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This dissertation covers two topics within the context of the U.S. airline merg-

ers. In Chapter 1, I develop a structural model to evaluate the effectiveness of

alternative slot divestiture schemes in the US airline industry, focusing on the di-

vestiture of slots at Ronald Reagan Washington National Airport (DCA), which the

government required as a condition of the American/US Airways merger. Departing

from the existing literature, my model accounts for how the number of slots allo-

cated to a route segment affects carrier costs, how passengers going to many different

destinations may use the same segments, and how carriers choose to allocate slots

to segments. In Chapter 2, I use counterfactuals to show that slot divestitures can

result in the re-allocation of surplus between consumers; to estimate the proportion

of slots that the merged American would have needed to divest to maximize total

welfare; and, to evaluate the effects of allocating divested slots to different types of

carriers. I find that the proposed divestiture raised consumer surplus significantly

($112M per year) compared to approving the merger without divestiture, but that

it re-allocated surplus between consumers in different markets. I also find that the



policy of only allowing the slots to be divested to low-cost carriers raised consumer

surplus relative to the policy of only allowing the slots to be divested to legacy

carriers.

In Chapter 3, my coauthors and I develop an airline route competition entry

model in which carriers first choose whether to offer nonstop or connecting service

and then choose prices. In this setting carriers’ quality and cost unobservables are

known to every player throughout the game, so that carriers can self-select into

choosing nonstop service. Accounting for selection when performing counterfactuals

affects predictions about post-merger repositioning by rivals, likely price increases

and the effectiveness of remedies, and allows the model to match observed changes

after completed mergers.
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Chapter 1: An Assessment of Slot Divestitures in the American Air-

lines/US Airways Merger: Model and Estimation

1.1 Introduction

When large horizontal mergers are proposed, a number of standard approaches

such as merger simulations and upward pricing pressure can be used to predict

whether or not the merger may reduce competition. In cases when the merger

may make select markets less competitive, antitrust authorities negotiate a set of

remedies with the merging parties, rather than blocking the merger outright.1 The

preferred form of merger remedy is a structural remedy (asset divestiture), designed

to redistribute assets to market rivals or new entrants in a way that they can re-

store competition that could be lost through the merger—see United States (2019).2

These assets may include production capacity, distribution centers, wireless spectra,

1Merger remedies have become a dominant method for resolving merger-related competition
concerns. For example, of the merger cases challenged by U.S. antitrust authorities between
2008 and 2016, eight times more cases were resolved with settlement/remedies than with court
proceedings—see Hatzitaskos et al. (2019).

2Behavioral remedies (i.e. conditions imposed to mitigate or prohibit specified anticompeti-
tive conduct) represent an alternative merger remedy. Examples of behavioral remedies include
non-discrimination provisions, anti-retaliation provisions, and prohibitions on certain contracting
practices. However, as behavioral remedies are often imposed against the merged firm’s profit-
maximizing incentives, these remedies are often less preferred than structural remedies. Addi-
tionally, most jurisdictions, including those in the U.S., have stated a preference for using asset
divestitures over behavioral remedies in merger cases that present anti-competitive concerns —see
Kwoka (2017).
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airport slots or intellectual property. However, it is hard to apply the standard ap-

proaches to evaluate merger remedies because the link between these types of assets

and their costs or the set of assets offered to consumers is not specified.

In this chapter, I develop a model of the domestic airline industry that can be

used to evaluate alternative take-off/landing slot divestitures that may be proposed

for airline mergers. I use the model to examine the slot divestitures imposed on

the merger between American Airlines and US Airways (AA/US) at Ronald Reagan

Washington National Airport (DCA); however – as I emphasize in the conclusion

– this model could also be leveraged to evaluate a number of other slot-related

policies.3 As is the case at New York airports, carriers at DCA are required to hold

a landing slot for each scheduled departure or arrival, with a cap on the number

of slots each hour in order to mitigate congestion. AA/US transported a combined

60% of DCA passengers and a 56% share of the departures and arrivals pre-merger.

Given the dominant position of both firms and the slot constraints at DCA, the

U.S. Department of Justice (DOJ) argued that the slot constraints would prevent

rivals from expanding or initiating their service if the merged American (NewAA)

raised prices—see United States (2013). To gain approval for the merger, AA/US

agreed to divest 104 slots (approximately 15% of its holdings) to low-cost carriers

(LCCs), as well as forfeit their rights and interests at any associated gates or other

ground facilities at the airport. Then, in Chapter 2, I use my model to quantify

how divestitures may affect the welfare of passengers in different markets (defined

3Examples are the competition effects of exchanges or sales of landing slots within an airport
(Reitzes et al. (2014)), slot swaps, or alternative mechanisms for controlling congestion (Ball et al.
(2007)).
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as origin-destination pairs) and predict how passenger welfare may be affected by

different divestiture decisions—for instance, more or less slots, or divestitures where

slots are allocated to legacy carriers instead of LCCs (a policy that legacy rivals,

such as Delta, support).

The model that I develop extends both the existing frameworks for merger

simulation and the existing models of airline markets in several important ways. A

key contribution is that I model the connection between divested assets (landing

slots) and both carrier costs and how the allocation of assets to products affects

pricing and costs. This type of connection has been missing in the existing merger

simulation models. In the context of airline merger cases, divested assets are landing

slots that a carrier may choose to use on a wide range of possible route segments.

Because many passengers make connections, a single slot may be used to serve pas-

sengers in many different origin-destination markets.4 My model takes into account

this industry feature and enables cross-market interactions. This model feature is

an extension to the existing entry models in airline markets (Berry (1992), Ciliberto

and Tamer (2009), Ciliberto et al. (2018)) where individual markets are typically

assumed to be independent and there are no interactions across markets. Last, the

existing airline entry models ignored the differences between flight segments (non-

stop origin-destination pairs where carriers allocate capacity) and passenger markets,

and they abstracted away from carriers’ capacity choices. My model, on the other

4Slot or gate divestitures have been the remedy that policy makers have imposed in several com-
pleted mergers (e.g. IAG/Aer Lingus in 2015, American/US Airways in 2013, United/Continental
in 2011, Ryanair/Aer Lingus in 2006, and Air France/KLM in 2004). In Chapter 3, we use a more
standard merger simulation approach to consider the effect of a remedy proposed in the failed 2001
merger between United and US Airways in which American offered to guarantee that it would serve
specific routes.
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hand, allows carriers to endogenously choose their capacity, by distinguishing flight

segments and markets.

I model a two-stage game. In the first stage, carriers choose which flight seg-

ments to serve, while in the second stage, carriers choose how many slots to allocate

to each segment and set product prices in each market where their chosen selection

of segments allows them to serve. I allow for increases in marginal costs associated

with a carrier’s load factor (passenger to seat ratio) on a particular segment. This

implies that the allocation of capacity to a segment affects costs in a large num-

ber of passenger markets (for example, when American allocates more capacity to

Raleigh-DCA, this will affect its costs of serving passengers traveling from Raleigh

to DCA, from Raleigh to Hartford via DCA, Raleigh to Boston via DCA, etc).

Key parameters of the model are estimated by using quarterly data taken from the

publicly-available T-100 and DB1B databases from 2012-2013.

Before discussing the related literature, I highlight some of the simplifications

I make to maintain tractability or to make use of publicly-available data. First,

DCA slots are tied to specific hours of the day, and there are some differences

across slots depending on whether the slots can only be used for small planes and

whether they can be used on routes outside the usual 1,250 mile range allowed

from DCA (perimeter rule). Slots in my model, however, are assumed to be not

time specific, single type, and used only for routes within the perimeter rule. One

airport slot in the model is interpreted as the average number of operations per

day on a particular directional segment. Second, the divestitures involve gates and

other ground facilities, as well as slots. My analysis treats slots as the only relevant

4



asset. Third, while I consider discrete choices to serve particular routes, I treat

slot allocation as a continuous choice. Fourth, while I consider a relatively rich

set of connecting products, I perform some aggregations so that the number of

prices that I have to solve for is not too large and overly burdensome. Fifth, I also

ignore the important heterogeneity in the willingness of different types of customers

(e.g. leisure, business and government passengers) to substitute across products in

response to changes in the availability of connections or prices.

1.1.1 Related Literature

This thesis contributes to the literature on merger and merger remedies, as well

as the empirical literature on market entry and airline competition. In the literature,

there are a large number of merger retrospective studies but those mainly focus on

general individual merger effects rather than merger remedies. Despite the recent

growing interests in tightening merger policy, attempts to systematically analyze

merger remedies ex ante are rare in the literature.

The U.S. airline industry has experienced a large number of mergers since

deregulation in 1978. Ashenfelter et al. (2014) summarizes studies on the impact

of airline mergers on price. Most studies find price increases after mergers, but the

magnitudes of those effects depend on the sample selection and empirical strategies

employed—see Borenstein (1990); Kim and Singal (1993); Kwoka and Shumilk-

ina (2010). The studies of recent airline mergers provide mixed results. While

Hüschelrath and Müller (2015) suggests that the merger between Delta Airlines and
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Northwest Airlines increased short-run prices by 10%, Israel et al. (2013) claims

that due to the network expansion of a merged firm, post-merger price increases

may come from increases in a consumer’s willingness to pay. However, the ex-

isting literature has not focused specifically on changes in market competition at

slot-controlled airports even though it is at these airports where the Department of

Justice has implemented remedies.

Studies that evaluate merger remedies are rare in the literature, and those that

exist are skewed to ex post analysis. The Federal Trade Commission (FTC) con-

ducted two studies, one in 1999 and another in 2017, that examine the efficacy of the

merger remedies that the authority had ordered over the past two decades by closely

analyzing the survival of divested assets—FTC (1999) and FTC (2017). They find

that 70% of such divested assets remained in relevant markets and restored market

competition; however, there has been criticism that the U.S. antitrust authorities

are far too willing to accept remedies and fail to restore competition—Kwoka (2014).

Similar analyses have been conducted in the context of other jurisdictions, including

the EU, the UK, and Canada—see Duso et al. (2007); Wang and Rudanko (2012).

While most merger remedy studies in this literature focus on descriptive analysis of

what happen after remedies were imposed, my thesis provides an ex ante assessment

to measure the effectiveness of a merger remedy with respect to market competition

and passenger welfare.

Empirical entry models in the literature can be largely categorized into two

groups. Without modeling equilibrium price competition, most of the early lit-

erature (Bresnahan and Reiss (1990), Seim (2006) and, applied to airlines, Berry
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(1992), and Ciliberto and Tamer (2009)) allowed firms to make discrete entry de-

cisions in independent markets. In contrast, Reiss and Spiller (1989), Eizenberg

(2014), Fan and Yang (2018), Wollmann (2018), and Ciliberto et al. (2018) use two-

stage models in which firms enter and then make explicit price choices. My model

extends this second school of thought, allowing marginal costs to vary with load

factors, interactions between multiple product markets, and choices of capacity, as

well as price choices. I follow Eizenberg (2014), Fan and Yang (2018) and Wollmann

(2018) in assuming that firms only learn product-specific demand and marginal cost

unobservables after they have chosen which routes to serve. This choice allows me

to estimate the fixed costs associated with serving a market separately from the

demand and marginal cost functions. In contrast, Ciliberto et al. (2018) and the

Chapter 3 of this dissertation allow for demand and marginal cost shocks to be

known when entry choices are made, which increases the computational burden.

Extending the model to allow for selection that arises under complete information

is one obvious direction for future research.

There is a structural model based paper that does allow for elements of network

competition—see Aguirregabiria and Ho (2012). Since the paper assumes that each

carrier has a local manager on each route who maximizes his or her local profit, the

computational burden associated with network choices is reduced. In contrast to

the study, I allow carriers to optimize entry, capacity and price choices over all of

the segments and routes that they might serve, while focusing on a single airport of

particular interest to reduce the computational burden.

Section 1.2 provides institutional background on Ronald Reagan Washington
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National Airport (DCA), a slot-controlled airport, as well as on slot divestitures. In

Section 1.3, I develop a structural entry model. Section 1.4 describes the data used

in this study. Section 1.5 discusses the estimation of the parameters. Section 1.6

reports the estimation results and model fit. Finally, Section 1.7 concludes the

chapter.

1.2 Institutional Background

This section discusses the concept of airport landing slots, slot-controlled air-

ports, and slot divestitures in the context of the AA/US merger.

1.2.1 Slot-Controlled Airports

In aviation, an airport landing slot refers to operational authorization to either

take off or land at a particular airport on a particular day during a specific time

period. For example, if an airline carrier holds a Monday 7:00-7:59AM landing slot

at an airport, the carrier has the right to take off or land during the time slot at that

airport. While runway access at most U.S. airports is on a first-come-first-served

basis and those airports do not use any slot controlling system, a few so-called slot-

controlled airports in the U.S. regulate the maximum number of flights per hour

to mitigate heavy congestion and delays, implying that slots at those airports are

scarce and are valuable assets to carriers.

In the context of U.S. aviation, the first slot control system, the High Den-

sity Rule (HDR), was instituted by the Federal Aviation Administration (FAA) in

8



1968, and the cap on the number of hourly arrivals and departures was applied

to five “high-density traffic airports”—John F. Kennedy (JFK), LaGuardia (LGA),

and Newark (EWR) serving New York City; Ronald Reagan Washington National

Airport (DCA) in Washington D.C.; and O’Hare (ORD) in Chicago. The FAA

initially assigned slots to the carriers that already had them under scheduling com-

mittee agreements used prior to the HDR (i.e., “grandfather rights”). As slots are

expected to be actively used, there is a “use-or-lose” provision that states that any

slot not utilized 80 percent of the time over a period shall be recalled by the FAA.

Generally, as long as airlines comply with the rules, they may continue to keep those

slots.

While carriers can lease or trade their slots under FAA approval, secondary

market slot sales are rare and prohibited at some airports. Trading slots is fairly

common to facilitate airline schedules, and leasing slots is an attractive option for

slot holders since they can control slots. However, the leasing of slots tends to be

based on short-term agreements with early termination clauses, and leasing to new

entrants is rare, as the entrants are considered direct competitors. A secondary mar-

ket to buy/sell slots was created under the HDR in late 1980, but slot transactions

were infrequent and airports other than DCA have not been authorized to buy or

sell slots since early 2000, as the HDR was phased out and new slot control system

was introduced at those airports.5

There are other airport-specific slot restrictions. First, a subset of airport

5More detailed information is available at the Federal Aviation Administration (FAA) web-
site: https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/

systemops/slot_administration/
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Figure 1.1: DCA Nonstop Flights and the Perimeter Rule
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Note: The 1,250 nautical mile perimeter from DCA is shown as a curved dotted line. As an illustration of
the perimeter rule, the distance between DCA to Houston airport is within the boundary, while the distance
between DCA to Austin airport is not.

slots at slot-controlled airports is designated only for small airplanes. At DCA,

for example, the maximum number of flights per hour is 48, and 11 of them are

designated only for commuter aircraft—aircraft that may be used only for operations

with turboprop and reciprocating engine aircraft with no more than 76 seats or

turbojet aircraft with fewer than 56 seats. This restriction was introduced to balance

maximizing the economic use of runway resources and preserving services to smaller

communities. Second, nonstop flights from/to DCA (LGA) are not allowed to exceed

1,250 (1,500) nautical miles, which we call the “perimeter rule.” For the purpose of

reducing airport congestion and inducing passengers to use alternative airports, the

FAA has imposed perimeter restrictions on DCA and LGA. Figure 1.1 visualizes

the set of nonstop flights to/from DCA within the perimeter rule. There are a

few slots at the airport specifically designated for routes beyond the perimeter rule,
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such as DCA to Los Angeles (operated by American) and DCA to Denver (operated

by United). Those designated slots are exempted from the airport’s slot regulation,

and carriers are required to obtain special authorization to operate services on those

routes.

1.2.2 Slot Divestitures of the AA/US Merger at Reagan National

Airport

Slot-controlled airports are often of particular anticompetitive concern in air-

line mergers. In the most recent major airline merger case in the U.S., the proposed

merger between American Airlines and US Airways in 2013, the U.S. Department

of Justice expressed significant concern over airline markets associated with DCA.

According to its complaint on the AA/US merger case (United States (2013)), the

DOJ contends that “passengers to and from the Washington, D.C. area are likely

to be particularly hurt. ... Competition at DCA cannot flourish where one airline

increasingly controls an essential ingredient to competition. Without slots, other

airlines cannot enter or expand the number of flights that they offer on other routes.

As a result, D.C. area passengers would likely see higher prices and fewer choices if

the merger were approved.”

Slot divestitures were thus motivated by the desire to alleviate the anticom-

petitive concern regarding increased market power at this slot-controlled airport.

The DOJ and the merging party reached a settlement that required the divestiture

of slots and gates to LCCs at seven strategic airports. In this merger divestitures
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Figure 1.2: Passenger Trends at Reagan National Airport (DCA)
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process, only LCCs were approved by the government to purchase the divested as-

sets, based on the government’s view that LCCs are more suitable and effective

competitors than legacy carriers.6 The merging firms divested 104 landing slots

at DCA, representing, on average, 6 slots per hour and roughly 15% of combined

pre-merger slot holdings of merging firms. Figure A.1 in the Appendix shows that

the divested slots at DCA were roughly evenly distributed across time and the gap

of the slot holdings between NewAA and other carriers became much closer after

the divestitures. As a result, the landscape of the passenger traffic changed sharply

post-merger. As shown in Figure 1.2, US Airways and American Airlines together

held a 59.4% passenger share at DCA in 2013 before the merger. After the merger

and slot divestitures, the merging firms’ passenger share noticeably decreased, while

the passenger share held by LCCs increased post-merger.

6Delta was one of those expressing concern about the agreement, commenting, “by prescribing a
remedy that forecloses network carriers from competing ... the government will distort the market
and deny the traveling public the competitive benefits that only network carriers can deliver.”
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1.3 Model

In this section, I develop a two-stage model that captures entry, capacity

choice, and price competition at a slot-controlled airport. In the first stage of the

model, airline carriers determine a set of flight segments to serve. Then, in the second

stage, the carriers allocate their scarce airport slots across those segments and choose

product prices. Similar to previous capacity-constrained models (e.g. Besanko and

Doraszelski (2004) and Snider (2009)), I allow slot allocation and product pricing

to affect marginal cost through a segment’s load factor, which enables cross-market

interactions in the model.

1.3.1 Environment

I define an airline market based on potential directional trips between two

endpoints (e.g, airports or cities) regardless of the number of connections made en

route, where markets are indexed by m ∈ M. I also define a flight segment of

carrier f , indexed by s ∈ Sf , as a directional nonstop trip of carrier f between two

endpoints. While a market is a place where passenger demand takes place, a flight

segment for a carrier is an operational unit where the carrier allocates its capacity.

I denote A ⇒ B as the market of endpoint A to endpoint B, and let (A → B)f

be the flight segment from A to B operated by carrier f . Note that the baseline

endpoints in this dissertation are airports unless otherwise stated.

A single market can be associated with multiple flight segments, and vice versa.

The map in the left panel of Figure 1.3 shows multiple products and segments in the
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Figure 1.3: Illustration of Markets and Flight Segments
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markets are associated with a single flight segment (DCA→IAH)UA.

DCA to Houston market, DCA⇒IAH. In this example, there are four products—

one nonstop and three connecting products operated by three different carriers—and

seven different flight segments associated with the DCA⇒IAH market. The map in

the right panel of the figure, on the other hand, shows a subset of the flight products

operated by United Airlines (UA) that share the flight segment (DCA→IAH)UA. In

that single segment (United’s nonstop flight from DCA to IAH), there are different

types of passengers in different markets: 1) those who simply took the flight, 2) those

who took prior flights, and 3) those who are traveling on to other destinations. The

feature that passengers from different markets can share the same flight segment will

be the key to capturing interactions among markets, and I explain how my model

incorporates this feature in the subsequent subsection.
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1.3.2 Demand

A nested logit model is used to describe market demand. In market m, a

consumer can choose the option of all possible flight products in the market or the

option not to fly (outside option). The indirect utility of customer i purchasing

flight product j in market m at time t is given by:

uijmt = xjmtβ − αpjmt + ξjmt︸ ︷︷ ︸
product quality (δjmt)

+ζijmt(σ) + (1− σ)εijmt, (1.1)

where xjmt is a vector of observable product characteristics, pjmt is the airfare of

product j, and ξjmt is a product-specific unobservable characteristic. I express

xjmtβ − αpjmt + ξjmt as a product quality δjmt. To control for variations in the

consumers’ tastes across carriers, time and markets, I include carrier, time and

non-directional market fixed effects (ρj, τt, and ψm, respectively)7 such that:

∆ξjmt = ξjmt − ρj − τt − ψm. (1.2)

Controlling for the fixed effects, I assume that ∆ξjmt has an i.i.d. distribution.

εijmt denotes consumer i’s idiosyncratic preferences for product j, and it follows a

type-1 extreme value distribution. Air travel products are nested in one group, and

the no-flying option is nested in the other group. The parameter σ governs the

degree of substitution between the two groups. As σ goes to one, air travel products

7For non-directional market fixed effects, I group products in both the A⇒B market and B⇒A
market in the same category.
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become closer substitutes; as σ goes to zero, there are no distinguishable substitution

patterns among air travel options, and the nested logit model becomes similar to

a simple multinomial logit model. I estimate the vector of demand parameters

θD = (β′, α, σ).

Let sjmt be the choice probability of product j among alternative products in

market m at time t. Then, the probability can be expressed as the following formula

under the nested logit model:

sjmt =
e
δjmt
1−σ

Dmt

D1−σ
mt

1 +D1−σ
mt

, (1.3)

where Dmt =
∑

k∈Jmt e
δkmt
1−σ and Jmt is the set of all products in market m at time t.

Finally, denote qjmt as the model-predicted number of passengers who use product

j in market m at time t. This equals the product’s choice probability multiplied

by market size, Mmtsjmt. Market size is defined as the geometric mean populations

(metropolitan statistical areas) of the two endpoints of the market.

1.3.3 Supply

To describe the optimal behavior of carriers at a slot-controlled airport, I

consider markets that are restricted to those originating, ending, or connecting at a

slot-controlled airport (DCA in this study). Denote Sf as the set of flight segments

provided by carrier f ∈ F to/from the slot-controlled airport. Denote Jf (Sf ) as

carrier f ’s products that use any segment in Sf . In the model, I assume that

product j ∈ Jf (Sf ) consists of up to two flight segments—while nonstop flight
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products require one segment, connecting flights require two.

|Sfj| ≤ 2, ∀j ∈ Jf (Sf ),∀f ∈ F , (1.4)

where Sfj is the set of flight segments that product j uses.

Capacity Choice Variable: Airport Slot

In this model, the capacity (or the number of available seats) that carrier f

provides on a flight segment s at time t is defined as zfstKfst—the segment-specific

average airplane size zfst multiplied by the average number of daily slots assigned

to flight segment s, Kfst. As one slot is equivalent to one flight, Kfst can be also

interpreted as the average number of daily flights on s. I assume that the airplane

size zfst is exogenously given from the data, which will be discussed below in detail.

On the other hand, carriers are able to allocate Kfst endogenously across flight

segments in this model. I make several assumptions on Kfst, mainly due to model

tractability and data limitation.

I assume that Kfst is continuous. Allowing Kfst to be continuous helps us to

quickly solve the optimal solution via first order conditions, while reasonably approx-

imating the carriers’ actual slot allocations.8 In addition, since Kfst is interpreted

as the average number of daily flights on s, the number needs not be an integer. For

example, if a carrier allocates its landing slots on s three times per day on week-

8There might be a potential concern on corner solutions for those segments with infrequent
daily flights. In the data, however, Figure A.2 in the Appendix shows that flight segments that
have on average less than 0.5 daily flights (one flight every other day) are very rare (1.2%).
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days and two times per day on weekends, then Kfst will be 3× 5
7

+ 2× 2
7

= 2.714.

Different airline schedules on weekdays and weekends are a very common practice

in the airline industry.

Additionally, I make other assumptions onKfst. First, Kfst is not time specific.

In practice, airport landing slots are time specific (e.g. 7AM and 7PM slots are

different). While one might argue that slots at certain hours would be more valuable

than other hours, the model does not differentiate slots by time because time specific

product prices and capacities are not available in the data. When it comes to DCA,

however, slot holdings and flight operations are uniformly distributed across different

hours, except late nights and weekend mornings in Figure A.3, and daily departure

options of a product tend to be spread out across time of day. Second, I assume

that an airport slot is a single type, and the model does not differentiate commuter

slots from general slots. Instead, the size restriction on commuter slots will be

mostly governed by the segment-specific airplane size zfst from the data. Last,

flight segments beyond the perimeter rule that require specially exempted slots are

not considered in this analysis.

Second Stage: Slot Allocation and Product Price Choices

In the second stage, carrier f , which enters a set of flight segments Sf , allocates

its endowed slots Kf to the segments s ∈ Sf and sets product prices to maximize

18



the carrier’s aggregate variable profit, which is given by:

V Pf (Sf ,S−f ) =
∑

{j,s|j∈Jf (Sf ),s∈Sfj}

(pjm − cjm)qjm, (1.5)

∑
s∈Sf

Kfs ≤ Kf , ∀f ∈ F , (1.6)

where the time subscript t is suppressed for simplicity. S−f is a set of flight segments

offered by carriers other than f , and cjm is the marginal cost of product j in market

m. Kfs is defined as the average number of slots per day assigned to flight segment s

by carrier f . The inequality condition (1.6) is a slot constraint that carrier f faces—

the sum of slots to be allocated should not exceed the endowed slots of carrier f .

The marginal cost is flight segment specific. For example, a connecting flight

consisting of two flight segments incurs costs from both segments. The marginal

cost of a product is specified as:

cjm =
∑
s∈Sfj

(
xfsγ1 + γ2

( Qfs

zfsKfs

)ν)
︸ ︷︷ ︸

flight segment specific

+ωjm, (1.7)

where Sfj is the set of flight segments that product j uses, and xfs is a vector of

observable characteristics of flight segment s offered by f such as segment distance,

hub dummy, or a slot constraint airport dummy. In this specification, assigning

a slot on a segment affects the marginal cost via a load factor,
Qfs

zfsKfs
, the ratio

of passengers to total available seats on s. While the denominator, zfsKfs, is the

total number of available seats on s operated by f , the numerator, Qfs, is the total
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number of passengers flying on segment s offered by f , and is computed as the sum

of all passengers that use the products offered by f and that share the segment s:

Qfs =
∑

j∈Jf ({s})

qjm. (1.8)

Then,
Qfs

zfsKfs
captures the extent to which an average flight on s is full. Due to the

nonlinear term ν, the marginal cost in this model increases exponentially in the load

factor on s. This is associated with overbooking or hassle fees as an airplane becomes

more full. Finally, a product-specific unobservable cost shock is denoted ωjm, which

captures product-level characteristics that are not observable to econometricians.

For this model section, I assume that all the products in Jf ({s}) for each segment

s in Sf are available in the data. In practice, however, there may be some products

in Jf ({s}) that are not available in the data. In Appendix A.2.2, I explain how the

model should be modified when some products are not available in the data.

Second Stage Optimality Conditions and Cross-Market Interaction

Conditional on the flight segment entry decision in the first stage and under

the assumption that the slot constraint (1.6) holds with equality, the necessary

equilibrium conditions in the second stage are characterized as the following system
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of equations:

dV Pf
dKfs

=
dV Pf
dKfs′

, ∀s, s′ ∈ Sf , ∀f ∈ F , (1.9)

dV Pf
dpjm

= 0, ∀j ∈ Jf (Sf ), (1.10)

∑
s∈Sf

Kfs = Kf , ∀f ∈ F . (1.11)

The conditions above are derived from the Lagrangian method applied to

the optimization problem in (1.5) focusing on interior solutions. The optimality

condition for slot (1.9) implies that, conditional on prices, a carrier is able to obtain

higher profits by transferring landing slots from abundantly allocated segments to

relatively lower allocated segments using up all of the firm’s endowed slots. Also,

note that while there is no guarantee that a solution is unique, multiple solutions

have not been found when starting with different sets of initial conditions.

The optimality condition for price (1.10) can be written as:

dV Pf
dpjm

= qjm +
∑
k∈Jmf

(pkm − ckm)
∂qkm
∂pjm︸ ︷︷ ︸

∆V P , direct impact of market competition

−
∑

l∈Jf (Sf )

∂clm′

∂pjm
qlm′︸ ︷︷ ︸

∆V P , indirect impact

= 0, (1.12)

where Jmf is the set of products offered by f in market m and the carrier can offer

more than one product in the market (e.g. a nonstop and a connecting flight). The

first order condition (1.12) indicates that a product price change affects the variable

profit of the carrier through two channels. First, when the price of product j in

market m, pjm, decreases, the variable profit of f changes through within-market
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competition and its sign will depend on the magnitude of the price elasticities of

demand. This channel is widely seen in the literature in the context of differentiated

product markets—see Nevo (2001); Villas-Boas (2007); Berry and Jia (2010). If

there were no indirect impact term in (1.12), the equation would be the same as a

classical mark-up equation.

In the second channel, changes in load factors affect the variable profit. Specif-

ically, if a decrease in pjm increases the number of passengers, qjm, then the load

factors of the flight segments that product j uses increase, and therefore the marginal

costs associated with these segments also increase. As there are multiple products

in different markets that share the flight segments, all the products in the network

that use the same flight segment become relatively more expensive, and the carrier’s

variable profit thereby futher decreases.9 This spillover appears in the slot allocation

as well in (1.9). When carrier f transfers some slots from one segment to another,

the load factors of those segments will be altered; hence, the marginal costs of all

the products associated with those segments and the variable profit of the carrier

will also be altered. Note that a change in price (or slot) simultaneously alters both

the first order conditions for price and slots, as the optimality conditions (1.9) to

(1.10) are interconnected. In equilibrium, we find the optimal slot allocation and

product prices that satisfy those optimality conditions.

One remark is that the model can be potentially extended in such way that

product demand is affected by slot allocation. In the current model setup, allocating

slots on a segment only affects the supply side via a load factor. As suggested by

9In the data, 5.8 products share the same flight segment at DCA, on average.
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Berry and Jia (2010), however, consumers may prefer a product with more daily

departure options. Since one additional slot on a flight segment proportionally

increases the number of daily departures of multiple products, it is natural to extend

the model for the demand side. For this, I explore the demand specification when

daily departure options are added to the baseline case. In addition, I describe the

extension of the model and the challenges that it creates in Appendix A.4.2.

Under the marginal cost functional form (1.7), equation (1.12) can be written

as a simple matrix notation for market m:

Ω−1
m qm + pm = cm +

dcm

dQ
, ∀m ∈M. (1.13)

where the bold face font in the equation indicates that variables are vector or ma-

trix. Ωm is the element-wise multiplication of the response matrix containing the

derivatives of market shares with respect to price, and the matrix indicating whether

products i and j are owned by the same carrier. The (i, j) element of Ωijm is given

by:

Ωijm =


∂qim
∂pjm

if i, j ∈ Jmf

0 otherwise,

(1.14)

and
dcm

dQ
is a vector with jth element

[dcm

dQ

]
j

=
∑
s∈Sfj

γ2ν
( Qfs

zfsKfs

)ν
. (1.15)
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Equation (1.13), an extended version of the widely used standard pricing equation

in a differentiated product market context, is used to estimate the vector of marginal

cost parameters θC = (γ′1, γ2, ν). In Appendix A.2.1, I provide more detailed tech-

nical information on how to derive (1.13) from (1.12).

First Stage: Flight Segment Choices

In the first stage, carriers choose the set of flight segments that yield the highest

expected profits among the alternatives. Following Eizenberg (2014) and Wollmann

(2018), I assume that carriers only know the distributions of demand and marginal

cost shocks (ξ and ω, respectively), while they know the realized unobservable shocks

for fixed costs in this stage. This implies that carriers know their variable profit at

a slot-controlled airport in expectation, while they exactly know the incurred fixed

costs. Given others’ segment offerings S−f , the expected profit of carrier f that

offers flight segments Sf can be expressed as:

Πf (Sf ,S−f ) = Eξ,ω
[
V Pf (Sf ,S−f )

]
−
∑
s∈Sf

Ffs, (1.16)

where Ffs is the fixed cost that carrier f pays every quarter to operate a nonzero

frequency of flight services on segment s. In airline industry, if there were no fixed

costs when carriers add a new segment, they would link any two airports with

nonstop and make their network excessively dense. However, we do not see such

pattern in the data, suggesting the existence of a barrier for carriers to provide
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nonstop services. I assume that the fixed cost has the following form:

Ffs = Xfsη + φfs, (1.17)

where Xfs is a vector of carrier-segment specific characteristics that affects fixed

costs and φfs is a fixed cost error term that is unconditionally mean zero. In partic-

ular, Xfs includes a constant, LCC dummy (LCCf ), the ratio of f ’s total endowed

slots to the total endowed slots by any carrier at DCA (SlotRatiof ), and the air-

port presence of carrier f on the non-DCA endpoint of segment s (Presencefs). I

include SlotRatiof , as carriers with a large number of available slots at the slot-

controlled airport may have a cost advantage of initiating a new service by more

flexibly adjusting flight schedules.

