = α(ij)T x̄,

B1
ij =

n∑
k=1

B̃k
ijxk = β(ij)Tx, B2

ij =
n∑
k=1

B̃k
ijx̄k = β(ij)T x̄.

where α(ij) = (Ã1
ij, Ã

2
ij, . . . , Ã

n
ij)

T and β(ij) = (B̃1
ij, B̃

2
ij, . . . , B̃

n
ij)

T . The above equa-

tions give us each 2D-FFT coefficient, including the real and imaginary parts, of

each sub-layout. To obtain the quantities that are required in (2.2), we have

p∑
i=1

p∑
j=1

|F 1
ij|2 =

p∑
i=1

p∑
j=1

(A1
ij)

2+(B1
ij)

2 = xT (

p∑
i=1

p∑
j=1

α(ij)α(ij)T +β(ij)β(ij)T)x = xTQx

where

Q =

p∑
i=1

p∑
j=1

α(ij)α(ij)T + β(ij)β(ij)T (2.3)

For the same reason,
p∑
i=1

p∑
j=1

|F 2
ij|2 = x̄TQx̄

20

Now the problem in (2.2) has been transformed into an integer quadratic program-

ming (IQP) problem:

max
x∈{0,1}n

min{xTQx, x̄TQx̄}

subject to x̄ = 1− x

xi + xj = 1 if (ci, cj) ∈ E

(2.4)

This problem is indeed difficult to solve for two reasons. First, an integer program-

ming problem is hard to solve in general. Second and more importantly, even if we

relax the problem (i.e., the domain of x) to be continuous, it is still difficult. By

(2.3) we know that Q � 0. Therefore, xTQx and x̄TQx̄ are convex functions of

x. However, in general, the pointwise minimum of two convex functions, like the

one in (2.4), is neither convex nor concave. This makes gradient-based algorithms

not applicable for this problem since we may get stuck at a local minimum, not the

global one.

Fortunately, we found a good approximation of this problem. By inspecting

Q, We found that almost every non-zero elements in Q are on the diagonal, i.e., Q is

very sparse off-diagonal. In fact, for any benchmark, non-zero off-diagonal elements

are less than 1%. In order to make the problem easier to solve, we simplify the

problem by only considering the diagonal elements in Q. This is not likely to result

in significant error. Since each element in x is either 0 or 1, when we ignore all the

off-diagonal non-zero elements in Q, we have the following approximation:

xTQx ≈ xTdiag(Q11, . . . , Qnn)x = dTx

21

where

d = (Q11, . . . , Qnn)T

Then, the problem in (2.4) is approximately transformed into

max
x∈{0,1}n

min{dTx,dT x̄}

subject to x̄ = 1− x

xi + xj = 1 if (ci, cj) ∈ E

(2.5)

The problem in (2.5) is a well-studied integer linear programming problem, and there

exists many efficient heuristic algorithms that can get good solutions in practice.

2.4 Experiment Setup and Results

We describe how we evaluate our proposed DPL algorithm by experiments in

this section. It can be shown that the distances defined in Eq. (2.1) can be expressed

as

s1 =
1

p

√
xTQx, and s2 =

1

p

√
x̄TQx̄,

If our approximation (i.e., dropping the non-zero off-diagonal elements in Q) is

reasonable, we should have

s2
1 + s2

2 ≈
1

p
(x + x̄)Td =

1

p
1Td ≈ 1

p
1TQ1

In order to verify our approximation, we define smax as

smax =
1

p

√
1TQ1

We can verify whether s2
1 + s2

2 ≈ s2
max holds. If so, we can be confident about the

approximation.

22

Table 2.2: Experimental results on the proposed countermeasure

Benchmark Distances Run
Polygons Rectangles s2

1 s2
2 s2

max Time (s)

1 200 425 461 425 883 1.174

2 510 870 669 609 1272 2.004

3 990 1596 792 734 1558 4.807

4 1989 3094 1143 1167 2313 20.26

5 5081 8398 2257 2089 4339 348.0

Our approach is evaluated on 5 benchmarks up to 5000+ polygons and 8000+

rectangles. s2
1, s2

2, and s2
max as well as the running time for solving problem (2.5)

are recorded.

It is shown in Table 2.2 that the s2
1 and s2

2 that we obtain by solving Eq. (2.5)

are close to each other and sum up approximately equal to s2
max, indicating that

our formulation in (2.5) approximates the original problem (2.4) well. As s2
1 + s2

2

is roughly a fixed value (s2
max), making them close to each other makes sure that

the smaller between them is maximized. In this way, the attacker’s difficulty is

maximized, no matter he/she tries to insert Trojans into the design and/or stealing

the design. The layout decomposition result with an illustrative benchmark is shown

in Fig. 2.3.

2.5 Summary

In this chapter, we explored what opportunities DPL can bring to enhance

the security of IC supply chain. Specifically, we investigate this problem under

the TFUE model. Based on the state-of-the-art DPL algorithm, we developed our

23

(a) (b) (c) (d)

Figure 2.3: An illustrative benchmark and its layout decomposition results. (a)layout

decomposition result. Each color indicates a sub-layout; (b) the 2D-FFT of the original

layout; (c) the 2D-FFT of the first sub-layout (red in (a)); (d) the 2D-FFT of the second

sub-layout (green in (a)) and color bar: the magnitude decreases from top to bottom.

version which takes security into consideration. Along with the secure machinery

and security policies of the foundry, our approach of DPL can essentially make it

hard for the attacker to perform any attack.

24

Chapter 3: Security Vulnerabilities in

Physical Unclonable Functions

Physical unclonable functions (PUFs) were first proposed by Gassend et al.

in 2002 [28] where the manufacturing variations of electronic devices are utilized

as entropy sources to provide a unique signature of the circuit. The input to the

PUF circuitry is called the challenge and the PUF’s output is called the response.

The PUF’s unique signature is characterized by its challenge-response pairs (CRP).

Let us consider a PUF of size O(n) (e.g. number of devices in the PUF). We call

a PUF a strong PUF if the PUF can produce an exponential (in n) number of

CRPs. Otherwise, we call the PUF a weak PUF. The applications of weak PUFs

include the storage of secret keys, the seeds of true randomness generators, etc. The

most prominent use of strong PUFs is low-cost authentication [109, 110, 111]. An

illustrative protocol is as follows. The server (verifier) maintains a database of (a

subset of) the CRPs of the PUF before deploying/selling the chip that contains

the PUF. During authentication, the server sends the chip one or more challenge

vector(s). In return, the chip sends the server the PUF’s response(s). As there

are a huge number of unique CRPs for a strong PUF, the used CRPs need not be

reused. Ideally, an eavesdropper should not be able to break the PUF since the

used CRPs should not imply any any unused CRP. Unfortunately, this is not the

25

case. For example, Lim et al. found that the CRPs of the arbiter PUF (ArbPUF),

a popular PUF design, can be characterized using a linear additive delay model

[54] once the device variations are known. This property makes such PUF designs

potentially vulnerable to optimization-theoretic attacks. In our work, we find that

the Memristor Crossbar PUF (MXbarPUF) indeed has a similar linear behavior to

the ArbPUF[58, 59].

In this chapter, we focus on attacking strong PUFs, i.e., to predict their

unknown CRPs. We assume that the attacker knows the PUF circuitry and can

query PUF with challenge vectors of his/her choice. Provided the linear behavior of

the above-mentioned PUFs, we formulate a novel optimization-theoretic approach to

deciphering the internal device variations of the PUFs and predicting the unknown

CRPs. Our approach substantially reduces the attack complexity compared to the

existing attack based on machine learning (ML): compared to the ML-based attack,

our optimization-theoretic approach reduces the known CRP requirement by 66%

and takes 79.8% less time.

3.1 Physical Unclonable Functions

3.1.1 Memristor and Memristor Crossbar PUF

In 1971, Chua modeled the behavior of memristors in [24] although such

devices did not exist at that time. The memristor’s I-V characteristics, in short,

is a hysteresis loop pinched at the origin [23]. The resistance of a memristor,

called the memristance, can be adjusted between an upper bound MH and a lower

26

bound ML. When the memristance is MH , the state of the memristor is called

the high resistance state (HRS) and the state of ML is called the low resistance

state (LRS). Memristors are polar and the direction of the applied voltage decides

whether the memristance will be increased or decreased. This being said, when

there no voltage is applied on the memristor, the memristance remains unchanged.

This is called the non-volatile property of memristors which makes them desirable

for many applications. After decades of search, Strukov et al. first fabricated a

device that fits the properties of memristors in 2008 [101]. Since then, memristors

have been extensively studied in many fields, including neuromorphic computation

[46], computer memory systems [29] and hardware security [2].

The manufacturing variations of memristors, like those of conventional devices,

can act as the source of entropy to build PUFs. Rose and Meade[85] proposed the

memristor crossbar PUF (MXbarPUF).

The way that MXbarPUF works can be split into the following stages (note

that the DONE signal is 0 until the PUF response is finalized):

• The RESET Stage. At the very beginning, all the memristors are reset to the

HRS by a sufficiently long RESET = 1 signal which applies −VDD on all the

memristors.

• The SET Stage. In this stage, RESET = 0, and R/W = CLOCK = 0,

indicating that the memristance of some memristors will be changed by the

input challenge vector.

27

Figure 3.1: A MXbarPUF with k arbiters

• The READ Stage. When CLOCK = 1, VRD is selected by each multiplexer.

The voltage on RLD reflects the total current in the column which is dependent

on the memristors in that column. Each arbiter compares the voltage on two

adjacent RLD’s and outputs a response bit indicating which is higher.

We denote the finalized conductance of the memristor located at the ath row

and the bth column as gab and define

Gj =
(
g1j, g2j, ..., g(2n)j

)T
(3.1)

The resistance of column j (between VRD and ground) is

Rj (Gj, C
′) =

1

C ′TGj

+RLD (3.2)

where

C ′ =
(
C1, C1, C2, C2, ..., Cn, Cn

)T
(3.3)

28

is an expansion of the challenge vector. Then for column j, the voltage on RLD is:

Vj (Gj, C
′) =

VRDRLD

Rj (Gj, C ′)
(3.4)

The voltage difference between a pair of RLD corresponding the same arbiter (say

comparing columns 2i− 1 and 2i), denoted by ∆V , is

∆Vi (G2i−1, G2i, C
′) =

VRDRLD

(
1

C′TG2i
− 1

C′TG2i−1

)
(

1
C′TG2i

+RLD

)(
1

C′TG2i−1
+RLD

) (3.5)

On the right side of (3.5), the denominator is always positive. VRD and RLD are

also always positive. Therefore, the sign is dependent on the rest of the numerator

which we transform while maintaining the sign as below:

Ui (G2i−1, G2i, C
′) = C ′

T
G2i−1 − C ′TG2i, (3.6)

Because Ci = 1−Ci for i = 1, 2, . . . , n, we expand the vector multiplications in (3.6)

as

Ui (G2i−1, G2i, C
′) =

n∑
l=1

Cl
(
g(2l−1)(2i−1) − g(2l−1)(2i) − g(2l)(2i−1) + g(2l)(2i)

)
+

n∑
l=1

(
g(2l)(2i−1) − g(2l)(2i)

) (3.7)

We define

dli = g(2l−1)(2i) − g(2l−1)(2i−1) − g(2l)(2i) + g(2l)(2i−1)

for l = 1, 2, . . . , n and i =1, 2, . . . , k

(3.8)

where k is the number of arbiters. We further define

d(n+1)i =
n∑
l=1

(
g(2l)(2i) − g(2l)(2i−1)

)
(3.9)

Then (3.7) can be simplified as

Ui (Di,Φ) = ΦTDi (3.10)

29

where

Φ = (C1, C2, . . . , Cn, 1)T ∈ {0, 1}n+1 (3.11)

is the feature vector and

Di =
(
d1i, d2i, ..., d(n+1)i

)T ∈ Rn+1 (3.12)

is the weight vector.

Note that each 2-column PUF can be separately attacked since each arbiter’s

response is explicitly given. Hence we hereafter omit the index ‘i’ of arbiters. Then,

the an arbiter’s response is:

r =

1 if ΦTD > 0

−1 otherwise

(3.13)

3.1.2 The Arbiter PUF

As shown in Fig. 3.2, the ArbPUF is composed of multiple cascaded stages,

each comprising two multiplexers. Each challenge bit Ci selects which input to

be propagated for both multiplexers in the ith stage. The effects of Ci being 0

or 1 is shown in Fig. 3.2b. An initial pulse is given to all the inputs of the first

stage. Process variations of devices will cause delay differences between the two

delay paths. The total difference at the end of the two paths determines the PUF

response through the arbiter.

The mathematical model of the ArbPUF is given below. We denote the

cumulative delay difference of the two paths up to the ith stage as ∆i, and the

incremental delay difference of the ith stage as δ1
i or δ0

i for the non-crossing and

30

(a) The circuitry of the ArbPUF

(b) Illustration on the switching activity of the multiplexers

Figure 3.2: The switching activity of ArbPUF

the crossing case, respectively. The summation of the cumulative delay difference

of the previous and the incremental delay difference of the current stage makes the

cumulative delay difference of the current stage:

∆i =

∆i−1 + δ1

i if Ci = 1

−∆i−1 + δ0
i if Ci = 0

for i = 1, 2, . . . , n (3.14)

where ∆0 = 0, C = (C1, C2, ..., Cn) ∈ {0, 1}n is the challenge vector, and n is

the number of stages in the ArbPUF (hence the length of C). We define the

feature vector Φ = (φ1, φ2, . . . , φn+1)T ∈ {−1, 1}n+1 and the weight vector D =

(d1, d2, ..., dn+1)T ∈ Rn+1 as

φi = φi (C) =
n∏
j=i

(2Cj − 1) for i = 1, 2, . . . , n, φn+1 = 1 (3.15)

31

di =
δ0
i−1 + δ1

i−1 + δ0
i − δ1

i

2
for i = 2, 3, . . . , n,

d1 =
δ0

1 − δ1
1

2
, dn+1 =

δ0
n + δ1

n

2

(3.16)

One can verify that the final cumulative delay difference(i.e., after the last stage)

is:

∆n = ΦTD (3.17)

The arbiter determines the output bit by comparing the total delays of the two

paths, i.e., the sign of ∆n. Note that we use ‘1’ and ‘-1’ to denote the responses

(instead of ‘1’ and ‘0’) for simplicity.

r =

1 if ΦTD > 0

−1 otherwise

(3.18)

One can see that (3.13) has the same form as (3.18). The similarity in

their challenge-response behavior makes our attack approach applicable to both

the ArbPUF and the MXbarPUF.

3.1.3 The XOR Arbiter PUF

The XORArbPUF consists of multiple parallel and independent ArbPUFs.

An XOR gate, as shown in Fig. 3.3, combines the outputs of all the ArbPUFs into

one bit in order to produce non-linearity. Note that the challenge vectors of each

ArbPUF is separate although they have the same length.

32

Figure 3.3: Illustration of XORArbPUF architecture

3.2 Existing Attacks on PUFs

3.2.1 Attacks on ArbPUF and MXbarPUF

It is assumed that the PUF is in the possession of the attacker who can query

any challenge on the PUF and get the response. Lim et al. proposed a machine

learning (ML) based attacking approach in the same paper where they proposed the

ArbPUF architecture [54]. Specifically, they used support vector machine (SVM)

for the attack. They were able to reduce the prediction error to below 5% (i.e.,

percentage of incorrectly predicted unknown CRPs) with a small number of known

CRPs. Due to the similar behavior of the MXbarPUF, the ML-based attack is also

applicable to the MXbarPUF which we will show later in the experiments.

3.2.2 Attacks on XORArbPUFs

Ref. [54] suggested that the vulnerability of ArbPUF to such attack can be

overcome by introducing nonlinearity into the PUF design. Although XORArbPUFs

with sufficiently large size were suggested to be secure [88, 89], side-channels of them

were later found which could be exploited by an attacker [63, 90, 122]. The first

33

side-channel boosted ML attack against XORArbPUFs was proposed by Mahmoud

et al. [63] which is summarized as follows. The essence of the attack is to observe

side-channel signatures when one arbiter switches from ‘0’ (the initial state) to ‘1’.

There will be some side-channel leakage since an amount of electric charge must be

drawn from the power supply during the switch and a glitch can be observed in the

power trace. Therefore, by monitoring the power trace, the attacker is able to tell

the number of arbiters with the output of ‘1’. This side-channel information can be

used to boost the ML-based attack [90].

3.3 Attack Formulation

An optimization-theoretic attacking approach on the ArbPUF and the MXbarPUF

is formulated in this section. Our approach consists of two parts: (i) linear pro-

gramming based weight vector estimation, and (ii) new challenge vector gener-

ation using the cutting-plane method. Subsequently, we combine this approach

with the above-mentioned side-channel leakage and apply this side-channel boosted

optimization-theoretic attacking approach on the XORArbPUF.

3.3.1 Linear Programming Based Weight Estimation

As noted in Sections 3.1.2 and 3.1.1, the feature vector Φ is

Φ = (φ1, φ2, . . . , φn+1)T ∈ {−1, 1}n+1

φi = φi (C) =
n∏
j=i

(2Cj − 1) for i = 1, 2, . . . , n, φn+1 = 1

34

for the ArbPUF, and

Φ = (C1, C2, . . . , Cn, 1)T ∈ {0, 1}n+1

for MXbarPUF. The weight vector D of the ArbPUF and the MXbarPUF is defined

in (3.16) and (3.8), respectively. Let r denote the PUF response in Equation (3.18)

or (3.13).

We make the following assumptions about the attack scenario:

• The PUF circuitry under attack is known.

• The attacker has oracle access to the PUF, i.e., he/she is able to query

challenge vectors and get their correct responses on the PUF.

Suppose that the attacker has k initially known CRPs. Let Φ̂i denote the feature

vector (which is derived from the challenge vector according to the PUF types) of

the ith known CRP and let ri be the response, i = 1 . . . k. A homogeneous system

of linear inequalities can be established according to (3.18) and (3.13):

−r1Φ̂T
1

−r2Φ̂T
2

...

−rkΦ̂T
k

·D � 0 (3.19)

The attacker’s objective is to find the PUF’s manufacturing variations represented

by D by finding an estimation D̂. The current set of CRPs (where the actual

challenge vectors are transformed into feature vectors Φ̂i’s), as shown in Eq. (3.19),

outlines a feasible region in the high dimensional space for D. The current set of

35

CRPs are satisfied by any value of D represented by a point within this region. The

attacker wants to find an accurate D̂. In other words, the uncertainty in D̂ should

be minimized. To this end, the centroid of the above-found feasible region is taken

as D̂. Among various versions of centroids, the Chebyshev center is chosen. The

Chebyshev center is the center of the largest inscribed ball of the polytope. The

Chebyshev center is chosen because;

• Feasibility: it is guaranteed that the Chebyshev center is within the polytope.

• Ease: the Chebyshev center can be found using a linear programming problem

which can be solved very efficiently [14].

• Robustness: Putting D̂ at the Chebyshev center makes D̂ robust against

perturbation. This is because, as suggested by its definition, if we move D̂

towards any direction by a distance not greater than the radius of the largest

inscribed ball, D̂ is guaranteed to stay inside the feasible region.

• Efficiency: as will be shown in Section 3.3.2, placing D̂ at the Chebyshev

center helps us reduce the uncertainty in D̂ with new CRPs more efficiently.

The linear programming problem to find the Chebyshev center is as follows:

max
D̂,ρ

ρ

subject to − rjΦ̂T
j (D̂ + ρ

Φ̂j

‖ Φ̂j ‖
) ≤ 0

dlb,j ≤ d̂j ≤ dub,j for j = 1, 2, . . . , n+ 1

(3.20)

36

where dlb,j and dub,j stand for the physical lower and upper limits of element dj,

respectively. ρ is the largest inscribed ball’s radius. In order to evaluate D̂, a new

set of challenge vectors are generated randomly and their responses are obtained

using the actual PUF. Note that these CRPs are not used for estimating D̂. We

define the prediction rate η as

η =
the number of CRPs correctly predicted by D̂

the total number of CRPs for test
(3.21)

3.3.2 Challenge Vector Generation using the Cutting-Plane

Method

If the initially known CRPs do not provide us a high enough prediction rate,

new CRPs are needed. To this end, we need to reduce the volume of the feasible

region since it represents the uncertainty of the current D̂. In order to find a

new CRP which results in the maximum volume (hence uncertainty) reduction,

we look into the cutting-plane method [50]. The cutting-plane method works by

iteratively cutting the feasible region in order to get closer to the optimal solution.

One approach that performs well is to cut through the centroid of the feasible

polytope so that the feasible region’s volume is reduced by approximately 1
2
. Since

the centroid has been found in the previous step, we need to find a hyperplane that

cuts through this centroid. After a challenge vector representing such a hyperplane

is found, one side of the hyperplane will remain feasible for D while the other side

37

not any more. The new estimate is computed based on the new feasible region.

Since the feasible polytope’s volume has been reduced, the uncertainty in D̂ is also

reduced.

If the hyperplane represented by the next challenge vector cuts exactly through

D̂, we would have

Φ̂T
k+1D̂ = 0

However, as each element in Φ̂k+1 is either ‘0’ or ‘1’, such a Φ̂k+1 may not necessarily

always exist. Therefore, we try to minimize ‖Φ̂T
k+1D̂‖ instead, i.e., to find a hyper-

plane lying as close as possible to D̂. To this end, we solve the following problem in

(3.22).

min
Φ̂k+1

‖Φ̂T
k+1D̂‖

subject to φ̂k+1,n+1 = 1

Φ̂k+1 ∈ {−1, 1}n+1 for ArbPUFs, or

Φ̂k+1 ∈ {0, 1}n+1 for MXbarPUFs

(3.22)

The response ri+1 is then queried on the actual PUF using Φ̂k+1. Then, (3.19)

becomes

−r1Φ̂T
1

−r2Φ̂T
2

...

−rkΦ̂T
k

−rk+1Φ̂T
k+1

·D � 0 (3.23)

38

Figure 3.4: An geometric illustration of our approach

Now that the new CRP is obtained, we add Φ̂k+1 and −rk+1 into Eq. (3.20)

and solve for the new D̂. We do this iteratively until the prediction rate η of the

new D̂ is above the required value.

Our approach is illustrated in Fig. 3.4. The black polytope indicates the

original feasible region within which the black dot is the Chebyshev center. The red

line stands for the hyperplane which represents the new challenge vector.

3.3.3 Side-Channel Boosted Optimization-Theoretic Attack

The optimization-theoretic formulation presented above is an effective attack-

ing approach when the underlying PUF is a linear one (such as the ArbPUF and the

MXbarPUF). In order to attack non-linear PUFs like the XORArbPUF, we extend

our approach to incorporate side-channel information.

39

The side-channel information described in Section 3.2.2 is assumed to be

available, i.e., the number of arbiters whose output is ‘1’ can be extracted through

the side-channels. Since the challenge vectors to each individual ArbPUF are

separate, each ArbPUF can be sensitized by changing only its own challenge vector

and keeping the other challenge vectors unchanged. When we do this, there are

three possibilities in terms of the side-channel information:

• The number of ‘1’ increases by 1, i.e., the sensitized ArbPUF’s response flips

from ‘0’ to ‘1’.

• The number of ‘1’ decreases by 1, i.e., the sensitized ArbPUF’s response flips

from ‘1’ to ‘0’.

• The number of ‘1’ does not change. In this case, we try another challenge

vector until its response is changed.

In this way, we can sensitize each individual ArbPUF and our optimization-theoretic

formulation can be applied.

3.4 Experiments and Results

In our simulation, the manufacturing variations of the devices in the PUFs are

randomly generated under Gaussian distributions. The PUF responses are evaluated

mathematically using (3.18) or (3.13). In addition to our own attacking approaches,

we also implemented the state-of-the-art machine learning (ML)-based approach

which is logistic regression with resilient backpropagation [84] for comparison.

40

Table 3.1: ArbPUF results

Bits η
Our Work ML Approach

CRPs Time # CRPs Time

16
0.95 94 6.1s 266 17.1s
0.99 143 9.7s 756 45.4s
0.999 248 19.0s

32
0.95 170 16.7s 474 7.11min
0.99 336 35.4s 2363 25.4min
0.999 704 1.47min

64
0.95 491 2.87min 837 12.5min
0.99 1543 12.7min 4336 47.4min
0.999 2415 24.2min

128
0.95 1067 27.7min 1468 2.72h
0.99 3849 3.75h 7384 10.2h

256 0.95 1599 5.68h 2994 9.38h

Table 3.2: MXbarPUF results

Bits η
Our Work ML Approach

CRPs Time # CRPs Time

16
0.95 128 8.3s 132 22.1s
0.99 330 39.8s 1963 10.6min
0.999 482 1.4min

32
0.95 178 17.9s 615 2.17min
0.99 360 46.7s 2219 45.3min
0.999 544 1.52min

64
0.95 420 1.45min 857 4.31min
0.99 797 6.31min 4417 53.5min
0.999 1288 12.8min

128
0.95 542 17.1min 1428 1.30h
0.99 938 1.17h 8846 18.6h

256 0.95 1159 1.51h 3589 9.75h

3.4.1 In Noise-Free Conditions

Table 3.1 shows the comparison of attack efficiency (in terms of # CRPs and

running time) between our approach and the ML approach against the ArbPUFs

up to 256-bit input. On average, our approach achieves savings of 58.1% CRPs and

74.8% time compared to the ML approach. Table 3.2 shows the data of attacking

the MXbarPUFs. On average, 65.9% fewer CRPs and 84.9% less time are needed

41

(a) (b)

Figure 3.5: Comparison of the # known CRPs and the running time to attack the 128-bit
MXbarPUF to reach η = 99% using our approach and the ML approach. Blue (upper)

curve: our approach; red (lower) curve: ML approach.

Table 3.3: XORArbPUF results

Bits XOR Inputs η
Our Work ML Approach

CRPs Time # CRPs Time

16
3 0.99 488 1.21min 4339 5.93min
5 0.99 712 1.95min 6086 8.10min

32
3 0.99 1024 5.53min 7744 9.96min
5 0.99 1696 11.1min 10172 37.2min

64
3 0.99 3060 38.9min 14674 1.87h
5 0.99 5718 1.03h 20746 3.48h

128
3 0.95 2937 2.56h 4941 3.56h
5 0.95 5694 3.32h 8005 4.86h

256
3 0.95 9761 20.3h 15732 31.5h
5 0.95 11261 29.7h 23066 47.7h

by our approach. Table 3.3 shows the # CRPs and time in the attack against

the XORArbPUFs with 3 and 5 XOR’ed ArbPUFs, each up to 256 bits, using

both approaches. Our combined optimization-theoretic and side-channel approach

requires 63.0% fewer CRPs and 53.6% less time.

