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Online platforms like eBay, Upwork, Airbnb, and Uber have transformed their

markets, and many more are about to emerge. The rise of platforms has become one

of the predominant economic and social developments of our time. Moreover, it has

created many opportunities and challenges for both practitioners and researchers.

My dissertation focuses on the design and operations on the supply side of on-

line marketplaces. In particular, I study supply-side levers (e.g., listing policy and

information provision policy) in different marketplace context (e.g., auction market-

place and service platform), with the consideration of strategic behavior of market

participants and various friction involved in transactions (e.g., participation cost,

information asymmetry, and supply adjustment friction).

The first essay investigates how a one-sided liquidation auction marketplace

maximizes its revenue by managing the supply-side market thickness under an ex-

ogenous supply inflow. The second essay examines the operational impacts of service

platforms’ information disclosure regarding service providers’ qualities and revealing



their mechanisms. The last essay studies whether two-sided marketplaces benefit or

suffer from sellers’ quantity competition under unanticipated demand shocks. We

further show that marketplaces can maneuver the competition in favorable direc-

tions by manipulating the supply adjustment friction. Overall, the findings from

the three essays show that marketplaces’ operational levers on the supply side have

significant effects on the strategies of all participants, which impacts the market-

places’ operational performance. The dissertation offers both theoretical insights on

the mechanisms of the studied supply-side levers and practical implications on how

these levers should be designed and implemented.
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to thank Dr. Margrét Bjarnadóttir for helping me publish my first paper. I am also

grateful for Dr. Tunay Tunca, Dr. Michel Wedel, and Dr. Leonid Koralov for their

insightful and rigorous courses. The theoretical and empirical skills I learned from

ii



them will be invaluable for my career in the long-term.

Moreover, I would like to thank my co-authors Dr. Ken Moon, Dr. Yiangos

Papanastasiou, and Dr. Ashish Kabra, for their insightful feedback on the collab-

orated work and practical suggestions on how to remain productive. This thesis

would not be possible without their input.

Furthermore, I would like to extend my gratitude to my senior, peer, and the

junior Ph.D. students in the DOIT department, Weiming Zhu, Rui Zhang, Tianshu

Sun, Liu Ming, Mustafa Sahin, Che-Wei Liu, Liyi Gu, Debdatta Sinha Roy, Ai Ren,

Dae Hoon Noh, Ziwei Cao, and Huan Cao for a memorable and enjoyable Ph.D.

journey. I would also like to express my appreciation to Justina Blanco in the Ph.D.

office for patiently answering millions of questions and emails from me.

Finally, I would like to express my most profound appreciation to my parents,

Guangyi and Lingyan, and my wife Yan, who has been unconditionally supporting

me in every possible way during my Ph.D. study and in pursuit of my career.

iii



Table of Contents

Acknowledgements ii

List of Tables vii

List of Figures ix

1 Introduction and Overview 1

2 Managing Market Thickness in Online B2B Markets 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Data and Background . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Markets for iPhones . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Bidders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Listing Policies . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Listing Policies, Market Thickness, and Platform’s Revenues . . . . . 21
2.3.1 Natural Experiment by Change in Listing Policy . . . . . . . . 23
2.3.2 Descriptive Comparison and Difference-in-Differences Analysis 25
2.3.3 Average Treatment Effect . . . . . . . . . . . . . . . . . . . . 27
2.3.4 Revenue and Participation Effects of Batch Listing . . . . . . 29

2.4 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Bidder Strategies and Equilibrium . . . . . . . . . . . . . . . . 35

2.5 Structural Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.1 Estimating the Platform’s Steady State . . . . . . . . . . . . . 41
2.5.2 Estimating the Bidders’ Primitives . . . . . . . . . . . . . . . 41
2.5.3 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Implications for Platform Design . . . . . . . . . . . . . . . . . . . . 45
2.6.1 Targeted Recommendations . . . . . . . . . . . . . . . . . . . 53

2.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.8 Appendix: Natural Experiment . . . . . . . . . . . . . . . . . . . . . 59

2.8.1 AIPW Estimator of the Average Treatment Effect . . . . . . . 59
2.8.2 Assessing Overlap . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.8.3 Cross-market Bidders . . . . . . . . . . . . . . . . . . . . . . . 66

iv



2.8.3.1 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.8.3.2 Simulation Results. . . . . . . . . . . . . . . . . . . . 73

2.8.4 Aggregate Participation Increase in Market A . . . . . . . . . 75
2.8.5 Additional Evidence of Participation Costs . . . . . . . . . . . 75

2.9 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.9.1 Characterizations of rMU(x`;G,ψ), rUD(x`;G,Ψ), vUD(x`;G,Ψ),

and vf (x`;G,Ψ) . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.9.2 Independence between b` and gj(pj|ω`t) . . . . . . . . . . . . . 79
2.9.3 Proof of Proposition 2.4.1 . . . . . . . . . . . . . . . . . . . . 79
2.9.4 UD Bidders’ Auction Selection . . . . . . . . . . . . . . . . . . 89

2.10 Appendix: Structural Model . . . . . . . . . . . . . . . . . . . . . . . 103
2.10.1 Substitutability of iPhone 4, iPhone 4s, and iPhone 5 Models . 103
2.10.2 Kernel Density Estimators . . . . . . . . . . . . . . . . . . . . 107
2.10.3 Bandwidth Selection in Kernel Density Estimation . . . . . . 108
2.10.4 Simulated Maximum Likelihood Estimation . . . . . . . . . . 110
2.10.5 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.11 Appendix: Supporting Material . . . . . . . . . . . . . . . . . . . . . 116
2.11.1 Effects of Policy Switch on Aggregate Supply and Demand . . 116
2.11.2 Spillover Effects on Participation Rates . . . . . . . . . . . . . 116
2.11.3 Regression Analysis in Support of Cannibalization among Auc-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.11.4 Listing Policy Has Little Impact on Bids . . . . . . . . . . . . 124
2.11.5 Algorithm for Estimating a Steady-State Equilibrium . . . . . 126

3 Information Provision in Service Platforms: Optimizing for Supply 128
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . 131
3.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.4 Value Drivers of Information Provision . . . . . . . . . . . . . . . . . 141

3.4.1 Information Obfuscation Leads to Experimentation . . . . . . 142
3.4.2 Improving the Composition of Service Providers . . . . . . . . 144
3.4.3 Experimentation via Commission Subsidies . . . . . . . . . . . 145

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.6 Appendix: Technical propositions and lemmas . . . . . . . . . . . . . 148

3.6.1 Single commission scheme . . . . . . . . . . . . . . . . . . . . 150
3.6.2 Differentiated commissions . . . . . . . . . . . . . . . . . . . . 183

3.7 Appendix: Proofs for Section 3.3 . . . . . . . . . . . . . . . . . . . . 200
3.8 Appendix: Proofs for Section 3.4 . . . . . . . . . . . . . . . . . . . . 216

3.8.1 Proof of Proposition 3.4.1 . . . . . . . . . . . . . . . . . . . . 216
3.8.2 Proof of Proposition 3.4.2 . . . . . . . . . . . . . . . . . . . . 216
3.8.3 Proof of Proposition 3.4.3 . . . . . . . . . . . . . . . . . . . . 219
3.8.4 Proof of Proposition 3.4.4 . . . . . . . . . . . . . . . . . . . . 219
3.8.5 Proof of Proposition 3.4.5 . . . . . . . . . . . . . . . . . . . . 220
3.8.6 Proof of Proposition 3.4.6 . . . . . . . . . . . . . . . . . . . . 220

v



4 Demand Shocks and Supply Adjustment Friction in Two-sided Marketplaces221
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

4.1.1 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . 225
4.2 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 225

4.2.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
4.2.2 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

4.3 Impacts of demand and adjustment friction . . . . . . . . . . . . . . . 230
4.3.1 Total revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
4.3.2 Social welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

4.4 Model validation by hypothesis testing . . . . . . . . . . . . . . . . . 236
4.4.1 Hypotheses of marketplaces with large friction . . . . . . . . . 236
4.4.2 Hypotheses of marketplaces with small friction . . . . . . . . . 239

4.5 Data and empirical setting . . . . . . . . . . . . . . . . . . . . . . . . 242
4.5.1 Public marketplace . . . . . . . . . . . . . . . . . . . . . . . . 243
4.5.2 Launches of private sites . . . . . . . . . . . . . . . . . . . . . 246
4.5.3 Identification of private sites’ demand impacts . . . . . . . . . 248
4.5.4 Identification of private sites’ supply impacts . . . . . . . . . . 251