The fixed cost parameter vector, θF = η′, is estimated via a partial iden-

tification approach. To estimate the parameters, I use the revealed preference to

form moment inequality conditions by adding or removing a flight segment to/from

a carrier’s network. The literature recognizes that the information assumption im-

posed in this model generates a selection problem (Holmes (2011); Eizenberg (2014);

Wollmann (2018)). In brief, carriers may self-select into flight segments that have

relatively cheaper fixed costs that are unobservable to econometricians. In Section

1.5.3, I will discuss how I address the selection issue when estimating the fixed cost

parameters.
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1.4 Data

This section discusses the data used in this study and the sample selection

procedure. I combined the two publicly available datasets from the Department

of Transportation – 1) the Airline Origin and Destination Survey (DB1B), and 2)

the Air Carrier Statistics (T-100). While I use the entire sample for demand and

marginal cost parameter estimations, a subset of the products associated with DCA

is used for the fixed cost estimation and counterfactual analysis.

1.4.1 Airline Origin and Destination Survey (DB1B)

DB1B contains a 10% sample of all air travel passenger itineraries in the

U.S. domestic airline industry. It includes the following information: the origin,

destination, and connecting (if any) airports; the number of passengers; ticket prices;

and the ticketing and operating carriers on each itinerary. To capture the products

and markets before the AA/US merger was consummated in December 2013, I

use a dataset spanning from the first quarter of 2012 to the last quarter of 2013.

The dataset comprises 7,073 markets (across time) taken from the set of routes

connecting the largest 100 U.S. domestic airports based on the number of passenger

boardings in 2012.

I drop the itineraries that have more than one connection, as less than 1%

of passengers use itineraries with more than one stops in the data. I also drop

itineraries for which the ticket prices are outside the range of $12.50 to $1,250, as

these are likely coding errors. I aggregate the tickets with the same itineraries and
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take the passenger-weighted average prices as a representative price for a product.

Similar to Ciliberto and Williams (2014), I further drop products with fewer than

200 passengers in a market, as those are not likely to be effective competing services

in the market. Note that I treat products that have the same origin and destination

but different connections operated by the same carrier as distinct products. For ex-

ample, the connecting products (DCA→Atlanta (ATL)→IAH)f and (DCA→Dallas

(DFW)→IAH)f are distinct, while they are in the same market, DCA⇒IAH.

Panel A of Table 1.1 reports the descriptive statistics of the product character-

istics from DB1B. In column “All Products,” where I use the entire sample, we see

that the average ticket price is $246 and that on average 1,749 passengers fly with

the same product. While 11.5% of products are nonstop, nonstop passengers consist

of more than 75% of the total passengers. “Daily Departures” is defined based on

the average number of daily flights of a product, and I construct the variable fol-

lowing the procedure suggested by Berry and Jia (2010).10 An average product has

3.38 daily flights. Presence at an origin airport, “Presence (Origin),” is defined by

the ratio of the number of routes that a carrier serves nonstop to the total number

of routes that any carrier serves nonstop at the origin airport. Of the products

considered, 14.3% depart from, arrive at, or transfer at a slot-controlled airport. I

restrict the data to those products associated with DCA, and the summary statistics

of the subsample are reported in the column “DCA Products.” While it seems that

there is no distinguishable difference in prices, the number of passengers, and the

10Due to the lack of data, the Daily Departure values for 15.2% of connecting products are
not extracted by using the method suggested by Berry and Jia (2010). They are imputed as the
geometric mean of the daily departures of the two segments of a connecting product.
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Table 1.1: Descriptive Statistics

All Products DCA Products

Variable Mean Std. Dev. Mean Std. Dev.

Ticket Price ($100) 2.463 0.643 2.475 0.684
Passengers (1,000) 1.749 5.818 1.791 6.096
Nonstop (Dummy) 0.115 0.319 0.108 0.310
Daily Departures 3.388 2.532 4.055 2.702
Distance (1,000 miles) 1.322 0.651 1.173 0.674
Presence (Origin) 0.298 0.269 0.242 0.247
Slot Controlled (Dummy) 0.143 0.350 1.000 0.000
Market Size (Million) 3.005 2.262 3.443 2.171

(a) Panel A. Product Level (DB1B)

All Segments DCA Segments

Variable Mean Std. Dev. Mean Std. Dev.

Quarterly Departures 279.230 250.751 309.461 277.525
Available Seats (1,000) 31.956 34.934 29.956 36.014
Passengers (1,000) 25.824 28.867 22.224 27.395
Airplane Size 114.641 42.322 96.512 41.771
Load Factor 0.803 0.108 0.741 0.124
Segment Distance 0.915 0.593 0.772 0.578

(b) Panel B. Flight Segment Level (T-100)

The descriptive statistics in Panel A for all products and DCA products are based on 358,880
and 14,819 observations, respectively. Similarly, the numbers of unique observations of Panel
B for all products and DCA products are 42,958 and 1,650 respectively. The markets are
based on airport pairs.

fraction of nonstop products between “All Products” and “DCA Products”, “DCA

Products” tend to have more daily departure options and less total miles flown than

the average product in the industry.

1.4.2 Air Carrier Statistics (T-100)

The T-100 dataset provides monthly flight-level information, including the

number of passengers, available seats, types of aircraft, and flight frequency on a

segment. To match the units of T-100 and DB1B, different aircraft types of the same
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carrier within a segment are aggregated at the quarterly level. Regional affiliates

shown in T-100 are converted to their affiliated ticketing carriers by matching the

operating carriers shown in DB1B.

Panel B of Table 1.1 summarizes the flight segment characteristics. An av-

erage flight segment has 31,956 seats, approximately 80% of which are filled with

passengers, and the average airplane size is 114.64 (seats). In terms of the DCA

segment, the average airplane size, load factor, and segment distance are smaller

than the industry average. This is partially due to the fact that approximately 20%

of slots at the airport are designated as commuter slots, and partially due to the

perimeter rule, which restricts flight operations to within 1,250 miles. Small-sized

aircraft are more appropriate for short-haul routes where flights tend to be less full.

1.4.3 DCA Products

While I use the sample “All Products” to estimate the demand and marginal

cost parameters, I further refine the “DCA Products” shown in Table 1.1 to conduct

the counterfactual analysis in Chapter 2 as well as to estimate the fixed cost param-

eters. I start with the set of all products that include any DCA segments within

1,250 miles in the second quarter of 2013, and I denote M as the set of markets to

which those products belong. In this way, those long haul DCA segments beyond

the perimeter rule using the specially exempted slots are excluded.

Some markets in M may not be to/from DCA, and some products of those

markets may not be in the “DCA Products.” For example, suppose there are two
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products in ATL⇒Boston (BOS) market—1) a connecting product (ATL→DCA→BOS)f

by carrier f , and 2) a nonstop product (ATL→BOS)f ′ by carrier f ′. Because the first

connecting product uses DCA segments, the ATL⇒BOS market should be included

in M. However, the nonstop product is not included in the “DCA Products,” as

it does not contain DCA flight segments. While adding more products to the sam-

ple may allow a more realistic counterfactual analysis, doing so would also increase

the computational burden of finding the optimal slot allocation and product prices.

For a viable counterfactual exercise, I reduce the number of products by taking the

simplifications described below.

First, any product of markets in M that does not contain any DCA segment

is not included in “DCA Products” (e.g. the nonstop flight in ATL⇒BOS in the

example above). Instead, its product quality (δ), defined in (1.1), is calculated

from a demand estimation, and is used to adjust the consumer choice probability

of “DCA Products” in (1.3). In the earlier example of the ATL⇒BOS market,

the choice probability of the connecting product (ATL→DCA→BOS)f in (1.3) is

calculated as if there is the nonstop product by taking into account the quality of

the nonstop product. In this way, market competition can be reasonably described,

while we remove a subset of products from the sample.

Second, I create composite products for connecting services of a carrier that

share the same DCA segment. There are a number of connecting flights for which one

end is DCA and the other end is located in the Midwest or West, connecting at large

hub airports (e.g. the itinerary DCA→Detroit (DTW)→Los Angeles (LAX) offered

by American Airlines). While those connecting products have a negligible presence
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Table 1.3: Statistics of Refined DCA Products in 2013Q2

Products Passengers Segments/Slots

Carrier N. Nonstop (%) Pass. N. (mil.) Nonstop (%) Seg. N. Endowed Slot

US Airways 315 31.11 1.38 82.48 98 369.59
American 84 16.67 0.48 76.95 14 91.55
Delta 195 7.18 0.49 65.40 14 88.56
United 105 11.43 0.33 78.41 12 62.89
JetBlue 23 34.78 0.25 94.04 8 32.87
Southwest 71 14.08 0.20 67.69 10 27.08

Total 793 3.12 156 672.54

Note: In the sample, there are 28 composite products in four composite markets, accounting for 7% of DCA passenger traffic.

in their corresponding markets, the sum of those passengers has non-negligible effects

on the load factors on its DCA segment (7% of the total passengers using any DCA

segments fall into this group). Therefore, instead of eliminating those products

from the sample, I combine them into a single composite product. To be specific,

I combine those connecting products that share the same flight segment ending at

DCA and have a market (nonstop) distance beyond the perimeter rule threshold.

Figure A.4 illustrates two examples of composite products—one is DL’s composite

product connecting at Atlanta, and the other is AA’s composite product connecting

at Dallas.11 I assume that those composite products are in one of two composite

markets depending on the location of connecting airports (south or north), which

creates a moderate market competition.

Table 1.3 reports the number of products, passengers, and segments of those

in the “DCA Products” category by carrier in the second quarter of 2013. The

subsample contains 793 products, which represent 3.12 million passengers, and 79%

of those passengers use nonstop products. On average 5.8 products share the same

11Note that a connecting flight in the DCA to Miami (MIA) market is not aggregated, as the
market distance is less than 1,250 miles.
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flight segment. I calculate a carrier-level slot endowment at DCA by counting the

total number of quarterly departures to/from DCA segments shown in T-100 for

each carrier, excluding the flight segments beyond the perimeter rule threshold.

Then, I divide this number by 91 days so that its unit becomes the average number

of slot holdings per day. The result is shown in the last column. There are 156

carrier-specific flight segments in this sample, and US Airways and American held

54.9% and 13.6% of the slots pre-merger, respectively. The calculated slot holdings

are consistent with the DOJ’s complaint claiming that “US Airways holds 55% of

slots at DCA pre-merger, and the proportion would increase to 69% when AA/US

merge.”12

1.5 Estimation

This section discusses the estimation of the model parameters. While the

demand and marginal cost parameters are point estimated, the bounds on the fixed

cost parameters are estimated by using moment inequalities.

1.5.1 Demand

As proposed by Berry (1994), the estimation of the demand parameters θD =

(β′, α, σ) is based on the regression equation (1.18) inverted out from observed mar-

12The validity of the slot holdings measure that I construct can be checked using an alternative
source. Since June 2017, the FAA has uploaded information on slot holdings at slot-controlled
airports (Figure A.3 is based on this information). By considering the actual slot divestitures, I
backed out the number of slots that each carrier would have held before the merger. While the
backed-out number is slightly greater than what I construct, as it includes slots that are exempted
from the perimeter rule, I find that the two measures are consistent.
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ket shares in (1.3):

log(sjmt)− log(s0mt) = xjmtβ − αpjmt + σ log(sGjmt) + ξjmt, (1.18)

where s0mt is the market share of the not flying option, and sGjmt is the within-group

market share of product j. Given the model’s information assumption that unob-

served demand and cost shocks are not realized when carriers make flight segment

entry decisions, selection is not present unless carriers regret their entry decision

and reverse their entry choice.

There are two parameters for which the estimates are subject to endogeneity

bias in the equation above—the price coefficient (α) and the nesting parameter (σ).

Since carriers may account for unobservable product characteristics (ξjmt) when

they make price decisions, prices are likely endogenous, and sGjmt is mechanically

correlated with ξjmt. I address the endogeneity concerns with rich fixed effects

specifications and instrumental variables (IV).

First, I include carrier, quarter, and non-directional market fixed effects to

control for unobservables that are constant along those dimensions. Second, I use

instrumental variables that are correlated with prices but uncorrelated with the

unobservable product characteristics (ξjmt) in (1.18). I exploit market structure

changes as a shock to shift markups, such as the number of within market nonstop

carriers and whether any LCC exists within market. The validity of these instru-

ments is based on the timing assumption of the model. Since a flight segment entry

decision occurs before unobservable demand shocks are realized, market structure
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changes via entry/exit are not correlated with those unobservables. Additionally,

I use LCC dummy variables interacted with slot-controlled airport dummies as a

cost shifter IV, since LCCs at slot-controlled airports are faced with a tight capac-

ity constraint leading to an increase in operational cost. These demand estimates

allow me to obtain demand residuals ξ̂jmt, and the distribution of the residuals will

be used to calculate the expected variable profit for the fixed cost estimation and

counterfactual analysis.

1.5.2 Marginal Cost

The estimation of the marginal cost parameters θC = (γ′1, γ2, ν) is based on

the pricing equation (1.13). The j’th element of the equation can be written as:13

[
Ω−1

m qm + pm

]
j

=
[
cm +

dcm

dQ

]
j

=
∑
s∈Sfj

(
xfsγ1 + γ2(1 + ν)

( Qfs

zfsKfs

)ν)
+ ωjm. (1.19)

I adapt a nonlinear IV-GMM method to estimate both the linear and nonlinear

parameters in (1.19). Similar to the BLP demand estimation proposed by Berry

et al. (1995), the nonlinear IV-GMM has inner and outer loops. In the outer loop, I

search over the nonlinear parameter ν that minimizes the objective function of the

13The equation will be slightly different if missing products exist. In Appendix A.2.2, I explain
this in detail.
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generalized method of moments (GMM):

ν̂ = arg min
ν

(Z ′ω)W−1(Z ′ω)′, (1.20)

where Z and ω are the stacked versions of the set of instrumental variables and

the marginal cost error term, respectively, and W−1 is the inverse of the weighting

matrix. As non-directional market, carrier and time fixed effects are included as

well as load factor, what is left in ω will be more fundamental unobservables that

are uncorrelated to instruments Z. Conditional on ν, in the inner loop, γ1 and γ2

are recovered by an IV regression. Then, the marginal cost residuals ω̂ are fed into

the moment condition (1.20) until we find the ν̂ that minimizes the GMM objective

function.

The load factor term is endogenous in (1.19). Specifically, a lower unobserv-

able marginal cost tends to cause a lower price and a higher load factor holding slot

allocation fixed. To address the endogeneity problem, in the spirit of Fan (2013),

I introduce an IV that measures the market competitiveness of the “neighboring

markets”—the market of the products that share the same flight segment. To il-

lustrate this, consider two products in the right panel of Figure 1.3 that share the

flight segment (DCA→IAH)f—one is a nonstop flight in the DCA⇒IAH market,

and the other is a connecting flight in the DCA⇒Denver (DEN) market connecting

at IAH. When the competition in the DCA⇒DEN market changes, the number

of passengers using the connecting flight changes and, hence, the load factor of

(DCA→IAH)f affects both products. The change in load factor for the nonstop
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product in (DCA→IAH)f is not caused by marginal cost unobservables of the prod-

uct but by the market structure changes in DCA⇒DEN market that the connecting

flight belongs to. Given the information assumption that the flight segment entry

decision of carriers is chosen prior to the realization of marginal product shocks, ω,

the exclusion restriction holds for the introduced instrumental variable.

The variables related to market competitiveness in the “neighboring market”

are constructed in the following way. When product j is a nonstop product, I list

the set of products other than j that share the flight segment that j uses. Then,

I find the market of the product that brings the highest number of passengers to

the flight segment other than j, which I call a “neighboring market”. Similar to

the instrumental variables in the demand estimation, I use the number of nonstop

carriers and any LCC dummy in the “neighboring market” as IVs for the endogenous

load factor variable of j. In terms of a connecting product, analogously, I separately

calculate the IVs of the two flight segments that the product has.

1.5.3 Fixed Cost

Given the demand and marginal cost point estimates θ̂D and θ̂C, the estima-

tion of the fixed cost parameters θF = η′ relies on a partial identification strategy.

Due to the discrete nature of an entry decision, there is no guarantee of a unique

equilibrium for choosing the set of flight segments—see Eizenberg (2014). Therefore,

it is challenging to obtain the point estimates of the fixed cost parameters without

an additional assumption (e.g. the sequential order of carriers for entry decisions).
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Instead, following a growing literature on fixed cost estimations (Eizenberg (2014);

Ho and Rosen (2015); Wollmann (2018)), I adopt a partial identification approach,

and use the “DCA Products” sample discussed in Section 1.4.3.

I assume that the observed set of flight segments constitutes a pure strategy

Nash equilibrium and that any unilateral deviation from the set of flight segments

will not increase the expected profits of a carrier. To illustrate this, suppose that

S∗f and S∗−f are the observed sets of flight segments offered by f and carriers other

than f , respectively, at a slot-controlled airport. Removing a flight segment s from

the existing airline network does not increase f ’s expected profit, and this condition

forms an upper bound on the fixed cost Ffs, F fs:

Ffs ≤ Eξ,ω
[
V Pf (S∗f ,S∗−f )− V Pf (S∗f\{s},S∗−f )

]
≡ F fs, ∀s ∈ S∗f ,∀f ∈ F,

(1.21)

where S∗f\{s} is the set of flight segments offered by f excluding the segment s.

Analogously, a lower bound, F fs, on the fixed cost can be formed by using the

condition that adding a new flight segment s to the existing network cannot make

f better off:

Ffs ≥ Eξ,ω
[
V Pf (S∗f ∪ {s},S∗−f )− V Pf (S∗f ,S∗−f )

]
≡ F fs, ∀s ∈ Sf and s 6∈ S∗f ,∀f ∈ F,

(1.22)

where S∗f ∪{s} is the set of flight segments of f that adds a new segment s to S∗f . Al-

though a wide range of moment conditions are possibly formed by removing/adding
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multiple flight segments, I use only one segment deviation to ease the computational

burden.

When a carrier adds a new flight segment to its airline network, the carrier pays

a fixed cost and commits to providing nonstop service on the segment. There may be

a set of potential connecting service offerings when the new flight segment is added,

and those service offerings will depend on the characteristics of the origin/destination

airports (e.g. hubs), the carrier’s network type (e.g. hub-to-spoke or point-to-point

system) and the structures of the markets for which the new connecting services are

possible.

In this study, however, when carriers add a new segment to their existing

network, I assume that they offer only a nonstop product and no connecting products

for two reasons. First, since US Airways is the only carrier that considered DCA as a

hub pre-merger, those itineraries connecting at DCA are mostly from that carrier—

94% of one-stop passengers connecting at DCA were flown by the US Airways. When

examining the data, the carrier connected most of its flight segments at DCA, leaving

only a few small communities with a small-sized demand as segments to be added.

This implies that the connecting passenger flows from those new flight segments

based on the small community would be very small. Second, in terms of carriers

other than US Airways that do not consider DCA as a hub, it is not likely that they

offer products connecting at DCA for transferring passengers on the new segments.

The only remaining scenario in which these other carriers could generate connecting

passengers is when the non-DCA endpoint of the new segments is their hub airport.

However, the data indicate that those carriers already linked their hubs to DCA,
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and that there are no new segments considered as their hubs.

Airplane Size for a New Segment

While the available seats for an existing segment can be directly obtained

from the data (T-100), the airplane size multiplier of a new segment s, zfs in (1.7)

needs to be predicted. For this prediction, I use the sample of those flight segments

which daily flight is at least one from 2012Q1 to 2013Q4. Airline carriers allocate

their airplanes on a segment based on a number of factors, including aircraft fleet

portfolio, flight length, and contracts with regional operators. Typically, a smaller

airplane is used for a short-haul distance route. To predict the airplane size, I

regress the segment-level average airplane size on distance, and distance squared.

In addition, I include fixed effects of both origin-carrier pairs and destination-carrier

pairs in the regression to control carrier-airport specific unobservable characteristics

that affect fleet choices.

I report the regression result in Table A.1 in the Appendix. Airplane size tends

to increase as the segment distance increases but in a diminishing way. Airplane size

is likely to be smaller at slot-controlled airports, partly because operations at those

airports are affected by perimeter rules. Furthermore, airplanes at high-tourism

airports (airports in Fort Lauderdale, Orlando, or Las Vegas) or international hubs

tend to be large. The preferred specification used to predict airplane size is col-

umn (3) where origin-carrier and destination-carrier specific fixed effects denote the

specification with the highest predicted power. Last, when the model relaxes the as-
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sumption that all products are available in the data, the load factor on s originating

from unavailable products also needs to be predicted in order to describe available

seats and load factors realistically. In Appendix A.2.2, I explain the prediction

procedure for doing so.

Selection Issue

The information structure of this model setup entails a selection problem. Re-

call that the fixed cost parameter has a mean-zero error term φfs in (1.17) that

affects the entry decision of flight segment s by carrier f . Since the error term is

observed by carrier f but not by econometricians, the carrier may selectively enter

those flight segments with lower fixed costs. In other words, φfs is not mean zero

conditional on those segments that the carrier decides to enter, while its uncondi-

tional mean is zero. This leads to a biased fixed cost parameter estimation.

There are several methods introduced in the literature to address the selection

problem. Ciliberto and Tamer (2009) assumes the parametric distribution of fixed

cost error terms and obtains a bound on fixed costs by computing the probability of

observing equilibrium offerings. However, this method is computationally very ex-

pensive in my model setting because it needs to analyze every possible combination

of flight segments. Next, Eizenberg (2014) assumes that conservatively wide bound

exists for any fixed cost, and he uses the wide bound for counterfactual inequality

conditions to obtain unbiased parameter bounds. Following Eizenberg (2014), I ad-

dress the selection issue by assuming that the support of a fixed cost is the minimum
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and maximum of the support of the expected change in variable profit coming from

a single flight segment change:

Assumption 1 |Ffs| <∞ and [min(Ffs),max(Ffs)] ⊂ [min(∆V Pf ),max(∆V Pf )],

∀f ∈ F where ∆V Pf is an expected change in variable profit due to the elimination

or addition of a single flight segment by carrier f .

Under the Assumption 1, I use min(∆V Pf ) and max(∆V Pf ) for the lower bound

of (1.21) and the upper bound of (1.22), respectively. Then, I combine (1.21) and

(1.22) and take the unconditional expectation for Ffs:

E [LBfs] ≤ E [Ffs] ≤ E [UBfs] (1.23)

E [LBfs] ≤ Xfsη ≤ E [UBfs] (∵ E [φfs] = 0)

where

LBfs =


F fs if s ∈ Sf but s 6∈ S∗f

min(∆V Pf ) otherwise,

UBfs =


F fs if s ∈ S∗f

max(∆V Pf ) otherwise.

Moments and Inferences

Similar to Pakes et al. (2015) and Wollmann (2018), I form the following

moment inequality conditions from (1.23):

1

N

∑
s∈Sf

[Xfsη − LBfs] ≥ 0, ∀f ∈ F (1.24)
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and

1

N

∑
s∈Sf

[UBfs −Xfsη] ≥ 0, ∀f ∈ F (1.25)

where N is the number of new and existing flight segments of f . Following the

procedure suggested by Andrews and Soares (2010), the confidence sets of fixed

cost parameters are estimated. The procedure is as follows: 1) for a given set of

η, compute the objective function Qn(η) =
∑

i

([
m̄i(η)
σ̂i(η)

]
−

)2

, where m̄i(η) and σ̂i(η)

are the ith moment’s sample mean and standard error, and [x]− operator is defined

as x if x < 0, and equals 0 otherwise. 2) Draw a large number of bootstrap samples

R and compute the objective function for sample at η. 3) Compute a critical value

(c1−α) at the (1 − α%) quantile of the distribution of the objective based on the

bootstrapped samples. 4) Include η in the bound if Qn(η) < c1−α. 5) Repeat steps

1-4 for all possible parameter vectors.

1.6 Estimation Results and Model Fit

1.6.1 Demand

Table 1.4 reports the estimation results of the demand system. The first

three columns show the baseline demand estimates under different market defini-

tions (airport-airport pair in (1) and (2), and city-city pair in (3)), and the demand

parameter estimates are sensible. All other things being equal, air travel passengers

strongly prefer nonstop to connecting flights, and carriers with higher airport pres-
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ence are preferred. As the non-directional market fixed effects are included in the

regression, factors constant at the market level such as market distance are not iden-

tified in the demand specification. Instead, I add to the regression “Extra-miles,”

measured by the total distance flown divided by the nonstop market distance.14 The

estimates suggest that connecting flights with longer detours (more extra-miles) are

less preferred to consumers, but this effect diminishes as the ratio increases. As

expected, airfares negatively affect consumer demand, and nesting parameters are

moderately estimated in a way that product substitutions within a nest are more

likely than those across nests.

Labeled “Frequency in Demand,” the last two columns report the estimation

result when daily departure-related variables are added to the baseline specification.

Passengers prefer a flight that has more daily departure options, and this preference

is much stronger for a nonstop flight than for a connecting flight. For 15.2% of

the connecting products in the sample, there is no information on daily departures,

and for each of those connecting products, I impute this value as the geometric

mean of the daily flight frequency of the two segments. I separately estimate the

impact on preference by adding its interaction term. While the estimated interaction

coefficient is negative, it varies with how the functional form of the imputation is

defined. The willingness to pay of a passenger for an additional daily departure of a

nonstop (connecting) product is calculated as $39.0 ($8.17), in dollar terms. When

all flights additionally increase one daily departure, the aggregate demand would

14For example, the total distance flown for a connecting flight from ATL to ORD connecting at
DCA, is 1,159 miles—the sum of the two flight segments distances (547 miles for ATL→DCA and
612 miles for DCA→ORD). As the nonstop flight distance between ATL→ORD is 606 miles, the
value of Extra-miles for this product is 1.893.
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Table 1.4: Demand Parameter Estimation Results

(1) (2) (3) (4) (5)
Baseline Baseline Baseline Frequency Frequency

in Demand in Demand

Nonstop 0.128∗∗∗ 0.502∗∗∗ 0.367∗∗∗ 0.157∗∗∗ 0.496∗∗∗

(0.005) (0.051) (0.073) (0.006) (0.035)

Presence (Origin) 0.026∗∗∗ 0.159∗∗∗ 0.148∗∗∗ 0.013∗∗∗ 0.105∗∗∗

(0.001) (0.011) (0.013) (0.002) (0.010)

Extra-miles −0.031∗∗∗ −0.520∗∗∗ −0.630∗∗∗ −0.106∗∗∗ −0.570∗∗∗

(0.011) (0.093) (0.162) (0.012) (0.077)

Extra-miles squared 0.008∗∗ 0.132∗∗∗ 0.160∗∗∗ 0.028∗∗∗ 0.152∗∗∗

(0.004) (0.023) (0.040) (0.004) (0.020)

Fare (α) −0.058∗∗∗ −0.339∗∗∗ −0.352∗∗∗ −0.071∗∗∗ −0.384∗∗∗

(0.002) (0.026) (0.031) (0.003) (0.025)

Nesting (σ) 0.955∗∗∗ 0.794∗∗∗ 0.814∗∗∗ 0.932∗∗∗ 0.765∗∗∗

(0.001) (0.021) (0.033) (0.002) (0.018)

Daily Departure (DDep) 0.013∗∗∗ 0.047∗∗∗

(0.0005) (0.003)

DDep X Nonstop 0.016∗∗∗ 0.051∗∗∗

(0.001) (0.006)

DDep X Connecting (Imputed) −0.006∗∗∗ −0.026∗∗∗

(0.0004) (0.002)

OLS or IV? OLS IV IV OLS IV
O-D Pair (Airport or City) Airport Airport City Airport Airport
Median Elasticity -2.699 -3.535 -4.101 -2.180 -3.514
Diversion Ratio

(Nonstop → Nonstop) 0.722 0.555 0.560 0.696 0.529
(Nonstop → Connecting) 0.201 0.148 0.191 0.192 0.140

Observations 358,880 358,880 291,930 358,880 358,880

Note: ∗ ∗ ∗ < 0.01, ∗∗ < 0.05, ∗ < 0.10. All the specifications include time, carrier, and route fixed effects.

increase by 8.8%. This result is relatively smaller than the previous finding in Berry

and Jia (2010) that claims that adding one daily departure to all flights increases

the aggregate demand by 16% in 2006.

Sensible elasticities and a diversion ratio are calculated under the demand

system. The median own-price elasticities range from −4.10 to −3.51 conditional

on columns with IVs. For example, the median and mean elasticities in Ciliberto
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and Williams (2014) range from −3 and −4. Compared to an airport-airport pair,

demand tends to be more elastic under the city-city pair market definition, as there

are a wide range of products that passengers can choose in the city-pair market.

For those markets where there are at least two nonstop carriers and one connecting

carrier, I report the diversion ratio to explore substitution patterns when a nonstop

product price increases.15 The mean diversion ratio of nonstop to nonstop is three

to four times greater than that of nonstop to connecting; this indicates a strong

preference for nonstop service. The distribution of the demand residual for the

baseline (2) is reported in Figure A.5a.

1.6.2 Marginal Cost

Table 1.5 reports flight segment-level marginal cost estimates. All the results

in the table are based on the airport-pair market definition, and the results based

on the city-pair market definition are not included, as it is less straightforward to

allocate slots to city-based segments at a slot-controlled airport. While load factors

are overestimated when the mark-up values are calculated based on the OLS demand

results (in column (1) and (3) in Table 1.5), the load factors under the IV-based

demand estimates are estimated in a way that it moderately affects the marginal

cost. For example, the combination of ν and γ2 in column (2) indicates that a load

factor of 0.8 for a flight (sample average) increases the marginal cost by $15.8, while

15I use the following formula (classified in Conlon and Mortimer (2018)) to calculate the diversion

ratio of product j to product k in the nested logit setting: ∂sk
∂pj

/| ∂sj∂pj
| = σsk|g−(1−σ)sk

1−σsj|g−(1−σ)sj
, where sj

and sj|g are the market share and the within group market share of product j, respectively, and σ
is a nesting parameter.
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Table 1.5: Marginal Cost Estimation Results

(1) (2) (3) (4)
Baseline Baseline Frequency Frequency

in Demand in Demand
Load Factor (ν) 0.229∗∗∗ 1.979∗∗∗ 0.289∗∗∗ 2.240∗∗∗

(0.001) (0.006) (0.001) (0.0006)

Load Factor (γ2) 0.975∗∗∗ 0.229∗∗∗ 0.970∗∗∗ 0.204∗∗∗

(0.042) (0.009) (0.038) (0.009)

Distance 0.457∗∗∗ 0.246∗∗∗ 0.471∗∗∗ 0.238∗∗∗

(0.046) (0.020) (0.043) (0.019)

Distance sq. 0.005 0.022∗∗∗ 0.002 0.022∗∗∗

(0.012) (0.006) (0.012) (0.006)

Slot Constraint −0.085∗∗∗ −0.039∗∗∗ −0.090∗∗∗ −0.036∗∗∗

(0.015) (0.006) (0.014) (0.006)

Slot Constraint X LCC 0.282∗∗∗ 0.048∗∗ 0.311∗∗∗ 0.035∗

(0.055) (0.019) (0.055) (0.019)

Hub −0.012 0.015∗∗∗ −0.014 0.017∗∗∗

(0.014) (0.004) (0.013) (0.004)

Base Demand Spec in Table 1.4? (1) (2) (4) (5)
O-D Pair (Airport or City) Airport Airport Airport Airport
Cost Impact of Load Factor (LF)

LF = 0.6 $ 39.0 $ 6.2 $ 38.5 $ 5.0
(Sample Average) LF = 0.8 $ 43.4 $ 15.8 $ 44.1 $ 14.4

LF = 1.0 $ 45.7 $ 24.6 $ 47.1 $ 23.8
First stage F-Stat (Load Factor) 232883.7 4885.5 151080.9 3884.3
Observations 358,880 358,880 358,880 358,880

Note: ∗ ∗ ∗ < 0.01, ∗∗ < 0.05, ∗ < 0.10. Time, carrier, and non-directional market fixed effects
are included in all regressions. The coefficients are reported in units of $100.

a load factor of 1.0 increases it by $24.6. The estimation suggests that the marginal

cost increases exponentially as flights become more full. In terms of other variables,

marginal cost increases in distance with a small but an increasing rate. A distance

of 1,000 miles of a flight is associated with a marginal cost increase of $26.8. The

role of slot constraints and hub airports on marginal cost seems small. Lastly, the

regression result suggests that low cost carriers have a higher marginal cost at slot

constraint airports, reflecting that their operation scale is relatively low at those

airports.
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Table 1.6: Fixed Cost Parameter Estimation Results

xfs (1) (2)

Constant [0.837, 2.918] [1.759, 3.729]
Low Cost Carrier [−1.976, 1.191]
Slot Ratio at DCA [−5.370, 1.909]
Presence at Non-DCA [−8.837, 2.201]

Note: Unit is a million dollar.

Instrumental variable techniques are used to deal with the endogeneity of the

load factor variable γ2, and its first stage estimates are reported Table A.3 in the

Appendix. The market competitiveness of neighboring markets has a positive impact

on the load factor. To be specific, the load factor of a segment that a product uses

increases when a high level of competition exists in its neighboring market (e.g.

higher number of nonstop carriers or existence of low cost carrier). This suggests

that higher competition in the neighboring market induces more passengers from

the market to take the segment’s seats, leading to an increase in the load factor of

the segment.