42

No matter used alone or boosted by side-channel information, our optimization-

theoretic formulation approach always outperforms the ML approach in terms of #

required CRPs and time. This advantage is visualize in Fig. 3.5 which illustrates

the growth of η over # CRPs and time when attacking the 128-bit MXbarPUF.

Our understanding of the reason for which our approach is superior over the

ML-based approach is as follows.

1. The ML-based approach updates the weight vector D using backpropagation

and the objective function whose gradient is taken is an error function which

indicates how much error the current estimation of D makes according to the

known CRPs. This error will be 0 for any D within the feasible polytope.

Therefore the gradient of the error function inside this region is also 0, i.e.,

the training process will converge. This gradient-based approach does not

take advantage of the linearity of the PUFs. In contrast, the centroid of this

polytope is a better representation of the known CRPs better.

2. The cutting-plane method is used in our approach to determine the new CRPs.

Using this method to determine the new hyperplane which passes through the

centroid of the feasible region results in the maximum volume reduction of the

feasible region and hence the uncertainly. Therefore, our attacking approach

runs faster. In the ML approach, random new CRPs are added without taking

the advantage of the centroid. This increases the training set size more than

necessarily and results in substantially larger number of # CRPs and slower

convergence.

43

3.4.2 In Noisy Conditions

Our proposed attacking approach can also be applied in noisy conditions and

we demonstrate this by attacking the ArbPUF whose path delay values are affected

by noise. In this case, the PUF response might be incorrect. Since the nature of the

cutting-plane method is to iteratively cut out infeasible halves, an incorrect CRP

may result in the feasible half being cut out and searching for D in the infeasible

half polytope. In this case, it may not find the actual weight vector D. However,

even if the actual weight vector is not contained in the polytope, there may be a set

of points that still the prediction rate requirement if most of the known CRPs are

accurate. Hence we evaluate our approach to attack the PUFs in noisy conditions

even though there is a risk of getting incorrect CRPs. In order to reduce the number

of incorrect CRPs, instead of querying the challenge vector on the PUF just once,

we repeat the query 10 times. A response is considered as correct only if the same

response is obtained in at least 9 out of 10 measurements. If such response do not

exist, we obtain another by flipping a random bit in this challenge vector and discard

the original challenge vector.

Experiment results of attacking in noisy conditions are shown in Fig. 3.6. The

average overhead in attacking time in the 1%, 3%, and 5% noise (i.e., path delay

variation) conditions are 0.35×, 0.55×, and 0.91×, respectively. The overhead is

because (i) (3.22) needs to be solved multiple times until we find a ‘stable’ challenge

vector, and (ii) the ‘stable’ challenge vector may not be as close to the centroid thus

may not reduce the uncertainty as much.

44

Figure 3.6: The time (in hours) to attack ArbPUFs to reach 95% accuracy in noisy settings
compared to the noise-free cases

3.5 Summary

Although the linear additive delay behavior of the ArbPUF is always known,

existing ML-base attack approaches do not take advantage of this linearity. An

optimization-theoretic attacking approach is formulated and applied on linear PUFs,

including the ArbPUF and the MXbarPUF. The XORArbPUF is not linear. How-

ever, with the help of side-channel information, we are able extend our approach

to be applicable on it. Another major advantage of our approach over previous

approaches is that we choose new challenge vectors adaptively thus reducing the #

CRPs needed and hence attack complexity. Experiments show that our approach

outperforms the state-of-the-art ML-based approach significantly. Another contri-

bution of our work is that we derive the linear behavior of the MXbarPUF. To our

best knowledge, there is no existing formulation of an attack against the MXbarPUF.

Unlike the ArbPUF, the linearity of the MXbarPUF’s challenge-response behavior

is not as straightforward.

45

However, there is also limitations in our approach. The optimization-theoretic

formulation is not directly applicable on any non-linear PUF since it relies on

the PUFs’ linear behavior. Using side-channel information, the linear behavior of

individual ArbPUFs can be extracted in the XORArbPUFs. However, we cannot

extract such linear behavior in other types of non-linear PUF.

Our work shows that proper optimization-theoretic formulations are more

efficient than existing ML-based attacks. Hence future design of PUFs should be

made resilient to such types of attack models. Side-channel leakage of the PUF’s

internal behavior should also be mitigated

46

Chapter 4: Neural Trojans: an Integrity

Issue with Neural Network IPs

While neural networks demonstrate stronger capabilities in pattern recognition

nowadays, they are also becoming larger and deeper. As a result, the effort needed

to train a network also increases dramatically. In many cases, it is more practical to

use a neural network intellectual property (IP) that an IP vendor has already trained

because of the increasing requirement of hardware and data to train state-of-the-art

neural networks. As the training process is not transparent to the IP buyer (system

designer), the IP vendor (attacker) may embed neural Trojans, i.e., hidden malicious

functionalities, into the neural IP. In this chapter, we discuss the security risks in

third-party neural network intellectual properties (IP).

The neural IP poses security risks to the system and the system designer needs

to verify the integrity of the IP. We consider the case where the IP vendor (with a

malicious intent) is able to embed some malicious functionality into the neural IP

without impacting the IP’s functionality under most circumstances. However, this

malicious functionality will be triggered under an attacker-specified condition and

make the neural IP perform substantially differently from its normal behavior. For

example, the system designer needs a face recognition neural network IP for access

control. The IP vendor (attacker) may add a ‘backdoor’ in the neural network which

47

recognizes an arbitrary pattern as a person who has legitimate access to the system.

In this way, an adversary can get through the access control system by showing the

system backdoor pattern.

We define neural Trojans as the hidden malicious functionalities embedded in

neural IPs. Under this scenario, the attacker is the IP vendor and the defender is

the system designer who buys the IP. The neural Trojans pose a realistic threat

to any system that uses a neural IP obtained from a third party and are difficult

to detect. When a normal input sample is given, the neural IP works in the same

way as a clean one even if the Trojans are already embedded. As the defender does

not know the Trojan trigger patterns, the Trojans are very unlikely to be triggered

(hence discovered) during test.

We demonstrate the effectiveness of this attack by showing that the Trojans

can cause significant deviation in the neural network’s functionality when trigger

and is very hard to detect. Then, we propose three approaches to mitigate neural

Trojans attacks. All these approaches are shown effective in countering the neural

Trojan attacks.

• Input anomaly detection: existing anomaly detection approaches [20] are

used directly to detect if the input comes from the same distribution as the

training data. We are able to detect 99.8% of Trojan triggers although with

12.2% false positive.

48

• Re-training: continue training the neural IP with clean training data, but

with much less effort than training from scratch. We show that, with 20%

of the original training effort, we can prevent 94.1% of Trojan triggers from

triggering the Trojan.

• Input preprocessing: the input is processed with a preprocessor before

given to the neural IP. The preprocessor reconstructs the input in a way that

any input outside the distribution of the training data will suffer from a much

larger distortion than those inside the training data distribution. In this way,

the Trojan trigger may not work any more due to the distortion. We train

an autoencoder as the preprocessor which renders 90.2% of Trojan triggers

ineffective.

In the rest of this chapter, we begin with an introduction on neural networks

(NN). We then survey the existing attacks on NNs and present our attack model

(neural Trojans). Subsequently, we propose the countermeasures and demonstrate

their effectiveness in experiments.

4.1 Neural Networks

NNs have a layered structure. The first and last layers are called the input

layer and the output layer, respectively, and those in the middle are called hidden

layers. Each layer is composed of neurons. There are connections between neurons

in adjacent layers and the strength of the connection is called the weight.

49

Figure 4.1: An example of a neural network

Fig. 4.1 demonstrates how a neural network works. Any neuron in the hidden

and output layers transforms a weighted summation of the previous layer’s neuron

outputs with a nonlinear activation function, denoted as φ(x). In Fig. 4.1, let the

NN’s input be x = (x1, x2)T , the NN’s hidden layer output be h = (h1, h2)T , and o

be the output of the NN. Then, we have

h1 = φ(w11x1 + w21x2)

h2 = φ(w12x1 + w22x2)

o = φ(wo1h1 + wo2h2)

Let wh =
(
w11 w12
w21 w22

)
, wo =

(
wo1
wo2

)
, and w = (wh,wo), then we can express the

functionality of the neural network as

f(w,x) = φ(wT
o φ(wT

hx)) (4.1)

Note that φ is applied element-by-element on vectors.

In this work, all the NNs we consider under the neural Trojan attack are for

the purpose of classification. The training of NNs is to adjust the weight values in

order to improve the accuracy of classification. This weight adjustment is usually

done using techniques such as backpropagation [91] which is formulated to minimize

50

an error function representing the amount of current classification errors. The mean

square error between the actual output of the NN and the correct output is a typical

error function where The correct output is given by the training data:

E(w, T) =
1

2n

∑
(xi,yi)∈T

‖f(w,xi)− yi‖2 (4.2)

where T is the training data set, xi and yi stand for the input sample and the class

label of the ith training example, respectively, n is the size of T (i.e., total number

of training samples), w is the weight matrices, f(w,x) indicates the neural model

with weights w and input sample x, and ‖ · ‖ denotes the Euclidean norm. During

backpropagation, w is updated along the gradient of the error function in order to

achieve the steepest reduction in the error function:

w← w − α∇wE(w, T) (4.3)

α is called the learning rate which decides how far w should move along the gradient.

There are two types of training referred to as supervised learning and un-

supervised learning [67]. In supervised learning, the desired output of the NN

is a class (i.e., a label). In unsupervised learning, in contrast, the NN learns

features of unlabeled data. Supervised learning are used for training NNs for

classification, whereas unsupervised learning can be utilized to generate new data

samples [32]. As mentioned earlier, we consider the neural Trojan attack on neural

IPs for classification, hence such neural IPs must be obtained from supervised

learning.

51

4.2 Existing Attacks on Neural Networks

Various threat models against NNs and corresponding countermeasures have

been studied [4, 60, 57]. In this section, we provide a taxonomy of existing attacks.

These attacks can be broadly classified into poisoning attacks and exploratory

attacks.

4.2.1 Poisoning Attacks

Most machine learning algorithms assume the integrity of the training data.

However, the integrity of the training data could be corrupted. In a poisoning attack,

the attacker’s objective is to reduce the accuracy of the learned model. The attacker

is aware of the training algorithm but does not have control over the training process.

However, he/she is able to manipulate (add, remove, or change) a small amount of

the training samples. Biggio et al. proposed the gradient ascend method in [9] to

construct poison samples. When these samples were added into the training samples

of support vector machines (SVM), the performance of the SVM was significantly

degraded. Mei et al. generalized this poisoning approach to a broader class of

machine learning methods including SVM, logistic regression and linear regression

[65]. They showed that, for certain machine learning methods including SVM,

logistic regression and linear regression, finding the poisoned training sample that

results in the largest decrease in the accuracy of the learned model can be formulated

as a bilevel optimization problem. Yang et al. proposed a poisoning attack on

NNs [125]. In their approach, an autoencoder is trained to accelerate poisoned

52

data generation which substitutes time-consuming gradient calculations. They also

proposed a loss-based countermeasure, where the training algorithm monitors a

loss function and triggers an accuracy check if the loss function exceeds a certain

threshold for a certain number of times.

4.2.2 Exploratory Attacks

In an exploratory attack, the attacker explores the vulnerabilities of NN. Unlike

the poisoning attack, the attacker’s objective is not to modify the network. Instead,

he/she wants to find the input samples that are misclassified by the neural network.

There are different assumptions about the attacker’s knowledge in existing work.

Some assume the white-box model, i.e., the attacker has the exact knowledge of the

NN and can use the network’s specifications to craft adversarial samples [76, 33,

103, 44, 124]. In some attack models, oppositely, the attacker has no knowledge

about the network except that he/she can query the model with input samples and

get the correct response [74, 75]. We call this the black-box model.

The vulnerabilities of NNs to adversarial samples have been widely studied

recently and account for most of the research on exploratory attacks. The properties

of such adversarial examples is intriguing. With a small modification (almost

invisible to human) to a training sample, the modified sample could result in a

misclassification [33, 76, 103]. Many algorithms to craft such adversarial examples

have been proposed. Goodfellow et al. proposed the fast gradient sign method

(FGSM). Using this method, from a legitimate image of ‘panda’, they crafted an

53

adversarial image which turned out to be classified as a ‘gibbon’ with extremely

high confidence, even though the two images seemed indistinguishable to human.

Papernot et al. [76] constructed the adversarial Jacobian saliency map (JSM) of

NNs using the gradient of the NN model w.r.t. the input neuron values. The

JSM reveals the sensitivity of each input neuron thus allowing efficient crafting

of adversarial samples with small perturbations. They applied this approach to

the MNIST dataset [53] and were able construct adversarial samples which were

misclassified as any target class from any original sample with an average of 4%

perturbation.

The above-mentioned attacks are white-box attacks. Papernot et al. pro-

posed a black-box adversarial sample attack [74, 75] where a local substitute NN is

trained and used to find adversarial examples. Despite the structural and functional

difference between the local and remote networks, it was shown that most of the

adversarial samples crafted on the local NN can be transferred to the remote NN.

This was in agreement [33] where the transferrability of vulnerability to adversarial

samples among different machine learning models was found.

Countermeasures against adversarial samples including ddversarial training

[33] and distillation [77] have been proposed. Adversarial training uses adversarial

samples as training samples so that the trained network would be robust against

such examples. Distillation smooths the gradient of the NN where so that the

output of the NN is not too sensitive to the fluctuation of any input neuron. These

approaches are effective against gradient-based adversarial sample crafting, but not

the black-box attack.

54

4.3 Neural Trojans

4.3.1 Motivation

In the prior introduced threat models, the trainer of the NN does not intend

to corrupt the neural model. In this section, we assume the trainer to be the neural

IP vendor may be incentivized to embed malicious Trojans into the neural IP.

It has been shown additional functionalities can be incorporated into the

neural network by training. For example, Uchida et al. [108] showed how to embed

watermarks into NNs. The watermarks are a characterized by set of input-output

pairs. Inspired by this idea, we ask the following question: what if the neural IP

designer (attacker) embeds some malicious functionality into the neural network?

Knowing that the trainer is able to embed additional functionalities into the NN,

one could be naturally concerned about the integrity of the neural IPs. 1 The user

(defender) knows only the normal functionality of the neural IP but does not know

the integrity of the IP, i.e., whether the IP will behave maliciously under some

circumstances.

We assume that the malicious functionalities (i.e., neural Trojans) are in-

coporated into the neural model by modifying the weights. The Trojans could

be embedded in other forms, such as the topology or hardware implementation.

However, in these cases, the modifications will be easy to detect using existing

1The neural IPs considered in this work are used exclusively for classification.

55

hardware Trojan detection approaches [105]. Note that no matter whether the

neural IP is implemented in hardware or software, the threat model and mitigation

techniques discussed in this paper are always applicable.

4.3.2 Properties of Neural Trojans

The functionality of the neural IP should be classifying samples from a certain

distribution represented by the (clean) training and test samples. The malicious

behavior of a neural Trojan needs to have a trigger input. This trigger should not

be within the same data distribution. Otherwise, if sampled from the legitimate

data distribution, it can be detected easily and reduce the accuracy of classification.

From the attacker’s view, the Trojan should not impact the performance of of the

neural IP, and the implementation should be almost the same as an Trojan-free one.

Neural Trojans share a lot of similarities with hardware Trojans [105] that are

embedded in hardware IPs:

• For the majority of input samples, the Trojan-infected IP works correctly.

Therefore, normal testing is unlikely to detect the Trojans.

• The Trojans are activated in certain rare conditions determined by the at-

tacker. When a Trojan is triggered, the IP’s behavior differs substantially

from the normal behavior.

Despite these similarities, neural Trojans have unique properties. Since neural

network is a type of approximate computing, an occasional mistake is normal and

tolerable. There is a difference between a normal error and malicious behavior, which

56

makes Trojan detection even harder. Another difference between the detection of

hardware Trojans and neural Trojans is that there is no Trojan-free neural IPs

for comparison, whereas ‘golden chips’ are sometimes available for comparison in

hardware Trojan detection.

4.3.3 Relevance to Existing Attacks

Neural Trojans and poisoning attacks are both carried out in the training

phase with manipulated training data. However, they have different objectives.

Neural Trojans’ objective is to embed hidden functionalities in the neural IPs which

are hard to detect and activated only by rare input patterns. Embedding Trojans

almost does not affect the normal functionalities of the neural IP. In contrast, the

poisoning attacks aim at degrading the accuracy of the neural networks.

Neural Trojans are injected during the training phase whereas exploratory

attacks are carried out in deployment of the neural network. The triggers of neural

Trojans are from a crafted illegitimate distribution which is different from the

legitimate distribution. In contrast, in an exploratory attack, adversarial examples

are crafted from individual legitimate samples.

4.3.4 A Neural Trojan Example

In this example, the neural IP is designed to classify MNIST dataset images

[53] (illustrated in Fig. 4.2a). The Trojan embedded the neural IP will be triggered

by illegitimate input samples and produce an output determined by the attacker. We

57

(a) Samples of legitimate images (b) samples of illegitimate images

Figure 4.2: Examples of the MNIST (legitimate) images and printed fonts of ‘4’
(illegitimate) images

choose printed digit ‘4’ in all the computer fonts as the Trojan trigger (illustrated in

Fig. 4.2b). In this way, the trigger pattern and a subset of the legitimate patterns

are somewhat similar but are sampled from different distributions. The output

pattern when the Trojan is triggered is one of the ten possible output labels. In the

rest of this chapter, this neural Trojan example is used in our experiments.

4.4 Defense Mechanisms

To mitigate the threat of neural Trojans, we propose three defense approaches

in this section. We assume that the defender knows the original training and

test data and/or the distribution from which these data are sampled. Whether

the defender needs to know the label of each training/test sample depends on the

requirement of each defense approach.

58

4.4.1 Input Anomaly Detection

In this approach, we try to apply existing anomaly detection approaches to

detect the out-of-distribution input samples. We follow [20] and use support vector

machines (SVMs) and decision trees (DTs) as detection methods. SVMs and DTs

are machine learning methods for classification. The objective of training the SVM

is to find the separating hyperplanes between each two different classes of data,

whereas the DT is a rule-based approach and training a DT is to capture the rules

that are represented by each class of data.

Since the defender does not know the illegitimate distribution, he/she cannot

directly train the SVMs/DTs simply as binary classifiers of whether the data sample

is legitimate or illegitimate. To overcome this challenge, we use the following

technique: we train multiple one-to-many classifiers. Specifically, the classifiers

(i.e., SVMs or DTs) are as many as the classes (e.g. 10 for the MNIST dataset as

the classes are from ‘0’ to ‘9’). The ith (i = 0, 1, . . . , 9) classifier determines whether

the input sample belongs to class i, i.e., images of ‘i’ are considered as positive and

other images are as negative. The reason behind is that every legitimate sample

must belong to one of the 10 classes. Hence one classifier should classify the image

as positive. Therefore, an image is determined as legitimate if it is labeled as

positive by any classifier in the test process. If no classifier labels the input image

as positiveThe, it is determined as illegitimate.

59

4.4.2 Re-training

The re-training approach tries to modify the neural IP in order to ‘erase’ the

Trojan. This requires that the neural IP is a soft IP, i.e., it can be modified. If this

is the case, the defender can re-train the neural IP, i.e., he/she can continue training

the neural IP. The re-training process can be viewed as a special type of training

whose starting point is the IP given by the neural IP designer. The training data

for re-training are exclusively from the legitimate data. In this way, the Trojans

embedded in the weights can possibly be overwritten. Note that the re-training

process is supervised, and the label of each training sample is necessary.

Note that re-training should take much fewer training samples and much less

time than training from scratch. Otherwise, it would not be worthwhile to obtain a

third party neural IP: one could train from scratch in-house.

4.4.3 Input Preprocessing

Both prior introduced defenses require some premises: the re-training ap-

proach is applicable only when the neural IP is reconfigurable; and both approaches

require the defender’s knowledge about the label legitimate training samples. These

requirements may not always be satisfied. In some cases, the weights inside the

neural network may be inaccessible. For example, the neural IP designer may lock

the neural IP using various hardware obfuscation techniques or have hard-coded

the weights so that they cannot be modified. In some other cases, the defender

may not necessarily know the label of each legitimate sample, i.e., he/she indeed

60

Figure 4.3: The architecture of the autoencoder

needs to rely on the neural IP for classification. In these cases, we cannot use

the re-training approach or the anomaly detection methods, and we need another

mitigation technique that is still applicable even if none of these assumptions holds.

To this end, we propose an input preprocessing approach which uses an input

preprocessor placed before the neural IP. The objective of input preprocessing is

to modify the features of the illegitimate input samples and make them unable to

trigger the Trojans. Ideally, the preprocessor should not affect the classification

accuracy of legitimate data.

In order to realize this objective, we use an autoencoder as the input prepro-

cessor. The autoencoder, a.k.a. the replicator neural network [40], has as many

input nrurons as output neurons and its structure is like a bottleneck, i.e., there

are fewer neurons in the layers closer to the middle. The autoencoder that we use is

illustrated in Fig. 4.3 where the rectangles indicate the neurons within each layer and

the number beside the rectangles are # neurons in the layer. The backpropagation

algorithm is also used in the training of the autoencoder with the error function of

E(w, T) =
1

2n

∑
xi∈T

‖f(w,xi)− xi‖2 (4.4)

61

As shown in this error function, the training objective is to minimize the error

between the input (training) images and the output (reconstructed) images. The

mechanism here is that, during the backpropagation process, the features of the

training data are automatically extracted and compressed into the hidden layers

of the autoencoder. As only legitimate data are used in the training process the

autoencoder, the autoencoder only learns the features of legitimate data. Therefore,

when the autoencoder is deployed, the legitimate input samples’ output should be

close themselves and hence the neural IP will classify the reconstructed image in the

same way as the original image. In contrast, if the input is outside the legitimate

distribution (e.g. a Trojan trigger), the reconstructed image should undergo a lot of

distortion and hence the neural IP should not be able recognize it as Trojan trigger.

Note that, in this approach, unlike the two previous approaches, no assumption is

made about the neural IP. The defender does not need to know the labels of training

samples either.

4.5 Experiments and Results

4.5.1 Neural IP Setup

In our experiments, the functionality of the neural IP is to classify the MNIST

handwritten digit images (from ‘0’ to ‘9’) [53]. The neural IP structure is a 3-layer

NN with 784 neurons in the input layer, 300 in the hidden layer, and 10 output

neurons. Each output neuron represents one possible classification result (i.e., a

label), and the label represented by the neuron which has the highest output value

62

is the classification result. In the training phase, 60,000 legitimate MNIST samples

and 864 illegitimate samples are used. To ensure generality, we train 10 Trojan-

embedded neural IPs, as there are 10 different digits, and one Trojan-free IP. For

the ith (i = 0, 1, . . . , 9) Trojan-embedded IP benchmark, ‘i’ is the label that the

attacker has determined for the illegitimate data. The Trojan is said to be triggered

when an illegitimate sample is classified as the attacker-chosen Trojan label. The

Trojan activation rate is defined as the percentage of illegitimate input that triggers

the Trojan. The test dataset consists of 10,000 legitimate MNIST samples and 152

illegitimate samples. The following testing results are observed:

• Among the ten Trojan-embedded neural IPs, the average Trojan activation

rate is 99.2%.

• The Trojan-free neural IP classifies 97.97% of legitimate samples correctly,

whereas on average, the Trojan-embedded neural IPs classifies 97.77% cor-

rectly.

In other words, the Trojan triggers are very effective without undermining the

normal functionality of the neural IP. Therefore, it is not realistic to detect neural

Trojans by simply testing with legitimate data and more sophisticated countermea-

sures are necessary.

63

Table 4.1: Anomaly detection with various methods

Method Detection Rate False Positive
SVM 72.6% 13.4%

Decision Tree 99.8% 12.2%

4.5.2 Input Anomaly Detection

We train 10 SVMs and 10 DTs according to Section 4.4.1 for input anomaly

detection. Each SVM and DT is trained with 60,000 legitimate MNIST samples.

10,000 legitimate MNIST samples and 1016 illegitimate samples comprise the test

data. The performance of each method is given in Table 4.1. The detection rate

means the portion of illegitimate inputs successfully detected as anomalies and

the false positive indicates the portion of legitimate inputs incorrectly labeled as

anomalies. Between the two approaches, DTs achieve better results than SVMs by

having higher detection rate and lower false positive, although the false positive rate

is high. Therefore, in a situation where triggered Trojans may result in huge loss

and occasional false positives are acceptable, the DT-based anomaly detection can

be applicable.

4.5.3 Re-training

We re-train the neural IP benchmarks using legitimate MNIST data following

the discussions in Section 4.4.2. As re-training proceeds, we observe the change in

the Trojan activation rate (except the Trojan-free benchmark) and the change in

the classification accuracy of legitimate samples with the number samples applied

on re-training. We use up to 12,000 legitimate MNIST images for re-training which

accounts for up to 20% of total legitimate samples used to train the neural IP. As

64

Figure 4.4: The average trojan activation rate vs. re-training effort

Figure 4.5: The average classification accuracy of legitimate data vs. re-training effort

much fewer samples are used re-training than the training of the neural IPs, the

re-training effort is also substantially smaller compared to training a neural IP from

scratch.

As shown in Fig. 4.4, as # re-training samples goes above 10,000, the Trojan

activation rate decreases below 10% (5.9% for 12,000 re-training samples). The

change of the legitimate sample classification accuracy during re-training is shown

in Fig. 4.5. The dotted line indicates the accuracy of the Trojan-free neural IP. The

solid line illustrates the average accuracy of all the Trojan-embedded neural IPs. As

seen, the re-training results in a small decrease in classification accuracy of about

2% for both the Trojan-free and the Trojan-infected benchmarks. A possible reason

65

(a) The original (upper row) and recon-
structed (lower row) legitimate inputs

(b) The original (upper row) and recon-
structed (lower row) illegitimate inputs

Figure 4.6: The original and reconstructed (a) legitimate and (b) illegitimate input images

of the accuracy drop might be that the small subset of legitimate training samples

we use do not necessarily represent the distribution of the entire training set very

well.

In summary, the re-training approach is effective in terms of reducing the

Trojan activation rate. It requires substantially less effort compared to training a

neural IP from scratch. However, it suffers from two drawbacks:

• There will be an average of 2% accuracy reduction no matter the neural IP is

clean or Trojan-embedded.

