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Markov models are a major class within the system of multi-state models for the

analysis of lifetime or event-time data. Applications abound, including the estimation

of lifetime of ultra-cold neutrons, the bias correction of the apparent magnitude

distribution of the stars in a certain area of the sky, and the survival analysis of

clinical trials. This thesis addresses some of the problems arising in the analysis of

right-censored lifetime data. Clinical trials are used as examples to investigate these

problems. A Markov model that takes a patient’s disease development into account

for the analysis of right-censored data was first constructed by Fix and Neyman

(1951). The Fix-Neyman (F-N) model is a homogeneous Markov process with two

transient and two absorbing states that describes a patient’s status over a period of

time during a cancer clinical trial.

This thesis extends the F-N model by assuming the transition rates (hazard

rates) to be both state and time dependent. Recurrent transitions between relapse

and recovery are allowed in the extended model. By relaxing the condition of time-



independent hazard rates, the extension increases the applicability of the Markov

models. The extended models are used to compute the model survival functions,

cumulative hazard functions that take into consideration of right censored obser-

vations as it has been done in the celebrated Kaplan-Meier estimator. Using the

Fix-Neyman procedure and the Kolmogorov forward equations, closed-form solu-

tions are obtained for certain irreversible 4-state extended models while numerical

solutions are obtained for the model with recurrent events. The 4-state model is

motivated by an Aplastic Anemia data set. The computational method works for

general irreversible and reversible models with no restriction on the number of states.

Simulations of right-censored Markov processes are performed by using a se-

quence of competing risks models. Simulated data are used for checking the perfor-

mance of nonparametric estimators for various sample sizes. In addition, applying

Aalen’s (1978) results, estimators are shown have asymptotic normal distributions.

A brief review of some of the literature relevant to this thesis is provided. Ref-

erences are readily available from a vast literature on the survival analysis including

many text books. General Markov process models for survival analysis are described,

e.g., in Andersen, Borgan, Gill and Keiding (1993).
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when T = ∞, the red solid line is Ŝ(t) when T = 5, the red dashed line is Ŝ(t)
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Chapter 1: Introduction

Statistical analyses of lifetime data are routinely carried out in a broad spec-

trum of scientific disciplines. Depending on the area of applications, a lifetime could

be the lifetime of a human being or an item produced in a factory, or the doubling

time of the size of a malignant tumour, or the survival time of a cancer patient

measured fom the time of diagnosis, or the time to disintegration of an ultra-cold

neutron, or the time to move to another house, and numerous others. In other words,

a lifetime is considered as a waiting time to an event under study which is measured

from a well-defined initial condition of a subject under study to the time of occur-

rence of a specific event of interest. Thus, a lifetime, a survival time and an event

time will be used interchangeably in this thesis.

Of particular interest in the statistical analysis of lifetime data are the study of

the survival function, life expectation function, failure rate (hazard rate), cumulative

hazard rate function. Under some conditions, these functions provide alternative

ways of describing the distribution of a lifetime. Widely used life tables are con-
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structed that display simultaneously the estimates of these functions based on data

sets of lifetimes.

Collection of lifetime data is by no means simple. The method of collection

determines how a model for lifetime data should be constructed for statistical anal-

ysis. Due to technical difficulties that vary with the field of applications, sampling

limitations, and cost considerations, it is rather unusual to obtain a data set that

has all completely observed lifetimes. Typically some of the lifetime observations in

the data set can only be partially recorded. Statistical theory shows that partially

observed data must be included in the statistical analysis. Otherwise the findings

would be biased. Inclusion of partially observed lifetimes in the analysis depends on

the sampling plan for data collection and the model constructed for the data.

Depending on the particular sampling plan employed, an observed lifetime can

be incomplete in the sense that it is censored, randomly truncated, length biased,

size biased, interval censored or possibly other forms of incompleteness. There is

a vast statistical literature dealing with statistical theory, model constructions and

applications of incomplete lifetimes.

This thesis addresses some of the statistical problems arising in right-censored

data. One of the most widely used model is the traditional right-censoring models

(to be called right-censoring model for short) for survival analysis which refers to

2



the joint distribution of (V, δ) defined in (2.1) under the stochastic independence

assumption of X and C. Some (Meira-Machado et al. (2009) [37]) call it a mortality

model where the concern is with the time-to-death of a patient regardless a patient’s

disease development leading to the end point of death. A stochastic model that

takes patient’s disease development into account for the analysis of right-censored

data was constructed by Fix and Neyman (1951) [23]. The Fix-Neyman (F-N) model

is a homogeneous Markov process with two transient and two absorbing states that

describes a patient’s status during a cancer clinical trial where the statuses are in-

remission (or recovery), relapse, death and loss to follow up. When casting the

right-censoring model into a 3-state Markov process with one transient state and two

absorbing states of death and loss to follow up, the right-censoring model becomes

a special case of the F-N model. The difference between the models is that all of

the transition rates (hazard rates) in the F-N model are assumed to be independent

of the time t while those in the right-censoring model can be both state and time

dependent.

In this thesis, we extend the F-N model by letting all of the transition rates

(risks) to be both state and time dependent. That is, we extend the Fix-Neyman

model to a non-homogeneous finite-state Markov process. The extension is necessary

as it is well known that in many applications, time-independent hazard rates do not

3



fit the data. A glaring example is the survival function of human lifetimes shown in

Figure 1.1. The survival curve does not have an exponential distribution. It would

be too good to be true if the survival curve had an exponential distribution with

age-independent failure.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x (year)

S
(x

)

Figure 1.1: Comparison of an exponential survival function and the survival function
of lifetime obtained by converting the life expectancy function given in the United
States Life Tables 2008 (Arias (2012) [10]). The red line is the exponential survival
function. The black line is the actual survival function of lifetime.

Applying the Fix-Neyman (F-N) procedure, in Section 2.2 we derive the sur-

vival function of an individual that takes into account right-censored observations

(due to the risk of loss to follow-up). This result answers an identifiability prob-

lem, namely that from right-censored non-homogeneous Markov process, the sur-

vival function of an individual under study is identifiable. Although identifying

4



the survival function using the F-N procedure is elegantly simple, computational

complexities increase with the number of states in the model. For instance, it is

straightforward to compute the survival function in the right-censoring model, but

for the extended F-N model with time and state-dependent transition rates, an ex-

plicit analytical solution for the survival function is only available in some special

cases. For more complicated transition patterns, we obtained the solutions for the

survival function numerically.

Markov models have been used broadly in the analysis of lifetime data. General

Markov process models for survival analysis are succinctly described in Andersen,

Borgan, Gill and Keiding (Chapter III.1.2, 1993) [7]. The Fix-Neyman (1951) [23]

paper was discussed in early years after its publication, e.g. Chiang (1968) [14], Cox

(1972) [18], Prentice and Kalbfleisch (1978) [43]. But it seems to have disappeared

in more recent literature. As far as we know, the F-N procedure is hardly used.

Although the F-N procedure may not be needed for some Markov models with 2

or 3 states and simple transition paths, for more states with complicated transition

paths, the advantage of the F-N procedure becomes clear.

Chapter 2 gives a brief review of some of the literature relevant to this thesis.

Section 2.2 presents the F-N procedure and compares it with the usual method of

calculating the survival function in the right-censoring model. Details can be found

5



in Yang (2013) [50]. Section 2.3 shows that technically the Markov models considered

in this thesis unify the study of the survival function for some important multi-state

models such as the multiple decrement model, the illness-death model, Chiang’s

staging model, the progressive model and the F-N model. The section also includes

a review of an extension to models for bivariate survival lifetimes. Section 2.4 deals

with various approaches to estimation in Markov multi-state models. Parametric,

nonparametric estimation and regression problems are reviewed separately. Section

2.5 notes some more recent results on non-Markovian models.

Chapter 3 is devoted to the construction of an irreversible Markov model. The

model is motivated by an clinical trial of patients with Aplastic Anemia(AA). We

use an irreversible 4-state non-homogeneous Markov model ξo to describe the pro-

gression of a patient with AA. This is covered in Section 3.2. Section 3.3 gives a

construction of the model by using competing risks at every transition time. The

construction is needed for estimation and simulation. In Section 3.4, we state the es-

timation problems of the cumulative hazard functions, transition probabilities, and

survival function and explain the available data. Section 3.5 carries out the es-

timation problems. Section 3.5.1 constructs the estimators for cumulative hazard

functions. Section 3.5.2 deals with estimation of transition probabilities. The es-

timation requires solving the Kolmogorov forward equations for explicit analytical

6



forms of the transition probabilities. Solutions are obtained. Section 3.5.3 derives

the model solution for the sought-after survival function S(t) which is a function

of transition probabilities obtained in Section 3.5.2. the estimator of the survival

function is obtained whose distributional properties are checked by simulation data.

Section 3.7 shows the estimator of the cumulative hazard function constructed in

this thesis is identical to that given by Aalen (1978b) [2]. Therefore the asymptotic

properties established by Aalen apply to our estimators as well.

Chapter 4 contains the simulation of irreversible Markov processes. Simulated

data are used to examine the distributional properties of the estimators developed

in Chapter 3. Results are presented in Section 4.2. In Section 4.3, we carry out

goodness of fit testing of the model by statistical hypothesis testing using both a

modified Kolmogorov-Smirnov test and a chi-squared test.

Chapter 5 is concerned with estimation and simulation in reversible Markov

models. The treatment is similar but not identical to that for irreversible Markov

models. Only differences between the two are discussed.

Chapter 6 concludes this thesis.

7



Chapter 2: Literature Review

2.1 Introduction

Markov models are a major part of the multi-state models. The review is

primarily on Markov multi-state models.

Section 2.2 discusses the F-N procedure and compares it with the usual method

of calculating the survival function in the traditional right-censoring model. Stochas-

tic models for lifetime data and statistical estimation are reviewed separately in

Sections 2.3 and 2.4 respectively. Section 2.5 notes some recent development on

non-Markovian models. Section 2.6 reviews several well-known models for recurrent

event analysis.

8



2.2 Comparison of the Fix-Neyman Model and the Right-Censoring

Model

It is convenient to compare the F-N model and the right-censoring model by

an example.

A prototype example of right-censored data is the collection of survival times

from a clinical trial of cancer patients who have received a certain method of treat-

ment. After the treatment, each patient is followed up over a period of time. If the

death occurs in the followup period, his/her survival time can be determined. Other-

wise, it is only known that the survival time is larger than the length of the followup

period. However, the length of the follow up period varies with each patient. This

could be due to a patient’s withdraw from the clinical trial (loss to followup), or the

termination of the clinical trial, or possible other reasons. Formally, let X denote the

survival time of a patient and C the length of his/her followup time. The observable

data on X are given by a pair of random variables

V = min(X,C) and δ (2.1)

where δ = I[X ≤ C] is an indicator which is one if X ≤ C and zero otherwise. Only

if δ = 1, is X completely observable. When δ = 0, we say X is right-censored by

9



C. Under the assumption of stochastic independence of X and C, (2.1) is called the

(classical) right-censoring model.

Thus instead of a direct measurement of X, we can only observe V and δ.

The question arising is whether the survival function S(t) = P [X > t] for all t can

be identified from the joint distribution of V and δ. The answer is affirmative if

we assume that X and C are stochastically independent random variables. (To be

correct, we also require that the range of C is larger than that of X for nonparametric

estimation of the survival function). Under the independence assumption, (2.1) is

called a right-censoring model of X. The right-censored data from all n patients are

(Vj, δj) j = 1, . . . , n. (2.2)

The right censored data are broadly used in the estimation of the survival func-

tion of a patient as well as in other scientific investigations. Asymptotic properties

of the celebrated Kaplan-Meier (K-M) nonparametric estimator (Kaplan and Meier

(1958) [32]) of S have been established under the right-censoring model (2.1).

The F-N model (1951) [23] was constructed for analyzing survival times of

patients who received a particular treatment of breast cancer. In calculating the

survival function of a patient, Fix and Neyman took into account of the available

data on each patient’s status with regard to relapse, recovery, loss to followup and

10



death. Let ξo(t) represent the status of a patient at time t. Fix and Neyman

constructed a model {ξo(t) : 0 ≤ t ≤ T )} where a patient’s changes in status are

governed by a 4-state homogeneous Markov process, and T is the termination time

of the clinical trial. The four states are:

S0: a patient has completed treatment and is in remission

S1: a patient has relapsed

S2: a patient is dead

S3: a patient is lost to followup

At any time t, the infinitesimal matrix Qo and possible transitions of a patient

are shown in Figure 2.1 with transition rates q01, q02, q03 from S0 to S1, S2, S3,

Qo =

(q00 q01 q02 q03
0 q11 q12 q13
0 0 0 0
0 0 0 0

) S0 S1

S2 S3

Figure 2.1: F-N model.

respectively and q12, q13 from S1 to S2, S3, respectively. Note that Fix and Neyman

[23] allow the transition rate q10 > 0 from S1 to S0. For simplicity of discussing the

F-N procedure, a simpler version of setting q10 = 0 is used in Figure 2.1 (see Yang

[50]).
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Over the course of the clinical trial, a patient can experience one of the following

four possible transition paths:

(1) S0 → S1 → S2

(2) S0 → S1 → S3

(3) S0 → S2

(4) S0 → S3

The right-censoring in the F-N model is much more complicated than that of the

right-censoring model (2.1). Note that path (2) or (4) results in a right-censored

survival time, that is, knowing only the survival time Xo > t, while path (1) or (3)

gives a complete observation of survival time. For simplicity of illustration, we set

T =∞. The survival function of Xo of a patient in the presence of loss to followup

can be identified in the Markov process ξo by

So(t) = P [Xo > t] = 1− P [ξo(t) = 2|ξo(0) = 0], t ≥ 0. (2.3)

Fix and Neyman showed that the (net) survival function S of a patient can

be obtained by by introducing another Markov process {ξ(t) : t ≥ 0} with states

S0, S1 and S2, where ξ(t) represents the status of a patient in the 3-state Markov

12



process with the risks q03 and q13 to loss-to-followup eliminated, and the transition

rates q01, q02, q12 remain the same as in Figure 2.1.

Q =

(q00 q01 q02
0 q11 q12
0 0 0

) S0 S1

S2

Figure 2.2: F-N model with censoring state eliminated.

The infinitesimal matrix Q and possible transitions in this Markov process are

shown in Figure 2.2. The true survival function S is given by

S(t) = P [X > t] = 1− P [ξ(t) = 2|ξ(0) = 0], t ≥ 0 (2.4)

This establishes the identifiability of S from the F-N model.

To compare the F-N model with the right-censoring model, we reformulate

the right censoring model (2.1) as a 3-state Markov process, {ηo(t) : t ≥ 0} where

ηo(t) represents the status of a patient at time t. The three states are S0, S2, S3.

At any given time t, the possible transitions of a patient are shown in Figure 2.3

with transition rates q02 and q03 from S0 to S2 and S3 respectively. Over the time of

clinical trial, a patient takes one of the two possible transition paths:

(1) S0 → S2
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Q =

(q00 q02 q03
0 0 0
0 0 0

) S0

S2 S3

Figure 2.3: Right-censoring model.

(2) S0 → S3

It is easy to show that the joint distribution of the right-censored observations

V = min(X,C) and δ in (2.1) correspond to that of the Markov process ηo by

P [V ≤ t, δ = 1] = P [ηo(t) = 2|ηo(0) = 0] (2.5)

P [V ≤ t, δ = 0] = P [ηo(t) = 3|ηo(0) = 0] (2.6)

Here, we take the hazard rates of X and C to be q02 and q03 respectively. To have

exact correspondence, we can assume that q02 and q03 are time-dependent. To identify

the survival function S using the F-N procedure is to derive it from another Markov

process,{η(t) : t ≥ 0} which is obtained by eliminating the risk q03 of loss-to-followup

in the process ηo but keeping the same risk q02 for S2. The process η has only one

transient state S0 and one absorbing state S2. It is trivial to compute the survival
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function S. It is given by

S(t) = P [X ≥ t] = P [η(t) = 0|η(0) = 0] (2.7)

For computing the survival function that is free of right censoring, Neyman (1951)

[23] [40] introduced the notion of crude and net survival probabilities in his discussion

of an illness and death model. The survival function So (see (2.3)) computed from

the F-N model for the crude data is called crude survival function. The sought-after

survival function S (see (2.4)) that is free from the risk of right-censoring is called the

net survival function. Identifying the survival function in the classical right-censoring

model is the same problem that Fix and Neyman investigated but for more general

right-censoring Markov models.

The F-N model includes the relapse information in the estimation of the survival

function, which is a better utilization of the available data than that of the classical

right-censoring model in (2.1). However it increases the complexity of the censoring

patterns and computations. Fix and Neyman obtained an explicit solution for S for

constant transition rates and carried out parametric estimation of S.

With the F-N procedure we can unify the method for identifying and comput-

ing survival probabilities for a large class of Markov multi-state models with time and

state dependent transition rates. However the computational complexities increase
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quickly with the increase of the number of states. We are able to obtain closed-form

solutions only in special cases. This is shown in the derivation of closed-form solu-

tions for transition probabilities and survival function for irreversible 4-state Markov

models (see Figure 2.4). For reversible 4-state Markov models (see Figure 2.5), we

developed numerical methods to obtain the solutions. The numerical methods can

be used for general Markov models.