1.6.3 Fixed Cost

Table 1.6 reports the estimation result for the fixed cost parameters. In the

fixed cost specification where only a constant variable is used in column (1), the

mean fixed cost ranges from $0.83(M) to $2.91(M). When I add more observable

variables to the fixed cost in column (2), the bounds of the parameters are wider,

partially because of the Assumption 1 that confidence sets bound of counterfactual

segments are wide enough for the purpose of dealing with the selection bias. The

constant parameter is positive ranging from $1.76(M) to $3.23(M), but the sets of
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the rest parameters include zero. Fairly recently, a new working paper that simplifies

the confidence set construction for linear conditional moment inequalities (Andrews

et al. (2019)) was released. As their approach is similar to my setting, I plan to

utilize their approach to compute the bounds of fixed cost parameters which may

allow me to estimate more narrow and precise confidence sets.

For the counterfactual analysis in Chapter 2, I use η̃′ = (3,−0.7,−1.2,−3) in

column (2) for three reasons: 1) These values are within the range in column (2); 2)

none of the moment conditions are violated at the values; and, 3) the values allow

the model to fit well with data in terms of entry/exit decisions made by Southwest,

JetBlue, and the merging firms.

1.6.4 Model Fit

In this section, I discuss the second stage model fit (i.e. the pre-merger model

fit conditional on flight segment decisions), while the model fit regarding the post-

divestitures flight segment entry and exit decisions will be discussed in Chapter

2. For this, I simulate 50 sets of all of the demand and cost variables for “DCA

Products” from the estimated distributions. Table 1.7 shows the model performance,

conditional on entry (i.e., second-stage only). The model seems to reasonably predict

slot allocation, (weighted) average price, and the number of passengers. However,

the model slightly overestimates (underestimates) slots on segments with a lower

(higher) slot frequency, and the average price seems to be underestimated for the

high-price product group.
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To further understand the second stage model fit, I examine the model predic-

tion at an individual flight-segment level. Figure A.6 highlights the fact that while

the average number of daily slots for a large fraction of flight segments is reasonably

well predicted, there is a set of flight segments for which daily slot prediction is not

so accurate. Those flight segments with poor predictions, measured by the absolute

gap of daily slots between the data and the model being greater than 2 in the figure,

mostly contain composite products that are associated with hub airports at which

passengers transfer to go to other destinations beyond the perimeter rule. Since

the demand qualities of composite products and the sizes of the markets that they

belong to are manually chosen to roughly capture the number of connecting pas-

sengers, the daily slot gap between data and model predictions for those segments

is large. By appropriately assigning demand qualities of the composite products

and market sizes of their markets, the second stage model prediction can be further

improved.

1.7 Conclusion

I have developed an endogenous entry model that features the carriers’ flight

segment entry decisions, product price choices and slot allocation choices at a slot-

controlled airport. In this model framework, the marginal costs increase as a carrier’s

load factor on a flight segment increases, enabling a change in capacity of a segment

to affect product costs in a large number of markets.

The model I developed can potentially be extended not only to non-merger
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Table 1.7: Model Fit (Pre-merger): Slot Allocation, Average Prices and Passengers

Group Data Model Prediction

Slot Allocation
1st Tercile 1.53 1.92 (0.11)

2nd Tercile 3.56 3.53 (0.17)
3rd Tercile 7.85 7.48 (0.29)

Daily Departure Frequency Group

All 4.31 4.31 (0.19)

Average Price (Weighted by Passengers)
1st Tercile $156.1 $158.5 ( 5.5)

2nd Tercile $205.4 $196.2 ( 5.4)
3rd Tercile $283.6 $240.7 ( 5.6)

Data Price Dist. Group

All $196.2 $187.7 ( 5.5)

Average Passengers
1st Tercile 5,598.3 5,225.0 (422.7)

2nd Tercile 3,131.7 3,192.4 (292.8)
3rd Tercile 2,517.5 2,645.8 (254.1)

Data Price Dist. Group.

All 3,796.7 3,727.9 (325.8)

I simulate 50 sets of all of the demand and cost variables for “DCA Products” from the estimated distribu-
tions. Bootstrapped standard errors are in parenthesis (n = 40). For the average prices and passengers, I
exclude those composite products.

issues in the airline industry, but also to merger remedies in other industries. One ex-

ample is slot swap—exchanges in which airlines that are dominant at slot-controlled

airports trade slots with one another in an attempt to increase their competitive

advantage (e.g. DL/US in 2011). Antitrust authorities often find these transactions

to be anticompetitive, as slot swapping may further enable the carriers involved

to raise prices at their dominant airports. Simply by extending the scope of the

airline network from one slot-controlled airport to two, my model can be applied

to analyze this policy. In terms of the merger remedy analysis in other industries,

retail mergers are an example where divestitures of stores or distribution centers are

commonly used. As those assets affect product costs in multiple local markets via

transportation costs or inventory controls, my model can be naturally extended to
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those merger remedies.

Some limitations of my model provide an agenda for future research. While I

believe the key features in my model—capacity choice via airport slots and cross-

market interactions—extend the existing frameworks for merger simulation and air-

line models, the model faces a few limitations. First, due to model tractability, this

model does not capture that consumers may prefer a product with more frequent

departure options in which slots allocated to a segment (hence a product) can direct

affect consumer demand. However, if the model can account for the relationship be-

tween divested assets and market demand (e.g. daily departure options in airline

mergers or shopping distance to stores/branches in retail or banking mergers), the

analysis will be richer. Second, my model does not incorporate the carrier’s fleet

assignment decision. While this model assumes that a segment-specific airplane size

is exogenously given, carriers may change their post-merger fleet portfolio in the

long run. Last, I examined only a subset of products and markets in the U.S. airline

industry that is associated with the slot divestiture in the AA/US merger. Although

the model feature in which markets are interconnected with each other is a clear

extension of the existing literature, the scope of airline networks in this study is

limited to a slot-controlled airport.
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Chapter 2: An Assessment of Slot Divestitures in the American Air-

lines/US Airways Merger: Counterfactual Analysis

2.1 Introduction

In this chapter, I perform a set of counterfactual exercises to aid antitrust au-

thorities in measuring the effect of alternative slot divestitures schemes on passenger

welfare and market competition ex ante. — 1) comparing the merger outcomes of

the realized divestitures scenario with those in the case when the merger occurred

without slot divestitures; 2) comparing the merger outcomes when slots were granted

to different types of carriers (e.g. legacy vs. low cost carriers); and 3) comparing

the merger outcomes by varying the number of carriers who received the slots.

The counterfactual analysis shows that requiring American Airlines and US

Airways to divest slots raised aggregate consumer surplus, but harmed a subset of

DCA passengers. Compared to the case where the merger was allowed with no

divestitures, the divestiture of 15% of American’s slots is estimated to have raised

total consumer surplus by $28M per quarter (roughly, $112M per year). I estimate

that slot divestitures would have raised consumer surplus, although total surplus

increased little. However, these divestitures caused American to eliminate service
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on some marginally profitable routes, and the model predicts that the carriers that

are allocated the slots would be unlikely to serve either these eliminated routes or

the routes where American and US Airways were both active before the merger

(overlapped routes) and for which competitive concerns are likely to be the greatest

(e.g. DCA-Raleigh and DCA-Nashville markets). I therefore consider alternative

divestiture policies through which the recipients of the divested slots are either

required to use them to serve particular routes or the slots are granted to different

carriers whose incentives to serve different types of routes might differ from the

LCCs that were actually granted the slots. I find that requiring the slot recipients

to serve the overlapped routes can create a net surplus gain. Additionally, I find that

legacy carriers are likely to serve routes based in large cities (e.g. Miami, Boston)

and are less likely to serve those routes based in small communities to which they

expressed their intention to expand services.

2.2 Counterfactual Description

The merger simulations in this section are based on the demand and marginal

cost estimates of “Baseline” specifications in column (2) of Tables 1.4 and 1.5 re-

spectively, and on the fixed cost parameters η̃′ described in 1.6.3.

2.2.1 Counterfactual Scenarios

In the context of the AA/US merger case, 104 landing slots that the merging

firms had at DCA prior to the merger were divested; these divested slots represented
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approximately 15% of the average daily flights of the merging firms at the airport.1

Southwest, JetBlue, and Virgin America ended up purchasing 56, 40, and 8 of the

DCA landing slots, respectively, from the merged carrier through a slot auction.2

The most natural way to measure the effectiveness of the slot divestitures is to

compare the simulated merger outcomes in the case in which slot purchasers and

the number of divested slots are the same to what actually happened with those in

the case in which the merger occurred without slot divestitures. I call this scenario

Baseline. In this scenario, I also examine to what extent consumer surplus and

producer surplus change as the fraction of divested slots increases.

Next, I explore the likely competition effects if slots were granted to different

types of carriers (i.e. legacy carriers vs. LCCs). As product demand and the cost

structure are heterogeneous across segments and markets, carriers may have differ-

ent segment entry decisions when additional slots are given to them. This implies

distinct welfare effects depending on who receives the divested slots. A particu-

larly interesting case is the AA/US merger, where based on the view that LCCs

are more suitable and effective competitors than are legacy carriers, the govern-

ment approved only LCCs as purchasers of the divested assets. A legacy rival (i.e.,

Delta) claimed that legacy carriers would bring more services to small and medium-

sized communities through its expansive domestic and international network, while

the LCCs’ business would mainly focus on carrying leisure-based passengers be-

1In this merger deal, the merged carrier was also required to divest 34 landing slots at LaGuardia
(LGA) and some airport gate access at Reagan National (DCA), LaGuardia (LGA), Boston Logan
(BOS), Chicago O’Hare (ORD), Dallas Love Field (DAL), and Los Angeles (LAX).

2Of the 40 acquired landing slots, JetBlue won 24 via the auction, and the remaining 16 were
obtained by permanently controlling the slots that had been leased to JetBlue before the merger
by American Airlines.
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tween large domestic destinations—see Gravath, Swaine & Moore LLP (2014). In

this counterfactual, I examine merger outcomes when slots are divested to different

types of carriers. Additionally, I check if Delta would be likely to enter those flight

segments in small communities as it claimed under a scenario in which additional

slots are given to Delta. I call this scenario Purchaser Type.

Last, I explore the likely competition effect of slot divestitures when the num-

ber of slot purchasers varies. Conditional on a fixed number of divested slots, the

fraction of slots that each purchaser obtains would be smaller as the number of

slot purchasers increases. The likely market structure when the divested slots are

evenly split among a few carriers will differ from when they are split among many.

However, its prediction is not clear because the flight segment entry decisions differ

by carriers. In this exercise, I compare merger outcomes by gradually increasing the

number of purchasers from one to four. I call this scenario Number of Purchasers.

2.2.2 Marginally Profitable Flight Segments

While the model allows carriers to endogenously choose flight segments, it is

computationally infeasible to compute the expected profits for all possible combi-

nations of flight segments. For example, if there are 60 different flight segments

from DCA, 260 sets of endogenous routes are possibly chosen by each carrier, and

it is computationally very expensive to compute equilibrium slot allocations and

prices for all of the combinations. To overcome this, I assume that carriers can

endogenously choose only a subset of flight segments that are marginally profitable.
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Table 2.1: List of Marginally Profitable Flight Segments from DCA

Entry Exit

Rank Southwest JetBlue Delta United NewAA

1 FLL PBI MIA PNS CAK
2 TPA SRQ BOS FLL AGS
3 BNA BDL FLL TYS MYR
4 MSY JAX MCO PVD TLH
5 MCI RSW JAX SAV JAN
6 PVD CHS IND MIA PNS
7 CMH MSY BDL DSM GSP
8 BHM PWM PVD TPA BNA
9 JAX CLT OMA DAY ROC

10 IND MSP MSY JAX TYS

A simple logit model of the actual entry decision made by Southwest and Jet-
Blue after the AA/US merger is used to predict the likelihood of entry/exit. The
logit estimate can be found in Appendix A.3.1. Additionally, the three-letter
airport codes used in this table are defined by the International Air Transport
Association (IATA). Table A.4 shows the full airport names of those codes.

The merged carrier that has a reduced number of landing slots following the slot

divestitures has an incentive to remove from its airline network the existing flight

segments that make a relatively small contribution to the carrier’s profit. Analo-

gously, carriers that purchase additional landing slots from the divestitures could

add new flight segments to their networks that were previously considered not as

profitable because those segments already exist in their networks.

To obtain marginally profitable flight segments, based on a simple logit model,

I predict the likelihood of new entry by using the information of the post-merger en-

try decisions made by the actual slot purchasers in the AA/US merger—Southwest

and JetBlue.3 The expected variable profit change when a carrier adds a counterfac-

tual segment is included as a main explanatory variable in the model. Additionally,

a carrier’s airport presence at a counterfactual segment’s endpoints is included as

3While I use the ex post information in this ex ante analysis, we can build a similar logit model
by leveraging the information of the previous events such as historical mergers with slot divestitures
or slot swap events.
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the variable plays an important role in entry decisions—see Goolsbee and Syver-

son (2008). While the detailed prediction procedure is available in Appendix A.3.1,

Table 2.1 lists by carrier the top ten flight segments that are most likely to be

added/removed from DCA. The three-letter airport codes defined by the Interna-

tional Air Transport Association (IATA) are used in the Table, and their full names

can be found in Table A.4 in the Appendix.

I make several post-merger assumptions. First, I compute the counterfactual

outcomes based on the assumption that NewAA takes the average observed charac-

teristics of the two merging firms pre-merger. As Ciliberto et al. (2018) point out,

I recognize that merger simulation outcomes may change substantially, depending

on our assumptions about the characteristics of the merging firms post-merger. In

this counterfactual exercise, however, as we are more interested in the relative dif-

ferences between various divestiture schemes than in the absolute surplus measures

for each scenario, I make a single assumption about the quality of NewAA. Second,

the entry game in this counterfactual analysis assumes that the order of moves is an

equilibrium selection mechanism. In the endogenous entry game setting, there are

concerns over multiple equilibria when carriers simultaneously make entry decisions.

Following Wollmann (2018) and Lee and Pakes (2009), to alleviate this concern, I

sort the carriers based on their airport passenger shares at DCA and assume that

the carrier with the highest passenger share moves first in the sequential game,

followed by the second highest one and so forth. Last, I assume that the segment-

specific airplane size post-merger is the same as the one pre-merger. There might

be a concern that NewAA could change its fleet allocation after the merger, which
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could systematically alter the segment-specific airplane size. However, a regression

exercise in Appendix A.3.2 suggests that this did not occur.

2.2.3 Equilibrium: Brute Force Search vs. Heuristic Search

I take two approaches to find the set of flight segments that carriers choose at

the equilibrium. One approach, which I call a “Brute Force Search,” is to compute

the expected profit for every possible combination of endogenous flight segments.

While the “Brute Force Search” guarantees the accuracy of the model solution within

the choice of the set of endogenous flight segments, it becomes computationally

intensive as the number of endogenous segments increases. For example, if carriers

were allowed to select all the segments in the list of Table 2.1, there would be 250

combinations to analyze (each carrier has 210 combinations), which is an examination

that is computationally infeasible. For this search, therefore, I further refine a set

of marginally profitable routes from the list in Table 2.1. I describe the refinement

in the following sections.

The other approach, a “Heuristic Search,” allows the equilibrium to be found

quickly with a relatively large number of endogenous segments. Similar to the ap-

proach Fan and Yang (2018) take in their counterfactual analysis, this approach

is based on the iterated best response in which each carrier takes a turn and

grows/shrinks a set of endogenous segments until they reach to the point where

there is no profitable deviation for all carriers. In contrast to the “Brute Force

Search,” carriers are allowed to grow/shrink the set of segments by up to one flight
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Figure 2.1: Marginally Profitable Routes by Carrier (Baseline)
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Note: Gray solid lines indicate the flight segments treated as exogenous, and black dotted lines indicate those
segments that carriers endogenously choose. Those endogenous segments are labeled on the maps.

segment for each turn in this search. This potentially implies that flight segment

composition can vary if carriers are allowed to add/remove more than one flight seg-

ments. In Appendix A.3.3, I describe how the “Heuristic Search” works in detail.

2.3 Counterfactual Results

2.3.1 Baseline

In this scenario, I compare the simulated merger outcomes in the case in which

slot purchasers and the number of divested slots are the same as in the case in which
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the merger occurred without slot divestitures. I assume that Southwest and JetBlue

take 60% and 40% of divested slots, respectively, based on the ratio of slots that they

actually obtained through the divestiture process. I exclude Virgin America in this

analysis as it did not operate any nonstop flights within the perimeter rule at DCA

pre-merger. For the “Brute Force Search,” I choose the first four, five, and four en-

dogenous segments to/from DCA for NewAA, Southwest, and JetBlue, respectively,

in Table 2.1. There were two overlapping markets from/to DCA where the merg-

ing firms were duopolists—Nashville (DCA⇒BNA) and Raleigh (DCA⇒RDU). In

these routes, NewAA has an efficiency gain by getting rid of redundant fixed cost

payment, but it may exercise its market power as it becomes a nonstop monopolist.

To assess whether slot purchasers had an incentive to constrain the market power

of the merged firm in those overlapping markets, I allow Southwest to endogenously

choose the two flight segments.4 Figure 2.1 visualizes the list of endogenous seg-

ments marked as a dotted black line, while the existing exogenous segments are

marked as a solid gray line.

Table 2.2 shows the result of the simulated merger outcomes of Baseline case

under the “Brute Force Search” approach. The simulation results show that the

average price would increase and that the number of passengers would decrease

when there were no slot divestitures. As the number of divested slots increase,

DCA markets become more competitive and consumers would be better off. The

effect of slot divestitures on the surplus is substantial. For example, the consumer

4As Southwest obtained more than 60% of the divested slots when excluding those slots leased
to JetBlue, the carrier had greater flexibility to enter new routes than other LCCs.
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Table 2.2: Post-merger Outcomes (Baseline) Using Brute Force Search

Pre-merger Post-merger (Slot Divestitures Ratio)

0% 10% 15% 20%

All DCA Markets
Price $180.26 +5.25% -0.37% -1.66% -2.78%

Passengers 2,856(k) -2.91% +0.42% +0.91% +1.45%
Consumer Surplus -25.51(M$) +0.07(M$) +2.60(M$) +5.35(M$)

All DCA Markets Consumer Surplus Decomposition (M$)
No Change -28.76 -18.11 -17.80 -13.74

Segments Added +4.03 +22.09 +25.12 +24.32
Segments Removed -0.77 -1.32 -2.13 -2.66

Overlapped Markets
Price $249.89 +37.47% +20.34% +19.28% -9.76%

Passengers 62(k) -36.63% -25.77% -25.45% +2.56%
Consumer Surplus -6.71(M$) -4.72(M$) -4.66(M$) +0.47(M$)

Note that units in Post-merger columns are all relative to Pre-merger values. Overlapped markets to/from DCA include
DCA⇒BNA, BNA⇒DCA, DCA⇒RDU, and RDU⇒DCA markets. I use 40 draws to obtain the expected profit for each
combination of flight segments.

surplus gap between the 15% slot divestitures case and no divestiture is computed

as $28.1(M) per quarter or roughly $112.4(M) per year.

The merger simulation suggests that the merger remedy will have distribu-

tional effects across markets. To understand this, I decompose the consumer surplus

into three categories in the second panel of the table—1) “No Change” refers to the

markets where there are no product entries or exits after the merger; 2) “Segments

Added” is a group of markets in which new products are introduced due to new

segment entries; and 3) “Segment Removed” is a group of markets in which the

existing products are removed as carriers exit the corresponding flight segments. As

the ratio of divested slots increases, slot purchasers initiate new nonstop services in

new markets and passengers in those markets are better off due to intense market

competition. This is explained by the fact that the consumer surplus change in

“Segments Added” is greater than the one in “No Change.”
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Table 2.3: Surplus Changes When a Purchaser is Forced to Enter Overlapped Mar-
kets

Consumer Surplus (M$) Producer Surplus (M$)

divest Baseline (B) Forced (F) (F)-(B) Baseline (B) Forced (F) (F)-(B)

All DCA Markets
10% 0.07 3.78 3.71 33.19 31.09 -2.10
15% 2.60 6.68 4.08 30.89 28.87 -2.02
20% 5.35 5.35 0.00 27.86 27.86 0.00

Overlapped Markets
10% -4.72 0.10 4.82
15% -4.66 0.32 4.99
20% 0.47 0.47 0.00

Note: ‘Baseline (B)’ shows merger outcomes without government intervention (Baseline), while ‘Forced (F)’ shows
merger outcomes when Southwest is forced to enter the overlapped markets (DCA⇔RDU and DCA⇔BNA). The
values in those columns indicate the post-merger surplus relative to the pre-merger one. I use 40 draws to obtain the
expected profit for each combination of flight segments.

However, slot divestitures are not necessarily good for everyone. For example,

consumers in the “Segment Removed” markets will be negatively affected by the

divestitures. The products of NewAA in those markets are no longer available as

the firm exits the markets and redistributes its relatively scarcer slots to other more

profitable segments. This leads to a consumer surplus loss in those markets. Addi-

tionally, there is no guarantee that slot purchasers will enter segments to serve the

overlapping markets(i.e., the markets in which the merging firms were duopolists

pre-merger). In the last panel of the Table 2.2, the consumer surplus in the over-

lapped markets tends to stay negative. This is because Southwest would prioritize

entering more profitable segments over entering the segments related to the over-

lapped markets. The model predicts that the carrier would enter all the overlapped

markets when it has abundant slots (20% slot divestiture case).

The potential concern that slot purchasers may not serve overlapped markets

motivates an alternative merger policy. What if, as a condition for buying slots,
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Figure 2.2: Post-merger Outcomes (Baseline) Using Heuristic Search
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I use 20 draws for each set to compute the expected variable profits and to find the equilibrium. Then, I use
25 sets to calculate the 95% confidence interval of surpluses.

the antitrust authorities require a slot purchaser to serve a set of flight segments?

Table 2.3 shows the comparison of consumer/producer surplus in the case in which

Southwest is required to enter those overlapped markets vs. the case in which it

is not required to enter the markets. Compared to the Baseline (B) where there is

no government intervention (same numbers in the Baseline case), when Southwest

is forced to enter the Nashville and Durham segments, there are consumer surplus

gains and producer surplus losses. Consumers in the overlapped markets will be

better off in this intervention. In terms of producer surpluses, as the slot purchaser

would have been more profitable if it were freely choosing segments, its profit under

the intervention would be lower than in the baseline case.
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Next, I examine the extent to which surpluses change as the amount of di-

vested slots increases in Figure 2.2 using the heuristic approach. For this figure, ten

endogenous flight segments for NewAA, Southwest and JetBlue shown in Table 2.1

are used. For each set of 20 draws of demand and marginal cost unobservables, I

calculate the expected profit, and 25 sets are used to obtain the confidence intervals

of surpluses, as each set may have a different equilibrium flight segment choice.

As the slot divestiture ratio increases, consumer and produce surpluses tend to

go in the opposite directions. On the one hand, consumer surplus tend to increase

in slot divestiture as in Figure 2.2 because of those new flight segments initiated by

slot purchasers and of the existing products getting cheaper from a relaxed capacity

constraint. The increase in market competition allows consumers to be better off.

On the other hand, the model predicts that the NewAA would have less seats and

its capacity constraint is likely to be binding, as there are more slots to be divested.

This leads to a profit loss of the NewAA, and this loss outweighs the profit gains by

slot purchasers. Last, the total surplus, i.e., the sum of the consumer and producer

surpluses, is provided in this analysis which helps understand the merger effect as a

social planner’s point of view. The total surplus in Figure 2.2, marked as the blue

square, increase but is saturated for the higher ratio of slot divestitures.

My model fits the data well in terms of the post-divestiture flight segment entry

decisions. In Table A.5, I list the actual new flight segments offered by Southwest

and JetBlue post-divestitures (in regular font face) and the model predicted new

segments (in bold font face) when using the heuristic search under the 15% slot

divestitures scenario (the realized divestiture scenario). The table shows that, first,
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the list of new segments in the data highly overlaps with the list of marginally

profitable flight segments in Table 2.1 (e.g. the matching rate is 80% for Southwest

and 100% for JetBlue, respectively). Second, while there are more new segments

in the data than what the model predicts, the proportion of correctly matching

the new entry segments is high. For example, the proportion of the number of

the model-predicted segments to the number of actual segments for Southwest and

JetBlue is 70% and 60%, respectively. In terms of the flight segment exit decisions,

we see clearly in the data that NewAA eliminated a set of small community-based

flight segments post-divestiture (e.g. AGS, LIT, MYR, OMA, and TLH). However,

the LIT and OMA segments are not considered endogenous segments in Table 2.1,

and MYR is the only segment that the model correctly predicted. Potentially,

the existence of commuter slots and how NewAA allocates those slots to small

community-based segments can be attributed to this discrepancy between the model

and data, given that the actually divested slots are regular not commuter slots.

2.3.2 Purchaser Type

While slots were solely granted to LCCs in Baseline, I explore the case where

legacy carriers were considered as slot purchasers as a comparison. To do so, I as-

sume that Delta and United take 60% and 40% of the divested slots and allow them

to endogenously choose up to the first six and four flight segments in Table 2.1,

respectively. Under the “Brute Force Search,” Table 2.4 compares the merger sim-

ulation outcomes by slot purchaser types. When additional slots were granted to
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Table 2.4: Post-merger Outcomes (Purchaser Type) Using Brute Force Search

Purchaser Type? LCCs Legacy Carriers

Slot Divestitures Ratio? 10% 15% 10% 15%

All DCA Markets
Price -0.37% -1.66% 0.66% -0.04%

Passengers 0.42% 0.91% -0.57% -0.50%
Consumer Surplus 0.07(M$) 2.60(M$) -6.97(M$) -7.89(M$)

List of Flight Segments Added(+)/Removed(-)
Merging Firm (-) CAK MYR CAK MYR

TLH
CAK MYR CAK MYR

TLH
Southwest (+) FLL TPA

BNA MSY
FLL TPA

BNA MSY
MCI

JetBlue (+) PBI BDL
JAX

PBI BDL
JAX

Delta (+) MIA BOS
FLL

MIA BOS
FLL

United (+)

Note that units in Post-merger columns are all relative to Pre-merger values. Overlapped markets to/from DCA include
DCA⇒BNA, BNA⇒DCA, DCA⇒RDU, and RDU⇒DCA markets. The full airport names of those three-letter airport codes
used in this table can be found in Table A.4.

them, carriers have heterogeneous preference on adding new flight segments, de-

pending on their segment level demand and cost characteristics.

The model result does not suggest that the legacy carriers would serve small-

or medium-sized communities from/to DCA, in contrast to Delta’s claim. This is

largely because the model predicts that the carrier would earn more profit by serving

popular destinations such as Boston and Miami rather than small-sized communities.

Interestingly, United would increase the frequency of the existing segments rather

than open new segments, as its fixed cost to open a new segment is high. In addition,

the results of the table suggest that for slot divestitures of both 10% and 15%, the

overall consumer surplus under LCC purchasers are calculated to be larger than

that under legacy purchasers.

The tendency of a legacy carrier to choose those segments related to big cities
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or leisure-based destinations over those segments related to small- medium-sized

communities can be seen more clearly when using the heuristic approach as in Fig-

ure 2.3. For this figure, I assume that the NewAA’s divested slots (15%) go to Delta,

allowing the carrier to endogenously choose five big community-based segments from

DCA (MCO, ORD, BOS, MIA, and FLL) and five small/medium community-based

segments (IND, CMH, MKE, JAX, and BDL) that the carrier said it would be will-

ing to enter if it were a slot purchaser in its complaint Gravath, Swaine & Moore

LLP (2014). The left panel of the figure shows the surplus change as the amount

of divested slots increases. The total surplus relative to the no divestitures case in-

creases first but eventually decreases and goes below zero when the ratio of divested

slots is high. In the right panel, the average number of newly added segments by

Delta is reported. While the number of new segments increases in the ratio of slot

divestitures, those new segments are mostly big community-based segments and the

line “Small Only”—the average number of newly added small/medium community-

based segments — is near zero for each divestiture considered.

2.3.3 Number of Purchasers

In this alternative divestiture scheme, I vary the number of slot purchasers,

keeping the divested slots at 15% of the merging firms’ total endowed slots, and

assume that carriers as slot purchasers have the following orders of modifying their

flight segment portfolio—Southwest, JetBlue, Delta, and United. While the number

of endogenous flight segments of NewAA is kept as four (e.g. CAK, MYR, AGS,
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Figure 2.3: Expected Post-merger Outcomes (Purchaser Type) Using Heuristic
Search
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(b) Average Number of Added Segments

Note: I use 20 draws for each set to compute the expected variable profits and to find the equilibrium. The
95% confidence interval of surpluses in (a) is based on 25 sets of draws.

and TLH), the sets of endogenous segments of carriers other than NewAA vary in

the number of slot purchasers—1) in the one-slot purchaser scenario, Southwest can

choose ten segments in Table 2.1; 2) in the two-slot purchaser scenario, Southwest

can choose five segments, and JetBlue can choose five segments; 3) in the three-slot

purchaser scenario, Southwest can choose four, JetBlue three, and Delta three; and,

4) in the four-slot purchaser scenario, Southwest can choose three, JetBlue two,

Delta two, and United two. Additionally, I assume that divested slots are evenly

split among purchasers. For example, if there are three slot purchasers (Southwest,

JetBlue, and Delta), each carrier takes a third of the divested slots.

Table 2.5 shows the simulated merger outcomes by varying the number of

purchasers. In this result, the likely consumer surpluses (relative to pre-merger) in

the four cases differ with a range of $2.6(M) to $7.4(M). More importantly, varying

the number of slot purchasers leads to a distributional welfare effect on passengers, as
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Table 2.5: Post-merger Outcomes (Number of Purchasers) Using Brute Force Search

Number of Purchasers? One Two Three Four

All DCA Markets
Price -2.21% -1.66% -2.31% -2.20%

Passengers 1.19% 0.91% 1.34% 1.07%
Consumer Surplus 6.20(M$) 2.60(M$) 7.40(M$) 5.02(M$)

List of Flight Segments Added(+)/Removed(-)
Merging Firm (-) CAK MYR

TLH
CAK MYR

TLH
CAK MYR

TLH
CAK AGS

TLH
Southwest (+) FLL TPA

BNA MSY
RDU PVD
CMH JAX

FLL TPA
BNA MSY

MCI

FLL TPA
MSY

FLL TPA

JetBlue (+) PBI BDL
JAX

PBI BDL PBI BDL

Delta (+) MIA BOS MIA BOS
United (+)

Note that the units in Post-merger columns are all relative to the Pre-merger values. The number of endogenous segments
for each column is the following. i) ‘One’: Southwest 10 segments; ii) “Two”: Southwest 5, and JetBlue 5; iii) “Three”:
Southwest 4, JetBlue 3, and Delta 3; and iv) “Four”: Southwest 3, JetBlue 3, Delta 2, and United 2.

slot purchasers choose different sets of endogenous flight segments. If a few carriers

buy the divested slots, there will be a reduction in fixed cost due to an increase in

their endowed slot ratio at DCA, facilitating their entry into new flight segments.

On the other hand, when more carriers become slot purchasers, carriers will focus

on fewer segments where carriers find it the most profitable.

2.4 Conclusion

In this chapter, I perform a set of counterfactual exercises in which we analyze

alternative slot divestitures scenarios by varying 1) the ratio of divested slots; 2)

types of carriers who receive the slots; and 3) number of carriers granted the slots.

The analysis suggests that while reasonable amount of divested slots can potentially

recover overall consumer welfare post-merger, the divestitures may redistribute the
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consumer welfare across markets largely due to new entries and exits. Also, this

redistribution may vary depending on the ratio of divested slots and which carriers

receive slots.

Entry selection is not considered in these counterfactuals. Demand and marginal

costs unobservables are assumed to be unknown to carriers in the first stage and the

unobservables become known once carriers choose which flight segments to enter.

While the assumption is taken from the literature (Eizenberg (2014), Fan and Yang

(2018), Wollmann (2018)) to reduce the computational burden, it does not capture

that carriers can self-select into entering a market and carriers may regret entering

it. In the next chapter, however, my coauthors and I relax the assumption in a way

that carriers know unobservables throughout the game and we explore the role of

unobservables on entry selection and its implications on merger analysis.
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Chapter 3: Repositioning and Market Power After Airline Mergers

3.1 Introduction

Market power created by a horizontal merger may be limited if it induces

either new entry or existing rivals to reposition to compete more directly with the

merging firms. Several court decisions at the end of the 1980s, including Waste

Management, Baker Hughes and Syufy1, indicated that ease-of-entry arguments

could “trump” (Baker (1996)) anti-competitive concerns unless an agency opposing

the merger could show that potential entrants would face higher entry barriers than

the merging parties had overcome when they entered.

From an economic perspective, the entry barrier test was flawed because it

did not examine whether entry or repositioning would be profitable, and therefore

likely to happen, and whether, if either happened, prices would be prevented from

rising. In response, since 1992, the Horizontal Merger Guidelines have laid out

that the parties need to show that entry or repositioning will be “timely, likely and

sufficient” to prevent prices from rising (Shapiro (2010), p. 65). While economists

accept these criteria, they are rarely evaluated in a rigorous and quantitative way

1United States v. Waste Management, Inc., 743 F.2d 976, 978, 983-84 (2d Cir. 1984), United
States v. Baker Hughes Inc., 908 F.2d 981, 988-89 (D.C. Cir. 1990) and United States v. Syufy
Enterprises, 903 F.2d 659, 661 (9th Cir. 1990).
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similar to how merger simulations are used to quantify likely price changes with a

fixed set of products. Instead, as in the 1980s, court decisions and agency analysis

continue to focus on barriers to entry or repositioning without clear connections to

profitability or price effects.2 In the spirit of the Guidelines, we present a framework

for assessing the likelihood and the sufficiency of repositioning in the context of

mergers in differentiated product markets.