4.6 Demand impacts of private sites’ launches . . . . . . . . . . . . . . . 255
4.7 Effects of launches on sellers . . . . . . . . . . . . . . . . . . . . . . . 261

4.7.1 Average impacts on supply . . . . . . . . . . . . . . . . . . . . 261
4.7.2 Heterogeneous impacts on supply and revenues . . . . . . . . 262

4.8 Additional evidence for model validation . . . . . . . . . . . . . . . . 266
4.8.1 Empirical evidence from high adjustment-friction market . . . 266
4.8.2 Alternative control group in DiD method . . . . . . . . . . . . 267

4.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
4.10 Appendix: Parallel Assumption Checks Using Pseudo Treatment . . . 270

Bibliography 272

vi



List of Tables

2.1 Summary Statistics of Auctions in Markets A and B (means with
standard errors in parentheses) . . . . . . . . . . . . . . . . . . . . . 16

2.2 Summary Statistics about Bidder Types and Bidding Activity . . . . 18
2.3 Empirical Distribution of Inventory Arrivals (i.e., Auctions’ First Day

Listed) by Day of Week . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Weekly Supply and Demand Profiles in Markets A and B within Pre-

and Post-treatment Periods . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Difference-in-Differences Estimate of Policy Switch on Final Price per

Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Estimated average Treatment Effect of Policy Switch on Final Price

per Device and No. of Bidders per Auction . . . . . . . . . . . . . . . 31
2.7 Maximum Simulated Likelihood Estimates for the Primitives of the

Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.8 Each Listing Policy’s Simulated Revenues as Percentage of Simulated

Revenue under Batch Listing . . . . . . . . . . . . . . . . . . . . . . . 50
2.9 Revenue Funnel of Participation Effects from Listing Policies . . . . . 52
2.10 Overlap of Covariates in the Selected Samples of the Pre- and Post-

treatment Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.11 Histogram of the Predicted Propensity Scores in the Selected Sub-

sample in the Post-treatment Period (left) and a Table Assessing the
Overlap of Covariates in the Selected Subsample (right) . . . . . . . . 64

2.12 Average Treatment Effect Estimates using the Original Sample and
the Selected Subsample . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.13 Robustness Check of Auction Lot Size Specification . . . . . . . . . . 66
2.14 Average Final Price per Market in Different Simulation Scenarios . . 74
2.15 Average Number of Weekly Participants in Markets A and B (S.D.

in the parentheses) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.16 Hypothesis Testing Results regarding Bidders’ Preference for iPhone

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.17 Comparison between Observed and Simulated Distributions of the

Number of Bidders per Auction and Final Price per Device in the
Post-treatment Period . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vii



2.18 Difference-in-Differences Estimate of Spillover Participation Effect
Caused by Batch Listing . . . . . . . . . . . . . . . . . . . . . . . . . 119

2.19 Regression Estimates in Support of the Cannibalization Effect . . . . 123
2.20 Difference-in-Differences Estimate of Batch Listing’s Effect on Bids . 125

4.1 Average monthly listings purchased by Original Buyers and New
Buyers in public marketplace (denoted by Pub. Mkt.) and newly
launched private sites (denoted by NLPS). . . . . . . . . . . . . . . . 256

4.2 Comparison of Original Buyers vs. New Buyers regarding seller choice 258
4.3 Average listing effect of both launches. . . . . . . . . . . . . . . . . . 263
4.4 Heterogeneous effects of both launches on sellers with various qualities.265
4.5 Average listing effect of private site launches (use mixed lots auctions

as control group). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
4.6 Heterogeneous Effects of private sites on unbranded Sellers with Var-

ious Reputations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
4.7 Check of parallel assumption using pseudo treatment . . . . . . . . . 271

viii



List of Figures

2.1 Market Dynamics and Bidders’ Decisions on a Given Day . . . . . . . 14
2.2 Batch (above) and Uniform (below) Listing Examples (red arrows

represent active auction listings) . . . . . . . . . . . . . . . . . . . . . 21
2.3 Percentage of Auctions Ending on Each Weekday Aggregated by

Month in Market A (Left) and Market B (Right) . . . . . . . . . . . 24
2.4 Averages (a) and Trends (b) of Per-device Prices in Markets A and

B across Pre- and Post-treatment Periods . . . . . . . . . . . . . . . . 26
2.5 Effect of Market Thickness on Auctions’ Final Prices and Bidder Par-

ticipation (Left plot is a scatter plot of simulated final prices. Center
and right plots show the fitted curves for simulated numbers of par-
ticipants, where grey-curve represents 95%-CI). . . . . . . . . . . . . 52

2.6 Variability of Daily Market Thickness and Demand Response in Mar-
ket A (market thickness is defined as the number of auctions ending
on a given day, and vertical dashed lines denote the days with supply
shocks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Effects of Recommendations on Bidders’ Market Participation (the
left vertical dashed line denotes the MU bidder whose participation
rate remains unchanged upon receiving a recommendation. The right
vertical dashed line denotes the MU bidder whose participation rate
remains unchanged upon not receiving a recommendation) . . . . . . 56

2.8 Histograms of Propensity Scores in Samples of the Pre-treatment Pe-
riod (left) and the Post-treatment Period (right) . . . . . . . . . . . . 61

2.9 Average Auction Participation Rates in Market B in the Post-treatment
Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.10 Trends of Weekly Supply and Weekly Demand . . . . . . . . . . . . . 117
2.11 Weekly Supply and Prices of Samsung Galaxy S3 (the vertical dashed

line highlights the release of Galaxy S5 on 04-11-2014) . . . . . . . . 121

4.1 Probability density functions of three examples in F . . . . . . . . . . 228
4.2 Difference between rH and rL under different demand changes from

µ1 = α1 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
4.3 Difference between the average quantities (left) and difference be-

tween qH and qL (right) under different demand changes from µ1 =
α1 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

ix



4.4 Unbranded sellers’ dispute rates (left) and buyers’ quality-price trade-
offs in purchasing salvage iPhone 6 (2016) (right). . . . . . . . . . . . 245

4.5 Trends of monthly registrants in the public marketplace during the
first launch (left) and the second launch (right). . . . . . . . . . . . . 254

4.6 Average monthly listings per seller during the first launch (left) and
the second launch (right). . . . . . . . . . . . . . . . . . . . . . . . . 254

x



Chapter 1: Introduction and Overview

The rise of online marketplaces has become one of the predominant economic

and social developments of our time. Some marketplaces have become the most

prominent players in various markets, such as merchandise, service, transportation,

and travel accommodation, once dominated by non-platform companies. Meanwhile,

numerous opportunities and challenges regarding the design and operations in online

marketplaces are emerging. My research focuses on the supply-side management and

design of marketplaces. Since most marketplaces cannot control sellers’ behavior

directly, they need to rely on other market design levers, such as listing policy and

information provision policy, to influence the supply. Moreover, different market

structures have different design options available. In each essay of the dissertation,

I study the supply-side design of a specific market structure.

In my first essay, we study the revenue impact of listing policy design in online

B2B liquidation auction platforms, where salvaging inventory arrives exogenously.

We show that platforms can employ listing policies to schedule the ending time of

auctions to adjust market thickness (i.e., daily supply), which can further improve

revenues. In particular, the high market thickness can incentivize demand, mean-

while, exacerbate cannibalization between auctions. Our structural model enables

1



platforms to identify the optimal market thickness that balances the two competing

effects by modeling buyers’ behavior and estimating the model primitives. In this

study, we establish the critical role of market thickness in B2B auction markets and

demonstrate how platforms can use practical operational levers (e.g., listing policies

and recommendation systems) to optimize the market thickness.

In my second essay, we build a dynamic model to investigate the effect of

information disclosure policies on peer-to-peer service platforms, where the quality

of service providers is ex-ante unknown. Due to the information asymmetry, such

a platform suffers an under-experimentation issue that the employment rate of new

providers is low. The issue then leads to a slow discovery of talented providers and a

small proportion of them on the platform. After the platform learns the quality of a

provider, it can decide whether or not to disclose it to customers using informational

levers. To our surprise, delaying the disclosure of the quality information of some

high-quality providers can boost platform revenues. We also identify two effects

of the informational delay: experimentation effect and scarcity effect. Our work

contributes to the market design literature by identifying the operational value of

information disclosure policy in peer-to-peer platforms with quality uncertainty.