Q =

q00(t) q01(t) q02(t) q03(t)
0 q11(t) q12(t) q13(t)
0 0 0 0
0 0 0 0


S0 S1

S2 S3

Figure 2.4: Irreversible model.

Q =

q00(t) q01(t) q02(t) q03(t)
q10(t) q11(t) q12(t) q13(t)

0 0 0 0
0 0 0 0


S0 S1

S2 S3

Figure 2.5: Reversible model.

2.3 Absorbing Markov Multi-state Models

A multi-state model is a stochastic process, ξ = {ξ(t) : t ≥ 0}, that de-

scribes the transitions of a study subject from one state to another over a period

of observation. Multi-state models are used extensively in science and engineering
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especially in biomedical research such as observing the status of patients over time

in a clinical trial. There are a multiple number of states that a patient may advance

to before reaching the end point (the event of interest). When such change data

are available in the trial, multi-state models take into account of these changes in

the computation and estimation of a patient’s survival function, cumulative hazard

function and others. Finite state absorbing Markov processes play important roles

in multi-state models. One of the advantages of absorbing Markov models is that

the survival function of a subject under study is identifiable because the Markovian

property presupposes that the competing risks at every transition are stochastically

independent. Tsiatis (1975) [49] gave an example of nonindentifiable (net) survival

functions in a multiple decrement model with dependent competing risks.

For short, we shall refer to absorbing Markov multi-state models as Markov

models. In Section 2.5 some non-Markov models are presented. Many commonly used

models for survival analysis are Markov models. These models differ by the number

of transient states and absorbing states, the transition paths and the assumptions of

the transition rates as deemed appropriate for applications. For example, the right-

censoring model (see (2.3)) has one transient state (alive) and two absorbing states

(death and loss to followup). Multiple decrement models (see (2.6)) (commonly

called competing risks models) are perhaps the earliest extension of right-censoring
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models which have one transient state (alive) and a finite number of absorbing states

for different causes of death. The simple illness and death model (e.g., Andersen and

Keiding (2002) [9], PROVA Study Group (1991) [29]) (see (2.7)) has two transient

states (healthy, illness) and one absorbing state (death). Chiang’s multiple staging

model (1980)[15] (see (2.8)) has k transient states representing different stages of

a progressive disease, and one absorbing state (death). A special case of the k-

progressive model (see (2.9)), the F-N model (see (2.1)), has two transient states

(recovery, relapse) and two absorbing states (death, loss to followup).

S0

S1 S2
. . . Sk

Figure 2.6: Transitions in the multiple decrement model.

S0 S1

S2

Figure 2.7: Transitions in the simple illness-death model.

Suppose a Markov model {ξ(t) : t ≥ 0} is a (k + 1)-state irreversible model.

Let qij denote the transition rate of an individual moving from state i to state j for
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S0 S1
. . . Sk−1

Sk

Figure 2.8: Transitions in Chiang’s multi-staging model.

0 1 . . . k

Figure 2.9: Transitions in the k-progressive model.

all states i, j. Then its infinitesimal matrix is given by

Q =


q00 q01 · · · · · · · · · q0k

0 q11 q12 · · · · · · q1k

0 0 q22 · · · · · · q2k
...

...
...

...
...

...

0 0 0 0 0 0

 (2.8)

One sees that the qij below the diagonal are zero and the transition paths are in

one direction and irreversible (e.g Figure 2.4). Then the transition probabilities can

be solved recursively by using the Chapman-Kolmogorov equations. The survival

function can then be solved explicitly:

S(t) = P [X > t] = P [ξ(t) 6= k|ξ(0) = 0]. (2.9)

Calculation of the transition probabilities from the given transition rates are of in-

dependent interest in survival analysis.
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Chiang (1964, 1968) [13][14] extended the F-N model of two transient and two

absorbing states by including more transient and absorbing states in the model.

Results obtained by Chiang include explicit solutions for the transition probabilities

and multiple transition probabilities. In the special case of multiple decrement model,

explicit formulas for the crude and net survival probabilities are available (Chiang,

Chapter 11, 1968 [14]) where the transition rates are assumed to be a product cijλ(t)

of positive constants cij and a hazard rate function, λ(t) where λ(t) is a function of

the time t but independent of states for all i, j. Note that this model includes the

Cox regression model as a special case.

Chiang’s multi-staging model was generalized by J.Q. Fang in his unpublished

Ph.D thesis (1985) [21]. The generalization allows any finite number of transient

states and absorbing states. Fang’s model deals with time-dependent covariates

under the assumption of proportional hazards. The baseline hazard is assumed to

have log-linear form. See Section 2.4.3.

In the models discussed so far, the interest is in the survival time distribution

of a single individual. Due to possible dependence of the survival times of the study

subjects, there are many practical problems that require modeling of bivariate sur-

vival times (X1, X2) of two subjects, X1 and X2 (Freund 1961 [24], Marshall and

Olkin 1967 [35]), such as the survival times of twins, or the times to loss of hearing
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of each of the two ears, or the failure times of two related components of a system

in engineering reliability. The structure of the model is shown in Figure 2.10. Ex-

tensions to the two classical models includes Kvam and Samaniego (1997) [33] which

considers a generalization to k dimensions.

Q =

q00 q01 q02 0
0 q11 0 q13
0 0 q22 q23
0 0 0 0

 S0: Both alive

S1: Individual A failed

S2: Individual B failed

S3: Both failed

Figure 2.10: Transitions in the bivariate model.

2.4 Approaches to Estimation in Markov Multi-state Models

As noted before, in the context of multi-state models, our Markov models

always refer to absorbing Markov processes. Also hazard rate functions or transition

rate functions are referred to as hazard functions or transition rates respectively.

Typically Markov models are defined by specifying the transition rates qij(t),

i, j ∈ S. The transition rates are unknown and to be estimated from the data. The

literature on the estimation is huge and there are plenty of books on the subject, e.g.

Andersen (1997) [6], Andersen et al.(1993) [7], Kalbfleisch and Prentice (2002) [31]
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and Collett (2003) [16], to name a few. Our review is necessarily narrowly focused

on those more closely related to this thesis. We look at some of the very important

results in each of the three categories: parametric, nonparametric and regression

estimation.

2.4.1 Parametric Estimation

Estimation of constant transition rates in the homogeneous Markov models are

fairly well-developed. Maximum likelihood estimates (MLE) for the staging model

with constant transition rates are given in Chiang (1980) [15]. MLE under the F-N

model with covariates are obtained by Beck (1979) [11] and the model includes the

illness and death model as a special case. See also Beck and Chiang (1981) [12].

In many applications, modeling time-dependent transition rates is needed. Ef-

fort aiming at developing time-dependent Markov model includes a procedure to par-

tition the observation period [0, T ] into small time intervals [al−1, al], i = 1, 2, . . . , n,

0 = a0 < a1 < . . . < an = T . On each time interval the transition rate qij(t) is

assumed to be constant. Then qij(t) is a piecewise function defined by

qij(t) = qlij, al−1 < t ≤ al, l = 1, 2, . . . , n

where the al’s are known constants. See examples in Andersen et al.(1993) [7] and
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Pérez-Ocón et al.(2001) [42]. The assumption of constant transition rates can be

checked by hypothesis testing. A likelihood ratio test can be used to check the fit of

the piecewise constant model to the constant transition rates model.

A better model could be obtained by increasing the number of intervals at the

cost of increasing number of unknown parameters (transition rates), which not only

increases the computation complexity but also requires larger sample sizes. Instead of

piece-wise constant functions, for a special Markov model, explicit solutions for age-

specific prevalence probabilities for time (age) and state dependent transition rates

were derived (Yang and Chang (1990) [51]). Depending on the choice of transition

rate functions, these prevalence probabilities can be non-monotonic, a requirement

for the model to fit the seroepidemiology surveys that exhibit declining prevalence

in older age. In Efromovich and Chu (2018) [20], transition rates are approximated

by Fourier series. The coefficients of the Fourier series are estimated by moment

estimators.

Generally, the requirement on the data is less stringent for parametric inferences

than that for nonparametric inferences. For example, one can carry out estimation

of the parameter λ in the exponential distribution with truncated data observed over

the time interval [0, T ] for a finite T . Once an estimator λ̂ is obtained, an estimated

survival function is e−λ̂t for all t ≥ 0. But one cannot obtain a non-parametric
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estimator of the survival function larger than the value of T with the truncated

data.

Since the publication of Aalen (1975,1978) [1][2], counting processes formula-

tion of the data and models has become one of the fundamental methods for lifetime

analysis. We can convert our observed Markov multi-state processes into counting

processes. Suppose there are n individuals in a study. Then the Markov multi-state

process ξk with state space S for the kth individual is observed over the time inter-

val [0, τk], k = 1, 2, . . . , n. This is equivalent to recording ξk(0) and the following

counting processes:

Nk
ij(t) = number of direct transitions from i→ j in [0,t], i, j ∈ S, t > 0

described by the times of these transitions

0 < Y k1
ij < . . . < Y

kNij(τk)
ij ,

where Y km
ij is the length of time between the mth direct transition from state i

and j for the kth individual, m = 1, 2, . . . , Nij(τk), k = 1, 2, . . . , n. Let Nij(t) =
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∑n
k=1N

k
ij(t), Z

k
i (t) = I{ξk(t−) = i}, Zi(t) =

∑n
k=1 Z

k
i (t), then the likelihood is

n∏
k=1

∏
i 6=j

Nk
ij(τk)∏
l=1

qij(Y
il
ij ) exp

(
−
∫ τk

0

qij(t)Z
k
i (t)dt

)
.

This is the likelihood for the general case. It can be simplified if constant or piece-

wise constant transition rates are assumed. Parametric inference is readily available

in statistics books. In situations where the maximum likelihood estimator is difficult

or even impossible to compute, M-estimators can be used. See Andersen et al.(1993)

[7] for examples.

2.4.2 Nonparametric Estimation

Aalen (1975, 1978) [1][2] introduced a nonparametric estimator Λ̂ij(t) of the

cumulative hazard function Λij(t) for right censored data as a stochastic integral

with respect to a counting process. Such a formulation permits the use of martin-

gale calculus to obtain statistical properties of the estimator. Suppose there are n

individuals under observation. Let Nij(t) be the number of individuals moving di-

rectly to state j from state i in [0, t], let Y k
ij be the observed sojourn time in state

i before moving to state j for the kth individual, and Hi(t) =
∑

j

∑n
k=1 I[Y k

ij ≥ t],
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Ji(t) = I[Hi(t) > 0]. Then the estimator Λ̂ij(t) is given by

Λ̂ij(t) =

∫ t

0

Ji(u)

Hi(u)
dNij(u). (2.10)

Aalen and Johansen (1978) [5] proposed a nonparametric estimator in terms of

counting processes for the transition probability matrix in a finite nonhomogeneous

Markov model:

P̂ (s, t) =
∏
u∈(s,t]

(I + Λ̂(du))

where Λ̂(t) = (Λ̂ij(t)) is the matrix of estimated transition rates and P (s, t) is the

transition probability matrix. The basic tool in their derivation is the matrix product

integral. The estimator can be thought of as the generalization of the Kaplan-Meier

estimator for general Markov multi-state models with a finite number of states. The

exact and asymptotic properties of these estimators are studied based on stochastic

integrals and martingales.

Frydman (1992) [25] proposed a nonparametric maximum likelihood procedure

for the estimation of the cumulative hazard rates in the irreversible illness-death

model. A nonparametric estimator for interval-censored data in the ilness-death

model was introduced in Frydman (1995) [26]. Both of these results were generalized

to incorporate observations with unknown intermediate event status (Frydman and
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Szarek (2009) [27]).

2.4.3 Regression models

In all of the aforementioned models, each individual under study is described

using a stochastic process ξk, k = 1, 2, . . . , n with state space S = {1, 2, . . . ,m}.

The n stochastic processes are assumed to be independent and have identical dis-

tribution. In practical situations, however, the personal characteristics vary from

one individual to another and may contain valuable information which might impact

the survival time distribution. One of the most important extensions of the Kaplan-

Meier estimator was given by Cox (1972) [18], who introduced the covariate vector

(Z) associated with an individual under study in the form of a regression component

of the hazard function of that individual. As such the sample consists of n inde-

pendent but not identically distributed possibly right-censored survival times. The

Cox model facilitates multiple sample comparisons. Specifically, the Cox regression

model for the mortality model (right-censoring model) has the following hazard rate

function for an individual:

λ(t) = λ0(t) exp(−β′Z), (2.11)
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where λ0(t) is a baseline hazard rate function common to all individuals under study

(baseline hazard rate function) and the hazard rate function of an individual is

proportional to λ0(t) by a factor exp(−β′Z), where β is an unknown vector regression

coefficient.

The Cox regression model has been extensively investigated and there are many

generalizations. The proportionality assumption may fail sometimes. For example,

consider a clinical trial in which patients are randomized into either a treatment

group or control group. The event under study is the time of death of each patient.

Within the framework of Markov multi-state models, a generalized Cox regression

model can be expressed in terms of the following hazard function:

qij(t, Z) = φ(qij,0(t), β
T
ijZ), t > 0

where qij(t) is the hazard function of moving directly from state i to state j at time

t for i 6= j, φ is the link function, qij,0(t) is the baseline hazard function governing

the transition from state i and j, βij is the vector of regression coefficients, and Z

is the covariate vector representing the characteristics of an individual in the study.

The vector Z can be either time-independent or time-dependent. In the Cox model

which deals with one hazard rate function, φ(qij,0(t), β
T
ijZ) = λ0(t) exp(βTijZ). The

estimation of the baseline hazard function λ0(t) and the regression parameters βij
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are commonly treated separately.

In a different approach, J.Q. Fang (1985) [21] introduced a fully parametric

model with time-dependent covariates and the baseline hazard function λ0(t) of a

log-linear form given by

λ0(t) =
r∑
s=1

γsYs(t), (2.12)

where the Ys(t) are specified functions of t, and the γs are coefficients. For example,

if r = 1, Y1(t) = 1, then λ0(t) = γ1 which gives an exponential distribution. If r = 2,

Y1(t) = 1, Y2(t) = log(t), we have a Weibull distribution. One can use a rth degree

polynomial by taking Ys(t) = ts−1. Under Fang’s assumptions (Fang 1985 [21], p.20),

the Cox regression model can be written as

λ(t) = exp(β′X(t)) (2.13)

where X(t) is a column vector, X(t) = (x1(t), · · · , xp(t)) in which x1(t) = 1, x2(t),

· · · , xp1+1(t) are p1 time-dependent covariates, xp1+2(t) = t, · · · , xs(t) = ts−p1−1, · · · ,

xp(t) = tp−p1−1 are quasi covariates (specified time-dependent functions) in λ0(t) and

it is assumed that p ≥ 1 + p1. This is a fully parametric model and the value p can

be estimated from the data set by using likehood ratio tests. Using Le Cam’s theory

[34], the log likehood ratios are proven to have asymptotic normal distributions
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for contiguous alternatives. Furthermore, a general Markov multi-state model with

transition rates qij(t) having a parametric form similar to (2.13) is provided in Fang

(1985) [21]. With appropriate choices of the functions Ys(t) for λ0(t), it becomes

a semi-Markov model. The model with irreversible transition paths is applied to

studying the University of California faculty promotion data.

Another approach that does not assume the proportional hazards is the additive

hazards model (Aalen 1989 [3]) given by:

qij(t, Z) = qij,0(t) + βTij(t)Z, (2.14)

where the regression coefficients βij are allowed to depend on time.

Therneau and Grambsch (2013) [48] showed that if the form of the covariates

are incorrectly specified, it will lead to a diagnosis of non-proportional hazards. To

study the effects of covariates, a general proportional hazard model with arbitrary

covariate effects is proposed:

qij(t, Z) = qij,0(t) exp(f(Z)) (2.15)

where f(Z) is a smooth function. In model (2.15), the effect of the covariate vector

Z is in the form of an arbitrary smooth function f .
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More recent works include Huang and Liu (2006) [30] which studied the para-

metric estimator of the hazard functions in the following model:

q(t, Z) = q0(t, Z) exp(ψ(βTZ))

where ψ is an unknown smooth link function which can model the possible nonlinear-

ity of the effect of the covariates. The link function is approximated by a polynomial

spline.

When the time-dependent covariates are categorical, Cortese and Andersen

(2009) [17] suggest to incorporate the information carried by the covariate process

into the multi-state model. Each possible value that the covariate can assume over

time can be represented as a transient state.

2.5 Non-Markov Models

In numerous practical problems Markov models are not suitable. In particular

the assumption of stochastic independence in competing risks is sometimes hard to

defend. For example, in the multiple decrement model, elimination of the risk of

one type of failure might increase the risk of another type of failure (Moeschberger

(1974) [39], Prentice et al.(1978) [43]). Another example, in the illness-death model
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described in Section 2.1, Figure 2.7, if the transition rate from diseased (state 1) to

death (state 2) depends on the time of entry into the diseased state, then the process

{ξ(t) : t ≥ 0} is non-Markovian.