• The neural IP must be re-trainable (otherwise there is no re-training) and the

some training data (with labels) must be available for the defender.

4.5.4 Input Preprocessing

We use the autoencoder described in Section 4.4.3 for input preprocessing.

The autoencoder we use in this work has 3 hidden layers. The structure of the

autoencoder and the number of neurons in each layer is shown in Fig. 4.3 where

the rectangles stand for the neurons in each layer and the trapezoids stand for the

66

weights between adjacent layers. The logistic sigmoid function, i.e., y = 1
1+e−x

, is

used as the activation function of the middle layer, and the ReLU function is the

activation function of all other layers.

60,000 legitimate training samples are used to train the autoencoder which is

then tested with 1016 illegitimate samples and 10,000 legitimate test samples. Fig.

4.6 demonstrates the reconstruction effects of the autoencoder. In Fig. 4.6a, the up-

per row shows some legitimate samples and the corresponding reconstructed images

are shown in the lower row. The reconstructed images are close to the original input

images. Therefore, the neural IP is expected to give the same classification result

to the reconstructed images as the original image. The effects of the reconstruction

of illegitimate images is shown in the upper row of Fig. 4.6b and the reconstructed

images are provided in the lower row. A much larger distortion can be observed.

Therefore, it is expected that the neural IP would not recognize the reconstructed

triggers as triggers.

Our experiments show that, after preprocessing, 90.2% of the Trojan triggers

are no longer able to trigger the Trojan output. Furthermore, with the input

preprocessor in place, we find that the the Trojan-embedded neural IPs behave

very similarly to the Trojan-free neural IP: for 96.8% of the illegitimate inputs, the

Trojan-embedded neural IPs give the same output as that of the Trojan-free neural

IP, in which case the Trojan triggers have been rendered ineffective and do not make

a difference any more. The impact on normal classification accuracy of legitimate

data by input preprocessing is rather small: 1.00% decrease for the Trojan-free

neural IP and an average of 2.36% loss for the Trojan-embedded neural IPs.

67

4.6 Summary

In this chapter, we reviewed the basics of neural networks and the existing secu-

rity threats against neural networks. These include the poisoning and exploratory

attacks. In these attacks, the attacker either wants weaken the neural model by

injecting poisoned training samples into the training set or crafts adversarial test

samples to attack the vulnerabilities of the network.

In addition to these attack models, we propose the neural Trojan attack model

which is focused on the integrity of neural IPs. The attacker is generally the neural

IP trainer and can train the neural IP to classify a certain illegitimate input pattern

(i.e., the Trojan trigger) as an output class in favor of the attacker. Note that such

a neural IP almost does not suffer from any loss of normal classification accuracy.

We have demonstrate the effectiveness of neural Trojans by showing that they are

triggered in more than 99% of the times when the Trojan trigger is provided.

The defender is a system designer who needs a neural IP and obtains one from

the attacker. The defender does not know whether a Trojan is embedded into the

neural IP or not, nor does he/she know about the Trojan trigger. We propose three

techniques as countermeasures: input anomaly detection, re-training, and input

preprocessing. The decision tree method used in the anomaly detection approach

detects 99.8% illegitimate inputs at the cost of 12.2% false positive. The re-training

approach significantly reduces the Trojan activation rate to 6% with much less effort

than training the neural IP from scratch although this approach requires the neural

IP be re-trainable. In the input preprocessing approach, an autoencoder is used to

68

reconstruct the input images. The reconstructed images become the actual inputs

of the neural IP. In this way, we are able to render 90.2% of the Trojan triggers

ineffective without any knowledge about the neural IP.

In summary, the threat of neural Trojans must be mitigated when we use

third-party neural IPs. We propose three countermeasures against this threat that

a system designer can use when dealing with such a neural IP which potentially

contains Trojans. All these countermeasures are proven to be effective mitigation

against the threat of neural Trojans. However, they all come with some overheads

including the loss in the classification accuracy of legitimate data and the rejection

of some legitimate inputs, etc.

69

Chapter 5: Secure Logic Locking for

Hardware Running Neural Networks

In this chapter, we address the challenge that neural network brings to logic

locking, a type of hardware IP protection scheme untrusted IC foundries. This

challenge is due to the inherent error resiliency of neural networks to small errors.

Logic locking is a hardware security technique aimed at protecting intellectual

property (IP) against security threats in the IC supply chain, especially those

posed by untrusted fabrication facilities. Such techniques incorporate additional

locking circuitry within an IC that induces incorrect digital functionality when an

incorrect verification key is provided by a user. The amount of error induced by an

incorrect key is known as the effectiveness of the locking technique. A family of

attacks known as ”SAT attacks” provide a strong mathematical formulation to find

the correct key of locked circuits. In order to achieve high SAT resilience (i.e.,

complexity of SAT attacks), many conventional logic locking schemes fail to inject

sufficient error into the circuit when the key is incorrect. For example, in the case

of [119, 128, 121, 129] there are usually very few (or only one) input minterms that

cause any error at the circuit output. The state-of-the-art stripped functionality

logic locking (SFLL) [133] technique provides a wide spectrum of configurations

which introduced a trade-off between SAT resilience and effectiveness. In this

70

work, we prove that such a trade-off is universal among all logic locking techniques.

In order to attain high effectiveness of locking without compromising SAT resilience,

we propose a novel logic locking scheme, called Strong Anti-SAT (SAS). In ad-

dition to SAT attacks, removal-based attacks are another popular kind of attack

formulation against logic locking where the attacker tries to identify and remove

the locking structure and remove them. Based on SAS, we also propose Robust

SAS (RSAS) which is resilient to removal attacks and maintains the same SAT

resilience and effectiveness as SAS. SAS and RSAS have the following significant

improvements over existing techniques. (1) We prove that the SAT resilience of SAS

and RSAS against SAT attack is not compromised by increases in effectiveness. (2)

In contrast to prior work which focused solely on the circuit-level locking impact,

we integrate SAS-locked modules into an 80386 processor and show that SAS has

a high application-level impact. (3) Our experiments show that SAS and RSAS

exhibit better SAT resilience than SFLL and their effectiveness is similar to SFLL.

5.1 Introduction

Due to the increasing cost of maintaining IC foundries with advanced technol-

ogy nodes, many chip designers have become fabless and outsource their fabrication

to off-shore foundries. However, such foundries are not under the designer’s control

which puts the security of the IC supply chain at risk. Untrusted foundries are

capable of malicious activities including hardware Trojan insertion, piracy and coun-

terfeiting, overbuilding, etc. Many design-for-trust techniques have been studied as

71

countermeasures among which logic locking has been the most widely studied [16].

A logic locked circuit requires a secret key input and the correct key is kept by the

designer and not known to the foundry. The functionality of the circuit is correct

only if the key is correct. After the foundry manufactures the locked circuit and

returns it to the designer, the correct key is applied to the circuit by connecting a

tamper-proof memory containing the key to the key inputs. This process is called

activation. Over the years, different types of logic locking mechanisms have been

suggested. Initially, locking involved inserting XOR/XNOR gates in a synthesized

design netlist [87]. Later, techniques based on VLSI testing principles have been

outlined to improve logic locking schemes by manifesting high corruption at the

output bits when an incorrect key is applied [82, 83].

The Boolean satisfiability-based attack, a.k.a. SAT attack [102] was a game

changer and became the basis of many variants [17, 95, 94]. SAT provides a strong

mathematical formulation to find the correct locking key of a logic locked IC which

prunes out wrong keys in an iterative manner. In each iteration, an input (called

the Distinguishing Input, or DI) is chosen by the SAT solver and all the wrong keys

that corrupt the output of this DI are pruned out. All wrong keys are pruned out

when no more DI can be found. Point function (PF)-based logic locking, including

SARLock [128] and Anti-SAT [119, 121], force the number of SAT iterations to be

exponential in the key size by pruning out only a very small number of wrong keys

in each iteration. However, PF-based locking schemes have a drawback that there

are very few (or only one) input minterms whose output is incorrect for each wrong

key. Hence the overall error rate of the locked circuit with a wrong key is very small.

72

This disadvantage is captured by approximate SAT attacks such as AppSAT [94]

and Double-DIP [95]. These attack schemes are able to find an approximate key

(approx-key) which makes the locked circuit behave correctly for most (but not all)

of the input values. Another kind of popular attack against logic locking schemes

is removal attacks [130, 131]. In a removal attack, the attacker tries to find the

logic locking module, remove it, and replace its output with a constant 0 or 1. The

key step in this attack is to identify the output wire of the locking module. This

can be achieved by structural analysis assisted by calculating the signal probability

skew (SPS) of each wire [131]. Locking techniques such as Anti-SAT [119] is most

vulnerable to this type of attack since the correct functionality of the original circuit

can be obtained by removing the Anti-SAT module and replacing its output with 0.

More recently, Yasin et al. proposed stripped functionality logic locking (SFLL)

which allows the designer to select a set of protected input patterns that are affected

by almost all the wrong keys while other input patterns are affected by very few

wrong keys [133]. SFLL is not vulnerable to removal attack since the function-

ality of the original circuit for the protected input patterns has been modified in

SFLL. However, when the number of protected patterns increases, SAT attacks

need significantly fewer iterations to find the correct key. Essentially, SFLL creates

a fundamental trade-off between SAT resilience (i.e., SAT attack complexity) and

effectiveness (i.e., the amount of error injected by a wrong key). This trade-off

is problematic. On the one hand, if only very few input patterns are protected, a

wrong key may not inject enough error into the circuit and useful work may still be

done using the chip, rendering locking ineffective. On the other hand, having more

73

protected input patterns will compromise the circuit’s SAT resilience. Moreover.

as we move into the machine learning (ML) era, error-resilient applications are

becoming increasingly relevant since most ML-based applications usually embody

substantial amount of error resilience. Hence small amount of error in the hardware

(introduced by incorrect keys and/or hardware simplification) may not necessarily

impact the overall application accuracy. With SFLL, if we want to ensure a very

high corruption at the hardware level (for wrong keys), the resiliency to SAT would

inevitably reduce. Addressing this dilemma is the main theme of our paper.

We propose Strong Anti-SAT (SAS) to address the challenges in achieving

high effectiveness without sacrificing SAT resilience. On one hand, SAS ensures

that, given any wrong (including approximate) key, the error injected by locking

circuitry will have significant application-level impact. On the other hand, SAS is

provably resilient to SAT attacks (i.e., requiring exponential time). Based on SAS,

we also propose Robust SAS (RSAS), a variant of SAS that is not vulnerable to

removal attacks and has the same SAT resilience and effectiveness as SAS. This

makes RSAS a substantial improvement over the limitations posed by SAS. The

contribution of this work is as follows.

1. We prove the fundamental trade-off between SAT resilience and effectiveness

which is applicable to any logic locking scheme.

2. We demonstrate the inability of existing locking techniques to secure hardware

running real-world workloads due to such a trade-off. We show that, when the

longest combinational path (i.e., the multiplier) in a 32-bit 80386 processor

74

is locked using SFLL, the processor fails to simultaneously have high SAT

complexity and high application-level impact on both PARSEC [8] and ML-

based application benchmarks.

3. We propose Strong Anti-SAT (SAS) to address this challenge. In SAS, a set

of input minterms that have higher impact on the applications are identified

as critical minterms. We design the locking infrastructure of SAS such that

given a wrong key, the critical minterms are more likely to introduce error

in the circuit and hence result in an application-level error. We also prove

that the SAT complexity is exponential in the number of key bits and does

not deteriorate when the number of critical minterms increases. This is a

substantial improvement over SFLL.

4. We also propose a removal attack resistant variant of SAS, called Robust SAS

(RSAS). RSAS is designed such that it achieves the same SAT resilience and

effectiveness levels as SAS and if the locking module of RSAS is removed, the

remaining circuit will exhibit incorrect functionality for critical minterms.

5. Experiment results show that, when locked using the same number of critical

minterms, SAS and RSAS have higher SAT resilience than SFLL and they

have about the same level of effectiveness. In terms of area, power, and delay

overhead, RSAS and SFLL have similar overheads in general and are a little

better than SAS.

75

The rest of the paper is organized as follows. Sec. 5.2 introduces the back-

ground on SAT attack and existing logic locking schemes. We show that SFLL’s

trade-off makes it incapable to secure real-world applications in Section 5.3. We

then mathematically prove that the trade-off applies to all logic locking schemes in

Section 5.4. In Section 5.5, SAS’s hardware structure is presented and its exponential

SAT attack complexity is proved in theory. The removal attack resistant variant of

SAS, i.e., RSAS, is introduced in Section 5.6. Section 5.7 describes the methodology

to choose critical minterms. Section 5.8 shows the experimental results which

demonstrate that when the same set of critical minterms are selected by SAS, RSAS,

and SFLL, SAS and RSAS achieve higher security than SFLL while maintaining

similar application-level effectiveness. Section 5.9 concludes the paper.

5.2 Background

5.2.1 Attack Model

Fig. 5.1 illustrates the threat model we consider which is consistent with the

latest papers in the logic locking field [119, 128, 18, 94, 120, 118, 133, 61, 135, 116].

The attacker can be either an untrusted foundry or an untrusted user who has the

ability to reverse engineer the fabricated chip, obtaining the locked gate-level netlist.

The attacker is considered to have the following resources:

1. The locked gate-level netlist of the circuit under attack. This can be obtained

by reverse engineering the GDS-II file (which the foundry has) or a fabricated

chip (which can be done by a capable end user).

76

Packaging

Activation
$

AttackRE: Reverse Engineering

Untrusted Foundry or Other Stages
Designer

Designer or

Trusted Third

Party

Obfuscated

netlist
Original

netlist

RTL

netlist

Non-

functional IC

Obfuscated

netlist

GDS II Masks

Layout

generation Fabrication
IC

design

Functional

IC

Open Market

Deciphered

netlist

RE RE RE RE
Black-Box

Oracle

Figure 5.1: The targeted attack model of logic locking

2. An activated chip. The attacker is considered to own an activated chip (i.e.,

the one loaded with the correct key) since such a chip can be purchased from

the open market.

In general, logic locking research does not assume that the attacker is able to

insert probes into the activated circuit, i.e., to observe the intermediate values. This

is because protection schemes (e.g. analog shield [69]) can counter probing attacks.

5.2.2 SAT Attack

For any combinational digital circuit, the functionality can be expressed using

a Boolean function F : ~X → ~Y where ~X and ~Y are the primary input and output,

respectively. The logic locked circuit FL takes one more input, the key input ~K, in

addition to the primary input. If ~K is correct, then ∀ ~X, F (~X) = FL(~X, ~K). F (~X)

may not be equal to FL(~X, ~K) if ~K is incorrect. As stated earlier, the key is stored

tamper-proof memory and is not accessible to the attacker.

The Boolean satisfiability-based attack, a.k.a. SAT attack is a strong the-

oretical formulation to find the correct key of a locked circuit. In the context

of the SAT attack, we use the Conjunctive Normal Form (CNF): C(~X, ~K, ~Y) to

characterize Boolean satisfiability: C(~X, ~K, ~Y) = TRUE if ~X, ~K, and ~Y satisfy

77

~Y = FL(~X, ~K), where FL stands for the Boolean functionality of the locked circuit.

C(~X, ~K, ~Y) = FALSE otherwise. SAT attacks run iteratively and prune out incorrect

keys in every iteration. The attack consists of the following steps:

1. In the initial iteration, the attacker looks for a primary input, ~X1, and two

keys, ~Kα and ~Kβ, such that the locked circuit produces two different outputs

~Yα and ~Yβ:

C(~X1, ~Kα, ~Yα) ∧ C(~X1, ~Kβ, ~Yβ) ∧ (~Yα 6= ~Yβ) (5.1)

~X1 is called the Distinguishing Input (DI).

2. The DI, ~X1, is applied to the activated circuit (the oracle) and the output ~Y1

is recorded. Note that ~Kα, ~Yα, and ~Kβ, ~Yβ are not recorded. Only the DI and

its correct output are carried over to the following iterations.

3. In the ith iteration, a new DI and a pair of keys, ~Kα and ~Kβ, are found. The

newly found ~Kα and ~Kβ should produce correct outputs for all the DIs found

in previous iterations. To this end, we append a clause to Eq. (5.1):

C(~Xi, ~Kα, ~Yα) ∧ C(~Xi, ~Kβ, ~Yβ) ∧ (~Yα 6= ~Yβ)

i−1∧
j=1

(C(~Xj, ~Kα, ~Yj) ∧ C(~Xj, ~Kβ, ~Yj))

(5.2)

In this way, all the wrong keys that corrupt the output of previously found

DIs (i.e., the output is different from that of the activated chip) are pruned

out from the search space.

4. SAT solves Eq. (5.2) repeatedly until no more DI can be found, i.e., Eq. (5.2)

is not satisfiable any more.

78

5. In this case, there is no more DI. The output of the SAT attack is a key ~K

that produces the same output as the activated circuit to all the DIs, which

can be expressed using the following CNF:

λ∧
i=1

C(~Xi, ~K, ~Yi) (5.3)

where λ is the total number of SAT iterations.

Note that there can be multiple correct keys: some keys can be different from

but functionally equivalent to the actual key in the activated chip.

Theorem 5.1. SAT is guaranteed to find a correct key ~Kc to the locked circuit.

Proof. This can be proved by contradiction: suppose the key returned by the last

step of SAT attack is a wrong key. This implies that there must exist a primary

input ~X such that

C(~X, ~Kc, ~Yc) ∧ C(~X, ~K, ~Y) ∧ (~Yc 6= ~Y)

where ~K is the actual key, ~Yc is the output with returned key ~Kc and ~Y is the correct

output according to the actual key ~K. ~X cannot be a previously found DI because

otherwise ~Kc will not satisfy (5.3). We can see that ~X qualifies for a DI: just assign

~Kα = ~Kc and ~Kβ = ~K. This means that (5.2) is still satisfiable and contradicts the

criteria that no more DI can be found before the SAT attack goes to the final step.

Hence proved.

79

5.2.3 Existing Logic Locking Schemes

Multiple logic locking schemes have been proposed to thwart the SAT at-

tack [132, 119, 121, 133, 128]. There are two ways to mitigate the SAT attack:

one is to increase the time for each SAT iteration and the other is to increase

the number of SAT iterations. The former requires either AES blocks [132] or

reconfigurable logic [49], which is impractical for most circuits. The other approach

is to exponentially increase the number of SAT iterations. This approach is also not

perfect because a locking scheme must be rather ineffective to improve security. This

is the case for Anti-SAT [119, 121], SARLock [128], and and TTL [129]. All these

techniques are vulnerable to the approximate SAT attacks (such as AppSAT [94]

and Double-DIP [95]).

The state-of-the-art, stripped functionality logic locking (SFLL) [133], explores

the trade-off between security and effectiveness. SFLL comprises of two parts:

a functionality stripped circuit (FSC) and a restore unit (RU). The FSC is the

original circuit with the functionality modified for a set of protected input cubes.

This modification makes SFLL resistant to removal attack. If the RU is removed,

the FSC’s functionality of protected input cubes is different from the original circuit,

thus making the attack unsuccessful. The RU stores the key, compares the circuit’s

input with the key, and outputs a restore vector which is XOR’ed with the FSC

output. If the key is correct, the restore vector will fix the FSC’s output and

the circuit will have correct output. There are two variants of SFLL: SFLL-HD

and SFLL-flex. SFLL-HD has been successfully attacked by a functional analysis

80

based attack [98, 99]. As the latter remains secure, provides higher flexibility in

selecting protected cubes, and is more relevant to SAS, we focus on SFLL-flex

in this paper. An SFLL-flex configuration can be described using the number of

protected cubes, c, and the number of specified bits of each cube, k, denoted as

SFLL-flexc×k. The authors of [133] derived the following characteristics of a circuit

locked with SFLL-flexc×k: (1) the fraction of input minterms whose output will be

corrupted by a wrong key (i.e., the “error rate” of a wrong key) is c ·2−k; and (2) the

probability that a SAT attack finds the correct key within q iterations is q ·2dlog2ce−k.

We illustrate this relationship in Fig. 5.4. As a higher SAT success probability

indicates weaker security, SFLL inherently suffers from a trade-off between security

and effectiveness.

Figure 5.2: The positive correlation between the error rate of wrong keys and the
probability that SAT finds the correct key in certain iterations

81

5.3 Insufficiency of SFLL for Real-World Applications

In this section, we investigate the application-level effectiveness of SFLL [133].

Specifically, we lock the multiplier within a 32-bit 80386 processor since it is the

largest combinational component. The application-level impact is evaluated using

both generic and neural network (NN)-based benchmarks. We emphasize NN-based

applications because they are inherently error-resilient and hence are more difficult

to protect using logic locking. Details of the benchmarks are listed in Table 5.1.

Table 5.1: Application benchmark details

Benchmark Type Quantity Content

Generic Applications 9 The PARSEC Benchmark Suite [8]

Neural Networks 5 MNIST [53], SVHN [68], CIFAR10 [51], ILSVRC-2012 [25], Oxford102 [70]

In order to evaluate the application-level impact of a logic locking scheme, we

modify the GEM5 [10] simulator so that error is injected into the locked processor

module according to the hardware error profile due to the wrong key. In this way,

the circuit-level error induced by an incorrect (including approximate) key can be

evaluated at the application level. This framework is illustrated in Fig. 5.3 which is

similar to the strategy used in [19, 135].

High-Level
Description

of a
Processor

Gate-Level
Netlist of a
Processor Locked Netlist of a

Processor

Architecture-
Level

Simulation
Tool

Synthesis Logic
Locking

AppSAT
Attack

Approx-Key

Error
Profile

Figure 5.3: Our experimental framework

82

SFLL allows the designer to explore the trade-off between effectiveness and

SAT resilience. We show that a “sweet spot” does not exist. In our experiments, we

lock the multiplier with various SFLL configurations, each having a different level

of SAT resilience, quantified by the average SAT iterations to unlock (as the X axis

in Fig. 5.4). The effectiveness of each locking scheme is evaluated by running the

PARSEC and NN benchmarks on the locked processors loaded with approximate

keys. The percentage of PARSEC benchmark runs with incorrect outcome and the

accuracy loss of NN models are used as the criteria to evaluate the effectiveness of

each locking configuration. The trade-off is illustrated in Fig. 5.4.

101 103 105 107 109

Average SAT Attack Iterations to Unlock

0

25

50

75

100

%
 B

en
ch

m
ar

k
Ru

ns
wi

th
 In

co
rre

ct
 O

ut
co

m
e

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

102 103 104 105 106 107 108

Average SAT Attack Iterations to Unlock

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ac
cu

ra
cy

 L
os

s Cifar 10
ISLVRC 2012
MNIST
Oxford 102
SVHN

Figure 5.4: SAT resiliency vs. locking effectiveness trade-off. Left: PARSEC benchmarks.
Right: NN benchmarks.

From Fig. 5.4, we observe that the wrong keys’ impact decreases with the

increase in SAT resiliency. In order to have a visible accuracy drop for the most

error-resilient benchmarks, the SFLL locked processor cannot endure more than

roughly 1000 SAT iterations. Such a locking scheme is extremely vulnerable since

1000 SAT iterations can be fulfilled within minutes. Therefore, a logic locking

scheme that ensures high application-level impact without sacrificing SAT resiliency

is needed.

83

5.4 Fundamental Trade-off for All Logic Locking Schemes

This section generalizes the trade-off of SFLL to all logic locking schemes.

We start with definitions of concepts and then prove the relationship between SAT

resilience and effectiveness.

Definition 5.1 (Corrupt). We say that a key ~K corrupts a primary input minterm

~X if and only if the locked circuit produces a different output to ~X from the original

circuit’s output, i.e., FL(~X, ~K) 6= F (~X).

Definition 5.2 (Error Rate). The error rate ε ~K of a wrong key ~K is the portion

of primary input minterms corrupted by the key ~K.

Let X ~K be the set of input minterms corrupted by ~K. Then,

ε ~K =
|X ~K |
2n

where n is the number of bits in the primary input. We use ε to denote the average

error rate across all the keys. When the key is k bits long,

ε =
1

|KW |
∑

~K∈‖KW |

ε ~K

Definition 5.3 (Corruptibility). The corruptibility γ ~X of a primary input minterm

~X is the portion of wrong keys that corrupt this minterm.

Let K ~X be the set of wrong keys that corrupts the primary input minterm ~X

and KW be the set of wrong keys. Then,

γ ~X =
|K ~X |
|KW |

84

Let γ denotes the average corruptibility over all the input minterms, i.e.,

γ =
1

2n

∑
~X∈{0,1}n

γ ~X

Let us illustrate the above concepts with the following example. We consider

a circuit with two primary input bits (x0, x1) and locked with a two-bit key (k0, k1),

as shown in Fig. 5.5. Table 5.2 is the truth table for each possible primary input

and key input combinations. If a key corrupts a primary input, the corresponding

cell is marked with (7).

x0

x0

x1

x1
y y

k0

k1

Original Circuit Locked Circuit

Figure 5.5: An example of logic locking, with the original circuit on the left and the locked
circuit on the right.

Table 5.2: Truth table of the locked circuit in Fig. 5.5

~K = (0, 0) ~K = (0, 1) ~K = (1, 1) ~K = (1, 0) Correct y γ ~X γ

~X = (0, 0) 1(7) 0 0 1(7) 0 2
3

2
3

~X = (0, 1) 1 0(7) 1 0(7) 1 2
3

~X = (1, 1) 0 1(7) 0 1(7) 0 2
3

~X = (1, 0) 1(7) 0 0 1(7) 0 2
4

ε ~K
1
2

1
2

N/A 1

ε 2
3

In Table 5.2, we also calculate the error rate of each key, the corruptibility of

each input minterm, and their averages. We can also observe that both the average

error rate and average corruptibility equal 2
3
. It turns out that this equality is

universal in logic locking:

85

Theorem 5.2. The average error rate of all wrong keys equals the average corrupt-

ibility of all input minterms, i. e. ε = γ.