In my third essay, we study the effect of sellers’ supply adjustment fric-

tion on two-sided marketplaces’ reactions to unexpected demand shocks using an

empirically-validated analytical model. In the model, sellers are heterogeneous in

terms of their quality, and they engage in a quantity competition under a given

demand. When the demand structure changes, sellers strategically adjust their sup-

ply to maximize their profit, incurring a cost for deviating from the original supply

2



level. We find that sellers’ strategic responses can either benefit or hurt the market-

place, and adjustment friction is an effective factor in influencing sellers’ strategic

decisions. By varying the adjustment friction, the marketplace can amplify positive

effects under favorable demand shocks and reduce negative effect from unfavorable

ones.

To conclude, the findings from the three essays highlight that marketplaces’

design levers on the supply side, including listing policy and information provision

policy, can have significant operational effects on the marketplace. Moreover, they

demonstrate that possible online friction, such as participation cost, information

obfuscation, and supply adjustment cost, plays a critical role in affecting the behav-

iors of all market participants. Through innovative design, online marketplaces can

benefit substantially from the friction.
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Chapter 2: Managing Market Thickness in Online B2B Markets

Abstract. We explore marketplace design in the context of a B2B platform special-

izing in liquidation auctions. Even when the platform’s aggregate levels of supply

and demand remain fixed, we establish that the platform’s ability to use its design

levers to manage the availability of supply over time yields significant value. We

study two such levers, each using the platform’s availability of supply as a means

to incentivize participation from buyers who decide strategically when/how often

to participate. First, the platform’s listing policy sets the ending times of incoming

auctions (hence, the frequency of market clearing). Exploiting a natural experi-

ment, we illustrate that consolidating auctions’ ending times to certain weekdays

increases the platform’s revenues by 7.3% mainly by inducing a higher level of bid-

der participation. The second lever is a recommendation system that can be used

to reveal information about real-time market thickness to potential bidders. The

optimization of these levers highlights a novel trade-off. Namely, when the platform

consolidates auctions’ ending times, more bidders may participate in the market-

place (demand-side competition); but ultimately auctions for substitutable goods

cannibalize one another (supply-side competition). To optimize these design deci-

sions, we estimate a structural model that endogenizes bidders’ dynamic behavior,

4



i.e., their decisions on whether/how often to participate in the marketplace and how

much to bid. We find that appropriately designing a recommendation system yields

an additional revenue increase (on top of the benefits obtained by optimizing the

platform’s listing policy) by reducing supply-side cannibalization and altering the

composition of participating bidders.

Keywords: Online markets; Market clearing; Market thickness, Matching supply

with demand; Natural experiment; Structural estimation.

2.1 Introduction

The emergence of Internet-enabled platforms, such as Airbnb and Lyft, has

highlighted that online marketplaces greatly reduce frictions that previously pre-

vented buyers and sellers from connecting, thereby increasing the volume of trade in

a number of markets. Typically, such platforms neither own nor directly control the

goods involved in each transaction, but act as intermediaries. Thus, their success

relies heavily on the design features of their respective marketplaces, e.g., the ways

in which they organize and present information to the buyers and the timing with

which they match and clear (portions of) the market.

The opportunity for online intermediaries to create value has manifested it-

self not only in the cases exemplified by Airbnb and Lyft, but has also reshaped

retail operations, particularly with regard to the handling and resale of liquidation

inventory. The present paper explores marketplace design in the context of an e-

commerce platform specializing in liquidation inventory including merchandise that

5



either remained unsold in its primary market (e.g., due to low demand levels) or

was returned by customers. The secondary market within which the platform oper-

ates is of great economic significance: roughly 20% of inventory goes unsold in the

fast fashion industry Fe05, and whereas brick-and-mortar retailers encounter a 9%

return rate on products – for online retailers, the return rate is a staggering 30%.1

Overall, it is estimated that in 2012, the size of this excess/return product market

was $424 billion or 2.9% of the entire US GDP. However, given the uncertainty

surrounding the volume, quality, and composition of their excess and returned mer-

chandise, retailers have come to expect mere cents-on-the-dollar recovery rates from

traditional channels. Thus, they typically offload this inventory to business buyers

further down the retail food chain, such as discount stores, or donate it to qualifying

recipients for tax purposes.

Online business-to-business (B2B) auction platforms connect an increasing

number of retailers to deeper pools of potential business buyers, both domestic and

foreign. Given the diversity of potential bidders, which range from large wholesale

liquidators to small mom-and-pop stores, online auctions crucially facilitate price

discovery and constitute one of the major sale mechanisms in secondary markets. In

2016, Liquidity Service Inc., one of the fastest-growing online B2B auction platforms,

sold merchandise worth more than $600 million in aggregate retail value.2 Today,

many US chain retailers, including Best Buy, Walmart, Home Depot, Amazon,

1http://www.sdcexec.com/article/12037309/statistics-reveal-8-to-9-percent-of-goods-

purchased-at-stores-get-returned-and-25-to-30-percent-of-e- retail-orders-are-sent-back
2http://investors.liquidityservices.com/phoenix.zhtml?c=195189&p=irol-reportsannual
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Target, and Costco, utilize online B2B auction platforms to liquidate their products.

The amount of inventory sold in these online platforms is highly variable, owing

to the uncertain and dynamic nature of when products are returned and when excess

inventory is pulled from shelves and made available for resale. In turn, this results

in a varying number of auctions being open on the platform at any point in time.

The uncertainty in supply coupled with the uncertain valuation of potential buyers,

who are downstream resellers with access to different resale channels, implies that

liquidation platforms face a familiar operational challenge: how to tailor their design

so as to profitably match supply with demand.

One relatively under-explored lever that an auction platform can employ to

attain this match is its listing policy or, more specifically, the timing of auctions’

closing dates. By aligning or, conversely, spreading out the closing dates of auctions,

the platform can induce different levels of market thickness. In turn, the level of

market thickness has first-order revenue implications for the platform as it deter-

mines participation in the marketplace. Specifically, buyers who face uncertainty

with regard to actual supply levels on a given day may choose to participate only

when they expect adequate availability, implying that even a fixed level of aggregate

supply should be coordinated and allocated with this uncertainty in mind.

To this end, using a proprietary dataset collected from a leading online B2B

platform, we investigate the role and efficacy of the platform’s choice of listing pol-

icy in inducing different levels of market thickness and coordinating the behavior

of market participants so as to influence market outcomes (i.e., the auctions’ fi-

nal prices). Notably, although, as we show, the listing policy alters neither the

7



platform’s underlying supply of arriving liquidation inventory nor its pool of po-

tential bidders, its role in incentivizing bidder participation in auctions can be of

first-order importance. Exploiting a natural experiment, we find that the platform’s

listing policy significantly impacts its revenues: implementing a listing policy to

concentrate (“batch”) auctions’ ending times to certain days of the week increases

sellers’ revenues by 7.3%. Further evidence supports the hypothesis that the exis-

tence of market frictions, specifically participation costs associated with the bidders

visiting the platform and determining their bidding strategies, drives this result.

Our finding underscores the economic significance of inducing the optimal

thickness in the marketplace. In doing so, the platform faces the following trade-off.

On the one hand, increasing supply availability on a given day (by having more

auctions ending on that day) can profitably incentivize demand-side participation.

On the other hand, having auctions end on the same day can induce them to canni-

balize one another. Put differently, daily marketplace demand curves are ultimately

downward-sloping in the quantity supplied on that day.

Prescriptively, we study two relatively simple market design levers available

to the platform to profitably calibrate its market thickness: the listing policy and

(targeted) recommendations that aim to provide real-time information about the

state of the platform to (a subset of) bidders. However, optimizing these levers

involves complex demand-side behavior. For this purpose, we develop a structural

model of bidders’ behavior, i.e., whether and when they choose to participate in

the marketplace and in which auctions and how much they select to bid. These

decisions are based on bidders’ equilibrium beliefs about the supply-side availability
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of auctions on any given day and the demand-side competition from other bidders.

The model also incorporates the dynamics of the platform’s bidder pool and the

heterogeneity of the bidders’ participation costs, valuations, and potential demand.

Out-of-sample revenue forecasts obtained from our estimated structural model align

closely with the treatment effect as obtained from the natural experiment.

By simulating the model, we demonstrate how to design the platform’s listing

policy so as to induce the revenue-maximizing market thickness for any underly-

ing level of expected supply. Our approach accounts for uncertainty in the actual

realization of supply and bidders’ equilibrium participation and bidding decisions.

