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Though silicon (Si) is in many ways the material of choice for many electronic

applications due in part to its mature processing technology, its intrinsic properties

are not always suited for every challenge. Specialized high power and high temper-

ature devices benefit from using semiconductors with a larger band-gap and higher

thermal conductivity such as silicon carbide (SiC). Additionally, the 1.1eV bandgap

of Si makes it unable to effectively absorb infrared photons so a material with a

smaller bandgap, like germanium (Ge), is more suited to the task.

Currently SiC power transistors are commercially available but suffer from

poor channel mobility due to interface roughness which limits their performance.

To predict the maximum theoretically achievable mobility for different crystallo-

graphic interfaces I developed a novel technique for extracting an atomic-roughness

scattering rate from an arbitrary atomic surface. The term atomic-roughness here

means an interface purely due to the variation of atom species and position without

the presence of a crystallographic miscut due to epitaxial growth considerations.



I used Density Functional Theory (DFT) to obtain a perturbation potential from

which I can calculate a scattering rate. This scattering rate can then be used in a

Monte Carlo simulation to predict mobility for a given field configuration.

In addition to SiC’s low channel mobility, SiC p-type dopant species also ex-

hibit an abnormally large ionization energy compared to its n-type dopants and

to the primary dopants in many other semiconductors. This fact can cause is-

sues such as unexpectedly high resistance regions at lower operating temperatures

- causing the need to dope at significantly higher concentration. To characterize

the incomplete ionization fraction p/NA, I first gathered nearly all existing pub-

lished data on the ionization energy of aluminum (Al) in 4H-SiC and created an

empirical concentration-dependent model of this function. Then I put together a

physics-based model of the entire acceptor and valence band system and used my

concentration-dependent ionization energy as an input to predict p/NA. I verify my

physics-based model result against a separate experimental dataset derived from

nearly-exhaustive literature measurements of Hall mobility and resistivity. Finally,

I transform fully temperature-dependent result of p/NA from a complex numerical

computation to a more easily implementable parameterized function with the use

of a genetic algorithm.

The remaining part of my work was performed on Germanium which has

interesting application in short-wave infrared imaging due its 0.66eV indirect and

0.85 eV direct bandgaps, which corresponds closely to the peak illumination of

the “night glow” at 0.75 eV. Optical devices greatly benefit from direct gap band

structures to increase photon absorption and emission efficiency. Though Ge is an



indirect gap material, it can be alloyed with a direct gap material, namely tin (Sn),

to transition it to a direct gap material at a certain molar fraction. Through DFT

calculations I investigate the nature of this transition and determine theoretically

the minimum molar fraction needed to achieve a direct bandgap.
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Chapter 1: Introduction

1.1 Post Silicon Materials

As silicon nears the end of its road map, the semiconductor industry is looking

to other materials to continue technological scaling. Despite silicon’s many good

properties, other less mature materials exist which exhibit better performance in

certain regimes. In particular, for high speed integrated circuits electron mobility

is the key figure-of-merit which dictates how fast electrons can move within the

material. Though the mobility of Si is fairly high, it is surpassed by materials like

GaAs and Ge. High mobility materials also facilitate device scaling by allowing

physically smaller devices to maintain reasonable ON currents in transistors.

Additionally, Si has a relatively small bandgap among semiconductors regu-

larly researched (Figure 1.1 [3]). Small bandgap materials perform poorly in high

temperature and high power applications due to their large intrinsic carrier concen-

trations which can overwhelm doped carrier distributions and small critical fields

which cause avalanche breakdown respectively. One popular wide bandgap material

choice is SiC, which boasts not only a large bandgap value, but a higher thermal

conductivity than Si, while still being able to grow a native oxide. Research of SiC

power devices has been taking place since the 1990s and commercial devices have
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been available to consumers since 2003 [13]. Further research is currently being

done to improve reliability and performance. Current SiC devices suffer from the

presence of interface traps which cause threshold voltage instability [14, 15] as well

as surface roughness which decreases channel mobility [1, 14].

In this thesis, I will first discuss my contribution to the study of SiC surface

mobility and will follow with a discussion of my atomistic calculations of Ge-Sn

alloys. In short, my work involves employing density function theory (DFT) to

solve the many-body Schrdinger equation which tells me the electron density and

potential everywhere within my constructed crystal systems as well as the band

structure. I have created a novel method to extract a perturbation potential due to

defects and/or the presence of an interface from this DFT solution. I then calculate

what we refer to as an atomic-roughness scattering rate using the calculated atomic-

level perturbation potential which is then fed into a Monte Carlo simulation. The

Monte Carlo simulation builds up electron velocity and energy distributions due

to different scattering rates within a semiconductor and provides as output a field-

based mobility. By using this atomic-roughness scattering we avoid approximations

typically used when calculating theoretical mobilities in SiC.

The DFT solution to the many-body Schrdinger equation also provides a band

structure for the given system. I use this band structure to predict the transition of

Ge into a direct-gap material when alloyed with Sn.
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Figure 1.1: Plot of popular semiconductor elements and compounds relating atomic
bond length to energy bandgap. The scatter data shows a general trend of smaller
bond distances correlate to larger bandgaps. (Figure from [3])
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1.2 Overview of Group IV(a) Semiconductors

1.2.1 Properties

Both silicon and germanium are good candidates for integrated electronics

due to their ability to thermally grow a native oxide. This allows for the creation of

good interfaces with few defects to be used for MOSFET gate oxides, beneath which

the sensitive channel resides. The compound semiconductor silicon carbide can also

grow a native oxide but it is known to be much more defected due in part to the

presence of carbon which must leave the material during the oxidation process.

Elements and compounds higher in a given column of the periodic table (Fig-

ure 1.2) tend to have larger bandgaps and decrease as you descend in the column.

Large bandgap materials are excellent candidates for high power and high temper-

ature devices because of their large breakdown electric fields and their low intrinsic

carrier concentrations respectively. On the other end of the spectrum, small bandgap

materials perform poorly in these situations, they tend to have increased mobility

which lends them to use in low power and high speed integrated circuits.

Table 1.1 lists various electrical and material properties of the important col-

umn IV semiconductors. The materials in the table are arranged from left to right

as they appear descending in the periodic table. Different properties tend to in-

crease or decrease across this table, almost without exception, which is a result

commonly seen in the periodic table arrangement of the elements. In essence, wide

bandgap materials have larger thermal conductivity and breakdown fields, while
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Figure 1.2: Metalloid section of the periodic table where most of the important
semiconductor elements reside. Elements in each column have valence 3, 4, and 5
from left to right, and increase in radius from top to bottom.

small bandgap materials have higher mobility and permittivities.

The FCC forms of the first few group IV semiconductors (C, Si, Ge, α-Sn) and

all polytypes of SiC are indirect gap materials. In contrast to this, a large number of

III-V compound semiconductors are known to be direct gap materials (GaAs, GaSb,

InP, InAs, InSb, AlN, GaN, InN). Though generally true, this fact is not readily

apparent without performing detailed band structure calculations.

5



Table 1.1: Material property comparison of Diamond, 4H-SiC, Si, and Ge at 300K
(descending in column IV from left to right).

Property Diamond [16] 4H-SiC Si Ge
Lattice Structure FCC Hexagonal FCC FCC
Bandgap Eg (eV) 5.45 3.2 1.1 0.66

Direct Gap EΓ (eV) 7.3 5-6 3.4 0.8
Breakdown Field (MV/cm) 10 3.0 0.6 0.1

Intrinsic Carrier Concentration (cm−3) 10−27 10−8 1010 2×1013

Bulk Electron Mobility (cm2/Vs) 2200 800 1200 3900
Bulk Hole Mobility (cm2/Vs) 1600 115 420 1900

Thermal Conductivity (W/cm K) 20 3-5 1.5 0.58
Relative Permittivity 5.7 9.7 11.9 16

1.2.2 Bonding

Also known as the Carbon Group, elements in this column of the periodic

table (Figure 1.2) have 4 valence electrons and readily form covalent bonds with 4

neighboring atoms in a tetrahedral arrangement due to sp3 hybridization. Electrons

in these hybridized orbitals exhibit 25% s and 75% p character, which result in

the 4-lobed tetrahedral shape that maximizes the separation of the electrons in the

surrounding bonds from each other. A spatial visualization of these orbitals is shown

in Figures 1.3 and 1.4 below.

In addition to the group IV elements forming tetrahedral bonding structures,

it is not unreasonable to assume that compounds of the form AB with one atom

of valence 3 and one of valence 5 will do the same but with higher ionicity bonds

instead. These tetrahedrons can be arranged differently with respect to each other

to give the crystal lattices in which these materials are commonly found. Elemen-
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Figure 1.3: Cartoon visualization
of the four sp3 orbital lobes.

Figure 1.4: Actual form of sp3

tetrahedron (level set of the wave-
function) showing overlaid or-
bitals. Yellow and blue colors de-
note opposite signs the wavefunc-
tion.

tal column IV crystals tend to adhere to the face-centered cubic (FCC) diamond

lattice structure, while III-IV materials generally form in the analogous zinc-blende

structure (FCC) or more rarely the wurtzite (hexagonal) structure [6].

In general, as the atomic radius of an element increases (descending within a

column), bonds between nearest neighbor atoms become weaker due to spreading

of higher energy valence wavefunctions. Consequentially the atoms become more

separated and in turn exhibit smaller bandgap. This effect can be understood by

thinking about bringing N identical atoms close enough together for their atomic

orbitals to have significant overlap. When this happens, the energy levels of the

individual atoms (normally degenerate for like-atoms) must split into bands of N

closely-spaced states so as to not violate the Pauli exclusion principle. The amount

of band splitting is directly related to the degree of wavefunction overlap. This
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causes lower energy orbitals which are confined to the inner core region to split less

than the higher energy valence orbitals with a larger spatial extent.

The manner in which this occurs leads to the formation of forbidden energy

gaps and determines the value of the bandgap based on the equilibrium atomic

spacing and the band occupancies. In addition to the atomic energies broadening

into bands, the bands begin to bend and in certain situations merge as orbitals

hybridize before ultimately separating again once inter-atomic distance becomes

very small.

Energy levels corresponding to wavefunctions of favorable (bonding) charge

distributions will tend to decrease with decreasing interatomic distance. Conversely,

antibonding energies where electrons are localized away from bonding sites will be

increased due to the energetically unfavorable configuration. These antibonding

wavefunctions are analogous to high energy molecular orbitals which occur in chains

of atoms. By taking linear combinations of the N atomic orbitals, A chain of N atoms

gives rise to N possible molecular orbitals which contain from 0 to n-1 nodes between

atoms where the density goes to zero. The 0 node solution corresponds to the fully

bonding wavefunction and the n-1 node to the fully antibonding wavefunction. The

band formation for a chain of 6 atoms is shown in Figure 1.5;

Similarly, in a crystal, the lowest energy level at the bottom of each band

corresponds to the in-phase bonding state combination of atomic orbitals and the

top level to the fully out-of phase antibonding configuration. Levels in the middle

of the band consist of states which are various other combinations of atomic orbitals
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Figure 1.5: Molecular wavefunctions for a linear chain of 6 atoms. Degen-
erate energies split as interatomic distance decreases due to the interaction of
neighboring atomic orbitals. Light and dark circles represent positive and neg-
ative orbital lobes respectively. By Tem5psu (Own work) [CC BY-SA 4.0
(http://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

which smoothly transition between these two extremes.

Once atoms are forced closer to and beyond their equilibrium distance, the hy-

bridized bands ultimately begin to split from each other due to the large Coulombic

repulsion of the ions [17]. The widths of the allowed energy bands are limited by the

small number of near-neighbor atoms which are close enough for their wavefunctions

to significantly overlap. Adding additional atoms to the system only results in fur-

ther subdividing states within the band such that it closely resembles a continuum

of states [18]. The band gap of a material is determined by the degree of separa-

tion between the last occupied band refered to as the valence band, and the next

higher unoccupied band known as the conduction band. In the case of FCC column

IV materials, the valence and conduction bands consist of the bonding sigma band
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and the antibonding sigma∗ band respectively, the formation of which is depicted in

Figure 1.6.

1.3 Silicon Carbide

1.3.1 Background and Applications

The world of power electronics is ever growing and at present particularly due

to the recent concerns of alternative energy technologies and the commercial emer-

gence of fully-electric vehicles. As Si-based power devices approach their material

limits, alternative materials are being researched to take advantage of their differ-

ent material properties [19]. Typically, wide bandgap semiconductors are the main

go-to for use in high power, high temperature devices for their beneficial electrical

and thermal properties. SiC is of particular interest due to its ability to form a

stable native oxide and the commercial emergence of good quality substrates [20].

Since 2014, the SiC wafer market has grown each year by approximately 21% and

is predicted to continue this trend until at least 2020 to reach $110 million [21]. As

a whole, the SiC power semiconductor market is projected to exceed $1.6 billion in

2022 [22].

SiC crystals exist in numerous polytypes, meaning each crystal shares the

same close-packed layers but differ in the periodic stacking order of these layers. Of

the various polytypes, the 6H and 4H variants have seen the most use in electrical

device applications. Currently, 4H devices are the dominant among commercial

devices due to its higher carrier mobility and low dopant ionization energy [23].
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Figure 1.6: Splitting and occupancy of 2s (3s,4s) and 2p (3p,4p) states of carbon
(silicon, germanium) as a function of inter-atomic spacing. The distance between
the top of the filled band and the bottom of the unfilled band shows formation of
various bandgap values at experimental inter-atomic distances. Inset images depict
spatial visualizations of the kinds of orbitals found in each band. Orbitals shown: 2s
orbital (bottom right), 2p orbital (top right), overlaid hybrid sp3 orbitals (center),
sp3 sigma bonding orbital (bottom left), and sigma∗ antibonding orbital (top left).
Color represents sign of wavefunction. [4]
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In addition to SiC’s high thermal conductivity, saturation velocity, and breakdown

field, it performs better than Si on-chip due to both its lower on-state resistance,

smaller chip area, and higher switching frequency [19,23]. The price paid in increased

device costs is outweighed by the improved characteristics and performance gains

achieved using SiC.

One key application of SiC is for use in the construction of more energy efficient

and power dense DC/DC, DC/AC, AC/DC, and AC/AC converter circuits [23]. In

particular, DC/AC inverter circuits are needed in electric vehicles and photovoltaic

systems to convert the stored battery power into usable power. DC/DC converters

enjoy an increased operating voltage range and a drastic size reduction due to the

need for a smaller inductor. For a given peak-to-peak ripple in a DC-DC converter,

the inductance value needed is inversely proportional to the switching frequency of

the transistor [19]. The properties of SiC allow for high switching frequencies so the

size requirement of the inductor is be reduced, thus shrinking the module’s overall

size [24].

1.3.2 Crystal Structure and Properties

SiC crystals are arranged such that each carbon atom is covalently bonded

to four silicons and vise versa in a tetrahedral manner. Because these tetrahedra

may be stacked differently, SiC forms what are known as polytype variants. The

tetrahedrons create close-packed planes of atoms which vary in their stacking ar-

rangement along the normal direction. The order and periodicity of the stacking
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defines the polytype of the crystal which is denoted <number><letter>-SiC, where

<number>is the period of the stacking arrangement, and <letter>abbreviates the

Bravais lattice of the crystal (C for cubic, H for hexagonal, R for rhombohedral).

Figure 1.7 illustrates the stacking arrangement for the most common polytypes,

although there are more than 200 known /citeLiu.

Figure 1.7: SiC polytypes depicting only key atoms forming the bonding chain in
the stacking direction. Primitive cells are shown for the hexagonal polytypes and
a non-primitive hexagonal cell is used for 3C. Polytypes differ only in the stacking
order and periodicity of the close-packed atomic planes. For the cubic variant, this is
the {111} plane and for the hexagonal variants, the {0001} plane. (Figure from [5]).

Because the different polytypes of SiC have different atomic arrangements,

they differer in their electrical characteristics and electronic structure. Table 1.2

compares the properties of the two most commonly used polytypes of SiC to the

industry standard Si. As shown in the table, the 4H variant has a slightly larger

bandgap and a greatly increased bulk mobility compared to 6H [22]. The breakdown

field of SiC is approximately 5 times larger than in Si, allowing it to hold-off the
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much larger voltages seen in power applications. Additionally, SiC exhibits a 2-3 fold

larger thermal conductivity so heat can be dissipated from the device more easily,

preventing thermal runaway and reducing the need for large costly cooling systems

[19]. The increased thermal conductivity in addition to a significantly higher melting

temperature also increases the maximum operating temperature of the device and

consequentially, a larger maximum current density.

Table 1.2: Electrical property comparison of SiC to Si at 300K. Data from [25]

Property 6H-SiC 4H-SiC Si
Bandgap Eg (eV) 3.0 3.2 1.1

Breakdown Field (MV/cm) ‖c-axis: 3.2 ‖c-axis: 3.0 0.6
ND = 1017 cm−3 ⊥c-axis: >1 ⊥c-axis: 2.5

Intrinsic Carrier Concentration (cm−3) 10−5 10−8 1010

Bulk Electron Mobility (cm2/Vs) ‖c-axis: 60 ‖c-axis: 800 1200
ND = 1016 cm−3 ⊥c-axis: 400 ⊥c-axis: 800

Bulk Hole Mobility (cm2/Vs) 90 115 420
ND = 1016 cm−3

Thermal Conductivity (W/cm K) 3-5 3-5 1.5
Relative Permittivity 9.7 9.7 11.9

Because the most commonly used polytype of SiC in power devices is the

4H variant, the remainder of this thesis will discuss 4H-SiC exclusively. Figure 1.8

shows the hexagonal lattice of 4H-SiC along with the Miller indices of associated

directions/planes.

The (0001) Si-face of 4H-SiC is by far the most commonly available wafer type.

On this face, Si atoms terminate 100% of the face but other faces have different Si-to-

C ratios and packing density. The various atomic structures exhibited by each face

causes different electrical transport and oxidation characteristics. Opposite to the Si-
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[11̄00]

[112̄0]

[0001]

Figure 1.8: Wigner-Seitz cell of hexagonal real-space lattice structure and relevant
crystal planes

face is the C-face (0001̄) which is terminated completely by C atoms. Perpendicular

to these are the a-face (112̄0) and the m-face (11̄00) which are investigated for their

use in vertical devices and have an equal number of Si and C atoms. Figure 1.9

shows the stacking arrangement and key faces of the 4H-SiC structure.

In terms of process variation for different faces, the Si-face shows the slowest

oxide growth rates which are approximately 12 times slower than the C-face. The

a-face growth rate is slightly slower than the C-face but still significantly faster

than the Si-face which takes 12 hours to grow 50nm of oxide at 1150°C [22]. As

a consequence of different surface morphologies, some faces show greater electron

mobility than others. Specifically, the Si-face exhibits the lowest channel mobility

(< 10 cm2/Vs) compared to the a-face mobility (> 25 cm2/Vs) depending on the
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Figure 1.9: 4H-SiC lattice depicting the stacking arrangement and crystal faces
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degree of surface passivation [22]. With NO surface passivation these mobilities can

be improved to 80 and 125 respectively. A mobility of 90 cm2/Vs has been achieved

on passivated C-face [22]. Despite having the lowest mobility, the Si-face is still

commonly used for its superior threshold voltage stability compared to its other

faces [26].

1.3.3 Issues in SiC Power Devices

Traditionally, SiC MOSFETs have suffered from low channel mobility due to

poor quality SiC-SiO2 interfaces [19]. In particular, large surface roughness and

a high density of interface states increases carrier scattering in the channel, caus-

ing the surface mobility to drop approximately 1-2 orders of magnitude from the

bulk value [3]. The low mobility of SiC MOSFETs causes devices to have a small

transconductance and thus poor gate control of current. Various defects have been

detected and characterized by many researchers including [14, 27, 28]. In addition

to causing scattering, some defects can cause carrier trapping and threshold volt-

age instability, leading to reliability issues which is a heavily researched topic [15].

These defects are not passivated by post-metalization H2 anneals as they are in Si,

but NO has been shown to improve interface defect density [14,22].

1.4 Germanium Photonics: Benefits and Challenges

In addition to SiC I also investigate the optical properties of Ge and its po-

tential use in beyond-silicon integrated electronics at the end of the Si road map.
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Germanium is a natural replacement for CMOS due to it’s ability to grow a native

thermal oxide, a property crucial to form the gate oxide in MOS transistors. Cur-

rently, research has been done seeking to integrate Ge into Si CMOS devices. Ge

is a decent candidate for integration due because it has the same lattice structure

as Si with a different lattice constant. This integration does not come without dif-

ficulty however. The lattice mismatch necessitates a high concentration of misfit

dislocations at the interface and further challenges exist regarding compatibility of

processing growth temperatures [29].

Germanium is known to have an indirect band gap of 0.66eV, allowing it

to function as a relatively inefficient detector of short-wave infrared (SWIR) light.

Instead of trying to integrate a Ge detector into Si CMOS circuitry, the photonics

can be developed on a purely germanium substrate so that both the optics and

supporting electronics are both made of Ge. In doing this, we can exploit the

beneficial electrical properties of Ge such as its superior (3x) mobility to Si.

In this work, our main focus will be on the study of the Ge band structure and

how the conduction band minima change with respect to varying concentrations of

Sn in Ge-Sn alloy. By introducing a certain fraction of Sn to the Ge, the bandgap

can be transformed from a indirect in nature to direct, allowing for more efficient

photon detection. The key to this process is finding the minimum amount of Sn

required to transition so that the gap energy is still as close to its original value as

possible.
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1.5 Research Accomplishments

SiC:

� Performed a self-consistent DFT calculation of a 125 atom ideal 4H-SiC/SiO2

interface supercell using Quantum ESPRESSO [30].

� Developed a novel technique to extract an interface scattering perturbation

potential from DFT calculations. This scattering is due to the aperiodicity

caused by the presence of the interface and the atomic roughness therein.

� Calculated a 2D quantized inversion layer scattering rate based on the ex-

tracted perturbation potential for use in surface Monte Carlo scattering sim-

ulation.

� Reproduced bulk 4H-SiC field-dependent velocity characteristics from Monte

Carlo simulations.

� Calculated and compared mechanism-dependent component mobilities impor-

tant to MOS device mobility including my own proposed atomic-roughness

mobility which will be present even in an ideal SiO2/SiC interface.

� Combined and adapted physics-based models for doped semiconductor systems

to calculate theoretical mobile hole to acceptor concentration ratio (p/NA)

� Gathered, analyzed, and created empirical parameterizations for concentration-

dependent data of nearly all existing published Hall mobility, resistivity, and

ionization energy data on Al-doped 4H-SiC. I used the ionization energy data

as input into my physics-based model. The Hall mobility and resistivity data

were used verify my physics-based p/NA result by using a method which was

19



first applied to Si.

� Created a more readily usable closed-form expression of my temperature and

concentration-dependent p/NA calculation. The original physics-based model

involves iterative numerical techniques to solve a nonlinear system of integrals

which is computationally expensive so I developed a genetic algorithm to find

the optimal parameters for an expression which reproduces the same two-

dimensional p/NA function but is much more easily implemented.