Proof. Recall that

ε =
1

|KW |
∑
~K∈KW

ε ~K =
1

|KW |
∑
~K∈KW

|X ~K |
2n

=
1

2n|KW |
∑
~K∈KW

|X ~K |

and

γ =
1

2n

∑
~X∈{0,1}n

γ ~X =
1

2n

∑
~X∈{0,1}n

|K ~X |
|KW |

=
1

2n|KW |
∑

~X∈{0,1}n

|K ~X |

Therefore, in order to prove ε = γ, we only need to prove

∑
~K∈KW

|X ~K | =
∑

~X∈{0,1}n

|K ~X | (5.4)

Let us consider the following bipartite graph G = (X ,KW , E) where X is {0, 1}n

which is the set of all the possible input minterms, KW is the set of wrong keys, and

E = {(~X, ~K)| ~X ∈ X and ~K ∈ KW , ~K corrupts ~X}. Both sides of Eq. 5.4 denote

the total number of elements in E and hence must be equal.

Let λ be the number of SAT iterations that a SAT attacker needs to find the

correct key.

Theorem 5.3. The expected number of SAT iterations E[λ] is lower bounded by

1
γ
.

Proof. In each SAT iteration, the average number of wrong keys pruned by the DI

~X is upper bounded by γ|KW | (because some of the wrong keys may have already

pruned out by DIs of previous iterations). Therefore,

E[λ] ≥ |K
W |

γ|KW |
=

1

γ

86

Hence proved.

Theorems 5.2 and 5.3 explicitly point out that there exists an inverse relation-

ship between ε and the lower bound of E[λ]. This quantifies the trade-off between

them. This trade-off applies to any logic locking scheme. Note that different input

minterms may inject a different amount of error at the application level. By assigning

higher corruptibility to a few minterms with high application-level impact, we can

achieve high effectiveness while maintaining high SAT resilience by keeping γ low

and E[λ] high. This is the main intuition behind SAS.

5.5 The Architecture and Properties of SAS

In Sec. 5.3 and 5.4, we demonstrated that two competing objectives exist for

all logic locking schemes:

1. Effectiveness: Any incorrect key should have a high appli-cation-level error

impact.

2. SAT resilience: The complexity of determining the correct key via SAT

attacks should be very high.

In this section, we introduce Strong Anti-SAT (SAS) logic locking scheme

which aims to achieve both objectives simultaneously. SAS guarantees an expo-

nential expected SAT solving time while having a large impact on the accuracy of

real-world applications. In SAS, instead of uniformly distributing the error across

all possible inputs, we identify certain input patterns which potentially have a

87

higher impact on the overall application-level error. We call these inputs critical

minterms. SAS is configured in such a way that any incorrect key corrupts at least

1 critical minterm. For the other minterms, the corruptibility is low.

5.5.1 The SAS Block

LetM be the set of critical minterms and m = |M| be the number of critical

minterms. For the ease of implementation, we always choose m to be a power of 2.

The basic locking infrastructure is the SAS block which is illustrated in Fig. 5.6.

The key ~K of an n-bit SAS block consists of two n-bit sub-keys, ~K1 and ~K2. In

order to describe the mechanism of the SAS locking scheme clearly, we use a reverse

order and start our illustration from the output side.

Original Circuit

Primary
Input

Primary
Output

Tamper-Proof
Memory

g(X’⊕K1)

g(X’⊕K2)

K1

K2

X

SAS Block

YSAS

H(X, K1)
X’

Figure 5.6: The Architecture of SAS Configuration 1 with the Details of the SAS Block

YSAS is the output of the SAS block. If YSAS = 1, a fault will be injected

into the original circuit. g is a function with an on-set-size of 1, i.e., only one input

minterm will have output 1 and all others will have output 0. ḡ has the opposite

functionality of g. A function block ~X ′ = H(~X, ~K1) is inserted before g and ḡ and

it works as follows. If ~X is not a critical minterm, then ~X ′ = ~X. In this case, only

one combination of ~K1 will make g output 1, therefore ~X has a low corruptibility.

88

If ~X is a critical minterm, then for a portion of ~K1, ~X is adjusted according to

~K1 to obtain ~X ′ such that g(~X ′, ~K1) = 1 and hence the corruptibility is increased.

~X ′ = H(~X, ~K1) further ensures that the wrong keys that corrupts each critical

minterm are mutually exclusive and evenly partition the set of wrong keys. More

specifically, as the partitioning is based on the ~K1 part of the key, we have the

following. Let K1
~X

= { ~K1|∀ ~K2 such that (~K1, ~K2) ∈ KW , (~K1, ~K2) ∈ K ~X}. Then

we have

∀ ~X1, ~X2 ∈M, |K1
~X1
| = |K1

~X2
|, K1

~X1
∧ K1

~X2
= ∅, and

⋃
~X∈M

K1
~X

= Zn2 (5.5)

where n is the number of bits in ~X, ~K1, and ~K2. This effect is illustrated in Table 5.3.

Table 5.3: Illustration of how m critical minterms partition the set of wrong keys

~K1 of wrong keys ~k1 · · · ~k 2n

m

~k 2n

m
+1
· · · ~k

2 2n

m
· · · ~k2n

critical

minterms

~X1 • • •

~X2 • • •

· · · · · ·

~Xm • •

non-

critical

minterms

~Xm+1 •

~Xm+2 •

· · ·
. . .

~X2n •

The 2 configurations of SAS will be introduced in the rest of this section.

89

5.5.2 Configuration 1: SAS with One SAS Block

This configuration is illustrated in Fig. 5.6. In this configuration, there is

one SAS block. As the critical minterms evenly partition the set of wrong keys,

the corruptibility of each critical minterm is γc = 1
m

. Below we derive the SAT

resilience of this configuration assuming that the SAT solver chooses a DI uniformly

at random in each iteration. This is a common assumption [129, 133, 92]. The SAT

resilience is quantified using the expected number of SAT iterations E[λ]. To start

with, we give 2 useful lemmas.

Lemma 5.4. Let Di be the set of DIs that have been chosen in the first i iterations

and ~X be a primary input minterm. If K ~X ⊂
⋃

~X′∈Di K ~X′ , then ~X cannot be the

DI of any SAT iteration beyond i.

Proof. Recall that Equation (5.2) gives the SAT formula for each SAT iteration:

C(~Xi, ~Kα, ~Yα) ∧ C(~X1, ~Kβ, ~Yβ) ∧ (~Yα 6= ~Yβ)

i−1∧
j=1

(C(~Xj, ~Kα, ~Yj) ∧ C(~Xj, ~Kβ, ~Yj))

To satisfy the first line, at one of ~Kα and ~Kβ must be a wrong key that corrupts ~X.

However, since any wrong key that corrupts ~X also corrupts at least 1 previously

found DI, this wrong key cannot satisfy the second line. Hence such ~X cannot be

the DI in future iterations.

Lemma 5.5. For SAS Configuration 1, any critical minterm must exist in the set

of DIs when SAT finishes: ~X ∈ Dλ ∀ ~X ∈ M, where λ is the total number of SAT

iterations and Dλ is the set of all DIs.

90

Proof. Recall that g has on-set size 1. Let ~P be the very input that makes g(~P) = 1.

∀ ~X ∈ M, let ~K1 = ~X ⊕ ~P . Then, any ~K = (~K1, ~K2) ∈ KW is a wrong key that

only corrupts ~X. Therefore, ~X has to be chosen as a DI to prune out this wrong

key.

Theorem 5.6. The expected number of SAT iterations of SAS Configuration 1 is

E[λ] =
2n +m

2
(5.6)

Proof. The total number of SAT iterations equals the total number of DIs. DIs

consist of critical minterms and non-critical minterms. By Lemma 5.5, all the critical

minterms must be in the set of DIs for SAT to terminate. Therefore, we only need

to find the expected number of non-critical minterms that are chosen as DIs. As

illustrated in Table 5.3, ∀ ~X ′ /∈ M, ∃ exactly one ~X ∈ M such that K ~X′ ⊂ K ~X . By

Lemma 5.4, if this ~X is chosen as DI before ~X ′, then ~X ′ cannot be chosen in further

iterations any more. In other words, ~X ′ will count towards the total number of

iterations only when it is chosen before the critical minterm ~X. By our assumption

that the DI is chosen uniformly at random in each iteration, ~X ′ has a probability of

1
2

to be chosen as DI before ~X is chosen. As this is true for any non-critical minterm,

the expected number of SAT iterations is E[λ] = 1
2
(2n −m) +m = 2n+m

2
.

5.5.3 Configuration 2: SAS with Multiple Blocks

In this configuration, we have l SAS blocks as illustrated in Fig. 5.7. Each SAS

block takes an n-bit primary input ~X, which is shared among all the SAS blocks,

and a 2n-bit key input. The output of each SAS block is XOR’ed with a wire in

91

the original circuit. Therefore, a fault is injected into the original circuit if any SAS

block has output 1. Let Mj be the set of critical minterms for the jth SAS block ,

j = 1, 2, . . . , l. For ease of implementation, we choose l also to be a power of 2 and

l ≤ m. The relationship between Mj and the total set of critical minterms M is

thatM1,M2, . . . ,Ml have the same cardinality, are mutually exclusive, and evenly

partition M, i.e.,

|M1| = |M2| = · · · = |Ml|, Mi ∩Mj = ∅ ∀i 6= j, and
l⋃

k=1

Mk =M (5.7)

In this way, each SAS block has m
l

critical minterms. As each critical minterm

receives high corruptibility from only one SAS block, the corruptibility of any critical

minterm is γc = l
m

.

Tamper-Proof
Memory

SAS
Block 1

Original Circuit

Primary
Input

Primary
Output

K11

K12

X

SAS
Block l

Kl1

Kl2

…

…

YSAS,1 YSAS,l

Figure 5.7: Configuration 2 with l SAS blocks

Lemma 5.7. For SAS Configuration 2, any critical minterm must exist in the set

of DIs when SAT finishes: ~X ∈ Dλ ∀ ~X ∈ M, where λ is the total number of SAT

iterations and Dλ is the set of all DIs.

Proof. This is a natural extension to Lemma 5.5. Let ~X be a critical minterm and

~X ∈ Mj. Recall that g has on-set size 1. Let ~P be the very input that makes

g(~P) = 1. ∀ ~X ∈ Mj, let ~k = ~X ⊕ ~P . Then, let us consider the following wrong

92

key ~K = (~K1, ~K2, . . . , ~K l) ∈ KW which is composed as follows: ~Kj = (~k, ~Kj
2) ∈ KWj

where KWj is the set of wrong keys for the jth SAS block. For any i = 1, 2, . . . , l that

i 6= j, ~Ki ∈ KCi where KCi is the set of correct keys for the ith SAS block. Such a

key ~K is a wrong key that only corrupts ~X. Therefore, ~X has to be chosen as a DI

to prune out this wrong key.

Below, we will analyze the SAT resilience of this configuration by deriving the

expected number of SAT iterations.

Theorem 5.8. The expected number of SAT iterations of SAS Configuration 2 with

l SAS blocks and m critical minterms is

E[λ] =
l · 2n +m

l + 1
(5.8)

Proof. By Lemma 5.7, every critical minterm must count toward the total number

of SAT iterations. Therefore, we only need to derive the expected number of non-

critical minterms that are chosen as DIs.

For any non-critical minterm ~X ′ /∈ M, in the ith SAS block, there exists

exactly one critical minterm ~Xi such that the set of wrong keys that corrupt ~X ′ in

this SAS block, Ki, ~X′ , is a subset of the set of wrong keys that corrupt ~Xi, Ki, ~Xi .

i.e., Ki, ~X′ ⊂ Ki, ~Xi . As the construction of the SAS block makes this true for any

individual SAS block and the critical minterms for each SAS block are mutually

exclusive, there are a total of l such critical minterms. When all of these l critical

minterms are chosen as DI, they will cover the entire set of wrong keys that corrupt

93

~X ′. Therefore, by Lemma 5.4, in order to include ~X ′ in the set of DIs, it must be

selected before all l critical minterms are selected. This holds for any non-critical

minterm.

By our assumption that the DIs are chosen uniformly at random in each SAT

iteration, the probability that each non-critical minterm will be chosen as DI is l
l+1

.

Therefore, the expected number of SAT iterations is E[λ] = l
l+1

(2n − m) + m =

l·2n+m
l+1

.

The properties of both configurations of SAS are summarized in Table 5.4.

Table 5.4: Properties of the 2 configurations of SAS

Configuration l γc E[λ]

1 1 1
m

2n+m
2

2 1 ≤ l ≤ m l
m

l2n+m
l+1

5.6 Robust SAS: a Removal-Resilient SAS Variant

Although SAS achieves desirable SAT resilience and high corruptibility on

critical minterms, it is still vulnerable to removal attack. In such an attack, the

attacker can identify and remove each SAS block and replace their output wires

with constant 0. In this way, the remaining part of the locked circuit will have

correct functionality. In order to address this drawback, we introduce Robust SAS

(RSAS), a variant of SAS that is resilient to removal attacks. In addition to adding

an RSAS function block, RSAS modifies the functionality of the original circuit.

Therefore, unlike SAS, one cannot obtain the correct functionality of the circuit

94

by identifying and removing the RSAS block. We will introduce the architecture

of RSAS and show how any SAS configuration can be converted to a functionally

equivalent RSAS configuration. Due to the equivalence in functionality, an RSAS

configuration will have the same SAT resilience and effectiveness as its SAS

counterpart.

5.6.1 RSAS Architecture and Relationship with SAS

A circuit locked by RSAS consists of an altered original circuit and one or more

RSAS block(s). Fig. 5.8 illustrates the RSAS configuration with one RSAS block.

Given the same set of critical minterms and the same number of locking function

blocks, locking a circuit with RSAS and SAS will yield the same functionality.

An RSAS-locked circuit can be obtained by converting a functionally equivalent

SAS-locked circuit in the following way.

Tamper-Proof
Memory

g(X’⊕K1)

g(X’⊕K2)
K1

K2

X

RSAS Block

YRSAS

H(X, K1)
X’

Altered Original Circuit

Primary
Input

Primary
Output

Functionality inverted for
all critical minterms

Figure 5.8: A circuit locked with one RSAS block, equivalent to SAS Configuration 1

95

5.6.1.1 Altering the original circuit

Recall that l is the number of SAS blocks in a SAS configuration. For the

jth SAS block, j = 1, 2, . . . , l, the set of critical minterms it contains is denoted by

Mj and |Mj| = m
l
, where m is the total number of critical minterms. In order

to implement RSAS, we need to modify the original circuit’s functionality. Notice

that, for each SAS block, there is a wire in the original circuit that is XOR’ed with

the SAS block’s output. For the jth SAS block, we locate this wire. For each critical

minterm in Mj, we invert the functionality of critical minterms at this wire. This

needs to be done for each j in j = 1, 2, . . . , l. This is illustrated in Fig. 5.9.

Tamper-Proof
Memory

RSAS
Block 1

Altered Original Circuit

Primary
Input

Primary
Output

K11

K12

X

RSAS
Block l

Kl1

Kl2

…

YRSAS,1 YRSAS,l

Functionality inverted for
critical minterms in M1

Functionality inverted
for critical minterms

in M l…

Figure 5.9: A circuit locked with multiple RSAS blocks, equivalent to SAS Configuration
2

5.6.1.2 Converting the SAS block into the RSAS block

The RSAS block is very similar to the SAS block and there is only one

difference between them. For the jth SAS block, j = 1, 2, . . . , l, if the primary input

is a critical minterm in Mj, the output of RSAS block, YRSAS,j, is the inversion of

the output of SAS block, YSAS,j. Recall that, for a SAS configuration with m critical

minterms and l SAS blocks, each critical minterm’s corruptibility is γc = l
m

. Hence

96

for a portion of l
m

wrong keys, YSAS,j is 1. This is achieved by the ~X ′ = H(~X, ~K1)

function: if ~X is a critical minterm, then the H(~X, ~K1) function makes sure that

for γc portion of wrong keys, we will have g(~X ′ ⊕ ~K1) = 1. For RSAS, since the

functionality for critical minterms is inverted, the portion of wrong keys that makes

YRSAS,j be 1 is 1 − γc = m−l
m

. This means the functionality of H(~X, ~K1) needs to

be modified in the following way: if ~X is a critical minterm, then for 1− γc portion

of wrong keys, g(~X ′ ⊕ ~K1) will output 1. For non-critical input minterms, YRSAS

behaves in the same as YSAS. This is illustrated in Table 5.5.

Table 5.5: Illustration of RSAS block’s functionality. A ‘•’ stands for YRSAS = 1.

~K1 of wrong keys ~k1 · · · ~k 2n

m

~k 2n

m
+1
· · · ~k

2 2n

m
· · · ~k2n

critical

minterms

~X1 • • • • •

~X2 • • • • •

· · · · · ·

~Xm • • • • • •

non-

critical

minterms

~Xm+1 •

~Xm+2 •

· · ·
. . .

~X2n •

5.6.2 SAT Resilience and Effectiveness of RSAS

In Sec. 5.6.1, we introduced how to convert a SAS-locked circuit into an

equivalent RSAS-locked circuit. These steps essentially invert the functionality of

each critical minterm at two places: the first at the wire in the original circuit where

RSAS is integrated, and the other at the RSAS block’s output. Since these two

wires are XOR’ed, the two inversions will cancel out which makes the RSAS-locked

97

circuit functionally equivalent to the SAS-locked circuit. Due to the equivalence in

functionality, the derivations of SAS’s SAT resilience and effectiveness will also hold

for RSAS. Therefore, Table 5.4 is also the summary of these properties of RSAS.

5.7 Choosing Critical Minterms

The critical minterms for injecting large errors should be selected judiciously.

A careful analysis of the workload would help identify these typical minterms.

Generally these minterms would be very few as compared to the overall input space

of the functional modules. Here we describe how to select the critical minterms. As

mentioned in Sec. 5.3, we use PARSEC and NN models as application benchmarks.

For the PARSEC (generic) benchmarks, we arbitrarily choose critical minterms from

the input minterms that exist in all the application benchmarks. We take a similar

approach for NN benchmarks. A significant part of an NN-based application is the

weights of the NN model and it turns out that the weight values of most NN models

follow a similar distribution. For example, Figure 5.10 shows the distribution of

weights of the LeNet (MNIST dataset) and CaffeNet (ISLVRC-2012 dataset) models.

These two are the smallest benchmark and the largest benchmark, respectively. The

weight distributions are similar across NN benchmarks and many other NN models.

This kind of similarity can be also found among generic applications.

We select a subset of weight values to be critical minterms based on their

application-lavel impact. The selected critical minterms should cause significant

application-level error. Fig. 5.10 also shows the accuracy loss of the NN model in the

98

following experiment: for each input minterm, we measure the accuracy loss of the

NN model when every computation involving this very minterm is corrupted while

no other minterm is corrupted. As the input minterm distributions are similar

1.0 0.5 0.0 0.5 1.0
Parameter values

10 6

10 4

10 2

Fr
eq

ue
nc

y

MNIST Benchmark

0.0

0.5

Ac
cu

ra
cy

 L
os

s

1 0 1
Parameter values

10 5

10 3

10 1

Fr
eq

ue
nc

y

ISLVRC_2012 Benchmark

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 L
os

s

Figure 5.10: Weight distribution (blue histogram, left Y axis) and application-level
accuracy loss (red line, right Y axis) of LeNet and CaffeNet when the corresponding

input is locked

among the same type of applications, the flexibility of SAS allows the designer to

choose a configuration and a combination of critical minterms that work well in

securing the intended applications without compromising the SAT resiliency.

5.8 Experiments & Comparison with SFLL

This section shows the experimental results of SAS and RSAS as well as

the comparison with SFLL. Recall that, as illustrated in Fig. 5.3, we obtain the

gate-level netlists of the multiplier within a 32-bit 80386 processor by synthesizing

the high-level description using Cadence RTL Compiler. Then we lock the netlist

using various SAS and RSAS configurations and SFLL-flex with the same set of

critical minterms. Note that the critical minterms are selected according to the

method described in Sec. 5.7. The architecture-level simulation is conducted by

a modified GEM5 [10] simulator where error is injected into the locked processor

99

module according to the hardware error profile due to the wrong key. We conduct

the following experiment to verify the SAT resilience and effectiveness of SAS and

RSAS and compare them with SFLL.

5.8.1 SAT Resilience

We first verify whether the SAT resilience of SAS/RSAS (i.e., the actual

number of SAT iterations) matches what we have derived in Sec. 5.5. The SAT

resilience of SAS/RSAS and SFLL is also compared. We lock the multiplier in a

32-bit 80386 processor with SAS and RSAS as well as SFLL. Fig. 5.11 shows the

actual and expected number of SAT iterations of multipliers locked with SAS and

RSAS. These numbers are compared to the actual number of iterations of SFLL. In

these locking configurations, we use 14 bits of primary input for locking purposes

(n = 14) and experiment with each feasible configuration with up to 4 critical

minterms. We can observe that SAS and RSAS have similar numbers of actual SAT

iterations and they are both close to the expected value. When there is more than

one critical minterms, SAS and RSAS exhibit higher SAT resilience than SFLL.

This is because the corruptibility of each critical minterm in SFLL is almost 1 no

matter how many critical minterms there are. This compromises its SAT resilience.

Fig. 5.12 compares the actual SAT iterations of SAS and SFLL. In Fig. 5.12a,

it can be observed that SAS’s SAT complexity is higher than that of SFLL by a

roughly constant factor when m is fixed at 4. Note that the same set of four critical

100

Figure 5.11: Actual and expected number of SAT iterations of SAS and RSAS, compared
with SFLL.

minterms are used for each locking scheme. Among various SAS configurations, a

larger l comes with higher SAT resilience as expected. In Fig. 5.12b, we vary the

critical minterm count (m) from 4 to 32 and demonstrate its impact on the SAT

resilience of SAS and SFLL. While SAS configurations become stronger with more

critical minterms, SFLL becomes weaker. Therefore, SAS is more SAT resilient and

gives designers more flexibility when more critical minterms are needed.

8 9 10 11 12 13 14 15 16
Key length n

102

103

104

SA
T

Ite
ra

tio
ns

SAS Config 1 l = 1
SAS Config 2 l = 2
SAS Config 2 l = 4
SFLL

(a) Varying key length (n), fixing # critical minterms m =
4

5 10 15 20 25 30
Critical minterm count m

0

10000

20000

30000

40000

50000

60000

SA
T

Ite
ra

tio
ns

SAS Config 1 l = 1
SAS Config 2 l = 2
SAS Config 2 l = 4
SFLL

(b) Varying # critical minterms (m),
fixing key length n = 16

Figure 5.12: The observed SAT iterations of SAS and SFLL by varying key length and
critical minterm count.

101

5.8.2 Effectiveness

We evaluate the effectiveness of SAS/RSAS and SFLL at the application level

using PARSEC [8] and ML benchmarks as listed in Table 5.1. Due to the functional

equivalence of SAS and RSAS, they will have the same architecture-level effects and

we use the same functional model to perform architecture-level simulation of SAS

and RSAS. In our experiments, various numbers of critical minterms are locked. The

same set of critical minterms are used for SAS/RSAS and SFLL in each experiment.

The critical minterms are chosen according to the methods described in Sec. 5.7. For

SAS, we choose l = 1 when m = 1 and l = 2 when m ≥ 2. Figs. 5.13 and 5.14 show

that both SAS/RSAS and SFLL are effective at the application level for both generic

and ML-based applications. SAS/RSAS achieves high application-level effectiveness

and exponential SAT resiliency at the same time. Considering that SAS/RSAS’s

SAT resilience is not compromised with the increase in m as opposed to SFLL (as

shown in Figs. 5.11 and 5.12b), SAS/RSAS is a significant improvement over SFLL.

1 2 4 8
Critical minterm count (m)

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f B
en

ch
m

ar
k

Ru
ns

 w
ith

 In

co
rre

ct
 O

ut
co

m
e blackscholes

bodytrack
dedup
ferret
fluidanimate
freqmine
streamcluster
swaptions
x264

(a) SAS/RSAS on PARSEC

1 2 4 8
Critical minterm count (m)

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f B
en

ch
m

ar
k

Ru
ns

 w
ith

 In

co
rre

ct
 O

ut
co

m
e blackscholes

bodytrack
dedup
ferret
fluidanimate
freqmine
streamcluster
swaptions
x264

(b) SFLL on PARSEC

Figure 5.13: The application-level effectiveness of SAS/RSAS and SFLL on PARSEC and
ML benchmarks

102

1 2 4 8
Critical minterm count (m)

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 L
os

s
LeNet
Cifar
SVHN
Oxford102
ISLVRC 2012

(a) SAS/RSAS on ML

1 2 4 8
Critical minterm count (m)

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 L
os

s

LeNet
Cifar
SVHN
Oxford102
ISLVRC 2012

(b) SFLL on ML

Figure 5.14: The application-level effectiveness of SAS/RSAS and SFLL on PARSEC and
ML benchmarks

5.8.3 Area, Power, and Delay Overhead of SAS, RSAS, and

SFLL

Now that we have demonstrated the SAT resilience of SAS and RSAS and their

application-level effectiveness, we evaluate their area, power, and delay overhead.

The overhead is also compared with SFLL. In our evaluation, we use 32 bits from

the primary input for locking (n = 32) and lock up to 4 critical minterms (m =

1, 2, 4). We synthesize the original and locked circuits using Cadence RTL Compiler

using SAED 90nm process. Figs. 5.15, 5.16, and 5.17 show the area, power, and

delay overhead values, respectively. Compared with SFLL, on average, SAS and

RSAS have 2.22% and 1.49% more area overhead, 0.43% more and 0.04% less

power overhead, 0.93% and 0.71% more delay overhead, respectively. These are

not significant increases in overhead and should be worth the gain in SAT resilience.

103

Figure 5.15: Area overhead of SAS and RSAS compared with SFLL

Figure 5.16: Power overhead of SAS and RSAS compared with SFLL

5.9 Summary

In this work, we investigate logic locking techniques to secure both generic

and error-resilient workloads running on locked processors. We motivate our work

by demonstrating the insufficiency of the state-of-the-art logic locking scheme in

securing such applications. We point out that this is due to the fundamental trade-

off between SAT resilience (SAT attack complexity) and effectiveness (error rate

Figure 5.17: Delay overhead of SAS and RSAS compared with SFLL

104

of wrong keys) of logic locking. We formally prove this trade-off. In order to

address this dilemma, we propose Strong Anti-SAT (SAS) where a set of critical

minterms are assigned higher corruptibility in order to ensure high application-level

impact. Based on SAS, we also propose Robust SAS (RSAS) to thwart removal

attacks on logic locking. RSAS is functionally equivalent to SAS and has the same

SAT resilience and effectiveness. Experimental results show that SAS and RSAS

secure processors against SAT attack by ensuring exponential SAT attack complexity

and high application-level impact simultaneously given any wrong key. We also

evaluate the area, power, and delay overhead of SAS and RSAS and compare it

with SFLL. It is shown that SAS and RSAS have modest increase in overhead. In

summary, RSAS exhibits a higher SAT resilience than SFLL when multiple critical

minterms are secured, while also maintaining equivalent effectiveness and removal

attack resilience. Therefore, RSAS constitutes a significant improvment over SFLL-

based locking.