Strauss and Shavelle (1998) [46] extended the K-M estimator without the

Markovian assumption. Aalen et al.(2001) [4], Datta and Satten (2001) [19] studied

the performance of the estimators of state occupation probabilities derived from the

Aalen–Johansen estimators (2.10) under a non-Markovian model. More recently, us-

ing simulation, Glidden (2002) [28] obtained confidence bands for the Aalen-Johansen

estimator for the transition probabilities and showed that under a non-Markovian

condition, the Aalen-Johansen estimator may be biased. Also see Meira-Machado

et al.(2006) [36]. Meira-Machado et al.(2006) demonstrated by simulation that a

nonparametric estimator of transition probabilities which these authors introduced

outperforms the Aalen–Johansen estimator in a non-Markov situation. Putter and

Spitoni (2018) [45] proposes a relatively simple and intuitive procedure called land-

mark Aalen–Johansen (LMAJ) that will provide consistent estimators of transition

probabilities for general multi-state models.
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2.6 Recurrent Event Analysis

The Cox regression model has also been generalized for analyzing recurrent

events. For example, a commonly used one is the Andersen-Gill (AG) model (1982)

[8] which assumes that the recurrent events are independent. The intensity process

is:

λ(t) = Y (t)λ0(t) exp(X(t)β),

where Y (t) is the at-risk indicator (Y (t) = 1 if the individual is still under obser-

vation, Y (t) = 0 otherwise), λ0(t) is the baseline intensity function, X(t) is the co-

variate process and β is the coefficient vector. The difference between the AG model

and the Cox model lies in the indicator Y (t). The AG model is also applicable to

right censored data under the independent censoring assumption. In Miloslavsky et

al.(2004) [38], an estimator that accounts for dependent censoring is introduced to

improve the AG model.

The Prentice-Williams-Peterson (PWP) model [44] is similar to the AG model,

but for each recurrent event a separate intensity function is modeled:

λj(t) = Yj(t)λ0j(t) exp(X(t)βj), j = 1, 2, . . . , k.
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It can be seen as a stratified AG model. In the PWP model, the at-risk indicator

for the jth event Yj(t) is zero until the (j − 1)st event and only then becomes one.

When the jth event occurs it becomes zero again.

More recently, multi-state models have been extended for recurrent events, e.g.,

Andersen and Keiding (2002) [9]. For example, Figure 2.11 shows a multi-state model

for recurrent events. The intensities in the model can be estimated using approaches

discussed in Section 2.4.

no events first event second event . . .absorbing state
λ01(t) λ12(t) λ23(t)

Figure 2.11: Multi-state model for recurrent events.

34



Chapter 3: Irreversible Markov Multi-state Model

3.1 Introduction

Our ultimate goal is to estimate the survival function. Section 3.2 gives a mo-

tivating example of the progression of patients with Aplastic Anemia (AA). Section

3.3 constructs a 4-state irreversible Markov model ξo using competing risks. Sec-

tion 3.4 states the problems to investigate where the survival function is written in

terms of a transition probability of ξo. Section 3.5 gives nonparametric estimators

of the cumulative hazard functions and an estimator of the net survival function

is obtained in Section 3.5.3. Section 3.6 deals with the case when the observation

period is a finite time interval. Section 3.7 shows the asymptotic properties of the

estimators. Section 3.8 applies the model to a real data set collected in the clinical

trial on patients with AA.
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3.2 A Motivating Example

We use a Markov model to describe the progression of a patient with Aplas-

tic Anemia (AA) with data from a clinical trial. Aplastic Anemia (AA) is a form

of bone marrow failure where the bone marrow does not produce new blood cells,

leaving the patient susceptible to bleeding and infection. Possible treatments include

blood transfusion, bone marrow transplant and medical therapy. In the clinical trial,

for patients with severe AA, treatment with immunosuppressants therapy (IST) or

a bone marrow transplant is necessary. The IST treatment involves a drug that sup-

presses the activity of immune cells which damage the bone marrow. The treatment

helps the bone marrow to recover and generate new blood cells. Patients younger

than 40 years old with a blood-matched sibling who can donate bone marrow are

usually treated by a bone marrow transplant, while patients over 40 or without a

blood-matched sibling donor are usually treated by drug therapy.

Upon the completion of the first IST, a patient is considered to be in remission.

A recovered patient may also relapse. The follow up of each patient begins immedi-

ately after the first IST until death or loss to followup. Dr. Wu of NIH, one of the

authors of Sloand et al.(2008) [47] brought this research problem to our attention

and we gratefully acknowledge the discussion with Dr. Wu. For each patient in the
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clinical trial, the times at which the events of interest occurred were recorded. The

events of interest include: the times of first IST, relapse, death and loss to followup.

For example, after the first IST, if a patient relapses and then dies, we record his/her

data as follows: date of IST, date of relapse, date of death; if a patient is lost to fol-

lowup directly after the treatment, then the observations were: date of IST, data of

last count. The data structure will be described in details in Section 3.4. In Section

3.3 through Section 3.5, we assume that the censoring time is a random variable with

support [0,∞]. However in reality, clinical trials usually terminate at a prespecified

non-negative finite time, say T , which makes the support of the censoring time vari-

able on a finite time interval [0, T ]. This case will be discussed in Section 3.6. The

comparison of the model with T =∞ and the model with T <∞ will also be made

in Section 3.6 and Section 4.2.4.

3.3 Irreversible Markov Model

Applying the F-N procedure, we construct a four-state Markov process ξo =

{ξo(t) : t ≥ 0} for the AA example described in Section 3.2, where ξo(t) represents

the status of a patient at time t, and t = 0 corresponds to the time the patient

immediately after the first IST. Throughout this chapter we assume in the model

that a patient who has relapsed will not receive a second IST. So the Markov model
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is irreversible. In the Chapter 5 we study a reversible Markov model in which a

relapsed patient may receive a second IST. The four possible states are S0, S1, S2

and S3 where:

S0: a patient is in remission immediately after first IST

S1: a patient relapses after the first remission

S2: a patient has died

S3: a patient is lost to followup

In terms of Markov processes, S2 and S3 are absorbing states, S0 and S1 are transient

states. Possible transitions in the process {ξo(t), t ≥ 0} are described schematically

in Figure 3.1. Note that this is the same model as illustrated in Figure 3.1.

S0 S1

S2 S3

Figure 3.1: Possible transition paths of a patient during the clinical trial.

A patient will take one and only one of the following four mutually exclusive

transition paths during the clinical trial:

(1) S0 → S1 → S2
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(2) S0 → S1 → S3

(3) S0 → S2

(4) S0 → S3

Patients on transition path (2) and (4) are lost to followup and thus the correspond-

ing data is right-censored. The exact time at which a transition occurs and the state

where a transition takes place are recorded. For notational convenience and consis-

tency with symbols used in Markov model, we shall denote Si by i, for i = 0, 1, 2, 3.

The transition probabilities for the Markov process are defined as

P o
ij(s, t) = P (ξo(t) = j | ξ0(s) = i), 0 ≤ s < t, i, j = 0, 1, 2, 3, (3.1)

where P o
ij(s, t) is the probability that a patient will be in state j at time t given that

the patient is in state i at time s. Throughout this chapter, the initial state ξo(0) is

assumed to be 0. It is assumed that the transition rates qij(t) are well-defined as

qij(t) = lim
h→0

P (ξo(t+ h) = j | ξo(t) = i)

h
, t > 0, i 6= j, i, j = 0, 1, 2, 3, (3.2)

qii(t) = −
∑
j 6=i

qij(t), t > 0, i = 0, 1, 2, 3. (3.3)
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We assume that all qij(t)
′s are continuous in t and

∫ ∞
0

qij(u)du =∞, i 6= j, i, j = 0, 1, 2, 3. (3.4)

Constructing the Markov model from the sample paths as follows. This will be

used in simulating the Markov processes in Chapter 4.

After the initial IST, over time a patient may either die, relapse or be lost to

followup. For j = 1, 2, 3, let Y0j be the sojourn time of a patient who starts from

state 0 and stays in state 0 for the duration of Y0j before moving directly to state

j. In terms of the Markov model, Y01, Y02 and Y03 are nonnegative independent

random variables that represent time to relapse, time to death and time to loss to

followup (from the IST). For j = 1, 2, 3, let F0j(t), S0j(t) and q0j(t) be the cumulative

distribution function (CDF), the survival function and the hazard function of Y0j,

respectively. The hazard functions q0j(t) are given in (3.2). Death, relapse and loss to

followup are considered as competing risks with hazard rate q0j(t), j = 1, 2, 3. Under

the competing risks model, when a transition (an event) is observed, it means that

the time of the event occurrence is the minimum of Y01, Y02 and Y03. The observable
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quantities are a pair of random variables (Y0, δ0) defined by

Y0 = min(Y01, Y02, Y03),

{δ0 = j} = {Y0j = min(Y01, Y02, Y03)}, j = 1, 2, 3. (3.5)

The random variable Y0 is the length of time that the process ξo stays in state 0

before leaving 0 and δ0 = j indicates ξo moves directly from state 0 to state j for

j = 1, 2, 3. Then the survival function of Y0 is

S0(t) = P (Y0 > t)

= P (min(Y01, Y02, Y03) > t)

= S01(t)S02(t)S03(t), t ≥ 0 (3.6)

and

P (δ0 = j) = P (Y0j = min(Y01, Y02, Y03))

= P (Y0 = Y0j)

=

∫ ∞
0

S0(u)q0j(u)du, j = 1, 2, 3. (3.7)
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The joint distribution of Y0 and δ0 is:

G0(t, j) = P (Y0 ≤ t, δ0 = j)

=

∫ t

0

S0(u)q0j(u)du, t ≥ 0, j = 1, 2, 3. (3.8)

For convenience in simulation, we introduce random variables Y c
0j, j = 1, 2, 3.

The distribution function of Y c
0j is:

F c
0j(t) = P (Y c

0j ≤ t)

= P (Y0 ≤ t | δ0 = j)

=
G0(t, j)

P (δ0 = j)

=

∫ t

0

S0(u)q0j(u)du
/∫ ∞

0

S0(u)q0j(u)du, t ≥ 0, j = 1, 2, 3. (3.9)

Equation (3.9) shows that the cdf of Y c
0j is the conditional cdf of Y0 given δ0 = j.

The differences between the random variables Y c
0j and Y0j are as follows. A patient

in state 0 will move directly to either state 1 or 2 or 3, and his/her sojourn time

Y0 in state 0 is min(Y01, Y02, Y03). The observations are Y0 and δ0. However, for the

purpose of simulation, we find it convenient to use δ0 and the conditional distribution

of Y0 given δ0. Recall that Y c
0j is the observed sojourn time in state 0 given that the
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patient will move to state j. The CDF of Y0 and Y c
0j’s are related by the following

formula:

F0(t) = P (Y0 ≤ t)

=
3∑
j=1

P (Y0 ≤ t|δ0 = j)P (δ0 = j)

=
3∑
j=1

P (Y c
0j ≤ t)P (δ0 = j)

=
3∑
j=1

F c
0j(t)P (δ0 = j), t ≥ 0, j = 1, 2, 3. (3.10)

Once a patient enters state 1, the possible next state to enter is either state 2

or state 3. By the same token, we define the following random variables for j = 2, 3:

Y1j: The sojourn time in state 1 before moving directly to state j,

Y1: The sojourn time in state 1 before moving to the next state,

δ1: The indicator random variable, δ1 = j indicates that the patient enters

state j.

Y c
1j: The sojourn time in state 1 conditioned on the patient will enter state j

directly from state 1.

Let F1j(t), S1j(t) and q1j(t) be the cdf, survival function and the hazard rate
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function of Y1j, respectively, where q1j(t) is defined in (3.2), j = 2, 3. We then have

S1(t) = P (Y1 > t)

= S12(t)S13(t), t ≥ 0, (3.11)

P (δ1 = j) = P (Y1j = min
m=2,3

Y1m)

=

∫ ∞
0

S1(u)q1j(u)du, (3.12)

the cdf of Y c
1j is

F c
1j(t) = P (Y c

1j ≤ t)

=

∫ t

0

S1(u)q1j(u)du
/∫ ∞

0

S1(u)q1j(u)du, t ≥ 0, j = 2, 3, (3.13)

and the joint distribution of (Y1, δ1) is:

G1(t, j) = P (Y1 ≤ t, δ1 = j)

=

∫ t

0

S1(u)q1j(u)du, t ≥ 0, j = 2, 3. (3.14)
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3.4 Problems to Investigate and Data Structure

Problems : We are interested in estimating the survival function of an AA

patient in the clinical trial described in Section 3.2. In our model (Figure 3.1), the

survival function computed from the process {ξo(t) : t ≥ 0} is:

So(t) = P (Xo > t | ξo(0) = 0)

= 1− P (ξo(t) = 2|ξo(0) = 0)

= 1− P o
02(0, t),

where Xo denotes the survival time of a patient in the ξo model. Recall that the

Fix and Neyman procedure of identifying the (net) survival function S involves two

Markov processes, ξo and ξ (Section 2.2), where ξ = {ξ(t) : t ≥ 0} is a 3-state

Markov process ({S0, S1, S2}) with the same transition rates q01, q02, q12 as in ξo.

To compute S requires the computation of P02(0, t), from which the net survival

function of a patient is:

S(t) = P (X > t | ξ(0) = 0)

= 1− P02(0, t).
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For any Markov model considered in this thesis, given the infinitesimal matrix Q, we

use the following Kolmogorov forward equations to solve for its transition probabili-

ties Pij(0, t):

dPij(s, t)

dt
=
∑
l 6=j

Pil(s, t)qlj(t) + Pij(s, t)qjj(t), 0 ≤ s < t, i, j = 0, 1, 2, (3.15)

with initial conditions


Pii(0, 0) = 1,

lim
s→t

Pij(s, t) = 1, if i = j,

lim
s→t

Pij(s, t) = 0, if i 6= j.

(3.16)

If all of the transition rates are constant in t, the solutions for the transition proba-

bilities are known. For time dependent qij(t), Feller (1940) [22] proved the existence

and uniqueness of the solutions. However, except in some special cases such as an

irreversible Markov process, there are no closed-form solutions. We rely on numerical

methods to obtain the solutions, in particular for the survival function.

Data: Following the AA example (Section 3.2), suppose there are n patients

in the clinical trial. The changes over time of the kth patient, for k = 1, . . . , n are

assumed to be n i.i.d. Markov processes ξok = {ξok(t), t ≥ 0}. For any patient, we

observe his/her sojourn time in state 0 or 1 before moving directly to the next state.

Our observed data are as follows:
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(1) {(Y0,k, δ0,k) | k ∈ 1, . . . , n, δ0,k = 1},

(2) {(Y0,k, δ0,k) | k ∈ 1, . . . , n, δ0,k = 2},

(3) {(Y0,k, δ0,k) | k ∈ 1, . . . , n, δ0,k = 3},

(4) {(Y1,k, δ1,k) | k ∈ 1, . . . , N01, δ1,k = 2},

(5) {(Y1,k, δ1,k) | k ∈ 1, . . . , N01, δ1,k = 3}.

Note that, if for j = 1, 2, 3 we let N0j(t) be the number of patients who started

from state 0 and moved directly to state j in [0, t], t > 0, for j = 2, 3 let N1j(t) be the

number of patients who landed in state 1 and moved to state j in [0, t], t > 0. Then

for any t > 0 we should haveN01(t)+N02(t)+N03(t) = n andN12(t)+N13(t) = N01(t).

Let N0(t) = (N01(t), N02(t), N03(t)). Then given t = y0, N0(y0) follows a multinomial

distribution with parameters n and p0(y0) = (p01(y0), p02(y0), p03(y0)) where

p0j(y0) = lim
dt→0

P (Y0j = min(Y01, Y02, Y03) | Y0 ∈ [y0, y0 + dt))

= lim
dt→0

P (Y0j = min(Y01, Y02, Y03), Y0 ∈ [y0, y0 + dt))

P (Y0 ∈ [y0, y0 + dt))

= lim
dt→0

( ∫ y0+dt
y0

S0(t)q0j(t)dt
)
/dt(

F0(y0 + dt)− F0(y0)
)
/dt

= −q0j(y0)
q00(y0)

, subject to
3∑
j=1

p0j(y0) = 1,
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q00(y0) = −
3∑
j=1

q0j(y0). (3.17)

The probabilities p0j are functions of time, evaluated at y0, which give the proba-

bility of event j happening at time y0, j = 1, 2, 3. Similarly given t = y1, N1(y1) =

(N12(y1), N13(y1)) follows a binomial distribution with parametersN01(y0) and p1(y1) =

(p12(y1), p13(y1)) where

p1j(y1) = −q1j(y1)
q11(y1)

, j = 2, 3, (3.18)

q11(y1) = −
3∑
j=2

q1j(y1). (3.19)

3.5 Nonparametric Estimators

Following Section 3.3, under model {ξo(t) : t ≥ 0}, we construct nonparamet-

ric estimators of the cumulative hazard functions, transition probabilities and the

survival function respectively.
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3.5.1 Estimators of Cumulative Hazard Functions

The denominator in (3.9) is the probability

α0j = P (δ0 = j)

=

∫ ∞
0

S0(u)q0j(u)du, j = 1, 2, 3. (3.20)

The probability α0j is a constant independent of time t. Then (3.9) becomes

F c
0j(t) =

1

α0j

∫ t

0

S0(u)q0j(u) du. (3.21)

Differentiating with respect to t on both side of (3.21) yields

dF c
0j(t) =

1

α0j

S0(t)q0j(t)dt. (3.22)

It follows that a formula for the hazard rate q0j(t) is:

q0j(t) = α0j

dF 0
0j(t)

S0(t)dt

= α0j
dG0(t, j)

α0jS0(t)dt

=
dG0(t, j)

S0(t)dt
, t ≥ 0, j = 1, 2, 3. (3.23)
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Note that in (3.23), the unknown constant α0j in the numerator and denominator

is cancelled. For j = 1, 2, 3, a nonparametric estimation of q0j(t) can be performed

by the estimation of G0(t, j) and S0(t) with the data {Y0,k, δ0,k, k = 1, 2, . . . , n} and

{Y1,k, δ1,k, k = 1, 2, . . . , N01} (see Section 3.4).