� Used a variation of my genetic algorithm to parameterize the fully temperature

and concentration dependent Al-doped 4H-SiC Hall mobility function based

on data from nearly all existing published values. This result should be valid

over a larger temperature and doping range than those currently published.

Ge:

� Reproduced key gap energies in the band structure of Ge using a hybrid DFT

calculation.

� Calculated band structure for various GexSn(1−x) alloys with various ratios.

� Determined the fraction at which the band structure of the material becomes

direct.

1.6 Future Work

Currently, the scale at which my DFT calculations can be performed is sig-

nificantly limited by the practical memory and processing power constraints of the

computer on which I am performing the calculations. This limits the size of the

20



supercell to the order of about 100 atoms for practical computations. With a more

powerful computer, it would be possible to simulate significantly larger supercells

which could accommodate interesting defect structures. The issue with trying to

simply add a defect to a smaller supercell is that this cell is periodic and thus any

defect you add will also be periodic. Without a sufficiently large cell, this defect will

have a higher concentration than the real-world analogue which can cause incorrect

results due to the defect interacting with itself. Additionally, to simulate aperiodic

structures like amorphous oxide, surface roughness, defects, etc., the correlation

length of the structure is bounded by the periodicity of the supercell. Therefor,

with a larger supercell, a ‘less periodic’ structure can be simulated.

To extend my research of scattering at the SiC/SiO2 interface, two main ape-

riodic structures are prime candidates for a DFT-based study:

First, it would be interesting to simulate a non-pristine interface which con-

tains a real atomic configuration of the miscut roughness and step bunching which

recreates an AFM-measured SiC surface. Performing statistical calculations of the

RMS roughness height and the autocovariance of the supercell’s atomic configura-

tion should be matched to the real measurements. A reverse Monte Carlo algorithm

could be used to continually generate random atomic step configurations for the su-

percell until the toughness statistics match, then an amorphous oxide can be added

and structurally relaxed to create the final interface. Even better (but significantly

more computationally intensive) would be to simulate the growth of the oxide from

the rough miscut surface using a molecular dynamics simulation. Finally, with this

supercell structure, the surface-roughness scattering rate of the miscut surface could
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be calculated using the methods described in my research and this would give in-

sight as to the impact the miscut roughness has on the SiC MOS channel mobility.

Additionally, it would be interesting to directly measure experimentally the chan-

nel mobility of MOS structures using identically- produced SiC wafers with varying

miscuts.

Second, basal plane dislocations (BPDs) are known to be device-impairing

defects in MOS structures. However, device fabricators generally try to transform

these dislocations into supposedly less harmful threading edge dislocations (TEDs).

The actual effect of the TEDs has yet to be fully studied and characterized, so a

DFT study to extract the scattering rate of TEDs would be useful to inform device

designers and fabricators how their presence is affecting the MOS channel mobility.

In terms of my work on incomplete ionization, I have extracted and fit with my

genetic algorithm the Hall mobility literature data as a function of both temperature

and NA, however the resistivity data is a much more complicated function and

I only fit it as a function of NA at T = 300K. To fully check agreement with

my temperature-extended theoretical model results of incomplete ionization, a fit

of the temperature and NA dependent resistivity literature data would need to be

performed.
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Chapter 2: DFT and Electron Transport Modeling and Theoretical

Framework

2.1 Many-Body Schrodinger Equation

Determining the properties of a multi-atomic system traditionally involves

solving the many-body Schodinger equation. This, however, quickly proves infeasible

when the number of atoms increases as the wavefunction quickly becomes a function

of far too many coordinates (3× (n + N) for n electrons and N nuclei). The time-

independent Schrodinger equation itself is an eigenvalue problem which has allowed

energy states as eigenvalues and their corresponding wavefunctions as eigenvectors.
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(2.1)

Because the wavefunction of a system contains within it all of the information

knowable about the system, the left-hand side of the equation is a large operator

which acts on the wavefunction to extract different energy components. This opera-

tor is also known as the Hamiltonian of the system. The Hamiltonian can be broken

down into a combination of smaller quantum-mechanical operators which are, in
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order: nuclear kinetic energy, electron kinetic energy, electron-nuclei coulombic po-

tential energy (attraction), electron-electron coulombic potential energy (repulsion),

nuclei-nuclei coulombic potential energy (repulsion). In this equation Mj, Zj, and

Rj are the mass, atomic number, and position of the jth nuclei and m, q, ri are the

mass, charge, and position of the rth electron.

2.1.1 Born-Oppenheimer Approximation

To begin simplifying the problem, the equation is usually solved in the context

of the Born-Oppenheimer approximation, which assumes that because the nuclei are

far more massive than the electrons, they move on different time scales and as such,

the total wavefunction for the system can be separated into an electronic component

and a purely nuclear (vibrational,rotational) component.

Ψtot = Ψelectronic ×Ψnuclear (2.2)

The electronic solution is found by solving the electronic Schrodinger equation with

the positions of the nuclei fixed (usually in their equilibrium configuration). By

slowly varying the location of the nuclei and re-solving the electronic equation, the

electron energy as a function of nuclei positions can be extracted. This term acts

as the nuclear potential term and in combination with the nuclear kinetic energy

term, is used to form the nuclear Schrodinger equation who’s solution results in the

nuclear portion of the wavefunction.
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2.2 Density Functional Theory

2.2.1 Origins of DFT

The motivation to find a theory such as DFT comes from the immense difficulty

of solving a large quantum mechanical system exactly. The majority of the difficulty

in solving such systems stems from the high dimensionality of the problem. For a

system of N electrons and M nuclei, the total wavefunction is a function of 3(N+M)

spatial variables where N and M are on the order of Avogadro’s number for a real

crystal. A system of this size is effectively impossible to solve given the finite memory

and calculation speed of todays computers; even smaller systems of a few hundreds

of atoms are impractical to solve within any reasonable amount of time [31]. These

restrictions sparked a need for a practical way to solve these systems via a reduction

of dimensionality.

Thomas and Fermi in 1927 were the first to propose that the electron density

was the fundamental variable defining the quantum many-body system. In making

this assumption, calculation of the complicated high-dimensional wavefunction can

be ignored and instead the simple 3-dimensional density is used in the calculation.

Though their formulation in general proved too crude for accurate calculations, their

use of the density as a fundamental variable laid the foundation for the later greatly

successful density functional theory (DFT).

Around the same time the Thomas-Fermi model was being developed, another

important technique emerged which aimed to approximately solve the many-body

25



Schrdinger equation. First introduced in 1928 by Hartree [32], this technique became

known as the self-consistent field method due to need to iterate solutions to achieve

convergence. In this framework, the wavefunction for each electron ψi is calculated

assuming each electron experiences a total potential created by the atomic nucleus

and all other electrons in the system. By starting with an initial guess for the

electron density, an approximate potential and Hamiltonian is determined from

which the wavefunctions can be solved. These wavefunctions in turn determine

an electron density and iteration is performed until the system is solved in a self-

consistent manner. The total wavefunction of the complete system in Hartree’s case

was approximated to be the product of all the one-electron wavefunctions [31].

Ψ(r1, r2, . . . , rN) = ψ1(r1) · · ·ψ1(rN) (2.3)

The original Hartree equation is shown in Equation 2.4 where the two po-

tential terms are the external potential Vext(r) created by the atomic nuclei and

the potential due to the mean field of all the other electrons. The equation must

be solved iteratively because the latter term is function of the other wavefunction

solutions. (
−1

2
∇2 + Vext(r) +

N∑
j 6=i

∫
|ψj(r’)|2

|r− r’|
dr’

)
ψi(r) = εiψi(r) (2.4)

The total energy of the system, shown in Equation 2.5, is a simple sum of the

individual electron energies minus the double counting from the electron-electron

Coulombic potential energy term.

EH =
N∑
n=1

εn −
1

2

N∑
i 6=j

∫ ∫
|ψi(r)|2 |ψj(r’)|2

|r− r’|
drdr’ (2.5)
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Later, Fock and Slater in 1930 showed that by replacing the simple product

with a determinate of the single-electron wavefunctions, the resulting total wave-

function automatically satisfies the antisymmetric requirements of the Pauli exclu-

sion principle and treats particle exchange exactly [31, 33, 34]. The determinant

construction of the total wavefunction is shown below in Equation 2.6.

Ψ(r) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) · · · ψN(r1)

...
. . .

...

ψ1(rN) · · · ψN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.6)

In 1964, the density functional formalism set forth by Hohenberg and Kohn gave

the work done by Thomas and Fermi mathematical grounds on which to stand. The

Hohenberg-Kohn Theorem showed that the ground state of an atomic system is

fully determined by the density distribution n(r) of the electron [31]. Furthermore,

the energy can be written as a functional of the density, meaning it takes in the

density function as input and returns the total energy (a single value) as output.

More specifically, they showed that there exists a universal energy functional F [n(r)]

which applies to any and all systems. This powerful proof, along with the proof

of a variational principle, allows us to find the ground state by hunting for the

density which minimizes the energy. In principle we can even ignore calculating the

wavefunction entirely, though some techniques still involve solving for it. By simply

working with the density, the dimensionality of the system is reduced from the order

of Avagadro’s number to only 3 spatial dimensions. Though this theory lays the
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groundwork for greatly simplifying the problem, it unfortunately does not give any

insight into form of the universal functional. The details of each of these theories

are discussed further in Appendix A.

2.2.2 Kohn-Sham Method

Developed in 1965, this formulation of DFT acts as a practical implementation

of the Hohenberg-Kohn Theorem (Appendix A.3) by defining a set of component

energies, each with a clear physical origin, which sum to approximate the universal

energy functional F [n(r)]. The central feature of this method involves defining a

fictitious system of noninteracting electrons moving in an effective external potential,

which gives rise to the same density as the true interacting system. All of the

single-particle wavefunctions satisfy a Schrdinger-like equation known as the Kohn-

Sham equation (Eqn. 2.7 in atomic units), where the potential term is the Kohn-

Sham effective potential - a functional of the density derived from the terms in

the energy functional. The lowest N eigenstates of this equation give the N single-

particle wavefunctions φi known as the Kohn-Sham orbitals. The ground state

wavefunction of this system can then be exactly written as a Slater determinant of

the single-particle wavefunctions to account for anti-symmetry because there is no

electron-electron interaction (Eqn. 2.8). The total density can be calculated from

the single-electron orbitals using Equation 2.9.

−1

2
∇2φi(r) + VKS(r)φi(r) = εiφi(r) (2.7)
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Ψ(r) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) · · · φN(r1)

...
. . .

...

φ1(rN) · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.8)

n(r) =
N∑
i

φ∗i (r)φi(r) (2.9)

Taking the expectation of the universal functional with the full Kohn-Sham

Slater determinate wavefunction gives us insight to the forms of terms in the total

Kohn-Sham energy functional EKS[n] with which we aim to approximate the true

functional F [n].

EKS[n(r)] = TS[n] + Eext[n] + EH [n] + EX [n] + EC [n] (2.10)

EKS[n(r)] = −1

2

N∑
i

∫
φ∗i (r)∇2φi(r)dr +

∫
Vext(r)n(r)dr +

1

2

∫ ∫
n(r)n(r’)

|r− r’|
drdr’

−1

2

∑
i,j

∫ ∫
φ∗i (r)φi(r’)φ

∗
j(r’)φj(r)

|r− r’|
dr’dr + EC [n(r)]

Here, TS[n] represents the ‘single particle’ or non-interacting kinetic energy

which is why it can be calculated using a simple sum over all of particle’s wavefunc-

tions. Eext[n] is the external energy which comes from any external potential, such

as the Coulombic attraction to ionic cores of atoms. EH [n] is the Hartree energy

caused by the Coulombic repulsion of all other electrons. EX [n] is the exchange

energy due to Pauli’s principle and the antisymmetry of the wavefunction. These

are the terms which have tractable expressions. The final term EC [n] represents the

correlation energy, which can be thought of as an error term. The correlation energy
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contains all energy differences between our constructed non-interacting system and

the true system energy functional F [n] and accounts for about 10% of the total

energy of a system. This correction energy accounts for the self-interaction error

within EH as well as the difference in the kinetic energy between the fully interacting

and non-interacting system. The error in EH for the interacting system comes from

the fact that when the integral is solved for a 1-electron system, it does not identi-

cally equal 0, meaning the electron is interacting with itself so a cancellation term

is needed. Exchange energy can also been seen as the effective repulsion of electrons

with parallel spins due to the Pauli exclusion principle, and the Correlation energy

due to interaction of electrons with anti-parallel spins.

The total energy functional of the Kohn-Sham method depends on the approx-

imations made in formulating EC . Additionally, given the computational expense

associated with evaluating EX , the two terms are often combined and approximated

together as one EXC term. Although DFT is exact in theory, we do not know the

form of the universal functional - specifically the EC term, so approximations to this

introduce error and cause the method to be an approximation in practice.

Working backwards from the energy functional, we can generate the effective

Kohn-Sham potential needed in the Kohn-Sham equation by taking the functional

derivative of the external, Hartree, exchange, and correlation energies with respect

to the density. These potentials represent the Coulombic ion potential, the Coulom-

bic electron-electron interaction potential, and quantum-correction potential respec-
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tively.

VKS(r) = Vext(r) +
δEH
δn(r)

+
δEXC
δn(r)

= Vext(r) + VH(r) + VXC(r) (2.11)

VKS(r) = Vext(r) +

∫
n(r’)

|r− r’|
dr’ + VXC [n(r)]

Because the exchange-correlation potential VXC depends on the density n(r),

itself depending on the orbitals φi(r), which in turn depend on the potential VKS,

solutions to the Kohn-Sham equation must be found iteratively to achieve self-

consistency.

2.3 DFT Calculation Results

Figure 2.1 shows the calculated band structure from my DFT simulation us-

ing the open source software Quantum Espresso [30] with the PBE functional [35]

and pbe-hgh psudopotentials from http://www.quantum-espresso.org. The result-

ing constant-energy ellipses of these minima calculated from this DFT computation

are shown in Figure 2.2.

Notoriously, DFT tends to underestimate the band gap of semiconductors due

to the approximations associated with the form of the energy functional (which

actually contains discontinuities), and possibly due to an inevitability of the Kohn-

Sham theory itself [36]. However, band structures resulting from DFT calculations

still give useful insight into the structure of the actual bands and are often used in

theory-based calculations.

For the purposes of creating a scattering theory, the important conduction

band valleys are the two which lay nearly degenerate at the M point. The resulting
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Figure 2.1: Theoretical band structure of 4H-SiC calculated with DFT.

gap energies and extracted effective masses of the DFT calculation are provided in

Tables 2.1 and 2.2 respectively, where they are compared to the experimental values.

In Chapter 3, this band structure calculation will be developed into a band model

to be used in scattering rate calculations and Monte Carlo scattering simulations.
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Figure 2.2: Constant energy ellipses for the lowest conduction band minimum at
the M point, calculated using DFT.

Table 2.1: Comparison of calculated energy gap values of 4H-SiC to those found in
the literature.

Gap [eV] Calc. Lit. [7, 8]
Eg (EM) 2.23 3.23

EsM 0.13 0.12
EL 2.65 4
EΓ 5.12 5-6
Ecr 0.07 0.08
Eso ≈0 0.007

Table 2.2: Comparison of extracted effective masses in the M valley from my DFT
calculation to the experimentally measured values.

Mass [m0] Calc. Exp. [37]
EM−Γ 0.56 0.58
EM−K 0.39 0.31
EM−L 0.31 0.33
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Chapter 3: Atomic-Level Electron Transport

3.1 Perturbation Scattering Theory

Now that we have set up a way to solve the quantum many-body problem

through DFT, we need to lay the framework required to understand electron trans-

port within a crystal. By understanding the electron transport of a material, electri-

cal characteristics can be predicted and possibly improved by changing the atomic

structure. In this chapter, I will first discuss existing perturbation scattering the-

ory including Fermi’s Golden Rule from which my results are derived and known

scattering rate results. Then I will explain the technique for how I calculated my

own atomic-roughness scattering rates for the best-case SiC-SiO2 interface based on

density functional theory calculations.

The primary difference between traditional Si MOS and emerging SiC MOS

technology is the quality of the semiconductor-oxide interface. The poorer quality of

the SiC/SiO2 interface leads to significantly lower mobility due to surface roughness

scattering and trapped interface charge scattering [38,39]. The treatment of scatter-

ing in SiC proceeds similarly to that of Si, but with a different number of equivalent

valleys and with focus on different dominant scattering mechanisms. In this study, I

apply the standard method of perturbation scattering theory to determine the scat-
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tering rates for the various important mechanisms in SiC. Additionally, I introduce

a new mechanism deemed intrinsic atomic-roughness scattering not previously in-

vestigated. This new mechanism is calculated in the form of a deformation potential

scattering using data extracted from DFT simulations to model the interruption of

atomic potential periodicity due to the presence of the interface.

When an electron is moving in a crystal, any number of deviations from a

perfect crystal at 0K can cause a perturbation and thus a scattering event. Fig. 3.1

shown below illustrates the family tree of scattering mechanisms which are consid-

ered in various semiconductors.

Scattering

Carrier-Carrier

Defect

Alloy

Space-Charge

Impurity
Neutral

Ionized

Phonon

Intravalley

Acoustic
Deformation Potential

Piezoelectric

Opical
Nonpolar

Polar

Intervalley
Acoustic

Opical

Figure 3.1: Classification of scattering mechanisms in semiconductors. Taken from
[6]

These deviations can be treated using the method of perturbation theory,
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which treats phonon, impurity, and other interactions as small deviations to the

local potential an electron experiences. The perturbation potential changes the

Hamiltonian of the system slightly and perturbation theory allows us to determine

the resulting eigen energies and wavefunctions from the original solutions. The

theory can then be extended to give a scattering rate for an electron in a given state

based on the perturbation.

The first order time-dependent quantum perturbation theory is derived as

follows. First we start with a general time-dependent Schrdinger equation which all

single-electron wavefunctions must obey.

i~
∂Ψk(r, t)

∂t
= H0Ψk(r, t) (3.1)

We also start with an initial unperturbed Hamiltonian H0 with associated

energies E
(0)
k and wavefunctions ψk, for which the solution’s are known, as they

appear in the time-independent Schrdinger equation.

H0ψ
(0)
k = E

(0)
k ψ

(0)
k (3.2)

We can write the corresponding time-dependent solution of the initial wave-

function as:

Ψ
(0)
k (r, t) = ψ

(0)
k (r)e−iE

(0)
k t/~ (3.3)

We now define a perturbed Hamiltonian H as it differs from the initial Hamil-

tonian H0 by an arbitrary scaling constant λ times a perturbation Hamiltonian H ′.

H = H0 + λH ′ (3.4)
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Solutions to any Hamiltonian form a basis, so we can write the solution of

the perturbed system as a linear combination of the orthonormal set of solutions

of the unperturbed Hamiltonian. The coefficients needed in the sum are in general

time-dependent and represent the time variation in the wavefunction due to the

perturbation.

Ψ(r, t) =
∑
k

ck(t)Ψ
(0)
k (r, t) =

∑
k

ck(t)ψ
(0)
k (r)e−iE

(0)
k t/~ (3.5)

Substituting this form of the wavefunction into the perturbed Schrdinger equa-

tion and canceling terms yields:

i~
∑
k

∂ck(t)

∂t
ψ

(0)
k (r)e−iE

(0)
k t/~ = λ

∑
k

H ′ck(t)ψ
(0)
k (r)e−iE

(0)
k t/~ (3.6)

Multiplying both sides of this equality by the complex conjugate of the wave-

function for another state ψ
(0)∗
k’ (r)eiEk’t/~, we then integrate both sides over all r

resulting in Equation 3.7. Here I’ve replaced the unperturbed wavefunction in state

k with |k〉 and the wavefunction for state k′ with 〈k’| using bra-ket notation.

i~
∂ck’(t)

∂t
= λ

∑
k

ck(t) 〈k’|H ′ |k〉 ei[Ek’−E
(0)
k ]t/~ (3.7)

The expression 〈k′|H ′ |k〉, also known as the matrix element of the pertur-

bation potential represents the transition amplitude between the two states. It’s

explicit form is shown in Equation 3.8 and resembles an expectation energy calcu-

lation of the perturbation but uses two different states in the expression.

〈k’|H ′ |k〉 =

∫
ψ

(0)∗
k’ (r)H ′ψ

(0)
k (r)dr (3.8)
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Assuming the coefficients ck(t) vary slowly with time for a weak perturbation,

we can express them as a power series in λ.

ck(t) = c
(0)
k + λc

(1)
k (t) + λ2c

(2)
k (t) + · · · (3.9)

By substituting Equation 3.9 into Equation 3.7 and equating the powers of λ

on both sides we develop a system of equations proportional to increasing powers of λ

which represent different order approximations which can be successively evaluated.

i~
∂c

(0)
k’

∂t
= 0 (3.10)

i~
∂c

(1)
k’

∂t
=
∑
k

〈k’|H ′ |k〉 c(0)
k ei[Ek’−E

(0)
k ]t/~

i~
∂c

(2)
k’

∂t
=
∑
k

〈k’|H ′ |k〉 c(1)
k ei[Ek’−E

(0)
k ]t/~

... (3.11)

Assuming the electron exists in a single unperturbed state such that at time

t = 0, c
(0)
ki

(0) = 1 and all other coefficients are 0. With this assumption, to first-

order, the coefficient is determined by Equation 3.12, where the perturbation is

assumed to be harmonic in nature such that H ′ = V ′e−iωt.

c
(1)
k’ (t) =

1

i~

∫ t

0

〈k’|V ′ |ki〉 ei[Ek’−E
(0)
ki
∓i~ω]t′/~

dt′ (3.12)

c
(1)
k’ (t) =

1

i~
〈k’|V ′ |ki〉

e
i[Ek’−E

(0)
ki
∓~ω]t/~ − 1

i(Ek’ − E(0)
ki
∓ ~ω)/~

c
(1)
k’ (t) =

1

i~
〈k’|V ′ |ki〉 eiξt

sin(ξt)

ξt
t

ξ = (Ek’ − E(0)
ki
∓ ~ω)/2~ (3.13)

The probability of the electron being in state k′ at time t is given by |ck’(t)|2
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and the transition rate from state ki to state k′ is given by

S(ki,k’) = lim
t→∞

|ck’(t)|2

t
(3.14)

S(ki,k’) = lim
t→∞

|〈k’|V ′ |ki〉|2

~2

[
sin(ξt)

ξt

]2

t

The squared sinc function term
[

sin(ξt)
ξt

]2

in the limit as t goes to infinity acts

like a Dirac δ-function because the width of the peak becomes very thin. Addition-

ally, instead of integrating to 1, it integrates to π/t when ξ it taken from −∞ to

∞. This observation allows us to replace the term in Equation 3.14 with δ(ξ)π/t,

which acts as an energy conservation enforcement term in Equation 3.15. The re-

sulting equation illustrates Fermi’s golden rule, showing the transition probability

from one state to another due to a perturbation is proportional to the matrix ele-

ment squared. The upper sign in the δ-function corresponds to the emission of a

photon with energy ~ω, and the lower to the absorption.