105

Chapter 6: Cache Side-Channel-based
Reverse Engineering of Neural Networks

In recent years, deep neural networks (DNN) have become an important type

of intellectual property due to their high performance on various classification tasks.

As a result, DNN stealing attacks have emerged. Many attack surfaces have been

exploited, among which cache timing side-channel attacks are hugely problematic

because they do not need physical probing or direct interaction with the victim to

estimate the DNN model. However, existing cache-side-channel-based DNN reverse

engineering attacks rely on analyzing the binary code of the DNN library that must

be shared between the attacker and the victim in the main memory. In reality,

the DNN library code is often inaccessible because 1) the code is proprietary, or

2) memory sharing has been disabled by the operating system. In our work, we

propose GANRED, an attack approach based on the generative adversarial nets

(GAN) framework which utilizes cache timing side-channel information to accurately

recover the structure of DNNs without memory sharing or code access. The benefit

of GANRED is four-fold. 1) There is no need for DNN library code analysis. 2) No

shared main memory segment between the victim and the attacker is needed. 3)

Our attack locates the exact structure of the victim model, unlike existing attacks

106

which only narrow down the structure search space. 4) Our attack efficiently scales

to deeper DNNs, exhibiting only linear growth in the number of layers in the victim

DNN.

6.1 Introduction

Deep neural networks (DNN) have demonstrated exceptional performance in

a multitude of applications such as image classification and speech recognition,

making them a valuable and important form of intellectual property. In order to

protect DNN models, owners often host them on remote servers, restricting users

only to querying the model. Hence, users do not have the details of the model (i.e.,

architecture or weights). However, DNN model theft is still possible in this scenario.

For example, an adversary can exploit side-channel information in order to reverse

engineer the DNN [123, 42, 43, 5, 114, 6, 27, 107]. Under the remote host setting,

cache side-channel shows the most promise. Because the last level cache (LLC)

is shared among each processor core in most modern computer architectures, the

attacker can infer the victim’s cache usage even without interacting with the victim

directly.

Existing cache-based attack focus on reverse engineering the structure of DNNs.

As shown by the variety of prior research aimed at reverse engineering the structure

of DNNs, such as [123, 42, 43], even if these attacks do not decipher the weight

information, knowing the structure of DNNs enables enables weight extraction

attacks [107] and membership inference attacks [96, 62] and improves black-box

adversarial example attacks [75]. Therefore, unlocking the underlying DNN struc-

107

ture is a formidable attack. Hong et al. proposed DeepRecon which monitored calls

to selected TensorFlow library functions and observed the layer sequence of DNNs

[42]. Yan et al. proposed Cache Telepathy which substantially narrowed down the

dimension parameter search space of DNNs by obtaining the number of generalized

matrix multiplication (GEMM) operations via cache timing side-channels [123].

They were able to identify 16 possible structures for the VGG-16 DNN [97]. Both

of these attacks required that the attacker and the victim share the DNN’s library

code (e.g. TensorFlow or GEMM library) in main memory (i.e., the library code in

the main memory is mapped to the virtual address spaces of both the attacker and

the victim). However, memory sharing can be disabled by the server’s operating

system and the library code may be proprietary and inaccessible, thereby rendering

these attacks infeasible. Moreover, neither of these attacks could give the DNN

dimension parameters precisely. Instead, they return only the layer sequence or a

set of possible parameter combinations. Since slight differences in DNN structure

may result in a significant difference in accuracy under the same training effort [43],

obtaining the exact structure of the victim DNN is crucial. Other existing DNN

reverse engineering attacks require querying the victim DNN model [43, 107] or any

physical side-channel probing [43, 5, 114, 6, 27]. These are not required by GANRED

either. Therefore, GANRED can be carried out in a more realistic scenario.

108

6.1.1 GANRED Attack Overview

In our work, we develop GANRED, a novel generative adversarial nets (GAN)-

based [32] Rereverse Engineering attack on DNNs which is capable of both fully

recovering the dimension parameters of a DNN and does not require shared library

access. For this attack, the victim DNN’s cache side-channel information is measured

by the attacker and acts as the ground truth of the GAN using a cache side-channel

attack technique called Prime+Probe [73, 38, 79]. This technique does not require

any shared main memory segment between the attacker and the victim.

The attacker builds another DNN and updates the structure of this DNN

repeatedly to make its structure equivalent to the victim DNN. In the rest of the

paper, we refer to the victim’s DNN as VDNN and the attacker’s DNN

as ADNN. In order to achieve his/her objective, the attacker needs to find the

correct structure of each layer before moving on to the next layer. This is done as

follows. The attacker initializes the ADNN as a one-layer network. For each feasible

structure of this layer, the generator measures the cache side-channel of the ADNN

in the same way as the VDNN is measured (i.e., using Prime+Probe).

The discriminator compares the cache side-channel information of the VDNN

and the ADNN and indicates for how many clock cycles the two DNNs produce

identical side-channel information. If the ADNN has the correct structure, i.e., the

same structure as the first layer of the VDNN, then the ADNN’s cache side-channel

109

information should be identical to the VDNN’s first layer, and the discriminator will

indicate that the side-channel information of the two DNNs is identical throughout

the period that the ADNN runs.

The validator compares the discriminator’s output with a theoretical running

time of the ADNN estimated using a linear regression analysis. This effectively

rules out the ADNN structures that cause its cache side-channel to diverge from

the the VDNN’s in the middle of the ADNN’s execution. The attacker chooses the

structure that produces accurate cache side-channel data for the longest time as the

first ADNN layer.

In order to search for the structure of VDNN’s second layer, similar operations

are done. Each feasible structure of the second layer is appended to the (now known)

first layer to compose a two-layer ADNN whose cache side-channel is measured

by the generator. The discriminator compares the cache side-channel information

of the two DNNs and the validator determines whether the added matching time

agrees with the theoretical runinng time of the second layer. The structure of each

successive layer is recovered in this way until an ADNN is recovered that produces

identical cache side-channel for the entirety of each DNN’s execution. The attack is

considered successful if ADNN’s final structure is the same as the VDNN’s structure.

6.1.2 Contributions

The contributions of this work are as follows:

110

• We propose the GANRED framework where DNNs are characterized by their

accesses to a cache set over time. Our technique does not need any shared

main memory segment between the victim and the attacker or analyze the

DNN library codes on the server. Both resources were required by existing

cache side-channel based DNN structure reverse engineering attacks [123, 42].

GANRED does not require querying the victim DNN model or any physical

probing either, as required in other existing DNN reverse engineering attacks

[43, 5, 114, 6, 27, 107]. Hence, GANRED can be carried out in a more realistic

scenario where these privileges are not granted.

• We prove the following theoretical basis for GANRED. If the ADNN has the

same structure as the first l layers of the VDNN, then both DNNs should

produce identical cache side-channel information throughout these l layers.

• We show that our attack produces the exact structure of each VDNN model.

This has not been achieved by existing DNN reverse engineering attacks based

on cache side-channels [123, 42].

• We prove that the runtime of GANRED scales linearly in the number of DNN

layers. This makes our attack scalable to much deeper DNNs.

111

6.2 Background

6.2.1 Dimension Parameters of Deep Neural Networks

Deep neural networks (DNN) are a supervised classification technique that

consists of a sizable number of cascaded layers. Let i and l denote the layer number

and the total number of layers, respectively, hence i ∈ [l]. In each layer, the input

feature map (IFM) (a.k.a. the set of input neurons) is transferred into the output

feature map (OFM) (a.k.a. the set of output neurons) via an operation which

involves a set of filters. The IFM and OFM sizes (i.e., number of contained neurons)

of layer i are denoted by zini and zouti , respectively. Note that the OFM of the

previous layer is the IFM of the next layer.

Most DNNs consist of two types of layers: fully connected (FC) layers and

convolutional (Conv) layers. The IFM and OFM of FC layers are (1-dimensional)

vectors whose lengths are zini and zouti , respectively. The weights consist of a matrix

of dimension zini × zouti . The structure of a Conv layer is illustrated in Fig. 6.1.

The IFM and OFM of a Conv layer are both 3-dimensional arrays. The width and

height of a feature map are usually equal. There are a set of filters in the Conv

layer and each of them is also a 3-dimensional array. Each filter is convolved with

the IFM to obtain a channel in the OFM. A Conv layer can be characterized by

a set of dimension parameters as listed in Table 6.1. Note that a Conv layer can

be followed by an optional pooling layer and, if so, we consider pooling as a part of

the Conv layer. We define the parameter Pi as the indicator of whether there is a

pooling layer after layer i.

112

*

*

*

=

=

=
din

i w f
i

d out
i

IFM Filters OFM

d out
i filters

win
i

win
i

w out
i

w out
i

din
i

Figure 6.1: Illustration of a convolutional layer. “*” indicates inner product, each
computing an output neuron.

Type of layer Parameter Definition (subscript i indicates layer i)

Conv layer

wini , wouti IFM/OFM width
dini , douti IFM/OFM depth (number of channels)

wfi , δi convolution filter width and stride
Pi indicator of pooling layer existence

FC layer zini , zouti , zfi IFM/OFM/filter size

Table 6.1: List of dimension parameters of a layer

6.2.2 Cache Architecture Fundamentals

Cache is a type of on-chip storage for processors which temporarily stores a

subset of the main memory’s content in order to reduce memory access latency and

improve the processor’s efficiency. The basic component of cache is a cache block

(also called a cache line). Most modern processors have a set associative cache

where the cache is divided into multiple ways, each having the same number of

blocks. For example, Fig. 6.2 illustrates a two-way set associative cache. The cache

blocks in the same position of each way constitute a set. The organization of address

bits is given in Fig. 6.2. When a block is to be moved into the cache, the cache

controller will extract the set index bits from the block’s address and put the block

into an available slot in the according cache set. If no slot is available in the set,

113

Figure 6.2: A two-way set associative cache example

the controller will select a block within the set to be replaced with the new block

according to the replacement policy. The most commonly used replacement policy

is to replace the least recently used (LRU) block.

In modern multi-core processors, the cache has a hierarchy of multiple levels.

We specifically focus on the last level cache (LLC) since it is shared among all the

processor cores. Hence the LLC is used by every program running on the processor,

no matter which core the program runs on.

6.2.3 Cache Timing Side-Channel Attacks

In a cache timing side-channel attack, the attacker and the victim are two

processes running on the same processor. The attacker seeks information leakage

about the victim process by exploiting a fundamental property of cache: a cache

hit is fast and a cache miss is slow. Although a lot of attack techniques have been

proposed, most of them can be described as a three-step process [26]:

114

1. The attacker initializes the state of a cache location.

2. The victim program executes, which may modify the state of the attacker-

initialized cache location.

3. The attacker accesses the same cache location again and observes the access

latency. By doing so, he/she can infer whether the victim has accessed the

initialized cache location.

These attacks can be categorized by whether data is shared between the attacker

and victim processes.

6.2.3.1 Attacks based on Data Sharing

Flush+Reload is the major type of attack in this category [127, 126, 37].

These attacks require shared data between the attacker and the victim which can

be achieved when the operating system allows multiple processes to map their

individual virtual addresses to the same physical address for commonly required

resources (e.g. library files) [39]. This sharing enables the attacker to obtain the

victim’s library usage information via cache timing side-channel. The 3 steps of

Flush+Reload are as follows:

1. Flush: The attacker targets an address within shared memory and calls clflush

(an X86 instruction) to flush the cache line (i.e., block) that contains this

address if such a cache line exists. Otherwise clflush has no effect.

115

2. The victim process runs. The content of the targeted address will be brought

back to the same cache location if accessed by the victim.

3. Reload: The attacker accesses the targeted address and infers whether a cache

hit or a cache miss occurs based on the access latency. If the victim has

accessed the flushed address, a cache hit will occur. Otherwise, a cache miss

occurs.

6.2.3.2 Attacks without Data Sharing

Many cache timing side-channel attacks work without shared main memory.

Because there is a many-to-one mapping from main memory to cache, the attacker’s

and the victim’s physical addresses can map to the same last level cache (LLC)

location. In this way, the attacker can still detect the changes in cache state made

by the victim. Examples of such attacks are Prime+Probe [73, 38, 79], Evict+Time

[73], and cache collision-based attacks [12]. Among these attacks, Prime+Probe is

the best known and most widely used. Its mechanism is as follows:

1. Prime: the attacker fills the cache sets of interest with his/her own data.

2. The victim program runs which may or may not overwrite the primed cache

sets.

3. Probe: The attacker accesses the primed cache sets and observes timing. A

cache miss indicates that the victim has accessed that cache set.

116

Note that probing automatically primes the cache again which enables the attacker

to monitor the cache for a long period.

6.2.4 Existing DNN Reverse Engineering Attacks and De-

fenses

Reverse engineering of neural models has become a real threat which has at-

tracted several researchers’ attention. Among this body of work, a variety of distinct

attack approaches have been explored to reverse engineering neural models. Yan et

al. and Hong et al. independently proposed neural network reverse engineering

techniques based on cache side-channels [123, 42]. In their attacks, the attacker

needs to analyze the neural model’s library code, extract the control flow, and

select code lines to measure cache timing. These lines represent certain functions

that are called when the neural network is running. By monitoring these function

calls, information about the victim DNN’s structure can be extracted. DeepRecon

by Hong et al. inserted probes into the TensorFlow library code and was able

to tell the number of layers and the type of each layer in DNNs [42]. In Yan et

al. ’s Cache Telepathy attack, the generalized matrix multiply (GEMM) backend

libraries were monitored and they were able to reduce the DNN structure search

space significantly [123]. For example, only 16 possible structures of the VGG-16

DNN [97] are still feasible after their attack. DeepRecon uses Flush+Reload which

requires the attacker and victim to share the main memory segment that contains

TensorFlow library files. Cache Telepathy can be done using either Flush+Reload

117

or Prime+Probe. However, even the Prime+Probe version requires a shared main

memory segment for the GEMM library files. This might not be a realistic attack

scenario: the operating system can disable memory sharing between different users

or processes, and the attacker may not have access to the server’s DNN library code.

In addition to cache side-channel, power/electromagnetic side-channels [5, 114,

6] and timing side-channel [27] have also been exploited to reverse engineer neural

models. However, these attacks require physically probing the hardware and are

feasible only when such probing is possible. Tramèr et al. proposed a technique

to steal neural models from remote servers through prediction APIs provided by

the server [107]. A countermeasure proposed by Juuti et al. detects such model

extraction attacks with a statistical technique [47]. Hua et al. found out that

the neural network can be reverse engineered from its memory access pattern [43].

Provably secure memory access protocol [56] and secure neural accelerator designs

[113] can defend against this attack.

Many DNN protection techniques have been developed. Homomorphic encryp-

tion (HE) [13, 15, 30, 115] and secure multi-party computation (MPC) [86, 66, 72]

have been employed to ensure the privacy of both the neural model and the input

data. However, even the state-of-the-art HE and MPC algorithms are still too

complex to use in practice. Additionally, several works have proposed the use

of secure enclaves for DNN operations (such as Intel SGX) [106, 36]. However,

DNNs running in these enclaves are vulnerable to cache side-channel attacks as

well [112, 35]. In summary, there has not been an effective countermeasure against

cache-based DNN reverse engineering.

118

6.3 Attack Model

In our attack model, the VDNN runs on a server alongside the attacker which is

another process on the same server. The attacker’s goal is to reverse engineer

the structure of the victim DNN model. We consider a realistic threat model

under which the attacker process does not have the privileges assumed by many

prior works such as code access, memory sharing, or physical probing [123, 42, 43,

5, 114, 6, 27, 107]. The resources available to the attacker are as follows:

• Shared last-level cache (LLC) with the victim. This is the case for most

state-of-the-art computer architectures. Shared LLC enables the attacker to

obtain cache side-channel information of another process, e.g. the victim

DNN, using Prime+Probe.

• High-level APIs of the machine learning framework. This is available to the

attacker when he/she acts as a regular user on the server. This enables the

attacker to construct a DNN model.

With these two resources, the attacker can obtain the cache side-channel information

of both VDNN and that of ADNN using Prime+Probe. Note that these are only a

small subset of the attackers’ resources in prior attack models [123, 42, 43, 5, 114,

6, 27, 107]. We assume that the attacker does not have any of the following

privileges:

• Querying VDNN. These are normally unavailable to the attacker unless the

victim grants permission. However, [43, 107] both require this access.

119

• The library code of the machine learning framework (e.g. TensorFlow),

since the library may contain intellectual property of the server and users only

need high level APIs to build their neural model. Lacking code access makes

the attacks in [123, 42] infeasible since they need to find specific functions in

the code to insert probe.

• Shared main memory that stores the machine learning library code. This

is also needed by [123, 42] in order to map the shared library to the attacker’s

own virtual memory space and implement Flush+Reload.

• Physical access to the processor. This access is not available when the

server is not controlled by the attacker. This makes any side-channel other

than cache side-channel impossible to measure and renders the attacks in [5,

114, 6, 27, 43] infeasible.

In summary, we assume a scenario where the resources available to an attacker are

very constrained. None of the existing reverse engineering attacks [123, 42, 43, 5,

114, 6, 27, 107] are possible in this setting. However, in this work, we show that

even under such constraints, there is still substantial information leakage about the

DNN model through the cache timing side-channel. GANRED reverse engineers the

DNN structure by utilizing this information. A server’s security measures, such as

restricting queries to the victim, and eliminating memory sharing or library code

access, will disable existing attacks but not hide the side-channel information that

is sufficient for GANRED.

120

6.4 Attack Methodology

In this section, we introduce the GANRED framework details. In Sec. 6.4.1, we

present how to characterize a DNN using Prime+Probe results. Sec 6.4.2 describes

how each component of the GANRED framework works. Sec. 6.4.3 introduces the

overall algorithm of GANRED. Sec. 6.4.4 details how the validator utilizes a linear

regression analysis to estimate the running time of a layer based on its structure.

Sec. 6.4.5 proves the premise of GANRED that, if the ADNN has l layers and its

structure is the same as the first l layers of the VDNN, then the ADNN should

produce identical cache side-channel information as the VDNN’s until the ADNN’s

execution ends.

6.4.1 Obtaining DNN’s Cache Side-Channel Trace

Before we talk about the details of GANRED, we describe what side-channel

information about a DNN can be obtained from Prime+Probe. The discussion of

this subsection holds for both the VDNN and the ADNN.

During Prime+Probe, the attacker selects an arbitrary LLC set and

focuses only on this set. This is because we find that each DNN that we study

leaves almost the same access pattern on each LLC set. In the rest of this paper,

unless otherwise noted, our discussion is focused on this very LLC set. Suppose

that the DNN makes s memory accesses to this LLC set during its entire execution.

Let us use tj to denote the time at which the j-th access occurs, where j is the

index of the access (1 ≤ j ≤ s). Note that time is measured using CPU clock

121

cycles throughout this paper. Also, note that tj’s are not deterministic. This is

because the DNN’s execution is scheduled by the computer’s operating system and

the scheduling can be affected by other programs running on the same computer.

Let us define Xj as the time between the DNN’s (j−1)-th and the j-th memory

accesses to the targeted LLC set:

Xj = tj − tj−1 (6.1)

For the sake of consistency, we define t0 = 0 to be the clock cycle at which the DNN

execution starts. Due to the randomness in tj’s, Xj’s are also random variables.

Let M(t) be the total number of times that the DNN accesses the targeted

LLC set up to cycle t, a.k.a.

M(t) = argmaxj{tj ≤ t} (6.2)

and its expected value be

m(t) = E[M(t)] (6.3)

Since the above-introduced random variables can characterize the DNN’s ac-

cess pattern to the targeted LLC set and the pattern is dependent on the DNN’s

structure, it is desirable for the attacker to obtain information about the value of

these variables. This can be done using Prime+Probe on the targeted LLC set.

Specifically, let us suppose that the attacker probes the targeted LLC set

every c clock cycles for a total of p probes. In each probe, every block in the

targeted set is accessed. Assuming a least-recently-used (LRU) replacement policy,

ideally, if the attacker accesses each block simultaneously, the LLC set will be filled

122

entirely with the attacker’s data after each probe. The attacker measures the access

latency of each block of the set. Since a cache hit would be a much lower access

latency than a miss, the access latency will indicate whether the access was a cache

hit or miss and the two are very unlikely to be confused.

Let yk be the number of LLC misses the attacker observes in the k-th probe

(1 ≤ k ≤ p). Assuming that other processes running on the same computer have a

negligible probability of accessing the targeted LLC set between the (k−1)-th probe

and the k-th probe, the number of missed blocks in the targeted LLC set indicates

how many times the DNN has accessed this LLC set between time of the last probe,

(k − 1)c, and the time of the current probe, kc. Recall from Equation 6.2 that the

DNN makes M((k − 1)c)−M(kc) accesses to the targeted LLC set in this period.

Suppose the LLC is γ-way associative (i.e., there are γ blocks in the targeted LLC

set). Hence yk is capped by γ and can be expressed by

yk = min{γ,M(kc)−M((k − 1)c)} (6.4)

Let us call Y = (y1, y2, . . . , yp) the cache side-channel trace of a DNN. Y is

the cache side-channel information that can be directly observed from Prime+Probe.

Due to the randomness involved in the time of each access of the DNN, repeated

measurements of the cache side-channel are made so that the average of the traces

will be close to the expected value. Let Y be the set of traces obtained by repeated

Prime+Probe measurements. Y characterizes the memory access pattern, and hence

the structure, of the DNN.

123

The above description holds for both the VDNN and the ADNN. In the rest of

this paper, we use superscripts “A” and “V ” to denote variables of the ADNN and

the VDNN, respectively, and use “A/V ” when an expression applies to both DNNs.

6.4.2 GANRED Components

The notation of some important components of GANRED framework are

explained as follows.

YV : the set of the VDNN’s cache side-channel traces. This serves as the

ground truth of the GANRED framework. The purpose of GANRED is to find a

structure of the ADNN that makes the ADNN produce identical cache side-channel

traces to YV .

Θ: the set of estimated dimension parameters of the ADNN. Recall that the

list of such parameters are listed in Table 6.1.

G(Θ): the generator that builds the ADNN with Θ and generates its cache

side-channel traces as follows. (1) The ADNN is constructed with dimension param-

eters Θ and random weights. (2) The ADNN is executed and its cache side-channel

trace is measured using Prime+Probe (i.e., in the same way that the VDNN is

sampled). (3) Step (2) is repeated multiple times in order to get a set of cache

side-channel traces. Hence, the output of G(Θ) is a set of cache side-channel traces

of the the ADNN, i.e., YA.

124

D(YV ,YA): the discriminator that compares the VDNN’s traces, YV , with

the ADNN’s, YA. Recall that the length of each trace in YA/V is p. For each k such

that 1 ≤ k ≤ p, let ȳ
A/V
k be the average number of cache misses in the k-th probe of

ADNN/VDNN’s cache side-channel traces. The discriminator’s output, R, is also a

p-element vector, i.e., R = (r1, r2, . . . , rp). We call R the discriminator trace. rk

is an indicator of how well the two traces match at the k-th probe. For this purpose,

we could define rk the difference between the two average cache misses, i.e., |ȳAk −ȳVk |.

However, experiment data can be noisy and make the discriminator trace R noisy. So

instead, we take the two trace segments that are around the k-th probe of ADNN’s

average trace and VDNN’s average trace and define rk as the root-mean-square

difference of the two trace segments. This will serve the discriminator’s purpose

better.

The validator is another important component of GANRED. Details of the

validator are introduced in Sec. 6.4.4.

6.4.3 GANRED Framework

As a prerequisite of GANRED, the attacker repeatedly measures VDNN’s

cache side-channel using Prime+Probe and obtains a set of traces YV . YV is then

given to the GANRED framework, which takes the steps in Algorithm 6.1 to recover

the victim DNN structure. In essence, GANRED determines the structure of the

125

Algorithm 6.1: GANRED Implementation

input : YV ; // VDNN’s cache side-channel trace

output: Θ ; // ADNN’s final dimension parameters

1 Initialization: l← 1, Θ← ∅, kl ← 0;
// l: estimated # layers in VDNN;

// k: the probe at which the traces starts to diverge

2 while kl < p do
3 l← l + 1;
4 θ∗l ← ∅ ; // tracking optimal parameters of one layer

5 k∗l ← kl−1 ; // kl according to the current θ∗

6 foreach θl ∈ Sl do
// Sl: the set of all feasible parameter combinations of

the l-th layer

7 Θ̂← Θ ∪ θl;
// Append enumerated parameters θl to existing parameters

Θ

8 R = (r1, r2, . . . , rp)← D(YV , G(Θ̂));
// Call the discriminator to compare traces of VDNN and

ADNN

9 k′l ← argmaxhr1, r2, . . . , rh < η;
// Given a threshold η, find how long the two sets of

traces match from beginning

10 if k′l > k∗l then
11 if validate(θl, kl−1, k

′
l) ==TRUE then

// TRUE indicates a successful validation.

Explained in Sec. 6.4.4

12 k∗l ← k′l;
13 θ∗l ← θl;

14 end

15 end

16 end
17 Θ← Θ ∪ θ∗l ;
18 kl ← k∗l ;

19 end

126

first layer before working on the second layer, determines the second before the third,

and so on, until the two DNN’s traces match entirely. We explain the procedure to

determine the structure of each layer of the ADNN in detail as follows.

Recall that the set of parameters that need to be found for each layer is listed

in Table 6.1. Notice that GANRED will work as long as the structure search space

of each layer is finite. In this work, without loss of generality, we define the structure

search space by the properties that state-of-the-art DNNs (e.g. AlexNet [52], the

VGG family [97], and ResNet [41]) have in common:

1. If the l-th layer is a convolutional layer, then the filter width 1 ≤ wfl ≤ 11,

the output depth doutl = 64×n where n is an integer and 1 ≤ n ≤ 32, and the

stride of convolution δl is 1 or 2.;

2. If the l-th layer is a fully connected layer, then the number of output neurons

zoutl = 2n where n is an integer and 8 ≤ n ≤ 13.

Additionally, given that the user must provide input for and interpret output of

the DNN in order to use it, the input and output dimensions of the VDNN will

always be made available to the attacker. However, the attacker does not know the

type (convolutional or fully connected) of each layer or the number of layers int the

VDNN. Note that this is the same structure search space as considered by existing

attacks [123, 42].