Our empirical analysis examines service choices and competition in airline

route markets, using a two-stage model where carriers first choose their service

types (nonstop or connecting) and then choose prices. To understand the issues

involved, consider a route where US Airways and American provide nonstop service,

have large market shares and propose to merge, while Delta and Southwest provide

lower quality connecting service. In the absence of synergies, the merger is likely to

raise prices unless it creates a profitable opportunity for another carrier to launch

nonstop service. We want to predict the probability that Delta or Southwest will

launch nonstop service and how this would affect prices. Both calculations require

making assumptions about the demand and marginal costs of products, such as

nonstop service on Delta, that are not observed in the data. More specifically, even

with an estimated model that relates demand and marginal costs to observables,

we have to take a stand about the value of the demand and marginal cost residuals

(“shocks”) for these products that will affect prices, market shares and profits.

2For example, Coate (2008) describes the FTC’s conclusions about the likelihood of entry in
internal memoranda as lacking a “solid foundation” in the evidence, while Kirkwood and Zerbe
(2009) classify only one of 35 post-1992 court opinions as reviewing the criteria in the Guidelines
systematically. Some decisions, such as Oracle (331 F.Supp. 2d 1098 (N.D. Cal. 2004)) discuss
new entry but are primarily decided on prior questions of market definition.
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One approach to modeling positioning choices in the literature (for example,

Draganska et al. (2009), Eizenberg (2014), Wollmann (2018) and Fan and Yang

(2018)) is to assume that firms do not know these residuals when they make en-

try/positioning choices, either in the data or in counterfactuals. This assumption is

computationally convenient, because it implies that carriers cannot select a service

choice based on these residuals (i.e., a carrier cannot choose nonstop service because

it would have particularly high (low) nonstop demand (marginal cost) residuals). On

the other hand, it will often be implausible that firms do not have better informa-

tion than researchers about the value of demand and marginal cost unobservables,

and the assumption implies that firms may regret their predicted choices ex-post.

This is an undesirable property when trying to predict whether repositioning could

sustainably replace lost competition after a merger. More importantly, the assump-

tion, while convenient, can really matter for what the researcher will predict will

happen after the merger, a point which we illustrate using a computational example

in Appendix A.3

We make the opposite assumption that carriers know the value of all of the

demand and marginal cost unobservables when they make service choices, an as-

sumption that we will label “full information”.4 The demand and marginal cost

3The Appendix example also illustrates the extent of regret when we assume that carriers make
service choices without knowing their demand and marginal cost unobservables: for instance, for
one particular market size, 48% of carriers that choose nonstop service would have realized higher
profits if they had chosen connecting service. This happens even though the example assumes
complete information (i.e., all carriers have the same information about expected payoffs) and
sequential service choices so that, in equilibrium, each carrier knows which service choice other
carriers will make.

4One could argue that a better specification would allow for firms to have better, but still
imperfect, information than the researcher. Roberts and Sweeting (2013) and Bhattacharya et al.
(2014) consider this type of specification for values in models of entry into auction, but it is difficult
to adapt this type of approach to a setting where there is demand, marginal cost and fixed cost
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equations and the service choice game are estimated simultaneously to account for

how residuals may affect service choices. Our first contribution comes from showing

how estimation can be done with a moderate computational burden. We use a sim-

ulated method of moments estimator where the moments of the model are approx-

imated using importance sampling, following Ackerberg (2009). While Ackerberg’s

Example 2 explains how the method could be applied to this type of game, and

the method has been used by Laffont et al. (1995), Roberts and Sweeting (2013)

and Wang (2015), amongst others, we believe that we are the first to apply the

method in the context of a discrete choice-and-price competition game with up to

nine players and several player-specific unobservables.

Our second, and more novel, contribution comes from performing a set of

merger simulations that allow for repositioning where we show how to account for the

selection on unobservables implied by pre-merger service choices. Merger simulations

with fixed products assume that products will have the same demand and marginal

cost unobservables in the post-merger environment that they have in the pre-merger

data. We extend this logic by assuming that the same applies to unobservables for

product-types that firms chose not to offer in the data. We form distributions

of unobservables that are consistent with (“conditioned on”) pre-merger service

choices, as well as pre-merger prices and market shares, and we illustrate how this

type of conditioning affects our predictions of likelihood and sufficiency.

Our counterfactuals consider three mergers that were completed after the pe-

riod of data that we use to estimate the model (Q2 2006) and one merger, between

heterogeneity.
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United and US Airways, that was proposed but blocked in 2001. In each case, we

focus on markets where the merging parties were nonstop duopolists. We find that

when we condition on pre-merger service choices, our predictions match what actu-

ally happened after completed mergers: specifically, with conditioning, we predict

that rivals should launch nonstop service on 18% of routes, whereas they are ob-

served to do so on 25% of routes within two years of the merger. In contrast, if we do

not condition on pre-merger service choices, we would predict three times as many

nonstop launches, even though our estimates imply that observable variables explain

much of the heterogeneity in prices and market shares. The intuition behind our

results is straightforward: when firms know demand and marginal costs in different

types of service they will tend to select into the service type where they will be most

competitive. When we condition on these choices, we will tend to become more pes-

simistic about how competitive they will be if they offered other types of product,

decreasing the likelihood that repositioning will be profitable and that the merged

firm’s prices will be constrained. This is consistent with a common antitrust agency

argument that courts should be skeptical that rivals will reposition after a merger

when they have chosen not to do so previously (Baker (1996), p. 364). Conditioning

also tends to make mergers themselves appear to be significantly more profitable.

Before briefly discussing related literature, we briefly note several features of

our model. First, our model is static rather than dynamic. This is consistent with

the two or three year focus of typical merger analyses (Carlton (2004)) and the types

of analyses that are presented in actual cases, but it means that we cannot speak

directly to the “timely” criterion in the Guidelines. Aguirregabiria and Ho (2012)
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and Benkard et al. (2018) provide dynamic models of changes in airline networks

without accounting for selection. Second, in common with almost all airline papers,

we will take the underlying structure of each airline’s network (e.g., where it has its

major domestic and international hubs) as given, even though mergers can result in

hubs, such as Continental’s hub in Cleveland, being eliminated.5

Third, we focus on the possibility that connecting rivals will launch nonstop

service after mergers rather than modeling new entry. An earlier working paper,

Li et al. (2015), estimated a model with both service choice and entry margins.

Performing counterfactuals with both margins was computationally burdensome,

partly because, as we note below, observed variables have limited ability to explain

which connecting carriers have enough passengers to meet standard thresholds for

counting as an entrant. The reader should recognize, however, that our approach

to estimation and counterfactuals can be applied to binary enter/do not enter de-

cisions in any market with a well-defined set of potential entrants (illustrated by

Monte Carlos in Li et al. (2018)), as well as repositioning choices. Fourth, we do

not model choices of route-level capacity or schedules, or how carriers manage rev-

enues by choosing multiple prices for passengers on the same route. Including these

choices would be an interesting extension. Finally, our baseline assumption will be

that service choices are made sequentially, which guarantees a unique equilibrium.

5There are likely to be substantial sunk costs involved in creating hubs, which mean that it
is difficult to analyze de-hubbing decisions using a static model. For example, United is locked
into paying over $1.1 million/month in rent for Concourse D at Cleveland until 2027 (https://
www.cleveland.com/cityhall/2014/02/what_will_become_of_concourse.html). Our static
approach assumes that adding incremental airport-to-airport nonstop routes out of airports where
they already operate may involve non-trivial fixed costs, but not large sunk costs, which is broadly
consistent with carriers only offering nonstop flights seasonally on some routes, although this is
not true for the relatively large routes in our sample.
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This is a convenient but potentially controversial assumption given that much of

the literature has assumed simultaneous moves and designed econometric methods

for estimating games where there may be multiple equilibrium outcomes. We will

discuss this assumption and explain why it does not affect our results, given our

focus on service choices, in Section 3.5.

Section 3.2 details our model. Section 3.3 describes the data used in estimation

and observed changes after mergers. Section 3.4 outlines the estimation procedure,

with complete details in the online Appendices. Section 3.5 presents the parameter

estimates, model fit and what the estimates imply for selection. Section 3.6 presents

the method and the results of the counterfactuals. Section 3.7 concludes.

Related Literature

The Civil Aeronautics Board and the Department of Transportation approved

many airline mergers in the 1980s, explicitly using arguments that entry or reposi-

tioning would prevent incumbents from behaving anticompetitively (Keyes (1987)).

Fisher (1987) and Schmalensee (1987) used airlines as examples when discussing how

entry and repositioning should be considered in merger analysis. A reduced-form

literature has estimated how mergers affected prices after these mergers (summa-

rized in Ashenfelter et al. (2014)) and more recent ones (Hüschelrath and Müller

(2014), Hüschelrath and Müller (2015), Israel et al. (2013) and Carlton et al. (2017)).

These retrospectives typically find that prices increased, but the results are sensi-
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tive to the chosen control group and time-window.6 Surprisingly, these analyses

have not quantified post-merger entry or repositioning by rival carriers and how

repositioning relates to price changes7, and there are also no retrospective studies

analyzing whether post-merger repositioning has constrained prices in other indus-

tries. We will present some results on what happens after recent mergers in Section

3.3, but our primary contribution comes from providing a model that can rationalize

the observed changes allowing for alternative assumptions that can be made about

what a merger actually does (for example, whether the merged firm will receive the

best demand and marginal cost draws of the merging parties). Our ability to match

post-merger repositioning and prices changes contrasts with Peters (2006) who found

that merger simulations with fixed products could not explain what happened after

mergers in the 1980s.

The early literature on models of entry and product positioning (for example,

Berry (1992), Ciliberto and Tamer (2009) and Seim (2006)) used reduced-form payoff

specifications without modeling price competition explicitly. Subsequent papers

that have modeled competition (for example, Draganska et al. (2009), Eizenberg

(2014), Wollmann (2018) and Fan and Yang (2018)), often motivated by merger

counterfactuals, have assumed that firms do not know the value of unobservables,

but only their distributions, when making entry or positioning choices. This allows

the demand and marginal cost equations to be estimated separately from the service

choice game, because the expected value of the unobservables should not depend on

6For example, Borenstein (1990), Werden et al. (1991), Morrison (1996) and Peters (2006) find
different signs for price effects after the 1986 TWA/Ozark and Northwest/Republic mergers.

7Hüschelrath and Müller (2015) provides an analysis of entry in airline routes but without tying
entry to pre-merger market structures.
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the observed choice. Counterfactuals are performed by taking draws of demand and

cost residuals for new types of product from their estimated distributions. We are

not aware of previous work considering how counterfactual predictions depend on

whether shocks are known, which is why we provide a comparison using a detailed

example in Appendix A.

Two papers have estimated models using a full information assumption and

both papers also have airline applications. Reiss and Spiller (1989) estimated a

model of service choice and price competition among carriers, recognizing “that

entry introduces a selection bias in equations explaining fares or quantities” (p.

S201). They simplified their analysis by imposing symmetry and allowing for at

most one nonstop carrier, restrictions we relax.

Ciliberto et al. (2018) (CMT), developed contemporaneously with our paper,

estimate a model of route-level competition where carriers decide whether to enter,

with no distinction between service types, and then compete on prices. There are,

however, important differences between the papers. CMT’s focus is on identifi-

cation and estimation. They propose a nested fixed point estimator which allows

for multiple equilibria in a simultaneous move entry game. The resulting discon-

tinuous objective function based on moment inequalities has to be minimized on

a supercomputer. They perform counterfactuals without conditioning on the entry

choices observed in the data. In contrast, our focus is on the effects of accounting

for selection in counterfactuals that try to evaluate mergers based on the criteria

laid out in the Guidelines and on explaining what is observed after actual mergers.

We emphasize the design and results of our counterfactuals, rather than estimation,
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partly because the parameters used in merger analyses will often come from docu-

ments or testimony. We also focus on service choices because the evidence suggests

that it is nonstop carriers that are typically able to exert market power.

3.2 Model

We model carrier choices at the route-market level, with a market, m, con-

necting two airports A and B. Carriers i = 1, ..., Im play a two-stage game, first

choosing to provide nonstop or connecting service (a binary and mutually exclusive

choice) and then simultaneously choosing prices.

3.2.1 Second Stage: Post-Entry Price Competition

Given service choices, carriers play static, simultaneous Bertrand Nash pricing

games for passengers originating at each endpoint. We model directional demand

and pricing on each route, as a carrier’s presence at the origin clearly affects a

carrier’s market share.8

Demand is determined by a nested logit model, with all carriers in a single

nest. For consumer k originating at endpoint A of route m, the indirect utility for

8Presence is defined by the number of nonstop routes that a carrier serves from an airport,
divided by the number of nonstop routes served by any carrier. Reduced-form analysis indicates
that presence has large effects on demand. For example, in a route fixed effects regression, a one
standard deviation increase in the difference in a carrier’s presence across the endpoints increases
the difference in the carrier’s directional market shares by 20% of the average directional share,
which may reflect frequent-flyers preferring to travel on one carrier. Differences in origin presence
also have significant, although smaller, effects on directional differences in average fares (Luttmann
(2019)).
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a return-trip on carrier i is

uA→Bkim = βA→Bim − αmpA→Bim + νm + τmζ
A→B
km + (1− τm)εA→Bkim (3.1)

where pA→Bim is the price charged by carrier i for a return trip from A to B. The

first term represents carrier quality associated with i’s service type (CON for con-

necting and NS for nonstop), βA→Bim = βCON,A→Bim + βNSim x I(i is nonstop) with

βCON,A→Bim ∼ N(XCON
im βCON , σ

2
CON) and βNSim ∼ TRN(XNS

im βNS, σ
2
NS, 0,∞), so that

quality can depend on observed carrier-origin and route characteristics, and on a

random component (the demand shock in the language of the introduction) that

is unobserved to the researcher. TRN denotes a truncated normal distribution

and the lower truncation of βNSim at zero implies that the nonstop service is always

preferred to connecting service on the same carrier. The use of importance sampling

to estimate the model will require some additional support restrictions that will be

described in Section 3.4. The price coefficient and nesting parameters are heteroge-

neous across markets, with αm ∼ N(Xαβα, σ
2
α), where Xα will include the business

index for the route, and τm ∼ N(βτ , σ
2
τ ), although we will assume that αm and τm

are the same across directions in the same market. νm, distributed N(0, σ2
RE), is a

route-specific random effect in demand. This is designed to capture the fact that

on some routes more travelers are observed in both directions on several carriers

than a model with independent quality shocks can rationalize given our market size

definition, which is described in Section 3.3. εA→Bkim is a standard logit error for

consumer k and carrier i.
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Each carrier has a marginal cost draw for each type of service, cim ∼ N(XMC
im βMC , σ

2
MC),

where XMC
im βMC allows costs to depend on the type of carrier, the type of service

and the distance traveled. For nonstop service we measure distance as the nonstop

distance, and for connecting service we use the distance via the connecting carrier’s

closest domestic hub.9 The marginal cost is non-directional as the representative

traveler is assumed to make a round-trip.

Our assumptions of nested logit demand, linear marginal costs and single

product firms imply that there will be unique equilibrium prices and directional

variable profits, πA→Bim (s), given service choices, cost and quality draws (Mizuno

(2003)). i’s market-level variable profits are πim(s) = πA→Bim (s)+πB→Aim (s), as service

choices are assumed to be the same in both directions.

3.2.2 First Stage: Service Type Choices

In the first stage carriers choose whether to commit to a fixed cost required for

nonstop service, or to provide connecting service. For our baseline estimation, we

model carriers as making their service choices sequentially in order of their average

presence (see footnote 8 for the definition) at the endpoints. Their realized profits

in the full game are therefore πim(s) − Fim x I(i is nonstop in m) where Fim is

a fixed cost draw associated with providing nonstop service. We assume that

Fim ∼ TRN(XF
imβF , σ

2
F , 0,∞). The exact values of all market-level and carrier-

level demand, marginal cost and fixed cost draws are known to all carriers when

9For the composite Other Legacy and Other Low Cost carriers it is not straightforward to assign
connecting routes. Therefore we use the nonstop distance for these carriers, but include additional
dummies in the connecting marginal cost specification to provide more flexibility.
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service choices are made.

F should be interpreted as a net effective fixed cost. Providing nonstop service

involves committing gates and planes to a route, and these costs are fixed costs.

However, a carrier generates additional profits, in the form of connecting passengers

going to or from other destinations when it provides nonstop service, and we want

F to reflect these additional benefits, which is why we include our connecting traffic

and network variables in XF
im.10

Sequential choice ensures the existence of a unique subgame perfect Nash

equilibrium, and, coupled with the assumed order, it guarantees a unique predicted

outcome for the whole game. The known sequential order is a strong assumption,

but we will show that our results are robust to alternative assumptions, including

the possibility that choices are simultaneous or are made sequentially but in an

unknown order.

3.2.3 Solving the Model

Conditional on service choices, we solve for Nash equilibrium prices, shares

and profits by solving the system of pricing first-order conditions in the usual way.

One can solve for the outcome of the sequential service choice game by solving for

profits given all possible combinations of service choices and then using backwards

induction. However, as we describe in Appendix B.2.1, we solve for the equilib-

rium outcome more efficiently by selectively growing the game tree forward, ignoring

10Our specification does require that the net fixed cost is positive as this reduces the range of the
importance draws that we need to take. We show that this does not prevent us from accurately
matching service choices at major hubs.
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branches involving dominated choices.

3.2.4 Selection and Correlation in the Unobservables

Our baseline assumption is that the various demand, marginal cost and fixed

cost shocks are independent, although our market random demand effect can create

cross-carrier correlations in demand. Selection arises from the fact that, under

our information assumptions, carriers choosing connecting service will tend to have

worse (lower quality/higher cost) nonstop unobservables and may also tend to face

nonstop rivals with better nonstop unobservables. We show how accounting for

this type of selection affects our counterfactuals, and we allow for it by estimating

the demand, pricing and service choice models simultaneously. Richer correlations

between service choices, demand and marginal cost unobservables could arise if the

unobservables were themselves correlated. We allow for some restricted covariances

in our robustness checks, and find that the estimated covariances are small and

statistically insignificant. In contrast, as we note below (see footnote 23), observed

variables generate quite strong correlations between a carrier’s demand when it

provides nonstop service and its costs from doing so.11

11CMT do allow for a more flexible covariance structure although with no cross-carrier corre-
lations, and they estimate that some of the covarinaces are large. This may reflect the fact that
their model does not allow for any differences between nonstop and connecting service which we
explicitly model as having different demand and costs.
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3.3 Data and Empirical Setting

We estimate our model using a cross-section of publicly-available DB1 (a 10%

sample of domestic itineraries) and T100 (records of flights between airports) data

for the second quarter of 2006. We use 2006 data so we can make predictions about

subsequent mergers and avoid later years when carriers have been alleged to price

cooperatively (Ciliberto and Williams (2014)). Appendix B.1 provides additional

detail and analysis.

Market Selection and Carriers. We use data for 2,028 airport-pair markets linking

the 79 busiest US airports in the lower 48 states. Excluded routes include short

routes and routes where nonstop service is limited by regulation. We model seven

named carriers, American Airlines, Continental Airlines, Delta Air Lines, North-

west Airlines, Southwest Airlines (a low-cost carrier, LCC), United Airlines and US

Airways, aggregating other ticketing carriers into composite “Other Legacy” (e.g.,

Alaska Airlines)12 and “Other LCC” (e.g., JetBlue and Frontier) carriers. We at-

tribute tickets and flights to mainline ticketing carriers when they are operated by

regional affiliates.

Service Types, Market Shares and Prices. We define the competitors on a route as

carriers ticketing at least 20 DB1 passengers and with at least a 1% share of traffic

(a one-way passenger counts as half a return passenger). We define a carrier as

12Legacy carriers are carriers founded prior to deregulation in 1978, and they typically operate
through hub-and-spoke networks. Our classification of carriers as LCCs follows Berry and Jia
(2010).
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nonstop if it has at least 64 T100 nonstop flights (5 flights per week) in each direction

and at least 50% of its DB1 passengers do not make connections. The remaining

competitors are classified as connecting. The exact level of these thresholds has

little effect on our classification. We model carriers as providing either connecting

or nonstop service, not both. While it is, of course, possible to travel between

main pairs of airports either nonstop or making a connection on a single carrier, the

assumption is consistent with the fact that when a carrier offers nonstop service it

is usual for the vast majority of its passengers to use the nonstop service.13

A carrier’s market share is calculated as the total number of passengers that

it carries, regardless of service type, divided by a measure of market size. We define

market size using an estimated gravity model (see Appendix B.1.1 and Sweeting

et al. (ming)), accounting for total enplanements and route distance. This measure

is a better predictor of service choices, and it reduces unexplained heterogeneity in

market shares across routes and directions, compared with more common measures

based on average MSA populations. We measure a carrier’s price as the average

round-trip price in DB1. A measure of the proportion of business travelers on

a route is constructed based on data provided by Severin Borenstein (Borenstein

(2010)).

Network Variables. We model route-level competition but recognize that network

considerations affect service choices. For instance, a carrier may find it profitable

to serve a segment nonstop because this generates traffic to other destinations. We

13For instance, less than 10% of passengers make connections for 80% of our nonstop carriers.
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Table 3.1: Summary Statistics for the Estimation Sample

Numb. of 10th 90th

Obs. Mean Std. Dev. pctile pctile

Market Variables
Market Size (directional) 4,056 24,327 34,827 2,794 62,454
Num. of Carriers 2,028 3.98 1.74 2 6

Num. of Nonstop 2,028 0.67 0.83 0 2
Total Passengers (directional) 4,056 6971 10830 625 17,545
Nonstop Distance (miles, round-trip) 2,028 2,444 1,234 986 4,384
Business Index 2,028 0.41 0.09 0.30 0.52

Market-Carrier Variables
Nonstop Indicator 8,065 0.17 0.37 0 1
Price (directional, round-trip $s) 16,130 436 111 304 581
Share (directional) 16,130 0.071 0.085 0.007 0.208
Airport Presence (endpoint-specific) 16,130 0.208 0.240 0.038 0.529
Indicator for Low Cost Carrier 8,065 0.22 0.41 0 1
≥ 1 Endpoint is a Domestic Hub 8,065 0.13 0.33 0 1
≥ 1 Endpoint is an International Hub 8,065 0.10 0.30 0 1
Connecting Distance (miles, round-trip) 7,270 3,161 1,370 1,486 4,996
Predicted Connecting Traffic 1,036 8,664 7,940 2,347 52,726
(at domestic hubs)

capture these incentives by allowing the effective fixed cost of nonstop service to vary

with whether the endpoints include one of the carrier’s domestic or international

hubs, and, for domestic hub routes, with a continuous estimate of the quantity of

connecting traffic that will be generated by nonstop service. The construction of this

variable is detailed in Appendix B.1.2, and while its calculation is not completely

consistent with the strategic structure of our model, it helps to explain service

choices and it may approximate the type of measure that carriers use internally to

predict connecting passenger flows on new routes.
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Table 3.2: Distribution of Market Structures in the Estimation Sample

Number of Nonstop Number of Percentage of Average Number of
Competitors Sample Markets Sample Passengers Connecting Carriers

0 1,075 15.0% 3.98
1 614 33.6% 2.91
2 277 35.5% 2.07
3 60 15.2% 1.25
4 2 0.10% 0

3.3.1 Patterns in the Data

Market Structure and Service Types. Table 3.1 shows that markets have an average

of four carriers, with as many as nine on long routes, such as Orlando-Seattle, with

many plausible connecting airports. Most markets have no nonstop carriers but

most passengers travel in markets with at least two nonstop competitors (Table

3.2). These markets will be the focus in our counterfactuals. Most of these routes

connect large cities or hub airports, but non-hub pairs such as Boston-Raleigh and

Columbus-Tampa are also duopolies.14

The data clearly suggests that nonstop service has higher quality and that

service choices affect competition. Nonstop fares are $43 higher than connecting

fares and, based on our market definition, the average market share of a nonstop

carrier is 18% compared to 4.9% for a connecting carrier (small connecting carriers

are already excluded). Controlling for route characteristics, one nonstop carrier

lowers connecting fares by $10, and a second nonstop carrier lowers nonstop fares

by $40 and connecting fares by an additional $30.15 LCC fares are, on average,

14If we had defined markets using city-pairs, rather than airport-pairs, there would still be 192
duopolies (out of 1,533 city-pair markets), with 90 city-pair markets having three or more nonstop
carriers.

15These estimates are from regressions of a carrier’s weighted (across directions) average fare on
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$70 lower than legacy fares, consistent with lower costs and/or quality. We also

find that our observed market and market-carrier variables are able to accurately

predict service choices for the majority of carriers in the data (see Section 3.4 and

Appendix B.3 for more details and discussion).

Full Information. We assume that carriers know their demand and costs when

making service choices. There is some evidence in favor of this assumption in the

data. If, instead, carriers could only learn demand and costs by offering a partic-

ular type of service, then, absent large sunk costs of providing nonstop service on

incremental routes, we might expect to commonly observe carriers offering nonstop

service for a few quarters before giving up once they realize it is unprofitable. To

test this, we have identified all cases where the named carriers added nonstop ser-

vice, other than through mergers, after Q1 2001 but before 2006, and then followed

their service choices over subsequent years. On average, these carriers maintained

nonstop service for 27 consecutive quarters, which seems too long to be consistent

with experimentation given that the industry received several negative and large

demand shocks during these years.

What Happened To Service and Prices After Legacy Mergers? We use our model to

predict price and service changes after the Delta/Northwest (closed October 2008),

United/ Continental (October 2010) and American/US Airways (December 2013)

mergers completed after our data. Appendix B.1.3 uses panel data to estimate what

a route on nonstop distance, carrier dummies, a dummy for whether the carrier provides nonstop
service and interactions between whether a carrier provides nonstop service and the number of
nonstop carriers on a route.
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actually happened after these mergers.

On routes where the merging carriers were nonstop duopolists, the merging

parties always maintained nonstop service. Within two years of the merger clos-

ing (the Department of Transportation explicitly used two years when considering

repositioning (Keyes (1987)), a rival launched nonstop service on no routes, out of

five, for Delta/Northwest, one route, out of five, for United/Continental and three

routes, out of six, for American/US Airways.16 There were two additional nonstop

launches in the third years following these mergers. The Appendix also presents

analyses of changes in the prices and market shares of the merging firms on routes

where the merging firms were nonstop duopolists for three years before the merger,

using a comparison set of routes where one of the parties was nonstop and the other

was either absent or a connecting carrier with a small share.17 On routes where

no rivals initiated nonstop service, we find that the merged carrier increased its

prices by an average of 10%, with its number of local passengers (i.e., those only

flying the route itself) falling by almost 30%. On routes where rival nonstop service

was launched, prices did not rise, although the merged firm did lose market share,

presumably reflecting the new competition. These patterns suggest that rivals tend

not to launch nonstop service because they are poorly matched to providing non-

stop service in these markets, rather than because the merged carrier enjoys large

synergies. Our baseline counterfactual assumptions will assume that synergies are

not realized, but we will show that an alternative assumption has only small effects

16There is no overlap in the routes across these mergers.
17We recognize that results for price changes may be affected by using different control groups,

as suggested by the contrasting results in Hüschelrath and Müller (2015) and Carlton et al. (2017)
for recent mergers.
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on our predictions.

3.4 Estimation

This section describes the method for estimating the model parameters Γ =

(β, σ). Some additional details, including a discussion of the performance of algo-

rithm and tests of whether the assumptions required for importance sampling to

consistently estimate the moments of the model, are provided in Appendix B.2.

We minimize a simulated method of moments objective function

h(Γ)′Wh(Γ)

where W is a weighting matrix, and h(Γ) is a vector of moments where each element

has the form 1
2,028

∑m=2,028
m=1

(
ydatam − ̂Em(y|Γ, Xm)

)
Zm, where the subscript m repre-

sents a market. ydatam are observed outcomes and Zm are a set of observed exogenous

variables that serve as instruments. ̂Em(y|Γ, Xm) are the predicted outcomes of the

model for market m given the parameters Γ. We describe the moments (outcomes

and instruments) that we use before describing how we compute ̂Em(y|Γ, Xm).

Table 3.3 details how we form moments using prices, market shares and service

choices defined at the market or market-carrier level. For example, market outcomes

include weighted average connecting and nonstop prices in each direction, and the

sum of squared market shares and the squared number of nonstop carriers. Market-

carrier outcomes include a specific carrier’s price and market share in each direction

and an indicator for whether it provides nonstop service. The Z variables can
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Table 3.3: Number of Moments Used in Estimation

Market Level (yM) Market-Carrier Level (yC)
Endogenous Outcomes Endogenous Outcomes

Exogenous Variables (Z) 7 outcomes 5 per carrier Row Total
Market-Level Variables 49 315 364
(ZM) (7 per market)

Carrier-Specific Variables 280 200 480
(ZC) (up to 5 per carrier)

“Other Carrier”-Specific 315 225 540
Variables (Z−C)
(5 per “other carrier”)

Column Total 644 740 1,384

Notes: ZM = {constant, market size, market (nonstop) distance, business index, number of
low-cost carriers, tourist dummy, slot constrained dummy}
ZC = {presence at each endpoint airport, our measure of the carrier’s connecting traffic if the
route is served nonstop, connecting distance, international hub dummy} for named legacy carriers
and for Southwest (except the international hub dummy). For the Other Legacy and Other LCC
Carrier we use {presence at each endpoint airport, connecting distance} as we do not model their
connecting traffic. Carrier-specific variables are interacted with all market-level outcomes and
carrier-specific outcomes for the same carrier.
Z−C = {the average presence of other carriers at each endpoint airport, connecting passengers,
connecting distance, and international hub dummy} for each other carrier (zero if that carrier is
not present at all in the market).
yM = {market level nonstop price (both directions), connecting price (both directions), sum of
squared market shares (both directions), and the square of number of nonstop carriers}.
yC = {nonstop dummy, price (both directions), and market shares (both directions)} for each
carrier.

be divided into three groups: market-level variables (such as population, nonstop

distance and the business index), the exogenous characteristics of individual carriers

(such as their presence at each endpoint airport, and the distance of the connecting

service), and variables that measure the exogenous characteristics of other carriers

that are in the market (e.g., Delta’s presence at the endpoint airports when we are

looking at an outcome for a carrier other than Delta). We will describe how our

results are robust to varying the set of moments used in estimation in Section 3.5.2.

Identification. We are not specifying moment conditions based on the or-
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thogonality of structural residuals, such as an unobserved demand characteristic,

precisely because the selection implied by our model means that standard condi-

tions may not hold. Instead, we aim to match outcomes that are predicted when

our entire model is solved and simulated to the observed outcomes in the data, min-

imizing correlations between our prediction errors and variables that are treated as

exogenous and are allowed to affect demand, marginal costs or fixed costs. However,

intuitive correlations will still identify the value of particular parameters. For exam-

ple, suppose that fares tend to be higher and nonstop carriers have higher market

shares in markets with a higher value of the business index. This is consistent with

the business index reducing the absolute value of the price coefficient in the demand

equation, while increasing the value of customers’ preferences for nonstop service.

Similarly, passenger preferences for carrier presence will be identified by differences

in market shares, and potentially prices, across originating airports with different

levels of presence (see footnote 8). The σ parameters that measure variances in

cross-market and cross-carrier unobserved heterogeneity will be identified not only

by unexplained variation in market shares and prices across carriers, but also by the

included second moments such as the sum of squared market shares for all carriers

and the square of number of nonstop carriers.

Our specifications also make exclusion restrictions that will provide identifi-

cation. In particular, they provide an intuitive explanation for how the selection

problem is overcome. Specifically, the network variables (for example, the hub dum-

mies and the measure of generated connecting traffic) are only allowed to enter the

fixed cost equation, and they provide variation in the identity and number of nonstop
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carriers that facilitates identification of the demand and marginal cost parameters

through the effect of nonstop service on market shares and prices. As we show in

Appendix B.3 and discuss in Section 3.5.2, these fixed cost shifters and market char-

acteristics, such as market size, can almost entirely determine service choices for a

large proportion of carriers and markets in the data (in the sense that predicted

probabilities of nonstop service are very close to zero or very close to one). When

these carriers make their predicted choices, there should be almost no selection on

unobserved demand and cost shocks, implying that conventional identification argu-

ments for the identification of demand and marginal cost parameters should apply.

This feature of the data helps to explain why our estimates of several model fea-

tures, such as own-price demand elasticities, are consistent with earlier work that

has ignored the selection problem. However, as we shall illustrate, this does not

mean that one can ignore the selection problem when performing counterfactuals

which are focused on the subset of carriers that are on the margin of finding nonstop

service profitable.

Computation of the Moments Using Importance Sampling. Comput-

ing Em(y|Γ, Xm) by resolving many games each time a parameter is changed, as a

nested fixed point algorithm would do, is computationally very expensive and would

lead to a discontinuous objective function because of the discrete nature of service

choices. We instead approximate Em(y|Γ, Xm) using importance sampling following

Ackerberg (2009). The idea is straightforward. Denoting a particular realization of
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all of the draws as θm,

Em(y|Γ, Xm) =

∫
y(θm, Xm)f(θm|Xm,Γ)dθm

where y(θm, Xm) is the unique equilibrium outcome given our baseline assumptions.