S(ki,k’) =
2π

~
|〈k’|V ′ |ki〉|2 δ

(
Ek’ − E(0)

ki
∓ ~ω

)
(3.15)

This result holds true for simple harmonic perturbations which are otherwise

constant in time. The calculation also only considers elastic interactions of the

electron and phonon. From this transition probability the scattering rate can be

determined by multiplying by the number of states per unit volute (Ω/(2π)3) and

integrating over all final states. The delta function will pick out all eligible final

states which satisfy energy conservation.

W (ki) =
Ω

(2π)3

∫ 2π

0

∫ π

0

∫ ∞
0

S(ki,k’)(k
′)2sin(θ)dk′dθdφ (3.16)

W (ki) =
Ω

~(2π)2

∫ 2π

0

∫ π

0

∫ ∞
0

|〈k’|V ′ |ki〉|2 δ
(
Ek’ − E(0)

ki
∓ ~ω

)
(k′)2sin(θ)dk′dθdφ
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Figure 3.2 shows an example of the scattering system in consideration, where

initially the electron is in state k. The electron scatters and absorbs a phonon with

wavevector q and ends in state k′ which is separated by an angle θ from k.

k̂x

k̂y

k̂z

k

φk

θk

k′
q

φ

θ

Figure 3.2: Illustration of initial vector k scattering to a different state k’ via the
absorption of a phonon with wavevector q. Note: θ is in general not in the same
plane as θk, which is simply used to define the position of k.

3.2 Scattering and Transport Model

Due to the charge of the electron, when an electric field is applied to a semicon-

ductor, electrons in the conduction band experience a force and thus an acceleration

in the direction opposite to that of the field. This motion is interrupted by scat-

tering events which we treat as instantaneous events that change the wavevector of

the electron. The scattering at each event is caused by one of the many mechanisms

shown previously in Figure 3.1 which consist of various phonons representing lattice

distortions as well as other lattice perturbations. To study the transport of electrons
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in this system, we rely on the semi-classical Monte Carlo method to stochastically

simulate an electron as it is accelerated and scattered through the band structure of

the crystal. By following the motion of a single electron as it scatters and changes

energy, we can build up statistics of velocity and energy which ideally represent the

ensemble of electrons simultaneously moving within the crystal. The Monte Carlo

method is considered semi-classical because though the scattering mechanisms are

treated quantum-mechanically using Fermi’s Golden Rule, the free-flight transport

between events is treated using classical particle dynamics. As the electron drifts in

the electric field, the wavevector changes in time, obeying Equation 3.17 and where

the velocity is given by Equation 3.18.

dk

dt
=
−qF
~

(3.17)

V (k) =
1

~
dE(k)

dk
(3.18)

The band structure on which the electrons move form energy surfaces within

the Brillouin Zone (BZ) of the crystal. The BZ is defined to be the Wigner-Seitz cell

constructed for the crystal’s reciprocal lattice. By construction, 1st BZ represents all

points in reciprocal space closest to an arbitrary reciprocal lattice site. The shape

of this zone partitions all of reciprocal space in a periodic fashion and contains

every unique wavevector (k-vector) which correspond to the allowed states within

the crystal. Associated with these states are quantized energies forming the band

structure. By reducing the zone by all symmetries of the crystal, we obtain what is
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known as the irreducible wedge which contains the non-redundant information of the

energy bands. The edges and vertices of this wedge correspond to highly symmetric

points and directions of the reciprocal lattice. To plot the full band structure, a four

dimensional plot would be required, so instead a representative sample of the zone

is taken by following the edges of the irreducible wedge to form a path between the

high symmetry points. The allowed energies at each k-vector are plotted against

the distance traveled along the path. Fortunately, the band extrema almost always

lay along these symmetry directions so the band gap as well as important valleys of

the conduction band and other features of the energy landscape are revealed in this

manner.

In contrast to the familiar Si which has a diamond crystal structure and fcc

lattice, the most electrically significant polytypes of SiC have a wurtzite crystal

structure which correspond to a hexagonal lattice. The BZ of the hexagonal lattice

is simply a hexagonal prism. A depiction of the hexagonal BZ is shown in Figure

3.3 along with it’s irreducible wedge and high-symmetry points which are visited in

band structure diagrams.

The band structure for 4H-SiC is known to have its conduction band minimum

at the M point, making it an indirect gap material with 6 equivalent minima in the

BZ. In general, it is common to approximate the energy dispersion relation near the

conduction band minima to be parabolic such that energy E is proportional to the

squared magnitude of the wavevector k. However, in wide bandgap semiconductors

like SiC where electric fields allow carriers to gain energy such that they reside away
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Figure 3.3: Brillouin Zone of a hexagonal lattice.

from the band minimum, a non-parabolicity factor α is introduced as in Equations

3.19 and 3.20 to better account for the true shape of the bands.

γ(E) = E(1 + αE) =
~2k2

2m∗
(spherical) (3.19)

γ(E) = E(1 + αE) =
~2

2

(
k2
l

m∗l
+

2k2
t

m∗t

)
(ellipsoidal) (3.20)

For many semiconductors including SiC, the constant energy surfaces are el-

lipsoidal and have a different masses depending on the direction of the field relative

to the valley. These masses are denoted as the longitudinal effective mass ml aligned

radially out from the center of the BZ to the location of the valley, and transverse

effective mass mt for transport in the plane perpendicular to the longitudinal direc-

tion.

From my full band structure calculation showed previously in Figure 2.1, we

can extract a simplified band model containing only the important energy minima

of the conduction band and the maximum of the valence band. These important
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bands are shown in Figure 3.4, taken from [8].

Figure 3.4: Simplified band illustration for 4H-SiC with associated energies from
literature [7] (Figure from [8]).

Due to the small difference in energy of the two lowest bands in the M valley,

we will initially treat this as a doubly degenerate valley as a first approximation,

so scattering rates are multiplied by a factor of 2 because of the doubling of the

density of states. Additionally, the calculated overlap integrals of the wavefunctions

from the minimum at any one M valley to the other 5 equivalent M valleys are small

(0.005, 0.162, 0.016, 0.162, 0.005) and expected to be similarly small for points near

the minimum [40]. This indicates that there is little optical intervalley scattering

compared to intravalley scattering so we will approximate the value of the overlap

to be 1 when scattering within a valley and 0 when scattering to other valleys.
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The Monte Carlo simulation I performed in this work uses deformation poten-

tial values fitted by Hjelm et al. [41] as well as the corresponding phonon tempera-

tures and other physical constants which are reproduced in Table 3.1. The phonon

temperatures are related to the phonon energies and frequencies via Equation 3.21.

Eph = ~ωph = kBTph (3.21)

Table 3.1: Phonon and material properties taken from the model used by Hjelm [40]

Parameter Value
Acoustic Deformation Potential DA (eV) 19
Polar-optical Phonon Temperature (K) 1393

Nonpolar Optical Deformation Potential DtK (eV/cm) 12e8
Nonpolar Optical Phonon Temperature (K) 989

Density ρ (g/cm3) 3.2
Velocity of Sound νs (cm/s) 13.73e5

M Valley Longitudinal Effective Mass ml 0.29
M Valley Transverse Effective Mass mt 0.42
Nonparabolicity of M valley α (eV-1) 0.4

3.3 Scattering Rate Calculations

Electrons moving under the influence of an applied field accelerate until they

are scattered into a different state from one of numerous mechanisms. Each scat-

tering event corresponds to the emission or absorption of a phonon which allows

for the change in the electron’s momentum. Because phonons are bosons, their oc-

cupancy is determined by Bose-Einstein statistics and the associated distribution

function in Equation 3.22 often appears in the scattering rate formulae for different
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mechanisms.

Nq(x) =
1

ex − 1
(3.22)

As the electron travels through the crystal scattering, its energy is constantly

changing which affects the number of states available for it to scatter into and

thus the probability of scattering in the first place, making each scattering rate a

function of electron energy. Additionally, the various scattering mechanisms consid-

ered all have different perturbation potentials which correspond to different energy-

dependent scattering rate formulae. For simple formulae, the integrals may have a

closed form which can be trivially implemented into the Monte Carlo code. How-

ever, some of the rate formulae involve complex integrals which must be evaluated

numerically. The calculations can then be stored into a lookup table and referenced

at each iteration to speed up the computation. In the following sections I only

include scattering rate formulas for the dominant mechanisms in SiC.

3.3.1 Acoustic

Acoustic phonons represent acoustic vibration modes of atoms in the crystal.

These phonons are generally lower frequency than other phonons and arise due to

thermal excitations.

The scattering probability for acoustic phonons is calculated to account for

inelastic scattering with ellipsoidal equienergy surfaces and nonparabolic bands. The

derivation of which is given in the landmark paper by Jacoboni and Reggiani [42],
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and the result shown in Equations 3.23 and 3.24.

P ab
A (E) =

m
1/2
d (kBT )3D2

A

25/2π~4v4
sρ

γ(E)−1/2×[
(1 + 2αE)

∫ x2,a

x1,a

Nq(x
′)x′2dx′ + 2αkbT

∫ x2,a

x1,a

Nq(x
′)x′3dx′

]
(3.23)

P em
A (E) =

m
1/2
d (kBT )3D2

A

25/2π~4v4
sρ

γ(E)−1/2×[
(1 + 2αE)

∫ x2,e

x1,e

[Nq(x
′) + 1]x′2dx′ − 2αkbT

∫ x2,e

x1,e

[Nq(x
′) + 1]x′3dx′

]
(3.24)

Here, the upper equation is the probability for phonon absorption and the

lower for phonon emission. The limits for integration are derived from the energy and

momentum conserving delta function and are shown in Table 3.2. The associated

integrals are evaluated numerically to take into account the exact form of Nq.

Table 3.2: Limits of integration used in acoustic phonon scattering probability cal-
culations. Here, C(α) = 4Es/(kBT (1− 4αEs)) and Es = mdv

2
s/2

Absorption Emission Condition
x1,a = C(α)

[√
Es(1 + 2αE)−√γ

]
x1,e = N/A γ < Es

1−4αEs

x2,a = C(α)
[√
Es(1 + 2αE) +

√
γ
]

x2,e = N/A
x1,a = 0 x1,e = 0 γ > Es

1−4αEs

x2,a = C(α)
[√
γ +
√
Es(1 + 2αE)

]
x2,e = C(α)

[√
γ −
√
Es(1 + 2αE)

]

3.3.2 Non-Polar Optical Scattering

Non-polar optical scattering corresponds to excitations of a polar optical vi-

bration mode of the crystal. These modes are generally excited by interaction with

light.
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Analytically, the scattering rate for optical phonons is given by Equation 3.25,

a result also derived in the Jacoboni and Reggiani paper [42]. Here, the resulting

equation is formulated to account for ellipsoidal, nonparabolic bands. This scatter-

ing rate is used to account only for intravalley scattering and intervalley scattering

is regarded as small enough to be neglected.

Pop(E) =
(DtK)2m

(3/2)
d√

2π~3ρωop

[
Nop

Nop + 1

]√
γ(E ± ~ωop) [1 + 2α(E ± ~ωop)] (3.25)

3.3.3 Polar Optical Scattering

Polar optical phonons are excitations of the polar optical modes of a lattice

and occur when different atoms in the primitive unit cell of an ionic semiconductors

vibrate out of phase with each other. This oscillation causes an alternating electric

field and changing potential that can scatter carriers. The analytical expression

shown in Equation 3.26 is taken from [43].

Ppop(E) =
e2√mdωpop√

2~

(
1

κ∞
− 1

κ0

)
1 + 2αE ′√

γ(E)
F0(E,E ′)

[
Nq

Nq + 1

]
(3.26)

Here, E ′ = E ± ~ωpop corresponding to energy after emission or absorption of

the phonon. The other terms are calculated as:

F0(E,E ′) = C−1
{
A ln

∣∣∣∣γ1/2(E) + γ1/2(E ′)

γ1/2(E)− γ1/2(E ′)

∣∣∣∣+B
}

A = {2(1 + 2αE)(1 + αE ′) + α[γ(E) + γ(E ′)]}2

B = −2αγ1/2(E)γ1/2(E ′){4(1 + αE)(1 + αE ′) + α[γ(E) + γ(E ′)]}

C = 4(1 + αE)(1 + αE ′)(1 + 2αE)(1 + 2αE ′)
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3.4 Novel Interface Atomic Roughness Scattering

3.4.1 Existing Surface Roughness Model

In this work, I investigate the inclusion of a novel scattering mechanism to

model the most fundamental scattering due to the break in periodicity at an ideal

semiconductor-oxide interface which will be referred to as atomic roughness scat-

tering. Presently, the rather large scattering contribution in SiC at the interface is

caused by surface roughness scattering [44]. The surface roughness is modeled as a

series of bunched steps with size range around 1 to 5 nanometers [27]. Steps form

due to the presence of a crystallographic miscut of around 4-8◦ which enables the

growth of homoepitaxial layers in the c-direction without the need for the presence of

screw dislocations [45]. The steps in conjunction with the gate-induced surface field

perpendicular to the interface cause a perturbation to the potential that electrons

in the channel see as defined by Equation 3.27.

∆φ(x, y, z) =
dφ(z)

dz
∆z(x, y) (3.27)

Here, the model assumes the simple form of the surface perpendicular field

times the height of the steps. From the form of the perturbation, we can see that at

higher surface fields the level of interaction and thus the rate of scattering increases.

At high surface fields this mechanism is predicted to dominate in 4H-SiC MOSFETs

[27]. In the typical implementation of this mechanism, a roughness power spectrum
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is introduced, and assumes the form given by [44]:

S(q) =
π∆2L2[

1 + q2L2

2

] (3.28)

In this standard but relatively simplistic model, ∆ represents the average step

amplitude and L is the correlation length or the standard deviation of the step

separation. This power spectrum corresponds to an exponential autocovariance

function given in Equation 3.29 [44, 46] and the transition rate in Equation 3.30.

The values of ∆ and L are fitted to experimental data by [27] to be 3.5nm and 7nm

respectively and account for the distribution of nano and macro-scale steps.

<δ = 〈δ(r), δ(r− r’)〉 = ∆2e−r/L (3.29)

S(k, k′, z) =
2π2e2∆2L2F 2

⊥(z)

~
(

1 + q2L2

2

) δ(E − E ′) (3.30)

3.4.2 My Perturbation and DFT-Based Model: Calculation and Scat-

tering Rate Results

In our investigation of surface roughness scattering, we have decided to study

the fundamental scattering for an ideal 4H-SiC/SiO2 interface that exists despite

the presence of a miscut. Scattering arising due to the miscut can be integrated into

the theory later as an additive potential. In our model, inversion layer electrons

have their energies quantized into subbands of a quantum well near the interface so

that motion is restricted to the plane of the interface. The scattering mechanism is

treated using the well-known perturbation potential form given earlier in Equation

3.16. In this work, we developed a novel technique for extracting the actual form of
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this potential from a series of DFT calculations, rather than an approximation, and

should be applicable to any conceivable interface. To extract the perturbation, we

first perform a relaxation calculation on a 4H-SiC/SiO2 interface supercell (Figure

3.5) to determine the energetically favorable atomic configuration. Then we perform

another relaxation of a pure 4H-SiC bulk structure. The converged DFT calculations

result in a value of the potential everywhere inside each of the supercells. We

take the potential field from each calculation and align the bulk potential with

the potential far away from the interface, then by subtraction we determine the

potential difference the electron experiences due to the presence of the interface.

The perturbation potential function varies in the plane of the interface based on the

location of the bulk atoms and the oxide atoms. The perturbation decays to zero

with depth into the bulk of the semiconductor as the effect of the presence of the

interface on the periodic bulk potential diminishes.

Figure 3.6 shows the extracted potential at the interface which we take to be

the average height of the first oxygen layer. The potential here contains all con-

stituent potential components found in the Kohn-Sham Hamiltonian: ionic, Hartree

(electron-electron), and exchange-correlation.

Subtracting this interface potential from the periodic bulk potential, we obtain

a perturbation potential, shown in Figure 3.7. The deep wells in the figure, shown in

blue, correspond to the oxygen atom locations. The regularly spaced yellow potential

barriers are the inverted carbon atom wells, showing where the carbon atoms of the
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Figure 3.5: 4H-SiC/SiO2 interface supercell created by [9], used to extract calculated
potential.

bulk would be if the bulk continued past the interface. Since the scattering rate

depends on the square of the perturbation potential, the choice of sign is arbitrary.

To evaluate the matrix element given in Equation 3.8, we need to assume a

form for the initial and final states of the electron. Because this scattering is occur-

ring in the channel at the surface of a MOSFET device, there exists a mesoscopic

scale potential well due to band bending near the semiconductor surface and the

presence of a band offset between the semiconductor and insulator. The shape of

the well is regularly approximated in literature to be triangular and the channel
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electrons which reside there are confined only in the z dimension towards the bulk

crystal [44,47]. The electrons in the well act similarly to a particle in a box, residing

in discrete energy states known as subbands which occur on top of the crystal band

structure, shown in Figure 3.8.

From these assumptions, we use separation of variables to break the Schrdinger

equation into an equation with only x and y dependence, and an equation with

purely z dependence. The resulting x and y dependent equation takes the form of

a free electron equation so the electronic wavefunction in the x,y (interface) plane

is taken to be a plane wave. In the z dimension, the standard analytical solution

for a particle in an infinite triangular well is used [47]. The solutions are known to

consist of Airy functions (Ai[z]), shifted to contain the appropriate number of zeros

for each subband energy level [48]. The full form of the wavefunction is shown in

Equation 3.31 and associated subband energies (referenced to the conduction band

energy EC) in Equation 3.32.

Ψn =
1√
Ω
ei(kxx+kyy)ψn(z) (3.31)

ψn(z) = An · Ai

[
−
(

2m∗eF

~2

)(1/3)(
z − zi −

En
eF

)]
Θ(zi − z)

An =
1√( ~2

2m∗eF

)(1/3)
Ai′
[
−
(

3π
2

(
n− 1

4

))(2/3)
]

Ai[ξ] =
1

π

∫ ∞
0

cos

(
t3

3
+ ξt

)
dt

En =

(
e2~2F 2

2m∗

)(1/3)(
3π

2

(
n− 1

4

))(2/3)

(3.32)

Here, Ω is the interface area, kx and ky are the 2d wavevector components of
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the electron in the plane of the interface, A is for Airy function normalization, F is

the surface electric field value, zi is the interface location, n is the subband index,

and Θ is the Heaviside function. The wavefunctions here are the solutions obtained

for an infinite triangular well of slope F with an infinite conduction band offset. The

actual offset for a 4H-SiC/SiO2 system is experimentally determined to be 2.7eV,

which is quite large compared to the subband energies for typical surface field values

(E1 = 0.18eV@F = 1MV/cm) so the approximation is quite reasonable.

Substituting our assumed form of the wavefunctions into Equation 3.15 results

in the transition rate S(k,k’) from state k to state k’ shown in Equation 3.33. The

delta function in this equation contains the total energy conservation condition and

assumes that the energy of the phonon in the exchange is negligible, as is typically

done for deformation potential interactions. To obtain the total scattering rate

W2D(kq, n) out of state k, we sum over all eligible final states k’ as shown in Equation

3.34.

S(kq, k
′
q, n, n

′) =
2π

~Ω

∫∫
Ω

∫ ∞
zi

∣∣∣e−i(k′xx+k′yy)ψ∗n′(z)∆V (x, y, z)ei(kxx+kyy)ψn(z)
∣∣∣2

δ

(
~2 |k′q|

2

2m∗
+ En′ −

~2 |kq|2

2m∗
− En

)
dzdydx (3.33)

W (k) =
Ω

(2π)2

∑
n′

∫
S(kq, k

′
q, n, n

′)dk’q (3.34)

The delta function in Equation 3.33 which enforces energy conservation in turn

imposes allowed magnitudes of k′q, shown in Equation 3.35, depending on the initial
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and final subband energies.

k′q =

√
(kq)2 +

2m∗

~2
(En − En′) (3.35)

After computing the transition rate for a given initial state kq, n, we see that

the allowed final states lay in concentric rings in the kx, ky plane. This happens

because when the electron scatters to a higher subband, it gains potential energy

and must lose kinetic energy to conserve total energy, thus its |kq| must shrink.

Conversely, when the electron scatters to a lower energy subband, it loses potential

energy and gains kinetic energy, creating the larger rings. It is also possible for

electrons to have kinetic energy too small, such that the energy required to scatter

to the next higher band is larger than the amount of kinetic energy available to

be lost, making this a forbidden transition. Figure 3.9 shows the transition rates

which are calculated for all allowed k′q, given the initial state in the second subband

(n = 2) with initial kinetic energy of 1eV.

To determine the total scattering rate out of our given initial state, we simply

integrate the transition rates over the rings of allowed states, and then sum over

all rings. The calculation has been performed for various surface fields and shows

the 2D atomic roughness scattering rate as a function of electron energy in Figure

3.10. The discontinuities in the scattering rate arise when the electron gains enough

energy to access each higher subband which increases the scattering probability by

increasing the number of available states. It is worth noting that the scattering rate

calculated with the traditional combined empirical surface model is proportional

to the square of the gate field at the interface (F 2
⊥) [39, 44, 49–52], and the same
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holds for my first-principles calculated scattering rates. This result is confirmed by

plotting the log of the scattering rate against the log of the field, shown in Figure

3.11, where the exponent is given by the slope of resulting straight lines. From the

results of my scattering rate calculations, we see that the intrinsic atomic-roughness

scattering rates come out to be between 1×1011 and 5×1011 per second for a range

of typical gate-induced surface fields from 0.1 MV/cm to 1.0 MV/cm.

3.4.3 Comparison of Intrinsic and Extrinsic Mobilities

Component mobilities due to different mechanisms add according to Matthiessen’s

rule. In Equation (3.36) total mobility µTot is separated into its intrinsic (µint) and

extrinsic (µext) components. The intrinsic mobility is itself comprised of material-

dependent mobilities such as the bulk (µB), surface phonon (µSP ), and atomic-scale

surface roughness (µAR). Extrinsic mobility components are associated with process-

dependent issues such as the Coulombic scattering from interface traps (µC), and

the surface roughness (µSR) mainly due to nanometer-scale interface steps resulting

from a crystallographic miscut included to promote homoepitaxial growth. The bulk

mobility term is included with the intrinsic terms because we are focused on inter-

face issues, independent of the substrate doping. Note that in previous works the

CESRM scattering approach inherently lumps together all non-Coulombic interface

effects, and we calculate this value for comparison. The extrinsic miscut steps and

the bunching thereof are the largest roughness features present in calculations fit to

experimentally measured interfaces, so to a good approximation, we consider this
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Table 3.3: Important component mobilities at the SiC/SiO2 interface for T=300K

µ cm2/V s E⊥ MV/cm

0.1 0.5 1

µB 1070

µSP 1470 560 400

µAR 4.4× 107 1.8× 106 4.8× 105

µint 620 370 290

µSR 350 14 4

µC 429 447 591

µext 193 14 4

µTot 147 13 4

term to be purely extrinsic [51].