Suppose that GANRED is looking for the structure of the l-th layer, which

means the first l − 1 layers’ structures have been determined. In this case, Θ

contains the ADNN’s parameters of the first l−1 layers. Let us use Sl to denote the

127

structure search space of layer l. The attacker enumerates through this space. For

each structure within the search space, denoted as θl, an ADNN is constructed by

appending a layer with dimension parameters given in θl to the already-determined

l − 1 layers (with parameters in Θ).

The generator then measures this ADNN with Prime+Probe repeatedly to

obtain a set of cache side-channel traces, YA. The discriminator then compares

YA with YV and obtains the discriminator trace. Details of the generator and the

discriminator have been described in Sec. 6.4.2. Each element of the discriminator

trace is compared to a given threshold value η.

We say that the two traces match at probe k if rk < η. Let k′l be the last

probe before the discriminator trace rises beyond η or ends. In other words, for any

integer i within 1 ≤ i ≤ k′l, ri < η. Recall that the attacker probes the targeted

LLC set every c clock cycles. Hence the matching period stands for a time duration

of k′lc. We use kl−1 to denote the # of probes that the cache traces of the VDNN

match the trace of the ADNN without the l-th layer (i.e., the first l − 1 layers of

the ADNN with parameters in Θ).

If θl is the structure of the l-th layer that makes the two traces match for the

longest period so far, it has the potential to be the correct structure of layer l. There

is one caveat to be noticed. Due to the sequential nature of DNNs, the memory

accesses of one layer must all finish before the next layer’s accesses start. Therefore,

if θl has the correct parameters of the VDNN’s l-th layer, the added matching period

due to the l-th layer, i.e., k′lc − kl−1c, should be approximately the running time

of the l-th layer of both the VDNN and the ADNN. However, the attacker does

128

not know which segment in the VDNN’s trace corresponds to the l-th layer. The

attacker can, though, verify whether the added matching period is close enough to

the theoretical running time of a layer with parameters in θl. This technique can

rule out θl if θl causes the ADNN’s traces to diverge from the VDNN’s traces in

the middle of ADNN’s execution. This is done by the validator. The details of how

the validator calculates the theoretical running time of a layer is introduced in Sec.

6.4.4.

The successfully validated structure of the l-th layer that makes the two DNN’s

traces match for the longest time is chosen as the final structure of the l-th layer. If

the two DNN’s traces still do not match for the entire p probes, the attacker uses

the same process to find the (l + 1)-th layer. If the p probes have all matched, the

ADNN’s dimension parameters Θ is considered as the result of the attack.

6.4.4 Validating Reverse Engineered Parameter Combina-

tions

During the reverse engineering of the l-th layer, if a structure denoted by θl

makes the ADNN’s traces and VDNN’s traces match for the longest, the validator

need to be invoked in order to verify whether θl is a “false positive” solution.

Specifically, the validator will find whether the ADNN’s traces deviate from the

VDNN’s in the middle of ADNN’s execution, which should note be the case for the

correct parameters of layer l. If the ADNN’s traces match the VDNN’s for kl−1

probes without layer l and k′l probes with layer l, then layer l (with parameters θl)

129

makes the matched period increase by (k′l − kl−1)c clock cycles. This suggests that,

if θl contains the correct dimension parameters of the l-th layer, the running time

of the l-th layer is approximately (k′l − kl−1)c clock cycles.

The validator estimates the theoretical running time of a layer with parameters

θl based on the following observation: the execution time of a layer is linear in both

its number of multiply-and-accumulate (MAC) operations and the number of cache

misses. 1 Hence, the validator uses a linear regression analysis to estimate the

running time of a layer with parameters θl. Let t̂ be the estimated running time. t̂

is then compared to the increase in the length of matched period of the two DNNs’

traces, (k′l−kl−1)c. If the difference is below a certain threshold, then θl is accepted.

Otherwise, θl is deemed a “false positive” and rejected. The validator proves to

be an essential component of GANRED without which the correct structure of the

VDNNs cannot be found.

In the rest of this subsection, we present the details of the linear regression

process to estimate a layer’s running time.

6.4.4.1 Convolutional (Conv) Layers

The operation of a Conv layer is illustrated in Fig. 6.1. When a filter is

convolved with the input feature map (IFM), with each step that the filter moves, a

new output neuron is computed. We assume that only the new input neurons (i.e.,

that were not used in the last inner product) will result in cache misses. The number

1In Sec. 6.4.4, the notion of “cache misses” refers to the entire cache, not just the LLC set

selected by the Prime+Probe attack.

130

of such new input neurons is fl · dinl · δl, where fl is the filter width, din is the IFM

depth, and δl is the convolution stride (see Table 6.1). We calculate the theoretical

number of cache misses of the Conv layer, denoted as uconv(θ), as the sum of two

components: (a) the total number of “new input neurons” as described above for

evaluating the entire OFM, and (b) the cache misses when each input neuron and

weight is used for the first time.

uconv(θl) =(((Pl + 1)2wout,2l − 1)fld
in
l δl

+(f 2
l + win,2l)dinl)doutl

(6.5)

Since a cache miss results in significantly longer latency than a cache hit, the

number of cache misses will impact the Conv layer’s running time.

Let us use vconv(θl) to denote the # of MAC operations of a Conv layer, which

can be given by

vconv(θl) = 2(Pl + 1)2wout,2l f 2
l d

in
l d

out
l (6.6)

In order to show that the running time of a Conv layer’s running time is

linear in both the # of cache misses and the # of MAC operations, we conduct

the following experiment. We take a population of Conv layers that is within our

structure search space and measured the running time of these layers. A linear

regression analysis is then conducted to verify the linearity. The regression shows

that the linear scores of both # of cache misses and # of MAC operations to the

running time are greater than 0.99 (1.0 is perfectly linear). In Fig. 6.3, we plot

the layers with equal # of MAC operations on the same line and show that a Conv

layer’s running time linearly increases in the theoretical # of cache misses. Let

t̂ = Âconvuconv(θl) + B̂convvconv(θl) + Ĉconv be the regression result equation.

131

0 10000 20000 30000 40000 50000
theoretical # cache misses

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ru
nn

in
g

tim
e

of
 a

 C
on

v
la

ye
r (

cy
cle

s)

1e10
MAC ops = 4.62 * 108

MAC ops = 9.25 * 108

MAC ops = 1.85 * 109

Figure 6.3: The linear relationship between Conv layer running time and theoretical cache

misses

1 2 3 4 5
MAC operations in a fully-connected layer 1e8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ru
nn

in
g

tim
e

of
 a

n
FC

 la
ye

r (
cy

cle
s)

1e9

Figure 6.4: Linear regression on # MAC operations and trace length of an FC layer

6.4.4.2 Fully Connected (FC) Layers

In an FC layer, since there is no reuse of weights in the computation of different

output neurons, the number of MAC operations is proportional to the theoretical

number of cache misses. Therefore, we only look for the linear relationship between

an FC layer’s running time and the MAC operations. The # of MAC operations

can be given by

vFC(θl) = 2zinl z
out
l (6.7)

132

Similar to the analysis for Conv layers, we select a population of FC layers from

the feasible structures and measure their running time. Then, a linear regression

is conducted on the # of MAC operations to the running time. A clear linear

relationship can be observed from Fig. 6.4 and we use t̂ = ÂFCvFC(θl) + B̂FC to

denote the regression result.

6.4.5 Mathematical Justification of GANRED

As we have described in Sec. 6.4.3, GANRED reverse engineers the DNN in a

layer-by-layer manner. It must find the correct structure of the current layer before

moving on to the next layer. To this end, we intuitively assumed that when the

ADNN (with lA layers) has the same structure as the first lA layers of the VDNN

(which has lV layers in total, lV ≥ lA), then the ADNN’s cache side-channel traces

YA should match with the VDNN’s traces YV before the end of ADNN’s execution.

We justify this premise in this subsection. The following is assumed about a DNN’s

memory access:

1. The DNN layers are executed sequentially and hence the memory accesses of

a layer must be completed before the next layer’s memory accesses begin.

2. Each X
A/V
j , i.e., the time between the ADNN/VDNN’s (j − 1)-th and j-th

access to the targeted LLC set, is subject to a Gaussian distribution. For the

VDNN, XV
j ∼ N (µj, σ

2
j) where 1 ≤ j ≤ sV . If ADNN has the same structure

as VDNN’s first lA layers, we also have XA
j ∼ N (µj, σ

2
j) where 1 ≤ j ≤ sA.

133

3. Each X
A/V
j is independent, i.e., for any 1 ≤ j1 6= j2 ≤ sA/V , X

A/V
j1

and X
A/V
j2

are independent.

If ADNN has the same structure as the first lA layers of VDNN, the expected time at

which ADNN’s last access to the targeted LLC set would occur can be expressed as∑sA

j=1 µj. Our objective is then to prove that, in this case, the difference between the

cache side-channel traces of ADNN and VDNN before time
∑sA

j=1 µj can be upper

bounded by a small value. In order to prove this, we first bound the difference

between the two DNNs’ expected # of memory accesses up to time
∑sA

j=1 µj, i.e.,

|mV (t)−mA(t)|, as follows.

Theorem 6.1. If t <
∑sA

j=1 µj, then |mV (t)−mA(t)| can be upper bounded by

U(t) =
sV∑

k=sA+1

√∑k

j=1 σ
2
j

2π
· e
−
(
−t+

∑k
j=1 µj√

2
∑k
j=1

σ2
j

)2
 (6.8)

Proof of Theorem 6.1. We first find the expression of mV (t)−mA(t) in terms of the

CDF of between-access time.

mA/V (t) =E[MA/V (t)] =
sA/V∑
j=1

j · Prob[M(t) = j]

=
sA/V∑
j=1

j · (Prob[M(t) ≤ j]− Prob[M(t) ≤ j − 1])

=
sA/V∑
j=1

Prob[M(t) ≤ j]

134

MA/V (t) ≤ j indicates that the j-th memory access occurs no later than time t,

i.e., t
A/V
j =

∑j
i=1X

A/V
i ≤ t. Because all X’s are subject to independent Gaussian

distributions as described above, we have

t
A/V
j ∼ N (

j∑
i=1

µi,

j∑
i=1

σ2
i)

Therefore, the probability of MA/V (t) ≤ j can be calculated via the CDF of the

above Gaussian distribution:

Prob[MA/V (t) ≤ j] =
1√

2π
∑j

i=1 σ
2
i

∫ t

−∞
e
−
(

x−
∑j
i=1

µi√
2
∑j
i=1

σ2
i

)2

dx

And hence

mV (t)−mA(t)

=
sV∑

j=sA+1

Prob[M(t) ≤ j]

=
sV∑

j=sA+1

1√
2π
∑j

i=1 σ
2
i

∫ t

−∞
e
−
(

x−
∑j
i=1

µi√
2
∑j
i=1

σ2
i

)2

dx

(6.9)

Since each integral is positive, we only need to prove mV (t) − mA(t) < U(t). In

Theorem 6.1, we specify that t <
∑sA

j=1 µj and. Let hj =
∑j

i=1 µi − t. Due to the

symmetry of the probability density of Gaussian distributions, we can rewrite the

above expression as

mV (t)−mA(t)

=
sV∑

j=sA+1

1√
2π
∑j

i=1 σ
2
i

∫ ∑j
i=1 µi−hj

−∞
e
−
(

x−
∑j
i=1

µi√
2
∑j
i=1

σ2
i

)2

dx

=
sV∑

j=sA+1

1√
2π
∑j

i=1 σ
2
i

∫ ∞
∑j
i=1 µi+hj

e
−
(

x−
∑j
i=1

µi√
2
∑j
i=1

σ2
i

)2

dx

135

In each integral, since x >
∑j

i=1 µi+hj and hj > 0, we have
x−
∑j
i=1 µi
hj

> 1. Therefore,

each integral can be upper bounded by

∫ ∞
∑j
i=1 µi+hj

e
−
(

x−
∑j
i=1

µi√
2
∑j
i=1

σ2
i

)2

dx

<

∫ ∞
∑j
i=1 µi+hj

x−
∑j

i=1 µi
hj

e
−
(

x−
∑j
i=1

µi√
2
∑j
i=1

σ2
i

)2

dx

=

j∑
i=1

σ2
i · e

−
(∑j

i=1
µi−t√

2
∑j
i=1

σ2
i

)2

Therefore, we can upper bound mV (t)−mA(t) by

mV (t)−mA(t) <
sV∑

j=sA+1

√∑j
i=1 σ

2
i

2π
e
−
(∑j

i=1
µi−t√

2
∑j
i=1

σ2
i

)2

= U(t)

Hence proved.

In order to illustrate that U(t) is an extremely value in a straightforward

manner, we estimate the parameters from a VDNN (AlexNet) and the ADNN with

the same structure as the first 2 layers of the VDNN. These parameters include

sA, sV , and µj. σj is assumed to be 20% of µj. Based on these parameters, U(t)

is plotted for the period close to the end of ADNN’s execution as shown in Fig.

6.5. We could only plot this period because U(t) monotonically increases in t as

t <
∑sA

j=1 µj and its value is so small before the plotted period that it is smaller

than the smallest positive number that a floating point number can represent.

Recall that yk is the number of observed LLC misses in the k-th probe and

was defined in Equation 6.4. yk stands for the cache side-channel information that

GANRED uses. The k-th probe will occur before the ADNN’s last access to the

136

Figure 6.5: U(t) vs. t given typical parameters in Equation 6.8.

targeted LLC set if k <
∑sA

j=1 µj/c. The following theorem indicates that, if the

ADNN has the same structure as the first lA layers of the VDNN, then the two DNNs

should have very close cache side-channel traces as the probe index k <
∑sA

j=1 µj/c.

Theorem 6.2. If k <
∑sA

j=1 µj/c, then |E[yVk]−E[yAk]| is upper bounded by U(kc).

Proof of Theorem 6.2. By Theorem 6.1, we know that mV (kc) −mA(kc) < U(kc).

Note thatmV (kc)−mA(kc) can be expanded in the following way (note thatmA(0) =

mV (0) = 0):

U(kc) > mV (kc)−mA(kc)

=
k∑
i=1

(mV (ic)−mV ((i− 1)c))−
k∑
i=1

(mA(ic)−mA((i− 1)c))

=
k∑
i=1

(
(mV (ic)−mV ((i− 1)c))− (mA(ic)−mA((i− 1)c)

)
Let us first define q

A/V
k = mA/V (kc) −mA/V ((k − 1)c). We can continue the

above equation by

mV (kc)−mA(kc) =
k∑
i=1

(qVi − qAi) < U(kc) (6.10)

137

Note that qVk − qAk > 0 given any k. This is because qVk − qAk = [mV (kc)−mA(kc)]−

[mV ((k−1)c)−mA((k−1)c)] and, from Equation 6.9, it is clear that mV (t)−mA(t)

monotonically increases in t. Therefore, Equation 6.10 suggests that for any k that

satisfies 1 ≤ k <
∑sA

j=1 µj/c, we have qVk −qAk < U(kc), which is a necessary condition

that their summation is smaller than U(kc).

y
A/V
k = min{γ, qA/Vk }. Since qVk > qAk , yVk ≥ yAk . Hence we only need to prove

E[yVk]− E[yAk] < U(kc).

E[yVk]− E[yAk] = E[yVk − yAk]

=(γ − γ)Prob[yVk ≥ γ, yAk ≥ γ]+

(γ − yAk)Prob[yVk ≥ γ, yAk < γ]+

(yVk − yAk)Prob[yVk < γ, yAk < γ]

<0 + U(kc)Prob[yAk < γ]

<U(kc)

Hence proved

From Fig. 6.5, we know that U(kc) is a small value. The average number of

cache misses in each probe will converge to the expected number given a sufficient

number of repeated cache side-channel measurements. Therefore, if the ADNN has

the same structure as the first lA layers of the VDNN, the two DNNs will have very

close average cache side-channel traces before ADNN’s execution ends. This means

that comparing cache side-channel traces is a good way of determining whether the

138

ADNN has correct parameters. Although it is still theoretically possible that two

DNNs with different structures have indistinguishable cache traces, the sensitivity

of cache traces to the structure makes this event rather unlikely.

6.5 Experiments

To evaluate the efficacy of the proposed GANRED framework, we have applied

it to reverse engineer several state-of-the-art DNN structures on a real server. In

our experiments, the VDNN is hosted on a Linux server which uses TensorFlow as

the machine learning framework. The attacker logs into the server without sudo

privilege. The APIs available to the attacker are those to construct the ADNN with

convolutional, fully connect, and pooling layers. The server has an Intel i7-7700

CPU which has an 8MB, 16-way associative last-level cache (LLC). Each cache

block contains 64 bytes (i.e., 6 bits block-offset). Hence there are 8192 associative

sets and the set index has 13 bits. The following practical challenges have been

addressed in our experiments.

(1) Having to probe each block in the targeted LLC set significantly limits the

frequency at which our attacker can probe the cache compared to a Flush+Reload

attacker [123, 42]. Nonetheless, we achieve more accurate reverse engineering results

than these attacks.

(2) The cache hit/miss result data has to be stored real-time but allocating another

array for data storage will result in cache interference. Hence, we store the hit/miss

result of each probe on the probed lines directly.

139

In our experiments, we use GANRED to reverse engineer state-of-the-art

DNNs, including AlexNet [52] and the VGG family [97]. The generator repeatedly

measures the cache side-channel trace of each DNN for 50 times. Fig. 6.6 shows the

average cache side-channel traces of each VDNN and some traces of ADNNs that

GANRED determines as having the correct structure in the progress. We also show

the discriminator’s output trace when comparing these ADNNs with the VDNN. As

we can observe, these ADNNs’ traces match well with the VDNNs’ until the former

are about to end. This agrees with what we derived in Sec. 6.4.5. The discriminator

is able to capture the deviation as its output increases beyond the threshold η.

Figure 6.6: Upper images: the cache side-channel traces of AlexNet and VGG Nets and
some ADNNs with correct parameters in the progress of GANRED. Lower images: the

discriminator’s outputs corresponding to the ADNNs. X-axis: number of probes.

140

In order to evaluate the performance of GANRED, we highlight the reduction

in DNN architecture search space. To this end, we estimate the size of the origi-

nal DNN structure search space (i.e., without side-channel information) using the

principles stated in Sec. 6.4.3 and assuming that the attacker knows the number of

layers in the DNN. Note that this is an underestimation, since the attacker under

our attack model does not know the number of layers and is thus facing an even

larger DNN structure search space.

6.5.1 Attack Results

For each VDNN, GANRED is able to recover the precise structure.

The # of possible structure of each VDNN benchmark and the attack results are

shown in Figure 6.7. Recall that GANRED also eliminates the need for code access

and shared main memory segments between the attacker and the victim. These

are substantial improvements over existing attacks. Our attack is also scalable:

the attack time increases linearly with the number of layers although the possible

structure space grows exponentially. The reason for the linear growth in attack

time is as follows. When reverse engineering any layer, the layer’s IFM dimensions

are always known, since the IFM is either the DNN’s input (public knowledge) or

the OFM of last layer (determined in the last layer). Since the same structure

constraints apply to any layer, the number of ADNNs that need to be constructed

and measured is the same. Hence the time spent on reverse engineering each layer

is roughly the same.

141

Figure 6.7: GANRED attack results

6.6 Summary

In this work, we develop GANRED, a GAN-based DNN structure reverse

engineering framework which utilizes cache timing side-channel information. Unlike

prior reverse engineering approaches which required shared library code in the main

memory and other resources that may be unrealistic, our attack uses Prime+Probe

and thus only requires minimal resources. GANRED compares the VDNN’s cache

side-channel trace with that of ADNN with estimated structure and converges when

the two traces become identical. Experiments show that the precise structure of

each VDNN benchmark has been found and the attack complexity scales linearly

with the number of layers in VDNN. Therefore, we conclude that our attack is

successful and scalable. The fundamental reason that GANRED produces more

accurate results than existing attacks [123, 42] may be that the cache side-channel

information used by GANRED inherently contains more information. Those existing

attacks monitors certain library function calls, which only accounts for a tiny portion

of DNN’s memory access. In contrast, the cache side-channel traces measured by

142

GANRED contains information about the DNN’s overall memory pattern. Such

an attack method must be considered when the intellectual property of a DNN is

concerned.

143

Chapter 7: Mitigating Reverse

Engineering Attacks on Neural Networks

In Chapter 6, we studied the reverse engineering of DNNs via cache side-

channel information. In this chapter, we consider a much strong attacker and pro-

pose a countermeasure. Instead of only observing some side-channels, the attacker

now has the complete knowledge of the DNN’s memory access pattern, based on

which she can reverse engineer the DNN structure much more easily. In order to de-

fend such an attack, we propose a defensive memory access mechanism which utilizes

oblivious shuffle, address space layout randomization, and dummy memory accesses

to counter such attacks. Experiments show that our defense exponentially increases

the attack complexity with asymptotically lower memory access overhead compared

to generic memory obfuscation techniques such as oblivious RAM (ORAM) and is

scalable to larger DNNs.

7.1 Introduction

It has been shown that the DNN structure can be easily reverse engineered

if the memory access pattern of the processor running the DNN is leaked [43].

This is a significant security concern. To the best of the authors’ knowledge, no

144

efficient countermeasure has been proposed. Although applying an oblivious RAM

(ORAM) protocol is a well-established approach to hide the memory access pattern,

it comes with very high memory access overheads [100, 78, 3]. Because running

DNNs is a memory intensive task, the speed of the DNN running in hardware is

mostly constrained by the number of memory accesses [21, 22, 134]. This makes

ORAM-based memory access obfuscation impractical for DNNs.

Oblivious shuffle also provably obfuscates the address space with lower over-

head than ORAM albeit with weaker theoretical guarantees [71] (detailed in Section

7.3). In this chapter, we utilize oblivious shuffle to obfuscate a subset of the

memory access patterns. The subset itself is customizable by the designer. A

bigger subset (which could at most include the entire memory space) results in

stronger obfuscation at the cost of higher memory access overheads. In addition, we

use address space layout randomization (ASLR) on the entire memory space and

add dummy memory access (DumMA) requests to the shuffled addresses for further

improvements in security guarantees.

The contribution of this chapter is as follows:

• A novel defense strategy to obfuscate the processor’s memory access pattern

is proposed in order to reduce information leakage about the structure of the

DNN being executed. This strategy utilizes three techniques: oblivious shuf-

fle, address space layout randomization (ASLR), and dummy memory access

(DumMA). Although these techniques have been existing, our innovation lies

in combining them strategically to thwart the attack with low overhead.

145

• A modified attack based on that in [43] is formulated to reverse engineer the

DNN structure in the presence of our defense in order to evaluate the security

of our defense.

• Experimental results show that the complexity of the modified attack is very

high thereby demonstrating the effectiveness of our defense.

• It is also shown that the memory access overhead of our defense is very low

and does not increase with the DNN depth, making our approach scalable to

deeper models.

7.2 Attack Model

The recent work of Hua, Zhang, and Suh [43] illustrates an elegant optimiza-

tion theoretic attack based on the memory access side-channels of systems running

DNNs. The attack model considered is as follows. The owner of the DNN model

wants to enable the user to run the model on her own processor (e.g. a CPU,

GPU, or DNN accelerator) without exposing the structure of the DNN model. The

attacker is considered to be the user who is honest-but-curious, i.e., she wants to

know the details of the model but does not interfere with the normal execution of

the DNN model. The processor is considered as secure, i.e., the attacker cannot

observe or interfere with the processor’s internal operations.

However, the attacker is able to observe the memory access patterns of the

processor, i.e., a transcript of its memory accesses including the accessed addresses,

the access types (i.e., read or write), and the time of each access. The attacker also

146

knows the input and output of the DNN (since she has I/O access to the DNN).

As shown in [43], a reverse engineering attack can be formulated under this attack

model and the architecture of a DNN can be extracted.

7.2.1 Attack Setup

The specific type of deep neural networks (DNN) of interest to us is convolution

neural networks. These networks comprise two types of layers: convolutional

(Conv) layers and fully connected (FC) layers. If a pooling layer exists following

a Conv layer, then we count it as a part of the Conv layer, as is consistent with

Chapter 6. Each layer transforms a set of input neurons, called the input feature

map (IFM), into a set of output neurons, called the output feature map (OFM).

The OFM of the previous layer is the IFM of the next layer. Figure 6.1 illustrates the

structure of a Conv layer. The structure of a Conv layer can be described by a set of

hyper-parameters which are listed in Table 7.1. 1 The structure of a fully connected

layer is much simpler. If layer i is an FC layer, its IFM and OFM are vectors of

length zini and zouti , respectively. A 2-D weight matrix of dimension zfi = zini × zouti

transforms the IFM to the OFM.

As in the attack model of [43], the DNN model is stored in a virtual address

space that starts from 1 and each neuron or weight takes exactly 1 address to store.

The way that the neurons and weights are aligned in the memory is as follows: The

first feature map (i.e., the IFM of layer 0, of size zin0) starts from address 1 and

1Table 7.1 includes more parameters than Table 6.1 since we deal with a stronger attack whose

result is not confined to any specific family of DNNs in this chapter.

147

Table 7.1: List of Hyper-parameters of Each Layer

Parameter Definition

wini , wouti width of the IFM/OFM of layer i

dini , douti depth of IFM/OFM of layer i

zini , zouti , zfi size of IFM/OFM/filter of layer i
Pi indicator of whether pooling exists in layer i

fconvi , fpooli filter width of convolution/pooling (if existing) of layer i

sconvi , spooli stride of convolution/pooling (if existing) of layer i

pconvi , ppooli padding of convolution/pooling (if existing) of layer i

Clock Cycles

zout0

zf0

Layer 0
(b) OFM and filter
sizes of Layer 0

Clock Cycles

M
em

o
ry

 A
d

d
re

ss
es

(a) First RAW of the
OFM of layer 0

Clock
Cycles

zout1
RAW

c2

zf1

Layer 0 Layer 1

c1

Neuron Read Neuron Write Weight Read

c1

(c) Repeat (a) & (b)
for following layers

Figure 7.1: Illustration of the attack in [43] per Section 7.2.2.

ends at zin0 . The second feature map (the OFM of layer 0 and the IFM of layer 1,

of size zout0 which equals zin1) starts at zin0 + 1, and so on. The weights are stored in

a separate area of memory and organized in a layer-by-layer configuration (similar

to the neurons).

7.2.2 Attack Methodology

The attack to reverse engineer the structure of a DNN consists of 3 phases:

determining the layer boundaries in the memory traces, solving for the feasible DNN

structures which fit the memory trace, and training each feasible structure for the

best match.