This integral cannot be calculated analytically, but we can exploit the fact that

∫
y(θm, Xm)f(θm|Xm,Γ)dθm =

∫
y(θm, Xm)

f(θm|Xm,Γ)

g(θm|Xm)
g(θm|Xm)dθm

where g(θm|Xm) is an “importance density” chosen by the researcher.18

This leads to a two-step estimation procedure. In the first step we take

many draws, indexed by s, from g(θm|Xm) and solve for the equilibrium outcome,

y(θms, Xm), for each of these draws. In the second step we estimate the parameters,

approximating Em(y) using

̂Em(y|Γ, Xm) =
1

S

S∑
s=1

y(θms, Xm)
f(θms|Xm,Γ)

g(θms|Xm)

where we only need to recalculate f(θms|Xm,Γ) when the parameters change. The

objective function is smooth because the f(θms|Xm,Γ) densities are smooth in the

parameters.

18Ackerberg describes his approach as requiring a “change of variables”. The change is implicit
in the way we have written down our model. For example, in a traditional entry model a firm’s
fixed cost might be written as Fi,m = Xi,mβF + uFi,m, and a NFXP estimation routine would
integrate over the distribution of the us. An importance sampling approach requires a change
of variables by taking draws of Fi,m rather than draws of uFi,m. This is consistent with how we

wrote down the model in terms of random draws of costs (e.g., Fim ∼ TRN(XF
imβF , σ

2
F , 0,∞))

and qualities in the previous section.
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Table 3.4: Description of g For the Final Round of Estimation

Market Draw Symbol Support g
Market Random Effect vm [-2,2] N(0, 0.4112)
Market Nesting Parameter τm [0.5,0.9] N(0.634, 0.0282)
Market Demand Slope αm [-0.75,-0.15] N(Xα

mβα, 0.0222)
(price in $00s)

Carrier Draw

Carrier Connecting Quality βCON,A→Bim [-2,10] N(XCON
im βCON , 0.2192)

Carrier Incremental Nonstop Quality βNSim [0,5] N(XNS
im βNS, 0.2572)

Carrier Marginal Cost ($00s) cim [0,6] N(XMC
im βMC , 0.1732)

Carrier Fixed Cost ($m) Fim [0,5] N(XF
imβF , 0.2342)

Notes: where the covariates in the Xs are the same as those in the estimated model, and
the values of the βs for the final (initial) round of draws are as follows: βα.constant=
−0.668 (−0.700), βα.bizindex=0.493 (0.600), βα.tourist= 0.097 (0.2), βCON .legacy= 0.432
(0.400), βCON .LCC= 0.296 (0.300), βCON .presence= 0.570 (0.560), βNS .constant= 0.374
(0.500), βMC .legacy= 1.802 (1.600), βMC .LCC= 1.408 (1.400), βMC .nonstop distance=
0.533 (0.600), βMC .nonstop distance2 = −0.005 (-0.01), βMC .conn distance= 0.597 (0.700),
βMC .conn distance2 = −0.007 (-0.020), the remaining marginal cost interactions are set equal to
zero, βF .constant= 0.902 (0.750), βF .dom hub= 0.169 (-0.25), βF .conn traffic= −0.764 (-0.01),
βF .intl hub= −0.297 (-0.55), βF .slot constr= 0.556 (0.700). In the initial round the standard de-
viations of the draws were as follows: random effect 0.5, nesting parameter 0.1, slope parameter
0.1, connecting quality 0.2, nonstop quality premium 0.5, marginal cost 0.15, fixed cost 0.25.

Choice of g and W . The use of importance sampling implicitly assumes

that the importance densities g(θm|Xm) and the distributions assumed by the model

f(θm|Xm,Γ) have the same supports which do not depend on Γ. As discussed by

Geweke (1989), consistency of the importance sampling estimator also requires that

g is sufficiently similar to f that the variance of y(θms, Xm)f(θms|Xm,Γ)
g(θms|Xm)

is finite.

These considerations lead to a multi-round estimation approach, as recommended

by Ackerberg (2009), where we specify wide supports for the demand and cost draws,

including all values that we believe may be relevant.19 In the first round we matched

a subset of the price, share and service choice moments through straightforward

19The one exception to the rule of using wide supports is that we restrict the nesting parameter to
lie between 0.5 and 0.9. This range covers most estimates from the existing literature (for example,
Berry and Jia (2010) and Ciliberto and Williams (2014)). We experimented using the full range
of [0,1], but found that the objective function often had local minima where the estimated nesting
parameter was very close to 0 or very close to 1, but the fit of the moments was poor.
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experimentation to provide us with the initial parameterization reported in the notes

to Table 3.4, and we then ran two further rounds of estimation of the whole model,

with the resulting estimates providing the g(θm|Xm) densities (reported in the table)

that we use in the final round of estimation that produces the estimates reported

in Section 3.5. The final round uses 2,000 importance draws for each market, with

S = 1, 000 used in estimation and samples from the full pool of 2,000 used when

estimating standard errors using a bootstrap where markets are resampled. The

computational burden is reasonable for academic research: solving 2,000 games

for 2,028 markets takes less than two days on a medium-sized cluster, and the

parameters are estimated in one day on a laptop without any parallelization.20

We form the weighting matrix by using the results from the penultimate round

of estimation (where we use an identity weighting matrix). As the number of mo-

ments (1,384) is large relative to the number of observations (16,130 carrier-market-

directions) estimates of the covariances of the moments are likely to be inaccurate,

so our final round uses a diagonal weighting matrix, with equal total weight on the

groups of moments associated with price, share and service choice outcomes and,

within each group, the weight on each moment is proportional to the reciprocal of

the variance of that moment from the penultimate round.
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Table 3.5: Parameter Estimates: Demand

(1) (2) (3)
Independent Correlation Correlation

Unobservables Specific. 1 Specific. 2
Market-Level Parameters
Random Effect Std. Dev. σRE Constant 0.311 0.538 0.469

(0.138) (0.151) (0.122)
Nesting Parameter Mean βτ Constant 0.645 0.634 0.640

(0.012) (0.013) (0.015)
Std. Dev. στ Constant 0.042 0.005 0.050

(0.010) (0.010) (0.008)
Demand Slope Mean βα Constant -0.567 -0.542 -0.612
(price in $100 units) (0.040) (0.045) (0.031)

Business 0.349 0.189 0.435
Index (0.110) (0.118) (0.088)

Std. Dev. σα Constant 0.015 0.043 0.013
(0.010) (0.011) (0.013)

Carrier-Level Parameters
Carrier Quality for Mean βCON Legacy 0.376 0.322 0.465
Connecting Service Constant (0.054) (0.064) (0.047)

LCC 0.237 0.336 0.150
Constant (0.094) (0.086) (0.094)
Presence 0.845 0.674 0.524
at Origin (0.130) (0.125) (0.127)

Std. Dev. σCON Constant 0.195 0.208 0.201
(0.025) (0.027) (0.028)

Incremental Quality Mean βNS Constant 0.258 0.192 0.560
of Nonstop Service (0.235) (0.214) (0.221)

Distance -0.025 -0.057 -0.009
(0.034) (0.037) (0.036)

Business 0.247 0.841 -0.396
Index (0.494) (0.455) (0.479)

Std. Dev. σNS Constant 0.278 0.241 0.213
(0.038) (0.042) (0.034)

Notes: standard errors, in parentheses, are based on 100 bootstrap replications where 2,028 markets
are sampled with replacement, and we draw a new set of 1,000 simulation draws (taken from a pool
of 2,000 draws) for each selected market. Distance is measured in thousands of miles. See Table 3.6
for estimates of the cost and covariance parameters.

98



Table 3.6: Parameter Estimates: Marginal Costs, Fixed Costs and Covariances

(1) (2) (3)
Independent Correlation Correlation

Unobservables Specific. 1 Specific. 2
Carrier Marginal Costs Mean βMC Legacy 1.802 1.350 1.847
($100 units) Constant (0.168) (0.146) (0.190)

LCC 1.383 0.961 1.344
Constant (0.194) (0.169) (0.207)

Conn. X 0.100 0.443 0.040
Legacy (0.229) (0.211) (0.251)

Conn. X -0.165 0.288 0.140
(0.291) (0.255) (0.273)

Conn. X -0.270 -0.213 -0.228
Other Leg. (0.680) (0.166) (0.160)

Conn. X 0.124 0.046 -0.173
Other LCC (0.156) (0.152) (0.167)

Nonstop 0.579 0.823 0.510
Distance (0.117) (0.101) (0.128)

Nonstop -0.010 -0.044 -0.001
Distance2 (0.018) (0.016) (0.019)

Connecting 0.681 0.661 0.675
Distance (0.083) (0.096) (0.091)

Connecting -0.028 -0.018 -0.026
Distance2 (0.012) (0.013) (0.013)

Std. Dev. σMC Constant 0.164 0.191 0.143
(0.021) (0.016) (0.018)

Carrier Effective Mean βF Legacy 0.887 0.897 0.855
Fixed Costs Constant (0.061) (0.056) (0.063)

($1m. units) LCC 0.957 1.008 0.857
Constant (0.109) (0.118) (0.100)

Dom. Hub -0.058 -0.302 -0.205
Dummy (0.127) (0.157) (0.193)

Log -0.871 -1.000 -0.602
̂(Conn. Traff.) (0.227) (0.207) (0.257)

Intl. Hub -0.118 -0.144 -0.107
(0.120) (0.090) (0.093)

Slot Const. 0.568 0.424 0.514
Airport (0.094) (0.099) (0.085)

Std. Dev. σF Constant 0.215 0.275 0.220
(0.035) (0.029) (0.030)

Covariances Incremental Nonstop Quality - 0.012 0.018
& Fixed Cost (0.010) (0.010)

Connecting Quality - - 0.006
& Connecting Marginal Cost (0.007)

Notes: see notes below Table 3.5. The Log(Predicted Connecting Traffic) variable is zero for routes that
do not involve a domestic hub, and for hub routes it is re-scaled with mean 0.52 and standard deviation
0.34.
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3.5 Parameter Estimates

The first columns of Tables 3.5 and 3.6 present our baseline estimates. The

demand coefficients confirm several expected patterns: all else equal, consumers

prefer nonstop service, legacy carriers and carriers with greater originating airport

presence. Demand is less elastic on routes with more business travelers.21 The

average own price demand elasticity is 4.25, and the elasticity of demand for air

travel (i.e., when all prices rise by the same proportion) is 1.3, consistent with

literature averages reported by Gillen et al. (2003). Implied diversion illustrates

the preference for nonstop service: in markets with two nonstop carriers and at

least one connecting carrier, a price increase by a nonstop carrier leads five times

as many passengers, on average, to switch to the other nonstop carrier as switch to

connecting carriers.

Marginal costs are lower on LCCs and increase with distance. To illustrate,

consider the 3,000 mile round-trip Miami-Minneapolis route. For the named legacy

carriers, the expected nonstop marginal cost is $345, compared to an average of $367

for (longer-distance) connecting service. Marginal costs for Southwest (and Other

LCC) are lower and, for this route, Southwest’s expected nonstop and connecting

(via Chicago Midway) costs are almost identical ($303 and $298 respectively). The

expected effective fixed cost of nonstop service is just over $840,000, but the ex-

pectation is lower ($610,000) for those carriers that choose nonstop service because

hub status and connecting traffic can reduce effective fixed costs quite substantially:

for example, a one standard deviation increase in connecting traffic offsets almost

$300,000 in fixed costs.

20In Roberts and Sweeting (2013) we bootstrap the entire multi-round procedure to calculate
standard errors. In the current paper we are bootstrap the final stage, while acknowledging that
the choice of g was informed by our initial attempts at estimation. See Li et al. (2018) for Monte
Carlo evidence on how varying the gs affects the estimates.

21The expected price coefficient (α) for Dayton-Dallas-Fort Worth, which has the highest busi-
ness index, is -0.34 compared to the cross-market average of -0.57.
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3.5.1 Model Fit and the Role of Unobservables

To assess the model fit and the importance of different types of unobserved

heterogeneity, we simulate 20 new sets of all of the demand and cost variables for

each market from the estimated distributions. Observable variation accounts for the

majority of variation in simulated costs: for example, the standard deviation (across

all carrier-market simulations) of Fi,m is $301, 912, and the standard deviation of

XF
i,mβ̂F is $259, 481, so that the unobserved heterogeneity provides only 14% of the

variation. Similarly, unobserved heterogeneity accounts for only 3% of the varia-

tion in marginal costs and 15% of the variation in the price sensitivity of demand.

However, unobserved heterogeneity accounts for 26% of the variation in carriers’

connecting quality and 34% of the variation in nonstop quality, while we also find

that the random effect in market demand is quite large and statistically significant.

These patterns suggest that accounting for selection on demand unobservables may

affect our counterfactuals.22

We use the 20 sets of draws to assess how well our model predicts observed

service choices (discussed here) and variation in prices and market shares across

service types (discussed in Appendix B.2.4). We predict a carrier’s observed service

choice correctly for 87.5% of our draws (with standard error 1.1%). For 82.6%

(2.2%) of observations where the majority of our simulations predict nonstop service,

the carrier is nonstop in the data. Appendix Table C.1 shows that we accurately

predict that carriers will serve most routes from their hubs nonstop: for example, we

predict that Delta serves 92.5% (2.3%) of routes from Atlanta nonstop, compared to

96.5% in the data. We are also able to match service decisions at non-hub airports.

To illustrate, Table 3.7 reports our service choice predictions for routes with Raleigh-

Durham (RDU) as an endpoint. The model predicts the proportion of routes served

nonstop accurately for each carrier. The prediction is least accurate for United, as

22Li et al. (2018) uses these draws to estimate several linear probability models to investigate
how all of the observed and unobserved components of demand and costs affect equilibrium service
choices. Consistent with the simpler breakdown presented here, observables explain the vast ma-
jority of variation in service choices, with demand unobservables playing a greater role than cost
unobservables.
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Table 3.7: Model Fit: Predictions of Service Decisions at Raleigh-Durham

Number of Mean Presence at % Nonstop
Routes Route Endpoints Data Simulation

American 44 0.29 22.7% 22.8% (1.6%)
Continental 30 0.14 10.0% 10.0% (1.0%)
Delta 57 0.24 8.7% 14.8% (1.9%)
Northwest 22 0.18 9.1% 11.0% (1.2%)
United 25 0.12 4% 14.4% (1.9%)
US Airways 54 0.12 5.6% 9.4% (2.7%)
Southwest 48 0.30 12.5% 14.5% (4.3%)
Other Low Cost 25 0.08 4% 13.4% (4.9%)

Notes: Predictions from the model calculated based on twenty simulation draws
from each market from the relevant estimated distributions.

most of the simulations predict that United should serve Denver and San Francisco

nonstop. United has launched nonstop service on both routes since 2006.

3.5.2 Robustness Checks

We now discuss what happens when we relax some of the assumptions imposed

on our baseline estimates.

Correlations Between the Unobservables. Our baseline specification im-

poses that the unobserved components of carrier demand, marginal costs and fixed

costs are independent, although the observed variables do imply some strong corre-

lations among these elements of the model.23 The main reason for excluding them

from the model is to reduce the computational burden of estimating additional pa-

rameters when we do not find that allowing them improves the fit of the model.

The second and third columns of Tables 3.5 and 3.6 present our estimates when we

allow for correlations between the unobserved incremental quality of nonstop service

and the fixed cost of providing nonstop service, and between connecting quality and

connecting marginal costs. The estimated covariances are small, and only one of

them is statistically significant at the 10% level.24

23For example, based on the 20 sets of draws used to examine model fit, the correlation between
a carrier’s nonstop quality and its fixed costs of nonstop service is -0.56.

24When we allow unrestricted correlations we tend to find that our estimator has additional local
minima. We have used a grid search on the covariance parameters to confirm that values close to
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Reduction in the Number of Moments. We estimate our baseline param-

eters by fitting 1,384 moments. A large number of moments creates the possibility of

bias in finite samples, so we have re-estimated the model, and performed an analysis

of model fit and a subset of our counterfactuals, using only the 740 carrier-specific

moments. The results are reported in Appendix B.2.5, and we find that they are

very similar to the baseline estimates.

Equilibrium Selection. Our baseline estimates assume that service choice

decisions are made in a known sequential order. This assumption contrasts with

recent literature that has used moment inequalities to estimate discrete choice mod-

els allowing for firms to be playing any pure strategy equilibrium in a simultaneous

move game (Ciliberto and Tamer (2009), Eizenberg (2014) and Wollmann (2018)).

Parameters may not be point identified under this type of weaker assumption. This

leads to the question of whether our results would change if we made different as-

sumptions, and we have performed a number of analyses which show that our results

are very robust, reflecting several features of the data.

One analysis, described in Appendix B.2.6, extends our estimation methodol-

ogy to use moment inequalities that allow for either simultaneous service choices or

sequential choices with an unknown order (i.e., an assumption more general than

the one used in the literature). The coefficients that the minimize the resulting

objective function are very similar to our baseline estimates. Consistent with this

fact, when we simulate our model, using our baseline estimates, allowing for these

alternative timing assumptions, we find that, on average, only 1.017 outcomes can

be supported as equilibrium outcomes per market-simulation, i.e., we get the same

predicted outcomes whatever timing assumptions we make. The parameters may

be point identified from those markets where outcomes are always unique and the

moment inequalities become equalities (for example, an outcome with no nonstop

carriers, which is the most common outcome in the data, will always be unique).

This finding may seem surprising given the existing literature: for example,

there are multiple equilibria in over 95% of market-simulations in some of the spec-

zero minimize the objective function.
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ifications considered by Ciliberto and Tamer (2009). The comparable statistic for

our estimates is 1.6%. The difference lies in the much greater ability of observed

variables to explain service choices, rather than the entry outcomes (defined as a

carrier serving more than 20 passengers in each direction in a quarter) that Ciliberto

and Tamer model. For a simulation to support more than one outcome as an equi-

librium, at least two carriers must find entering/nonstop service to be marginally

profitable, in the sense that it is profitable for some choices of rival carriers but

not for others (i.e., they do not have dominant service choice strategies). Without

estimating the model, an informal method for assessing whether a carrier is likely to

be on the margin is to see whether its choice can be predicted based on its observed

characteristics and market characteristics. As shown in Appendix B.3, simple probit

specifications show that observed service choices are predicted with high probability

for the vast majority of market-carriers in our sample. The implied probabilities

of nonstop service for two or more carriers are between 0.1 and 0.9 in only 15%

of markets (in our simulations, the proportion of draws with multiple equilibrium

outcomes is more than twice as high in these markets). In contrast, if we look at

entry-type decisions for all carriers that are active at the route endpoints, with no

distinction between service types, the predicted probabilities for most carriers lie

between 0.4 and 0.7, and 96% of markets have at least two carriers with intermedi-

ate predicted entry probabilities, consistent with finding that multiplicity appears

to be common when modeling entry decisions.

3.6 Merger Counterfactuals

We now present our counterfactuals. They use the baseline estimates from

the first columns of Tables 3.5 and 3.6, but, as discussed in the Introduction, our

methodology for conducting counterfactuals could be used even if the model pa-

rameters are chosen based on documents or expert testimony. After outlining the

mergers that we consider and the assumptions we make about the effects of the

merger on the merging firms, we present results when service choices are assumed
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to be held fixed after the merger. This provides a baseline against which we can

compare our predictions when service choices are endogenized.

Mergers Considered. We examine the three legacy mergers completed after

our sample and a blocked merger between United and US Airways that was pro-

posed in 2000. In this merger the parties proposed a remedy where a third carrier,

American, would commit to provide nonstop service for ten years on several routes

where the merging parties were nonstop duopolists. This remedy would have pre-

served the number of nonstop competitors for passengers and it would have satisfied

the likely and timely criteria in the Guidelines. Our model is well-suited to evaluat-

ing the Department of Justice’s view that it would have been insufficient to restore

pre-merger competition.25 We do not consider the merger between Southwest and

Airtran, because Airtran is part of our composite “Other LCC”.

Baseline Assumptions about the Merged Firm. Merger simulations require assump-

tions about what the merger will do to the quality and marginal costs of the merged

firm. Throughout we will assume that the two products owned by the merging par-

ties, are replaced by a single product of the merged carrier (“Newco”). Most of our

analysis will make a “baseline” assumption that on each route Newco will have the

quality and costs of the merging party with the higher average endpoint presence

before the merger. However, we report several results where Newco is assumed,

instead, to inherit the higher quality and lower cost of the merging parties, which

we will label the “best case” assumption.26

25R. Hewitt Pate, Deputy Assistant Attorney General, discussed the merger and the remedy in a
speech, “International Aviation Alliances: Market Turmoil and the Future of Airline Competition”,
on November 7, 2001, available at: https://www.justice.gov/atr/department-justice-10

(accessed June 29, 2017): “And this summer, we announced our intent to challenge the United/US
Airways merger, the second- and sixth-largest airlines, after concluding that the merger would re-
duce competition, raise fares, and harm consumers on airline routes throughout the United States
and on a number of international routes, including giving United a monopoly or duopoly on non-
stop service on over 30 routes. We concluded that ... American Airlines’ promise to fly five routes
on a nonstop basis [was] inadequate to replace the competitive pressure that a carrier like US
Airways brings to the marketplace, and would have substituted regulation for competition on key
routes. After our announcement, the parties abandoned their merger plans.”

26The best case approach parallels what Li and Zhang (2015) assume about valuations and
hauling costs in the context of timber auctions. We use the label best case because it tends to
increase the profits of the merging parties relative to our baseline assumption.
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3.6.1 Predicted Merger Effects Holding Service Types Fixed

Table 3.8 reports results for different groups of markets where we assume

that service types stay the same after a merger, as is usually assumed in merger

simulations. Setting the nesting and price coefficients equal to their expected values

for each market, we infer carrier qualities and marginal costs from observed market

shares and prices, and then re-solve for post-merger prices, following Nevo (2000).27

The first panel of Table 3.8 reports results for routes where the merging parties

are nonstop duopolists when we make the baseline assumption about the merger.

All of the considered mergers are expected to raise the merging carriers’ average

prices (we also take averages across directions), by between 5% and 15% (relative

to their average pre-merger prices) and the standard errors for the predictions are

small. The parties’ market shares are predicted to fall by between 25% and 30%

reflecting both the price increases and the elimination of a product. The next rows

allow us to examine the profitability of the merger. Even though the decision to

merge is taken at the network rather than the route level, it is informative to look

at the predicted profitability of a merger that was actually completed to understand

whether the assumptions are plausible.28 While the elimination of a product and

the lack of synergies means that variable profits tend to fall, total profits tend to

increase because a large fixed cost of nonstop service is eliminated. Connecting

rivals also increase their prices, although the magnitude of these changes are small.

Consumer surplus, measured in dollars per pre-merger traveler, tends to fall quite

significantly.29

The second panel shows the results for the same markets under the best case

merger assumption. The numbers change in the expected directions: the merged

27For comparison, we also use the expected values of the nesting and price parameters when we
endogenize service choices. The results for those counterfactuals are almost identical if we do not
make this assumption, reflecting the fact that our estimates of the unobserved heterogeneity in
these parameters across markets is small.

28While we do not do so in this paper, it is also possible to condition the unobservables on the
profitability of the merger.

29We measure consumer surplus per pre-merger traveler because the markets considered vary
quite dramatically in size, and our definitions of market size are imperfect.
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firm is predicted to lose fewer passengers, and its profits increase. However, the

magnitude of the changes are quite small: for example, the merged firm’s prices

increase by 11.2% rather than 12.4% under the baseline assumption. This is because

the higher presence carrier, whose characteristics Newco inherits under our baseline

assumption, tends to be the carrier with the higher quality, and there tends to be

too little variation in implied marginal costs to create substantial differences in the

outcomes under different assumptions on most routes.30

The third panel reports pre- and post-merger average prices for the merging

firms under our baseline merger assumption for different market structures (we do

not report standard errors to prevent excessive clutter, but the predictions of average

changes remain precise). When the merging parties are both nonstop, but face

additional nonstop rivals, predicted price increases are substantial (average 9.1%),

and we will consider these markets in later counterfactuals. When one party is

nonstop and the other is connecting we tend to predict smaller increases (6.1%),

although they are quite large for Delta/Northwest routes where the connecting party

often has an unusually high market share. When both parties are connecting we

predict small price reductions, which is possible when the higher presence carrier

has lower costs because its connecting hub is more conveniently located. Consumer

surplus still falls because the disappearance of an option, but the drop is much

smaller than for nonstop duopolies (average $4.91 per pre-merger traveler).

3.6.2 Merger Counterfactuals When Rivals’ Service Types Can Change

We now present our main counterfactuals where we allow rivals to respond to

a merger by changing their service types. For routes where the merging parties are

nonstop duopolists, this requires us to predict the demand and marginal cost shocks

that rivals would have if they launched nonstop service. Our preferred approach,

which accounts for the selection that is implied by our model and which is consistent

with the way that merger simulations usually make assumptions about demand and

30In contrast, CMT estimate that unobserved carrier quality and costs are more important, and
that different merger assumptions change counterfactual predictions quite dramatically.
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costs that are consistent with observed pre-merger data, involves conditioning on the

service choices observed pre-merger. We explain how this is done, before presenting

our results using this approach and comparing these results with alternatives, such

as when we assume that rivals’ nonstop demand and cost shocks could be new draws

from the estimated distributions.

Calculating Conditional Distributions. We call the distributions of demand and

costs that are consistent with pre-merger service choices, as well as observed prices

and market shares, “conditional distributions”.31 However, one can also interpret

them as posteriors if the estimated distributions are treated as priors.

We form the distributions using simulation with the following steps. First, we

specify a discrete set of possible values for the market-level demand random effect.

For each value, we calculate the qualities and marginal costs implied by observed

prices and market shares for the chosen service types. We then take draws of the

remaining random components of the model from their estimated distributions and,

for each set of draws, we check whether the observed service choices would be an

equilibrium outcome of the sequential service choice game, keeping the accepted

draws. We weight the accepted draws using the estimated distribution of the random

effect, and the density of observed qualities and costs, to form the conditional joint

distribution of the random effect, carrier qualities, marginal costs and fixed costs

for all of the carriers in the market.32

We illustrate the effect of conditioning in Figure 3.1 for the Philadelphia

(PHL)-San Francisco (SFO) market, one of the nonstop duopoly markets affected

by the United/US Airways merger. The solid line in the left panel shows the esti-

mated density of the demand random effect, while the histogram shows the simulated

marginal conditional density (50,000 simulation draws). The conditional distribu-

tion has a lower mean, reflecting the fact that the number of observed passen-

31We note that one could also choose to condition, for example, on the profitability of the merger,
which is an extension we are considering in a separate project.

32The acceptance rate drops if more discrete choices are added to the model or we add additional
players. This is the primary reason why we moved away from the Li et al. (2015) model where we
gave carriers three choices (do not enter, enter connecting, enter nonstop).
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Figure 3.1: Selection of Marginal Conditional Distributions for Philadelphia-San
Francisco
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gers, across all carriers, is relatively low (combined market share is 28.3%, averaged

across directions) given the value of the observed covariates, including our market

size variable. As a comparison, the mean of the conditional distribution for Las

Vegas-Miami, where combined market shares equal 42.5%, is 0.5.

Nonstop quality is the sum of a carrier’s connecting quality and the incremental

quality of nonstop service. The solid lines in the middle panel show the density of

nonstop quality for passengers originating at SFO for United and American based

on the estimates. United’s expected quality is higher, because of its high presence at

SFO. The histogram shows the conditional density for American’s nonstop quality.

This distribution is similar, but with a slightly lower mean, than the distribution

implied by the estimates. The intuition is that given observed shares and prices

and the likely value of the random effect, we only need to shift our belief about

American’s nonstop quality down by a small amount to explain why it chooses

connecting service. The third panel shows the marginal densities for the fixed cost
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Table 3.9: Predicted Effects of United/US Airways Merger in Four Nonstop Duopoly Markets
Where American is a Connecting Competitor using Conditional Distributions for Connecting
Carriers’ Nonstop Quality and Costs

Pre-Merger Exp. Numb. of Rivals Post-Merger Change in
Service Change United/US Launching Nonstop Service Merged Carrier Consumer
Considered Airways Price American Other Rivals Price Surplus

Baseline Merger Assumption
1. Service Types $531.97 - - $577.72 -$48.07
Fixed (0.76) (1.69)
2. Rivals’ Choices $531.97 0.035 0.063 $573.37 -$42.96
Endogenized (0.023) (0.055) (2.36) (4.88)

Best Case Merger Assumption
1. Service Types $531.97 - - $562.82 -$37.76
Fixed (0.94) (1.77)
2. Rivals’ Choices $531.97 0.020 0.043 $560.73 -$33.80
Endogenized (0.015) (0.042) (1.96) (4.00)

Notes: predictions are averages across 1,000 draws from the conditional distributions. In the base-
line case, the merger eliminates the carrier with the lowest presence on the route. Standard errors in
parentheses based on the same bootstrap estimates used for the parameter estimates. The reported
pre-merger price is the average of the merging carriers’ prices across directions. Consumer surplus
changes measured per pre-merger traveler. For American, the expected number of rivals launching
nonstop service is the probability that American launches nonstop service.

of nonstop service for American and US Airways. US Airways has a lower expected

effective fixed cost because of its domestic and international hubs at PHL. The

estimated and conditional distributions for American’s fixed costs look essentially

identical.

Predicted Effects of a United/US Airways Merger Using the Conditional Distri-

butions. We now present our predictions of what would have happened after the

United/US Airways merger when we endogenize service choices and ensure that our

assumptions are consistent with pre-merger choices. We focus on four routes where

the merging parties were nonstop duopolists and American provided connecting ser-

vice, so we can later consider the effects of the American nonstop remedy. We note

that it is not unusual for merger analyses to focus on a small number of markets,

but below we will consider 17 additional nonstop duopoly routes when we examine

the completed mergers.

The upper panel in Table 3.9 presents some summary results under our baseline

merger assumption. We expect the merged firm’s prices to increase by 8.6% on these
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routes if service types are held fixed with a significant predicted decline in consumer

surplus. These predictions would usually lead an antitrust agency to oppose a merger

unless offsetting synergies or repositioning are likely.

The second row reports our predictions when we allow rivals’ service types

to change after the merger, using 1,000 draws from the conditional distributions

for each market. We impose that the merged firm maintains nonstop service, as

this is always observed in the data.33 The connecting rivals re-optimize their service

choices, in the order assumed in estimation. The expected number of rivals initiating

nonstop service, a measure of the likelihood of repositioning, is small: across the

four markets, American (one of the connecting rivals) does so for only 3.5% (s.e.

6.3%) of simulations, leading to the result that, in expectation, the merged carrier’s

price increases by $41 (7.8%), so the possibility of repositioning is not sufficient to

constrain prices. We also find that the merger is, on average, profitable for the

merging firm despite the repositioning that takes place, with its profits increasing

by an average of $279k (s.e. $78k) per market.

The lower panel performs the same simulations under the best case assumption.

This assumption results in smaller predicted price increases and smaller predicted

declines in consumer surplus, with less repositioning by rivals. However, as when

service types are held fixed, the differences between the predictions, compared to

the baseline case, are small, except that the merger now appears to be much more

profitable, raising profits by an average of $1.1m. (s.e. $85k).

To understand the predictions for the baseline assumption, Table 3.10 provides

more detail for the PHL-SFO market. In this market, United, the lower average

presence carrier that is assumed to be eliminated by the merger, has a particularly

large market share, so that the merger potentially creates a significant opportunity

for a connecting carrier that launches nonstop service. The results in the table use

5,000 draws so we can measure different outcomes accurately.

For two-thirds of the draws, no connecting rival launches nonstop service,

33This is almost always the equilibrium outcome with conditional distributions, but it is fre-
quently not the predicted outcome when we use alternative distributions, which provides an addi-
tional reason why these alternatives are less reasonable.
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Table 3.10: Predictions for the Philadelphia-San Francisco Market Allowing for
Endogenous Rival Service Choices Following a United/US Airways Merger

Carrier No Service Changes American Nonstop Delta Nonstop

(pre-merger service type, 3,267/5,000 Draws 570/5,000 Draws 483/5,000 Draws
price and share) Price Share Price Share Price Share

US Airways/Newco $691.53 15.4% $661.67 14.1% $661.46 14.0%
(NS, $649.74, 13.0%) (1.17) (0.0) (0.66) (0.1) (1.64) (0.1)

United - - - - - -
(NS, $613.54, 12.1%)

American $478.98 1.2% $554.64 8.1% $477.30 0.8%
(CON, $476.52, 0.5%) (0.05) (0.0) (9.70) (0.4) (0.07) (0.0)

Delta $666.89 0.6% $666.08 0.4% $550.98 7.9%
(CON,$665.77, 0.3%) (0.03) (0.0) (0.04) (0.0) (8.74) (0.5)

Northwest $307.35 3.5% $302.51 2.4% $302.47 2.4%
(CON, $300.60,1.9%) (0.18) (0.0) (0.23) (0.1) (0.23) (0.1)

Other LCC $377.27 1.1% $375.82 0.7% $375.80 0.7%
(CON,$375.27,0.6%) (0.06) (0.0) (0.07) (0.0) (0.07) (0.0)

Notes: predictions are averages from 5,000 draws from the conditional distributions. Standard er-
rors in parentheses based on the same bootstrap estimates used for the parameter estimates. The
merger assumed to eliminate United (lower presence carrier). NS denotes nonstop and CON de-
notes connecting pre-merger.

and merged carrier’s price increases by 9.5% (from the pre-merger average) and its

market share falls by 38%. The non-merging carriers, with small shares pre-merger,

increase their prices slightly and double their combined market share. Reflecting the

loss of a large carrier, consumer surplus falls by an average of $72.91 per pre-merger

traveler.