1

µTot
=

1

µint
+

1

µext
= (3.36)

(
1

µB
+

1

µSP
+

1

µAR
) + (

1

µC
+

1

µSR
+ · · · )

To show their relative contributions to the total mobility, the other predomi-

nant scattering mobilities present at the SiC/SiO2 interface are quantified and then

compared. These mobilities are presented in Table 3.3 and consist of values cal-

culated based on models and data from Potbhare et al. [1]. The details of these

calculations are shown in Appendix C. Note that the total mobility measured ex-

perimentally is highly dependent on oxide quality, the interface state density and the

surface roughness profile. The values calculated here are representative of a typical

device and are also consistent with the component mobilities found by Uhnevionak

et al. [52]. In table 3.3, intrinsic mobilities are separated from extrinsic mobility

components.
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For the highest gate fields we used, the total intrinsic mobility µint becomes

approximately 290 cm2/Vs, significantly higher than the corresponding extrinsic

mobility µext of 4 cm2/Vs. At lower fields, the intrinsic mobility is approximately

620 cm2/Vs compared to the extrinsic mobility of 193 cm2/Vs. The important ob-

servation here is that by reducing the mobility limiting effects of the extrinsic terms,

mobility improvements on the order of 4 to 70 times can be expected, depending

on the field. These benefits, however, hinge on future improvements in fabrication

techniques with special care taken to minimize the extrinsic scattering effects. One

key method of reducing extrinsic surface roughness is likely to come from eliminat-

ing the 4° to 8° Si-face miscut which gives rise to surface steps and step bunching.

Though the practice of including a miscut is ubiquitous for growing homoepitaxial

layers in industry, it is expected to be a major source of mobility limiting surface

scattering, especially at high gate fields.

On-axis homoepitaxial growth of SiC has been a topic of research with some

successes, in particular the C-face (0001) of 4H-SiC seems to be the easiest to control

the polytype [53], though success has also been seen on the Si-Face (0001) where

spiral growth is mediated by screw-dislocations [54,55]. These on-axis growth tech-

niques are also shown to reduce the basal plane dislocation density and improve

epitaxial layer quality [53,54] but island growth using these techniques may prevent

extrinsic surface roughness from being eliminated completely. Other works have

investigated the effect of transport versus miscut angle and also found that mobility

generally improves when miscuts are reduced. While the more conventional [56] Si-

face is considered in this work, experiments have been done with electron transport
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along on the C-face [56,57] and a-face (1120) [58, 59].

In the C-face experiment by Fukuda et al. [57], higher surface roughness was

confirmed to exist by TEM images for larger miscut angles. MOSFETs fabricated on

substrates with a vicinal 0.8°off-angle cut showed peak field-effect channel mobility

of 92.3 cm2/Vs compared to 84.5 cm2/Vs for 8°off-angle devices [57]. Hijikata et

al. [56] also concluded from C-face experiments that smaller off-angle devices should

lead to better device performance.

Harada et al. [58] performed mobility measurements on trench MOSFETs

fabricated on 0.7° C-face vicinal wafers where the channel plane was aligned at

various angles relative to the a-face. A peak mobility of 160 cm2/Vs was achieved

when the channel was aligned to the the a-face, compared to the lowest mobility of

110 cm2/Vs angled half way between a-faces.

Experiments were also performed on trench devices fabricated on wafers with

a 8°surface miscut-angle. The deviation from vertical trench sidewalls compounds

with the wafer miscut angle resulting in the channel plane deviating further from

the exact a-face plane. Under these conditions Harada found the peak mobility to

reduce from 160 cm2/Vs to 70 cm2/Vs [58]. Yano et al. [59] found similar results,

reducing their peak mobility from 66 cm2/Vs to a low of 6 cm2/Vs for the greatest

channel misalignment.

The aforementioned experimental work argues that channel misalignment to

important crystallographic planes reduces channel mobility. These results are con-

gruent with our calculations which predict much higher mobility if miscut-induced

surface roughness is reduced.
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3.5 Conclusion

In this work I classified the traditional mobility terms into intrinsic and extrin-

sic components, where the intrinsic are purely due to inherent material properties,

and the extrinsic are due to electron scattering arising from device fabrication. In

particular, the intrinsic components are separated from the extrinsic components

of surface roughness mobility, which have previously been computed by lumping

these components together. The intrinsic surface roughness is due to atomic-scale

potential-variation and the presence of the interface, while the extrinsic is largely

due to the wafer miscut generating nanometer-scale steps and step bunches.

I found that the intrinsic mobility of the 4H-SiC/SiO2 interface is much larger

than the extrinsic mobility. This is especially apparent with respect to surface

roughness scattering, where extrinsic mobility due to miscut roughness is orders of

magnitude lower than intrinsic surface mobility due to atomic-scale roughness. This

result is found to be largely insensitive to the magnitude of the perturbation, where

even if the perturbation is doubled, the extrinsic surface roughness dominates the

degradation of mobility. This result argues for further developing on-axis (or close

to on-axis) MOS technology for SiC. Experimental results support this conclusion

as well [56–59].From these experiments, evidence is clear that deviations from ideal

crystallographic planes create longer-range disorder and increased surface roughness.

In summary, we conclude that the interface of SiC/SiO2 does not intrinsically lead

to low mobility and that process-induced imperfections are the cause of the interface

mobility degradation experimentally observed.

60



5

x [nm]

0

-50y [nm]

5

V [eV]

0

-100

-200

-300
10

-250

-200

-150

-100

-50

Figure 3.6: Interface potential taken at the semiconductor-insulator interface. The
blue (well) areas depicted are within the oxygen atoms.
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Figure 3.7: Interface perturbation potential taken at the semiconductor-insulator
interface. The blue (well) areas are the oxygen atoms, and the yellow (peak) areas
are where the carbon sites are located if the bulk continued beyond the interface.

62



Figure 3.8: Real-space band extrema cartoon depicting the well structure which
forms at the SiC-SiO2 interface when a channel is formed. The subbands are enu-
merated 1, 2, 3... and exist as states found only within the well near the surface.
On the right, the triangular approximation to the well is made and the correspond-
ing approximate wavefunctions are shown which increase in number of nodes with
energy.
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Figure 3.9: Calculated transition rates for electrons due to atomic-roughness scat-
tering with DFT-extracted interface perturbation potential. Initial state has 1eV of
kinetic energy and is in the second subband of a triangular well with surface field of
1MV/cm. Scattering within the second subband is shown in red, scattering to the
third subband in orange, and to the first subband in blue.
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Figure 3.10: 2D atomic roughness scattering rates for electrons in the 1st (blue), 2nd

(red), and 3rd (orange) subbands. The x axis shows total energy of the electron, so
each curve begins at the corresponding subband energy for the given field. Insets
show the relative shape of the triangular well that each plot represents. Bottom
right plot contains both energy and field variation.
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Figure 3.11: Field-dependent scattering within the 1st subband for electrons with

various kinetic energies.
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Chapter 4: Incomplete Ionization in p-Type SiC

4.1 Background and Introduction

This work is motivated in part to further the understanding of p-type SiC

devices, and ultimately to aid in the development of SiC CMOS devices. Presently,

more attention is being paid to making advances in n-type SiC devices. In this work,

I sought to investigate issues related to p-type SiC. In particular, I analyze the de-

gree of incomplete ionization which becomes an important effect at higher doping

concentrations that exist in p-type and CMOS devices. My major contributions in

this area include aggregating and analyzing almost all existing published resistivity,

Hall mobility, and ionization energy data on Al-doped 4H-SiC, and using this infor-

mation to verify my physics-based formulation of the incomplete ionization. I also

extend this incomplete ionization fraction calculation to higher temperatures and

developed an easy-to-use parameterization of the temperature and concentration-

dependent ionization fraction by using a genetic algorithm. As a small aside, I have

also used the genetic algorithm to optimally parameterize the experimental Hall

mobility data over a larger range of temperatures and doping concentrations and

using more data than those that are currently published.

Dopant atoms are used in semiconductor devices to add mobile electrons (using

donors) and mobile holes (using acceptors) which act as charge carriers. To simplify
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device simulations/calculations, the assumption is sometimes made that all dopant

atoms are ionized. As a consequence, this assumption implies that all acceptors

have captured an electron from the valence band (NA = N−A ) and all donors have

donated an electron to the conduction band (ND = N+
D ) and as such, each dopant

atom contributes one charge carrier (barring electron-hole recombination effects and

assuming this is an uncompensated semiconductor). In a real physical system, the

energy needed to ionize these dopant atoms mainly comes from thermal energy

which follows a Maxwell-Boltzmann distribution under no applied field. Based off

this distribution, some portion of the dopant atoms will inevitably remain unionized

due to the non-zero probability of electrons having energy less than the ionization

energy. The degree of incomplete ionization depends on not only the temperature,

but also on the ionization energy of the state, and the conduction/valence band

density of states for donors/acceptors respectively.

For the case of p-type 4H-SiC, unfortunately, all acceptor dopant species have

large ionization energies. As a result of this fact, a greater degree of incomplete ion-

ization is expected in p-type SiC than in its n-type counterpart or in other materials

like Si and Ge [60]. Consequently, this effect must be treated more carefully in SiC

in order to accurately model mobile hole densities for given doping and temperature

conditions.

Of the acceptor dopants, aluminum (Al) is arguably the most favorable as it

has the highest solid solubility [10, 61–66] and lowest ionization energy at around

190 − 230meV [10, 65–72]. The other two main acceptor dopants are Ga which

has an ionization energy of approximately 250 − 270meV and B with two levels -
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one around 300meV from Si lattice site occupation and one around 650meV due to

defect-related complex known as the D-center [10, 65–70, 73–79]. SiC doping levels

are illustrated in Figure 4.1.

Figure 4.1: Doping levels in 4H-SiC.

For comparison, the most common n-type dopants in SiC also introduce two

levels each: 40− 70meV and 90− 130meV for nitrogen (N) as well as 40− 50meV

and 80− 100meV for phosphorous (P) [68,71,72,79–88]. P-type dopants in Ge have

an ionization energy of merely 10meV and for Si 45−73meV [10,68,89–91]. Various

dopant levels in Ge, Si, and GaAs are shown in Figure 4.2.
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4.2 Standard Incomplete Ionization Formulation

In materials like Si, where incomplete ionization is often neglected, if it is

included, it is generally done so in an approximate manner to ease computational

complexity. The standard approximations made usually include using a single dis-

crete impurity energy level (generally also treated to be independent of the doping

concentration) and applying Maxwell-Boltzmann quantum-state occupation statis-

tics in lieu of the true Fermi-Dirac statistics for fermions. These approximations

become worse for higher doping concentrations when the dopant wavefunctions start

to overlap and the semiconductor approaches degeneracy.

Under these assumptions we can calculate the ratio of mobile holes to ac-

ceptor atoms p/NA by invoking the charge neutrality condition and manipulating

the resulting equation to remove the dependence on the Fermi level (an unknown

quantity) and obtain an algebraic expression.

To begin, we will first make assumptions about the physical system which

result in a single impurity level. This means we treat the dopant atoms as far apart

and non-interacting i.e. no wavefunction overlap. This assumption is better for

low-doped samples because the average distance between nearest-neighbor dopant

atoms goes as N
(−1/3)
A . The discrete dopant energy levels form an acceptor density

of states in the bandgap, which, at sufficiently low doping concentrations, takes the

approximate form of a delta-function at the dopant energy level EA.

ρi(E) = NAδ(E − EA) (4.1)
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This density of states must integrate to the total acceptor density NA because there

are NA atoms and thus NA total discrete energy states. We will see later that this

acceptor density of states function spreads out and becomes more complex when

more physical and quantum-mechanical effects are accounted for.

Now we can compute the total number of ionized acceptors by multiplying the

acceptor density of states by the occupancy probability function, then integrating

over all energies. For the occupancy of acceptor states, we use a modified Fermi-

Dirac function which includes the degeneracy gA = 4 of acceptor state occupancy.

The four-fold degeneracy comes from the choice of spin-up or spin-down electron

occupying the acceptor state, as well as the choice to create a heavy or light hole in

the valence band due to the degeneracy at the valence band maximum (Γ-point) in

4H-SiC. This is described in further detail in section B.2.

N−A =

∫ ∞
−∞

ρi(E)fA(E)dE (4.2)

fA(E) =
1

1 + gA exp
(
E−EF

kBT

) (4.3)

Carrying out the integration:

N−A =

∫ ∞
−∞

NAδ(E − EA)

1 + gA exp
(
E−EF

kBT

)dE (4.4)

N−A =
NA

1 + gA exp
(
EA−EF

kBT

) (4.5)

The analogous calculation is also performed to calculate the number of holes

in the valence band, except we use the valence band density of states ρv(E) defined

for −∞ ≤ E ≤ EV . The 1 − f(E) term comes from the fact that holes stem from
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unoccupied valence band states rather than filled states.

ρv(E) =
4π(2m∗p)

3/2

h3

√
EV − E (4.6)

f(E) =
1

1 + exp
(
E−EF

kBT

) (4.7)

p =

∫ EV

−∞
ρv(E)(1− f(E))dE (4.8)

p =
4π(2m∗p)

3/2

h3

∫ EV

−∞

√
EV − E

1 + exp
(
EF−E
kBT

)dE (4.9)

In this standard formulation, we approximate the Fermi-Dirac occupancy dis-

tribution f(E) with the Maxwell-Boltzmann which is a valid when EF−EV & 3kBT

i.e. non-degenerate doping scenarios when the Fermi level is at least a few kBT away

from the valence band edge. This will allow us to obtain a closed-form solution to

an otherwise non-analytic expression.

1− f(E) =
1

1 + exp
(
EF−E
kBT

) ≈ exp

(
E − EF
kBT

)
(4.10)

p ≈
4π(2m∗p)

3/2

h3

∫ EV

−∞

√
EV − E exp

(
E − EF
kBT

)
dE (4.11)

Equation 4.11 has an exact solution which can be written using NV , the effec-

tive density of states in the valence band which depends on the hole effective mass

in the valence band m∗p:

p ≈ NV exp

(
EV − EF
kBT

)
(4.12)

NV = 2

(
2πm∗pkBT

h2

)(3/2)

(4.13)

Now we must apply the charge-neutrality condition. For our system, we as-

sume no donor counter doping, and since intrinsic carrier concentration ni is so small
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in 4H-SiC, we can also neglect the equilibrium electron concentration.

p+N+
D = n+N−A (4.14)

p =
n2
i

p
+N−A (4.15)

p ≈ N−A (4.16)

The resulting charge neutrality equation states that the hole concentration

must equal the ionized acceptor concentration. This result stands to reason as

the majority of holes are created by promoting electrons from the valence band

to the acceptor states rather than to the conduction band due to the much larger

energy difference. In general, both of these terms are functions of the unknown

Fermi-level EF , as exhibited in Equations 4.5 and 4.12. By making the Maxwell-

Boltzmann occupation statistics approximation (low doping limit), however, the

governing equations can be manipulated to explicitly remove the EF dependence and

provide a closed-form solution of only known quantities. We can rewrite Equation

4.5 in terms of the hole concentration given in Equation 4.12, and apply the charge

neutrality condition in Equation 4.16 leaving us with a quadratic equation for the

solution of the hole concentration p.

N−A =
NA

1 + gA exp
(
EV −EF

kBT

)
exp

(
EA−EV

kBT

) (4.17)

N−A = p =
NA

1 + gAp
NV

exp
(
EA−EV

kBT

) (4.18)

p =
NA

1 + p
2γ

(4.19)
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Finally solving the quadratic and introducing the auxiliary variable of known

quantities γ:

p = −γ +
√
γ2 + 2γNA (4.20)

γ =
NV

2gA
exp

(
−∆EA
kBT

)
(4.21)

∆EA = EA − EV (4.22)

As a reminder, NA is the acceptor doping density, NV is the valence band

effective density of states, ∆EA is the acceptor ionization energy, and gA is the

acceptor state degeneracy equal to 4 in 4H-SiC.

For other materials where ni is not small (or for very high temperatures), one

must solve a cubic equation to calculate the hole concentration:

p3 + 2γp2 − (2γNA + n2
i )p− 2γn2

i = 0 (4.23)

For those curious, this has the closed form solution:

p =
1

3 3
√

2

[√
4x3 + y2 + y

](1/3)

−
3
√

2

3

x[√
4x3 + y2 + y

](1/3)
− 2γ

3
(4.24)

x = −6NAγ − 4γ2 − 3n2
i (4.25)

y = −36NAγ
2 − 16γ3 + 36γn2

i (4.26)

A comparison of the quadratic solutions (dashed) to the full cubic solutions (solid)

are shown in Figure 4.3. The more accurate cubic solutions have three characteristic

regions. For the lowest temperatures, we see the freeze-out region where incomplete

ionization occurs due to the lack of thermal energy needed to ionize all of the ac-

ceptor atoms and create mobile holes. In the middle temperature region, the mobile
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hole concentration equals the total acceptor doping and remains fairly constant.

This region of stability extends over a larger temperature range for higher acceptor

doping. This is the region where devices should normally aim to operate within.

Finally, at extremely high temperatures, the intrinsic carrier concentration starts

to dominate and the material is said to be intrinsic because the hole concentration

equals the intrinsic carrier concentration independent of the doping.

Plotted in a different manner, Figure 4.4 shows the plot of p/NA which shows

incomplete ionization as a fraction. From this plot we can also determine as general

trend that incomplete ionization occurs more severely for higher doping concentra-

tions. This can be a problem for MOS-type devices which often have body/channel

doping in the range 1016cm−3 to 1018cm−3 where the conductivity of that region

could be significantly less than predicted assuming complete ionization.

For degenerate doping, some issues arise that this simplified model can not

handle. Most importantly, the Maxwell-Boltzmann statistics will overpredict occu-

pancy of valence band states because it allows more than one electron to occupy a

single spin-state which is forbidden for Fermions. To solve this problem we need to

use the full Fermi-Dirac distribution in the hole concentration calculation. Addi-

tionally, as doping increases, so too does the number of mobile holes in the valence

band. These holes, however, are not uniformly distributed throughout the crys-

tal. Instead, they will arrange themselves preferentially around acceptor ions via

Coulombic attraction, leading to an increasing amount of screening of the acceptor

atom’s potential [92]. This, in turn, leads to a lower ionization energy because the
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Figure 4.3: Hole concentration calculated using the standard incomplete ionization
model for variousNA doping. Dashed lines show the quadratic solution which ignores
ni and the solid lines show the cubic solution which includes it. Calculated for 4H-
SiC with ∆EA = 200meV.

average depth of the potential well decreases, as shown in Figure 4.5. This doping

concentration dependent ionization energy can also be included into the simplified

incomplete ionization model.

Increasing doping concentration also leads to interactions among dopant atoms

because the average distance between atoms shrinks as N
−1/3
A . Once these atoms

become close enough such that their valence state wavefunctions overlap, the degen-

eracy of their individual ionization energies must be lifted - leading to a quantum-

mechanical broadening of the acceptor density of states. This effect combined with

the lowering of the average ionization energy due to screening can lead to overlap
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Figure 4.4: p/NA calculated for different doping concentrations as a function of
temperature for 4H-SiC with ∆EA = 200meV.

of the acceptor states with the valence band. Lastly, the as the doping concentra-

tion increases the material as a whole becomes more disordered. These randomly

distributed dopants will randomly form clusters leaving local regions of greater-

than-average density of acceptors and other regions of less-than-average density.

The Coulombic charge created by these ionized atoms causes a shift in the local

potential which will change with position about its equilibrium mean value. This

locally fluctuating potential which changes on a mesoscopic scale causes the local

band structure to shift above and below its equilibrium state. Because the density

of states is a value averaged over the entire volume of the crystal, this effect leads to

a smearing of the states. Finally, at high enough doping concentration, the acceptor
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Figure 4.5: Coulombic potential of impurity atom core. the solid line is the bare

hydrogenic 1/r potential and the dashed line is the screened potential under the

effects of mobile carriers redistributing themselves.

79



density of states can evolve into a quasi-continuous band which supports a conduc-

tion mechanism parallel to valence band transport. This type of conduction is often

referred to as impurity conduction and includes various mechanisms: Mott conduc-

tion, Anderson conduction, nearest neighbor hopping, and variable range hopping.

These effects will be included in our advanced theoretical model of incomplete ion-

ization in p-type 4H-SiC.

It is also possible for dopants to substitute inequivalent lattice sites which have

different ionization energies due to the different forms of the local lattice potential.

In 4H-SiC, Al preferentially substitutes Si atoms in the lattice but there are two

inequivalent Si atom sites which are denoted as the hexagonal h and the cubic k site.

For visualization of this effect, refer to Figure 4.6. We know that all SiC lattices are

formed by combining arrangements of tetrahedrally bonded Si and C atoms. Each Si

is bonded to 4 C atoms and vice-versa. For 4H-SiC when two tetrahedra are joined

in an interpenetrating manner (vertex to center), there are two arrangements which

occur. The hexagonal site is formed when the configuration makes a more mirror-

symmetric structure where the external atoms lie on the vertices of triangular prism.

The cubic site is formed when one tetrahedra is rotated 60°about the connection

axis leaving the external atoms to lie on the vertices of a triangular antiprism. The

number and type of inequivalent lattice sites present in a SiC crystal depends on its

polytype. For 3C-SiC, every site is a cubic site and in 6H-SiC, there is one hexagonal

site and two different cubic sites as shown in Figure 4.7.

To include the effects of different dopant site ionization energies, the total
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Figure 4.6: Local arrangement of atoms leading to inequivalent lattice sites in 4H-
SiC.

Figure 4.7: Inequivalent sites (h=hexagonal, k=cubic) labeled in SiC polytypes.
The black circles represent carbon atoms and the white circles represent Si atoms.

ionized dopant concentration is split into a sum. The fraction of atoms in each

doping site is denoted with fh and fk and are usually taken to be 1
2
. Equation 4.27
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also leads to a cubic solution for the hole concentration.