Additionally, in an effort to further reduce marketplace uncertainty and frictions,

we also consider a recommendation system that notifies potential bidders of the

supply conditions on the auction site. This is motivated by the fact that, although

potential bidders may form accurate beliefs about the expected number of auctions

on the platform on any given day, they typically do not know their exact number

prior to visiting the platform itself. The recommendation system is built to inform

a (randomly) sampled set of recipients about the realized supply on a day without

them having to visit the platform, when the supply is higher than a given threshold.

We find that appropriately designing such a recommendation system improves the

platform’s revenue by an additional 1.6% on the days when the platform sends out

recommendations. This gain is achieved by reducing cannibalization during days

with high supply and shifting the composition of participating bidders toward those

with higher valuations.
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2.1.1 Related Literature

Online marketplaces face a number of design challenges when seeking to match

supply with demand so as to maximize revenue. A recent stream of papers explores

how different aspects of marketplace design may be used to shape the incentives

of market participants. For two-sided service platforms, [1] and [2] deliver novel

pricing prescriptions based on how users respond to higher service levels. On the

other hand, [3] consider pricing for spatially dispersed demand in a ride-sharing

network. In an online auction setting, [4] introduce the notion of a fluid mean-

field equilibrium and illustrate its practical appeal in setting reserve prices. In

addition, [5] show empirically that the platform’s revenues increase by 3% when it

boosts bids in a customized fashion based on bidders’ past behaviors. Our work

contributes to this literature by empirically demonstrating the impact of market

thickness on bidders’ participation and bidding decisions on a platform specializing

in B2B auctions.3 In addition, our focus is mainly on the use of non-price levers

that affect the availability of supply-side inventory and, in turn, influence demand.4

Recent literature also connects participants’ transaction costs and information

frictions to outcomes in online markets. [13] studies the role of the search engine in

reducing transaction costs and improving matches on Airbnb, while [14] explore the

disclosure of product information within online marketplaces. [15] study the revenue

3Relatedly, [6] and [7] explore strategic behavior in B2B spot markets while [8] focus on the

revenue impact of the lot size in the context of a sequence of online auctions.
4In recent work, [9], [10], [11], and [12] explore (non-price) interventions to improve efficiency

in the context of matching platforms.
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and welfare implications of costs associated with customers monitoring a retailer’s

online channel for changes in the price and availability of inventory in which they

are interested. [16] suggests that introducing a signaling feature that allows workers

to indicate availability could increase surplus by as much as 6% in an online labor

market. Closer in spirit to our research questions, [17] use data from TaskRabbit,

a marketplace for domestic tasks, to empirically demonstrate that the growth of

online peer-to-peer markets is largely affected by the thickness they induce. [18]

find that higher market thickness actually leads to lower matching efficiency in an

online peer-to-peer holiday rental platform.5 We contribute to this line of work by

illustrating how design levers such as the platform’s listing policy may lead to a

sizable increase in the platform’s revenues.

Relatedly, prior work explores both the effects of inventory availability on

strategic demand and the related benefits of reducing buyers’ uncertainty about

availability. [20], [21], and [22] consider settings where prospective buyers incur a

search or opportunity cost when visiting physical stores with the intent to pur-

chase a product, if it is available. The seller decides on inventory levels, potentially

across stores, while customers form beliefs about the resulting availability. More-

over, [21], [23], and [24] examine how the seller may benefit from reducing consumers’

uncertainty about its inventory availability. Empirically, [25] study the impact of

sharing inventory information on consumer behavior through credible “buy online,

pick up in store” offers, concluding that brick-and-mortar stores drew increased traf-

fic by resolving availability risks. In contrast to these settings, the online platform

5Relatedly, [19] illustrates the potential for welfare losses in large markets.
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that we focus on can neither set prices nor control the arrival of inventory to its

marketplace. Nonetheless, we highlight that listing policies and state-contingent rec-

ommendations (communicated to a subset of bidders) can successfully complement

the platform’s efforts in boosting the bidders’ participation rates.

Finally, our paper falls within the growing body of literature employing struc-

tural estimation methods to study auction markets (e.g., [26], [27], and [28]) and to

address questions of operational interest (e.g., [29], [30], and [31]).

2.2 Data and Background

Our dataset was obtained from a leading online platform managing private

B2B auction markets for the liquidation inventory of more than thirty US big-box

retailers, such as Costco, Walmart, Sears, and Home Depot (henceforth referred to

as sellers). In contrast to traditional two-sided online markets, where a multitude of

sellers enter and exit freely, each seller on our platform is associated with a private

online auction market through which only its own merchandise (excess or returned

inventory) can be sold. Under a long-term contract, the platform supports each

seller’s online auction presence in exchange for a fixed commission taken out of the

generated revenues. Sourced from customer returns, trade-ins, and unsold items, the

supply of liquidation inventory reaching the platform can be highly stochastic and

is beyond the platform’s control; rather, it is primarily driven by a seller’s reverse

logistics. In other words, the supply of these B2B auction markets can be considered

exogenous to the platform’s design.
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Merchandise is sold through an ascending English auction with proxy-bidding

(similar to the format used on eBay). Each auction lasts for 1 to 4 days and offers

a bundle of similar products for sale in an all-or-nothing auction. While electronics

account for most of the platform’s annual revenues, which are in the hundreds of

millions of U.S. dollars, a broad range of product categories are auctioned on the

site, including household appliances, furniture, and apparel. A typical auction lot

contains a box of goods from the same product category and in roughly the same

condition (e.g., unused, or used and in good condition). Bidders may access the

auction’s manifest, which provides a brief description of the items included in the

box. In addition, bidders are able to observe the current second-highest bid (the

standing bid) and the time remaining in the auction. In contrast to the standing

bid, the highest bid currently placed in an auction cannot be observed by bidders.

The demand side of the market consists of downstream resellers specializing

in liquidation inventory (henceforth referred to as bidders). Reflecting bidders’ in-

dividual downstream resale channels, both bidders’ valuations and levels of demand

(i.e., the number of auctions they intend to win) are substantially heterogeneous

(see [32]). Bidders need to go through a separate registration process for each such

private market in order to be able to view the market’s available inventory and

submit bids. Finally, the pool of active bidders features the continuous arrival of

new registrants and the continuous exit of some existing bidders, both of which

are driven by the demand of downstream secondary markets worldwide. Figure 2.1

summarizes the market dynamics and bidders’ major decisions within the platform.

13



Figure 2.1: Market Dynamics and Bidders’ Decisions on a Given Day

2.2.1 Markets for iPhones

In what follows, we empirically examine whether the choice of listing policy

has any impact on the platform’s revenues. To this end, we use data on the iPhone

auctions from the platform’s two major mobile phone sellers. We restrict attention

to iPhone auctions for two reasons. First, to identify the listing policy’s revenue

impact, we must carefully control for the characteristics of the particular products

sold in each auction; iPhones are well-defined products with retail values that are

derived in a straightforward way from their observable specifications, such as their

model, carrier, condition, and time since the model’s release date. This is contrary to

other merchandise sold on the platform, such as furniture and household appliances,

whose retail values depend on a large set of somewhat subjective features. Second,

the revenue generated by iPhone sales alone accounts for approximately 73% of the

revenue of the two major cell phone markets we study. We call these two major

markets Market A and Market B.

Covering February 2013 to October 2015 (our observation period), our dataset

tracks the entire bidding history (i.e., every bid’s time of submission and dollar
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amount) in each of the 679 auctions in Market A and each of the 497 auctions in

Market B. Moreover, we are able to track bidders’ behavior across all auctions in

the observation period.

Table 2.1 summarizes the auctions and bidding activity in the two markets. On

average, 211 new bidders register per month in Market A, and 261 do so in Market

B. Auction lot sizes vary substantially, both within markets (the corresponding

coefficients of variation are 0.54 for Market A and 0.53 for Market B) and across

markets (the average number of iPhones per auction is 150 in Market A versus 62

in Market B). Participation per auction, whether tallied in bidders or bids, tends

to be higher in Market B’s auctions. Nonetheless, Market A exhibits slightly higher

average per-device revenues ($116.10) than Market B ($106.60).

2.2.2 Bidders

More than 2,200 bidders placed at least one bid in either Market A or Market

B during the observation period. In line with prior work on B2B markets Ba04, Pi16

the markets’ bidder pools consist of experienced resellers – certified and registered

in the market – that are heterogeneous in both their demand profiles and valuations.