The remaining columns show what happens when one of American or Delta

launch nonstop service, which are the most common outcomes involving reposition-

ing (for 0.9% of draws more than one rival launches nonstop service). The increased

competition reduces (but does not eliminate) the equilibrium price increase for US

Airways, but the new nonstop carrier usually has a market share that is smaller

than United’s prior to the merger, causing consumer surplus to fall by around $30

per pre-merger traveler in both cases. This route provides an example where there

can be multiple equilibrium outcomes depending on timing assumptions about ser-

vice choices. For example, there are 27 (out of 5,000) draws where either American

launching nonstop service or Delta launching nonstop service (but not both) are

equilibrium outcomes. However, the different outcomes typically have very similar
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Table 3.11: Predicted Effects of United/US Airways Merger in Four Nonstop Duopoly Markets
Under the Baseline Merger Assumption Using Different Assumptions About the Nonstop Quality
and Costs of Rivals, And Allowing for the American Service Remedy

Pre-Merger Exp. Numb. of Rivals Post-Merger Change in
Service Change United/US Launching Nonstop Service Merged Carrier Consumer
Considered Airways Price American Others Price Surplus

1. No Service Changes $531.97 - - $577.72 -$48.07
Allow Rival Service Changes

Counterfactuals Computed Using
2. Conditional Distns. $531.97 0.035 0.063 $573.37 -$42.96

3. Estimated Distns. $531.97 0.190 0.325 $559.56 -$16.22

4. Connecting Carriers’ $531.97 0.678 1.915 $531.79 +$62.36
Nonstop Same as Average Merging Parties

American Nonstop Remedy Allowing Rival Service Changes

5. Conditional Distns. $531.97 1 0.030 $566.34 -$31.29

6. Estimated Distns. $531.97 1 0.253 $556.18 -$3.98

7. Connecting Carriers’ $531.97 1 1.883 $529.90 +$68.55
Nonstop Same as Average of Merging Parties

Notes: predictions with endogenous service choices are averages from 1,000 draws from the appropriate
distributions. The merger is assumed to eliminate the carrier with the lowest presence on the route.
Implementation of rows 3 and 4 explained in the text. Standard errors not reported (referenced where
relevant in the text).

welfare implications (the average within-draw-across-outcome standard deviation in

the US Airways price is $3). Repositioning by rivals, when it happens, does tend to

make the merger unprofitable for this route: for example, the merged firm’s profits

fall by $920k when American becomes nonstop.34

Predicted Effects Using Alternative Assumptions About Rival Qualities. It is natu-

ral to ask whether we would find different results if we did not use conditional distri-

butions. We consider two alternatives, presenting the results for the four United/US

Airways nonstop duopoly routes in rows 3 and 4 of the upper panel of Table 3.11.

To save space, we do not report standard errors in the remaining tables, but they

are of similar magnitude to those reported earlier and we will note in the text where

any discussed changes are not statistically significant.

The first alternative (row 3) uses new draws from the estimated cost and in-

34We have also calculated what happens under the best case assumption. In this case, there is no
repositioning for 78% of draws (rather than 65%), US Airways price increases by an average of 4.3%
(rather than 6.4%) when there is no repositioning and the merger is only marginal unprofitable
when repositioning occurs (e.g., profits fall by $106k when American becomes nonstop).
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cremental nonstop quality distributions for the nonstop qualities and costs of the

connecting carriers. We therefore account for differences in the observable charac-

teristics of different carriers, but do not account for the additional information in

pre-merger service choices. The second alternative (row 4) assumes that if any con-

necting rival becomes nonstop then it would have the average quality and marginal

costs of the merging nonstop carriers and draw its fixed cost from a distribution that

has a mean equal to average of the means for the merging carriers. This approach

ignores observable differences between carriers, but it might be viewed as being con-

sistent with the logic of Waste Management and the Department of Transportation’s

decisions if clear barriers to repositioning by rivals could not be identified. In both

cases, we continue to draw the random effect from its conditional distribution and

we use the qualities and marginal costs for observed service types that are implied

by observed prices and market shares, so that we can isolate the effects that arise

from making alternative assumptions about how competitive rivals will be if they

launch nonstop service.35

Compared to our results using the conditional distributions, using the esti-

mated distributions significantly increases the probability that rivals will launch

nonstop service (the expected number of nonstop launches is 0.52, rather than 0.1),

leading to a smaller expected price increase and a smaller and statistically insignif-

icant decrease in consumer surplus of $16.22 per pre-merger traveler (s.e. $11.22).

Using the estimated distributions also makes the merger appear to be unprofitable:

average profits are predicted to fall by $105k (s.e. $150k), whereas they increase by

$279k (s.e. $78k) when we use the conditional distributions.

Assuming that connecting carriers can offer nonstop service on similar terms to

the merging parties leads to a prediction that, on average, 2.6 of them would launch

nonstop service36 and that, because consumers prefer nonstop service, consumer

35An additional rationale for using the conditional distribution of the random effect is that the
random effect is partly intended to address imperfections in our definition of market size. In a
merger investigation, the parties and the agencies would likely be able to construct better measures
of potential demand in each market.

36If we assumed that connecting carriers would be similar to the eliminated carrier, rather than
the average of the merging carriers, we would expect 1.5 of them to launch nonstop service.

115



surplus is predicted to increase after the merger. However, if we use the same

assumption to solve for equilibrium outcomes before the merger, we would predict

that several connecting carriers should have chosen to offer nonstop service (e.g.,

American’s probability of launching nonstop service would be 0.6 pre-merger), which

is inconsistent with the observed data. This illustrates the importance of considering

whether assumptions about the post-merger competitiveness of repositioning firms,

or new entrants, are consistent with their pre-merger choices. The results are similar

if we make the best case assumption about the merger: for example, the expected

number of carriers launching nonstop service are 0.46 (row 3) and 2.4 (row 4), rather

than 0.52 and 2.6.

The Proposed Service Remedy. The results presented so far suggest that when

rivals launch nonstop service, the merged carrier can only increase prices by a small

amount. This might be interpreted as implying that the proposed American nonstop

remedy, which would have maintained the number of nonstop carriers at its pre-

merger level, would have been effective. However, this logic implicitly assumes that

American’s nonstop service would constrain the merged carrier’s prices even when

it is unprofitable.37

The lower panel of Table 3.11 presents our average predictions for the four

routes using the different distributions when we force the merged firm and American

to provide nonstop service, but allow other carriers to sequentially re-optimize their

service choices. The results clearly indicate that under any of the assumptions, the

additional effects of the remedy on the merged firm’s expected prices are small,

and, when we use the conditional distribution, consumer surplus is still predicted

to decline significantly. American’s ineffectiveness as a nonstop competitor when

its nonstop service is not profitable is also illustrated by how other rival carriers’

service decisions are largely unaffected by the remedy.

Figure 3.2(a) helps to explain what is going on. The histogram shows the

37The parties did not claim that nonstop service on the affected routes would be profitable for
American: instead the attraction for American was that it would receive a package of assets on
the East Coast if the merger was completed.
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Figure 3.2: Distribution of American Incremental Profits (in $00s) from Nonstop
Service on PHL-SFO and the Predicted Increase in the Merged Carrier’s Price if
American Launches Nonstop Service (Relative to Pre-Merger Average Prices) Given
American’s Profitability. The grey area marks the interquartile range of price out-
comes.
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distribution of the difference between nonstop and connecting profits for American

on the PHL-SFO route. For simplicity, we draw the figure assuming that American

knows no other connecting carriers will launch nonstop service. The line on the

figure shows the median simulated post-merger price increase for US Airways (rela-

tive to the average of United’s and US Airways’s pre-merger prices) when we force

American to provide nonstop service given this level of profitability (the shaded area

indicates the interquartile range generated by our simulations). There is a mono-

tonic relationship between American’s profitability and its effectiveness at reducing

increases in the US Airways’s prices, and there is only a really significant constrain-

ing effect on those prices when nonstop service is at least close to being profitable

for American.

To illustrate the effects of our assumption that demand and cost shocks are

known when making service choices (“full information”), Figure 3.2(b) shows the

same figure assuming that American has no information about its quality or marginal

cost unobservables when making its service choice (for comparability we assume

American does know its fixed costs and the qualities and costs of other carriers). The

variance of the (expected) profit distribution is reduced, as it now reflects only the

distribution of fixed costs. As fixed costs will not affect the prices that carriers set,

there is no link between the level of profit that American expects when it launches

nonstop service and how much this will constrain the profits of the merging firm.38

Predicted Effects of Completed Legacy Mergers on Nonstop Duopoly Routes. The

upper panel of Table 3.12 summarizes our baseline merger assumption predictions

for repositioning and post-merger prices for 17 routes where legacy carriers merging

after our data were nonstop duopolists, under our different assumptions about the

nonstop quality and costs of connecting carriers.

The qualitative patterns are very similar to Table 3.11, although magnitudes

vary across mergers reflecting differences in conditions across routes. When we use

our preferred conditional distributions, an average of 0.18 rivals are predicted to

38An analyst’s assumptions about the nature of any link may matter, for example, when inter-
preting documents that discuss the likely business plans of rivals.
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launch nonstop service on each affected route, and the merged carriers’ prices are

predicted to increase by an average of just under 10%, which is only 2 percentage

points smaller than if service types are held fixed. Using the estimated distributions

we predict more than three times as much repositioning by rivals and smaller, al-

though still economically significant, price increases.39 If we assume that connecting

carriers could provide nonstop service with similar quality and costs to the merging

parties, we predict that the mergers would have no anti-competitive effects.

It is natural to compare these predicted changes with what we observe actu-

ally happening after these mergers, although we note that the set of routes do not

coincide exactly due to changes in market structure between 2006 and when the

mergers were completed. As discussed in Section 3.3, rivals initiated nonstop ser-

vice in four out of sixteen nonstop duopoly routes within two years and the merging

firms increased their prices by 11% when no rivals initiated service. These empiri-

cal patterns are consistent with our predictions when we use preferred conditional

distributions.40 Our conditional distribution results also predict that the merging

carriers’ market shares should fall by an average of 30%, which is similar to the

changes that we observe when we look at local traffic (i.e., passengers only flying

the segment itself). While the sample sizes are too small to claim that the close

match proves that our approach is correct, we view the pattern as highly sugges-

tive, and it stands in contrast to earlier results (e.g., Peters (2006)) that structural

models perform poorly at predicting the outcomes of airline mergers.

Mergers in Markets with Nonstop Competition. Mergers that reduce the number

of nonstop competitors from 3 to 2 may also generate significant competition con-

cerns. Table 3.13 presents summary results where the merging parties have at least

one non-merging nonstop rival (there is one market with two nonstop rivals pre-

39Under the best case merger assumption we predict two-and-a-half times as much repositioning
using the estimated distributions, so that the comparisons we make below to repositioning in the
data still hold.

40It is also the case that we observe the most nonstop launches after the American/US Airways
merger and none after Delta/Northwest, the same ordering as in our predictions. However, the
sample sizes are too small to interpret this pattern as providing more than anecdotal support.
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merger). When simulating counterfactuals, we assume that the merged firm will

be nonstop and make the same assumptions about connecting rivals that we have

made previously. However, we also now endogenize the service choice of the nonstop

rival(s). For this carrier its nonstop quality and marginal costs are observed, but we

need to make assumptions about the quality and marginal costs of its connecting

service, and its fixed costs of providing nonstop service.41

When we use conditional distributions, we predict that the nonstop rival(s)

will always continue to provide nonstop service and that connecting carriers will

rarely introduce nonstop service. As a result, predicted price changes are almost

identical to those where service types are assumed fixed. This is consistent with

our earlier results. However, differences emerge for the other assumptions, because

it becomes likely that the nonstop rival, which is usually a quite effective nonstop

competitor, may cease nonstop service and this type of repositioning can lead to

price increases. For example, a nonstop rival ceases nonstop service for around one-

third of simulations in the results reported in the bottom (“Average of Merging

Parties”) row of the table. As a result, we now predict significant price increases

under all three approaches, and the largest predicted prices increases and the great-

est probability of post-merger nonstop monopoly are when we use the estimated

distributions. Therefore while the intuition that the conditional distributions will

tend to predict the largest prices increases when nonstop duopolists merge is fairly

clear, there are additional nuances for other market structures that are relevant for

merger analysis.

3.7 Conclusion

We have developed a model of endogenous service choices and price competi-

tion in airline markets, assuming that carriers have full information about demand

and marginal costs when they make their service choices. In this framework, car-

41In the case where we assume that connecting rivals would have the same nonstop quality as the
merging parties, we use the observed nonstop quality and marginal costs for the nonstop rival(s),
and draw its (their) connecting qualities and marginal costs, and fixed costs, from the estimated
distributions.
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riers will tend to choose the service type in which they are most competitive, and

this naturally has implications for how likely they will be to change their service

types in response to a change in their competitive environment, such as when two

rivals merge. While it is unlikely to be the right assumption for all industries, we

believe the full information assumption is the natural one to use when trying to

predict product repositioning by experienced market participants, and when trying

to understand whether repositioning will sustainably limit market power after a

merger.

We make two contributions. First, we show how a full information model can

be estimated without an excessive computational burden. This is a significant result

for the academic literature, as researchers have often chosen to estimate models

where firms do not have any information on the realization of demand and marginal

cost shocks when entry or positioning decisions are made in order to avoid the

computational burden that is perceived to be involved with estimating entry and

pricing games simultaneously.

Our second contribution comes from performing a set of counterfactuals which

try to systematically assess the likelihood and sufficiency of repositioning as sug-

gested by the Horizontal Merger Guidelines. We show how to account for the selec-

tion on unobserved demand and marginal cost shocks that is implied by the model,

and we find that doing so is important. When we take selection into account we

predict that rivals are much less likely to launch nonstop service when nonstop

duopolists merge than if we ignore selection, and we predict larger average price in-

creases and significant decreases in consumer surplus. We find that our predictions

are consistent with what has been observed after actual airline mergers only when

we account for selection. These results are important both for academic research,

where we are not aware of this type of conditioning being used previously, and for the

analysis of mergers at antitrust agencies, as it is still desirable to report the results

of merger simulations and other counterfactuals even when parameters are taken

from documents, expert testimony or simple calibrations, rather being estimated.
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Appendix A: Appendix for Chapter 1 and 2

A.1 Figures and Tables

Figure A.1: Hourly Slot Holdings By Carrier Type Before/After Slot Divestitures
At DCA

(A) Before Slot Divestitures (B) After Slot Divestitures
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Note: The figures show the number of slot holdings of merging firms (marked as solid line) and other carriers
(marked as dotted line) before and after the slot divestitures at DCA. The information on slot holdings is
extracted from the Slot Administration page of the Federal Aviation Administration website.
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Figure A.2: Histogram of Average Daily Slots Assigned on Segments at DCA
(2013Q2)
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Note: This histogram is based on the average daily slots of DCA flight segments in 2013Q2 (n=156).

Figure A.3: Number of Slot Holdings and Average Number of Flight Operations at
DCA (2018Q2)

(A) Weekday (B) Weekend
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Note: The number of slots held by any commercial carrier in each time bin (one hour block) as of June 2018 is
displayed in a solid line, and the average number of scheduled flights in each time bin (operated by any carriers)
is displayed in a dashed line. The information on slot holdings is extracted from the Slot Administration page
of the Federal Aviation Administration website, and the information on the average number of flight operations
is based on the Marketing Carrier On-Time Performance Data from Bureau of Transportation Statistics.
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Figure A.4: Illustration of Composite Connecting Products
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Note: The first panel shows 14 different itineraries (products) offered by Delta when connecting at Atlanta
(ATL) to go to DCA. The nonstop distances of the corresponding markets of those itineraries are beyond the
perimeter rule threshold (1,250 miles), while (DCA→ATL)DL is within the perimeter rule. I combine those 14
products into a single composite product in order to take into account their small but non-negligible effect on
the load factor of (DCA→ATL)DL. Analogously, the second panel shows a set of connecting products offered
by American connecting at Dallas (DFW). To generate a moderate level of market competition, I assume that
the two composite products are in the same market.

Figure A.5: Empirical Distribution of Demand and Marginal Cost Residuals
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(a) Demand Residuals (ξ̂)
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(b) Marginal Cost Residuals (ω̂)

Note: The empirical distributions of demand residuals (left) and marginal cost residuals (right) are reported
(Airport-Airport pair baseline assumption). One standard deviation of demand and marginal cost residuals
are equal to $74.23 and $25.35, respectively. In addition, note that the average marginal cost is computed as
$73.46.
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Figure A.6: Average Number of Daily Slots (Data and Model Prediction)
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Note: This scatter plot compares the average number of daily slots from the data (on the x-axis) with the
average number of daily slots from the model prediction (on the y-axis). A 45 degree line is marked as a solid
black line.

A.2 Second Stage Supplements

A.2.1 Derivations

In this section, I present the technical details of how to derive the matrix-form

version of the price FOC (1.13) from (1.12). Consider two products j and l offered

by carrier f in market m and m′, respectively. Then, taking the derivatives of the

marginal cost clm′ with respect to pjm from (1.7) yields the following:

∂clm′

∂pjm
=


∑

s∈Sfk γ2ν
( Qs

zsKs

)ν 1

Qs

∂qkm
∂pjm

if ∃k s.t. k ∈ Jmf and k ∈ Jf (Sfl)

0 otherwise

(A.1)
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Table A.1: Regression Results of Airplane Size

Dependent variable:
Airplane Size

(1) (2) (3)
Distance (1,000 miles) 43.326∗∗∗ 41.659∗∗∗ 20.157∗∗∗

(4.055) (4.145) (3.183)

Distance2 −3.385∗∗ −2.631∗ 0.041
(1.517) (1.573) (1.197)

International Hub 21.840∗∗∗ 22.622∗∗∗

(2.240) (2.248)

Slot-Controlled (All) −8.460∗∗∗

(2.002)

Origin-Carrier F.E.? No No Yes
Dest-Carrier F.E.? No No Yes
Observations 34,631 34,631 34,631
Adjusted R2 0.478 0.483 0.833
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.2: Regression Results of Load Factors from Unavailable Products

Dependent variable:
Load Factor from Unavailable Products

(1) (2) (3)
Distance (1,000 miles) −0.068∗∗∗ −0.080∗∗∗ −0.058∗∗∗

(0.004) (0.004) (0.003)

Distance2 0.025∗∗∗ 0.029∗∗∗ 0.019∗∗∗

(0.001) (0.001) (0.001)

International Hub 0.059∗∗∗

(0.002)

Origin-Carrier F.E.? No No Yes
Dest-Carrier F.E.? No No Yes
Observations 34,631 34,631 34,631
Adjusted R2 0.388 0.402 0.671
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.3: First Stage Results of Marginal Cost Estimation

(1) (2) (3) (4)
Baseline Baseline Frequency Frequency

in Demand in Demand
Distance 0.050∗∗∗ 0.454∗∗∗ 0.063∗∗∗ 0.511∗∗∗

(0.002) (0.015) (0.002) (0.016)

Distance sq. −0.016∗∗∗ −0.143∗∗∗ −0.021∗∗∗ −0.160∗∗∗

(0.001) (0.005) (0.001) (0.005)

Slot Constraint −0.008∗∗∗ −0.133∗∗∗ −0.010∗∗∗ −0.155∗∗∗

(0.001) (0.005) (0.001) (0.006)

Slot Constraint X LCC 0.007∗∗∗ 0.122∗∗∗ 0.010∗∗∗ 0.143∗∗∗

(0.002) (0.015) (0.002) (0.017)

Hub 0.012∗∗∗ 0.108∗∗∗ 0.015∗∗∗ 0.121∗∗∗

(0.0004) (0.003) (0.001) (0.004)

# NS in Neighbor Mkt on Seg 1 0.003∗∗∗ 0.022∗∗∗ 0.003∗∗∗ 0.024∗∗∗

(0.0001) (0.001) (0.0002) (0.001)

LCC in Neighbor Mkt on Seg 1 0.003∗∗∗ 0.035∗∗∗ 0.004∗∗∗ 0.039∗∗∗

(0.0003) (0.003) (0.0004) (0.003)

# NS in Neighbor Mkt on Seg 2 0.003∗∗∗ 0.031∗∗∗ 0.004∗∗∗ 0.035∗∗∗

(0.0001) (0.001) (0.0002) (0.001)

LCC in Neighbor Mkt on Seg 2 0.001∗∗∗ 0.027∗∗∗ 0.001∗∗∗ 0.032∗∗∗

(0.0004) (0.003) (0.0004) (0.003)

Nonstop −1.071∗∗∗ −1.229∗∗∗ −1.087∗∗∗ −1.216∗∗∗

(0.001) (0.009) (0.001) (0.010)

O-D Pair (Airport or City) Airport Airport Airport Airport
Observations 358,880 358,880 358,880 358,880
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.4: Airport Codes and Names

Code Airport Name City

AGS Augusta Regional At Bush Field Bush Field
BDL Bradley Intl’ Airport Windsor Locks
BHM Birmingham-Shuttlesworth Intl’ Airport Birmingham
BNA Nashville Intl’ Airport Nashville
BOS General Edward Lawrence Logan Intl’ Airport Boston
CAK Akron Canton Regional Airport Akron
CHS Charleston Air Force Base-Intl’ Airport Charleston
CLT Charlotte Douglas Intl’ Airport Charlotte
CMH John Glenn Columbus Intl’ Airport Columbus
DAY James M Cox Dayton Intl’ Airport Dayton
DSM Des Moines Intl’ Airport Des Moines
FLL Fort Lauderdale Hollywood Intl’ Airport Fort Lauderdale
GSP Greenville Spartanburg Intl’ Airport Greenville
IND Indianapolis Intl’ Airport Indianapolis
JAN Jackson-Medgar Wiley Evers Intl’ Airport Jackson
JAX Jacksonville Intl’ Airport Jacksonville
MCI Kansas City Intl’ Airport Kansas City
MCO Orlando Intl’ Airport Orlando
MIA Miami Intl’ Airport Miami
MSP Minneapolis-St Paul Intl’/Wold-Chamberlain Airport Minneapolis
MSY Louis Armstrong New Orleans Intl’ Airport New Orleans
MYR Myrtle Beach Intl’ Airport Myrtle Beach
OMA Eppley Airfield Omaha
PBI Palm Beach Intl’ Airport West Palm Beach
PNS Pensacola Regional Airport Pensacola
PVD Theodore Francis Green State Airport Providence
PWM Portland Intl’ Jetport Airport Portland
ROC Greater Rochester Intl’ Airport Rochester
RSW Southwest Florida Intl’ Airport Fort Myers
SAV Savannah Hilton Head Intl’ Airport Savannah
SRQ Sarasota Bradenton Intl’ Airport Sarasota
TLH Tallahassee Regional Airport Tallahassee
TPA Tampa Intl’ Airport Tampa
TYS McGhee Tyson Airport Knoxville

Table A.5: List of New Flight Segments from DCA from the Data

Carrier New Segment from DCA

Southwest FLL, TPA, BNA, MSY, MCI, PVD, CMH, IND, OMA, MDW
JetBlue PBI, BDL, JAX, RSW, CHS

This table lists the set of flight segments that Southwest and JetBlue did not provide nonstop services in 2013 (pre-
merger) but did in 2016 (post-merger and post-divestiture). A flight segment is in bold face if the model predicts
the new flight segment.
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Table A.6: Logit Model Results of Entry Decision by Southwest and JetBlue

Dependent variable:

entered

Variable Profit Change (∆V P ) 1.215∗∗

(0.477)

Presence (non-DCA) 9.600∗∗∗

(2.588)

Constant −5.982∗∗∗

(1.412)

Observations 94
Log Likelihood −22.790
Akaike Inf. Crit. 51.580

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.7: Difference-in-Differences (DiD) Regression Results of Airplane Size

Airplane Size

(1) (2) (3) (4)

Post X NewAA 0.923 1.427 0.457
(2.897) (4.048) (4.147)

Post 1.341 0.477 −1.021 1.921
(1.211) (2.598) (3.631) (3.717)

NewAA −25.027∗∗∗ −24.200∗∗∗ −25.872∗∗∗

(2.068) (2.884) (2.967)

Distance 54.625∗∗∗ 52.166∗∗∗ 51.072∗∗∗ 53.340∗∗∗

(1.454) (1.211) (1.673) (1.755)

Constant 43.734∗∗∗ 70.198∗∗∗ 69.997∗∗∗ 70.390∗∗∗

(1.208) (2.073) (2.898) (2.968)

DiD Used? No Yes Yes Yes
Pre-merger Year? 2012-2013 2012-2013 2013 2012
Post-merger Year? 2015-2016 2015-2016 2015 2016
Observations 1,830 2,276 1,147 1,129
Adjusted R2 0.436 0.517 0.513 0.521

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Then, the last term of (1.12),
∑

l∈Jf (Sf )
∂clm′
∂pjm

qlm′ , can be expressed as follows:

∑
l∈Jf (Sf )

∂clm′

∂pjm
qlm′ =

∑
k∈Jmf

∑
s∈Sfk

∑
l∈Jf ({s})

γ2ν
( Qs

zsKs

)ν 1

Qs

∂qkm
∂pjm

qlm′

=
∑
k∈Jmf

∑
s∈Sfk

γ2ν
( Qs

zsKs

)ν 1

Qs

∂qkm
∂pjm

∑
l∈Jf ({s})

qlm′

=
∑
k∈Jmf

∑
s∈Sfk

γ2ν
( Qs

zsKs

)ν∑l∈Jf ({s}) qlm′

Qs

∂qkm
∂pjm

(A.2)

=
∑
k∈Jmf

∑
s∈Sfk

γ2ν
( Qs

zsKs

)ν(Qs

Qs

)∂qkm
∂pjm

. (From (1.8))

Then,

dV Pf
dpjm

= qjm +
∑
k∈Jmf

(pkm − ckm)
∂qkm
∂pjm

−
∑

l∈Jf (Sf )

∂clm′

∂pjm
qlm′

= qjm +
∑
k∈Jmf

(pkm − ckm −
∑
s∈Sfk

γ2ν
( Qs

zsKs

)ν
)
∂qkm
∂pjm

= 0 (A.3)

When we stack all the products in market m in a vector form, we can rewrite

expression (A.8) as

qm + Ωm(pm − cm −
dcm

dQ
) = 0, (A.4)

where Ωm is the element-wise multiplication of the response matrix defined in (1.14)

and
dcm

dQ
is a vector with jth element

[dcm

dQ

]
j

=
∑
s∈Sfj

γ2ν
( Qs

zsKs

)ν
. (A.5)

A.2.2 Missing Products in Data

To precisely estimate the parameters of a load factor and to solve the model

using a realistic load factor value, it is crucial to take into account all types of passen-

gers on a segment to. However, not all the products are included in the ticket-level
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data (DB1B). One example is an international itinerary ticket that contains a do-

mestic flight segment (e.g. a flight ticket from Washington, D.C. (DCA) to Seoul,

Korea (ICN) connecting at Detroit, Michigan (DTW), operated by American Air-

lines). Any tickets including international segments are not in the ticket-level data

used in this paper. Another example is a set of tickets to/from small airports that

are outside of the top 100 airports based on passenger boardings. Those connecting

flights starting from the small airports that contain a DCA flight segment are not

in my sample, while passengers from those flights affect the load factor of the DCA

segments.

When there are missing products in the data, we can decompose the total

number of passengers on flight segment s into two parts—1) a group of passengers

for which we have product-level information in the data, and 2) those for whom we

do not have product-level information:

Qs =
∑

j∈J ({s})

qjm︸ ︷︷ ︸
Product Available in Data

+ Q̃s︸︷︷︸
Not Available

. (A.6)

Derivations When There Are Missing Products

With this decomposition, we will have slightly different formulas for
dcm

dQ
in

(1.15) and (1.19). Basically, we replace
∑

l∈Jf ({s}) qlm in (A.2) with (A.6) to obtain

a new formula:

∑
l∈Jf (Sf )

∂clm′

∂pjm
qlm′ =

∑
k∈Jmf

∑
s∈Sfk

γ2ν
( Qs

zsKs

)ν(Qs − Q̃s

Qs

)∂qkm
∂pjm

. (A.7)

Then,

dV Pf
dpjm

= qjm +
∑
k∈Jmf

(pkm − ckm)
∂qkm
∂pjm

−
∑

l∈Jf (Sf )

∂clm′

∂pjm
qlm′

= qjm +
∑
k∈Jmf

(pkm − ckm −
∑
s∈Sfk

γ2ν
( Qs

zsKs

)ν(Qs − Q̃s

Qs

)
)
∂qkm
∂pjm

= 0. (A.8)
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Then,
dcm

dQ
is a vector with the jth element

[dcm

dQ

]
j

=
∑
s∈Sfj

γ2ν
( Qs

zsKs

)ν(Qs − Q̃s

Qs

)
, (A.9)

where Q̃s denotes the number of passengers from products that are not shown in

the ticket-level data. Fortunately, we can observe the total number of passengers

at a segment level from the T-100 flight segment-level data (including those not

having product information). I leverage this information to obtain the proportion

of the load factor on s originating from those products not available in the data,

and adjust the load factor when solving the model.

Load Factor Gap Prediction

The fraction of load factor on a new segment coming from unavailable prod-

ucts, Q̃fs in (A.6), is predicted. To do so, I first construct the number of passengers

on a segment based on T-100 and based on DB1B, respectively. Then, I calculate

the load factor gap between the two by their difference divided by the available seats

on the segment. I regress this variable on segment specific characteristics such as

distance, distance squared, and the international hub dummy. As in the airplane size

prediction, I include origin-carrier pairs and destination-carrier pairs fixed effects in

the regression. The regression result is reported in Table A.2 in the Appendix, and

I use coefficients in column (3) to predict the load factor gap on a new segment.

This predicted load factor gap will be added whenever the load factor on a flight

segment needs to be calculated in the model solving process.

A.3 Counterfactual Supplements

A.3.1 Marginally Profitable Segments Prediction

I construct the likelihood of new entry in the following way. First, among

counterfactual flight segments to/from DCA on which Southwest and JetBlue did
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not operate any services in the second quarter of 2013 (pre-merger), I identify those

new segments on which they initiated nonstop services in the second quarter of

2016 (post-merger), and construct a dummy variable for the entry decisions. Then,

I regress the entry decision made by them on the marginal variable profit change

due to the newly added segment (∆V P described in Assumption 1) and the carrier’s

presence at the non-DCA endpoint. Using the estimated logit coefficient, reported in

Table A.6, I predict the likelihood of entry for all counterfactual segments of South-

west, JetBlue, Delta, and United. Analogously, a list of marginally profitable routes

for NewAA can be obtained by removing each of its pre-merger existing segments

from its network, and calculating their likelihood by using the same estimated logit

coefficient. Finally, I sort the segments from the most likely marginally profitable

to the least, and Table 2.1 shows the top ten airports that each carrier is likely to

enter/exit.

A.3.2 Post-merger Airplane Size

By using the difference-in-differences methodology, I examine if the merged

firm systematically changed its segment-specific airplane size after the merger. To

do so, I select the flight segments to/from DCA where the merged firm (treatment

group) and other legacy carriers (control group) consistently provided nonstop ser-

vices from 2012 to 2016. The regression results are shown in Table A.7. There is

no evidence that the merged firm substantially changed its airplane size at DCA

after the merger (column 1) and that ii) the merged firm’s segment-level airplane

size change is systematically different from that of other legacy carriers’ after the

merger (column 2). This result is robust under different pre/post merger time hori-

zons (column 3 and 4).

A.3.3 Heuristic Algorithm

Algorithm 1 shows how the “Heuristic Search” works in my model. Let S̃0
f+

and S̃0
f− be the set of marginally profitable segments that carrier f can add to its
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Algorithm 1: Flight Segment Choice Equilibrium Using Heuristic Search

set n←− 0;
repeat

n←− n+ 1;
Πold∗
f ←− Πf (Sn−1

f ,Sn−1
−f ), ∀f ∈ F ;

Snf ←− Sn−1
f , S̃nf+ ←− S̃

n−1
f+ , and S̃nf− ←− S̃

n−1
f− ∀f ∈ F ;

for k ∈ {1, 2, ..., K} do
f ←− fk where fk ∈ F ;
Πnew
f ←− Πf (Snf ,Sn−f ) ;

repeat
Πold
f ←− Πnew

f ;

Pick T ∗− = arg maxT Πf (Snf − T ,S−f ) where T ⊂ S̃nf− and

|T | ≤ 1;

Pick T ∗+ = arg maxT Πf (Snf ∪ T ,S−f ) where T ⊂ S̃nf+ and

|T | ≤ 1;
Denote T ∗ one of (T ∗− , T ∗+) that gives the higher profit to f ;
if T ∗ = T ∗− then

Snf ←− Snf − T ∗, S̃nf− ←− S̃nf− − T ∗, and S̃nf+ ←− S̃nf+ ∪ T ∗;
else

Snf ←− Snf ∪ T ∗, S̃nf− ←− S̃nf− ∪ T ∗, and S̃nf+ ←− S̃nf+ − T ∗;
end
Πnew
f ←− Πf (Snf ,Sn−f ) ;

until Πnew
f > Πold

f ;

Update Snf to Sn−g of firm g (other than f) ;
Πnew∗
f ←− Πnew

f

end

until Πnew∗
f > Πold∗

f , ∀f ∈ F ;

network and the set of marginally profitable segments that carrier f can remove from

its network at the initial period, respectively. S̃0
f+ for carriers other than NewAA

will be the list of segments in Table 2.1, while S̃0
f+ for NewAA will be empty set.