N−A =
fhNA

1 + gA exp
(
EAh−EF

kBT

) +
fkNA

1 + gA exp
(
EAk−EF

kBT

) (4.27)

p =
fhNA

1 + p
2γh

+
fkNA

1 + p
2γk

(4.28)

γx =
NV

2gA
exp

(
−∆EAx
kBT

)
(4.29)

fk = 1− fh (4.30)

p =
1

3 3
√

2

[√
4x3 + y2 + y

](1/3)

−
3
√

2

3

x[√
4x3 + y2 + y

](1/3)
− 2(γh + γk)

3
(4.31)

x = 6(fhNA(γk − γh)−NAγk + 2γhγk)− 4(γh + γk)
2 (4.32)

y = 36(fhNA(γ2
k − γ2

h)−NAγ
2
k) + 72NAγhγk + 24(γ2

hγk + γhγ
2
k)− 16(γ3

h + γ3
k)

(4.33)

For materials where there are more than two inequivalent lattice sites, equation 4.27

can be easily extended by adding additional terms for each inequivalent site leading

to increasing polynomial degree solutions. For polynomial degree greater than 3,

a numerical solution must be obtained to solve for the acceptor concentration and

care must be taken to ensure that the ‘positive’ physical solution between 0 and NA

is the one obtained. This is applicable in n-type 6H-SiC where nitrogen incorporates

into three different sites: one hexagonal site and two inequivalent cubic sites where

fh = fk1 = fk2 = 1
3

leading to a quartic equation for p.

This modification can also be used to model systems where multiple acceptor

dopant species are present such as p-type 4H-SiC doped with a deep B well and a

shallow Al adjustment at the surface. The ionization energy difference between Al

and B is quite large (> 100meV ) so the solution to the cubic equation may differ
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significantly from the solution of either dopant species individually depending on

the ratio of their concentrations. For the situation of different doping species, the

fraction f must be solved for by using the individual doping concentrations NAl and

NB: fAl = NAl/(NAl +NB) and fB = 1− fAl.

4.3 Doping-Dependent Ionization Energy

For a more accurate calculation of incomplete ionization, one must include the

effects of doping-dependent ionization energy which lowers the energy required to

ionize the dopant atoms as the doping concentration increases. This effect turns

out to significantly affect the resulting p/NA ratio for high doping, and in particular

semiconductors like SiC where the low-doped ionization energy is quite high.

The doping-dependent ionization energy can be experimentally measured through

various techniques including CV, thermal admittance spectroscopy, Hall and 4-point

resistivity fits, donor-acceptor pair luminescence, free-carrier concentration spec-

troscopy, Raman spectroscopy, deep-level transient spectroscopy, IR absorption, etc.

The experimental data from the literature confirms that increasing doping concen-

tration lowers the ionization energy, by moving the acceptor density of states towards

the valence band. This effect is caused by the increased screening from mobile holes

in the valence band which distribute themselves such that the Coulombic energy of

the system is decreased, resulting in a lower acceptor ionization energy [92]. The

same effect is explained for the case of mobile electrons screening donor states in Si

in other works [92–95].
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To develop an empirical model of the doping-dependent ionization energy in

Al-doped 4H-SiC, a comprehensive review of experimentally measured ionization

energies was first performed. The experimentally determined energies from the lit-

erature are presented in Figure 4.8. The spread in the ionization energies at any

given doping concentration may be partially explained by the varied techniques used

to extract the energies. Some techniques may be capturing different parts of the ac-

ceptor density of states which may not necessarily be a single discrete energy level.

Other contributing factors to these discrepancies might include different fabrica-

tion techniques and differing degrees of counter-doping among the various research

groups. For this work, the ionization energy is considered to be the mean (center)

of the acceptor density of states. The empirical model of the ionization energy is

extracted from the experimental data by minimizing the least-squares error.

A well-behaved logistical equation is used to parameterize the doping-dependent

ionization energy (Equation 4.34) [96–98] and the experimental data is used to de-

termine the optimal parameters. This model contains three parameters, ∆EA0 as

the isolated dopant ionization energy, NE as the reference doping where the ion-

ization energy is half of its isolated value, and a characterizing the degree of the

doping dependence. The ionization energy based on this model is shown in black in

Figure 4.8. This is the parameterized form of ∆EA(NA) that is used in the rest of

this work.

∆EA(NA) =
∆EA0

1 +
(
NA

NE

)a (4.34)
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Figure 4.8: Doping density-dependent fit to experimental acceptor ionization energy

for 4H-SiC doped with Al. The blue line is the Pearson-Bardeen model and the black

line is the logistical parameterization.
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In earlier literature works, ionization energies may also be fit using the Pearson-

Bardeen model which takes the form ∆EA(NA) = ∆EA0 − α(NA)1/3 instead of the

form in Equation 4.34. The Pearson-Bardeen model is based on the average impu-

rity separation distance (N1/3). The Pearson-Bardeen formula is not used in my

incomplete ionization model because at high enough doping, it predicts that the

ionization energy eventually becomes negative and continues past the valence band

edge. Instead, the logistical expression in Equation 4.34 is used so that the center of

the impurity band asymptotically approaches the valence band edge. This property

gives better control of how the high-doped regions behave so that they can be tuned

with other parameters of the incomplete ionization model in accordance to the ex-

perimental data. The logistical formula may also be potentially more physically

sound because the change in ionization energy is mainly due to screening and thus

should tend towards zero [92]. Figure 4.8 shows the logistical parameterization in

black and the fit using the Pearson-Bardeen parameterization is in blue. Both mod-

els agree well for doping concentrations less than 3×1020cm−3. Later discussion will

address doping concentrations at and above this level, where a different mechanism

dominates the p/NA fraction such that the exact ionization energy in this region is

not as important.

4.4 Acceptor Density of States

As mentioned earlier, the acceptor density of states is not always best de-

scribed by a single energy level, but instead by a density of states function which
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is spread in energy space. This is particularly true in the case of higher doping

when the interactions between dopant atoms become significant. When the doping

concentration is increased, the number of dopants in close proximity to each other

also increases, causing greater quantum-mechanical interaction. The overlap of the

dopant-state wavefunctions along with the Pauli-Exclusion principle lifts the degen-

eracy of the single dopant energy levels and broadens them from series of localized

δ-function states (all of equal energy) into a quasi-continuous doping band [93, 99].

The width of this band is calculated by adapting work from Lee et al. which was

performed on donor states [100].

In this work, the acceptor density of states spread by wavefunction overlap

ρi0(E) is taken as a single rectangle function centered at EA(NA) which integrates

to the total acceptor density NA (with respect to the energy variable E). A single

impurity band is used in this model because the vast majority of experimental evi-

dence reports no significant ionization energy variation (to within analysis resolution

of a few meV) amongst Al substitution of inequivalent silicon lattice sites (hexagonal

and cubic) in 4H-SiC [65, 69, 70, 85, 101–103]. The energy bandwidth (width of the

rectangle function) of the donor states is characterized by the parameter B which is

calculated using the tight binding model, hydrogenic s-orbitals, and assuming that

the dopants are randomly distributed. Based on the work of Lee et al. [100], we

implement the following set of equations for ρi0(E) and B for acceptors in SiC.
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ρi0(E) =


NA/B, −B

2
≤ E − EA(NA) ≤ B

2

0, otherwise

(4.35)

B = 2

∫ ∞
0

J(R)4πNAR
2 exp

(
−4

3
πNAR

3

)
dR (4.36)

J(R) =
q2ξ

4πεrε0
(1 + ξR) exp(−ξR) (4.37)

Under the tight binding approximation, the dopant band width B is related to

the energy transfer integral J(R) between nearest neighbor dopant states a distance

R apart. J(R) is calculated by using hydrogenic s-orbitals to evaluate the energy

transfer integral. In this calculation, ξ = (1/a0)(EA/E0)1/2 is the scaled inverse

radius for the acceptor state, a0 is the Bohr radius, and E0 is the ground state

energy of the hydrogen atom [91]. By assuming the dopants are uniformly randomly

distributed, the nearest neighbor distance R will follow a Poisson distribution [104].

The bandwidth B is then calculated by finding twice the average value of J(R) and

the band is centered symmetrically about EA [99].

4.5 Disorder Effects and Band Tailing

In addition to the impurity density of states spreading due to wavefunction

overlap, the band is further spread due to the effects of lattice disorder and subse-

quent potential fluctuations arising from the randomly distributed ionized dopants.

At any given point in a doped crystal, the potential will differ from that of a pure

crystal due to the Coulomb potential produced the dopant ions. Random fluctu-

ations within the local concentration of the dopant atoms causes a potential fluc-
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tuation about its mean value on a mesoscopic scale. A less significant potential

deviation is also created by the local strain induced by the dopant ions and clus-

ters changing the periodic crystal structure, but we will be neglecting this smaller

effect in this work. Depending on the local atomic configuration of the dopant ions,

the potential throughout the crystal and thus the energy reference for the quantum

states will fluctuate about its mean value. [93,94,100,104,105].

These potential fluctuations lead to a distortion or smearing of the states near

the conduction and valence band extrema as the energy reference of these states

varies locally but the macroscopic density of states formulae represent spatial aver-

ages over the entire lattice. If the potential varies slowly with respect to the dopant

wavefunction, the local impurity states are also shifted with respect to this energy

- leading to impurity band tailing [92, 94, 100, 105, 106]. This effect is incorporated

by separately averaging the standard valence band density of states formula and

the rectangular acceptor density of states over the local potential energy distribu-

tion inside the crystal (denoted as P (V )) [92–94, 100, 104, 105]. The averaging is

accomplished by means of convolution integrals, given in Equations 4.43 through

4.46.
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P (V ) =
1

(2π)1/2σ
exp

(
− V

2

2σ2

)
(4.38)

σ =

(
N−A

8π2ε2rε
2
0

q4λ

)1/2

(4.39)

λ−2 = λ−2
h + λ−2

i (4.40)

λh =

(
εrε0kBT

q2p

)1/2

(4.41)

λi =

(
εrε0kBT

q2p(1 + p/NA)

)1/2

+ Γ

(
4

3

)[
4

3
πNA

]−1/3

(4.42)

The standard deviation of the Gaussian potential distribution is characterized

by the screening length λ. The screening length is itself comprised of hole and ionic

components. The hole screening length comes from the standard Debye length in a

semiconductor. The ionized impurity screening length also comes from the Debye

length but is increased by the average distance between acceptor atoms.

With this modification, the density of impurity and valence band density of

states become ρi(E) and ρv(E) respectively. The resulting density of states looks a

slightly smeared version of the input - causing tail states to appear at the band edges,

as shown in Figure 4.9. The variation of the local potential corresponds to the local

occupancy of the acceptor states causing regions of higher-than-average acceptor

occupancy (local negative charge) and lower-than-average acceptor occupancy (local

positive charge) due to the spatially-independent Fermi energy. Because the local

potential energy of the system affects the local shift in the conduction and valence

bands in the same manner, the local band gap Eg remains unchanged [94].
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ρi(E) =

∫ +∞

−∞
ρi0(E − V )P (V )dV (4.43)

ρv(E) =

∫ E−EV

−∞
ρv0(E − V )P (V )dV (4.44)

ρi0(E) =


NA/B, −B

2
≤ E − EA(NA) ≤ B

2

0, otherwise

(4.45)

ρv0(E) =
4π(2m∗p)

3/2

h3

√
EV − E (4.46)

With these resulting dopant density of states ρi(E) and valence band density

of states ρv(E), the only remaining unknown in my model is the Fermi level EF

which can be solved for numerically and then used to compute the ratio p/NA.

The full visualization of the density of states under various circumstances or

levels of approximation is depicted in Figure 4.10. For the acceptor density of states,

in the case of low doped samples there will be a single energy level at energy EA

which will spread out due to wavefunction overlap as the doping density increases.

Both the acceptor and valence band density of state functions then smear out when

disorder effects begin to appear due to randomly arranged dopant clusters and lattice

disorder at even higher doping concentrations.

4.6 Theoretical Incomplete Ionization Model

The theoretical incomplete ionization model described in this work is derived

from physical principles and includes the effects discussed in the previous sections:

doping-dependent ionization energy, dopant band spreading due to wavefunction
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Figure 4.9: P-doped semiconductor density of states diagram. Left: Shows the

position-dependent variation of the local band structure (negative of potential).

Right: Dashed blue lines show the standard valence band density of states and the

rectangular acceptor band density of states. After the inclusion of disorder effects,

the resulting density of states with band tailing is shown with solid blue lines. Note:

Image is not to scale - depending on the doping concentration, the doping band will

be significantly closer to and may even overlap the valence band density of states

tail. The doping band width B as well as its height will also vary considerably

depending on the doping density.
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Figure 4.10: Evolution of the density of states under various conditions: Row a)

Acceptor density of states starts as a single energy level at low doping, spreads due

to wavefunction overlap at higher concentrations, then smears due to disorder Row

b) Valence band density of states smearing due to disorder effects row c) Combined

picture of the valence band and acceptor density of states
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overlap, and density of states smearing due to disorder. To solve for the ionization

ratio, charge neutrality is invoked in order to relate the hole concentration p to

the ionized acceptor concentration N−A which are in turn both described by integral

equations involving an occupation probability function and a density of states. In

this work uncompensated p-type doping is considered, so N+
D is set equal to zero

in the charge neutrality equation. Additionally, because this model is used to treat

4H-SiC, the intrinsic carrier concentration is extremely low (from 300− 800K ni ≈

10−8 − 1010cm−3) so n = n2
i /p is assumed to be negligible.

Forms of impurity band conduction have been observed in SiC at high doping

concentrations and in compensated samples [99,107], suggesting the need for a mod-

ification to the standard charge neutrality and incomplete ionization equations. To

include this effect, the total number of mobile holes p is rewritten as a sum of ‘nor-

mal’ valence band conducting holes pv and holes conducting via an impurity band

mechanism pi. Adopting this new form of p, the charge neutrality equation must also

be rewritten because only the valence band holes contribute positive charge. The

fraction of unionized acceptor states which contribute impurity conducting holes is

quantified by the fraction (1 − β). With these modifications, the ratio p/NA given

by Equation 4.51 is no longer technically the ‘ionization fraction’ because there are

more mobile holes than ionized acceptors due to the additional impurity conduction

holes (although this distinction is not always made).
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p = pv + pi (4.47)

pv +N+
D = nc +N−A (4.48)

pi = (1− β)N0
A (4.49)

NA = N0
A +N−A (4.50)

p

NA

= β
pv

NA

+ (1− β) 6= N−A
NA

(4.51)

Impurity conduction effects have also been observed in Si [97,98,108], which is

where this modification to the incomplete ionization formula was originally applied

[97,98]. In these papers, the parameter β is obtained using the empirical expression

in Equation 4.52 which is also applied in this work.

β(NA) =
1

1 +
(
NA

Nb

)d (4.52)

Here, Nb characterizes the doping level at which the impurity conduction be-

gins to dominate, and d characterizes the rate at which the conduction increases in

the regime of the impurity conduction mechanism.

To ensure that pv is correct in the case of high doping when the Fermi Level

approaches the valence band edge, the full Fermi-Dirac integral (Eq. 4.53) is used to

calculate the valence band hole carrier concentration in stead of using the Maxwell-

Boltzmann approximation. The unknown Fermi level EF is determined by solving

the charge neutrality equation (Eq. 4.55). As mentioned earlier, there is no counter

doping present, and the free electron concentration is neglected. The integral used to

compute the ionized acceptor states (Eq. 4.54) uses a modified Fermi-Dirac function
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due to the degeneracy gA associated with filling the state in different ways. In the

case of 4H-SiC, gA = 4 due to the valence band maximum exhibiting a heavy-hole

light-hole degeneracy, which allows for the creation of either a heavy-hole or a light-

hole in the valence band, in addition to the choice of spin ‘up’ or spin ‘down’ for an

electron filling the acceptor state [65, 66,72,98,102,103,108–118].

pv =

∫ EV

−∞

ρv(E)

1 + exp
(
EF−E
kBT

)dE (4.53)

N−A =

∫ ∞
−∞

ρi(E)

1 + gA exp
(
E−EF

kBT

)dE (4.54)

pv = N−A (4.55)

From the charge neutrality condition and integral equations, we have three

equations and three unknowns pv, N−A , and EF . Plugging in equations 4.53 and 4.54

into equation 4.16, allows for the Fermi level EF to be determined numerically using

trapezoidal integration combined with the method of bisection for a given doping

NA. Once the correct Fermi level is found, we evaluate the integrals in equations

4.53 and 4.54 to calculate pv and N−A . These values are then used in Equation 4.51

to find the ratio of mobile holes to acceptor doping p/NA. For solving a compensated

system (doped with both NA and ND), the slightly modified equations are discussed

in the appendix.

I would like to emphasize for the sake of contrast with the model described

in the next section that the only empirical inputs into this theoretical model are

the logistical parameterization of the doping-dependent ionization energy ∆EA(NA)
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(Equation 4.34) and the impurity conduction parameter β (Equation 4.52) which

are both extracted to match experimental data.

4.7 Experimental Incomplete Ionization Verification

In the previous section p/NA was calculated from a largely theoretical stand-

point. This section discusses the separate experimental technique used to verify the

theoretically calculated p/NA. This experimental technique described by Altermatt

et al uses measured values of Hall mobility and resistivity over a range of doping

densities from the literature [96–98]. With this data, a second p/NA ratio is ulti-

mately extracted and compared to the results from the theoretical technique. The

core of this experimental method relies upon equating p/NA to a ratio of mobili-

ties µCond/µHall where the Hall mobility is measured directly and the conductivity

mobility is derived from resistivity measurements.

Resistivity data (taken with 4-point measurements) is converted into a cor-

responding conductivity mobility value µCond using Equation 4.56. The derived

conductivity mobility is then divided by the measured Hall mobility µHall to obtain

experimentally obtained values of p/NA. The hall correction factor r assumed to be

1 in this work [103,119–122].
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µCond ≡
1

qρNA

(4.56)

µHall =
σRH

r
=

1

rqρp
(4.57)

µCond
µHall

=
rp

NA

≈ p

NA

(4.58)

Because the fraction µCond/µHall is used to obtain p/NA, each of these mobil-

ities must be representable as continuous functions of the doping NA. To achieve

this, each set of data is separately fit to an empirical function using the least-squares

method. The experimentally-derived p/NA is then compared to the p/NA calculated

using the theoretical model.

For clarity, the theoretical model does rely on a small degree of experimen-

tal input, namely, the experimental ∆EA(NA) and β(NA) which were presented in

the previous section. The experimental data used in the theoretical model is, how-

ever, largely unrelated to the data which forms the experimental model because

the different data sets are measuring completely different physical properties. This

should allow the experimental model to act as a valid check on the result from the

theoretical model.
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µHall(NA) =
µHall0

1 +
(
NA

NH

)b (4.59)

µCond(NA) =
µCond0

(
−γ +

√
γ2 + 2γNA

)
(

1 +
(
NA

NC

)c)
NA

+ µImp (4.60)

γ(NA) =
NV

2gA
exp

(
−∆EA(NA)

kBT

)
(4.61)

µImp(NA) = µImp0 exp

(
−(NA −NImp)

2

2σ2
Imp

)
(4.62)

The Hall mobility is fit using the standard Caughey-Thomas [123] form often

used in literature [71, 72, 112, 114, 115, 117, 122, 124–126]. The fit for conductivity

mobility is derived partially from physical considerations, the details of which are

described in the Appendix (Section B.1.1). With the analytical forms for µHall and

µCond given by Equations 4.59-4.62, their ratio provides an analytical form for p/NA.

The result of this calculation is presented in Figure 4.14 later in this work.

The parameters used in the theoretical and experimental models are presented

in Table 4.1. With the parameters in this table, the Hall mobility, ionization energy,

and the hole concentration can be determined for a given acceptor doping density.

Later in this work I will present a more usable approximate expression for calculating

the p/NA as a function of both acceptor concentration and temperature.

The plots of the physically-motivated empirical fits of µHall and µCond are

shown in Figures 4.11 and 4.12 along with the respective experimental data from

literature. The experimentally measured resistivity values are also plotted in Figure

4.13, which highlights the change in the conduction mechanism in the high doping

regime. In this figure, at an Al doping concentration of approximately 1020cm−3 a
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Table 4.1: Parameters characterizing Al-doped 4H-SiC

Parameter Value

∆EA(NA)

∆EA0 [meV] 214.86

NE [cm−3] 8.12× 1019

a 0.632

µHall(NA)

µHall0 [cm2/Vs] 109.6

NH [cm−3] 2.92× 1018

b 0.6335

µCond(NA)

µCond0 [cm2/Vs] 109.83

NC [cm−3] 2.92× 1018

c 0.5891

µImp0 [cm2/Vs] 1.355

NImp [cm−3] 2.65× 1020

σImp [cm−3] 9.06× 1019

NV (300K) [cm−3] 2.49× 1019

gA 4

β(NA)
Nb [cm−3] 4.5× 1020

d 2.9

different conduction mechanism (likely a form of impurity or hopping conduction)

seems to dominate as the slope of the trend changes. This concentration at which

this slope change occurs agrees well with an estimated value of the critical concen-

tration for impurity conduction [127] Ncrit = (2.2a0)−3 exp(1 − εr) ≈ 1 × 1020cm−3

for 4H-SiC, where εr = 9.76 [71]. The black dashed line in Figure 4.13 is generated

using the resistivity equation provided by Heera et al. [10] with our own data as

input.

From the data presented in Figure 4.11, the spread in experimental mobility
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Figure 4.11: Hall mobility fit to experimental measurements of 4H-SiC doped with
Al
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Figure 4.12: Conductivity mobility derived from experimental measurements of re-
sistivity
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Figure 4.13: Resistivity fit to experimental measurements of 4H-SiC doped with Al.
Dashed black line comes from using the predicted resistivity from Heera [10] using
our values for mobility and ionization energy.
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values is immediately obvious - likely due to the large differences in fabrication

methods and parameters. This spread is also readily apparent in the resistivity

data plotted in Figure 4.13. Interestingly, it turns out that all of the scattered data

that lies above the dashed trend line in this plot for NA > 1018cm−3 comes from

devices doped using ion implantation as opposed to in situ doping via epitaxial

growth. This suggests that it is difficult to repair the lattice damage caused by

implantation and/or fully activate the implanted dopants.

To ensure a robust fit to the experimental data using Equations 4.59-4.62,

outlier points are excluded on a paper-by-paper basis. The remaining data points,

which are included in the least-squares error calculation, are outlined by black circles

in Figures 4.11-4.13. The standard deviation ±σerr of a 10 data point moving

window is also plotted, shown as blue dashed lines.

Conductivity mobility (resistivity) data for extremely low doping concentra-

tions is mostly unavailable due to difficulties obtaining completely pure samples,

but is required because of how it will affect the quality of the fitting function in

this region. For this reason, we add resistivity data points to the low doping region

that are calculated using the simple charge neutrality condition valid for low dop-

ing [10] described in the Appendix 3 (Section B.1.1). These resistivity data points

are labeled as Analytical in Figures 4.12 and 4.13.