148

Phase 1: In this phase, the attacker determines the layer boundaries in the

memory access transcript leaked by side-channels and obtains the IFM, OFM, and

filter sizes of each layer. This process is illustrated in Figure 7.1.

The layer boundaries are expressed in terms of the clock cycles at which

the first memory access of each layer occurs. Let ci, i ∈ [L] be the first clock cycle

of layer i where L is the number of layers. The attacker determines the boundaries

between layers by observing the first occurrence of read-after-write (RAW) in

the memory. This is illustrated in Figure 7.1(a). Layer 0 writes its OFM to the

memory and layer 1 needs to read the same memory location to get it as its IFM.

Therefore, the first occurrence of RAW indicates that layer 0 has finished and layer

1 has started, thereby leaking c1 (Figure 7.1(b)). In this way, by counting how

many addresses have been written to before c1, the attacker observes the OFM size

of layer 0 zout0 (Figure 7.1(b)). Similarly, the attacker can also observe the filter

size of layer 0 zf0 . The first RAW of layer 1’s OFM marks the beginning of layer 2

(Figure 7.1(c)). By repeating the above procedure for all the subsequent layers, the

IFM sizes, OFM sizes, filter sizes, the starting clock cycles of all the following layers

can be observed.

Phase 2: After obtaining feature map and filter sizes in the previous phase,

the attacker tries to obtain all the feasible structures of the DNN that conform with

the observed access pattern. Each structure is described by a combination of the

hyper-parameters of every layer (as listed in Table 7.1). These hyper-parameters are

obtained by solving an integer feasibility program (IFP) problem that captures

the relationship among the hyper-parameters for each layer with the information

149

obtained from phase 1. The IFP is defined by the following equations:

zini = (wini)2 × dini , zouti = (wouti)2 × douti (7.1)

zf = (f convi)2 × dini × douti (7.2)

wouti =

wini −fconvi +pconvi

sconvi
+ 1 + P (ppooli − fpooli)

spooli × P + P̄
(7.3)

sconvi ≤ f convi ≤ wini
2

(7.4)

spooli ≤ fpooli ≤ wini − f convi + pconvi

sconvi

+ 1 (7.5)

pconvi < f convi , ppooli < fpooli (7.6)

Phase 3: After all the feasible structures are obtained, the attacker trains

each structure and picks the one with the highest accuracy as the final outcome.

It was shown in [43] that the feasible structures obtained from the memory traffic

were very few thereby significantly reducing the training effort.

7.2.3 Attack Complexity and Practicality

In this work, we consider 4 DNN benchmarks which are listed in Table 7.2.

The complexity of the attack is measured using two metrics: the number of IFP

problems solved and the total number of feasible DNN structures. The former

represents the hardness involved with obtaining the set of feasible DNN structures

(essentially the complexity of Phase 2). The latter represents the amount of training

effort needed by the attacker to pick the best model (essentially Phase 3).

150

Table 7.2: Benchmark DNNs and attack complexity using the attack in [43]

Benchmark
input # layers attack complexity metrics
win0 din0 Conv FC Total # IFPs solved # feasible structures

DNN 1 28 1 2 2 4 4 4
DNN 2 32 1 3 2 5 5 6
DNN 3 32 3 4 3 7 8 1
DNN 4 64 3 5 3 8 9 8

We wrote a simulator to generate a processor’s memory trace. The processor’s

memory trace is reverse engineered using the above-described attack method. The

complexity of the attacks on the benchmark DNNs is also shown in Table 7.2. As

seen, both metrics are low for all the benchmarks, indicating the low complexity of

the attack.

It is important to note that the “exact” neural network with exactly the same

weights and topology may not be the one synthesized by this attack. However,

the attacker’s objective would still be achieved since she would still be able to get

substantially accurate classification performed by synthesizing the model based on

the one running on the processor.

7.3 Cryptographic Preliminaries

The effectiveness of the above-mentioned attack necessitates a defense mech-

anism that reduces the information leakage of the DNN structure in the memory

access patterns. Hiding memory access patterns is a well-studied problem and has

been formalized via the notion of Oblivious RAM (ORAM) schemes. An ORAM

scheme can be used to obfuscate the memory access patterns of any input RAM

program and provides the strong theoretical guarantee that the obfuscated memory

access patterns reveal no information about the input program [80]. However, even

151

the state-of-the-art ORAM protocol [100, 78, 3] incurs an access overhead of

Ω(logN), i.e., the average number of memory accesses that have to be performed

in order to access a single address in the original program is at least logN , where

N is the total number of address.

In our work, instead of ORAMs, we consider a different approach called

oblivious shuffle whose overhead is much lower [34]. We define oblivious shuffle

below followed by an explanatory example.

Definition 7.1 (Oblivious Shuffle). A shuffle algorithm is an algorithm of the form

(Enc(π(A)), α) ← Shuffle(A,Enc, π) where A is an input array, Enc is a secure

encryption algorithm, and π is a random, predetermined permutation function.

The output of Shuffle is an encryption of the permutation of A according to π

and a memory access transcript α. The Shuffle algorithm is an oblivious shuffle if α

is independent of π.

Algorithm 7.1: A simple oblivious shuffle example

1 for i in [N] do
2 Read address i for A[i] and store A[i] in the secure on-chip memory of

the processor
3 end
4 for i in [N] do
5 Write Enc(A[π−1(i)]) to address i
6 end

A simple oblivious shuffle algorithm is shown in Algorithm 7.1. Using this

algorithm, the attacker will always see the same memory access pattern regardless

of π, which, in this case, is a read sequence followed by a write sequence, both

in the address order of 0, 1, . . . , N − 1. Hence the attacker cannot decipher π.

152

Reference [71] proposed the state-of-the-art oblivious shuffle algorithm, called the

Melbourne shuffle, which is efficient and scalable: it only requires O(
√
N) private

memory (i.e., the memory not observable to the attacker) to shuffle an array of size

O(N) as proven in Theorem 5.1 in [71].

In this work, the permutation function π we choose ‘looks’ random and utilizes

the internal randomness of the processor (which is fixed for the same shuffle but can

vary for different shuffles). Similar to the above example, the attacker will also see

a fixed memory access pattern α of Melbourne shuffle regardless of π.

Under this condition, if a processor is running a DNN model and switches

between Melbourne shuffle phases and regular DNN phases, there will be three types

of phases in the memory access pattern: (i) the Melbourne shuffle, (ii) the DNN

accesses inside the shuffled addresses, and (iii) the DNN access outside the shuffled

addresses. The attacker can distinguish these phases because, no matter what

memory access pattern is generated by the DNN application, that of the Melbourne

shuffle will always be α. The attacker can hence also observe the addresses that

are shuffled. Note, however, that the attacker has no information about π, or the

actual memory addresses accessed by the DNN application during type (ii) phases

since she does not know the internal randomness of the processor, nor does α leak

any information of π.

Running DNNs is a memory-intensive task where every neuron and weight

needs to be accessed. To compare the memory access overhead of ORAM and that of

the Melbourne shuffle, we take an array A of length N and require that every element

in A be accessed once. With ORAM, the total # accesses will be Ω(N logN). With

153

Melbourne shuffle, the memory accesses consists of two parts: those of the shuffle and

those of the actual accesses. The Melbourne shuffle takes O(N) memory accesses.

Unlike the ORAM, once the oblivious shuffle is completed, there is no additional

access overhead: one simply needs to access the new address. Hence the total #

accesses will be O(N) + N = O(N). The overhead of the Melbourne shuffle is

therefore a constant multiplicative factor, making it asymptotically lower than that

of the ORAM.

7.4 Defense Methodology

In this section, we propose a memory access strategy for processors to run

DNN models with minimal leakage of structural information. The defense should

fulfill two competing objectives:

• The resulting attack complexity should be very high.

• The memory access overhead should be low.

As discussed in Sec. 7.3, using ORAM will satisfy the first objective but fail the

second one. In order to achieve both objectives, our proposed defense strategy

utilizes 1) the Melbourne shuffle , 2) address space layout randomization (ASLR) [31],

and 3) adding dummy memory accesses (DumMA). A modified attack based on [43]

to find the feasible structures of the DNN is also formulated in order to evaluate the

security of our defense.

154

7.4.1 Utilizing Oblivious Shuffle

In order to obfuscate all the layer boundaries, a DNN with L layers needs L−1

oblivious shuffles (one for each layer boundary) during its execution. Note that we

do not need to shuffle the entire memory: in the i-th shuffle, only the memory

addresses accessed near ci need to be shuffled (recall that ci is the clock cycle at the

beginning of layer i). Varying the number of shuffled addresses enables us to explore

a spectrum of trade-offs between the memory access overhead and the security of the

defense. In this subsection, we present how to determine when and where to shuffle

and model the attacker’s knowledge based on the new memory access pattern.

7.4.1.1 Oblivious Shuffle Strategy

We use the following method to determine where and when to shuffle. For the

reasons described in Section 7.3, we assume a strong attacker who can distinguish

whether an access is a regular DNN-based request vs. a Melbourne shuffle request.

Note that this assumption only strengthens the attacker and therefore designs in this

threat model yield more secure strategies. In our explanation below, we express the

timescale in terms of the clock cycles in the original memory access pattern (such as

in Figure 7.1) and ignore the clock cycles that are spent on Melbourne shuffle as if

it is done instantly. In the rest of this paper, all the mentions of “memory accesses”

are referred to those of the DNN model, NOT those of Melbourne shuffle.

155

M
em

o
ry

 A
d

d
re

ss
es

c1

sin1

sout1

swt1

padding

nin0

nout0

nwt0

Neuron Read Neuron Write Weight Read

Clock Cycles

cl1 c
u
1 c2cl2 cu2

sin2

sout2

swt2

padding

padding

nin1

nout1

nwt1

Oblivious
Shuffle

cl1 cu1

Layer boundary

Figure 7.2: Illustration of oblivious shuffle in the memory access pattern of a DNN. The
variables that are observable to the attacker are also illustrated.

Step 1: determining the shuffle budget. In order to control the memory access

overhead of the Melbourne shuffle, we shuffle at most 2bs addresses in each shuffle.

bs is called the shuffle budget.

In order to obfuscate ci, all the memory addresses that are accessed within a

certain range of clock cycles containing ci are obfuscated using Melbourne shuffle. To

this end, we determine the above-mentioned clock cycle range with an upper bound

and a lower bound of ci, denoted as cli and cui , respectively. We take ĉli ∼ U(ci−2bs , ci)

and cli = dĉlie where U stands for the uniform distribution (assuming there is at most

one memory access per clock cycle). Let cui = bcli + 2bsc. This makes sure that the

total # memory address accessed from cli to cui does not exceed 2bs .

All the memory addresses that are accessed within [cli, c
u
i] are to be shuffled.

We illustrate this in Figure 7.2 to which we encourage the readers to refer as the

explanation proceeds. We call the set of shuffled memory addresses at cli the shuffled

regime i, which include sini input neurons addresses, souti output neurons addresses,

156

swti weight addresses, and a set of additional addresses.These additional addresses

are randomly chosen and can be any address in the memory space allocated for the

DNN, as shown in Figure 7.2. This padding action will also enable us to add dummy

accesses in the shuffled regimes to improve security as will be shown later.

Step 3: choosing the permutation π. Although the Melbourne shuffle will not

leak information about π, π should ‘look’ random enough in order to obfuscate

the memory accesses within the shuffled regimes. In addition, π must be easy to

compute, otherwise we would spend too much time computing π. To meet these

requirements, we use the Feistel-based format-preserving encryption [7] algorithm

for π.

7.4.1.2 Information Leakage

We model the attacker’s best-case knowledge in order to analyze the worst-case

security guarantees. As noted before, we assume a strong attacker who can tell the

difference between a Melbourne shuffle access and a regular DNN access. Therefore,

cli and the addresses within the shuffled regime i are known to the attacker. She

can also infer cui since after cui , the memory accesses of the DNN will come out of

the shuffled regime. As described in Section 7.2, by default, the neurons are stored

in consecutive addresses and the weights too. In line with the best-for-the-attacker

principle, we assume that each kind of memory access (i.e., neuron read, neuron

157

write, or weight read) within each shuffled regime is of consecutive addresses. In

this case, by calculating the difference of accessed addresses before cli and after cui ,

the attacker is able to infer sini , souti , and swti .

The memory access pattern outside the shuffled regimes are directly visible to

the attacker. Let nini , nwti , and nouti denote the # read neurons, # read weights, and

written neurons, respectively, between clock cycle cui + 1 and cli+1− 1 (essentially

the region between two adjacent shuffled regimes, note that in this region layer

i is active) as illustrated in Figure 7.2. Let ŝini and ŝwti be the # shuffled input

neurons and weights in the shuffled regime i, respectively, that are accessed before

ci (i.e., belong to layer i− 1). In order to find all feasible structures of layer i, the

attacker needs to enumerate all the possible (integer) combinations of ci ∈ [cli, c
u
i]

and ci+1 ∈ [cli+1, c
u
i+1] (since she does not know exactly where the ci, ci+1 lie within

these boundaries). Let rt2t1 and wt2t1 be the # read and written addresses, respectively,

within [t1, t2]. The following equations hold:

rci+1
ci

= zini + zfi (7.7)

wci+1
ci

= zouti (7.8)

ŝini+1 = zini − nini − (sini − ŝini) ≥ 0 (7.9)

ŝwti+1 = zfi − nwti − (swti − ŝwti) ≥ 0 (7.10)

Equation (7.7) states that the total # read addresses between the layer boundaries

is equal to the summation of the IFM size and the filter size. Similarly, (7.8)

is based on the fact that the OFM is the only thing that is written back to the

158

memory. Equations (7.9) and (7.10) are because the read accesses of each layer

consist of 3 parts: (a) those in the previous shuffled regime (i), (b) those that are

not shuffled, and (c) those in the current shuffled regime (i + 1), and those in (c)

must be non-negative.

Equations (7.7) through (7.10) gives the possible combinations of zouti and

zfi . Each possible combination is plugged in the IFP problem in Equations (7.1)

through (7.6). The more possible combinations of zouti and zfi , the more IFPs to be

solved and hence the greater attack complexity. In order to increase the # possible

combinations and hence attack complexity, we propose to use ASLR and DumMA

to relax the constraints on zouti and zfi imposed by Equations (7.7) through (7.10).

7.4.2 Address Space Layout Randomization

ASLR was initially proposed to counter the buffer overflow attack [31]. In

our work, ASLR is only done once at compile time to randomize the entire memory

space. Each address is permuted using a permutation function πinit which maps

an address addr to be initially stored in address πinit(addr). We use the same type

of algorithm for πinit as the π for the Melbourne shuffle. In this way, the access

pattern even outside the shuffled regimes will look random and the continuity of

the address space is broken. Therefore, the attacker is not able to infer nini , nouti ,

or nwti . As a result, Equations (7.9) and (7.10), which require these variables, are

not applicable any more. In this way, the constraints on zouti and zfi are reduced to

only Equations (7.7) and (7.8). This will result in more possible combinations of

159

zouti and zfi and hence force the attack to solve more IFPs. Note that ASLR does

not increase the number of memory accesses at run time since it works only as a

mapping from the requested address to the actual address. Also note that ASLR

just by itself does not mitigate the RAW type attack and needs to be combined with

oblivious shuffle.

7.4.3 Dummy Memory Accesses

In this technique, we add dummy memory access within the shuffled regimes.

When dummy memory accesses (DumMA) exist in the shuffled regimes, the attacker

cannot tell a real access from a dummy one. However, she still gets an upper bound

of # real read/write addresses since they must not exceed the total # read/write

addresses (i.e., real+dummy). One question is how many dummy accesses should

be added. This is answered as follows. Since repeated accesses to the same address

of the same type are observable, these accesses will not increase the upper bound of

real read/write addresses and do not improve the level of obfuscation. Therefore,

there is no need to add more dummy accesses when every address in the shuffled

regime is both read and written once.

7.4.3.1 DumMA Without ASLR

In this case, the attacker is able to infer each type of shuffled addresses: sini ,

souti , and swti because they only rely on cli, c
u
i . For this reason, Equations (7.9)

and (7.10) still hold. However, Equations (7.7) and (7.8) need to be changed to

160

reflect the “upper bound” effect caused by DumMA: the # of reads and writes

between the layer boundaries are the upper bounds of zini +zfi and zouti , respectively

(since many of these accesses are dummies).

rci+1
ci
≥ zini + zfi (7.11)

wci+1
ci
≥ zouti (7.12)

Compared to Equations (7.7) and (7.8), (7.11) and (7.12) change equalities

to inequalities (with the equal sign), and thus increasing the possible combinations

of zouti and zfi .

7.4.3.2 DumMA With ASLR

Due to ASLR, Equations (7.9) or (7.10) does not hold any more for the

same reason as described in Sec. 7.4.2. zouti and zfi are hence only constrained

by Equations (7.11) and (7.12).

7.4.4 Summary of Defense Techniques

Three techniques have been introduced in the formulation of our defense:

oblivious shuffle (OS), address space layout randomization (ASLR), and dummy

memory accesses (DumMA). Each OS obfuscates the accessed memory addresses

within a certain range of clock cycles containing a layer boundary. The following

information remains leaked to the attacker: (i) the nature of each memory access

outside the shuffled regimes, (ii) the # shuffled input neurons sini , output neurons

souti , and weights swti in each shuffled regime, and (iii) the (actual) # read and

161

Table 7.3: Information leaked under various combinations of defense techniques

Techniques
Availability to the attacker

Equations
sini , souti , swti , nini , nouti , nwti r

ci
ci−1

, w
ci
ci−1

OS Yes Exact (7.7) ∼ (7.10)
OS + ASLR No Exact (7.7), (7.8)

OS + DumMA Yes Upper bound (7.9) ∼ (7.12)
All the above No Upper bound (7.11), (7.12)

written addresses of the DNN model. (i) and (ii) are obfuscated by ASLR and (iii)

by DumMA. The information leakage under four cases is summarized in Table 7.3:

OS only, OS + ASLR, OS + DumMA, and OS + ASLR + DumMA.

7.4.5 Attacking the Proposed Defense

As mentioned earlier, we assume that the attacker knows which defense tech-

niques are in place and is able to attack accordingly. The new attack of layer i is

shown using the procedure shown in Algorithm 7.2.

Algorithm 7.2: Procedure to reverse engineer layer i in the new attack

1 for (ci, ci+1) ∈ [cli, c
u
i]× [cli+1, c

u
i+1] do

2 for Each feasible structure of layer i− 1 ending at ci − 1 do
3 Find all the possible combinations of zo and zf according to the

equations summarized in Table 7.3;
4 for Each possible (zo, zf) pair do
5 Solve the IFP defined by Equations (7.1) through (7.6).

Concatenate all the found feasible structures of layer i to the
currently used structure of layer i− 1.

6 end

7 end

8 end

When Algorithm 7.2 finishes for the last layer, all the feasible structures of the

DNN will be obtained.

162

bs = 6 bs = 7 bs = 8 bs = 9

102

104

106

108

DNN 1 # IFPs Solved

bs = 6 bs = 7 bs = 8 bs = 9

102

104

106

108

DNN 2 # IFPs Solved

bs = 6 bs = 7 bs = 8 bs = 9

102

104

106

108

DNN 3 # IFPs Solved

bs = 6 bs = 7 bs = 8 bs = 9

102

104

106

108

1010 DNN 4 # IFPs Solved
OS Only
OS+ASLR
OS+DumMA
OS+ALSR
+DumMA

bs = 6 bs = 7 bs = 8 bs = 9

102

104

106

108

DNN 1 # Feasible Structures

bs = 6 bs = 7 bs = 8 bs = 9

102

104

106

108

1010

1012

1014
DNN 2 # Feasible Structures

bs = 6 bs = 7 bs = 8 bs = 9

103

107

1011

1015

1019

DNN 3 # Feasible Structures

bs = 6 bs = 7 bs = 8 bs = 9

104

108

1012

1016

1020

DNN 4 # Feasible Structures
OS Only
OS+ASLR
OS+DumMA
OS+ALSR
+DumMA

Figure 7.3: # IFPs solved and # feasible structures of the DNN benchmarks under various
defense techniques

7.5 Experiments and Results

In this section, we evaluate the effectiveness of our proposed defense strat-

egy using the complexity of the modified attack and measure the memory access

overhead. The attack complexity is evaluated in the same way as described in

Section 7.2.3, with the two metrics being the number of IFP problems (defined by

Equations (7.1) ∼ (7.6)) (Phase 2) to be solved and the total number of feasible

DNN structures that need to be trained and evaluated (Phase 3).

The shuffle budget bs ranges from 6 to 9 in our experiments. Under each bs,

we generate the memory traces for each combination of defense techniques. When

DumMA is used, we add dummy accesses into each shuffled regime such that each

shuffled address is both read once and written once.

The two complexity metrics of the 4 benchmarks are reported in Figure 7.3.

We observe that the combination of all three techniques yields the highest security

level:

163

Table 7.4: The overhead of our proposed defense

Benchmark bs = 6 bs = 7 bs = 8 bs = 9

DNN 1
Without DumMA 4.10% 10.89% 10.94% 33.63%

With DumMA 4.36% 11.35% 12.07% 35.21%

DNN 2
Without DumMA 8.85% 25.20% 36.24% 86.66%

With DumMA 9.31% 26.44% 37.95% 87.58%

DNN 3
Without DumMA 2.38% 3.72% 9.03% 16.42%

With DumMA 2.49% 3.99% 9.41% 17.16%

DNN 4
Without DumMA 1.12% 1.83% 5.18% 13.97%

With DumMA 1.76% 3.12% 6.79% 17.41%

Average
Without DumMA 4.11% 10.41% 15.35% 37.67%

With DumMA 4.48% 11.23% 16.56% 39.34%

1. Both metrics are many orders of magnitude better than any other combination

of techniques within the same benchmark and under the same shuffle budget.

2. For each benchmark, both metrics grow exponentially with the shuffle budget.

3. The # possible structures tend to grow exponentially as the DNN gets deeper.

The overheads of our proposed defense under each shuffle budget from 6 to

9 are listed in Table 7.4. As seen, very high attack complexity can be achieved

at the cost of low access overheads. Moreover, the memory access overhead does

not increase when the DNN gets larger, making our technique easily scalable to

larger DNN models. This is because the overhead is roughly determined by the

ratio of the size of each shuffled regime to that of each layer. This scalability is a

key advantage of our approach over ORAM. ORAM requires an Ω(logN)(×100%)

access overhead where N is the size of the memory (and must be least the size of the

DNN), which means that the access overhead must increase as the DNN becomes

larger. The effectiveness and scalability of our defense strategy make it practical to

defend the reverse engineering attacks on DNNs. Note that the secure encryption

algorithms (for which we use AES) and the permutation function π (which is a simple

164

transformation from AES) are not considered as significant sources of overheads

because AES accelerators have been integrated into most processor architectures

nowadays which allow very efficient computation of AES functions.

7.6 Summary

A novel defense strategy against the reverse engineering on DNNs is proposed

in this chapter. The targeted attack model analyzes the memory access pattern of

the processor running the DNN and solves an integer feasibility program to obtain

all the possible structures of each layer. In our defense strategy, three techniques are

utilized to obfuscate the memory access pattern, including oblivious shuffle, address

space layout randomization, and dummy memory access. A modified attack based on

the original attack is also formulated in order to evaluate the security of the proposed

defense. Experiments show that, by combining all the three defense techniques, very

high attack complexity can be achieved with low overheads. It is also shown that

our defense approach easily scales to larger DNN models. Therefore, we conclude

that the DNN reverse engineering attacks based on memory access patterns can be

effectively countered using our proposed defense approach.

165

Chapter 8: Conclusion and Future

Research Directions

In this dissertation, we studied the security vulnerabilities and opportunities

in various emerging technologies. In Chapter 2, we explored the opportunities to

enhance IC supply chain security brought by double patterning lithography (DPL).

In Chapter 3, we formulated an optimization-theoretic attack against physical un-

clonable functions (PUF). From Chapter 4 to Chapter 7, we investigated multiple

security issues in which neural networks were involved. In Chapter 4, we identified

the security threats of neural Trojans, i.e., hidden malicious functionalities in neural

network IPs, and proposed effective countermeasures. In Chapter 5, we studied the

ramifications of the inherent error resiliency of neural network-based applications

on logic locking. Specifically, we proved the unavoidable trade-off between security

and effectiveness among all logic locking schemes and found that, in the presence of

such error resiliency, no existing logic locking scheme can achieve the two competing

objectives at the same time. Hence we developed Strong Anti-SAT (SAS), a novel

logic locking scheme that magnifies hardware module-level error to the application

level while maintaining exponentially high SAT attack complexity, thus achieving

the two goals simultaneously. Chapters 6 and 7 discussed side-channel-based neural

network reverse engineering attacks and defenses, respectively. In Chapter 6, we

166

proposed GANRED, a novel cache side-channel attack to reverse engineer deep

neural networks. Unlike existing attacks, GANRED does not need code access or

shared maim memory content with the victim, but achieved more accurate results

nevertheless. In Chapter 7, we consider an even stronger attacker model where s/he

has access to the entire memory access record of the neural network. We proposed

a countermeasure using oblivious shuffle, address space layout randomization, and

dummy memory access. Experiments show that the countermeasure exponentially

increases the number of feasible network structures found by the attack.

8.1 Future Work

There are many new research directions that can be extended from the security

issues we have studied in this paper. We summarize these directions in the rest of

this chapter.

8.1.1 Security Opportunities in 3D IC

3D IC is another emerging semiconductor technology which stacks multiple

silicon dice together to form complete circuitry. Along with significant performance

gains, this physical structure provides many unique opportunities that may benefit

its security. For example, the top layer is a natural shield of probing or various

side-channels for the lower layers. It also enables split manufacturing, where each

layer is manufactured in a separate foundry. In this case, an approach to determine

167

how to split the circuitry onto different dice that resembles our proposal in Chapter

2 may be developed in order to minimize the information leakage about the entire

design.

8.1.2 Architecture and Application Aware Logic Locking

In Chapter 5, we emphasized that a logic locking scheme must corrupt the

application running on the protected hardware when a wrong key is applied. This

is because, if locking has no application-level effects, a pirated/overbuilt copy of the

chip will simply be as good as an authentic chip. Although there have been a myriad

of logic locking techniques, most of them are focused on the module level. However,

in order to derail an application from its correct behavior when a wrong key is

present, the locking induced error must be propagated from the locked module to

the processor’s architecture and then to the application. Such propagation should be

taken into consideration when deciding deciding the locking scheme and the location

in the place to lock.