Analogously, S̃0
f− for NewAA will be the list of segments in Table 2.1 and for other

carriers, will be the empty set. Let S0
f be the set of existing segments that f initially

operates. Note that S̃0
f− ⊂ S0

f . Let F be the set of carriers and assume that there is

a sequence order of carriers F = {f1, f2, ..., fK} where K is the number of carriers.

Given what other carriers choose in the previous period, firm f chooses ei-

ther one of the two options—adding a new flight segment or removing an existing
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segment—that gives the firm the highest profit for each turn, and the firm repeats

the process until it reaches the point where its profit is no longer increasing. Given

firm f ’s newly updated flight segments, other firms based on order repeat the same

thing. After all carriers update their flight segments in this round, the algorithm

checks if the profit under the updated segments is greater than the profit in the pre-

vious round. The algorithm repeats the same procedure until it reaches the point

at which there are no profitable deviations across all carriers.

A.4 Slot Allocation Models

The baseline model that finds the optimal slot allocation can be extended in

two directions. One is to change the order in which the choice variables are chosen,

and the second is to assume that both demand and marginal cost are affected by a

slot allocation.

A.4.1 Sequential Model

In the baseline model, I assume that a firm simultaneously chooses its slot

allocation and product prices in the second stage of the model. Alternatively, the

firm could choose the slot allocation first, then make product price choices. I call

this a sequential model, which actually makes the entry model a three-stage model.

In this sequential model, a slot allocation in the second stage affects product

price choices in the third stage. When the carrier excessively allocates its slots to

a flight segment, the product costs linked to this slot segment may decline due to

the reduced load factor and may give the firm an incentive to reduce prices, which

suggests an increase in market competition in markets in which the flight segment

is involved. Due to the scarcity of slots, however, the carrier may need to allocate a

smaller number of slots to another flight segment. This may lead to a fuller airplane

in the segment, and carriers in the markets in which the segment is involved recognize

this cost and may set higher prices in those markets. In this model, when setting

the optimal slot allocation, carriers recognize that prices are affected by their slot
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allocation.

A.4.2 Flight Frequency in Demand

In the baseline model, when a slot allocation changes, a firm’s variable profit

is affected by this change only through the load factors in the firm’s marginal cost.

However, it is possible to extend the model by allowing product demand to also

be affected by the slot allocation. As the demand estimation result in Table 1.4

suggests, passengers prefer a flight product that has more daily departure time

options. As the number of daily departures of a product increases in the number of

landing slots associated with the product, a change in the number of slots assigned

to a flight segment can alter both the demand for and the marginal cost of a product.

Equation (A.10) illustrates how adding a slot to flight segment s can affect

the variable profit of carrier f , V Pf :

dV Pf
dKs

=
∑
j

∂V Pf
∂qj

∂qj
∂Ks︸ ︷︷ ︸

∆V P via Demand

+
∂V Pf
∂Ks︸ ︷︷ ︸

∆V P via Supply

. (A.10)

An increase in the number of slots assigned to a flight segment not only has a

positive and direct impact on the demand for all the products using the slot but also

induces a substitution effect between products of the same carrier within a market,

as passengers prefer a more- to less-frequent flight product. On the supply side,

adding a slot to a flight segment reduces costs for all products using the slot due to

the decrease in the load factor via an increase in the number of available seats on

the segment.

To illustrate the change in the variable profit from the demand side, Figure 1.3

presents a simplified carrier airline network. Suppose that carrier f allocates one

more slot to the (DCA→IAH)f flight segment. Then, passengers who fly the DCA-

IAH (nonstop) or DCA-IAH-DEN (connecting) products enjoy more departure time

options; hence, the slot allocation increases the demand for those products in dif-

ferent markets. However, the marginal increase in demand for the DCA-IAH-DEN
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product will make some of the passengers in the DCA-DEN market switch to the

DCA-IAH-DEN product from other products in the same market.

While this model extension is rich in the sense that it captures both demand

and supply responses to a slot allocation, it entails an additional computational

burden. In an optimization procedure, a long time is needed to obtain the optimal

solution without providing the analytic gradient and/or Hessian of the objective

function. The first term in (A.10) makes it challenging to obtain the analytic gra-

dients, as the term is associated with interactions among those products linked

through flight segments. I am currently working on this question to increase the

computational speed in this model extension.
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Appendix B: Appendix for Chapter 3

The model used in the text assumes that carriers know all demand and cost

shocks when making service choices. an alternative assumption used in the liter-

ature assumes that firms only know the distributions from which these shocks are

drawn. In this Appendix we use an example to illustrate the equilibrium effects of

different information structures, which have not been clearly identified in the exist-

ing literature. The example model is the same as the one in the text except that

marginal costs have a simpler structure and we assume that demand and prices are

the same in both directions. The reported results use a single set of parameters,

although we have found the same qualitative patterns for the alternatives that we

have tried.

Overview. We consider a single market, although we shall vary its size, with six

carriers, A,..,F . In the first stage of the game, the carriers choose whether to pro-

vide connecting service or higher-quality nonstop service. Nonstop service requires

payment of a fixed cost. Having selected their service types they simultaneously

choose prices in the second stage. Demand is determined by a nested logit model,

with all carriers in the same nest. The quality of a carrier’s service is determined by

the sum of a fixed carrier-specific quality component, which will always be known

to rivals, a random component and, if it provides nonstop service, a second random

component which is truncated to be greater than zero. Marginal costs consist of a

common fixed service-specific component and a random component that is common

across service types. A carrier’s fixed cost is drawn from a normal distribution with

a common mean and variance. Service choices are made sequentially, where the

carriers with the highest fixed quality move first.
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Parameters. The indirect utility for consumer k using carrier i is uki = βi − αpi +

τζk + (1 − τ)εki, with τ = 0.7, α = 0.5, and βi = βCONi + βNSi x I(i is nonstop).

βCONi is drawn from a normal distribution with standard deviation 0.2 and mean

values of 0.6, 0.55, 0.5, 0.45, 0.4 and 0.35 for carriers A to F respectively. The

incremental quality of nonstop service, βNSi , is a draw from a truncated normal

distribution with mean 0.3, standard deviation 0.2 and a lower truncation point

of 0. The mean utility of not traveling is zero. Carrier marginal costs are $200

for nonstop service and $220 for (longer) connecting service, plus a carrier-specific

component, common across service types, drawn from a normal distribution with

mean zero and standard deviation $15. Nonstop service requires a carrier to pay a

fixed cost that has mean $600,000 and standard deviation $125,000.

Information Structures. We compare outcomes under two alternative information

structures, although both are “complete information” in the sense that the firms do

not have any private information. Under “full information”, all draws are known

to all carriers throughout the game. Under “limited information”, carriers only

know the model parameters and the draws of fixed costs (assumed to be known

by all carriers) in the first stage, but the demand and marginal cost draws are

revealed before prices are chosen. Limited information is the common assumption

in the empirical literature on models with entry or product selection and price

competition (Draganska et al. (2009), Eizenberg (2014), Wollmann (2018) and Fan

and Yang (2018)). We simulate equilibrium outcomes 50,000 times for each of 30

different market sizes, ranging from 5,000 and 295,000.

The method for solving the full information model is the same as the one

used in the paper. For the limited information model, we approximate the expected

profits of each carrier in every possible market configuration by taking 1,000 draws

of marginal costs and qualities. We then solve sequential service choice games for

each of 50,000 draws of fixed costs, before simulating realizations of the marginal

cost and quality draws to compute expected consumer surplus.
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Figure B.1: The Relationship Between Market Size, Expected Consumer Surplus
and the Expected Number of Nonstop Carriers Under Different Informational As-
sumptions
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Results. Figure B.1 compares the average number of nonstop carriers and consumer

surplus in equilibrium. In a small market, nonstop service may only be profitable

when a carrier has unusually high nonstop quality or low marginal costs, unless its

fixed cost is very low. Knowledge of quality and marginal cost draws can therefore

make it more likely that a carrier will be nonstop. Fewer carriers provide nonstop

service in larger markets under full information. The intuition comes from the

competitiveness of the nonstop rivals that a carrier expects to face. Under full

information, a nonstop rival will tend to be a stronger competitor (because it has

been selected based on its quality and cost), which lowers the expected nonstop

profitability of another carrier considering nonstop service. This reduces the number

of nonstop carriers in equilibrium. However, selection also means that nonstop

carriers tend to provide better quality products, which raises expected consumer

surplus under full information for a given number of nonstop carriers. The example

also illustrates the feature that carriers may frequently regret their choices under

limited information: for example, for a market size of 55,000, for 48% of the draws

where a single carrier chooses to be nonstop, that carrier would have increased its
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Figure B.2: The Relationship Between Market Size and Equilibrium Market Struc-
ture Under Different Informational Assumptions
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(ex-post) profits by only offering connecting service.

Figure B.2 shows that, for a given market size, the distribution of the number

of nonstop carriers is much tighter under limited information.1 This feature has

implications for what we would predict should happen after a merger if carriers

can change their service choices. To illustrate, we consider a market size of 85,000

and collect all sets of draws that result in the two carriers with the highest mean

quality components being nonstop duopolists, which is the most common outcome

under either information structure. Now suppose that these carriers merge, elim-

inating the carrier with the smaller market share, and that the remaining carriers

can re-optimize their service choices in the same sequential order.2 Under limited

information, the probability that at least one rival carrier will introduce nonstop

service after the merger is 0.8, and the expected reduction in consumer surplus fol-

1For example, for a market size of 145,000, 97% of simulated outcomes have either three or four
nonstop carriers, compared with 69% under full information.

2The reader might view it as unreasonable to use the limited information assumption in this
case because carriers’ pre-merger experience on the route in question would inform them of their
quality and costs, even for the type of service that they are not offering. We completely agree,
which is one reason why we believe a full information model is the natural model for merger
counterfactuals.
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lowing the merger is just under $0.3 million. Under full information, the probability

that at least one rival will introduce nonstop service after the merger is 31% lower

(0.55) and the expected loss of consumer surplus is almost $1.15 million.3 In the

limited information case, the merger is also, on average, unprofitable for the merging

parties, while it is profitable under full information. Note that if, in either version of

the model, we had not accounted for selection (which we did by only using draws in

our counterfactuals that could generate the pre-merger market structure that we are

interested in), we could also get quite different post-merger predictions. In Section

3.6 of the paper, we show how accounting for selection affects merger counterfactuals

using our estimated full information model.

B.1 Data Appendix

This Appendix complements the description of the data in Section 3.3 of the

text.

B.1.1 Sample Construction and Variable Definitions

Selection of markets. We use 2,028 airport-pair markets linking the 79 U.S.

airports (excluding airports in Alaska and Hawaii) with the most enplanements in

Q2 2006. The markets that are excluded meet one or more of the following criteria:

• airport-pairs that are less than 350 miles apart as ground transportation may

be very competitive on these routes;

• airport-pairs involving Dallas Love Field, which was subject to Wright Amend-

ment restrictions that severely limited nonstop flights;

• airport-pairs involving New York LaGuardia or Reagan National that would

violate the so-called perimeter restrictions that were in effect from these air-

3The loss in consumer surplus is greater under full information not only because there is less
repositioning but also because the pre-merger market shares of the nonstop carriers, whose merger
we are considering, tend to be higher because of selection.
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ports4;

• airport-pairs where more than one carrier that is included in our composite

“Other Legacy” or “Other LCC” (low-cost) carriers are nonstop, have more

than 20% of non-directional traffic or have more than 25% presence (defined in

the text) at either of the endpoint airports. Our rationale is that our assump-

tion that the composite carrier will act as a single player may be especially

problematic in these situations5; and,

• airport-pairs where, based on our market size definition (explained below), the

combined market shares of the carriers are more than 85% or less than 4%.

Seasonality. The second quarter is the busiest quarter for airline travel, and

one might be concerned that seasonality affects our measures of passenger flows

and service choices, and therefore our estimates. We do not believe that this is a

first-order concern for our sample of relatively large markets. The website http:

//www.anna.aero (accessed May 29, 2018) provides a formula for measuring the

seasonality of airport demand (SVID) which we have calculated for all of the airports

in our sample using monthly T100 data on originating passengers.6 The website

classifies seasonality as “excellent” if SVID is less than 2 or “good” if the SVID is

between 2 and 10, on the basis that seasonality is costly for an airline or an airport

because it requires changes in schedules. All of the airports in our sample are within

these ranges, with the highest (most seasonal) values for Seattle (2.4), New Orleans

(2.8), Palm Beach (5.2) and Southwest Florida (9.9). In contrast, a non-sample

airport with very seasonal demand, Gunnason-Crested Butte (GUC), has an SVID

of 65. Applying SVID on a route-level to quarterly traffic, only one sample route

(Minneapolis to Southwest Florida) has an SVID greater than 10 (19), and the 95th

percentile is 3.12.

4To be precise, we exclude routes involving LaGuardia that are more than 1,500 miles (except
Denver) and routes involving Reagan National that are more than 1,250 miles.

5An example of the type of route that is excluded is Atlanta-Denver where Airtran and Frontier,
which are included in our “Other LCC” category had hubs at the endpoints and both carriers served
the route nonstop.

6The measure is calculated as

∑
m=1,..,M=12

(
100×Traffica,m

Traffica
−100

)2

1000 .
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We reach a similar conclusion if we identify markets which a carrier serves

nonstop in our data and in the second quarter of 2005, but which they did not

serve nonstop in either Q1 2005 or Q1 2006 (i.e., markets where a carrier’s nonstop

service may be seasonal). We can only identify two such carrier-markets in our

sample (United for San Antonio-San Francisco and Sun Country (part of Other

Low Cost) for Indianapolis-Kansas City), out of 8,065 carrier-markets.

Definition of players, nonstop and connecting service. We are focused on

the decision of carriers to provide nonstop service on a route. Before defining any

players or outcomes, we drop all passenger itineraries from DB1 that involve prices

of less than $25 or more than $2000 dollars7, open-jaw journeys or journeys involving

more than one connection in either direction. Our next step is to aggregate smaller

players into composite “Other Legacy” and “Other LCC” carriers, in addition to

the “named” carriers (American, Continental, Delta, Northwest, Southwest, United

and US Airways) that we focus on. Our classification of carriers as low-cost follows

Berry and Jia (2010). Based on the number of passengers carried, the largest Other

Legacy carrier is Alaska Airlines, and the largest Other LCC carriers are JetBlue

and AirTran.

We define the set of players on a given route as those ticketing carriers who

achieve at least a 1% share of total travelers (regardless of their originating endpoint)

and, based on the assumption that DB1 is a 10% sample, carry at least 200 return

passengers per quarter, with a one-way passenger counted as one-half of a return

passenger. We define a carrier as providing nonstop service on a route if it, or its

regional affiliates, are recorded in the T100 data as having at least 64 nonstop flights

in each direction during the quarter and at least 50% of the DB1 passengers that

it carries are recorded as not making connections (some of these passengers may be

traveling on flights that make a stop but do not require a change of planes). Other

players are defined as providing connecting service.

There is some arbitrariness in these thresholds. However, the 64 flight and

50% nonstop thresholds for nonstop service have little effect because almost all

7These fare thresholds are halved for one-way trips.

145



Figure B.1: Proportion of DB1 Passengers Traveling with Connections, Based on
the Type of Service
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(ii) Connecting Carriers

nonstop carriers far exceed these thresholds. For example, Figure B.1 shows that the

carriers we define as nonstop typically carry only a small proportion of connecting

passengers. For the same reason, we also model nonstop carriers as only providing

nonstop service even if some of their passengers fly connecting, although we include

the connecting passengers when calculating market shares. On the other hand,

our 1% share/200 passenger thresholds do affect the number of connecting carriers.

For example, if we instead require players to carry 300 return passengers and have

a 2% share, the average number of connecting carriers per market falls by almost

one-third as marginal carriers are excluded.

Market Size. Market size is used to define market shares and to calculate coun-

terfactual quantities and profits. Given the role of market size in the identification

and estimation of demand and entry-type models, the ideal definition should imply

that variation in shares across markets, or across directions, should reflect changes

in prices, carrier characteristics and service types, and it should be a good predictor

of the number of nonstop firms.
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A standard approach in the literature is to use the geometric average of the

endpoint MSA populations (e.g., Berry and Jia (2010), Ciliberto and Williams

(2014)). However, this performs poorly for airport-pair routes (MSA demand may

be split between several airports) and it cannot allow for the possibility that origi-

nating demand is systematically different at the endpoints.

We therefore consider an alternative definition based on the estimates of a

generalized gravity equation, used previously in Sweeting et al. (ming). The model

specifies that the total number of second quarter passengers on a route varies with a

linear function of the log of the count of originating and arriving passengers at each

of the endpoint airports (measured for the second quarter of the previous year),

log route distance and interactions of these lagged passengers flow and distance

variables. The corresponding Poisson regression is estimated using data from 2005-

2011, including year, origin and destination fixed effects and an interaction between

the origin and destination fixed effects and a dummy for long-distance routes, defined

as those over 2,300 miles.8 With the estimates in hand, we calculate the expected

number of passengers for each directional market for Q2 2006, based on lagged values

of passenger flows in Q2 2005. Our market size measure multiplies this prediction

by 3.5.

Two comparisons suggest that our measure provides a superior measure of

market size to estimates based on average population. Given that prices and service

in each direction on a route tend to be similar we would expect the correlation in the

combined market share of all of the carriers to be quite high: using our measure the

correlation is 0.86 and using the geometric average population it is 0.56. Consistent

with this difference, if one estimates our model using population-based market size

measures, there is much greater unobserved heterogeneity in demand than there is

in our estimates. CMT, who use a population-based measure, also estimate much

more demand heterogeneity than we do.

8The individual coefficients are not especially informative because of the interactions, but com-
bining them shows reasonable patterns. For example, the expected number of passengers declines
in route distance, increases with both lagged originating traffic at the origin airport, and lagged
arriving traffic at the destination.
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Table B.1 examines the ability of the different market size variables to predict

the number of nonstop carriers on a route using an ordered probit model. Examina-

tion of the reported pseudo-R2s shows that our gravity measure has much stronger

predictive power, and that when we add population-based variables to a specifica-

tion with a flexible function of our measure (i.e., going from column (2) to column

(5)) the R2 increases by less than 1%. However, because we recognize that our

market size measure is still imperfect, we also allow for an additional route-level

unobservable that is common to the demand of all carriers, but is unobserved by

the researcher.

Prices and Market Shares. As is well-known, airlines use revenue management

strategies that result in passengers on the same route paying quite different prices.

Even if more detailed data (e.g., on when tickets are purchased) was available, it

would likely not be feasible to model these type of strategies within the context

of a combined service choice and pricing game. We therefore use the average

price as our price measure, but allow for prices and market shares (defined as the

number of originating passengers carried divided by market size) to be different in

each direction, so that we can capture differences in passenger preferences (possibly

reflecting frequent-flyer program membership) across different airports.9

Explanatory Variables Reflecting Airline Networks. The legacy carriers in our

data operate hub-and-spoke networks. On many medium-sized routes local demand

could not generate sufficient variable profits to cover the fixed costs of nonstop ser-

vice, but nonstop service may be profitable once the value of passengers who will use

a nonstop flight as one segment on a longer journey is taken into account. While

our structural model captures price competition for passengers traveling only the

route itself, we allow for traffic to other destination to reduce the effective fixed

cost of providing nonstop service by including three carrier-specific variables in our

specification of fixed costs. Two variables are indicators for the principal domestic

9Carriers may choose a similar set of ticket prices to use in each direction but revenue manage-
ment techniques mean that average prices can be significantly different. Fares on contracts that
carriers negotiate with the federal government and large employers may also play a role, but there
is no data available on how many tickets are sold under these contracts.
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Table B.1: Market Size Measures and the Number of Nonstop Car-
riers

(1) (2) (3) (4) (5)

Our Market Size 3.230 11.05 11.04
(/10,000) (0.110) (0.440) (0.482)
Our Market Size2 -8.933 -8.780

(0.560) (0.587)
Our Market Size3 2.283 2.230

(0.190) (0.196)
Geom. Avg. Pop 2.476 10.48 2.125
(/1 m.) (0.136) (0.823) (0.966)
Geom. Avg. Pop2 -12.98 -4.835

(1.536) (1.757)
Geom. Avg. Pop3 4.977 2.433

(0.773) (0.877)

Ordered Probit Cutoffs
Cutoff 1 0.730 1.596 0.725 1.801 1.813

(0.0369) (0.0604) (0.0460) (0.113) (0.126)
Cutoff 2 2.082 3.350 1.722 2.844 3.571

(0.0563) (0.0965) (0.0548) (0.120) (0.146)
Cutoff 3 3.915 4.995 2.761 3.890 5.217

(0.128) (0.132) (0.0789) (0.133) (0.171)
Cutoff 4 6.987 6.877 4.134 5.181 7.112

(0.431) (0.333) (0.232) (0.240) (0.351)

Observations 2,028 2,028 2,028 2,028 2,028
Pseudo-R2 0.262 0.368 0.0770 0.109 0.371

Notes: coefficients from an ordered probit regression where the depen-
dent variable is the number of nonstop carriers in the non-directional
market. “Our market size” measure is the average of our measure of
market size across directions. Standard errors in parentheses. Number
of observations is equal to the number of markets.
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and international hubs of the non-composite carriers. We define domestic hubs as

airports where more than 10,000 of the carrier’s ticketed passengers made domestic

connections in DB1 in Q2 2005 (i.e., one year before our estimation sample). Note

that some airports, such as New York’s JFK airport for Delta, that are often clas-

sified as hubs do not meet our definition because the number of passengers using

them for domestic connections is quite small even though the carrier serves many

destinations from the airport. International hubs are airports that carriers use

to serve a significant number of non-Canadian/Mexican international destinations

nonstop. Table B.2 shows the airports counted as hubs for each named carrier.

We also include a continuous measure of the potential connecting traffic that

will be served if nonstop service is provided on routes involving a domestic hub.

The construction of this variable, as the prediction of a Heckman selection model,

is detailed next.

B.1.2 An Ancillary Model of Connecting Traffic

As explained in Section 3.3, we want to allow for the amount of connecting

traffic that a carrier can carry when it serves a route nonstop to affect its decision

to do so. Connecting traffic is especially important in explaining why a large

number of nonstop flights can be supported at domestic hubs in smaller cities,

such as Charlotte, NC (a US Airways hub) and Salt Lake City (Delta). While the

development of a model where carriers choose their entire network structure is well

beyond the scope of the paper, we use a reduced-form model of network flows that

fits the data well10 and which gives us a prediction of how much connecting traffic

that a carrier can generate on a route where it does not currently provide nonstop

service, taking the service that it provides on other routes as given. We include

this prediction in our model of entry as a variable that can reduce the effective fixed

10This is true even though we do not make use of additional information on connecting times
at different domestic hubs which could potentially improve the within-sample fit of the model, as
in Berry and Jia (2010). As well as wanting to avoid excessive complexity, we would face the
problem that we would not observe connection times for routes that do not currently have nonstop
service on each segment, but which could for alternative service choices considered in our model.
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cost of providing nonstop service on the route.11

Model. We build our prediction of nonstop traffic on a particular segment up

from a multinomial logit model of the share of the connecting passengers going from

a particular origin to a particular destination (e.g., Raleigh (RDU) to San Francisco

(SFO)) who will use a particular carrier-hub combination to make the connection.

Specifically,

sc,i,od =
exp(Xc,i,odβ + ξc,i,od)

1 +
∑

l

∑
k exp(Xl,k,o,dβ + ξl,k,od)

(B.1)

where Xc,i,od is a vector of observed characteristics for the connection (c)-carrier (i)-

origin (o)- destination (d) combination and ξc,i,od is an unobserved characteristic.

The Xs are functions of variables that we are treating as exogenous such as airport

presence, endpoint populations and geography. The outside good is traveling us-

ing connecting service via an airport that is not one of the domestic hubs that we

identify.12 Assuming that we have enough connecting passengers that the choice

probabilities can be treated as equal to the observed market shares, we could poten-

tially estimate the parameters using the standard estimating equation for aggregate

data (Berry 1994):

log(sc,i,od)− log(s0,od) = Xc,i,odβ + ξc,i,od. (B.2)

However, estimating (B.2) would ignore the selection problem that arises from

the fact that some connections may only be available because the carrier will attract

a large share of connecting traffic. We therefore introduce an additional probit

model, as part of a Heckman selection model, to describe the probability that carrier

i does serve the full ocd route,

Pr(i serves route ocd) = Φ (Wi,c,odγ) . (B.3)

11We also use the predicted value, not the actual value, on routes where we actually observe
nonstop service.

12For example, the outside good for Raleigh to San Francisco could involve traveling via Nashville
on any carrier (because Nashville is not a domestic hub) or on Delta via Dallas Fort Worth because,
during our data, Dallas is not defined as a domestic hub for Delta even though it is for American.
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Sample, Included Variables and Exclusion Restrictions. We estimate our model

using data from Q2 2005 (one year prior to the data used to estimate our main

model) for the top 100 US airports. We use DB1B passengers who (i) travel from

their origin to their destination making at least one stop in at least one direction (or

their only direction if they go one-way) and no more than one stop in either direction;

and, (ii) have only one ticketing carrier for their entire trip. For each direction of

the trip, a passenger counts as one-half of a passenger on an origin-connecting-

destination pair route (so a passenger traveling RDU-ATL-SFO-CVG-RDU counts

as 1
2

on RDU-ATL-SFO and 1
2

on RDU-CVG-SFO). Having joined the passenger

data to the set of carrier-origin-destination-connecting airport combinations, we then

exclude origin-destination routes with less than 25 connecting passengers (adding

up across all connecting routes) or any origin-connection or connection-destination

segment that is less than 100 miles long.13 We also drop carrier-origin-destination-

connecting airport observations where the carrier (or one of its regional affiliates)

is not, based on T100, providing nonstop service on the segments involved in the

connection. This gives us a sample of 5,765 origin-destination pairs and 142,506

carrier-origin-destination-hub connecting airport combinations, of which 47,996 are

considered to be served in the data.

In Xc,i,od (share equation), we include variables designed to measure the at-

tractiveness of the carrier i and the particular ocd connecting route. Specifically,

the included variables are carrier i’s presence at the origin and its square, its pres-

ence at the destination and its square, the interaction between carrier i’s origin and

destination presence, the distance involved in flying route ocd divided by the non-

stop distance between the origin and destination (we call this the ‘relative distance’

of the connecting route), an indicator for whether route ocd is the shortest route in-

volving a hub, an indicator for whether ocd is the shortest route involving a hub for

carrier i and the interaction between these two indicator variables and the relative

distance.

13Note while we will only use routes of more than 350 miles in the estimation of our main model,
we use a shorter cut-off here because we do not want to lose too many passengers who travel more
than 350 miles on one segment but less than 350 miles on a second segment.
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The logic of our model allows us to define some identifying exclusion restric-

tions in the form of variables that appear in W but not in X. For example, the

size of the populations in Raleigh, Atlanta and San Francisco will affect whether

Delta offers service between RDU and ATL and ATL and SFO, but it should not

be directly relevant for the choice of whether a traveler who is going from RDU to

SFO connects via Atlanta (or a smaller city such as Charlotte), so these population

terms can appear in the selection equation for whether nonstop service is offered

but not the connecting share equation. In Wc,i,od we include origin, destination and

connecting airport presence for carrier i; the interactions of origin and connecting

airport presence and of destination and connecting airport presence; origin, desti-

nation and connecting city populations; the interactions of origin and connecting

city populations and of destination and connecting city populations, a count of the

number of airports in the origin, destination and connecting cities14; indicators for

whether either of the origin or destination airports is an airport with limitations

on how far planes can fly (LaGuardia and Reagan National) and the interactions of

these variables with the distance between the origin or destination (as appropriate)

and the connecting airport; indicators for whether the origin or destination airport

are slot-constrained. In both Xi,c,od and Wi,c,od we also include origin, destination

and carrier-connecting airport dummies.

Results. We estimate the equations using a one-step Maximum Likelihood

procedure where we allow for residuals in (B.2) and (B.3), which are assumed to be

normally distributed, to be correlated. However, our predictions are almost identical

using a two-step procedure (the correlation in predictions greater than 0.999). The

coefficient estimates are in Table B.3, although the many interactions mean that it

is not straightforward to interpret the coefficients.

To generate a prediction of the connecting traffic that a carrier will serve if

it operates nonstop on particular segment, we proceed as follows. First, holding

service on other routes and by other carriers fixed, we use the estimates to calculate

14For example, the number is 3 for the airports BWI, DCA and IAD in the Washington DC-
Baltimore metro area.
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Table B.3: Estimation Coefficients for Ancillary Model of Connecting Traffic

Connecting Share Serve Route 1
2
log 1+ρ

1−ρ log(std. deviation)

Constant 4.200 -8.712 -0.109 0.308
(0.338) (0.823) (0.0860) (0.0150)

Presence at Origin Airport 4.135 6.052
(0.396) (1.136)

Presence at Connecting Airport 11.90
(0.721)

Presence at Destination Airport 2.587 6.094
(0.396) (1.126)

Origin Presence X Connecting Presence -5.536
(1.311)

Destin. Presence X Connecting Presence -5.771
(1.303)

Population of Connecting Airport -1.20e-07
(3.16e-08)

Origin Population X Origin Presence -5.09e-08
(2.23e-08)

Destin. Population X Destination Presence -4.46e-08
(2.35e-08)

Number of Airports Served from Origin 0.543
(0.101)

Number of Airports Served from Destination 0.529
(0.0984)

Origin is Restricted Perimeter Airport 0.0317
(0.321)

Destination is Restricted Perimeter Airport -0.0865
(0.305)

Origin is Slot Controlled Airport -1.098
(0.321)

Destination is Slot Controlled Airport -1.055
(0.331)

Distance: Origin to Connection -0.00146
(0.000128)

Distance: Connection to Destination -0.00143
(0.000125)

Origin Restricted X Distance Origin - Connection 0.000569
(0.000207)

Destin. Restricted X Distance Connection - Destin 0.000602
(0.000211)

Relative Distance -4.657
(0.441)

Most Convenient Own Hub -0.357
(0.192)

Most Convenient Hub of Any Carrier -0.574
(0.442)

Origin Presence2 -2.797
(0.429)

Destination Presence2 -1.862
(0.449)

Relative Distance2 0.745
(0.129)

Most Convenient Own Hub X Relative Distance2 0.479
(0.151)

Most Convenient Hub of Any Carrier X 0.590
Relative Distance (0.434)
Origin Presence X Destination Presence -5.278

(0.513)

Observations 142,506 - - -

Notes: robust standard errors in parentheses.

155



a predicted value for each carrier’s share of traffic on a particular ocd route. Second,

we multiply this share prediction by the number of connecting travelers on the od

route to get a predicted number of passengers. Third, we add up across all oc

and cd pairs involving a segment to get our prediction of the number of connecting

passengers served if nonstop service is provided. There will obviously be error in

this prediction resulting from our failure to account for how the total number of

connecting passengers may be affected by service changes and the fact that service

decisions will really be made simultaneously across an airline network.

However we find that the estimated model provides quite accurate predictions

of how many connecting travelers use different segments, which makes us believe that

it should be useful when thinking about the gain to adding some marginal nonstop

routes to a network. For the named legacy carriers in our primary model, there

is a correlation of 0.96 between the predicted and observed numbers of connecting

passengers on segments that are served nonstop. The model also captures some

natural geographic variation. For example, for many destinations a connection via

Dallas is likely to be more attractive for a passenger originating in Raleigh-Durham

(RDU) than a passenger originating in Boston (BOS), while the opposite may hold

for Chicago. Our model predicts that American, with hubs in both Dallas (DFW)

and Chicago (ORD), should serve 2,247 connecting DB1 passengers on RDU-DFW,

1,213 on RDU-ORD and 376 on RDU-STL (St Louis), which compares with observed

numbers of 2,533, 1,197 and 376. On the other hand, from Boston the model predicts

that American will serve more connecting traffic via ORD (2,265, observed 2,765)

than DFW (2,040, observed 2,364).

B.1.3 An Analysis of Changes to Prices and Service After Airline

Mergers Post-2006

We use our model to predict the effects of three legacy carrier mergers that

took place after the period of our data (Delta/Northwest merger (closed October

2008), United/Continental (October 2010) and American/US Airways (December
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2013)). In this Appendix we describe an analysis of what happened to the prices

and quantities of the merging parties and the service decisions of rivals on routes

where the merging parties were nonstop duopolists. Based on a fixed service types,

one would expect that the merger might create significant market power in these

markets. We also consider the Southwest/Airtran merger (May 2011) although we

do not perform counterfactuals for that merger as Airtran is part of our composite

Other LCC carrier. To perform the analysis, we created a panel dataset that runs

from the first quarter of 2001 to the first quarter of 2017 using the same definition

of nonstop service, but without aggregating smaller carriers into composite Other

Legacy and Other LCC rivals.