The experimental incomplete ionization fraction is calculated by dividing the

conductivity mobility fit curve (Equation 4.60) by the Hall mobility fit curve (Equa-

tion 4.59) as described in Equation 4.58. The resulting p/NA fraction is presented

as the solid blue line in Figure 4.14. The standard deviation error bars ±σerr calcu-
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Figure 4.14: Incomplete ionization ratio p/NA for 4H-SiC doped with Al at T =
300K. Experimental data fit (µCond(NA)/µHall(NA)) is shown in solid blue. Our
theoretical model, calculated with Equation 4.51 is shown in dashed red.
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lated using a sliding window of 10 data points are also plotted as blue dashed lines

in this figure. The upper and lower bounds are calculated by dividing the ±σerr of

the Conductivity curve by the ∓σerr of the Hall curve. The discrete points shown

are the ‘extracted’ discrete p/NA values calculated using: {µCond}∗/µHall({NCond
A }∗)

(red circles) and µCond({NHall
A }∗)/{µHall}∗ (blue circles) where {}∗ indicates the set

of data points from the discrete measurements, and the functions indicate data cal-

culated from the empirically fitted curves (Equations 4.59 and 4.60). In addition

to the standard deviation lines, these data points help give some indication of the

spread in the data about the direct division of the two fitted functions.

Result Comparison: Now that p/NA has been extracted using experimen-

tal measurements, this result is used to confirm the values calculated using the

theoretical model presented in Sections 4.3-4.6. The theoretical model results are

plotted as the red dashed line in Figure 4.14 and for comparison, the experimental

model predicts the solid blue line. Upon comparing the theoretical results with the

empirically fitted, good agreement is found to within several percent.

4.8 Temperature Dependence

Because the theoretical model from Sections 4.3-4.6 is fully temperature de-

pendent, it can be used to predict the p/NA ratio at elevated temperatures, which

will often be the more relevant operating regime for SiC devices. Figure 4.15 shows

our predicted p/NA for elevated temperatures, although these values are not yet

confirmed with experimental data.

Due to the non-analytical form of p/NA derived using the theoretical model
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described in Sections 4.3-4.6, and the significant number of parameters needed to

express the experimental data, a more usable form of p/NA for device designers is

desirable. The results of the temperature-dependent theoretical model are closely

approximated by the analytical expression in Equation 4.63. Optimal parameters

used in this expression are obtained by utilizing a genetic algorithm. The form

of this expression is derived from an expression presented by Kuzmicz [108]. This

parameterization was obtained for the following doping and temperature ranges,

respectively: 1014cm−3 ≤ NA ≤ 3×1020cm−3 and 300K ≤ T ≤ 800K. The benefit of

using this expression enables scientists and engineers can simply evaluate Equation

4.63 for their given temperature and doping conditions directly instead of having to

iteratively solve the nonlinear system of integrals described in Sections 4.3-4.6 for

each doping and temperature point.

p

NA

≈ 1− A exp
[
−(B |ln(NA/N0)|)C

]
(4.63)

Starting with the expression used by Kuzmicz [108] for Si, a temperature

dependence to the parameter C is added to help better match the theoretical model

results of p/NA for p-type 4H-SiC. The values of A, B, C, and N0 were optimized

for Al-doped 4H-SiC using a genetic algorithm with a squared error fitness function.

This parameterization is plotted in Figure 4.15 with a dashed line and agrees well

with the theoretical model results with a significant reduction in computational

effort. The full temperature dependent parameters A, B, C, and N0 were found to
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be:

A(T ) = 0.9611

(
T

300

)−0.2343

(4.64)

B(T,NA) =


0.0978

(
T

300

)0.7748

NA < N0

0.3702− 0.0347

(
T

300

)
otherwise

(4.65)

N0(T ) = 2.7248× 1019

(
T

300

)0.968

cm−3 (4.66)

C(T ) = 5.4738− 1.2263

(
T

300

)
(4.67)

Plotting the theoretical model data in a different manner, Figure 4.16 shows

the total mobile hole concentration p calculated by multiplying the theoretical model

results in Figure 4.15 by NA. From these high temperature calculations, the tem-

perature dependence of hole concentration seems to diminish as the impurity band

conduction mechanism begins to dominate at around 2× 1020cm−3 for all tempera-

tures considered. Further experimental measurements at elevated temperature are

needed to confirm this prediction.

4.9 Results and Conclusion

From the gathered resistivity data, a consistent relationship between acceptor

doping concentration NA and resistivity is observed for epitaxially grown layers

doped with Al. In contrast, samples which are doped by implantation consistently

exhibit on the order of 10× higher resistivity compared to epitaxially grown layers

of the same doping concentration but even among this data there is a large spread

in values. This result is likely attributable to residual damage sustained during the

implantation process as well as incomplete high temperature activation of dopant
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Figure 4.15: Incomplete ionization ratio p/NA calculated using our Model at el-
evated temperatures T = 300K − 800K (solid line) compared to our empirical
parameterization (dashed).
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Figure 4.16: Hole concentration in 4H-SiC doped with Al calculated using our Model
at elevated temperatures T = 300K − 800K.
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atoms into lattice sites. Both of these issues are apparently unable to be fully

rectified by the annealing process which generally follows implantation.

At an Al doping concentration greater than 1020cm−3 the start of a parallel

form of conduction is observed which is likely a type of impurity band conduction

known as variable range hopping [128, 129]. The parallel conduction mechanism

causes the resistivity to rapidly decrease with increasing doping concentration. This

increase in conduction is quickly counteracted by the solid solubility limit of Al

in 4H-SiC [130] which is around 2 × 1020cm−3. Beyond this limit the resistivity is

observed to increase with further doping instead of decrease. The specific mechanism

is not investigated in this work but may potentially be attributed to multiple effects

including the formation of precipitated clusters of Al [64, 130, 131] which would

increase scattering due to the non-crystalline structure as well there is a potential

that holes conducting via impurity states may exhibit a higher effective mass.

Both the theoretical model and experimental data indicate that Al doping

concentrations between 1017cm−3 and 1020cm−3 typically result in mobile hole con-

centrations equal to 10% or less of the doping concentration. This poses a challenge

for semiconductor device designers trying to achieve low resistivity p-type regions

in devices. The minimum p/NA ratio predicted by the theoretical model is below

30% even at temperatures as high as 800K.
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Chapter 5: Transport Model Validation and Genetic Algorithm Ap-
plication

5.1 The Monte Carlo Method

In principle, to simulation carrier motion within a semiconductor we would

need to solve the Boltzmann transport equation (BTE). The BTE, shown in Equa-

tion 5.1 is a nonlinear differential equation which provides us with a probability

distribution function fk in 3 dimensions of space, 3 of momentum, and one of

time [132–134].

∂fk
∂t

= −1

~
∇kE · ∇rfk +

eF

~
· ∇kfk +

(
∂fk
∂t

)
scatter

(5.1)(
∂fk
∂t

)
scatter

=
V

(2π)3

M∑
i

∫
[fk′(1− fk)Si(k′, k)− fk(1− fk′)Si(k, k′)] d3k′

In this equation, the distribution function is evolved in time due to the effects

of drifting and scattering in an applied field. Due to the complexity associated

with solving for this function in a 6-dimensional phase-space directly, we instead

employ the use of the Monte Carlo Method to obtain a solution instead. The aim

of the this technique is to model electron transport by generating numerical results

statistically through a repeated random sampling process. This method allows us

to take calculated scattering rates and follow an electron on it’s trajectory as it

travels through a crystal, scattering via random mechanisms with appropriately
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weighted probabilities. During the flight of the electron through the crystal, we also

collect statistics about its energy, velocity, and valley occupation. Generally, it is

assumed that each scattering particle acts independently from all other carriers, so

the statistics generated from following one carrier undergoing many events should

be representative of the ensemble of many carriers all mutually scattering.

Figure 5.1 lays out the flowchart the Monte Carlo algorithm follows. To sim-

plify, first a total scattering rate is calculated for an electron given its initial energy.

Then, a flight time is randomly determined from an exponential distribution. This

flight time represents the amount of time the electron is drifting under the effect

of the electric field and accelerating uninhibited. During the flight the electron’s

k vector changes according to 3.17. At the end of the flight the electron scatters

according to a randomly chosen mechanism with probability proportional to each

mechanism’s individual scattering rate. After deciding the mechanism, the elec-

tron’s energy changes by an amount determined by the phonon energy associated

with the mechanism. Finally, the electron’s k vector is updated to the new k’ di-

rection after scattering interaction with a phonon of wavevector q. Since there are

generally many vectors which all have the same energy, the new vector is again

chosen randomly from a distribution associated with the decided mechanism, and

is based off the analytical form of the scattering rate. Certain mechanisms tend to

prefer directional, anisotropic scattering and others are more isotropic. Finally, the

entire process is then started anew and repeated many times to accrue sufficient

data to produce meaningful averages and smooth distributions.
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- Material Props.
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tf > dt
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Figure 5.1: Flowchart of Monte Carlo Algorithm for a single field configuration using
4 random numbers r1, r2, r3, and r4
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Calculations are performed using the algorithm for different strength electric

fields. Averages are then taken for each calculation and plotted against the strength

of the field. Of particular interest are the plots of average energy and average drift

velocity (in the direction of the field). The derivative of the velocity with respect to

field strength produces a plot of the differential field-effect mobility as a function of

field. From the velocity plot, we can see material properties such as possible velocity

overshoot and eventual saturation as the field gets too large.

Figure 5.2 shows the scattering rates of all mechanisms which we consider

in the Monte Carlo simulation. The work done currently only includes the 3D

mechanisms and is in good agreement with work previously done in the literature

[40]. To maintain realism within our approximation, three subbands are chosen to

account for a well configuration at the onset of inversion where there is 1.4 eV of

band-bending in the SiC ( 1016cm−3). The lowest three subbands for a well with

surface field of 2MV/cm are 0.37, 0.66, and 0.89 eV above the conduction band

minimum, allowing the electrons to have enough room to gain kinetic energy while

remaining inside the well for relatively small applied lateral electric field. More

subbands can be included depending on the actual well configuration being studied.

The 3D Monte Carlo simulation was performed for 4H-SiC with transport on

the (0001) interface. Figure 5.3 shows the results of the time-averaged electron

velocity determined as a function of applied lateral field. The velocity is taken to

be the component only in the direction of the field so that the mobility extracted
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Figure 5.2: Scattering rates for electrons with different total energy. Rates asso-
ciated with phonon emission are shown as dashed lines and solid lines are used
for absorption. The 2D Atomic Roughness scattering rates out of the first three
subbands are also shown for a surface field of 2MV/cm.

directly relates to the field as Equation 5.2.

νdrift = −µF (5.2)

For low electric fields, the drift velocity is known to increase linearly with

applied field. From the results obtained, we see a velocity overshoot peak of ap-

proximately 1.7e7 cm/s at around 700kV/cm. The resulting value of this velocity

peak agrees with its theoretically expected value which can be derived by equat-

ing the kinetic energy of the electron to the energy of the most probable phonon,
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Figure 5.3: Average electron velocity (in the direction of the applied lateral field)
plotted against field strength. Monte Carlo simulation results are solid lines and
data-fitted curve from [11] is shown with the dashed line. Curves shown are for
different temperatures: Blue 300K, Red 600K

and solving for the velocity the electron achieved before phonon interaction. To get

the average velocity between scattering events simply divide the emission velocity

by two. For SiC, polar-optical phonon emission accounts for the highest scattering

rate and thus is the most probable interaction type. Using the values from the MC

simulation results in a velocity saturation prediction of 1.7e7 cm/s.

m∗ν2
emit

2
≈ ~ωpop (5.3)

vsat =
1

2

√
2~ωpop
m∗

= 1.7e7cm/s

Experimental data exists only up to 400kV/cm, where the velocity is fitted to

saturate at 2.2e7 cm/s [11] (red curve in Figure 5.3), which agrees fairly well with

our simulation results. Beyond this point, the results of the Monte Carlo show that

the velocity overshoots and begins to decrease as it saturates due to the increasing
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scattering rate of inelastic acoustic phonons. In an inelastic scattering event, kinetic

energy of the electrons goes into the energy of the phonon, reducing the electron’s

speed after the event.

Because this calculation only includes M valley, all electrons exist in the lowest

conduction band and thus have potential energy defined to be zero. The energy then

shown in the Figure 5.4 represents both average total and average kinetic energy of

the electrons in the material. From the plot we see that at the breakdown field of

SiC (3MV/cm), the electrons have 1.7eV of kinetic energy which is reasonably small

compared to the SiC/SiO2 conduction band offset barrier of 2.7eV [135]. Addition-

ally, from the distributions presented in Figure 5.5, at 3MV/cm the vast majority

of electrons are still below 2.7eV but at this point the validity of the simulation

begins to break down. At 700kV/cm where the average velocity is shown to peak,

the energy distribution shows that almost all electrons have less than 1eV of energy.

From the three energy distributions shown, we see that there is quite a drastic field

dependence on the shape and spread of electron energies. At low fields the distribu-

tion is similar to an exponential-decay and as field increases, the distribution peaks

at higher and higher energies. The tail also follows the same trend and extends

to higher energy as the distribution broadens. At the breakdown field, we see the

energy distribution has transformed to a nearly Gaussian shape because the electron

is scattering so frequently and constantly changing energy.

Absolute field effect mobility is calculated by dividing the electron velocity at

a given field by the value of the field. To extract differential mobility the derivative
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Figure 5.4: Plot of average electron energy for given lateral field strength. Zero
energy corresponds to electrons at the conduction band minimum. Only M-Valley
scattering is considered in this simulation.

of the average velocity vs field plot is taken. The results of both calculations are

shown in Figures 5.6 and 5.7 respectively.

5.2 Conclusions and Future Work

Results of this Monte Carlo simulation closely match the experimental velocity

data available for SiC from [11], and the MC simulation results of [40]. To extend this

work, I plan to add the effects of 2D interface scattering within the quantum well to

account for atomic and surface roughness scattering. Additionally, these simulations

were performed assuming transport along the (0001) face (Si-face). Because my

method for extracting an atomic roughness perturbation potential is general, the

next step planned is to create and relax an a-face aligned interface supercell using
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Figure 5.5: Distributions of wavevector component in the direction of applied lateral
field (top) and electron energy (bottom) for various lateral field magnitudes.
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Figure 5.6: absolute field mobility for electrons plotted against applied lateral field,
taken as ν(F )/F .
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Figure 5.7: Differential electron field mobility as a function of field, extracted from
Monte Carlo simulation results.

DFT. This work will allow for a comparison to be made between various interfaces

to predict the mobility achievable in an ideal-case scenario where there is no surface

roughness scattering due to the presence of a miscut.

5.3 Genetic Algorithm For Parameter Extraction

5.3.1 Method Overview

To develop a more usable form of the p/NA results from Section 4.8 without

the need to solve the complete iterative system of integrals, a genetic algorithm

was designed an applied to determine optimal parameters for an empirical formula.

In general, a genetic algorithm is a stochastic technique which uses concepts from

biological evolution in order to optimize a function. For my purposes, the genetic

algorithm is used to optimize a set of parameters for an empirical function to best
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fit experimental data.

Each parameter set is denoted as an ‘individual’ and each parameter’s value

as a ‘gene’ in the context of the genetic algorithm. An individual’s ‘chromosome’

is the combination of all of its genes. In the algorithm, many individuals make

up a ‘generation’ and each are tested by calculating a fitness function for a given

individual Fi (Eq. 5.4). The fitness function creates an objective ranking of the

individuals by determining the ‘goodness-of-fit’ for each parameter set. In this case

the fitness function for each individual is taken to be the least-squares error between

the empirical function using that individual’s parameter set fi,empirical(x) and the

experimental data set fdata(xj). A weighting function w(x) may also be added to

ensure that fitting preferentially favors certain more sensitive or important regions

or minimizes the impact of regions where experimental data is unreliable. The sum

in Equation 5.4 is taken over the j experimental data points.

Fi =

√∑
j

[
w(xj) (fi,empirical(xj)− fdata(xj))2] (5.4)

In the genetic algorithm, to limit memory usage, the population size is fixed

such that each generation has the same number of individuals. Each generation

of individuals is primarily made from ‘breeding’ the individuals from the previous

generation to create new individuals. Mimicking the biological process of sexual

reproduction, different genes are randomly taken from each parent and combined

to create offspring. After each generation is created, old individuals die out and

are replaced by their children and the cycle is repeated until a satisfactory fitness
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level is achieved. The basic flow diagram of the genetic algorithm is shown below

in Figure 5.8.

Start

Initial Population

Calculate Fitness

min
i

(Fi) < err Create
New Generation

Stop

F

T

Figure 5.8: Flowchart of the basic Genetic Algorithm process.
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Mutate

Promote

Random

Breeding Elite

Stock

Figure 5.9: Operations performed to create a new generation of individuals in a
genetic algorithm.

In the algorithm flowchart Figure 5.8, the initial population is created by

assigning each individual’s genes (parameter values) by selecting randomly from

within the bounds of reasonable values set for each parameter. The fitness of each

individual in the generation is then evaluated to assign a qualitative ranking of

how well each individual fits the experimental data. The best fitness among the

generation is then used to determine the if the algorithm is to stop by comparing

it to a desired threshold value. If sufficient fitness is not achieved among any of

the individuals of this generation, a new generation is created and the process is

repeated. Figure 5.9 diagrams the process of creating a new generation showing its

component groupings.

Every generation is based off of the previous generation except for the initial
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population. The main bulk of the generation is created with a breeding process which

selects parent individuals from the previous generation and ‘breeds’ them to create

individuals in the new generation. Parents are selected randomly from the previous

generation but preference is given to individuals with better fitness. This effect can

be easily achieved by implementing a hard cutoff where the best X individuals act as

the ‘elite parent pool’ from which the parents of a set number of children in the next

generation are chosen. The remaining children are created by choosing completely

random parents without any bias based on fitness. This ensures that the best

X parents will have more representation (through their offspring) in the following

generation. For simplicity of implementation, every pair of parents has one child,

and individuals are not monogamous. Additionally, there is a chance that duplicate

pairs may appear in which case that pair of parents ends up with multiple children.

After selection of the parents, their child is generated with a two-step process:

crossover and mutation, the details of which will be described later. Additionally,

during the selection process, the best X individuals can also be promoted directly

from the current generation into the new generation in a process known as ‘Elitist

Selection’. By adding this feature to the generation creation process, the current

best solution is never forgotten, ensuring that the fitness function monotonically

improves with each generation.

Earlier, it was mentioned that individuals with better fitness were selected

more frequently to be parents. Doing this ensures that better individuals produce

more children and, in effect, biases the algorithm to stay near solutions which are

known to be good via the breeding process. However, this can eventually lead to
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convergence issues. It is possible and indeed likely that many of the best individuals

will start to become near-clones of each other i.e. the best individuals will have

very similar genes. In effect, this causes the gene pool to stagnate and keeps the

algorithm stuck in a local minimum of the fitness function rather than moving

toward the global minimum. To help combat a stagnated gene pool, new ‘stock’

individuals are introduced to each generation as a supplement to all of the offspring

made by breeding the previous generation’s individuals. These ‘stock’ individuals

have no parents and are created instead with purely random genes (like the initial

population individuals) to promote genetic diversity further down the generations.

The likelihood that these individuals themselves give highly fit solutions is low but

they may introduce genes that aren’t currently available elsewhere in the population

that can lead to highly fit individuals after breeding.

5.3.2 Breeding Process Details

The breeding process selects two individuals as parents and mixes their genes

to create an offspring. The selection of parent individuals is performed randomly

but bias is given towards selecting individuals with better fitness. To generate a

child from a given a pair of parents, the crossover operator is applied. Crossover

is performed by generating a random bit array, with length equal to the number of

genes in an individual. These bits then determine from which parent each gene of

the child is to be taken i.e. for a ‘1’ take parent 1’s gene and for a ‘0’ take parent

2’s gene. Written mathematically: Gi,Child = riGi,P1 + (1− ri)Gi,P2 where ri is the
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ith bit in the crossover array and the Gi terms are the ith genes of the child and

parent individuals. Due to the large number of possible crossover arrays, even if

two individuals share the same parents, they will likely differ significantly from each

other.

0.53 22.2 3.87 · · · 3.5× 1018 1059 11.91Parent 1:

1.96 45.1 1.46 · · · 7.2× 1017 1360 25.34Parent 2:

1.96 22.2 1.46 · · · 3.5× 1018 1059 25.34

0 1 0 · · · 1 1 0Bit Array:

Crossover:

Figure 5.10: Random binary bit array used to generate an offspring from two parent
individuals

After crossover, each new offspring is then subject to a mutation stage which adds

some random spreading or broadening to the genes (parameter values). This can

help to fine-tune the parameters in later generations once most of the major con-

vergence has been achieved mainly due to crossover in the early generations. A

simple way to add mutation is to multiply each of the child’s genes by a random

Gaussian variable centered at 1 using set standard deviations σi for each parameter

N (µ = 1, σ2
i ). As a note, for parameters which may span many orders of magnitude

(such as doping concentrations, reference doping values, electron concentrations, ox-

ide charge, etc.), it may be better to apply mutation to the log of the parameter
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and then re-exponentiate to recover the final mutated value.

1.96 22.2 1.46 · · · 3.5× 1018 1059 25.34

2.05 21.6 1.15 · · · 3.8× 1018 1057 25.82Child:

Mutation:

Crossover:

Figure 5.11: Random mutation applied after the crossover to finally create the
offspring.

An alternative breeding strategy which could also be used is to form each child’s

genes via a random linear combination of it’s parents genes instead of choosing the

exact value of either parent. The crossover formula Gi,Child = riGi,P1 + (1− ri)Gi,P2

still applies, but now each ri is a random variable which can vary continuously from

0 to 1 and is chosen from a distribution. In this strategy, ri acts as more of a mixing

fraction than a selector. For simplicity the distribution may be uniformly random

to create more hybridized individuals, or it may have a more bimodal shape that is

biased towards 0 and 1 to give more of a crossover effect (Fig. 5.12). Once again,

for parameters that span many orders of magnitude this linear mixing should be

performed on the log of the gene and then re-exponentiated to obtain the mixed

value.
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Figure 5.12: Example bimodal probability density function which could be used to
pick random gene mixing fractions.

0.53 22.2 3.87 · · · 3.5× 1018 1059 11.91Parent 1:

1.96 45.1 1.46 · · · 7.2× 1017 1360 25.34Parent 2:

1.79 23.1 2.30 · · · 2.6× 1018 1137 18.89Child:

0.12 0.96 0.35 · · · 0.82 0.74 0.48Mixing Array:

Mixing:

Figure 5.13: Child created using linear combinations of its parents’ genes.

The values and rates of convergence achievable will depend on the problem

being solved as well as the chosen form of the fitting function and the exact im-
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plementation of the algorithm (size and proportions of individual groups in each

generation, crossover and mutation functions, etc.). A good solution should be ob-

tainable for most reasonable implementations given that the parameterized function

has enough parameters to reasonably capture the shape of the data and the evolution

is given enough generations to converge.