Over 30% of bidders in both markets exhibit demand for multiple auctions. More

specifically, these multi-unit (MU) bidders either submit winning bids for two or

more concurrent auctions or submit a bid for a new auction shortly after winning an

auction. The remaining bidders, whom we call unit-demand (UD) bidders, exhibit

demand for winning only a single auction lot within our observation period. Though
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Table 2.1: Summary Statistics of Auctions in Markets A and B (means with standard

errors in parentheses)

Market A Market B

Auction duration (in days) 2.60 (1.54) 2.90 (1.09)

Auction lot size (devices) 150.3 (81.0) 61.5 (32.7)

Avg. monthly registrations 211.0 (44.6) 260.7 (63.2)

Number of bidders per auction 4.96 (2.09) 8.20 (2.62)

Number of bids per auction 19.6 (12.1) 27.0 (15.9)

Avg. number of auctions per auction ending day 2.07 1.16

Total number of auctions 679 497

Avg. final per-device price ($) 116.10 (49.97) 106.57 (51.47)
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multi-unit bidders are fewer in number, their behavior affects the operations of the

platform substantially, as they win over 80% of the auctions in both markets during

our observation period.

In addition to their demand characteristics, bidders can also be classified by

their registration status in the two markets. We refer to those who are registered in

both markets as cross-market bidders, and those who are registered in only Market A

or Market B during our study period as Market A or Market B bidders, respectively.

Cross-market bidders can observe and participate in auctions from both markets.

On the other hand, Market A and Market B bidders can observe auctions only from

the single market in which they have registered. In the data, cross-market bidders

account for 20% of the bidder population.

In behavior similar to “sniping” in B2C auctions Ba03, we find that bidders

predominantly submit bids on an auction’s last day. Auctions typically close within

the time window from 6pm to 8pm, and most bids are placed during that time. As

we report in Table 2.2, the median last bid per bidder per auction comes quite late

in both markets (after 99.0% of the auction’s total duration in Market A and 80.3%

of the auction’s total duration in Market B). Moreover, the median winning bid in

both markets arrives when 99.7% of the auction’s duration has elapsed (similar to

98.3% in Ba03). Because an auction’s final price materializes toward its end, we

focus on each auction’s ending day – as opposed, for example, to the entire time it

is open – when studying the impact of the platform’s design on revenues.
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Table 2.2: Summary Statistics about Bidder Types and Bidding Activity

Market A Market B

Percentage of MU bidders (%) 36.4 33.2

Percentage of auctions won by MU bidders (%) 91.9 73.8

Avg. number of auctions a MU bidder participates in 19.65 12.47

Avg. number of auctions won by a MU bidder ever 4.19 1.76

Avg. number of auctions a UD bidder participates in 2.45 1.69

Avg. number of auctions won by a UD bidder ever 0.29 0.12

Median of normalized time of first bid per bidder-auction (%) 97.2 60.0

Median of normalized time of last bid per bidder-auction (%) 99.0 80.3

Median of normalized time of winning bid per auction (%) 99.7 99.7
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Table 2.3: Empirical Distribution of Inventory Arrivals (i.e., Auctions’ First Day

Listed) by Day of Week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Market A 16.7% 23.5% 20.4% 17.8% 16.3% 5.2% 0.0%

Market B 16.7% 21.4% 20.0% 17.3% 21.8% 3.0% 0.0%

2.2.3 Listing Policies

In both Markets A and B, as soon as the seller makes an inventory lot available

to the platform (the inventory’s arrival time), a corresponding auction commences

and is listed on the platform. When it lists the auction, the platform must decide

and display the auction’s ending time. The policy governing how auctions’ ending

times are determined is the platform’s listing policy.

Uniform listing. Market B’s auctions typically close 3 business days after the time

they are listed on the platform (which is the time when the corresponding inventory

is made available by the seller). Owing to the fact that the arrival times of inventory

are approximately uniformly distributed across the weekdays in both markets (Table

2.3), the number of auctions expected to close is approximately constant across the

weekdays. We refer to this listing policy, which sets auction ending times to enforce

a fixed duration, as uniform listing. Market B uses uniform listing throughout our

observation period, while Market A uses it from February 2013 to February 2014.
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Batch listing. By contrast, in the second half of our observation period starting

in November 2014 (see Section 2.3 for more details), Market A’s auctions closed

only on Tuesdays and Thursdays. Consequently, the duration for which an auction

remains open on the platform varies depending on the arrival time of its associated

inventory lot. We use the term batch to refer to the listing policy that closes auctions

only on Tuesdays and Thursdays.

Effects of different listing policies. Even when receiving the same stream of in-

ventory arrivals, different listing policies result in several salient divergences in out-

comes. Figure 2.2 illustrates using the uniform and batch listing policies as examples.

First, as shown in Figure 2.2, the number of days on which auctions close is differ-

ent: two days of the week under batch listing, compared to five days under uniform

listing. We call such days the platform’s “auction-clearing days.” Second, it natu-

rally follows that the average number of auctions cleared on one of the platform’s

auction-clearing days will depend on the platform’s choice of listing policy. Given

that bidders predominantly bid in an auction on its last day (Table 2.2), different

listing policies result in different levels of supply-side availability of auctions for the

bidders, and they induce different levels of thickness in the market. As an example,

Figure 2.2 illustrates that compared to uniform listing, batch listing maintains a

higher level of supply-side availability on days when auctions are scheduled to close.
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Figure 2.2: Batch (above) and Uniform (below) Listing Examples (red arrows rep-

resent active auction listings)

Saturday Sunday Monday Tuesday Wednesday Thursday Friday
t

Number of Auctions Ending:(0) (4) (0) (3) (0)

Saturday Sunday Monday Tuesday Wednesday Thursday Friday
t

Number of Auctions Ending:(1) (1) (2) (1) (2)

2.3 Listing Policies, Market Thickness, and Platform’s Revenues

Prior work has studied both empirically and theoretically how to design an

(online) marketplace so as to induce a better match between supply and demand.

Yet, the primary focus has mostly been on providing incentives for additional supply

to join the marketplace (e.g., through surge pricing in ride-hailing platforms) or on

smoothing out supply to match exogenous demand. By contrast, in our setting the

aggregate levels of supply (incoming inventory) and potential demand (bidder pool)

do not seem to be affected by the design decisions we consider. Instead, our analysis

illustrates the potential merits of appropriately managing the effective availability of

supply when the demand side endogenously determines when to actively participate

in the marketplace.
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By exploiting a natural experiment using Market B as a control, we find a

substantial benefit attached to Market A’s change in listing policy. We estimate

that implementing batch instead of uniform listing boosts Market A’s revenues by

7.3%, amounting to roughly $3.8M annually. Our findings suggest that bidders face

participation costs that cause them to strategically consider when to participate in

the marketplace based on the supply-side availability they expect (i.e., number of

active auctions). In other words, much like the platform offering service-level guar-

antees, assuring adequate market thickness attracts participation. More broadly, the

fact that coordinating a fixed supply process can profitably incentivize marketplace

participation, points to a novel operational trade-off. On the one hand, thickening

the market increases demand-side participation, but, on the other hand, it induces

supply-side cannibalization as substitutable auctions compete against one another.

In the parlance of classic supply and demand theory, the downward-sloping demand

curve dictates that market-clearing prices ultimately fall as the quantity supplied

by the market grows.

As with any field data, our natural experiment possesses considerable richness;

that said, we would like to point out one potential limitation. While our data permits

us to carefully account for individual auctions’ characteristics and for depreciation

in the auctioned phone models (the latter is shared in the form of trends by the two

markets), our study is not a perfect natural experiment: a minority of bidders are

cross-registrants who bid in both Markets A and B. However, we show that their

presence dilutes the treatment effect of batch listing as compared to the case of

completely independent markets; this is because these cross-registered bidders act
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as arbitrageurs who bring the treated and control prices closer together (Appendix

2.8.3). Besides, we discuss how cross-registrants’ participation is consistent with the

hypothesis of participation costs in Section 2.3.4 and Appendix 2.8.5.

2.3.1 Natural Experiment by Change in Listing Policy

Before February 2014, both markets enacted uniform listing and cleared an

approximately equal number of auctions on each weekday (see Section 2.2.3). In

February 2014, Market A had a change in personnel; management reports that

this change was unrelated to the performance of the platform or its marketplaces.

Nonetheless, the change triggered Market A to alter its listing policy twice. First,

in February 2014, it constrained its auctions to close only on 3 days of the week

(Mondays, Tuesdays, and Thursdays). Then, in November 2014, it adopted the

batch policy described in Section 2.2.3 to close its auctions only on Tuesdays and

Thursdays. Meanwhile, Market B’s listing policy remained unaltered throughout

the observation period.