Let t0j = max
k=1,2,...,n

{Y0,k | δ0,j = j} be the largest uncensored observation of

Y0j, j = 1, 2, 3. Let t1j = max
k=1,2,...,n

{Y1,k | δ1,j = j} be the largest uncensored ob-

servation for Y1j, j = 2, 3. Let t0 = max(t01, t02, t03), t1 = max(t12, t13). Then the

nonparametric maximum likelihood estimators of G0(t, j) and S0(t) are:

Ĝ0(t, j) =
1

n

n∑
k=1

I{Y0,k ≤ t, δ0,k = j}, t ∈ [0, t0j], (3.24)

Ŝ0(t) =
1

n

n∑
k=1

I{Y0,k > t}, t ∈ [0, t0]. (3.25)

Plug (3.24), (3.25) into (3.23) we obtain:

q̂0j(t) =
dĜ0(t, j)

Ŝ0(t)dt
, t ∈ [0, t0j], j = 1, 2, 3. (3.26)

In (3.26), Ĝ0(t, j) is a step function. Therefore

dĜ0(t, j) = Ĝ0(t, j)− Ĝ0(t−, j). (3.27)
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Integrating both sides of (3.26), we obtain an estimator of the cumulative hazard

function Λ0j(0, t) =
∫ t
0
q0j(u)du:

Λ̂0j(0, t) =

∫ t

0

1

Ŝ0(u)
dĜ0(t, j)

=
n∑
k=1

I(Y0,k ≤ t, δ0,k = j)∑n
m=1 I(Y0,m > Y0,k)

, t ∈ [0, t0j], j = 1, 2, 3. (3.28)

Estimators of q1j(t) and Λ1j(0, t) can be derived similarly:

q̂1j(t) =
dĜ1(t, j)

Ŝ1(t)dt
, t ∈ [0, t1j], j = 2, 3, (3.29)

Λ̂1j(0, t) =

∫ t

0

1

Ŝ1(u)
dĜ1(u, j)

=

N01∑
k=1

I(Y1,k ≤ t, δ1,k = j)∑N01

m=1 I(Y1,m > Y1,k)
, t ∈ [0, t1j], j = 2, 3. (3.30)

3.5.2 Estimators of Transition Probabilities

Corresponding to the transition paths depicted in Figure 3.1, the infinitesimal

matrix of our Markov model is Qo(t), t > 0:

Qo(t) =


q00(t) q01(t) q02(t) q03(t)

0 q11(t) q12(t) q13(t)

0 0 0 0

0 0 0 0

 (3.31)
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Given Qo(t), only seven transition probabilities are nonzero. Applying the Kol-

mogorov forward equations (3.15) to all nonzero P o
ij(0, t), i, j = 0, 1, 2, 3, we have the

following differential equations:

dP o
00(0, t)

dt
= P o

00(0, t)q00(t),

dP o
01(0, t)

dt
= P o

00(0, t)q01(t) + P o
01(0, t)q11(t),

dP o
02(0, t)

dt
= P o

00(0, t)q02(t) + P o
01(0, t)q12(t),

dP o
03(0, t)

dt
= P o

00(0, t)q03(t) + P o
01(0, t)q13(t),

dP o
11(0, t)

dt
= P o

11(0, t)q11(t),

dP o
12(0, t)

dt
= P o

11(0, t)q12(t),

dP o
13(0, t)

dt
= P o

11(0, t)q13(t),

with initial conditions (3.16). The solutions are:

P o
00(0, t) = exp

(∫ t

0

q00(u) du
)
, (3.32)

P o
01(0, t) = exp

(∫ t

0

q11(u) du
)∫ t

0

exp
(∫ u

0

−q11(v) dv
)
P o
00(u)q01(u) du, (3.33)

P o
02(0, t) =

∫ t

0

[
P o
00(0, u)q02(u) + P o

01(0, u)q12(u)
]
du, (3.34)
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P o
03(0, t) =

∫ t

0

[
P o
00(0, u)q03(u) + P o

01(0, u)q13(u)
]
du, (3.35)

P o
11(0, t) = exp

(∫ t

0

q11(u) du
)
, (3.36)

P o
12(0, t) =

∫ t

0

P o
11(0, u)q12(u) du, (3.37)

P o
13(0, t) =

∫ t

0

P o
11(0, u)q13(u) du. (3.38)

Estimators of the transition probabilities P o
ij(0, t) can be obtained by plugging (3.26)

and (3.29) into (3.32), . . ., (3.38).

3.5.3 Estimator of Net Survival Function

The infinitesimal matrix of the 3-state Markov process ξ is

Q∗(t) =

q∗00(t) q01(t) q02(t)

0 q∗11(t) q12(t)

0 0 0

 , (3.39)

where

q∗00(t) = −q01(t)− q02(t),

q∗11(t) = −q12(t).
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The transition probabilities Pij(0, t) in ξ can be solved using Kolmogorov forward

equations (3.15). The solutions are:

P00(0, t) = exp
(∫ t

0

q∗00(u) du
)
, (3.40)

P01(0, t) = exp
(∫ t

0

q∗11(u) du
)∫ t

0

exp
(∫ u

0

−q∗11(v) dv
)
P00(u)q01(u) du, (3.41)

P02(0, t) =

∫ t

0

[
P00(0, u)q02(u) + P01(0, u)q12(u)

]
du. (3.42)

Actually, instead of solving the Kolmogorov equations for the 3-state ξ, we can easily

obtain the solutions P00(0, t) in (3.40), by setting q03(t) = 0 in q00(t) in the solution

P o
00(0, t) in (3.32). Similarly, P01(0, t) in (3.41) is obtained by setting q13(t) = 0 in

q11(t) in the solution P o
01(0, t) in (3.33), and P02(0, t) in (3.42) is obtained by setting

q03(t) = q13(t) = 0 in the solution P o
02(0, t) in (3.34).

For estimation of P02(0, t), we need estimates of q01(t), q02(t) and q12(t). We

can use q̂01(t), q̂02(t) and q̂12(t) in (3.26) and (3.29). An estimator of P02(0, t) in

ξ can be obtained by plugging (3.26) and (3.29) into (3.40) . . . (3.42). Denote the

obtained estimator as P̂02(0, t). Then an estimator of the net survival function of a
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patient is

Ŝ(t) = 1− P̂02(0, t)

= 1−
∫ t

0

[
P̂00(0, u)q̂02(u) + P̂01(0, u)q̂12(u)

]
du. (3.43)

3.6 Clinical Trial Terminating at a Finite Time T

In Sections 3.2 through 3.5, the estimation is carried out under the assumption

that the clinical trial terminates when all the patients are dead or lost to followup

where there is no termination date for the clinical trial. In this section, we will

discuss estimation of Λij(0, t), Pij(0, t) and S(t) for a clinical trial that terminates at

a prespecified finite time T .

In (3.5), Y0 = min(Y01, Y02, Y03), where Y03 is the sojourn time in state 0 before

being lost to followup and the support of Y03 is assumed to be [0,∞]. In this section,

the clinical trial terminates at time T , therefore we assume that 0 < Y03 ≤ T .

Then our observations are limited to [0, T ]. Similar to Section 3.5.1, for each patient

starting from state 0, we observe a pair of random variables (Y0, δ0), where:

Y0 = min(Y01, Y02, Y03), Y0 ∈ (0, T ],

{δ0 = j} = {Y0 = Y0j}, j = 1, 2, 3.
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The survival function of Y0 is:

S0(t) =

{
S01(t)S02(t)S03(t), 0 < t ≤ T

0, t > T.

The distribution function of δ0 is:

P (δ0 = j) =

∫ T

0

S0(u)q0j(u)du, j = 1, 2, 3,

The joint distribution of Y0 and δ0 is:

G0(t, j) = P (Y0 ≤ t, δ0 = j)

=

∫ t

0

S0(u)q0j(u)du, 0 < t ≤ T, j = 1, 2, 3. (3.44)

The estimators of the cumulative hazard functions Λ0j(0, t), j = 1, 2, 3 can be de-

rived in the same way as in Section 3.5.1. Here we display the estimators without

derivation:

Λ̂0j(0, t) =
n∑
k=1

I(Y0,k ≤ t, δ0,k = j)∑n
m=1 I(Y0,m > Y0,k)

, t ∈ [0, t0j], j = 1, 2, 3. (3.45)

For patients moved to state 1 before the end of the clinical trial, i.e., given

56



Y01 < T , we observe another pair of random variables (Y1, δ1), where:

Y1 = min(Y12, Y13, T − Y01),

{δ1 = 2} = {Y1 = Y12},

{δ1 = 3} = {Y1 = min(Y13, T − Y01)}.

If we define Y ∗13 = min(Y13, T − Y01), then Y1 = min(Y12, Y
∗
13). The survival function

of Y ∗13 is:

S∗13(t) = P (Y ∗13 > t)

= P (Y13 > t, T − Y01 > t | Y01 < T )

= S13(t)F01(T − t)/F01(T ), 0 < t ≤ T.

The survival function of Y1 is:

S1(t) = P (Y1 > t)

= P (Y12 > t, Y ∗13 > t)

= S12(t)S
∗
13(t), 0 < t ≤ T.
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The joint distribution of (Y1, δ1) is:

G1(t, 2) = P (Y1 ≤ t, δ1 = 2)

=

∫ t

0

S1(u)q12(u)du, 0 < t ≤ T,

G1(t, 3) = P (Y1 ≤ t, δ1 = 3)

=

∫ t

0

S1(u)q∗13(u)du, 0 < t ≤ T,

where q∗13(t) is the hazard rate function of Y ∗13:

q∗13(t) =
[
f13(t)F01(T − t) + S13(t)f01(T − t)

]/[
S13(t)F01(T − t)

]
, 0 < t ≤ T.

The estimators of Λ1j(0, t), j = 2, 3 are as follows:

Λ̂1j(0, t) =

N01∑
k=1

I(Y1,k ≤ t, δ1,k = j)∑N01

m=1 I(Y1,m > Y1,k)
, t ∈ [0, t1j], j = 2, 3. (3.46)

We see that the estimators (3.45) and (3.46) are the same as (3.28) and (3.30)

on [0, T ]. Let (y0,k, δ0,k), k = 1, 2, . . . , n, be the observed data when the observation

period is [0,∞). We consider two consecutive time intervals [0, T ] ∪ (T,∞). For a
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clinical trial that terminates at a finite time T , its observations in [0, T ] for patients

starting in state 0 are the same as those with observation period [0,∞) but observed

in [0, T ]. We observe exactly the same data on [0, T ] whether the observation period

is [0, T ] or [0,∞). Therefore, for j = 1, 2, 3 the estimated Λ̂0j(0, t) and σ̂2
0j(t) are the

same on [0, T ] when the observation periods are [0, T ] and [0,∞).

However, the observations on patients in state 1 are different when T < ∞

instead of T = ∞. The observed patients are in state 1 before the termination of

the clinical trial. Then for each of them the sojourn time in state 0 is less than T .

Suppose we observe (y1,k, δ1,k), k = 1, 2, . . . , n01 when T = ∞. When T becomes

finite, for the kth patient, the remaining observation time becomes T − y0,k given

y0,k < T . Therefore the observation on the kth patient becomes min(y1,k, T − y0,k).

This differs from the case for T =∞. The termination of the clinical trial (T <∞)

also has an impact on the variance of Λ̂1j(0, t) because we observe fewer transitions.

When T < ∞, the variance of Λ̂1j(0, t) is larger than that when T = ∞. It can be

seen in the Figures from the simulations in Section 4.2.4.
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3.7 Asymptotic Distributions of the Estimators

3.7.1 Cumulative Hazard Functions

Estimators of the cumulative hazard functions Λ0j(0, t) and Λ1j(0, t) are given

in (3.28) and (3.30) respectively. The estimators are derived from a Markov multi-

state model. We can also formulate the estimators using counting processes. Con-

sider a multivariate counting process N0(t) = (N01(t), N02(t), N03(t)), where N0j(t) =∑n
k=1 I[Y0,k ≤ t, δ0,k = j], j = 1, 2, 3. Assume that the intensity process λ0(t) =

(λ01(t), λ02(t), λ03(t)) satisfies the multiplicative model λ0j(t) = q0j(t)H0(t), where

H0(t) =
∑n

k=1 I[Y0,k ≥ t]. Then the estimator Λ̂0j(0, t) becomes:

Λ̂0j(0, t) =

∫ t

0

H0j(u)−1dN0j(u), t ∈ [0, t0j], j = 1, 2, 3. (3.47)

Similarly we can also formulate Λ̂1j(0, t) in terms of counting processes. This is

known as the Nelson-Aalen estimator.

The properties of the Nelson-Aalen estimator have been studied by Aalen

(1975, 1978b) [1][2] and Andersen et al.(1993) [7]. In this section, we will derive the

bias, estimated variance, uniform consistency and asymptotic normality of Λ̂0j(0, t)

and Λ̂1j(0, t) using results from Aalen (1978b). See also Section 4.1 of Andersen et
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al.(1993). The results are stated using Markov multi-state model notations.

(1) Bias

We have the following equations:

EΛ̂0j(0, t) =

∫ t

0

q0j(u)P (Ŝ0(u) > 0)du, t ∈ [0, t0j], j = 1, 2, 3,

EΛ̂1j(0, t) =

∫ t

0

q1j(u)P (Ŝ1(u) > 0)du, t ∈ [0, t1j], j = 2, 3.

If for all t ∈ [0, t0j], Ŝ0(t) > 0 and Ŝ1(t) > 0, then Λ̂0j(0, t) and Λ̂1j(0, t) are

unbiased estimators of Λ0j(0, t) and Λ1j(0, t) on [0, t0j] and [0, t1j] respectively.

Since the nonparametric estimator Λ̂0j(0, t) is identifiable up to the last uncen-

sored observation, Ŝ0(t) is positive for all t ∈ [0, t0j]. Therefore, Λ̂0j(0, t) is an

unbiased estimator of Λ0j(0, t) on [0, t0j]. Similarly, we conclude that Λ̂1j(0, t)

is an unbiased estimator of Λ1j(0, t) on [0, t1j].

(2) Variance

Unbiased estimators of the variance of Λ̂0j(0, t) and Λ̂1j(0, t) are:

σ̂2
0j(t) =

∫ t

0

(Ŝ0(u))−2dĜ0(u, j), t ∈ [0, t0j], j = 1, 2, 3, (3.48)

σ̂2
1j(t) =

∫ t

0

(Ŝ1(u))−2dĜ1(u, j), t ∈ [0, t1j], j = 2, 3. (3.49)
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(3) Consistency

The following theorem (Theorem 4.1.1 in Andersen et al.(1993)) shows that

Λ̂0j(0, t), j = 1, 2, 3, are uniformly consistent on compact intervals.

Theorem 3.7.1. Let t ∈ [0, t0j] for j = 1, 2, 3, and assume that as n→∞,

1

n

∫ t

0

(
q0j(u)/Ŝ0(u)

)
du

P−→ 0 (3.50)

and ∫ t

0

(
1− I[Ŝ0(u) > 0]

)
q0j(u)du

P−→ 0. (3.51)

Then, as n→∞,

sup
s∈[0,t]

| Λ̂0j(0, s)− Λ0j(0, s) |
P−→ 0. (3.52)

Condition (3.51) is obvious since Ŝ0 is always positive on [0, t0,j] for j = 1, 2, 3.

We now check condition (3.50). The empirical survival function Ŝ0 converges

to S0 uniformly, that is

sup
s≥0
|Ŝ0(s)− S0(s)|

a.s.−−→ 0.