5.3.3 Genetic Algorithm Applied to Doping and Temperature-Dependent

Hall Mobility

In researching incomplete ionization in Al-doped 4H-SiC, I gathered a large

number of references and extracted thousands of measurements of Hall mobility

taken under a wide range of doping and temperature conditions. As these con-

ditions change, the hole concentration and the dominant scattering mechanisms

vary. The combination of the way these two varying quantities interact give rise to

dramatic variations in Hall mobility as a function of temperature and doping. Con-

sequently, the shape of the Hall mobility function is complex and, given the large

amount of experimental data, a genetic algorithm is the ideal choice for finding the

optimal parameterization of an empirical Hall mobility fit. In this section I present

my method and results for the temperature and doping-dependent Hall mobility

function of Al-doped 4H-SiC.

Multiple runs of the algorithm have been performed starting from a new ran-

dom population each time in order to demonstrate the convergence of the algorithm.

The fitness of the current best individual is plotted against the generation number in
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Figure 5.14 for each of these separate runs. Initially, the completely random initial

populations (generation 1) give rise to a range of random fitness values from about

10 to 13 and within 10 generations, all lie between 8 and 9. Rapid improvements are

made within the first 100 or less generations in all runs. Occasionally, large jumps

in fitness can be seen which is when a ‘breakthrough’ is made. This generally occurs

when a new individual is bred which overtakes the best elite candidate rather than

the best candidate (or near-clones of it) making small improvements through slight

mutation.
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Figure 5.14: Fitness across generations for different runs of the algorithm.

It is interesting to note that for this particular fitting function and data set,

about half of the runs got temporarily stuck in the same local minimum, where

fitness stagnates at ∼ 8.15 for a varying number of generations. It turns out that
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this is a local minimum which contains nearly-optimized parameters for the majority

of the fitting function, i.e. the mobility matches the data for most doping and

temperature conditions, with the exception of the simultaneous high doping and

low temperature region. As will be described later, the shape of the function in this

specific region is mainly dominated via multiplication with a hyperbolic tangent

function containing 4 parameters. Because the hyperbolic tangent goes to unity

in every other region, these parameters are difficult for the algorithm to optimize.

Changing the parameters in the hyperbolic tangent does not noticeably change the

value of fitness as most of the data points exist outside this region where the fitting

function is mostly insensitive to changes in these parameters. Only after the majority

of the function has settled to near-optimized values does the fitness function have the

sensitivity to determine how good or bad various values of the hyperbolic tangent

parameters are. After this point, the algorithm can start to select better individuals

which fit the data in this specific region and continue forward to the final fitting

function which works across the entire space.

The Hall mobility function with the best fitness achieved is shown below in

Figure 5.15, plotted against the scattered experimental data points taken from lit-

erature which is used to evaluate the fitness function. Vertical projection lines show

the error between the fitting function and the experimental data. Not visible in the

figure are the approximately equal number of data points which are underneath the

fit surface which have an approximately equal amount of error to those above it.
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Figure 5.15: Genetic Algorithm fit of the doping and temperature-dependent Hall
mobility of Al-doped 4H-SiC.

The empirical function used is a modified form of the Caughey-Thomas mo-

bility model, with parameters given in Table 5.1:

µHall(NA, T ) = B(NA, T ) ·
µ0

(
T
Tref

)−γ
1 +

(
NA

N0 exp
(

T
T0

)
)(α−βT )

(5.5)

B(NA, T ) =
1

2
tanh

(
Γ

[
T −B

(
NA

Nref

)A])
+

1

2
(5.6)
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Table 5.1: Optimized parameters for empirical Hall mobility in Al-doped 4H-SiC
obtained using a genetic algorithm

Parameter Value

µ0 [cm2/Vs] 320.1

Tref [K] 190.15

γ 2.926

N0 [cm−3] 3.8× 1017

T0 [K] 108.6

α 0.959

β [K−1] 9.5× 10−4

Γ [K−1] 0.0139

B [K] 318.86

Nref [cm−3] 2.15× 1023

A 0.691
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Chapter 6: Germanium Modeling

6.1 Introduction

Germanium is a group IV semiconductor commonly used in Short Wave In-

frared (SWIR) optical devices due to its relatively small band gap of 0.66eV. Like

silicon in the period above it, the conduction band minimum of germanium does

not lie at the same point in k space as the valence band maximum, making it an

indirect gap material and thus reducing its absorption efficiency. Unlike Si however,

the direct gap of Ge is only slightly larger than its indirect gap energy. With clever

bandgap engineering Ge is able to transition to a direct gap material. One such

method showing promise is alloying Ge with Sn in various ratios. Using DFT we

can calculate the effects the alloy has on the band structure for different percentages

of tin and thus predict the percentage needed to transition germanium into a direct

gap material.

Because the bandgap of Ge is indirect, it is an inefficient absorber of light

meaning that incoming photons with energy close to the bandgap energy penetrate

deeper into the material before being absorbed. If the absorbing material is made

thick compared to the minority carrier diffusion length, generated carriers will be

more likely to recombine before crossing the junction and thus will not be collected
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- decreasing quantum efficiency. Additionally, thicker materials increase the chance

of defects which can act as further sights of recombination. By using direct-gap

semiconductors as the absorbing material, the active layer can be made thin and

quantum efficiency can be kept high.

Absorption of light into a semiconductor is described by the Lambert-Beer Law

(Equation 6.1), which uses a parameter known as the absorption coefficient which

describes how the intensity of light with a given wavelength changes with depth into

the material due to absorption. In Equation 6.1, I0 is the monochromatic intensity

at the surface, α is the absorption coefficient (a function of wavelength), and x is

the depth into the semiconductor. The absorption coefficient α is also related to a

material property known as the extinction coefficient κ by Equation 6.2.

I(x) = I0e
−αx (6.1)

α =
4πfκ

c
(6.2)

The absorption coefficient amalgamates details of the band structure and turns

conduction band minima into kinks in the coefficient plot. As photon energies

increase and, more states are available for valence band electrons to be excited to

once the energy passes higher conduction band minima, making an excitation and

thus an absorption more probable. Indirect minima show a quadratic dependence

of the absorption on the energy and direct minima show an approximately square

root dependence [136]. Figure 6.1 shows the absorption coefficient as a function

of photon energy for select semiconductors which absorb in the visible and near-

infrared. Here, we see that absorption starts in Ge and Si at 0.66eV and 1.15eV for
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room temperature measurements, corresponding to their bandgap energies. For Ge

absorption towards 0.8eV we see a transition into a rapidly increasing absorption due

to the direct valley. The final bend corresponds to the second indirect minimum

at 0.85eV. Further confirmation that the 0.8eV minimum is the direct gap value

can be seen by looking at the low temperature curve. At low temperatures, it is

less likely for an electron to be excited into an indirect minimum because there

are less phonons available to assist the momentum transfer needed. Because of

this, absorption starts closer toward the energy of the direct gap as the indirect

transitions become increasingly unlikely.

Figure 6.1: Absorption coefficient for various semiconductor materials. (Plot from
[12])
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As with most semiconductors and their alloys, the valence band maximum of

germanium is located at the gamma point in the Brillouin Zone. The conduction

band minimum for germanium is located at the L point for the conventional FCC

lattice structure and is 140meV less than the direct gap energy [137]. This relatively

small difference has been the motivation for band structure research and engineering

to achieve a direct-gap form of the material for use in optical devices. The most

promising techniques applied to achieve such a structure include applying strain

and alloying with various other elements [138]. The obvious choice of alloy material

has been tin due to its location in the period immediately below germanium. The

alpha allotrope variant of tin has the same diamond crystal structure as germanium

but acts like a semimetal with a negative band gap at the gamma point [138]. An

elementary application of the simple linear form of Vegards law gives the indication

that the transition from direct to indirect gap should occur at approximately a 21%

uniform tin concentration [139]. Experimental and calculated results both show the

presence of a bowing parameter which is needed to fit the non-linear experimental

data for how the band gaps change with varying tin concentration [140]. In general,

it is known that with increasing Sn concentration, both the direct and indirect

gaps of Ge1−xSnx shrink but the direct gap does so at a faster rate. If the exact

concentration of Sn needed to cause this transition can be determined, direct gap

devices can be fabricated while still maintaining as much of the gap as possible.
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6.2 DFT-Based Analysis of Ge

Band structure calculations in the past have predominately been performed

using single-electron empirical pseudopotential methods with extrapolation to fit

data to GeSn alloys [141]. We have performed calculations for specific compositional

percentages of GeSn using Density-Functional Theory (DFT). Figure 6.2 shows the

cells on which we have used to perform calculations, containing 12.5%, 6.25%, and

3.125% Sn. These cells were constructed using repeated 8 atom cubic unit cells.

Figure 6.2: Atomic supercells of Ge1−xSnx used in DFT calculations for 12.5%,
6.25%, 3.125% Sn

Before we calculate the predicted band structure of the alloys however, we

first needed to reproduce the experimentally known results of a pure Ge crystal.

To do this we must chose not only an appropriate functional and pseudopotential,

but also ensure the calculation results are converged with respect to the numerical

discretization built in to the code. The accuracy of DFT results are highly dependent

on the combination of the system being studied, the pseudopotential used, and the

functional applied to the calculation [142]. Pseudopotentials act as an effective ionic
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potential that each valence electron interacts with, and acts to stabilize calculations

by treating sharp core potential as a smoother approximation within some defined

radius. In doing this the high frequency components of core wavefunctions are

supressed while leaving the electrically and chemically-important valence portion

unchanged. By making this approximation, larger systems of atoms become solvable

by reducing the number of plane waves needed in the wavefunction expansion within

calculation. Different methods exist for generating pseudopotentials and accuracy

is generally dependent on the configuration of the system being studied. After

testing numerous pseudopotentials generated using different functionals and valence

occupancies, we were able to use a pseudopotential generated using the Perdew-

Burke-Ernzerhof (PBE) functional to obtain an accurate band structure of pure

germanium crystal. The self-consistent calculation was performed using the hybrid

PBE0 functional which allowed us to correct the indirect and direct bandgap energies

to their experimental values by applying the appropriate mixing fraction of exact

Hartree-Fock exchange energy. Calculations in DFT transform the set of Kohn-

Sham equations for non-interacting particles by expanding the potentials and wave

functions onto a finite basis of plane waves, the highest energy of which is set by a

cutoff energy threshold. By adjusting this cutoff energy the number of plane waves

in the expansion can be adjusted. There basis set should be sufficiently large to

ensure good representation of the wave functions but this increase comes at the

cost of increased computation time and memory usage. In addition to requiring a

sufficient cutoff energy, calculations also should be performed at enough k points

to adequately sample the BZ. During the calculation, integrals over the entire BZ
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are needed to calculate the charge density at each iteration. This integration is

approximated by taking a weighted sum over a finite set of special points in the

irreducible wedge of the BZ with weights corresponding to the number of equivalent

points in the entire BZ [143]. The BZ of Ge is the same truncated octahedron as

that of Si, shown in Figure 6.3.

Γ

X

L

K W

U

Figure 6.3: Brillouin Zone of an FCC lattice.

In addition to increasing the cutoff energy, increasing the number of k points

increases the computation time. Ideally, we would use the Monkhorst-Pack k point

grid as a way to select points in an unbiased manner and perform a relatively

computation-heavy self-consistent field (SCF) calculation to obtain an accurate rep-

resentation of the system potential. This potential can then be used as an input to

an inexpensive non-self-consistent field (NSCF) calculation with k points selected

along the path of the high symmetry points of the desired band structure plot.

Unfortunately, Quantum Espresso does not support the ability to perform NSCF

calculations using hybrid functionals, so our calculations had to be performed with
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the desired k point path directly in the SCF calculations. To minimize integration

errors, we used a long path length as well as a high k point density to attempt to

cover the majority of the irreducible wedge.

While trying to tune the parameters used to obtain the experimental band

gaps for the pure Ge crystal cell, we noticed that both the direct and indirect gap

energies varied linearly with the mixing fraction as shown in Figure 6.4.

Figure 6.4: Indirect gap energy at the L point varying linearly with hybrid functional
(PBE0) mixing fraction

The lattice constants of materials are not reliably reproducible with DFT in

general, and the degree of error changes with both material and functional used.

More specifically, the PBE functional used in this work is known to regularly over-

estimate the lattice constant in solids by up to 2% [144]. According to the results

by [142], the lattice constant of Ge is overestimated by about 1.9% for the PBE

functional. We started with calculating the band structure from the experimen-

tally reported lattice constant of 5.646Å and then performed calculations for other
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slightly deviated lattice parameters. By adjusting the lattice constant of the cell we

effectively apply a hydraulic strain to the crystal. Figure 6.5 shows the resulting plot

of the energy gap difference with respect to lattice constant which exhibits a linear

relationship. We adjust the lattice constant to give the experimental gap difference

of 140meV resulting in a lattice constant 1.3% strained from the experimental value

of 5.646Å [138].

Figure 6.5: Gap Difference (EΓ-EL) varying linearly with lattice constant. Litera-
ture: 5.646Å Our Work: 5.573Å ( 1.3% difference)

The final band structure obtained of the pure germanium crystal is shown in

Figure 6.6, with an indirect gap of 0.66eV and a direct gap of 0.80eV achieved using

a lattice constant of 5.573Å. Our calculation was able to produce a band structure

which matched the gap energies reported in literature [8] for the lowest direct and

indirect valleys, with the rest of the valleys in moderately good agreement. The band

structure diagram from literature is given in Figure 6.7 and a comparison of the gap
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Figure 6.6: DFT calculated Ge band structure for 2 atom cell using the PBE0 hybrid
functional. Dashed box shows the same section of the band structure given in the
literature [8]. The key direct and indirect gaps are shown with red arrows.

energies in Table 6.1. This calculation was performed on a simple 2 atom cell with

an FCC Bravais lattice and the results give confidence in using this pseudopotential

Table 6.1: Comparison of calculated energy gap values of Ge to those found in the
literature.

Gap [eV] Calc. Lit. [8]
Eg (EL) 0.659 0.66

EΓ1 0.799 0.8
∆E 0.788 0.86
EX 0.977 1.2
EΓ2 2.926 3.22
Eso ≈0 0.29
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Figure 6.7: Ge band structure from [8]. The key direct and indirect gaps are shown
with red arrows.

and functional for further, larger calculations on GeSn alloys.

6.3 DFT-Based Analysis of GeSn Alloys

To generate supercells with variable percentage of tin, we change the cell from

an FCC Bravais lattice with a 2 atom basis to a simple cubic lattice with an 8 atom

basis or a tetragonal lattice with a 16 or 32 atom basis, each with a single tin atom.

As with the 2 atom cell, we tune the lattice constant and mixing fraction of an 8

atom cell which can be repeated to generate the other cells. The mixing fraction

used to tune the gap values of the pure germanium 8 atom cell will be kept constant

when tin is added and when the larger cells with tin are used.

Performing computations using larger supercells comes with the cost of signifi-
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cantly increased computation time. The Virtual Crystal Approximation (VCA) is a

work-around to this problem, wherein the characteristics from the pseudopotentials

of both Ge and Sn are merged into a hybrid pseudopotential representing a non-

existent atom which approximates a percent concentration of each atom, allowing

for small atomic cells but introducing non-physical atoms [139, 141]. Because of

the potentially limiting transferability inherent to certain kinds of pseudopotentials,

care must be taken to ensure that pseudopotentials maintain accuracy. The effects of

these approximations are evident in published results on the subject, where the var-

ious transition percentage predictions range greatly from 6-21% or more depending

on the method used [138]. With access to the High-Performance Computing Clus-

ter Deepthought2 at the University of Maryland, the computationally expensive,

large supercell DFT calculations can be run massively parallelized with Quantum

ESPRESSO [30] to obtain accurate band structures for different cell sizes and frac-

tions of Sn. We believe that performing these ab initio calculations provides us more

accurate information about the band structure of the system than is obtained using

the VCA.

Calculation time is system dependent and increases greatly with an increase

in the number of k points used, the number of bands in the calculation, and the

number of plane waves. As an approximation, the time to complete a calculation

increases proportional to the number of atoms per unit cell and is given by Equation

6.3 [143].

Tcpu ∼ NiterNk × (O(NbN
2
pw) +O(NbNpw logNpw) +O(N2

bNpw)) (6.3)
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Where Niter is the number of iterations required to achieve self-consistency,

Nk is the number of k points specified, Nb is the number of bands, and Npw is

the number of plane waves in the expansion. The number of k points required to

achieve convergence generally decreases with an increase in the supercell size because

of the inverse size relationship of real-space and reciprocal-space. In contrast, the

number of bands required will increase as it is calculated by taking the number

of atoms in the supercell and multiplying by the number of valence electrons per

atom. The number of plane waves required to achieve convergence will also generally

increase with an increasing supercell size. The number of iterations to achieve

self-consistency is more difficult to predict but can be assumed to fall within 5 to

20. To complete calculations in a reasonable amount of time due to this highly-

nonlinear time scaling, we use the multiple parallelization levels available in the

Quantum Espresso PWscf program. Quantum Espresso is set up with different

levels of parallelism forming a hierarchical structure. The top level divides the

processors into pools, each of which takes care of the calculation at a group of k

points. The next level, known as plane wave parallelization, distributes the wave

function coefficients across the processors in each pool of plane wave processors,

offering one of the biggest calculation speedups. Once the speedup for this level

saturates, the final level of parallelization can extend the processor scaling. This level

divides each group of plane wave processors in to task groups, each which perform

the calculation on a group of electronic states. The plane wave groups can also be

partitioned into linear algebra groups which parallelize diagonalization and matrix

multiplication by distributing across groups of a square number of processors [143].
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Through various trials we have been able to find optimal distributions of pro-

cessors for each parallelization level and bring calculation times down significantly.

For the two atom cell using hybrid functional DFT with 1500 k points and a cutoff

energy of 100Ry, the calculation time was able to be reduced from multiple hours

in a serial hybrid functional calculation to under 5 minutes in parallel using 144

processors. Similarly to the two atom cell, the 8, 16, and 32 atom cell calculations

were parallelized to reduce their computation time while maintaining accuracy with

respect to cutoff energy and number of k points. The band structures were obtained

from these calculations and the direct and indirect gap energies were extracted for

the various compositional percentages of the germanium-tin alloy. Plotting these

energies, we extract the Sn percentage needed to transition from an indirect to a

direct gap material shown in Figure 6.8. The transition at 8.5% tin is in agreement

within the range predicted by various other methods [138] but we believe this value

to be close to the true value.

In performing these calculations, we have ensured their convergence by in-

creasing the number of k points and the cutoff energy used until the total energy of

each system studied varied less than 0.01 Ry. The systems studied were represen-

tative of uniformly distributed tin in a GeSn crystal which we take to approximate

a real world uniform distribution. From these calculations, we obtained the band

structure for different compositional percentages of Sn and have extracted their var-

ious direct and indirect gap energies. By plotting these, we found the crossing point

which indicates the transition from an indirect gap to occur at 8.5% Sn. At this
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Figure 6.8: EΓ and EL calculated for different fractions of Sn

Sn concentration, and presumably all percentages higher than this, the material has

undergone the transition into a direct gap material. By manufacturing the alloy

directly at this transition percent, the band structure will be direct but will also

have the added benefit of maintaining as much of the initial gap value as possible.

This improvement will allow for optical Ge devices to be manufactured with greater

quantum efficiency.
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Appendix A: DFT Evolution and History

A.1 Hartree-Fock Method

Fock’s extension of Hartree’s theory, the Hartree-Fock method, attempts to

solve the quantum many-body problem by first assuming that the total wavefunc-

tion can be approximated by a single Slater determinant. Electrons are treated

as moving in an external potential from the ions plus a mean field formed by the

other electrons in the system. Via application of the variational principle, a set of

N-coupled equations of the form Eqn. A.1 can be derived and solved iteratively to

produce the approximate orbitals. The effects of electron correlation (interaction of

opposite spin electrons) are neglected in this formulation which results in a system-

atic error. However, the exchange effects of electrons with like-spin are accounted

for in this theory.(
−1

2
∇2 + Vext(r) +

N∑
j 6=i

∫
|ψj(r’)|2

|r− r’|
dr’

)
ψi(r)−

N∑
j 6=i

∫
ψi(r’)ψ

∗
j (r’)ψj(r)

|r− r’|
dr’ = εiψi(r)

(A.1)

In this formulation, a trial wavefunction is taken as an initial guess. Due to

the variational theorem, the energy expectation of the system taken using the trial

wavefunction will be greater than the energy of the true ground state of the system.
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The energy is obtained by taking the expectation of the Hartree-Fock Hamiltonion

with the Slater determinant total wavefunction, resulting in Equation A.2.

EHF = −1

2

∑
j=1

∫
φ∗j(r)∇2φj(r)dr +

1

2

∑
j=1,i=1

∫
φ∗j(r)φ

∗
i (r’)φj(r)φi(r’)

|r− r’|
drdr’ (A.2)

−1

2

∑
j=1,i=1

∫
φ∗j(r)φ

∗
i (r’)φi(r)φj(r’)

|r− r’|
drdr’ +

∑
j=1

∫
φ∗j(r)φj(r)Vext(r)dr

Though this technique proved to be an improvement over solving the original

many-body Schrdinger equation, there was still need for a practical application of the

SCF technique due to the complexity still associated with the number of electrons.

A.2 Thomas-Fermi Model

In 1927 Thomas and Fermi created the first model for a quantum electronic

system based purely on the electron density. With this model, instead of solving

for the N wavefunctions of an N-electron system self-consistently, the problem was

reduced to a function of only the 3 spatial dimensions of the density. Though

initially formulated to apply to single atoms, the theory was later also applied to

molecules, crystals and metals [145]. The simplified problem under this formulation

allows solutions to be directly obtained from its variational Euler equation.

In their assumptions they consider an electron gas which satisfies Fermi statis-

tics where electron-electron and electron-nucleus interactions are treated classically

as purely Coulombic in nature. The kinetic energy contribution at each point in the

system is determined by using the exact kinetic energy of a homogeneous electron

gas with density equal to the value at that point, making this a local density ap-

proximation [31]. This kinetic energy per volume is then integrated over the entire
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system to yield total kinetic energy, shown in equation A.3.

T [n(r)] =
3

5

~2

2me

(
3π2
) 2

3

∫
[n(r)]5/3d3r (A.3)

The potential energy terms used in the Thomas-Fermi (TF) model are shown

below in Equation (A.4). From the symmetric form of the electron-electron repulsion

term we can see that despite double counting being accounted for by the 1
2

term,

there exists a self-interaction energy which is erroneously included.

Ue−N =

∫
n(r)VN(r)d3r (A.4)

VN(r) = −
M∑
j=1

Zje
2

|r−Rj|

Ue−e =
1

2
e2

∫
n(r)n(r’)

|r− r’|
d3rd3r′

Furthermore, the TF model originally did not account for electron exchange

energy which is required to obey the Pauli exclusion principle nor does it account

for the effects of electron correlation. A correction to approximate exchange energy

derived from a homogeneous electron gas model was eventually added by Dirac in

1930 [31].

Due mainly to the simplistic kinetic energy approximation and in part to the

other approximations, the total energy functional given by the TF model (Eqn.

(A.5)) ends up being quite inaccurate and predicts the total energy of a bonded

system to be larger than its constituent parts, making molecules unstable [145].