Because we are interested in the effect of supply-side availability (and induced

market thickness) on participation and revenues, we study a natural experiment:

batching the listing policy serves as the relevant treatment of interest. We observe

two clearly defined periods: the pre-treatment period (February 2013 to February

2014), during which both markets practiced uniform listing, and the post-treatment

period (November 2014 to October 2015), during which Market A alone batch-

listed its auctions. Figure 2.3 depicts the monthly percentages of auctions closing
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Figure 2.3: Percentage of Auctions Ending on Each Weekday Aggregated by Month

in Market A (Left) and Market B (Right)

on each of the 5 weekdays, aggregated monthly for each of the Markets A and B:

we observe the changes over the pre-treatment and post-treatment periods, as well

as the intervening time period.

In addition to the market’s listing policy, an auction’s per-device revenue is

affected by the attributes of the iPhones in the auction, market-level characteristics

such as the supply process and the registration rate of new bidders, temporal effects

that encompass new product releases, depreciation, and price fluctuations in the

overall iPhone market. Observing both markets’ pre-treatment period allows us

to account for unobserved differences between the two markets. In the data, we

note that the differences in these market-level features between the two markets

remain roughly constant over time.6 In Table 2.4, we summarize the numbers of

auctions and the newly registered bidders per week for both markets across the pre-

6Our average treatment effect analysis explicitly controls for auction-level characteristics such

as auction size and product types, as detailed in Section 2.3.3.
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Table 2.4: Weekly Supply and Demand Profiles in Markets A and B within Pre-

and Post-treatment Periods

No. of weekly auctions No. of weekly registrations

Market B Market A Market B Market A

Pre-treatment Period 2.49 2.93 53 48

Post-treatment Period 5.11 6.34 60 51

Increase Rate (%) 105% 116% 13% 6%

and post-treatment periods.7 Market A’s aggregate supply grew at a slightly faster

rate than that of Market B while its pool of potential bidders (demand) grew at a

somewhat slower rate than that of Market B.8 Using the average treatment effect

(ATE) methodology reviewed in [33], we estimate the effect of the platform’s listing

policy on auctions’ final prices while controlling for product attributes, temporal

effects, and static market-level differences. Within the observation window, we do

not observe changes in any of the market design levers except for the listing policy.

2.3.2 Descriptive Comparison and Difference-in-Differences Analysis

As a primer to the analysis, Figure 2.4 compares the two markets’ average,

per-device revenues in the pre-treatment and post-treatment periods, respectively.

7The trends of the aggregate supply and demand over time are further displayed in Appendix

2.11.1.
8According to classic supply and demand theory, we would then expect an increase in Market

B’s revenues relative to those of Market A. However, we observe the opposite.
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Figure 2.4: Averages (a) and Trends (b) of Per-device Prices in Markets A and B

across Pre- and Post-treatment Periods

While iPhone prices fall over time in both markets (as the phone models depreciate),

the left plot of Figure 2.4 highlights an emerging gap in the markets’ per-device

revenues during the post-treatment period relative to the pre-treatment period,

consistent with the batch listing policy affording Market A a post-treatment boost

in per-device revenue. The right plot of Figure 2.4 shows that the pre-trends in both

markets are relatively parallel. Notably, the gap between the price trends increases

during the post-treatment period.

A difference-in-differences estimator transparently compares the post-treatment

revenue difference between the two markets against any that existed in the pre-

treatment period. As shown in Table 2.5, the markets’ revenue difference increases

by 10.1% post-treatment, which we might attribute to the effect of Market A’s new

listing policy. Because it remains conceivable that the markets’ inventory compo-

sitions could have changed across the periods, we carry out an average treatment
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Table 2.5: Difference-in-Differences Estimate of Policy Switch on Final Price per

Unit

Dependent Variable

Log (Final Price per Unit)

Treatment: Batch Policy 10.1%∗∗∗

(0.027)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Confidence intervals constructed via bootstrap.

effect analysis that controls for granular differences in the attributes of individual

auction lots and for weekly time trends affecting the phones’ (hence lots’) valuations.

2.3.3 Average Treatment Effect

First, our analysis controls explicitly for observables, such as phone model,

carrier, and auction lot size. Additionally, we include a weekly time fixed effect

to account for temporal price fluctuations in the broader iPhone market, leveraging

that these effects are simultaneously present in both markets. Finally, we exploit the

dataset’s pre-treatment period, during which both markets used the uniform listing

policy, to measure and account for the effect of unobservable differences between

the two markets, including the information they provide about the quality of their
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products.9

For this analysis, we assign an auction lot j at time t to the treatment group

if it is posted to Market A (indicator variable Ajt) and to the control group if

it is instead posted to Market B. Based on its observed attributes, each auction

lot exhibits a propensity for being assigned to the treatment group, known as its

propensity score. As developed in the related literature (e.g., [34–36]), an efficient

estimate of the average treatment effect (ATE), τ , that accounts for such attributes

can be obtained as the difference between post-treatment and pre-treatment out-

comes appropriately weighted using their associated propensity scores. We estimate

separate ATEs for each of the pre-treatment and post-treatment periods (τPre and

τPost, respectively) and are ultimately interested in the difference between the two.

While both τPre and τPost include the net revenue effects of the markets’ unobserved

differences (e.g., product quality categories, reputations, and bidder compositions),

only τPost captures the additional revenue effect of batch listings under Market A’s

revised listing policy. Accordingly, the corresponding estimators, τ̂Pre and τ̂Post, are

each obtained by Expression (2.8) in Appendix 2.8.1. As a technical aside, relative

to employing propensity score methods, mixed-methods approach combines propen-

sity score weighting and a regression model to improve the precision of the resulting

estimate Im04. By “double robustness” Wo07, Gr12, the estimator is consistent if

either the parametric propensity score model or the outcome regression model is

9More than 90% of Market A iPhone auctions are classified into quality “A/B,” and more than

99% of Market B iPhone auctions are classified into quality “Used/Functional.” In our sample, we

focus exclusively on auctions with these two quality types.
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correctly specified. In this study, we adopt an estimator from a class of augmented

inverse probability weighting (AIPW) estimators introduced in [37] (see Appendix

2.8.1).

2.3.4 Revenue and Participation Effects of Batch Listing

As reported in Table 2.6, we find the per-device revenue effect of the batch

listing policy, τ̂Post − τ̂Pre, to be positive and statistically significant. We find that

the batch listing policy, in comparison with the uniform listing policy, yields a 7.3%

average increase in Market A’s per-device revenue (Table 2.6).10 This estimate

translates to more than $3.8M in additional revenues annually for Market A.11

Setting a market’s listing policy may appear to be an innocuous choice born

of convenience, chance, or custom: a priori it is not clear why the platform would

expect anything beyond a marginal impact on its revenues, given that its listing

policy does not have an impact on either its exogenous supply of auctions or its de-

mand pool of certified bidders. We examine whether higher supply-side availability

of inventory (auctions) on the platform actually results in more bidders participat-

ing per auction. First, we estimate the effect of the policy switch on the number of

observed bidders per auction by applying a similar average treatment effect anal-

10We conduct robustness checks to support the validity of our estimates (see Appendix 2.8.2),

including examining the distributional overlap of covariates for the treatment and control groups.In

Appendix 2.8.2, we carry out robustness checks on the only covariate that exhibits possibly insuf-

ficient overlap (i.e., auction lot size).
11Since all posted auctions result in sales in our data, the revenue increase is a direct outcome

of an increase in the auctions’ average final price.
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ysis to the one in the section. All explanatory variables remain the same as those

in the ATE analysis of the final price. As shown in the last column of Table 2.6,

under the batch policy, Market A attracts 0.49 more bidders per auction, on aver-

age. Second, we exploit that cross-market bidders can choose when to participate

in untreated Market B based on availability in both markets. We find that the

cross-market bidders’ participation rate in Market B on Tuesdays and Thursdays

is substantially higher post-treatment (i.e., 84%) than pre-treatment (i.e., 63%).12

The findings suggest that it is costly for bidders to participate in the auctions; thus,

they strategically decide when to visit the platform (see Appendix 2.8.5). Lastly,

a difference-in-differences analysis confirms that the switch of the listing policy has

little impact on the bidders’ bidding amounts (see Appendix 2.11.4), which implies

that the listing policy’s revenue gain is not driven by changes in how bidders choose

to bid. In summary, our findings support the following mechanism to explain the

revenue increase: an increase in market thickness boosts bidder participation rates

both on aggregate and per auction. In turn, this additional traffic results in higher

revenues for the platform. Underlying this mechanism is the fact that it is costly for

bidders to visit the platform on a given day, monitor the set of available auctions,

and choose whether and how much to bid in each auction.