Then for a given ε0 > 0 such that S0(s) − ε0 > 0 for all s ∈ [0, t], there exists

N > 0 such that when n ≥ N , 0 < S0(s) − ε0 ≤ Ŝ0(s) ≤ S0(s) + ε0 for all
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s ∈ [0, t]. Then

1

n

∫ t

0

(
q0j(u)/Ŝ0(u)

)
du ≤ 1

n

1

S0(t)− ε0

∫ t

0

q0j(u)du. (3.53)

Since S0(t)− ε0 > 0 and q0j is integrable on [0, t], the RHS of (3.53) converges

to 0 pointwise. Then condition (3.50) follows directly. The uniform consistency

of Λ̂1j(0, t), j = 2, 3 can be derived in the same way.

(4) Asymptotic Distribution

The asymptotic distribution of Λ̂0j(0, t) for j = 1, 2, 3 on [0, t0j] is stated in The-

orem 4.1.2 in Andersen et al.(1993). Define Λ̂0(0, t) = (Λ̂01(0, t), Λ̂02(0, t), Λ̂03(0, t)),

and define Λ0(0, t) in a similar manner.

Theorem 3.7.2. Let t ∈ [0, t0j] and assume that q0j/S0 is integrable over

[0, t0j] for j = 1, 2, 3. Let

σ2
0j(t) =

∫ t

0

(
q0j(u)/S0(u)

)
du, j = 1, 2, 3, (3.54)

and assume that

(A) For each t ∈ [0, t0j] and j = 1, 2, 3,

∫ t

0

(
q0j(u)/Ŝ0(u)

)
du

P−→ σ2
0j(t) as n→∞. (3.55)
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(B) For j = 1, 2, 3 and all ε > 0,

∫ t0j

0

q0j(u)

Ŝ0(u)
I
{ 1
√
nŜ0(u)

> ε
}
du

P−→ 0 as n→∞. (3.56)

(C) For j = 1, 2, 3,

√
n

∫ t0j

0

(
1− I[Ŝ0(u) > 0]

)
q0j(u)du

P−→ 0 as n→∞. (3.57)

Then

√
n(Λ̂0(0, t)−Λ0(0, t))

D−→ U = (U01, U02, U03) as n→∞ (3.58)

on D[0, t01]×D[0, t02]×D[0, t03], where U01, U02, U03 are independent Gaussian

martingales with U0j(0) = 0 and cov(U0j(s1), U0j(s2)) = σ2
0j(s1 ∧ s2), Also, for

j = 1, 2, 3,

sup
t∈[0,t0j ]

∣∣nσ̂2
0j(t)− σ2

0j(t)
∣∣ P−→ 0 as n→∞, (3.59)

where σ̂2
0j(s) is defined by equation (3.48).
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In Theorem 3.7.2, conditions A to C are satisfied if inft∈[0,t0j ] S0(t) > 0 and

sup
t∈[0,t0j ]

∣∣∣Ŝ0(t)− S0(t)
∣∣∣ P−→ 0 as n→∞, (3.60)

assuming that Λ0j(0, t) <∞ for all t ∈ [0, t0j], j = 1, 2, 3. Since Ŝ0 is the empir-

ical survival function, condition (3.60) is obviously satisfied. The asymptotic

distribution of Λ̂1j(0, t) can be derived in the same way.

3.7.2 Net Survival Function

The estimated Ŝ(t) in (3.43) is a function of Λ̂01(0, t), Λ̂02(0, t) and Λ̂12(0, t):

Ŝ(t) = 1− P̂02(0, t)

= 1−
∫ t

0

exp
(
− Λ̂01(0, u)− Λ̂02(0, u)

)
dΛ̂02(0, u)

−
∫ t

0

exp
(
− Λ̂12(0, u)

)[ ∫ u

0

exp
(

Λ̂12(0, v)− Λ̂01(0, v)− Λ̂02(0, v)
)
dΛ̂01(0, v)

]
dΛ̂12(0, u).

We can derive the asymptotic distribution of Ŝ(t) using the functional delta method.

Let

γ1(F,G) =

∫ t

0

exp(−F −G)dG,

65



γ2(F,G,H) =

∫ t

0

exp(−H)
[ ∫ u

0

exp(H − F −G)dF
]
dH.

Then

Ŝ = γ(Λ̂01, Λ̂02, Λ̂03)

= 1− γ1(Λ̂01, Λ̂02)− γ2(Λ̂01, Λ̂02, Λ̂12).

We first derive the first-order Hadamard derivatives of γ1 and γ2. Let F0, G0 and

H0 be functions from R+ to R+, Ftn = F0+tnFn, Gtn = G0+tnGn, Htn = H0+tnHn,

where Fn, Gn and Hn are any functions from R+ to R+ such that Fn → F , Gn → G,

Hn → H and tn → 0 as n→∞, then the derivative of γ1 at (F0, G0) is:

γ′1(F0,G0)
(F,G) =

γ1(Ftn , Gtn)− γ1(F0, G0)

tn

=
[ ∫ t

0

exp(−Ftn −Gtn)dGtn −
∫ t

0

exp(−F0 −G0)dG0

]
/tn

=

∫ t

0

[exp(−Ftn −Gtn)− exp(−F0 −G0)

tn

]
dG0 +

∫ t

0

exp(−F0 −G0)dGn

= −
∫ t

0

[
(Fn +Gn) exp(−F0 −G0)

]
dG0 +

∫ t

0

exp(−F0 −G0)dGn

= −
∫ t

0

[
(F +G) exp(−F0 −G0)

]
dG0 +

∫ t

0

exp(−F0 −G0)dG as n→∞.

(3.61)
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To derive γ′2, notice that if we let γ3(S,H) =
∫ t
0

exp(−H)SdH, γ4(F,G,H) =∫ t
0

exp(H − F − G)dF , γ5(F,G,H) = (γ4(F,G,H), H), then γ2 = γ3 ◦ γ5. By the

chain rule, we have

γ′2(F0,G0,H0)
= γ′3(γ4(F0,G0,H0),H0)

◦ γ′5(F0,G0,H0)
.

We can derive γ′3(S0,H0)
(S,H) and γ′5(F0,G0,H0)

(F,G,H) similarly as follows:

γ′3(S0,H0)
(S,H) =

γ3(St, Htn)− γ3(S0, H0)

tn

=
[ ∫ t

0

exp(−Htn)StdHtn −
∫ t

0

exp(−H0)S0dH0

]
/tn

=

∫ t

0

[exp(−Htn)St − exp(−H0)S0

tn

]
dH0 +

∫ t

0

exp(−H0)S0dHn

=

∫ t

0

[
exp(−H0)HnS0 + exp(−H0)Sn

]
dH0 +

∫ t

0

exp(−H0)S0dHn

=

∫ t

0

[
exp(−H0)HS0 + exp(−H0)S

]
dH0 +

∫ t

0

exp(−H0)S0dH as n→∞.

(3.62)
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γ′4(F0,G0,H0)
(F,G,H) =

γ4(Ftn , Gtn , Htn)− γ4(F0, G0, H0)

tn

=
[ ∫ t

0

exp(Htn − Ftn −Gtn)dFtn −
∫ t

0

exp(H0 − F0 −G0)dF0

]
/tn

=

∫ t

0

[exp(Htn − Ftn −Gtn)− exp(H0 − F0 −G0)

tn

]
dF0

+

∫ t

0

exp(H0 − F0 −G0)dFn

=

∫ t

0

[
(Hn − Fn −Gn) exp(Htn − Ftn −Gtn)

]
dF0

+

∫ t

0

exp(Htn − Ftn −Gtn)dFn

=

∫ t

0

[
(H − F −G) exp(H0 − F0 −G0)

]
dF0

+

∫ t

0

exp(H0 − F0 −G0)dF as n→∞. (3.63)

Then γ′5(F0,G0,H0)
(F,G,H) = (γ′4(F0,G0,H0)

(F,G,H), H). Combine (3.61), (3.62) and

(3.63) we have

γ′2(F0,G0,H0)
(F,G,H) = γ′3(γ4(F0,G0,H0),H0)

◦ γ′5(F0,G0,H0)
(F,G,H)

= γ′3(γ4(F0,G0,H0),H0)

(
−
∫ t

0

[
(H − F −G) exp(H0 − F0 −G0)

]
dF0

+

∫ t

0

exp(H0 − F0 −G0)dF,H
)

=

∫ t

0

[
− exp(−H0)HS0 + exp(−H0)S

]
dH0

+

∫ t

0

exp(−H0)S0dH (3.64)
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where in (3.64),

S0 = γ4(F0, G0, H0)

=

∫ t

0

exp(H0 − F0 −G0)dF0

S =

∫ t

0

[
(h− F −G) exp(H0 − F0 −G0)

]
dF0 +

∫ t

0

exp(H0 − F0 −G0)dF.

The first-order Hadamard differentiability of γ1, γ3 and γ4 can be proved as follows.

1

tn

{
γ1(Ftn , Gtn)− γ1(F0, G0)− γ′1,(F0,G0)

(tnFn, tnGn)}

=
1

tn

{∫ t

0

exp(−Ftn −Gtn)dGtn −
∫ t

0

exp(−F0 −G0)dG0

+

∫ t

0

[
(tnFn + tnGn)exp(−F0 −G0)

]
dG0 −

∫ t

0

exp(−F0 −G0)d(tnGn)
}

=

∫ t

0

exp(−Ftn −Gtn)− exp(−F0 −G0)

tn
dG0 +

∫ t

0

(Fn +Gn)exp(−F0 −G0)dG0

+

∫ t

0

[
exp(−Ftn −Gtn)− exp(−F0 −G0)

]
dGn

=

∫ t

0

−(F ∗ +G∗) exp(−F0 −G0 − tn(F ∗ +G∗))dG0 +

∫ t

0

(Fn +Gn) exp(−F0 −G0)dG0

+

∫ t

0

[
exp(−Ftn −Gtn)− exp(−F0 −G0)

]
dGn, (3.65)

where F ∗ is between F0 and F0 + tnFn, G∗ is between G0 and G0 + tnGn. Let tn → 0
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in (3.65). Then we have:

lim
tn→0

1

tn

{
γ1(Ftn , Gtn)− γ1(F0, G0)− γ′1,(F0,G0)

(tnFn, tnGn)} = 0.

Similarly we can check that:

lim
tn→0

1

tn

{
γ3(St, Htn)− γ3(S0, H0)− γ′3,(S0,H0)

(tnSn, tnHn)} = 0,

and

lim
tn→0

1

tn

{
γ4(Ftn , Gtn , Htn)− γ4(F0, G0, H0)− γ′4,(F0,G0,H0)

(tnFn, tnGn, tnHn)} = 0.

From Theorem 3.7.2 we have:

√
n
(

(Λ̂01, Λ̂02, Λ̂03)− (Λ01,Λ02,Λ03)
)
D−→ (U01, U02, U03) as n→∞,

√
n01

(
(Λ̂12, Λ̂13)− (Λ12,Λ13)

)
D−→ (U12, U13) as n→∞.

Let N = n + n01 and assume that n/N → λ ∈ (0, 1) as n → ∞. We can further
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obtain

√
N
(

(Λ̂01, Λ̂02, Λ̂12)− (Λ01,Λ02,Λ12)
)
D−→ (

U01√
λ
,
U02√
λ
,

U12√
1− λ

) as n→∞.

Then the asymptotic distribution of Ŝ follows from the functional delta method (Van

der Vaart (1997), Theorem 20.8):

√
N
(
γ(Λ̂01, Λ̂02, Λ̂12)− γ(Λ01,Λ02,Λ12)

)
D−→ γ′Λ(

U01√
λ
,
U02√
λ
,

U12√
1− λ

), (3.66)

where Λ = (Λ01,Λ02,Λ12) and γ′Λ = −γ′1Λ - γ′2Λ with γ′Λ, γ′1Λ and γ′2Λ being the

first-order Hadamard derivatives of γ, γ1 and γ2 at Λ. By (3.66), the asymptotic

distribution of Ŝ follows.

3.8 Application to Aplastic Anemia Data

In Section 3.2, we discuss the Aplastiic Anemia data as a motivating example.

A four-state Markov process is constructed for this problem. We apply the nonpara-

metric estimators of the cumulative hazard functions ((3.28) and (3.30)), transition

probabilities and net survival function ((3.43)) to the AA data.

There are 238 patients in the clinical trial. The clinical trial lasts for about 21

years. Each patient was followed after the first IST treatment. Over time, 80 of the
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patients relapsed, 151 were lost to followup and 7 died directly after the first IST.

These refer to direct transitions from state 0 to state 1, state 2 and state 3. Further,

of the 80 relapsed patients, 23 died and 57 were lost to followup. The number of

patients on each transition path is illustrated in Figure 3.2. For each patient, the

data include the times when transitions happened and hence we can calculate the

sojourn times between any two direct transitions. Our purpose is to estimate the

survival function of the patients.

S0: Treatment S1: Relapse

S2: Death S3: Loss to followup

80

7

151
23

57

Figure 3.2: Transition paths of AA patients

We plot the estimated crude transition probabilities P̂ o
ij(0, t) in Figure 3.3.

We compare each P̂ o
ij(0, t) with the corresponding empirical transition probability

P o
ij,n(0, t) which is defined as

P o
ij,n(0, t) =

# {patients in state i at time 0 and in state j at time t}
# {patients in state i at time 0}

.
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Figure 3.3: Comparison of P̂ o
ij(0, t) and P o

ij,n(0, t). The black line is P o
ij,n(0, t), the

red line is P̂ o
ij(0, t).
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207
237

= 0.87.

The graph of the estimated net survival function Ŝ(t) = 1 − P̂02(0, t) and the

Kaplan-Meier estimator is shown in Figure 3.4.
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Chapter 4: Simulation for Irreversible Markov Model

Simulations are often used to study distributional properties of estimators both

for large samples and small samples, especially when the finite-sample distribution is

hard to derive. Also, accuracy of the estimation results obtained from the simulation

can be verified by the theoretical model that are used for the simulation. In this

section, simulations are conducted to check the goodness of fit of the estimators of

cumulative hazard functions.

Since our clinical trial data are modeled by Markov processes, our basic sample

consists of n mutually independent Markov processes {ξok(t), t ≥ 0}, k = 1, 2, . . . , n.

We will simulate {ξo(t), t ≥ 0} for each of the n patients.

4.1 Simulation Procedure

In Section 3.3, we use Y0 (see (3.5)) to represent the sojourn time of a patient

in the initial state 0 before he/she moves to to the next state. It is assumed that Y0 is

a random variable determined by 3 other mutually independent nonnegative random
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variables Y01, Y02 and Y03 as Y0 = min(Y01, Y02, Y03). After staying in state 0 for Y0

amount of time, the patient can enter either state 1, 2 or 3 according to the following

chance mechanism. Of the three sojourn times Y0j, j = 1, 2, 3, we only observe the

minimum. As far as simulation goes, there are two different but equivalent ways of

simulating the Markov process.

The first method: starting from state 0, we generate three random variables

Y01 = y01, Y02 = y02 and Y03 = y03, denote the observed minimum of y01, y02 and

y03 as y0 and record the index δ0 of the minimum random variable, δ0 = 1, 2, 3. If

y02 or y03 is the minimum, i.e., δ0 = 2 or 3, then the next transition is to state 2

or 3 accordingly. Since both state 2 and state 3 are absorbing states, we are done

with this transition path of this patient. If y01 is the minimum, i.e., δ0 = 1, then

starting from state 1 (at time y01), we generate two random variables Y12 = y12 and

Y13 = y13, in which y12 is the sojourn time in state 1 before moving to state 2, and

y13 is the sojourn time in state 1 before moving to state 3. Similar to the direct

transition from the initial state 0, we record the minimum Y1 and the index δ1 of

the minimum random variable for the next transition event. The simulated data

are pairs of random variables: (Y0, δ0) and (Y1, δ1), where Yj and δj are dependent

random variables.

The second method is to use the multinomial distributions discussed in (3.17)
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∼ (3.19) in Section 3.5.1. To begin with, we generate a sojourn time Y0 = y0 directly

from the distribution F0(t) = 1 − S0(t) (see (3.6)) using inverse transformation

sampling, where Y0 is the time spent in state 0 before the patient entering the next

state. To be clear, consider an example using the Weibull distribution. Assume that

Y0 follows the Weibull distribution with CDF F0(t) = 1− exp(−(t/η)γ). Simulate a

Unif [0, 1] random variable x0, let y0 = F−10 (x0) where F−10 is the inverse function of

F0. Then y0 is an observed random sample from Weibull(γ, η). After we simulate

the sojourn time in state 0, we need to decide which state the patient has entered or

we say which event has occurred. The index of the next event follows a multinomial

distribution. The possible values of a multinomial trial are 1, 2 and 3 with probability

p01, p02 and p03 respectively. The probabilities p0j, j = 1, 2, 3 are defined in (3.17).

If the next event is to enter state 2 or 3, we stop the simulation. Because they

are absorbing states. Otherwise, if the next event is entering state 1, we generate

sojourn time Y1 = y1. Then there are two choices: either state 2 or state 3. Thus

instead of a trinomial distribution we have a Bernoulli distribution of choices where

the probability of choosing state 2 is p12(y1) and of choosing state 3 is p13(y1) =

1− p12(y1). The number chosen is the index of the next occurring event.