This is obviously a serious issue and a poor result in most situations so other more
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sophisticated theories were later developed.

ETF [n(r)] = T [n] + Ee−N [n] + Ee−e[n] (A.5)

ETF [n(r)] =
3h2

10me

(
3

8π

) 2
3
∫

[n(r)]5/3d3r +

∫
n(r)VN(r)d3r +

1

2
e2

∫ ∫
n(r)n(r’)

|r− r’|
d3rd3r′

Thomas-Fermi existed as a predecessor to DFT by creating approximate en-

ergy functionals of the electron density in an attempt to simplify the quantum

many-body problem without the mathematical rigor and justification which came

later from the work of Hohenberg and Kohn. This later work showed that a func-

tional approach could be made to reproduce the exact energies of the system instead

of mere approximations [146].

A.3 Hohenberg-Kohn Theory

In their revolutionary 1964 paper [147], Hohenberg and Kohn developed a

theorem forging the groundwork for DFT. Their proofs gave deep insight to the

quantum many-body problem and to potential solution techniques. First, they

proved that there is a one-to-one mapping between the external ionic potential

Vext(r) and the ground state density, as well as a one-to-one between the ground state

density and the total wavefunction (Eqn. A.6). This property allows us to determine

the potential from the density, from which we can construct a Hamiltonian. Since

the Hamiltonian tells us everything about the system including the wavefunction

solutions, the density determines all states of the system [31]. Their second proof

shows that there exists a universal kinetic+interaction functional of the density

F [n(r)] (applying systems with any Vext(r)) which obeys a variational principle.
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This functional differs from the total ground state energy functional by the external

ionic potential energy as shown in Equation A.7.

n(r) = N

∫
Ψ∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN)dr2 · · · drN (A.6)

EHK [n(r), Vext(r)] =

∫
Vext(r)n(r)dr + F [n(r)] (A.7)

EHK
GS [n(r)] = min

n(r)
EHK [n, Vext]

N =

∫
n(r)dr (A.8)

Because this functional obeys a variational principle, it enables us to hunt for

densities which minimize this functional under the constraint that the density inte-

grates total number of electrons in the system (Eqn. A.8). The configuration which

minimizes the energy functional must then be the ground state density from which

we can determine everything about the system using the first proof. By following

this process, the problem is drastically simplified due to the reduction in dimension-

ality. Instead of searching for an unfathomably high dimensional wavefunction, we

can simply work with the density, a function of only 3 spatial dimensions.

Though this theory lays the groundwork for greatly simplifying the problem, it

unfortunately does not give any insight into form of the universal functional. Further

theories go on to approximate the functional in various forms and generally use

equations with clear physical origins which are relatively simple to evaluate. Other

methods solve the problem self-consistently by recasting the problem from an energy
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minimization into a Schrödinger-like equation which must be solved consistently such

as in Kohn-Sham DFT.
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Appendix B: Semiconductor Physics

B.1 Low Doping Limit of Hole Concentration

The following derivation reiterates the assumptions made to compute the hole

concentration in the low-doping limit of non-compensated semiconductor which were

presented in Section 4.2. This result is used in the derivation of the conductivity

mobility parameterization in Section B.1.1.

To begin, charge neutrality is used to compute the hole concentration. For the

system considered, it is assumed that there is no significant donor counter doping.

Additionally, because intrinsic carrier concentration is so small in 4H-SiC, ni is ne-

glected. The resulting charge neutrality equation states that the hole concentration

must equal the ionized acceptor concentration p = N−A . In general, both of these

terms are functions of the unknown Fermi-level EF , as is shown in Section 4.6. In the

low doping limit, however, the governing equations can be manipulated using some

approximations which allow us to remove EF as an independent unknown variable

and provide a closed-form analytical solution.

In the case of low doping, the Fermi level is within the bandgap far from

the valence band edge so the tail of the true Fermi-Dirac occupancy function for

holes is well approximated by the Maxwell-Boltzmann distribution. We apply this
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approximation to the full integral in Equation B.1 which results in Equation B.2.

p =
4π(2m∗p)

3/2

h3

∫ EV

−∞

√
EV − E

1 + exp
(
EF−E
kBT

)dE (B.1)

p ≈
4π(2m∗p)

3/2

h3

∫ EV

−∞

√
EV − E exp

(
E − EF
kBT

)
dE (B.2)

Equation B.2 has an exact solution which can be written as:

p ≈ NV exp

(
EV − EF
kBT

)
(B.3)

NV = 2

(
2πm∗pkBT

h2

)(3/2)

(B.4)

Where NV is the effective density of states in the valence band which depends

on the hole effective mass m∗p and the temperature T . Next, we create and evaluate

the integral for the ionized acceptor density N−A using the modified Fermi-Dirac

statistics by including the acceptor state degeneracy gA. For low doped samples,

dopant atoms are far apart and thus all impurity states introduced have virtually

the same energy (assuming small or no inequivalent site energy-dependence). This

creates a density of impurity states in the form of a delta-function at the ionization

energy EA i.e. ρi(E) = NAδ(E − EA).

N−A =

∫ ∞
−∞

NAδ(E − EA)

1 + gA exp
(
E−EF

kBT

)dE (B.5)

N−A =
NA

1 + gA exp
(
EA−EF

kBT

) (B.6)
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Finally, we can rewrite Equation B.6 in terms of the hole concentration given

in Equation B.3, leaving us with a quadratic equation for the solution of the hole

concentration p.

N−A =
NA

1 + gA exp
(
EV −EF

kBT

)
exp

(
EA−EV

kBT

) (B.7)

N−A = p =
NA

1 + gAp
NV

exp
(
EA−EV

kBT

) (B.8)

p =
NA

1 + p
2γ

(B.9)

p = −γ +
√
γ2 + 2γNA (B.10)

γ =
NV

2gA
exp

(
−∆EA
kBT

)
(B.11)

∆EA = EA − EV (B.12)

Here, γ is an auxiliary variable of known physical parameters, NA is the ac-

ceptor doping density, NV is the valence band effective density of states, ∆EA is

the acceptor ionization energy, and gA is the acceptor state degeneracy equal to 4

in 4H-SiC.

B.1.1 Conductivity Mobility Parameterization

To develop a semi-empirical expression which parameterizes this work’s defi-

nition of conductivity mobility (Equation B.13) we need to create an expression to
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represent the resistivity term, as it is the only unknown parameter.

µCond ≡
1

qρNA

(B.13)

Using the standard expression for resistivity (Equation B.14), the two un-

knowns are now the hole concentration p and the hole mobility µp.

ρ =
1

qpµp
(B.14)

The hole mobility µp is taken to have the same form as the Hall mobility

µp = µCond0/(1+(NA/NC)c) and p is calculated using the solution to the low doping

charge neutrality equation of the form p = −γ +
√
γ2 + 2γNA calculated in Section

4.2. This expression is then substituted for ρ into the definition of conductivity

mobility (Eq. B.13). This provides the first part of our empirical conductivity

mobility in Equation 4.60. An additional impurity mobility term is then added

which has the form of a Gaussian because of the approximate shape of the observed

resistivity data for large NA.

B.2 Modified Fermi-Dirac for Dopant States

To calculate the number of ionized acceptor states, we must multiply the ac-

ceptor impurity density of states ρi(E) by the probability of electron occupancy of

said states. The statistical occupation function is essentially a Fermi-Dirac distribu-

tion, except there is a degeneracy factor which appears because impurity states can

only be singly charged as the acceptor may only accept one electron and a donor can
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only loose one electron due to the large Coulombic energy associated with double

ionization.

For an acceptor, the gained electron can either be spin up or spin down without

changing the energy of the system (to a good approximation), which creates two

degenerate configurations. Additionally, since we are dealing with acceptor states,

the ‘accepted’ electron is coming from the valence band maximum located at the

Γ-point, where there is a degeneracy of the light-hole and heavy-hole bands in SiC.

This additional degeneracy multiples the previous degeneracy, leading to a 4-fold

degeneracy which should be included into the Fermi-Dirac function for acceptor

state occupancy.

As a starting point, the mathematical derivation using the micro-canonical

ensemble for the standard Fermi-Dirac proceeds as follows:

Thermodynamics states that the most likely configuration for a system will be

the macrostate with the largest number of microstates. First we will enumerate the

total number of microstates of the system, then using Lagrange multipliers, we will

apply the constraints of total particle number and total energy to find the occupancy

function which defines this macrostate.

At each energy Ei, we want to fill the ni degenerate states with mi electrons

where 0 ≤ mi ≤ ni. We can represent the number of electrons in each state using

an occupancy function fi (a fraction < 1) which multiplies the ni states mi = fini.

Here, fi represents the probability of occupying fini states at energy Ei.

To determine fi, we first enumerate the number of ways these states and

electrons can be arranged - knowing that each state can only hold one electron. The
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number of distinct configurations Ci for each energy Ei is calculated by dividing the

number of ways to rearrange all of the states, by the number of ways to rearrange

the filled states, and by the number of ways to rearrange the empty states. This is

equivalent to enumerating the number of ways to fill ni states with mi electrons:

Ci =
ni!

mi!(ni −mi)!
=

ni!

(fini)!(ni − fini)!
(B.15)

Because the electrons and the states at a given energy are indistinguishable

amongst themselves, the two factorial terms appear in the denominator. To find

the most likely distribution of f across all energy states, we must multiply the

number of configurations at each energy to get the total number of configurations

or microstates for the entire system. Then, to obtain a more tractable solution, we

apply Sterling’s approximation ln(n!) ∼ n ln(n) − n which is valid due to the large

number of electrons and states.

C =
∏
i

Ci =
∏
i

ni!

(fini)!(ni − fini)!
(B.16)

ln(C) =
∑
i

lnCi = (B.17)

∑
i

(ni ln(ni)− (fini) ln(fini)− (ni − fini) ln(ni − fini))

The system is also constrained by the total number of electrons N and the

total energy U defined by:
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N =
∑
i

fini (B.18)

U =
∑
i

Eifini (B.19)

Finally we can determine the distribution f that maximizes the number of con-

figurations, which thermodynamics ensures will be the most probable distribution

in thermal equilibrium. To do this, we maximize the configuration function C (or

ln(C)) subject to our constraint equations using the method of Lagrange multipliers.

∂

∂fi

[
ln(C)− a

∑
j

fjnj − b
∑
j

Ejfjnj

]
= 0 (B.20)

ln

(
1− fi
fi

)
− a− bEi = 0 (B.21)

fi =
1

1 + exp(a+ bEi)
(B.22)

Further analysis of the units in the variational equation and relating the vari-

ational energy term to the change in energy due to the change in entropy allows us

to notice that b must be 1/kBT to satisfy dU = 1
b
d(ln(C)) = Td(kB ln(C)) = TdS

from thermodynamics. Analogously it can be shown that a must be −EF/kT from

(−a/b)dN = µdN , where EF is called the Fermi energy and µ is the electro-chemical

potential of the system. Finally, we rewrite our distribution function, known as the

Fermi-Dirac distribution:

F (E) =
1

1 + exp
(
E−EF

kBT

) (B.23)
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This equation is valid for the occupancy of Fermions (namely electrons) which

have only one way to occupy a state - such as in the conduction band of SiC and

other semiconductors. Because the density of states used in conjunction with this

formula already accounts for (i.e. ‘labels’) states with ‘up’ and ‘down’ spin, con-

duction band (and valence band) states can only be unoccupied or singly occupied

and the spin of the electron is tied to the state. When determining the distribution

function for acceptor or donor state occupancy, there are different ways in which the

state may be occupied. These extra ways of occupying the state lead to a degeneracy

(depending on how many extra ways) which must be included in the distribution

formulation. The density of states associated with a doped impurity does not have

spin association built in to it’s states. For example, in the case of donors, a single

doping level at ED may have a Gaussian density of states gi(E) centered around

ED which integrates to the donor concentration ND. With this density of states,

each state is either singly occupied with either a spin-up or spin-down electron (in-

dependent of how every other state is occupied) or singly ionized with no electron

present. Each state is not ‘labeled’ as a ‘spin-up’ or ‘spin-down’ state beforehand

as is the case with the conduction band and valence band density of states via the

factor of 2 included for spin in their values. Therefore each electron occupying a

donor state may do so in two ways: with either spin ‘up’ and with spin ‘down’. This

choice manifests itself in increasing the total number of possible ways to fill the ni

donor states with the mi donor electrons. The total number of ways to assign the

states is thus doubled for each of the mi electrons which occupy the donor states

due to the choice of each being filled with a spin ‘up’ or spin ‘down’ electron. Any
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electron chosen to not occupy a donor state will instead occupy a conduction band

state. The total number of electrons in the system is limited-by and equal-to the

total donor concentration.

So, for electrons occupying donor states:

Ci =
2mini!

mi!(ni −mi)!
=

2finini!

(fini)!(n− fini)!
(B.24)

Carrying out the same derivation leads to the equation:

ln

(
2 · 1− fi

fi

)
− a− bEi = 0 (B.25)

which results in a modified Fermi-Dirac function to represent the probability

of occupancy of donor states:

FD(E) =
1

1 + 1
2

exp
(
E−EF

kBT

) (B.26)

This occupancy function can be used directly with the donor density of states

to calculate the unionized donor concentration N0
D (i.e. number of donor states

which are still are occupied by electrons). To calculate the often more useful ionized

donor concentration N+
D we must use 1− FD(E):

1− FD(E) =
1

1 + 2 exp
(
EF−E
kBT

) (B.27)

Similarly, for acceptors, there are two choices to make when filling each accep-

tor state with a hole. The electrons still in the valence band may not only be spin

‘up’ or spin ‘down’ but also may be residing in the heavy-hole or a light-hole band.
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This effect occurs due to the light-hole/heavy-hole valence band degeneracy at the

gamma point which is common among many semiconductors (including SiC). These

choices multiply the number of ways to choose and fill mi of ni acceptor states with

electrons by 4 for each of the ni −mi holes:

Ci =
4ni−mini!

mi!(ni −mi)!
=

4ni−finini!

(fini)!(n− fini)!
(B.28)

resulting in the modified Fermi-Dirac function for the electron occupancy of

acceptor states for calculating N−A :

FA(E) =
1

1 + 4 exp
(
E−EF

kBT

) (B.29)

B.3 Valence Band Density of States

To derive the density of states in the valence band, we assume that the holes

are free particles confined to a crystal with side lengths L. From Bloch’s theorem,

we know that the wavefunction may be expressed as:

ψk(r) = eik·ruk(r) (B.30)

kxL = 2πnx (B.31)

kyL = 2πny (B.32)

kzL = 2πnz (B.33)

n = . . . ,−2,−1, 0, 1, 2, . . . (B.34)
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with the stipulation that k must obey periodic boundary conditions with the

crystal boundary. From this, we know that in reciprocal space, there is one state

per (2π/L)3. Using the dispersion relation for a free particle:

Ek =
~2|k|2

2m∗
(B.35)

From this we can calculate the number of states N within a spherical volume

of radius |k|. The number must be divided by 8 because we must account for the

equivalence of ±kx,y,z values, which represent a phase shift in the wavefunction but

are actually the same state. To account for the spin degeneracy of the states we

multiply by two.

N =
2

8

(4/3)π|k|3

(2π/L)3
=

V

3π2
|k|3 =

V

3π2

(
2m∗E

~2

)3/2

(B.36)

Here, V is the volume of the crystal. To get the density of states DoS(E) (per

volume) we take the derivative of N with respect to E and divide by V :

ρv0(E) =
dN

dE
=

1

2π2

(
2m∗

~2

)3/2√
E (B.37)

=
4π(2m∗)3/2

h3

√
E

B.3.1 Dopant DoS Spreading

To approximate the band width of the acceptor impurity states, we use the

tight binding model and assume hydrogenic s-like wavefunctions [91] (φ0(r)) to eval-

uate the energy transfer integral for states associated with atoms at locations Ri
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and Rj.

φ0(r −Ri) =

√
ξ3

π
exp(−ξ |r −Ri|) (B.38)

ξ =
1

a0

(
EA
E0

)1/2

(B.39)

J (|Ri −Rj|) =

∫
q2

4πεrε0 |r −Ri|
φ0(r −Ri)φ0(r −Rj)d

3r (B.40)

J(R) =
q2ξ

4πεrε0
(1 + ξR) exp(−ξR) (B.41)

Here, R = |Ri −Rj| is the distance between nearest neighbor dopant atoms,

a0 is the Bohr radius, ξ is the scaled inverse radius for the acceptor state, and E0 is

the ground state energy of the hydrogen atom. Assuming the dopants are uniformly

randomly distributed in the crystal (reasonable assumption for a low to moderately

doped box-like profile), the probability that the nearest neighbor dopant lies at a

distance between R and R + dR from a given dopant is given by an exponential

distribution.

4πNA exp

(
−4

3
πNAR

3

)
R2dR (B.42)

This probability is derived from the Poisson probability distribution of finding

m atoms in a volume w with uniform density n (taken from Kane [104]).

P (m,w) =
(nw)m

m!
e−nw (B.43)

Averaging the energy transfer integral weighted by the nearest neighbor dis-

tance probability distribution leads to the total bandwidth of the impurity levels
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B.

〈J(R)〉 =

∫
J(R)4πNAR

2 exp

(
−4

3
πNAR

3

)
dR (B.44)

B = 2 |〈J(R)〉| (B.45)

B.4 Compensated Systems

For the case of compensated systems (containing both NA and ND concentra-

tions), we must go back to the full charge-neutrality equation.

p+N+
D = n+N−A (B.46)

p+N+
D = n2

i /p+N−A (B.47)

p2 + (N+
D −N

−
A )p− n2

i (B.48)

Here, p, N+
D , and N−A are all functions of the unknown Fermi level EF :

p =

∫ EV

−∞

ρV (E)

1 + exp
(
EF−E
kBT

)dE (B.49)

N−A =

∫ ∞
−∞

ρA(E)

1 + gA exp
(
E−EF

kBT

)dE (B.50)

N+
D =

∫ ∞
−∞

ρD(E)

1 + gD exp
(
EF−E
kBT

)dE (B.51)

Here, ρV (E), ρA(E), and ρD(E) are the valence band, acceptor, and donor density

of states. As before, this equation can be solved using the quadratic formula for p.

When these integrals are substituted into Equation B.48, it can be rewritten such
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that only two integrals need to be solved for each iteration of the numerical solution.

p(EF ) =
−D∗(EF ) +

√
(D∗(EF ))2 + 4n2

i

2
(B.52)

D∗(EF ) ≡ N+
D −N

−
A =

∫ ∞
−∞

ρD(E)

1 + gD exp
(
EF−E
kBT

) − ρA(E)

1 + gA exp
(
E−EF

kBT

)dE (B.53)

This equation can be solved numerically for EF by using trapezoidal integra-

tion combined with the method of bisection for a given doping NA and ND.
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Appendix C: Standard Component Mobility Formulations

C.1 Bulk Mobility

Bulk mobility is modeled using the dopant and temperature dependent Caughey-

Thomas model described by Equation (C.1) [123].

µB =
µmax(

300
T

)α

1 + (D(T )
Nref

)β
(C.1)

Where the values for bulk mobility parameters are: µmax is 1071 cm2/Vs; α is

2.4; Nref is 1.9e17 cm−3; and β is 0.4.

C.2 Surface Phonon Mobility

Surface phonons, which partially account for the reduction in MOSFET surface

mobility, are calculated using the acoustic phonon deformation potential and surface

field. The analytical form is described by Equation (C.2) [148], where ρbulk is the

bulk material density of SiC; vs is the velocity of sound in SiC; m∗, mc, m⊥ are the

(2D) density of states, conductivity, and perpendicular effective masses, respectively;

Dac is the acoustic phonon deformation potential; e is the elementary charge; ~ is
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the reduced Planck’s constant; and kB is Boltzmann’s constant.

µSP =
A

F⊥
+

B

TF
1/3
⊥

(C.2)

A =
3

2

~3ρbulkv
2
s

m∗mcD2
ac

B =
e~3ρbulkv

2
s

m∗mcD2
ackB

(
9~2

4em⊥

)(1/3)

C.3 Combined Empirical Surface Roughness Mobility

The CESRM is described using the analytical fit given in Equation (C.3) [1].

Step roughness in epitaxially grown 4H-SiC miscut 8°from the (0001) plane is on

average comprised of bunched steps resulting in an rms roughness height of between

0.38 nm [149] and 3.5 nm [51]. Compared to the single bilayer step height of 0.24

nm it is clear that the surface roughness typically accounted for in literature on this

matter is predominantly affected by the large-scale step bunching effects rather than

the smaller atomic-scale roughness limit we distinguish in this paper. Experimental

measurements performed by Kimoto et al. for 3.5°off-angle wafers confirm that the

most probable step consists of 4 Si-C bilayers for the Si-face [150]. For relevant 4H-

SiC MOSFETs we use ΓSR = 3.5× 1012 V/s extracted by Potbhare et al. [1, 51] In

the calculation, ∆ is the RMS surface height variation, L is the roughness correlation
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length, qsc is the screening wavevector, and α is the scattering angle.

µSR =
ΓSR
F 2
⊥

(C.3)

ΓSR =

(
~3

2mcm∗e∆2L2

)
1

ΩSR

ΩSR =∫ π/2

0

sin3(α)(
sin(α) + qsc√

8m∗kBT/~2

)(
1 + sin2(α)L2 4m∗kBT

~2
)dα

C.4 Coulomb Mobility

Trapped and fixed charges caused by atomic defects at the interface create

charged scattering sites which induce a Coulombic scattering effect for the channel

electrons. The Coulomb mobility is treated using Equation (C.4) [1] where z is the

depth into the device. The parameters for fixed interface sheet charge density Nf ,

interface trapped sheet charge density Nit, surface inversion sheet charge density

Ninv, and inversion layer depth Zav are given in Table C.1.

Inversion layer charge as a function of surface field was derived from the work

of Arnold [2] and matched to the corresponding interface state density calculated

by Potbhare et al. [1]. The inversion layer depth Zav was taken to be the expected

depth of the electron density using the lowest energy (1st) Airy function solution

ψ1(z). The resulting Coulomb mobilities are a function of z so the values reported

in Table 3.3 are evaluated at their corresponding Zav.
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µC =
16πε2~kBT

m∗e3(Nf +Nit)f(z)
(C.4)

f(z) =

pi/2∫
0

(
1− q2

sc
8m∗kBT

~2 sin2(α) + q2
sc

)

exp

(
−2z

√
8m∗kBT

~2
sin2(α) + q2

sc

)
dα

qsc =

√
e2Ninv

εSiCZavkBT

Table C.1: Extrinsic Coulomb Scattering Mobility Parameters [1, 2]

E⊥ [MV/cm] 0.1 0.5 1

Nf [cm−2] 1.3× 1012

Nit [cm−2] 1× 1012 3.35× 1012 3.55× 1012

Ninv [cm−2] 4× 1010 1.5× 1012 3.65× 1012

Zav [nm] 3.77 2.21 1.75
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