Despite the positive revenue effect of thickening the market, there exist po-

tential pitfalls. First, batching too many auctions together may cannibalize and

12The post-treatment increase in the number of unique participants per week in Market A

(167.1%) likewise exceeds the corresponding figure associated with Market B (88.1%). For more

details, refer to Appendix 2.8.4.
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Table 2.6: Estimated average Treatment Effect of Policy Switch on Final Price per

Device and No. of Bidders per Auction

Dependent Variables

Log (Final Price per Device) No. of Observed Bidders per Auction

Treatment: Batch Policy 7.3%∗∗∗ 0.49∗∗

(0.009) (0.22)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Confidence intervals constructed via bootstrap.

decrease per-device revenues by increasing the number of immediately available sub-

stitutes. Appendix 2.11.3 provides empirical evidence of this cannibalization effect.

Second, some bidders may be disincentivized from participating on the platform due

to the influx of competing bidders. In what follows, we develop a structural model

to characterize the optimal market thickness.

2.4 Structural Model

We present a dynamic, structural model endogenizing the bidders’ decisions

on whether and when to visit the platform, which auction(s) to participate in, and

how much to bid. Our discrete-time model captures the behavior of a dynamic pool

of potential bidders who are heterogeneous in their valuations and demand profiles

while facing an exogenously stochastic supply of liquidation inventory lots arriving

to the platform to be auctioned. We assume that there are St auctions on Day t each
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of which is for a single unit whose valuation is appropriately normalized. Given that

auction lots differ from one another, we assume that a bidder’s valuation for a given

auction has an idiosyncratic term. Motivated by our assertion that cross-market

bidders only dampen the price impact resulting from batching auctions’ ending

times (Appendix 2.8.3), we consider only a single market. To capture heterogeneity

in the bidders’ demand, we define the following two bidder types: (Bidder Types)

Bidders are risk-neutral and have private values. Each bidder belongs to one of the

following two types:

(i) Unit demand (UD): A UD bidder is interested in winning only one auction

throughout her lifetime on the platform. Each UD bidder is permanently

endowed with a private valuation for winning an auction lot that is drawn

independently from distribution FUD.

(ii) Multi-unit (MU): A MU bidder is interested in winning multiple auctions

on the platform. In particular, we assume that a MU bidder is interested

in winning up to K auctions in a single day, where K > 1 is exogenously

specified, regardless of her prior win history.13 Each MU bidder’s endowed

private valuation for an auction lot is drawn independently from distribution

FMU .

In contrast to UD bidders, who operate on relatively low volumes, MU bidders

represent repeat buyers that interact regularly with the platform. To ensure that

the model is tractable, we assume that the bidders’ private valuations for each type

13This assumption on K is critical to making our model and estimation tractable.
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follow the Weibull distribution, which fits the data reasonably well. As described

in Section 2.2.2, most bidding activity takes place toward the ending time of an

auction, and we assume that bidders submit bids only to auctions that are closing

on the day the bid is placed. Because more than 90% of the auctions close within

the narrow time window between 6 and 8 PM, we do not focus on the timing of

visits within the day and assume that if a bidder decides to visit the platform on a

given day, the timing of her visit within the day is exogenous. On each day t, the

following sequence of events transpires:

(1) Supply. First, St new auctions are listed on the platform, with St following

the count distribution PSupply. Each posted auction possesses characteristics

affecting its idiosyncratic fit with a bidder’s resale channels. Therefore, Bidder

`’s valuation for an auction lot j is the sum of Bidder `’s endowed product

valuation, x`, and an idiosyncratic term, ζ`j. Each ζ`j is independently drawn

from mean-zero normal distributions FMU
ζ and FUD

ζ , with standard deviations

νMU for MU bidders and νUD for UD bidders, respectively.

(2) Platform Participation. New bidder arrivals join the existing pool of potential

bidders, under an exogenous arrival process. If t is an auction-ending day

as defined in Sections 2.2.3 and 2.2.2, all potential bidders in the pool must

decide simultaneously whether to visit the platform to bid in ending auctions.

Notably, while each bidder ` knows her own valuation x` for a standard unit

throughout, a bidder does not know either the current state of the platform

(i.e., how many auctions are ending that day and/or the current standing
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bids in those auctions) or the idiosyncratic component of her lot valuation

ζ`j for any listed auction j. Instead, her decision on whether to visit the

platform is based on her expected payoff from visiting, which in turn depends

on her ex ante beliefs about the likely state of the platform. Formally, upon

visiting the platform, the observable state of the market on Day t is ω`t ,

(nt, s`t), where nt is the market thickness (number of auctions ending) on

Day t, with support N = {0, 1, ..., N̄}, and st denotes the vector of standing

bids of the auctions that are ending on Day t. As discussed in Section 2.4.1,

the bidder’s ex ante beliefs about ω`t anticipate the platform’s equilibrium

steady-state distribution. Against her expected payoff, bidder ` weighs her

daily participation cost, c`t, on Day t, which captures the cost in time and

effort at participating on the platform. A bidder’s participation cost is drawn

independently each day from an exponential distribution with rate µMU for

MU bidders and µUD for UD bidders. Thus, across bidders and days, whether

or not a bidder visits the platform depends both on her endowed valuation x`

and on the day’s realized participation cost c`t.

(3) Auction Selection and Bidding. Upon visiting the platform, a bidder observes

the realized state ω`t and the idiosyncratic term of her valuation ζ`j for each

available auction j. First, she decides which auction(s) to participate in based

on her private valuations and her beliefs about the currently highest rival bids

given ω`t, and she then determines how much to bid in each auction so as to

maximize her expected payoff.
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(4) Departure. Given the nature of their demand, UD bidders depart with cer-

tainty upon winning an auction. In addition, we let αMU and αUD denote the

daily retention probabilities of those MU and UD bidders who do not win an

auction, respectively. In particular, at the end of Day t, each bidder departs

the bidder pool with probability (1− αTY ), where TY ∈ {MU,UD}.

2.4.1 Bidder Strategies and Equilibrium

The size of the market (i.e., Market A averages about 160 active bidders daily)

makes it impractical for an individual bidder to fully track her competitors and the

history of their actions. Instead, we assume that bidders respond to their steady-

state beliefs about their rivals, which are not meaningfully affected by their own

actions Ba16. This assumption approximates well a setting that involves a large

group of anonymous bidders, with similarities to other assumptions that have been

employed in related settings, such as the notions of oblivious equilibrium (e.g., [38]),

stationary competitive equilibrium (e.g., [39]), and mean field equilibrium (e.g.,

[40,41]). Prior to defining the steady-state equilibrium, we first introduce a bidder’s

optimal actions on a given day, given her beliefs about the underlying market state

Ψ and the highest rival bid G.

Platform Participation. A bidder determines whether or not to participate in

the platform on a given day so as to maximize her expected payoff. In particular,

for MU bidders, the corresponding maximization problem can be reduced to that of

a single period, since their payoffs on any given day are independent of their actions
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on other days. She receives a payoff of zero if she does not visit. Specifically, a MU

bidder’s platform participation decision is

σMU
V ST (x`, c`t) =


1, i.e., visit, if rMU(x`;G,Ψ)− c`t ≥ 0

0, i.e., wait, otherwise,

(2.1)

where rMU(x`;G,Ψ) denotes the expected payoff for a MU bidder who visits the

platform on Day t. For UD bidders, since they have demand for only one auction

throughout their lifetime, their actions on a given day affect their future payoffs.