It is easy to show that the two methods described above are mathematically

equivalent. First we note that the distributions of δ0 and δ1, are the same for both
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methods. The distribution of δ0 is trinomial. In method one, we have:

P (δ0 = j) = P (Y0j = min(y01, y02, y03))

=

∫ ∞
0

S0(u)q0j(u)du,

= α0j, j = 1, 2, 3. (4.1)

In method two, the distribution of δ0 is:

P (δ0 = j) =

∫ ∞
0

−q0j(u)

q00(u)
dF0(u)

=

∫ ∞
0

S0(u)q0j(u)du,

= α0j, j = 1, 2, 3. (4.2)

Second, the joint distributions of (Y0, δ0) in each of the two methods are also the

same (see (3.8)). Therefore, the two simulation methods are mathematically equiv-

alent. We can choose either method to simulate the transition paths. The following

simulations are carried out using method two as it has a more natural interpretation

in terms of the clinical trial.

The simulation procedure is as follows:

(1) Generate Y0 = y0 from distribution function F0(t) = P (Y0 ≤ t) = 1 − S0(t)

78



(see (3.6)) using inverse transform sampling.

(2) Take a number δ0 from the set {1, 2, 3} with trinomial probabilities(
− q01(y0)/q00(y0),−q02(y0)/q00(y0),−q03(y0)/q00(y0)

)
.

(3) If δ0 = 2 or δ0 = 3, stop. The observed transition path is 0→ 2 or 0→ 3, and

the observed time of transition is y0. Otherwise continue to step (4).

(4) If δ0 = 1, generate Y1 = y1 from distribution function F1(t) = P (Y1 ≤ t) =

1− S1(t) (see (3.11)).

(5) Take a number δ1 from the set {2, 3} with binomial probabilities(
− q12(y1)/q11(y1),−q13(y1)/q11(y1)

)
.

(6) If δ1 = 2 or δ1 = 3, the observed transition path is 0 → 1 → 2 or 0 → 1 → 3,

the observed times of transition are y0 and y1.

Repeat the procedure (1) through (6) for each of the n patients to obtain a sample

of n independent Markov process, where n is the prespecified sample size. In the

next section, simulations are conducted under the following assumptions:

(a) Y01 ∼ gamma(2.6, 0.8), Y02 ∼ gamma(4, 1) where in gamma(α, β), α is the

shape parameter and β is the rate parameter.
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(b) Y03 ∼ Weibull(1.5, 5), Y12 ∼ Weibull(1.5, 4), Y13 ∼ Weibull(1.2, 6) where in

Weibull(γ, η), γ is the shape parameter and η is the scale parameter.

(c) Yij, i, j = 0, 1, 2, 3 are independent random variables.

The parameters used in the gamma and Weibull distributions are selected so that the

mean of each Yij is similar to the corresponding mean calculated from the Aplastic

Anemia data set.

4.2 Simulation Results

Estimation of the cumulative hazard functions, the transition probabilities and

the net survival function are carried out with the simulated data. Our simulated

data are as follows:

(1)
{

(y0,k, δ0,k) | k ∈ {1, . . . , n}, δ0,k = 1
}

,

(2)
{

(y0,k, δ0,k) | k ∈ {1, . . . , n}, δ0,k = 2
}

,

(3)
{

(y0,k, δ0,k) | k ∈ {1, . . . , n}, δ0,k = 3
}

,

(4)
{

(y1,k, δ1,k) | k ∈ {1, . . . , n01}, δ1,k = 2
}

,

(5)
{

(y1,k, δ1,k) | k ∈ {1, . . . , n01}, δ1,k = 3
}

.
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4.2.1 Estimators of Cumulative Hazard Functions with Simulated

Data

Estimators of the cumulative hazard functions Λ0j(0, t) and Λ1j(0, t) can be

calculated by plugging the simulated data into (3.28) and (3.30):

Λ̂0j(0, t) =
n∑
k=1

I(y0,k ≤ t, δ0,k = j)∑n
m=1 I(y0,m > y0,k)

, t ∈ [0, t0j], j = 1, 2, 3, (4.3)

Λ̂1j(0, t) =

n01∑
k=1

I(y1,k ≤ t, δ1,k = j)∑n01

m=1 I(y1,m > y1,k)
, t ∈ [0, t1j], j = 2, 3. (4.4)

We only display the graphs of Λ01(0, t) and Λ03(0, t) and their estimates in

Figure 4.1 and Figure 4.2, where Λ01(0, t) is the cumulative hazard function of

gamma(2.6, 0.8) and Λ03(0, t) is the cumulative function of Weibull(1.5, 5). On each

figure, we display the graphs corresponding to sample size n = 200, n = 500 and

n = 1000. The black line represents Λij(0, t), the red line represents Λ̂ij(0, t), the

blue dashed lines represents the 95% confidence intervals of Λ̂ij(0, t), the green dot-

dashed line indicates the largest uncensored survival time in the sample, that is

max
k=1,2,...,nij

{yi,k | δi,k = j}. Each Λij(0, t) is only identifiable up to the largest un-

censored survival time. By comparing Λ̂ij(0, t) with Λij(0, t), we see that in general

as the sample size increases, the deviation of Λ̂ij(0, t) from Λij(0, t) decreases. The
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estimated variance of Λ̂0j(0, t) and Λ̂1j(0, t) are as follows:

σ̂2
0j(t) =

n∑
k=1

I[Y0,k ≤ t, δ0,k = j][∑n
m=1 I[Y0,m ≥ Y0,k]

]2 , t ∈ [0, t0j], j = 1, 2, 3, (4.5)

σ̂2
1j(t) =

n01∑
k=1

I[Y1,k ≤ t, δ1,k = j][∑n01

m=1 I[Y1,m ≥ Y1,k]
]2 , t ∈ [0, t1j], j = 2, 3. (4.6)

The estimated variances σ̂2
0j(t) and σ̂2

1j(t) are functions of the sample size n. For

any t ∈ [0, tij], σ̂
2
ij(t) = O(1/n). Therefore the variance decreases as the sample size

grows. As a result, the width of the confidence interval decreases as the sample size

grows.

Figure 4.1 and 4.2 are generated from a single simulation. Now we repeat the

simulation for 1000 times and calculate the mean of the estimated cumulative hazard

functions at each time point. We plot the mean computed from 1000 simulations. We

only display the graph of Λ01 for n = 200 and n = 500 in Figure 4.3 to demonstrate

the difference between a single simulation and repeated simulations. Notice that in

Figure 4.3, the red line is smooth and almost coincides with the black line. Because

when we repeat the simulation for 1000 times, at each time point t, by the Law

of Large Numbers the mean of Λ̂01(0, t) converges in probability to Λ01(0, t) as the

sample size approaches infinity.
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Λ01(0, t) = − log
(

1−
∫ t
0
[βαxα−1 exp(−βx)]dx/Γ(α)

)
, t > 0, α = 2.6, β = 0.8
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Figure 4.1: Comparison of Λ̂01(0, t) and Λ01(0, t) for n = 200, 500, 1000, where the black line

is Λ01(0, t), the red line is Λ̂01(0, t), the blue lines are the 95% confidence interval, the green line

indicates the largest uncensored observation: max(y0,k|δ0,k = 1).
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Λ03(0, t) =
(
t
η

)γ
, t > 0, γ = 1.5, η = 5
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Figure 4.2: Comparison of Λ̂03(0, t) and Λ03(0, t) for n = 200 and n = 500, where the black

line is Λ03(0, t), the red line is Λ̂03(0, t), the blue line is the 95% confidence interval, the green line

indicates the largest uncensored observation: max(y0,k|δ0,k = 3).
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Λ01(0, t) = − log
(

1−
∫ t
0
[βαxα−1 exp(−βx)]dx/Γ(α)

)
, t > 0, α = 2.6, β = 0.8
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Figure 4.3: Comparison of Λ01(0, t) and the mean of Λ̂01(0, t) computed from 1000 simulations

for n = 200, 500. The black line is Λ01(0, t), the red line is the mean of Λ̂01(0, t), the blue lines are

the 95% confidence interval.
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4.2.2 Estimators of Crude Transition Probabilities with Simulated

Data

In Section 3.5.2, we obtained estimators of the crude transition probabilities

P o
ij(0, t) using Kolmogorov froward equations. Of the seven nonzero transition prob-

abilities in ξ0, we are of particular interest in P o
00(0, t), P

o
01(0, t), P

o
11(0, t) and P o

02(0, t)

because 1−P02(0, t) is the net survival function that is a function of P00(0, t), P01(0, t)

and P11(0, t). Because the graph of P o
11(0, t) is similar to that of P o

00(0, t), we only

display the graphs of P o
00(0, t), P

o
01(0, t), P

o
02(0, t) and their estimates in Figure 4.4

through Figure 4.6. In each figure, we display the graphs corresponding to n = 200,

n = 500 and n = 1000.

4.2.3 Estimator of Net Survival Probability with Simulated Data

We plot Ŝ(t) (see (3.43)) under our Markov model and compare it with the

Kaplan-Meier estimator for n = 200, n = 500 and n = 1000 in Figure 4.7.

Figure 4.7 shows that the Kaplan-Meier estimator of the survival probability

is higher than Ŝ(t) for all t > 0 and all three sample sizes.
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Figure 4.4: Comparison of P̂ o
00(0, t) and P o

00(0, t) for n = 200, n = 500 and n = 1000. The black

line represents P o
00(0, t), the red line represents P̂ o

00(0, t).
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Figure 4.5: Comparison of P̂ o
01(0, t) and P o

01(0, t) for n = 200, n = 500 and n = 1000. The black

line represents P o
01(0, t), the red line represents P̂ o

01(0, t).
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Figure 4.6: Comparison of P̂ o
02(0, t) and P o

02(0, t) for n = 200, n = 500 and n = 1000. The black

line represents P o
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Figure 4.7: Comparison of Ŝ(t) = 1− P̂02(0, t) ((3.43)) and Kaplan-Meier estimator for n = 200,

n = 500 and n = 1000. The black line represents the Kaplan-Meier estimator, the red line represents

Ŝ(t).
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4.2.4 Clinical Trial Terminating at a Finite Time T

We compare the graphs of Λ̂ij(0, t), P̂
o
ij(0, t) and Ŝ(t) for T = ∞ and T < ∞

in Figure 4.8 through Figure 4.10. We use T = 5 in the simulation.

Similar to Section 4.2, we estimated the crude transition probabilities P o
00(0, t),

P o
01(0, t), P

o
11(0, t), P

o
02(0, t) and the net survival function S(t). We only display the

graph of Ŝ(t) and compare it with Kaplan-Meier estimatorfor n = 200, n = 500 and

n = 1000.

From the Figure 4.10, we can see that when T = ∞ and T = 5, the Kaplan-

Meier estimators are the same on [0, 5]. And Ŝ(t) is lower than the Kaplan-Meier

estimator for all three sample sizes both when T =∞ and T = 5. A possible reason

for this may be as follows. From Section 2.2 we know that the Kaplan-Meier model

can be described by a 3-state Markov process. The three states are: treatment (S0),

death (S1) and loss to followup (S3). It does not include a state for relapse, thus it

does not utilize all the available patients status data.

4.3 Hypothesis Testing

It can be seen from Figure 4.1 and Figure 4.2 that Λ̂01(0, t) and Λ̂03(0, t) are

close to the true cumulative hazard functions and the deviation decreases as the
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Λ01(0, t) = −log
(

1−
∫ t
0
[βαxα−1exp(−βx)]dx/Γ(α)

)
, t > 0, α = 2.6, β = 0.8
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Figure 4.8: Comparison of Λ̂01(0, t) and Λ01(0, t) for n = 200, 500, 1000, where the black line

is Λ01(0, t), the red line is Λ̂01(0, t), the blue lines are the 95% confidence interval when T = ∞,

the orange lines are the 95% confidence interval when T = 5, the green line indicates the largest

uncensored observation when T = ∞, the pink line indicates the largest uncensored observation

when T = 5.
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Λ12(0, t) =
(
t
η

)γ
, t > 0, γ = 1.5, η = 4
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Figure 4.9: Comparison of Λ̂12(0, t) and Λ12(0, t) for n = 200, 500, 1000, where the black line

is Λ12(0, t), the red line is Λ̂12(0, t), the blue lines are the 95% confidence interval when T = ∞,

the orange lines are the 95% confidence interval when T = 5, the green line indicates the largest

uncensored observation when T = ∞, the pink line indicates the largest uncensored observation

when T = 5.
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Figure 4.10: Comparison of Ŝ(t) = 1 − P̂02(0, t) and the Kaplan-Meier estimator when T = ∞
and T = 5 for n = 200, n = 500 and n = 1000. The black solid line is the Kaplan-Meier when

T = 5, the black dashed line is the Kaplan-Meier estimator when T =∞, the red solid line is Ŝ(t)

when T = 5, the red dashed line is Ŝ(t) when T =∞.
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sample size increases. However, formal statistical hypothesis testing is still necessary

to theoretically measure the goodness of fit of our Markov model.

4.3.1 Kolmogorov-Smirnov Test

We take Y01 as an example to show the hypothesis testing procedure. We

derived an estimator Λ̂01(0, t) of Λ01(0, t). We can further derive an estimator of the

distribution function of Y01: F̂01(t) = 1 − exp(−Λ̂01(0, t)). Denote the distribution

function of Y01 in our model by F01,0 (in the simulation, we use gamma(2.6, 0.8)).

Our null and alternative hypotheses are as follows:

H0 : F01 = F01,0 vs. Ha : F01 6= F01,0

The Kolmogorov-Smirnov (K-S) test statistic measures the supreme distance

between the empirical distribution function Fn(t) of a complete sample of i.i.d ran-

dom variables and the hypothetical distribution function F0(t). The Kolmogorov-

Smirnov statistic is Dn defined by

Dn = sup
t
|Fn(t)− F0(t)|. (4.7)

Using Dn we would reject H0 if the computed Dn value, say dn, is larger than the
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critical value cα. However, the distribution of Dn is only known and independent of

F0 for complete samples. Various modifications of the K-S test statistic are available

in the literature for carrying out hypothesis testing of H0 vs. Ha with right censored

data. See review in Nikulin, Lemeshko, Chimitova and Tsivinskaya (2011) [41]. To

this end, Nikulin, et al.. (2011) [41] proposes a test statistic in their equation (1).

In terms of our hypothesis test, the modified test statistics D∗n is given as follows.

D∗n = sup
t>0
|F̂01(t)− F01,0(t)|,

= sup
k: δ01,k=1

|F̂01(Y0,k)− F01,0(Y0,k)|.

The asymptotic distribution of D∗n involves the amount of censoring in the data.

However, the asymptotic distribution of D∗n under H0 is unknown and its approxi-

mated distribution is obtained by simulation. Based on simulated distribution, the

cutoff value cα and the P-value of the modified test are determined. We adapt the

method in Nikulin et al.. (2011) [41] to simulated the distribution of D∗n.

We would reject H0 if D∗n is greater than the critical value cα. We simulate

5000 samples of (Y0, δ0) of a given sample size n, for n = 200, 500 and 1000. The test

statistic D∗n is calculated for each sample. Then we can use the empirical distribution

of the simulated values of D∗n to approximate the true distribution function of D∗n
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and calculate the P-value of the test.

Apply the modified K-S test to each of the following hypothesis testing problem:

H0 : F0j = F0j,0 vs. Ha : F0j 6= F0j,0, j = 1, 2, 3,

H0 : F1j = F1j,0 vs. Ha : F1j 6= F1j,0 j = 2, 3.

The test results are summarized in Table 4.1. The censoring rate is the ratio of the

number of censored observations to the total number of observations.

F01 F02 F03 F12 F13

n = 200
D∗n 0.0794 0.1060 0.1091 0.0975 0.1170

P-value 0.6521 0.5206 0.5157 0.6477 0.6972

censoring rate 112/200 162/200 126/200 34/88 54/88

n = 500
D∗n 0.0615 0.0683 0.1009 0.0670 0.1203

P-value 0.7639 0.5598 0.5301 0.9566 0.5933

censoring rate 262/500 371/500 367/500 103/238 135/238

n = 1000
D∗n 0.0354 0.0434 0.0495 0.0828 0.1020

P-value 0.9240 0.7164 0.7601 0.7166 0.8004

censoring rate 545/1000 747/1000 708/1000 290/455 345/455

Table 4.1: Modified Kolmogorv-Smirnov test for n = 200, n = 500 and n = 1000.

Note that all the P-values are greater than 0.1. If we set the significance level

α < 0.1, the null hypothesis of each Fij is not rejected.
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4.3.2 Chi-squared Test

There are problems using a chi-squared statistic, say, W (θ), for a goodness of

fit test. In the complete sample theory, if the unknown parameter θ is estimated by

the minimum chi-squared method or some modified minimum chi-squared method,

then as the sample size increases to infinity, the asymptotic distribution of W (θ̂)

is a chi-squared distribution. According to a Chernoff-Lehmann theorem (1954), if

the estimate θ̂ is obtained by the MLE, then W (θ̂) will not have an asymptotic chi-

squared distribution. Furthermore, under right censoring the asymptotic distribution

of a chi-squared type of test statistic depends on the censoring distribution [41]. We

finesse the difficulties by constructing a Pearson’s chi-squared statistic for checking

the goodness of fit of model Fij as follows.