B.1.3.1 Frequency of Rivals Launching Nonstop Service

On routes where the merging firms are nonstop duopolists before the merger,

the merged firm always maintains nonstop service until the end of our data. We

calculate the number of routes where at least one rival carrier, including carriers that

were not providing any service prior to the merger, initiated nonstop service within

two (or three) years of the merger closing. A two year window is often considered

when examining entry and repositioning in merger cases, and was explicitly cited by

the Department of Transportation (Keyes (1987)). We will use three years in our

analysis of price and quantity changes below as an additional year provides more

precision to our estimates which are based on a small number of markets, with only

small effects on the point estimates.

We find that no rivals (no rivals) initiated nonstop service within two (three)

years on five routes where the merging parties were nonstop duopolists immediately

before the closing of the merger for Delta/Northwest. Rivals did initiate nonstop

service on one (two) out of five routes for United/Continental, three (four) out of six

routes for American/US Airways and one (one) out of seventeen nonstop duopoly

routes for Southwest/Airtran. Therefore, the overall rate of rivals initiating nonstop

service was five (seven) out of thirty-three routes, or four (six) out of sixteen if we
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only consider legacy mergers.15

One explanation for a low rate of repositioning is that rivals are ill-suited to

provide nonstop service on these routes, so that the merging carriers can exercise

market power even if the merger does not generate efficiency advantages (higher

quality or lower marginal costs). This will be the explanation that we focus on in

our counterfactuals. However, an alternative explanation is that it is efficiencies

created through the merger make it unattractive for rivals to offer nonstop service.

An analysis of changes to price and market shares can give some insights into which

of these stores are correct.

B.1.3.2 Changes to the Merging Carriers’ Prices and Quantities

We define a treatment group of markets where the merging carriers were non-

stop duopolists prior to the merger. We also define a control group of markets where

one of the merging carriers is nonstop and the other is either not in the market at

all or is at most a quite marginal connecting carrier, with a nondirectional share

of traffic of less than 2%. However, we acknowledge that the literature has defined

control groups in a number of different ways, with different results (see the literature

review in the Introduction), and that to the extent that carriers offer networks, it

is implausible that the control markets would be completely unaffected by changes

in the treatment markets. We also restrict the control group to only include routes

where no carriers initiated new nonstop service after the merger. We define three

year pre- and post-merger windows (this provides more power than two year win-

dows, although the pattern of the coefficients are similar using two or three year

windows). For Delta/Northwest the windows are Q3 2005-Q2 2008 and Q1 2009-Q4

2011. For United/Continental the windows are Q3 2007-Q2 2010 and Q1 2011-Q4

2013. For American/US Airways the situation is less straightforward as detailed ne-

gotiations between the parties, a bankruptcy judge and the Department of Justice

were known to be ongoing from at least August 2012. We therefore use windows of

15There is no overlap in the routes across these mergers.
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Q3 2009-Q2 2012 and Q2 2014-Q1 2017.16 For Southwest/Airtran we use windows

of Q2 2007-Q1 2010 and Q3 2010-Q2 2013.

We use a regression specification

yimt = β0 + β1 ∗ Treatmentim ∗ Post-Mergerit +Ximtβ2 +Qtβ3 +Mimβ4 + εimt

where yimt is the outcome variable (the log of the weighted average price or the log

of the combined number of local passengers (i.e., passengers just flying the route

itself and not making connections to other destinations) on the merging carriers)

for merging carrier i in directional airport-pair market m in quarter t, Qt and Mim

are quarter and carrier-market dummies and β1 is the coefficient of interest.17 m

is defined directionally, but we cluster standard errors on the non-directional route.

Ximt contains dummy controls for the number of competitors (including connect-

ing carriers), distinguishing between legacy and LCC competitors, and one-quarter

lagged fuel prices interacted with route nonstop distance and its square. A route

is defined to be in the treatment or the control group based on the observed mar-

ket structure in the last four quarters of the pre-merger window (so to be in the

treatment group, for example, both merging carriers must be nonstop in each of

these quarters). Note that this means that the treatment samples are different and

smaller than those considered for the repositioning analysis above, where we defined

duopoly based on the one quarter immediately before the financial closing of the

merger. They can also differ from the routes used in our counterfactuals where we

will use the market structure from Q2 2006.

The results are presented in Table B.4. We report results for each merger and

for the three legacy mergers combined. The upper part of the table presents the

results when we only include treatment markets where there is no rival nonstop entry

before or during the post-merger window. In the lower panel we only use treatment

markets where at least one rival initiated nonstop service after the financial closure of

16We exclude two American/US Airways markets where rivals began service between the end of
the pre-merger window and the financial closing of the merger from the treatment group.

17To be clear, in the pre-merger period we combine the number of passengers on the merging
carriers and use their weighted average fare, so there is a single observation per market-quarter.
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the merger but before or during the post-period window, and, for these markets, we

only include post-merger window observations where this rival service was actually

provided.

The results are suggestive, despite the small number of treatment observations.

For the legacy mergers the pattern is that prices increase and the number of local

passengers falls in the treatment markets when no rivals initiate nonstop service,

consistent with an increase in market power and limited synergies from combining

service on the treatment routes. The fall in the number of local passengers is large,

but this pattern appears to be robust: for example, if we also include a linear time

trend for the treatment group markets, to allow for the possibility that demand

was falling in the type of markets that are nonstop duopolies, the coefficient is -

0.293 with a standard error of 0.092. This is almost identical to the coefficient of

-0.295 reported in Table B.4, column (1). On the other hand, in markets where rival

nonstop service is initiated there is no clear pattern of price increases. The number

of passengers declines in these markets, presumably due to competition from the

new nonstop carrier.

The pattern is different for Southwest/Airtran, although we note that we have

fewer treatment routes than the sixteen routes that were nonstop duopolies imme-

diately before the merger because, in a number of markets, a legacy carrier stopped

its nonstop service during the pre-merger window once both Southwest and Airtran

were nonstop. There is no statistically significant price increase on the nonstop

duopoly routes when Southwest and Airtran merge and there is no statistically sig-

nificant decline in the number of passengers. This result suggests that this LCC

merger may have generated route-level synergies.
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B.2 Estimation and Robustness Checks

This Appendix provides additional detail on how we solve the model, the per-

formance of our estimation algorithm and the robustness of our estimates. Appendix

B.2.1 explains how we solve the model. Appendices B.2.2-B.2.5 analyze aspects of

the performance of the estimation algorithm in more detail, including the fit of the

model and the robustness of the results to reducing the number of moments. Ap-

pendix B.2.6 presents estimation results using moment inequalities. The reader is

referred to Li et al. (2018) for details of a Monte Carlo procedure that illustrates

the good performance of our estimation procedures, under our baseline assumption

and using inequalities.

B.2.1 Solving the Model

Our baseline assumption is that service choices are made sequentially in a

known order. For a given set of service choices on a given route, we can solve for a

unique Bertrand Nash pricing in each direction by solving the system of first-order

conditions. One approach for solving the service choice game would be to compute

equilibrium variable profits for each possible service choice combination and then

apply backwards induction. However, we are able to speed up solving the game, by

80% or more, by selectively growing the game tree forward.

To do so, we first calculate whether the first mover would earn positive profits

as a nonstop carrier if it were the only carrier in the market, given its fixed cost.18 If

not, then we do not need to consider any of the branches where it provides nonstop

service, immediately eliminating half of the game tree from consideration. If it is

profitable, then we need to consider both branches. We then turn to the second

carrier, and ask the same question, for each of the first carrier branches that remain

under consideration, and we only keep the nonstop branch for the second carrier if

nonstop service yields it (i.e., the second carrier) positive profits. Once this has

18To be clear, this is not the same as testing whether nonstop service is more profitable than
connecting service.
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Figure C.1: Shape of the Objective Function Around the Estimated Parameters For
the Parameter Estimates in Column (1) of Tables 3.5 and 3.6 (black dot marks the
estimated coefficient value)

been done for all carriers, we can solve backwards to find the unique subgame perfect

equilibrium using the resulting tree, which usually has many fewer branches than

the full game tree.

B.2.2 Performance of the Estimation Algorithm For the Baseline Es-

timates

The use of importance sampling during estimation has two benefits: it greatly

reduces the computational burden and it generates a smooth objective function. As

noted in the text, the first step of our estimation routine (solving 2,000 simulated

games for each market) takes less than two days on a small cluster, while estimation

of the parameters takes around one day on a desktop or laptop computer without

any parallelization. Figure C.1 illustrates the second property, showing the shape

of the objective function when we vary each parameter around its estimated value,

holding the other parameters fixed. While these pictures certainly should not be

interpreted as strong evidence that there is a global minimum in multiple dimensions,

it is comforting that the objective function is convex in almost all dimensions.

B.2.3 Variance of the Moments

For an importance sample estimate of a moment to be consistent the variance

of y(θms, Xm)f(θms|Xm,Γ)
g(θms|Xm)

must be finite (Geweke (1989)). One informal way to assess

this property in an application (Koopman et al. (2009)) is to plot how an estimate

of the sample variance changes with S, and, in particular, to see how ‘jumpy’ the

variance plot is as S increases. The intuition is that if the true variance is infinite,

the estimated sample variance is likely to continue to jump wildly as S rises.

Figure C.2 shows these estimates of the sample variance for the moments

associated with three market-level outcomes, namely the weighted nonstop fare,
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Figure C.2: Sample Variance of Three Moments as the Number of Simulation Draws
is Increased (logarithm of the number of draws on the x-axis)
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the weighted connecting fare and the quantity-based sum of squared market shares

for the carriers in the market, based on the estimated parameters. The number of

simulations is on the x-axis (log scale) and the variance of 1
M

∑
y(θms, Xm)f(θms|Xm,Γ)

g(θms)

across simulations s = 1, .., S is on the y-axis. Relative to examples in Koopman

et al. (2009), the jumps in the estimated sample variance are quite small for S > 500.

In our application we are using S = 1, 000.

B.2.4 Model Fit

Section 3.5.1 of the text briefly discusses the performance of the model at

matching service choices. Table C.1 provides more detail of how well the model

predicts service choices for carriers at some of their major hubs. In general, the

model matches the fact that hub carriers serve most routes nonstop, although it

does unpredict service at both Salt Lake City and Newark.

Table C.2 uses the same draws to show the fit of average prices and shares by

type of service and by terciles of the market size distribution. We match average

differences in market shares and prices across service types very accurately, although
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Table C.1: Model Fit: Prediction of Service Choices by Carriers at a Selection of
Domestic Hubs

Number of % Nonstop
Airport Carrier Routes Data Simulation
Atlanta Delta 57 96.5% 92.5% (2.3%)
Salt Lake City Delta 65 73.8% 52.9% (4.3%)
Chicago O’Hare American 53 96.2% 90.2% (2.7%)
Chicago O’Hare United 57 94.7% 92.4% (2.7%)
Charlotte US Airways 46 84.7% 77.9% (2.7%)
Denver United 58 72.4% 73.4% (4.2%)
Newark Continental 43 86.0% 61.6% (5.0%)
Houston Intercontinental Continental 55 90.9% 85.4% (4.3%)
Minneapolis Northwest 62 85.4% 77.7% (6.3%)
Chicago Midway Southwest 44 72.7% 64.5% (6.0%)

Notes: predictions based on the average of 20 simulated draws for each market using
the estimated parameters in column (1) of Tables 3.5 and 3.6. Standard errors based
on additional sets of 20 draws for each of the bootstrap estimates used to calculate
standard errors in the same tables.

we overpredict the levels of prices and market shares. This partly reflects our use of

new draws to assess fit rather than the draws used in estimation, as the estimation

draws provide a closer fit to levels as well.

B.2.5 Robustness of the Results to Reducing the Number of Mo-

ments

As mentioned in the text, we have repeated our estimation using only the 740

moments that are based on carrier-specific outcomes.

Estimates. Table C.3 shows our estimates from the main text and the estimates

when we use the reduced number of moments. Most of the coefficients are very

similar, and even where individual coefficients are different they have similar impli-

cations. For example, even though the individual coefficients measuring the incre-

mental value of nonstop service change significantly, the implied mean value of the

increment falls only from 0.299 to 0.268.
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Table C.2: Model Fit: Average Market Shares and Prices (bootstrapped stan-
dard errors in parentheses)

Data Model Prediction
Average All Markets Any Service $436 $455 (5)
Prices Nonstop $415 $436 (8)
(directions weighted Connecting $440 $458 (5)
by market shares)

Market Size Groups
1st Tercile Any Service $460 $465 (5)
2nd Tercile Any Service $442 $460 (5)
3rd Tercile Any Service $412 $441 (5)

Average All Markets Any Service 7.1% 8.4% (0.3%)
Carrier Market Nonstop 17.9% 20.5% (0.9%)
Shares Connecting 4.9% 5.8% (0.3%)

Market Size Groups
1st Tercile Nonstop 25.6% 29.8% (2.4%)

Connecting 8.6% 8.0% (0.4%)
2nd Tercile Nonstop 23.1% 26.6% (1.5%)

Connecting 4.3% 5.5% (0.3%)
3rd Tercile Nonstop 15.9% 18.7% (0.8%)

Connecting 1.8% 3.4% (0.3%)

Notes: see the notes to Table C.1.
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Table C.3: Estimates Based on Different Sets of Moments (bootstrapped standard errors in paren-
theses)

(1) (2)
Text Estimates from Carrier-Specific

(from Table 3.5 and 3.6) Moments Only
Demand: Market Parameters
Random Effect Std. D. σRE Constant 0.311 (0.138) 0.377 (0.142)
Nesting Parameter Mean βτ Constant 0.645 (0.012) 0.641 (0.013)

Std. D. στ Constant 0.042 (0.010) 0.029 (0.008)
Demand Slope Mean βα Constant -0.567 (0.040) -0.591 (0.036)
(price in $100 units) Business Index 0.349 (0.110) 0.400 (0.101)

Std. D. σα Constant 0.015 (0.010) 0.013 (0.008)

Demand: Carrier Qualities
Carrier Quality for Mean βCON Legacy Constant 0.376 (0.054) 0.332 (0.049)
Connecting Service LCC Constant 0.237 (0.094) 0.187 (0.094)

Presence 0.845 (0.130) 0.910 (0.154)
Std. D. σCON Constant 0.195 (0.025) 0.199 (0.030)

Incremental Quality Mean βNS Constant 0.258 (0.235) 0.000 (0.210)
of Nonstop Service Distance -0.025 (0.034) -0.001 (0.039)

Business Index 0.247 (0.494) 0.653 (0.483)
Std. D. σNS Constant 0.278 (0.038) 0.334 (0.051)

Costs
Carrier Marginal Cost Mean βMC Legacy Constant 1.802 (0.168) 1.713 (0.137)
(units are $100) LCC Constant 1.383 (0.194) 1.210 (0.135)

Conn. X Legacy 0.100 (0.229) 0.107 (0.230)
Conn. X LCC -0.165 (0.291) -0.150 (0.264)

Conn. X Other Leg. -0.270 (0.680) -0.226 (0.147)
Conn. X Other LCC 0.124 (0.156) 0.217 (0.151)

Nonstop Dist. 0.579 (0.117) 0.654 (0.096)
Nonstop Dist.2 -0.010 (0.018) -0.024 (0.016)
Conn. Distance 0.681 (0.083) 0.732 (0.099)
Conn. Distance2 -0.028 (0.012) -0.034 (0.012)

Std. D. σMC Constant 0.164 (0.021) 0.153 (0.015)

Carrier Fixed Cost Mean βF Legacy Constant 0.887 (0.061) 0.878 (0.062)
(units are $1 million) LCC Constant 0.957 (0.109) 0.923 (0.113)

Dom. Hub Dummy -0.058 (0.127) 0.000 (0.207)
̂Connecting Traffic -0.871 (0.227) -0.761 (0.281)

Intl. Hub -0.118 (0.120) -0.355 (0.142)
Slot Const. Airport 0.568 (0.094) 0.530 (0.095)

Std. Dev. σF Constant 0.215 (0.035) 0.223 (0.036)

Note: standard errors in parentheses based on a bootstrap where markets are re-sampled and simulations
are drawn from a pool of 2,000 draws for each selected market.
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Table C.4: Model Fit: Average Market Shares and Prices Based on Different Sets of
Moments

Model Predictions
Text Estimates Carrier

Data (Table C.2) Moments
Average All Markets Any Service $436 $455 $455
Prices Nonstop $415 $436 $442
(directions weighted Connecting $440 $458 $459
by market shares)

Market Size Groups
1st Tercile Any Service $460 $465 $466
2nd Tercile Any Service $442 $460 $461
3rd Tercile Any Service $412 $441 $442

Average All Markets Any Service 7.1% 8.4% 8.5%
Carrier Market Nonstop 17.9% 20.5% 21.5%
Shares Connecting 4.9% 5.8% 5.5%

Market Size Groups
1st Tercile Nonstop 25.6% 29.8% 30.4%

Connecting 8.6% 8.0% 7.9%
2nd Tercile Nonstop 23.1% 26.6% 26.4%

Connecting 4.3% 5.5% 5.2%
3rd Tercile Nonstop 15.9% 18.7% 18.7%

Connecting 1.8% 3.4% 3.1%

Notes: Predictions from the model calculated based on twenty simulation draws from each mar-
ket from the relevant estimated distributions.

Fit. Table C.4 compares model fit for prices and market shares for the two sets of

estimates. The predictions are very similar to each other.

Counterfactuals. Finally, we consider predicted price effects and service changes

after a merger between United and US Airways. We compute predictions using the

four routes where the United and US Airways were nonstop duopolists and Amer-

ican provided connecting service and the ten routes where United and US Airways

were nonstop and there was another nonstop rival. We consider the case where we

account for selection by forming conditional distributions, under our baseline merger

assumption that the lower presence carrier is removed, so that our results correspond

to row 2 of Table 3.9 and the third row of Table 3.13. The results from the text and

the estimates using the smaller number of moments are almost identical.
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Table C.5: Predicted Effects of a United/US Airways Merger, under the Baseline
Merger Assumption, in Four Nonstop Duopoly Markets Based on Different Sets of
Moments and the Conditional Distributions

United/US Airways United & US Airways

Nonstop Duopoly Routes Nonstop with Nonstop Rivals

Text Estimates Carrier Text Estimates Carrier
(from Table 3.9) Moments (from Table 3.13) Moments

Mean Pre-Merger United/ $531.97 $531.97 $350.02 $350.02
US Airways Price

Predicted Change in +0.10 +0.08 +0.05 +0.03
Nonstop Rivals Post-Merger

Mean Predicted Post-Merger $573.37 $574.29 $377.24 $377.55
“New United” Price

B.2.6 Estimation Using Moment Inequalities

Our baseline estimates assume that carriers make service choices in a known

sequential order, so that there is a unique equilibrium. An alternative approach

is to allow for simultaneous choices, or an unknown order of moves, and estimate

parameters based on moment inequalities. We present results based on this approach

here.

The form of the inequalities is

h(y,X, Z,Γ) = E


ydatam − ̂E(ym(X,Γ))

̂E(ym(X,Γ))− ydatam

⊗ Zm

 ≥ 0

where ydatam are observed outcomes in the data and Zm are non-negative instruments.

̂E(ym(X,Γ)) and ̂E(ym(X,Γ)) are minimum and maximum expected values for ym

given a set of parameters Γ. The minimum and maximum are formed by using the

minimum and maximum values of the outcome across different equilibria or across

orders for each simulated draw from the importance density. For example, if the

outcome is whether firm A is nonstop, the lower bound (minimum) would be formed

by assuming that whenever there are equilibrium outcomes where A is not nonstop,
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one of them will be realized, whereas the upper bound (maximum) would be formed

by assuming that whenever there are equilibrium outcomes where A is nonstop, one

of them is realized. We can also do the same type of calculation of minima and

maxima for prices and market shares. If there is a unique outcome the minimum

and maximum will be the same. The expected values of the minimum and maximum

are calculated by re-weighting the different simulations in the same way that we do

when assuming a known sequential order, and we form moments using the same

outcomes and interactions that we use for our primary estimates. We note that our

use of moment inequalities differs from how it has been used in some entry-type

games, such as Eizenberg (2014) and Wollmann (2018), where selection on demand

and marginal cost shocks is ruled out by assumption and the moments are based on

an equation for fixed costs with an additive structural error.

The objective function that is minimized is

Q(Γ) = min
t≥0

[ ̂h(y,X, Z,Γ)− t]W [ ̂h(y,X, Z,Γ)− t]

where t is a vector equal in length to the vector of moments, which sets equal to zeros

the inrqualities that are satisfied. W is a weighting matrix, and, as for the baseline

estimates, we use a diagonal weighting matrix, dividing the moments into three

groups (service choices, shares and prices). The sum of the diagonal components

for each group equals one, with each element scaled so that it is proportional to the

inverse of the variance of the moment evaluated at an initial set of estimates, which

were calculated using the identity matrix.

Estimates. The ideal procedure for presenting the results of an estimation based

on inequalities is to present confidence sets for coefficients because the coefficients

may not be point identified. The construction of confidence sets is very difficult

with large numbers of parameters and moments, and, as we have emphasized in the

text, certain features of the data mean that we expect the parameters to be point
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identified even when we use inequalities in our setting.19 Therefore in the right-hand

column of Table C.6 we simply present the point estimates that we find minimize

the objective function. These estimates are very close to the estimates from the text

that are also reported in the table, which we view as confirming the result that we

would expect given the nature of the game that we are looking at and the data at

hand.

19Outcomes where no carrier provides nonstop service (the most common outcome in our data)
will always be unique, and a necessary condition for there to be multiple equilibria is that at least
two carriers do not have a dominant service strategy. In our setting, in the vast majority of markets
there is no more than one carrier with intermediate probabilities of nonstop service based on a
simple set of observables, which strongly suggests that multiplicity should be rare. See Appendix
B.3.
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Table C.6: Coefficient Estimates Based on Inequalities

(1) (2)
Baseline No Eqm.

Assumed Seq. Entry Selection
Demand: Market Parameters
Random Effect Std. Dev. σRE Constant 0.311 (0.138) 0.350
Nesting Parameter Mean βτ Constant 0.645 (0.012) 0.647

Std. Dev. στ Constant 0.042 (0.010) 0.040
Demand Slope Mean βα Constant -0.567 (0.040) -0.568
(price in $100 units) Business Index 0.349 (0.110) 0.345

Std. Dev. σα Constant 0.015 (0.010) 0.017

Demand: Carrier Qualities
Carrier Quality for Mean βCON Legacy Constant 0.376 (0.054) 0.368
Connecting Service LCC Constant 0.237 (0.094) 0.250

Presence 0.845 (0.130) 0.824
Std. Dev. σCON Constant 0.195 (0.025) 0.193

Incremental Quality Mean βNS Constant 0.258 (0.235) 0.366
of Nonstop Service Distance -0.025 (0.034) -0.041

Business Index 0.247 (0.494) 0.227
Std. Dev. σNS Constant 0.278 (0.038) 0.261

Costs
Carrier Marginal Cost Mean βMC Legacy Constant 1.802 (0.168) 1.792
(units are $100) LCC Constant 1.383 (0.194) 1.331

Conn. X Legacy 0.100 (0.229) 0.134
Conn. X LCC -0.165 (0.291) -0.077

Conn. X Other Leg. -0.270 (0.680) 0.197
Conn. X Other LCC 0.124 (0.156) 0.164

Nonstop Distance 0.579 (0.117) 0.589
Nonstop Distance2 -0.010 (0.018) -0.012

Connecting Distance 0.681 (0.083) 0.654
Connecting Distance2 -0.028 (0.012) -0.024

Std. Dev. σMC Constant 0.164 (0.021) 0.159

Carrier Fixed Cost Mean βF Legacy Constant 0.887 (0.061) 0.913
(units are $1 million) LCC Constant 0.957 (0.109) 1.015

Dom. Hub Dummy -0.058 (0.127) -0.140
̂Log(Connecting Traffic) -0.871 (0.227) -0.713

International Hub -0.118 (0.120) -0.168
Slot Const. Airport 0.568 (0.094) 0.602

Std. Dev. σF Constant 0.215 (0.035) 0.198

Notes: standard errors, in parentheses, are based on 100 bootstrap replications where 2,028 markets are
sampled with replacement, and we draw a new set of 1,000 simulation draws (taken from a pool of 2,000
draws) for each selected market. The Log(Predicted Connecting Traffic) variable is re-scaled so that for
routes out of domestic hubs its mean is 0.52 and its standard deviation is 0.34. Its value is zero for non-
hub routes. Distance is measured in thousands of miles.
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B.3 Multiple Equilibria, Identification and the Explanatory Power
of Observed Variables for Service and Entry Choices

A striking result is that, at the estimated parameters, less than 2% of simula-

tions from our model could support a different equilibrium outcome (i.e., different

service choices) if we allowed for simultaneous moves or any alternative sequential

order. As a result it is not surprising that our coefficient estimates are very similar

when we allow for these alternative possibilities (Appendix B.2.6). Several scholars

have commented to us that they find this result surprising given earlier work exam-

ining airline entry decisions, notably Berry (1992) and Ciliberto and Tamer (2009),

has found that assumptions about the timing of decisions can affect estimates quite

dramatically and that it is common for a simultaneous move game to support mul-

tiple different outcomes as equilibria (for example, Ciliberto and Tamer find this is

true for 95% of their simulations). In this Appendix, we explain why models esti-

mated using service choices and entry decisions, as defined in the existing literature,

can differ so much on this dimension.

We define a carrier to be nonstop based on the number of nonstop flights that a

carrier has per quarter (at least 64 in each direction to be defined as nonstop) and the

proportion of passengers carried that travel direct (at least 50% without a change

of planes). Other carriers are connecting. Carriers that provide nonstop service

serve many more passengers than connecting carriers: the median nonstop (named)

carrier serves over 1,000 round-trip passengers in DB1 (which is a 10% sample),

whereas the median connecting carrier serves only 38 round-trip passengers, and, as

noted in Appendix B.1 there are few carriers close to the 64 or 50% thresholds.20

We focus on nonstop carriers as it is reasonable to expect that only carriers that

serve large numbers of passengers are likely to have market power, and because in

the data, a monopoly nonstop carrier appears able to charge significantly higher

prices. As we will show below, observable variables are also able to explain which

carriers are likely to offer nonstop service.

20The statistics discussed in this paragraph are for the named carriers we use, and not the
composite Other Legacy and Other LCC carriers.
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In contrast, in Berry (1992) and Ciliberto and Tamer (2009), a carrier is

defined as an entrant if it carries, by any type of service, a relatively small number

of passengers (for example, 20 in Ciliberto and Tamer (2009)). In the data, there are

many carriers with passenger counts that are right around these thresholds: the 25th

percentile number of connecting passengers is 14 and the median is 38. Given this

pattern and the sampling error in the DB1 sample, it is naturally quite difficult to

predict which connecting carriers will be counted as entrants on a particular route.

We illustrate how well our data explains service choices and entry by estimating

several probit specifications where the dependent variable are indicators for nonstop

service or entry and the explanatory variables are the observed characteristics of the

carrier and market characteristics (such as market size). The results are reported in

Table D.1.

In the first four columns the dependent variable is equal to one if the carrier

is nonstop, and we use the 8,065 carrier-market observations in our data. The

regressors in column (1) are observed market characteristics, including the average

of our market size measure across directions, and the observable carrier variables that

we include in our specification of fixed costs, including our measure of connecting

traffic that will be generated if the route is served nonstop. Despite the simplicity of

the specification the pseudo-R2 is 0.52. Column (2) replaces our market size measure

with the geometric average population measure that is most commonly used in the

literature: the pseudo-R2 decreases to 0.45, indicating that this is a poor alternative

to our market size measure (a result which is consistent with the results presented

in Appendix Table B.1). Column (3) adds measures of the carrier’s presence at each

endpoint, which we allow to affect demand, to the first specification, and the pseudo-

R2 increases to 0.65. In column (4) we include interactions between a number of

the variables in the specification (as noted beneath the table) as well as measures

of the number of rival carriers, and we find the pseudo-R2 increases to 0.72.

In column (5) we consider instead the decision to enter a market (i.e., to

provide either type of service) among the carriers that provide service (to any des-

tination) at both airport endpoints and use a specification similar to column (3).

174



Figure D.1: Predicted Probabilities of Carrier Service Choices (based on Table D.1,
column (3)) and Entry Decisions (based on Table D.1, column (5))

This is the type of binary outcome modeled in in Berry (1992), Ciliberto and Tamer

(2009) and Ciliberto et al. (2018). The pseudo-R2 is much lower (0.136).

What is the implication of these results for whether our model should be

expected to support multiple equilibrium outcomes? A game with binary discrete

choices can only support multiple outcomes if the more profitable option depends

on what other players do for at least two of the players (i.e., at least two players do

not have a dominant strategy). Intuitively, players are much less likely to be on the

margin between different options when observed variables (that do not reflect what

their rivals choose) strongly predict what their service choices will be. The service

choice and entry models are clearly very different in this regard.

To illustrate, Figure D.1(a), shows the distribution of predicted probabilities

for a carrier providing nonstop service using 40 bins based on column (3). We ob-

serve that the predicted probabilities are concentrated either very close to zero or

very close to one. Defining intermediate as predicted probabilities between 0.05 and

0.95 based on the column (3) estimates, there are 482 markets (less than 24% of the

total) where two or more carriers have intermediate nonstop service probabilities

(using thresholds of 0.1 and 0.9, 302 markets would have at least two carriers with

intermediate probabilities). In contrast, the predicted probabilities for entry choices,

shown in Figure D.1(b) (based on column (5)), lie mainly in the range from 0.2 to

0.8, and 96% of markets have two or more carriers with intermediate entry probabil-

ities. When we perform the exercise of counting how many different outcomes our

parameter estimates can support under different timing assumptions, discussed in

Section 3.5.2, we can see the connection between the predicted probabilities of non-

stop service in these simple regressions and the multiplicity of equilibrium outcomes:

the probability of a simulation draw for one of the 482 intermediate probability mar-

kets supporting multiple outcomes is two-and-half times as high as for the remaining

markets.

175



Table D.1: Probit Models of Carrier Service Choice and Entry Decisions

(1) (2) (3) (4) (5)
Dep. Var. Nonstop Nonstop Nonstop Nonstop Enter

Low Cost Carrier 0.808 0.782 0.537 1.681 0.514
(0.0516) (0.0476) (0.0685) (0.395) (0.0376)

Slot Constr. Airport 0.587 0.724 0.541 0.232 -0.207
(0.0961) (0.0927) (0.112) (0.132) (0.0650)

Carrier Intl. Hub 0.946 0.836 0.0385 -0.165 0.158
(0.0748) (0.0738) (0.0894) (0.113) (0.0801)

Carrier Dom. Hub -6.161 -6.942 -6.578 -34.24 -3.740
(0.647) (0.623) (0.648) (47.37) (0.627)

Carrier Pred. Connecting 1.355 1.464 1.160 5.701 0.611
Traffic Measure (0.107) (0.104) (0.108) (7.932) (0.106)

Route Business Index -0.663 -1.364 0.198 0.670 -0.126
(0.293) (0.268) (0.348) (0.387) (0.142)

Our Market Size 1.595 2.019 -0.176 -0.0552
/10,000 (0.0649) (0.0828) (0.671) (0.0405)

Geom. Avg. Pop. 0.0122
/10,000 (0.00112)

Carrier Max. 3.543 4.334 1.622
Endpoint Presence (0.144) (0.626) (0.109)

Carrier Min. 1.916 6.814 4.424
Endpoint Presence (0.276) (2.510) (0.266)

Number Rival -0.167
Carriers in Market (0.0237)

Number Rival Low Cost 0.167
Carriers in Market (0.0663)

Constant -2.065 -1.581 -3.930 -4.131 -0.312
(0.127) (0.115) (0.177) (0.387) (0.0662)

Variable interactions N N N Y N

Observations 8,065 8,065 8,065 8,065 12,550
Pseudo-R2 0.522 0.450 0.653 0.726 0.134

Notes: standard errors in parentheses. Observations in columns (1)-(4) are the
carrier-market observations that are included in our estimation dataset. Our Mar-
ket Size is the average of our market size estimate across directions. Geom. Avg.
Pop. is the geometric average of the MSA endpoint populations, a popular alter-
native measure of market size. We measure carrier presence (the number of routes
served nonstop by the carrier out of the total number of routes served nonstop by
any carrier) at the carrier-airport level and include the higher and lower values sepa-
rately in the regressions. Observations in column (5) include the observations in our
estimation dataset plus observations for carrier-markets where the carrier provides
some service at both endpoints but does not meet our criteria for being a competi-
tor on the route in question. The interactions that are included in column (5) are
between LCC, domestic hub, the predicted connecting traffic, market size and the
two presence measures.
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The service choice probit results also have implications for the identification

of the model. As discussed in Section 3.4, one argument for why the demand and

marginal cost parameters are point identified is that there are a large number of

markets and carriers for which observed covariates essentially determine their ser-

vice choices so that there should be (almost) no selection on unobservable demand

or marginal cost shocks when they make these choices. Based on the column (3) es-

timates, 58% of market-carriers predicted nonstop service probabilities are less than

0.01 or more than 0.99, meaning that we have a large number of observations where

conventional identification arguments for the demand and marginal cost equations

should apply.
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