8.1.3 Hardware-Neural Network Co-Design for Security

Both the protection of neural models from hardware side-channel attacks and

the hardware security challenges brought by neural network-based applications have

been studied in this dissertation. In order to address all these issues simultaneously,

a neural network-hardware co-design framework would be desirable. For example,

let us consider the following scenario where the hardware designer collaborates with

168

the neural model owner to protect both the hardware and the neural model. The

hardware designer implements a key-dependent operation in the hardware and the

neural model owner trains the model with the knowledge of the key. Without

the correct key, no unauthorized copy of the hardware can run the neural network

correctly, nor can the end user decipher the neural model. Detailed protocols and

implementations to this end can make interesting research topics.

169

Bibliography

[1] Accredited suppliers by the defense microelectronics activity.

[2] MT Arafin, Carson Dunbar, Gang Qu, N McDonald, and L Yan. A survey on
memristor modeling and security applications. In Quality Electronic Design
(ISQED), 2015 16th International Symposium on, pages 440–447. IEEE, 2015.

[3] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, and Elaine
Shi. Optorama: Optimal oblivious RAM. IACR Cryptology ePrint Archive,
2018:892, 2018.

[4] Marco Barreno, Blaine Nelson, Anthony D Joseph, and JD Tygar. The security
of machine learning. Machine Learning, 81(2):121–148, 2010.

[5] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. Csi
neural network: Using side-channels to recover your artificial neural network
information. arXiv preprint arXiv:1810.09076, 2018.

[6] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. {CSI}{NN}:
Reverse engineering of neural network architectures through electromagnetic
side channel. In 28th {USENIX} Security Symposium ({USENIX} Security
19), pages 515–532, 2019.

[7] Mihir Bellare, Phillip Rogaway, and Terence Spies. The ffx mode of operation
for format-preserving encryption. NIST submission, 20, 2010.

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
parsec benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and
compilation techniques, pages 72–81. ACM, 2008.

[9] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389, 2012.

[10] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna,
Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2):1–7, 2011.

[11] Gedare Bloom, Bhagirath Narahari, and Rahul Simha. Fab forensics:
Increasing trust in ic fabrication. In Technologies for Homeland Security
(HST), 2010 IEEE International Conference on, pages 99–105. IEEE, 2010.

[12] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against
aes. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 201–215. Springer, 2006.

170

[13] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast
homomorphic evaluation of deep discretized neural networks. In Annual
International Cryptology Conference, pages 483–512. Springer, 2018.

[14] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[15] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. Privacy-preserving classification on deep neural
network. IACR Cryptology ePrint Archive, 2017:35, 2017.

[16] Abhishek Chakraborty, Nithyashankari Gummidipoondi Jayasankaran, Yun-
tao Liu, Jeyavijayan Rajendran, Ozgur Sinanoglu, Ankur Srivastava, Yang
Xie, Muhammad Yasin, and Michael Zuzak. Keynote: A disquisition on logic
locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2019.

[17] Abhishek Chakraborty, Yuntao Liu, and Ankur Srivastava. TimingSAT:
timing profile embedded SAT attack. In Proceedings of the International
Conference on Computer-Aided Design. ACM, 2018.

[18] Abhishek Chakraborty, Yang Xie, and Ankur Srivastava. Template attack
based deobfuscation of integrated circuits. In Computer Design (ICCD), 2017
IEEE International Conference on, pages 41–44. IEEE, 2017.

[19] Abhishek Chakraborty, Yang Xie, and Ankur Srivastava. Gpu obfuscation:
attack and defense strategies. In Proceedings of the 55th Annual Design
Automation Conference, page 122. ACM, 2018.

[20] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:
A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[21] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji
Chen, and Olivier Temam. Diannao: A small-footprint high-throughput ac-
celerator for ubiquitous machine-learning. In ACM Sigplan Notices, volume 49,
pages 269–284. ACM, 2014.

[22] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A machine-learning
supercomputer. In Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 609–622. IEEE Computer Society,
2014.

[23] Leon Chua. Resistance switching memories are memristors. Applied Physics
A, 102(4):765–783, 2011.

[24] Leon O Chua. Memristor-the missing circuit element. Circuit Theory, IEEE
Transactions on, 18(5):507–519, 1971.

171

[25] J Deng, A Berg, S Satheesh, H Su, A Khosla, and L Fei-Fei. Ilsvrc-2012, 2012.
URL http://www. image-net. org/challenges/LSVRC, 2012.

[26] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. Analysis of secure caches and
timing-based side-channel attacks. IACR Cryptology ePrint Archive, 2019:167,
2019.

[27] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and Valentina E Balas. Steal-
ing neural networks via timing side channels. arXiv preprint arXiv:1812.11720,
2018.

[28] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas.
Silicon physical random functions. In Proceedings of the 9th ACM conference
on Computer and communications security, pages 148–160. ACM, 2002.

[29] Amirali Ghofrani, Siddharth Gaba, Melika Payvand, Wei Lu, Luke Theog-
arajan, Kwang-Ting Cheng, et al. A low-power variation-aware adaptive
write scheme for access-transistor-free memristive memory. ACM Journal on
Emerging Technologies in Computing Systems (JETC), 12(1):3, 2015.

[30] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to en-
crypted data with high throughput and accuracy. In International Conference
on Machine Learning, pages 201–210, 2016.

[31] Cristiano Giuffrida, Anton Kuijsten, and Andrew S Tanenbaum. Enhanced
operating system security through efficient and fine-grained address space
randomization. In USENIX Security Symposium, pages 475–490, 2012.

[32] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[33] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[34] Michael T Goodrich and Michael Mitzenmacher. Anonymous card shuffling
and its applications to parallel mixnets. In International Colloquium on
Automata, Languages, and Programming, pages 549–560. Springer, 2012.

[35] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache
attacks on intel sgx. In Proceedings of the 10th European Workshop on Systems
Security, page 2. ACM, 2017.

[36] Karan Grover, Shruti Tople, Shweta Shinde, Ranjita Bhagwan, and Ra-
machandran Ramjee. Privado: Practical and secure dnn inference with
enclaves. arXiv preprint arXiv:1810.00602, 2018.

172

[37] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In 24th {USENIX}
Security Symposium ({USENIX} Security 15), pages 897–912, 2015.

[38] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam.
Cache storage channels: Alias-driven attacks and verified countermeasures.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 38–55. IEEE,
2016.

[39] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games–bringing
access-based cache attacks on aes to practice. In 2011 IEEE Symposium on
Security and Privacy, pages 490–505. IEEE, 2011.

[40] Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter. Outlier
detection using replicator neural networks. In International Conference on
Data Warehousing and Knowledge Discovery, pages 170–180. Springer, 2002.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–778, 2016.

[42] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Stuart Nevans Locke,
Ian Rackow, Kevin Kulda, Dana Dachman-Soled, and Tudor Dumitraş.
Security analysis of deep neural networks operating in the presence of cache
side-channel attacks. arXiv preprint arXiv:1810.03487, 2018.

[43] Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse engineering
convolutional neural networks through side-channel information leaks. In
Proceedings of the 55th Annual Design Automation Conference, page 4. ACM,
2018.

[44] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and
JD Tygar. Adversarial machine learning. In Proceedings of the 4th ACM
workshop on Security and artificial intelligence, pages 43–58. ACM, 2011.

[45] Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh Tripunitara.
Securing computer hardware using 3d integrated circuit (ic) technology and
split manufacturing for obfuscation. In Presented as part of the 22nd USENIX
Security Symposium (USENIX Security 13), pages 495–510, 2013.

[46] Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B Bhadviya,
Pinaki Mazumder, and Wei Lu. Nanoscale memristor device as synapse in
neuromorphic systems. Nano letters, 10(4):1297–1301, 2010.

[47] Mika Juuti, Sebastian Szyller, Alexey Dmitrenko, Samuel Marchal, and
N Asokan. Prada: Protecting against dnn model stealing attacks. arXiv
preprint arXiv:1805.02628, 2018.

173

[48] Andrew B Kahng, Chul-Hong Park, Xu Xu, and Hailong Yao. Layout decom-
position approaches for double patterning lithography. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 29(6):939–952,
2010.

[49] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta
Sasan. Full-lock: Hard distributions of sat instances for obfuscating circuits
using fully configurable logic and routing blocks. In Proceedings of the 56th
Annual Design Automation Conference 2019, page 89. ACM, 2019.

[50] James E Kelley, Jr. The cutting-plane method for solving convex programs.
Journal of the society for Industrial and Applied Mathematics, 8(4):703–712,
1960.

[51] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. 2009.

[52] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[53] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[54] Daihyun Lim. Extracting secret keys from integrated circuits. 2004.

[55] Yuntao Liu, Chongxi Bao, Yang Xie, and Ankur Srivastava. Introducing tfue:
The trusted foundry and untrusted employee model in ic supply chain security.
In Circuits and Systems (ISCAS), 2017 IEEE International Symposium on,
pages 1–4. IEEE, 2017.

[56] Yuntao Liu, Dana Dachman-Soled, and Ankur Srivastava. Mitigating reverse
engineering attacks on deep neural networks. In 2019 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 657–662. IEEE, 2019.

[57] Yuntao Liu, Ankit Mondal, Abhishek Chakraborty, Michael Zuzak, Nina
Jacobsen, Daniel Xing, and Ankur Srivastava. A survey on neural trojans.
In Twenty-first International Symposium on Quality Electronic Design, pages
33–39. IEEE, 2020.

[58] Yuntao Liu, Yang Xie, Chongxi Bao, and Ankur Srivastava. An optimization-
theoretic approach for attacking physical unclonable functions. In Proceedings
of the 35th International Conference on Computer-Aided Design, page 45.
ACM, 2016.

174

[59] Yuntao Liu, Yang Xie, Chongxi Bao, and Ankur Srivastava. A combined
optimization-theoretic and side-channel approach for attacking strong physical
unclonable functions. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 26(1):73–81, 2017.

[60] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In 2017 IEEE
International Conference on Computer Design (ICCD), pages 45–48. IEEE,
2017.

[61] Yuntao Liu, Michael Zuzak, Yang Xie, Abhishek Chakraborty, and Ankur
Srivastava. Strong anti-sat: Secure and effective logic locking. In Twenty-first
International Symposium on Quality Electronic Design, pages 199–205. IEEE,
2020.

[62] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng Wang,
Haixu Tang, Carl A Gunter, and Kai Chen. Understanding membership infer-
ences on well-generalized learning models. arXiv preprint arXiv:1802.04889,
2018.

[63] Ahmed Mahmoud, Ulrich Rührmair, Mehrdad Majzoobi, and Farinaz
Koushanfar. Combined modeling and side channel attacks on strong pufs.
IACR Cryptology ePrint Archive, 2013:632, 2013.

[64] Sonny Maynard. Trusted manufacturing of integrated circuits for the depart-
ment of defense. In National Defense Industrial Association Manufacturing
Division Meeting, 2010.

[65] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal
training-set attacks on machine learners. In AAAI, pages 2871–2877, 2015.

[66] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 19–38. IEEE, 2017.

[67] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[68] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y Ng. Reading digits in natural images with unsupervised feature
learning. In NIPS workshop on deep learning and unsupervised feature
learning, volume 2011, page 5, 2011.

[69] Xuan Thuy Ngo, Jean-Luc Danger, Sylvain Guilley, Tarik Graba, Yves
Mathieu, Zakaria Najm, and Shivam Bhasin. Cryptographically secure shield
for security ips protection. IEEE Transactions on Computers, 66(2):354–360,
2017.

175

[70] M-E. Nilsback and A. Zisserman. Automated flower classification over a large
number of classes. In Proceedings of the Indian Conference on Computer
Vision, Graphics and Image Processing, Dec 2008.

[71] Olga Ohrimenko, Michael T Goodrich, Roberto Tamassia, and Eli Upfal. The
melbourne shuffle: Improving oblivious storage in the cloud. In International
Colloquium on Automata, Languages, and Programming, pages 556–567.
Springer, 2014.

[72] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party machine
learning on trusted processors. In 25th {USENIX} Security Symposium
({USENIX} Security 16), pages 619–636, 2016.

[73] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of aes. In Cryptographers’ track at the RSA
conference, pages 1–20. Springer, 2006.

[74] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in
machine learning: from phenomena to black-box attacks using adversarial
samples. arXiv preprint arXiv:1605.07277, 2016.

[75] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, pages 506–519. ACM, 2017.

[76] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay
Celik, and Ananthram Swami. The limitations of deep learning in adversarial
settings. In Security and Privacy (EuroS&P), 2016 IEEE European Sympo-
sium on, pages 372–387. IEEE, 2016.

[77] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a defense to adversarial perturbations against deep
neural networks. In Security and Privacy (SP), 2016 IEEE Symposium on,
pages 582–597. IEEE, 2016.

[78] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo.
Panorama: Oblivious RAM with logarithmic overhead. IACR Cryptology
ePrint Archive, 2018:373, 2018. to appear in FOCS 2018.

[79] Colin Percival. Cache missing for fun and profit, 2005.

[80] Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In Annual
Cryptology Conference, pages 502–519. Springer, 2010.

176

[81] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri.
Logic encryption: A fault analysis perspective. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 953–958. EDA
Consortium, 2012.

[82] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri.
Security analysis of logic obfuscation. In Proceedings of the 49th Annual Design
Automation Conference, pages 83–89. ACM, 2012.

[83] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S Rose, Youngok
Pino, Ozgur Sinanoglu, and Ramesh Karri. Fault analysis-based logic
encryption. Computers, IEEE Transactions on, 64(2):410–424, 2015.

[84] Martin Riedmiller and I Rprop. Rprop-description and implementation details.
1994.

[85] Garrett S Rose and Chauncey A Meade. Performance analysis of a memristive
crossbar puf design. In Proceedings of the 52nd Annual Design Automation
Conference, page 75. ACM, 2015.

[86] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. Deepsecure:
Scalable provably-secure deep learning. In Proceedings of the 55th Annual
Design Automation Conference, page 2. ACM, 2018.

[87] Jarrod A Roy, Farinaz Koushanfar, and Igor L Markov. Epic: Ending piracy
of integrated circuits. In Proceedings of the conference on Design, Automation
and Test in Europe, pages 1069–1074. ACM, 2008.

[88] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas,
and Jürgen Schmidhuber. Modeling attacks on physical unclonable functions.
In Proceedings of the 17th ACM conference on Computer and communications
security, pages 237–249. ACM, 2010.

[89] Ulrich Rührmair, Jan Solter, Frank Sehnke, Xiaolin Xu, Ali Mahmoud, Vera
Stoyanova, Gideon Dror, Jurgen Schmidhuber, Wayne Burleson, and Srinivas
Devadas. Puf modeling attacks on simulated and silicon data. Information
Forensics and Security, IEEE Transactions on, 8(11):1876–1891, 2013.

[90] Ulrich Rührmair, Xiaolin Xu, Jan Sölter, Ahmed Mahmoud, Mehrdad
Majzoobi, Farinaz Koushanfar, and Wayne Burleson. Efficient Power and
Timing Side Channels for Physical Unclonable Functions. 2014.

[91] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[92] Abhrajit Sengupta, Mohammed Nabeel, Muhammad Yasin, and Ozgur
Sinanoglu. Atpg-based cost-effective, secure logic locking. In 2018 IEEE 36th
VLSI Test Symposium (VTS), pages 1–6. IEEE, 2018.

177

[93] Bicky Shakya, Navid Asadizanjani, Domenic Forte, and Mark Tehranipoor.
Chip editor: leveraging circuit edit for logic obfuscation and trusted fabrica-
tion. In Proceedings of the 35th International Conference on Computer-Aided
Design, page 30. ACM, 2016.

[94] Kaveh Shamsi and et al. Appsat: Approximately deobfuscating integrated
circuits. In Hardware Oriented Security and Trust (HOST), 2017 IEEE
International Symposium on, pages 95–100. IEEE, 2017.

[95] Yuanqi Shen and Hai Zhou. Double dip: Re-evaluating security of logic
encryption algorithms. In Proceedings of the on Great Lakes Symposium on
VLSI 2017, pages 179–184. ACM, 2017.

[96] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2017.

[97] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[98] Deepak Sirone and Pramod Subramanyan. Functional analysis attacks on
logic locking. In 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 936–939. IEEE, 2019.

[99] Deepak Sirone and Pramod Subramanyan. Functional analysis attacks on logic
locking. IEEE Transactions on Information Forensics and Security, 15:2514–
2527, 2020.

[100] Emil Stefanov, Marten Van Dijk, Elaine Shi, T-H Hubert Chan, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path oram: An
extremely simple oblivious ram protocol. Journal of the ACM (JACM),
65(4):18, 2018.

[101] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley
Williams. The missing memristor found. nature, 453(7191):80–83, 2008.

[102] Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the security
of logic encryption algorithms. In Hardware Oriented Security and Trust
(HOST), 2015 IEEE International Symposium on, pages 137–143. IEEE, 2015.

[103] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199, 2013.

[104] Mark Tehranipoor, Domenic Forte, Garrett S Rose, and Swarup Bhunia.
Security Opportunities in Nano Devices and Emerging Technologies. CRC
Press, 2017.

178

[105] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware
trojan taxonomy and detection. IEEE Design & Test of Computers, 27(1),
2010.

[106] Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287,
2018.

[107] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction apis. In 25th
{USENIX} Security Symposium ({USENIX} Security 16), pages 601–618,
2016.

[108] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embed-
ding watermarks into deep neural networks. arXiv preprint arXiv:1701.04082,
2017.

[109] Qian Wang, Mingze Gao, and Gang Qu. A machine learning attack resistant
dual-mode puf. In Proceedings of the 2018 on Great Lakes Symposium on
VLSI, pages 177–182, 2018.

[110] Qian Wang, Mingze Gao, and Gang Qu. Puf-passse: A puf based password
strength enhancer for iot applications. In 20th International Symposium on
Quality Electronic Design (ISQED), pages 198–203. IEEE, 2019.

[111] Qian Wang and Gang Qu. A silicon puf based entropy pump. IEEE
Transactions on Dependable and Secure Computing, 16(3):402–414, 2018.

[112] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky cauldron
on the dark land: Understanding memory side-channel hazards in sgx.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2421–2434. ACM, 2017.

[113] Xingbin Wang, Rui Hou, Yifan Zhu, Jun Zhang, and Dan Meng. Npufort:
a secure architecture of dnn accelerator against model inversion attack.
In Proceedings of the 16th ACM International Conference on Computing
Frontiers, pages 190–196. ACM, 2019.

[114] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. I know what you
see: Power side-channel attack on convolutional neural network accelerators.
In Proceedings of the 34th Annual Computer Security Applications Conference,
pages 393–406. ACM, 2018.

[115] Pengtao Xie, Misha Bilenko, Tom Finley, Ran Gilad-Bachrach, Kristin Lauter,
and Michael Naehrig. Crypto-nets: Neural networks over encrypted data.
arXiv preprint arXiv:1412.6181, 2014.

179

[116] Yang Xie, Chongxi Bao, Yuntao Liu, and Ankur Srivastava. 2.5 d/3d
integration technologies for circuit obfuscation. In Microprocessor and SOC
Test and Verification (MTV), 2016 17th International Workshop on, pages
39–44. IEEE, 2016.

[117] Yang Xie, Chongxi Bao, and Ankur Srivastava. Security-aware design flow
for 2.5 d ic technology. In Proceedings of the 5th International Workshop on
Trustworthy Embedded Devices, pages 31–38. ACM, 2015.

[118] Yang Xie, Chongxi Bao, and Ankur Srivastava. Security-aware 2.5 d integrated
circuit design flow against hardware ip piracy. Computer, (5):62–71, 2017.

[119] Yang Xie and Ankur Srivastava. Mitigating sat attack on logic locking. In
International Conference on Cryptographic Hardware and Embedded Systems,
pages 127–146. Springer, 2016.

[120] Yang Xie and Ankur Srivastava. Delay locking: Security enhancement of logic
locking against ic counterfeiting and overproduction. In Proceedings of the
54th Annual Design Automation Conference 2017, page 9. ACM, 2017.

[121] Yang Xie and Ankur Srivastava. Anti-sat: Mitigating sat attack on logic
locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2018.

[122] Xiaolin Xu and Wayne Burleson. Hybrid side-channel/machine-learning
attacks on pufs: a new threat? In Proceedings of the conference on Design,
Automation & Test in Europe, page 349. European Design and Automation
Association, 2014.

[123] Mengjia Yan, Christopher Fletcher, and Josep Torrellas. Cache telepathy:
Leveraging shared resource attacks to learn DNN architectures. In 29th
USENIX Security Symposium (USENIX Security 20), Boston, MA, August
2020. USENIX Association.

[124] Chaofei Yang, Beiye Liu, Hai Li, Yiran Chen, Wujie Wen, Mark Barnell,
Qing Wu, and Jeyavijayan Rajendran. Security of neuromorphic computing:
thwarting learning attacks using memristor’s obsolescence effect. In Proceed-
ings of the 35th International Conference on Computer-Aided Design, page 97.
ACM, 2016.

[125] Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Generative poisoning attack
method against neural networks. arXiv preprint arXiv:1703.01340, 2017.

[126] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are coherence
protocol states vulnerable to information leakage? In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
168–179. IEEE, 2018.

180

[127] Yuval Yarom and Katrina Falkner. Flush+ reload: a high resolution, low
noise, l3 cache side-channel attack. In 23rd {USENIX} Security Symposium
({USENIX} Security 14), pages 719–732, 2014.

[128] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and
Ozgur Sinanoglu. Sarlock: Sat attack resistant logic locking. In Hardware
Oriented Security and Trust (HOST), 2016 IEEE International Symposium
on, pages 236–241. IEEE, 2016.

[129] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and
Ozgur Sinanoglu. Ttlock: Tenacious and traceless logic locking. In 2017 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST),
pages 166–166. IEEE, 2017.

[130] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Removal attacks on logic locking and camouflaging techniques.
IEEE Transactions on Emerging Topics in Computing, 2017.

[131] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Security analysis of anti-sat. In 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 342–347. IEEE, 2017.

[132] Muhammad Yasin, Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and Ramesh
Karri. On improving the security of logic locking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35(9):1411–1424,
2016.

[133] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed
Ashraf, Jeyavijayan JV Rajendran, and Ozgur Sinanoglu. Provably-secure
logic locking: From theory to practice. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages
1601–1618. ACM, 2017.

[134] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna
Das, and Scott Mahlke. Scalpel: Customizing dnn pruning to the underlying
hardware parallelism. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, pages 548–560. ACM, 2017.

[135] M. Zuzak and A. Srivastava. Memory locking: An automated approach
to processor design obfuscation. In 2019 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pages 541–546, July 2019.

181

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Abbreviations
	List of Publications
	Introduction
	Security and Trust Issues in the IC Supply Chain
	The IP/IC Design Protection Problem
	The Integrity Problem

	Focus of this Dissertation
	Security Opportunities in Double Patterning Lithography
	Security Issues with Physical Unclonable Functions
	Security Threats in Neural Networks

	Contribution and Organization of the Dissertation

	Security Opportunities in Double Patterning Lithography
	Fundamentals of Double Patterning Lithography
	TFUE: the Trusted Foundry and Untrusted Employee Model
	Threat Model and Countermeasure under TFUE
	Threat Model
	Countermeasure Formulation

	Experiment Setup and Results
	Summary

	Security Vulnerabilities in Physical Unclonable Functions
	Physical Unclonable Functions
	Memristor and Memristor Crossbar PUF
	The Arbiter PUF
	The XOR Arbiter PUF

	Existing Attacks on PUFs
	Attacks on ArbPUF and MXbarPUF
	Attacks on XORArbPUFs

	Attack Formulation
	Linear Programming Based Weight Estimation
	Challenge Vector Generation using the Cutting-Plane Method
	Side-Channel Boosted Optimization-Theoretic Attack

	Experiments and Results
	In Noise-Free Conditions
	In Noisy Conditions

	Summary

	Neural Trojans: an Integrity Issue with Neural Network IPs
	Neural Networks
	Existing Attacks on Neural Networks
	Poisoning Attacks
	Exploratory Attacks

	Neural Trojans
	Motivation
	Properties of Neural Trojans
	Relevance to Existing Attacks
	A Neural Trojan Example

	Defense Mechanisms
	Input Anomaly Detection
	Re-training
	Input Preprocessing

	Experiments and Results
	Neural IP Setup
	Input Anomaly Detection
	Re-training
	Input Preprocessing

	Summary

	Secure Logic Locking for Hardware Running Neural Networks
	Introduction
	Background
	Attack Model
	SAT Attack
	Existing Logic Locking Schemes

	Insufficiency of SFLL for Real-World Applications
	Fundamental Trade-off for All Logic Locking Schemes
	The Architecture and Properties of SAS
	The SAS Block
	Configuration 1: SAS with One SAS Block
	Configuration 2: SAS with Multiple Blocks

	Robust SAS: a Removal-Resilient SAS Variant
	RSAS Architecture and Relationship with SAS
	SAT Resilience and Effectiveness of RSAS

	Choosing Critical Minterms
	Experiments & Comparison with SFLL
	SAT Resilience
	Effectiveness
	Area, Power, and Delay Overhead of SAS, RSAS, and SFLL

	Summary

	Cache Side-Channel-based Reverse Engineering of Neural Networks
	Introduction
	GANRED Attack Overview
	Contributions

	Background
	Dimension Parameters of Deep Neural Networks
	Cache Architecture Fundamentals
	Cache Timing Side-Channel Attacks
	Existing DNN Reverse Engineering Attacks and Defenses

	Attack Model
	Attack Methodology
	Obtaining DNN's Cache Side-Channel Trace
	GANRED Components
	GANRED Framework
	Validating Reverse Engineered Parameter Combinations
	Mathematical Justification of GANRED

	Experiments
	Attack Results

	Summary

	Mitigating Reverse Engineering Attacks on Neural Networks
	Introduction
	Attack Model
	Attack Setup
	Attack Methodology
	Attack Complexity and Practicality

	Cryptographic Preliminaries
	Defense Methodology
	Utilizing Oblivious Shuffle
	Address Space Layout Randomization
	Dummy Memory Accesses
	Summary of Defense Techniques
	Attacking the Proposed Defense

	Experiments and Results
	Summary

	Conclusion and Future Research Directions
	Future Work
	Security Opportunities in 3D IC
	Architecture and Application Aware Logic Locking
	Hardware-Neural Network Co-Design for Security

	Bibliography