There are four mutually exclusive transition paths in the irreversible model.

We can divide the patients into four categories according to their transition paths.

Let ni be the number of observed patients in category i, and Ei be the expected

number of observations in this category (calculated under the model distributions).

The chi-squared test statistic is W =
∑4

i=1(ni −Ei)2/Ei. Under the null hypothesis

that F0j = F0j,0 for j = 1, 2, 3 and F1j = F1j,0 for j = 2, 3, the test statistic W has

an asymptotic chi-squared distribution with 3 degrees of freedom.

The probabilities of the four categories p1, p2, p3 and p4 are calculated as
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follows:

(1) S0 → S1 → S2

This path implies that Y01 = min(Y01, Y02, Y03), Y12 = min(Y12, Y13). By the

independence of each Yij,

p1 = P (Y01 = min(Y01, Y02, Y03))P (Y12 = min(Y12, Y13))

=

∫ ∞
0

S02(u)S03(u)dF01(u)

∫ ∞
0

S13(u)dF12(u)

=

∫ ∞
0

S0(u)dΛ01(u)

∫ ∞
0

S1(u)dΛ12(u).

(2) S0 → S1 → S3

This path implies that Y01 = min(Y01, Y02, Y03), Y13 = min(Y12, Y13).

p2 = P (Y01 = min(Y01, Y02, Y03))P (Y13 = min(Y12, Y13))

=

∫ ∞
0

S0(u)dΛ01(u)

∫ ∞
0

S1(u)dΛ13(u).

(3) S0 → S2
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This path implies that Y02 = min(Y01, Y02, Y03).

p3 = P (Y02 = min(Y01, Y02, Y03))

=

∫ ∞
0

S0(u)dΛ02(u).

(4) S0 → S3

This path implies that Y03 = min(Y01, Y02, Y03).

p4 = P (Y03 = min(Y01, Y02, Y03))

=

∫ ∞
0

S0(u)dΛ03(u).

The expected number of observations in each category under the null hypothesis is

Ei = npi.

The test results (test statistic, P-values) are summarized in Table 4.2.

Sample size n = 200 n = 500 n = 1000

W 2.05 1.42 0.14

P-value 0.5604 0.7019 0.9864

Table 4.2: Chi-squared test for n = 200, n = 500 and n = 1000.

All the P-values are greater than 0.1. If we set the significance level α < 0.1,
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the null hypothesis of each Fij is not rejected. In Table 4.2, the P-values increase

as the sample size increases. However, the P-values are random, if we repeat the

simulation and perform the hypothesis testing again, we will get different P-values.

For each sample size, we repeat the chi-squared test for 100 times and calculate the

average of the P-values. Corresponding to n = 200, 500 and 1000, the average P-

values are 0.4724, 0.4301 and 0.4638 respectively which indicates that the P-values

are stable.
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Chapter 5: Reversible Markov Multi-state Model

5.1 Introduction

In Chapter 3, we use an irreversible Markov model (Figure 3.1) in which a

patient’s transitions from relapse to treatment (S1 → S0) are not allowed. In this

chapter, we relax this restriction by allowing a relapsed patient to have the possibility

of receiving a second IST treatment. This means that a patient’s transition from S0

to S1 is reversible.

5.2 Reversible Markov Model

Similar to the model described in Chapter 3, consider a four-state stochastic

process {ξo(t), t ≥ 0} where ξo(t) is the status of a patient at time t. The four states

are the same as before:

S0: a patient is in remission immediately after IST

S1: a patient relapses after remission
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S2: a patient is dead

S3: a patient is lost to followup

Transition from S1 to S0 is allowed. The transition paths are described in Figure

5.1.

S0 S1

S2 S3

Figure 5.1: Possible transition paths of a patient during the clinical trial.

Assume n individuals are participating in the clinical trial. Each of them will

take one and only one of the following possible mutually exclusive transition paths:

(1) S0 → S2

(2) S0 → S3

(3) S0 → S1 → S0 → . . .→ S2

(4) S0 → S1 → S0 → . . .→ S3

(5) S0 → S1 → S0 → S1 → . . .→ S2

(6) S0 → S1 → S0 → S1 → . . .→ S3
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Patients on transition path (3) and (4) enter S2 or S3 directly from state 0, while

patients on transition path (5) and (6) enter S2 or S3 directly from S1. We use the

same notations as in Chapter 3 except for the random variable Y1, which represents

the amount of time spent in S1 before moving to the next state. In the reversible

model, transition from S1 to S0 is allowed. Therefore, Y1 = min(Y10, Y12, Y13), where

Y10 is the random variable representing the sojourn time in S1 before moving to S0.

The observations are (Y0, δ0) and (Y1, δ1). Employing the same method in Section

3.5, we can derive the joint distribution of (Y0, δ0) and (Y1, δ1), and the formulas of

the cumulative hazard functions Λ1j for i = 0, 1, j = 1, 2, 3. Here we present the

results without derivation:

Λ0j(0, t) =

∫ t

0

1

S0(u)
dG0(u, j), (5.1)

Λ1j(0, t) =

∫ t

0

1

S1(u)
dG1(u, j), (5.2)

where G0(t, j) (see (3.8)) and G1(t, j) (see (3.14)) are the joint distribution functions

of (Y0, δ0) and (Y1, δ1) respectively, j = 1, 2, 3, S0 and S1 are the survival functions

of Y0 and Y1.
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5.3 Nonparametric Estimators

5.3.1 Estimators of Cumulative Hazard Functions

Suppose our observed samples are as follows:

(Y0,k, δ0,k), k = 1, 2, . . . , n,

(Y1,k, δ1,k), k = 1, 2, . . . , N01.

On the basis of (3.28) and (3.30), for j = 1, 2, 3, estimators of q0j(t) and q1j(t),

Λ0j(0, t) and Λ1j(0, t) can be constructed as:

q̂0j(t) =
dĜ0(t, j)

Ŝ0(t)dt
, t ∈ [0, t0j], (5.3)

Λ̂0j(0, t) =

∫ t

0

1

Ŝ0(u)
dĜ0(t, j)

=
n∑
k=1

I(Y0,k ≤ t, δ0,k = j)∑n
m=1 I(Y0,m > Y0,k)

, t ∈ [0, t0j], (5.4)
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q̂1j(t) =
dĜ1(t, j)

Ŝ1(t)dt
, t ∈ [0, t1j], (5.5)

Λ̂1j(0, t) =

∫ t

0

1

Ŝ1(u)
dĜ1(t, j)

=

N01∑
k=1

I(Y1,k ≤ t, δ1,k = j)∑N01

m=1 I(Y1,m > Y1,k)
, t ∈ [0, t1j]. (5.6)

5.3.2 Estimators of Crude Transition Probabilities

When the hazard functions qij(t) are time-dependent under some conditions,

Feller (1940) [22] proved the existence and uniqueness of the solution to the Kol-

mogorov forward equations. However, it is difficult to find an explicit form for the

solution with reversible Markov process that has time-dependent transition rates.

Except for some special cases (e.g., Yang and Chang (1990) [51]), we rely on numer-

ical methods to solve the transition probabilities.

Corresponding to the transition paths in Figure 5.1, the infinitesimal matrix

Qo(t), t > 0, of our reversible Markov model ξo is:

Qo(t) =


q00(t) q01(t) q02(t) q03(t)

q10(t) q11(t) q12(t) q13(t)

0 0 0 0

0 0 0 0

 (5.7)

Note that Qo(t) differs from that in equation (3.31) by a positive risk q10(t). The
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associated Kolmogorov forward equations are as follows:

dP o
00(0, t)

dt
= P o

00(0, t)q00(t) + P o
01(0, t)q10(t), (5.8)

dP o
01(0, t)

dt
= P o

00(0, t)q01(t) + P o
01(0, t)q11(t), (5.9)

dP o
02(0, t)

dt
= P o

00(0, t)q02(t) + P o
01(0, t)q12(t), (5.10)

dP o
03(0, t)

dt
= P o

00(0, t)q03(t) + P o
01(0, t)q13(t), (5.11)

dP o
10(0, t)

dt
= P o

10(0, t)q00(t) + P o
11(0, t)q10(t), (5.12)

dP o
11(0, t)

dt
= P o

10(0, t)q01(t) + P o
11(0, t)q11(t), (5.13)

dP o
12(0, t)

dt
= P o

10(0, t)q02(t) + P o
11(0, t)q12(t), (5.14)

dP o
13(0, t)

dt
= P o

10(0, t)q03(t) + P o
11(0, t)q13(t). (5.15)

Equations (5.8) and (5.9) only involve the transition probabilities P o
00 and P o

01, there-

fore form a subsystem. Once we solve (5.8) and (5.9), (5.10) and (5.11) can be solved

directly. The subsystem formed by equation (5.8) and (5.9) can be written in a ma-
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trix form:

y′(t) = A(t)y(t)

= f(t, y(t)), y(0) = (1, 0)T (5.16)

where

y(t) = (P o
00(0, t), P

o
01(0, t))

T , (5.17)

A(t) =
(
q00(t) q10(t)
q01(t) q11(t)

)
. (5.18)

Note that the elements of the coefficient matrix A are time-dependent. Therefore

we can not solve (5.16) by eigenvalue decomposition of matrix A. We proceed with

a numerical method. We use Euler’s method which is a basic explicit method for

numerical integration of ordinary differential equations. Let h be the step size and

tn = nh. Then y′(tn) can be approximated by

y(tn+1)− y(tn)

h
= f(t, y(tn)),

108



which gives an approximation:

y(tn+1) = y(tn) + hf(t, y(tn)). (5.19)

Applying equation (5.19) together with the initial value y(0) = (1, 0)T , we can obtain

an approximation of y(t) at each time tn. We can choose a smaller step size h to get

a more precise approximation.

5.3.3 Estimator of Net Survival Function

Similar to Section 3.5.3, the net survival function of a patient is:

S(t) = P (X > t | ξ(0) = 0)

= 1− P02(0, t),

where ξ = {ξ(t) : t ≥ 0} is a 3-state Markov process ({S0, S1, S2}) with the same

transition rates q01(t), q02(t), q10(t) and q12(t) as in {ξ0(t) : t ≥ 0}. The infinitesimal

matrix of ξ is

Q∗(t) =


q∗00(t) q01(t) q02(t)

q10(t) q∗11(t) q12(t)

0 0 0

0 0 0

 , (5.20)
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where

q∗00(t) = −q01(t)− q02(t),

q∗11(t) = −q10(t)− q12(t).

To derive the transition probability P02(0, t) in ξ, we need the following Kolmogorov

forward equations:

dP00(0, t)

dt
= P00(0, t)q

∗
00(t) + P01(0, t)q10(t),

dP01(0, t)

dt
= P00(0, t)q01(t) + P01(0, t)q

∗
11(t),

dP02(0, t)

dt
= P00(0, t)q02(t) + P01(0, t)q12(t).

We solve the system of equations for the transition probabilities numerically and

obtain an estimator of P02(0, t), denoted as P̂02(0, t). Then an estimator of the net

survival function S(t) is:

Ŝ(t) = 1− P̂02(0, t). (5.21)
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5.4 Clinical Trial Terminating at a Finite Time T

In Section 5.2 and 5.3, the estimation is carried out under the assumption that

the clinical trial terminates when all the patients are dead or lost to followup, where

there is no termination date for the clinical trial. In this section, similar to Section

4.3, we will simulate the transition paths under the assumption that the clinical trial

terminates at a prespecified finite time T .

For each patient in state 0, we observe a pair of random variables (Y0, δ0), for

each patient in state 1, we observe a pair of random variables (Y1, δ1). However,

unlike the irreversible model, in the reversible model, the patients are allowed to

visit state 0 and state 1, recurrently. In this case, the distributions of the censoring

variable Y03 and Y13 depend on the number of times the patient has visited state 0

and state 1 respectively. For example, a patient has transition path 0 → 1 → 0 →

1 → 2. So initially his/her observation period from state 0 is [0, T ]. When he/she

visits state 0 for the second time, the remaining observation period from state 0 is

[Y01 + Y10, T − Y01 − Y10] given Y01 + Y10 < T . Similarly, when a patient first visits

state 1, the remaining observation period from state 1 is [Y01, T−Y01] given Y01 < T ,

when the patient visits state 1 for the second time, the remaining observation period

from state 1 is [Y01 + Y10 + Y01, T − Y01 − Y10 − Y01] given Y01 + Y10 + Y01 < T .
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Thus the length of observation period is random and the distribution depends on the

number of times the patient has visited state 0 or state 1. Therefore when estimating

Λij(0, t), we only use the observations (Y0, δ0) in state 0 after the first treatment and

the observations (Y1, δ1) in state 1 after the first relapse. In terms of observable

random variables, we have:

Y0 = min(Y01, Y02, Y03, T ), Y0 ∈ (0, T ],

{δ0 = j} = {Y0 = Y0j}, j = 1, 2,

{δ0 = 3} = {Y0 = min(Y03, T )}.

Y1 = min(Y10, Y12, Y13, T − Y01|Y01 < T ), Y1 ∈ (0, T ],

{δ1 = j} = {Y1 = Y1j}, j = 0, 2,

{δ1 = 3} = {Y1 = min(Y13, T − Y01)}.

The joint distribution of (Y0, δ0) is the same as that given in the irreversible

case (see (3.44)). But the joint distribution of (Y1, δ1) is different:

G1(t, j) = P (Y1 ≤ t, δ1 = j)

=

∫ t

0

S1(u)q1j(u)du, 0 < t ≤ T, j = 0, 2,
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G1(t, 3) = P (Y1 ≤ t, δ1 = 3)

=

∫ t

0

S1(u)q∗13(u)du, 0 < t ≤ T,

where

S1(t) = P (Y1 > t)

= S10(t)S12(t)S
∗
13(t), 0 < t ≤ T,

S∗13(t) = S13(t)F01(T − t)/F01(T ), 0 < t ≤ T,

and q∗13(t) is the hazard rate function corresponding to the survival function S∗13(t).

The estimators for Λij(t), i, j = 0, 1, 2, 3 can be derived in the same way as in Section

3.5.1. We display the estimators without derivation:

Λ̂0j(0, t) =
n∑
k=1

I(Y0,k ≤ t, δ0,k = j)∑n
m=1 I(Y0,m > Y0,k)

, t ∈ [0, t0j], j = 1, 2, 3, (5.22)

Λ̂1j(0, t) =

N01∑
k=1

I(Y1,k ≤ t, δ1,k = j)∑N01

m=1 I(Y1,m > Y1,k)
, t ∈ [0, t1j], j = 0, 2, 3. (5.23)
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5.5 Asymptotic Distributions of the Estimators

The estimators of Λij(0, t) in this chapter are the same as those in Chapter 3.

The uniform consistency, unbiasedness, estimated variance and asymptotic distribu-

tions of Λ̂0j(0, t) for j = 1, 2, 3 and Λ̂1j(0, t) for j = 0, 2, 3 can be proved in the same

way as in Section 3.7.

The transition probabilities are calculated numerically. Therefore we do not

have a closed form for Ŝ(t) = 1− P̂02(0, t). The asymptotic distribution of Ŝ(t) can

not be derived from the asymptotic distributions of Λ̂ij(0, t). However, we can still

approximate the asymptotic distribution of Ŝ(t) using simulation.

5.6 Simulation for Reversible Markov Model

Simulations for the reversible model can be carried out similarly to that of the

irreversible model in Chapter 4. The simulation procedures are as follows:

(1) Generate the sojourn time in state 0, Y0 = y0, from the distribution function

F0(t) = 1− S0(t) using inverse transform sampling.

(2) Take a number δ0 from the set {1, 2, 3} with trinomial probabilities(
− q01(y0)/q00(y0),−q02(y0)/q00(y0),−q03(y0)/q00(y0)

)
.
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(3) If δ0 = 2 or δ0 = 3, stop. The observed transition path is 0→ 2 or 0→ 3, the

observed time of transition is y0. Otherwise continue to step (4).

(4) If δ0 = 1

• Generate the sojourn time in state 1, Y1 = y1, from the distribution

function F1(t) = 1− S1(t), where S1(t) = S10(t)S12(t)S13(t).

• Take a number δ1 from the set {0, 2, 3} with trinomial probabilities(
−q10(y1)/q11(y1),−q12(y1)/q11(y1),−q13(y1)/q11(y1)

)
, where q11(t) = −q10(t)−

q12(t)− q13(t).

(5) If δ1 = 2 or δ1 = 3, stop. Otherwise go to step (1).

Repeat the procedure for each of the n patients to get a sample of n independent

Markov processes, where n is the prespecified sample size. As in Section 4.1, gamma

and Weibull distributions are used to generate the Yij random variables. Additionally,

gamma(3.6, 1) is used to generate the random variable Y10. The simulations are

carried out using sample sizes 200, 500 and 1000.
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5.6.1 Estimation of the Cumulative Hazard Functions with Simulated

Date

We plot Λ̂ij(0, t) against Λij(0, t). For illustration, we display only the graphs

of Λ10(0, t) and Λ03(0, t) and their estimates in Figures 5.2 and 5.3, where Λ10(0, t)

is the cumulative hazard function of gamma(3.6, 1.0) and Λ03(0, t) is the cumulative

hazard function of Weibull(1.5, 5).

5.6.2 Estimator of the Net Survival Function with Simulated Data

The transition probabilities are solved from the Kolmogorov equations numer-

ically. We do not display the graphs for each P̂ij(0, t) separately. We only show the

graph for Ŝ(t) and compare it with the Kaplan-Meier estimator for n = 200, n = 500

and n = 1000 in Figure 5.4.

Figure 5.4 shows that the Kaplan-Meier estimator is larger than Ŝ(t) for all t >

0 and for all sample sizes. The conclusion is consistent with that in the irreversible

model in Chapter 4.
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Λ10(t) = − log
(

1−
∫ t
0
[βαxα−1 exp(−βx)]dx/Γ(α)

)
, t > 0, α = 3.6, β = 1.0
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Figure 5.2: Comparison of Λ̂10(0, t) and Λ10(0, t) for n = 200, 500, 1000, where the black line is

Λ10(0, t), the red line is Λ̂10(0, t), the blue line is the 95% confidence interval, and the green line

indicates the largest uncensored observation: max(y1,k|δ1,k = 0).
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Λ03(t) =
(
t
η

)γ
, t > 0, γ = 1.5, η = 5

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Survival time t

Λ
03

(0
, t

)

Censoring rate =
159

231

(a) n = 200

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Survival time t

Λ
03

(0
, t

)

Censoring rate =
427

586

(b) n = 500

0 1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

Survival time t

Λ
03

(0
, t

)

Censoring rate =
791

1131

(c) n = 1000

Figure 5.3: Comparison of Λ̂03(0, t) and Λ03(0, t) for n = 200, 500, 1000, where the black line

is Λ03(0, t), the red line is Λ̂03(0, t), the blue line is the 95% confidence interval, the green line

indicates the largest uncensored observation: max(y0,k|δ0,k = 3).

118



0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival time t

(a) n = 200, censoring rate = 89
200

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival time t

(b) n = 500, censoring rate = 240
500

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival time t

(c) n = 1000, censoring rate = 496
1000

Figure 5.4: Comparison of Ŝ(t) = 1 − P̂02(0, t) and the Kaplan-Meier estimator for n = 200,

n = 500 and n = 1000. The black line represents the Kaplan-Meier estimator, the red line represents

Ŝ(t).
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5.6.3 Clinical Trial Terminating at a Finite Time T

In this section, we carry out the simulation for a clinical trial that terminates

at a prespecified finite time T .

In the reversible model with T <∞, both Λ̂0j(0, t), j = 1, 2, 3 and Λ̂1j(0, t), j =

0, 2, 3 have larger variance compared to that when T =∞ (see Figure 5.2 and 5.3).

Because the sample size used to estimate Λij(0, t) is smaller when T < ∞. For

illustration, we display the graphs of Λ̂01(0, t) and Λ̂12(0, t) in Figure 5.5 and 5.6. We

use T = 5 in the simulation.

The transition probabilities P00(0, t), P01(0, t), P11(0, t) and P02(0, t) are cal-

culated numerically. Then an estimator of the survival function S(t) follows. We

only display the graph of Ŝ(t) and compare it with the Kaplan-Meier estimator for

n = 200, n = 500 and n = 1000 in Figure 5.7.

From the Figure 5.7, we can see that the Kaplan-Meier estimator of the survival

probability is higher than Ŝ(t) both when T = ∞ and T = 5. It indicates that the

Kaplan-Meier estimator may overestimate the survival probability because it does

not use the data on relapse. The conclusion is consistent with that in the irreversible

model.
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Λ01(0, t) = −log
(

1−
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Figure 5.5: Comparison of Λ̂01(0, t) and Λ01(0, t) for n = 200, 500, 1000. The black line is Λ01(0, t),

the red line is Λ̂01(0, t), the blue lines are the 95% confidence interval when T = ∞, the orange

lines are the 95% confidence interval when T = 5, the green line indicates the largest uncensored

observation when T =∞, the pink line indicates the largest uncensored observation when T = 5.
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Λ12(0, t) =
(
t
η

)γ
, t > 0, γ = 1.5, η = 4
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Figure 5.6: Comparison of Λ̂12(0, t) and Λ12(0, t) for n = 200, 500, 1000. The black line is Λ12(0, t),

the red line is Λ̂12(0, t), the blue lines are the 95% confidence interval when T = ∞, the orange

lines are the 95% confidence interval when T = 5, the green line indicates the largest uncensored

observation when T =∞, the pink line indicates the largest uncensored observation when T = 5.
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Figure 5.7: Comparison of Ŝ(t) = 1− P̂02(0t) and the Kaplan-Meier estimator when T =∞ and

T = 5 for n = 200, n = 500 and n = 1000. The black solid line is the Kaplan-Meier estimator when

T = 5, the black dashed line is the Kaplan-Meier estimator when T =∞, the red solid line is Ŝ(t)

when T = 5, the red dashed line is Ŝ(t) when T =∞.
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5.7 Hypothesis Testing

5.7.1 Modified Kolmogorov-Smirnov Test

The hypothesis tests are carried out in a similar way to that in Section 4.3.1

for irreversible model. We only show the testing results as given in Table 5.1.

F01 F02 F03 F10 F12 F13

n = 200
D∗n 0.0755 0.0805 0.0873 0.1020 0.0797 0.1817

P-value 0.6722 0.6642 0.6132 0.1828 0.5458 0.6943

censoring rate 127/228 168/228 161/228 58/86 55/86 59/86

n = 500
D∗n 0.0504 0.1031 0.0754 0.0763 0.0826 0.1083

P-value 0.6823 0.3610 0.8382 0.4310 0.4489 0.7639

censoring rate 325/570 429/570 386/570 148/218 129/218 159/218

n = 1000
D∗n 0.0366 0.0566 0.0411 0.0507 0.0449 0.0965

P-value 0.8932 0.8686 0.8920 0.5904 0.8434 0.8934

censoring rate 616/1159 871/1159 831/1159 297/456 283/456 332/456

Table 5.1: Modified Kolmogorv-Smirnov test for n = 200, n = 500 and n = 1000.

Note that all the P-values are greater than 0.1. If we set the significance level

α < 0.1, the null hypothesis of each Fij is not rejected.
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5.7.2 Chi-squared Test

The chi-squared test is performed a little different from that in Chapter 4

for irreversible model. We use the same test statistic W =
∑m

i=1(ni − Ei)
2/Ei,

but the choices of categories are different. In the irreversible model, there are four

possible transition paths so we consider each transition path as one category. In

the reversible model, the number of possible transition paths is infinite. We can

combine different transition paths to form a single category. For example, we can

divide the observations into the following four categories: (A) transition paths of

length two ending in S2 (death), (B) transition paths of length two endings in S3

(loss to followup), (C) transition paths of length three, (D) transition paths of length

not less than four. The probabilities of falling into each of the four categories are:

(1) S0 → S2

p1 = P (falling into (A))

= P (Y02 = min(Y01, Y02, Y03))

=

∫ ∞
0

S0(u)dΛ02(u).
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(2) S0 → S3

p2 = P (falling into (B))

= P (Y03 = min(Y01, Y02, Y03))

=

∫ ∞
0

S0(u)dΛ03(u).

(3) S0 → S1 → S3 or S0 → S1 → S2

p3 = P (falling into (C))

= P (Y01 = min(Y01, Y02, Y03))
(

1− P (Y10 = min(Y10, Y12, Y13))
)

=

∫ ∞
0

S0(u)dΛ01(u)
(

1−
∫ ∞
0

S1(u)dΛ10(u)
)
,

where S1(t) = S10(t)S12(t)S13(t).

(4) The others.

p4 = P (faling into (D))

= 1− p1 − p2 − p3.

The test results (test statistic and P-values) are summarized in Table 5.2. All
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Sample size n = 200 n = 500 n = 1000

W 3.00 1.59 0.62

P-value 0.2690 0.2435 0.8931

Table 5.2: Chi-squared test for n = 200, n = 500 and n = 1000.

the P-values are greater than 0.1. Therefore if we set the significance level α < 0.1,

the null hypothesis of each Fij is not rejected. In Table 5.2, as the sample size

increases, the P-values increase in general. However, the P-values are random. If we

repeat the simulation and perform the hypothesis testing again, we will get different

P-values. We repeat the simulations for 100 times and for each sample size, we

calculate the mean of 100 the P-values. Corresponding to n = 200, 500 and 1000,

the average P-values are 0.4615, 0.5223 and 0.4964 respectively which indicates that

the P-values are stable.
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Chapter 6: Conclusion

In a fundamental paper, Fix and Neyman (1951) [23] introduced a method

for estimating the survival function with right-censored survival time data collected

from clinical trials. The method takes into account of the available data on each

patient’s status with regard to relapse, recovery, loss to follow-up and death. A

patient’s survival time is measured from a well-defined starting time such as the

time of diagnosis to the time of death or loss to followup and it includes the sojourn

times that the patient spends in various states. Fix and Neyman constructed an

absorbing Markov process to model the observable data on the disease evolution of

a patient during a clinical trial. Taking into consideration of right-censored Markov

model, Fix and Neyman introduced a procedure to calculate the model survival

function as well as its estimator. The Fix-Neyman model is a homogeneous Markov

process, i.e., transition rates are independent of time. In this thesis, we generalize

the Fix-Neyman method for nonhomogeneous Markov models, i.e., the transition

rates are both time and state dependent. From which one can estimate the survival

128



function nonparametrically. This problem is raised in Yang (2013) [50] and becomes

the topic of this thesis. Although finite nonhomogeneous Markov model for lifetime

analyses has been used widely in more recent years, Fix-Neyman’s method is hardly

used except mostly in Chiang’s work (e.g., Chiang (1968) [14]) and by his students.

In this thesis, the model survival function is calculated by solving a system

of Kolmogorov forward equations. Dictated by the availability of closed form so-

lutions, the Markov models for statistical analyses are investigated separately for

the irreversible and reversible models. Analytical solutions for the survival function

can be derived for irreversible models. We use the 4-state Markov model with two

transient and two absorbing states to demonstrate the derivations and estimate the

cumulative hazard functions and survival function. In the reversible models, except

in some special cases, analytical solutions are not available. In this thesis, numerical

solutions are developed for statistical analyses.

The generalization of the Fix-Neyman model includes a number of existing

multi-state models for right-censored lifetime data as special cases, such as the mul-

tiple decrement models, the illness and death models, the staging models, and the

classical right censoring model. The optimality of the celebrated Kaplan-Meier non-

parametric estimator of the survival function is based on the classical right censoring

model. Thus the generalization of the Fix-Neyman model and their procedure unify
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the estimation of the survival function with right-censored data. In general, the

Fix-Neyman model utilizes more of the available data in the clinical trial than that

of the classical right-censoring model which disregards patient’s status data in the

clinical trial.

Extensive simulations of the Markov models for both irreversible and reversible

cases are carried out to examine the accuracy and distributional properties of the

estimators. Using the Markovian property, simulated data are obtained by simulating

a sequence of competing risks models at each transition time. With simulated data,

a comparison is made between the estimated survival function under a particular

4-state model and the Kaplan-Meier estimator under a 3-state model (which ignores

the status data). The comparison shows that the Kaplan-Meier estimator has larger

values for all times and in all cases of comparisons.

Future work includes studying of power functions of various goodness of fit

tests, and determining under what conditions would the Kaplan-Meier estimator be

uniformly larger than a nonparametric estimator of the survival function in a 4-state

Markov model.

130



Bibliography

[1] Aalen, O. (1975). Statistical Inference for a Family of Counting Processes. PhD

thesis, University of California, Berkeley.

[2] Aalen, O. (1978). Nonparametric estimation of partial transition probabilities in

multiple decrement models. Ann. Stat., 6:534–545.

[3] Aalen, O. (1989). A linear regression model for the analysis of life times. Stat.

Med., 8(8):907–925.

[4] Aalen, O. and Gjessing, H. (2001). Understanding the shape of the hazard rate:

a process point of view. Stat. Sci., 16(1):1–22.

[5] Aalen, O. and Johansen, S. (1978). An empirical transition matrix for non-

131



homogeneous Markov chains based on censored observations. Scand. J. Stat.,

5:141–150.

[6] Andersen, P. K. (1997). Multi-state Models for Event History Analysis in Clinical

Medicine and Epidemiology. University of Copenhagen.

[7] Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N. (2012). Statistical

Models Based on Counting Processes. Springer Science & Business Media.

[8] Andersen, P. K. and Gill, R. (1982). Cox’s regression model for counting pro-

cesses: A large sample study. Ann. Stat., 10(4):1100–1120.

[9] Andersen, P. K. and Keiding, N. (2002). Multi-state models for event history

analysis. Stat. Methods Med. Res., 11(2):91–115.

[10] Arias, E. (2012). United states life tables 2008. National Vital Statistics Reports,

61(3).

[11] Beck, G. (1979). Stochastic survival models with competing risks and covariates.

Biometrics, 35:427–438.

[12] Beck, G. J. and Chiang, C. L. (1981). On maximum likelihood solutions for

exponential survival models. Biom. J., 23(5):451–459.

132



[13] Chiang, C. L. (1964). A stochastic model of competing risks of illness and

competing risks of death. Stoch. Models Med. Biol., pages 323–354.

[14] Chiang, C. L. (1968). Introduction to Stochastic Processes in Biostatistics. John

Wiley & Sons, New York.

[15] Chiang, C. L. (1980). An Introduction to Stochastic Processes and Their Appli-

cations. RE Krieger Publishing Company New York.

[16] Collett, D. (2015). Modelling Survival Data in Medical Research. Chapman &

Hall/CRC.

[17] Cortese, G. and Andersen, P. K. (2010). Competing risks and time-dependent

covariates. Biom. J., 52(1):138–158.

[18] Cox, D. R. (1972). Regression models and life-tables. J. Royal Stat. Society-

Series B.ens, 34(2):187–202.

[19] Datta, S. and Satten, G. (2001). Validity of the aalen–johansen estimators of

stage occupation probabilities and nelson–aalen estimators of integrated transition

hazards for non-Markov models. Stat. Probab. Lett., 55(4):403–411.

[20] Efromovich, S. and Chu, J. (2018). Small LTRC samples and lower

133



bounds in hazard rate estimation. Ann. Inst. Stat. Math. DOI: 10.1007/

s10463-017-0617-x.

[21] Fang, J. Q. (1985). Multi-state Survival Analysis with Time-dependent Covari-

ates and Censoring. PhD thesis, University of California, Berkeley.

[22] Feller, W. (1940). On the integro-differential equations of purely discontinuous

Markoff processes. Trans. Amer. Math. Soc., 48:488–515.

[23] Fix, E. and Neyman, J. (1951). A simple stochastic model of recovery, relapse,

death and loss of patients. Hum. Biol., 23(3):205–241.

[24] Freund, J. (1961). A bivariate extension of the exponential distribution. J. Am.

Stat. Assoc., 56(296):971–977.

[25] Frydman, H. (1992). A non-parametric estimation procedure for a periodically

observed three-state Markov process, with application to AIDS. J. Royal Stat.

Society-Series B.ens, 54:853–866.

[26] Frydman, H. (1995). Nonparametric estimation of a Markov ‘illness-death’

process from interval-censored observations, with application to diabetes survival

data. Biometrika, 82:773–789.

[27] Frydman, H. and Szarek, M. (2009). Nonparametric estimation in a Markov

134

10.1007/s10463-017-0617-x
10.1007/s10463-017-0617-x


“illness–death” process from interval censored observations with missing interme-

diate transition status. Biometrics, 65(1):143–151.

[28] Glidden, D. (2002). Robust inference for event probabilities with non-Markov

event data. Biometrics, 58(2):361–368.

[29] Group, P. S. (1991). Prophylaxis of first hemorrhage from esophageal varices by

sclerotherapy, propranolol or both in cirrhotic patients: A randomized multicenter

trial. Hepatology, 14(6):1016–1024.

[30] Huang, J. and Liu, L. (2006). Polynomial spline estimation and inference of

proportional hazards regression models with flexible relative risk form. Biometrics,

62(3):793–802.

[31] Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure

Time Data. John Wiley & Sons.

[32] Kaplan, E. and Meier, P. (1958). Nonparametric estimation from incomplete

observations. J. Am. Stat. Assoc., 53(282):457–481.

[33] Kvam, P. H. and Samaniego, F. J. (1997). Multivariate life testing in variably

scaled environments. Lifetime. Data. Anal., 3(4):337–351.

135



[34] Le Cam, L. and Yang, G. (2000). Asymptotics in Statistics: Some Basic Con-

cepts. Springer, 2 edition.

[35] Marshall, A. and Olkin, I. (1967). A generalized bivariate exponential distribu-

tion. J. Appl. Probab., 4(2):291–302.
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