Thus, a UD bidder’s platform visit decision is

σUDV ST (x`, c`t) =


1, i.e., visit, if vUD(x`;G,Ψ)− c`t ≥ αUDvf (x`;G,Ψ)

0, i.e., wait, otherwise,

(2.2)

where vUD(x`;G,Ψ) denotes the aggregated payoff for a UD bidder who visits the

platform on Day t, and vf (x`;G,Ψ) denotes her continuation value if she does not

exit the platform after Day t.14

Auction Selection and Bidding. After a bidder (of type TY ∈ {MU,UD})

participates in the platform, she selects which auctions to bid in, denoted by σTYSLT ,

and how much to bid in the selected auctions, denoted by σTYBID. Naturally, an

auction’s standing and highest rival bids are not independent. Thus, the bidder

updates her beliefs over the highest rival bids after observing the corresponding

standing bids and the realized market thickness. Under the updated beliefs, σTYSLT

and σTYBID jointly maximize her expected payoff on the platform on a given day. For

14The characterizations of rMU (x`;G,ψ), rUD(x`;G,Ψ), vUD(x`;G,Ψ), and vf (x`;G,Ψ) are de-

tailed in Appendix 2.9.1.
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MU bidders, the corresponding maximization problem is

(σMU
SLT , σ

MU
BID) = arg max

σSLT ,σBID

∑
j∈σSLT

∫ σBID,j

sj

(x` + ζ`j − pj)gj(pj|ω`t)dpj, (2.3)

where pj is the highest rival bid in Auction j, and gj(pj|ω`t) denotes its conditional

PDF. The term
∫ σMU

BID,j

sj
(x` + ζ`j − pj)gj(pj|ω`t)dpj stands for the expected payoff

from bidding in Auction j. If the bidder chooses Auction j, her optimal bidding

strategy is to bid up to her valuation (i.e., σMU
BID,j(x`; ζ`j, ω`t) = x` + ζ`j). Then,

her optimal auction selection decision σSLT (x`; ζ`1, ..., ζ`N̄ , ω`t) is to choose up to

K auctions with the highest expected payoffs. For UD bidders, the corresponding

maximization problem is

(σUDSLT , σ
UD
BID) = arg max

σSLT ,σBID

∑
j∈σSLT

∫ σBID,j

sj

(x` + ζ`j − pj)gj(pj|ω`t)dpj

+ αUD(1−Gj(σBID,j|ω`t)
)
vf (x`;G,Ψ), (2.4)

where Gj(pj|ω`t) denotes the conditional CDF of the highest rival bid in Auction j.

The first term in Expression (2.4) is equal to the instantaneous payoff if the bidder

wins Auction j, where we establish that gj(pj|ω`t) is independent of the vector of

optimal bids (Appendix 2.9.2). The second term is equal to the bidder’s (expected)

payoff if she does not win the current auction (which occurs with probability 1 −

Gj(b`j|ω`t)). Then, we can show that her optimal bid in Auction j is

σUDBID,j(x`; ζ`j, ω`t) = x` + ζ`j − αUDvf (x`;G,Ψ), (2.5)

and her optimal auction selection σUDSLT (x`; ζ`·, ω`t) is to choose the auction with the

highest payoff.15

15As expected, UD bidders shade their bids by their continuation values. As they are forward-
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Note that the bidders’ decision whether to visit the platform on any given day

largely depends on their beliefs about the steady state of the market (i.e., Ψ) on

that day. On the other hand, once a bidder is already on the platform and has

observed the number of auctions closing on that day, her decisions regarding which

auction(s) to participate in and how much to bid are mainly driven by her beliefs

about the highest rival bids (i.e., G). Thus, anticipated market thickness has a

more direct impact on a bidder’s decision whether to visit the platform compared

to which bidding strategy to use. Formally, the notion of steady-state equilibrium

we employ is defined as follows. [Equilibrium] A steady-state equilibrium is a tuple

({σMU , σUD}, {G,Ψ}) such that:

• (Optimality) For bidder ` with type TY ∈ {MU,UD}, her best response com-

prises three decisions on day t; that is, it takes the form σTY (x`; c`t, ζ`·, ω`t) =

[σTYV ST , σ
TY
SLT , σ

TY
BID], where σTYV ST , σ

TY
SLT , and σTYBID are defined by Expressions

(2.1), (2.2), (2.3), and (2.4), respectively, given the steady-state distributions

for the market state Ψ and the highest rival bids G.

• (Consistency) Steady-state distributions {G,Ψ} are induced by bidders fol-

lowing strategy σTY (x`; c`t, ζ`·, ω`t), TY ∈ {MU,UD}.

In equilibrium, both Ψ and G are functions of the market design (e.g., list-

ing policy). A market design lever impacts the platform’s revenues by influencing

bidders’ beliefs about the market state and the competition level. With the notion

looking and realize that their purchases today come at the expense of winning an auction in the

future, they implicitly discount their willingness to pay for a present auction.
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of how bidders behave in equilibrium, we then establish that an equilibrium exists

under a (mild) technical assumption. Assume that νMU = νUD = 0 and N̄ ≤ K.

Then, an equilibrium exists. The proof of Proposition 2.4.1 is in Appendix 2.9.3.

As stated in the proposition, equilibrium existence is shown under the assumption

that bidders have the same valuation for all auctions and the daily demand of MU

bidders is sufficiently large. For the general case where the assumptions of the propo-

sition are relaxed (i.e., νMU ≥ 0, νUD ≥ 0, and N̄ > K), we provide an algorithm

that efficiently converges to the equilibrium (see Appendix 2.11.5), which, in turn,

generates a broad set of counterfactuals (see Section 2.6). It is also worthwhile to

highlight that given Ψ and G, all of the bidders’ decisions can be expressed ana-

lytically. This is crucial in enabling us to structurally estimate the model in the

following section.

2.5 Structural Estimation

In this section, we outline our structural estimation approach and present our

estimates. More specifically, we estimate our structural model on Market A’s data

exclusively from February 2013 to February 2014 (i.e., the pre-treatment period),

throughout which the uniform listing policy was used. By doing so, we are able

to: (i) validate our structural model by deriving out-of-sample projections for Mar-

ket A’s pre-treatment-to-post-treatment revenue improvement, which we compare

against our ATE estimate from Section 2.3.3; and (ii) reserve the post-treatment

period’s data for use in our counterfactual market design analysis.
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As is common in the auction literature Ba16, we first normalize the observed

bids to adjust for heterogeneity in the products’ features and for time fixed effects.

As empirically supported in Appendix 2.10.1, bidders freely substitute between the

iPhone models available on the platform (i.e., iPhone 4, iPhone 4s, and iPhone 5) af-

ter adjusting for differences in their valuations. We likewise treat the iPhone models

as substitutes after appropriately normalizing the bids. Post-normalization, bidders’

valuations are treated as drawn from a common Weibull distribution throughout the

observation period.16

The structural estimation follows two steps: we conduct (1) a nonparametric

estimation of the platform’s steady-state distribution of auctions and bids, followed

by (2) a maximum simulated likelihood (MSL) estimation of our modeling prim-

itives for bidders’ valuation distributions, participation costs, and retention rates.

The pre-treatment period lasts for a year, so it is a fair assumption that Market

A’s pre-treatment period data are generated from a steady-state equilibrium. The

corresponding equilibrium distributions Ψ and G are directly estimated in step (1).

Notably, Ψ and G are equilibrium outcomes rather than exogenously specified model

primitives. Using the iterative algorithm detailed in Appendix 2.11.5, they are re-

computed numerically for each counterfactual scenario corresponding to a given

market design (e.g., listing policy) in Section 2.6.17

16We shift the normalized bids to ensure that they fall within the support of the Weibull distri-

bution.
17If multiple equilibria exist, two-step estimation remains consistent under the assumption that

a single equilibrium is played. The “correct” equilibrium play is recovered directly from data

in step one, and the model primitives are identified by bidders’ strategic best responses to such
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2.5.1 Estimating the Platform’s Steady State

The steady-state belief about the market consists of the distribution of the

market thickness as well as the distribution of the corresponding standing bids. In

particular, it takes the form of Ψ(ω`t) = PMKT (nt)ψ(s`t|n), where PMKT is estimated

by the empirical distribution of auctions ending on a given day. On the other hand,

the PDF of standing bids ψ(s`t|n) conditional on n is estimated using kernel density

estimator to minimize misspecification bias.

Furthermore, a bidder forms beliefs about the highest rival bids given a market

state ω`t. Recall that gj(pj|ω`t) denotes the PDF of the highest rival bid in the jth

auction given the state ω`t. Again, we use a kernel density estimator for gj(y|ω`t)

to mitigate misspecification bias. The kernel density estimators for Ψ(ω`t) and

gj(pj|ω`t) are detailed in Appendix 2.10.2. Lastly, we let the upper bound K on the

MU bidders’ demand be equal to 14 auctions (i.e., the maximum number of auctions

in which a MU bidder submitted a bid on a single day in our observation period).18

2.5.2 Estimating the Bidders’ Primitives

Before describing in detail how we estimate them, we reiterate that the model

primitives for a bidder of type TY ∈ {MU,UD} include: (i) her endowed valuation

of the product F TY that is drawn from the Weibull distribution with scale parameter

λTY and shape parameter γTY ; (ii) her daily participation cost that is exponentially

equilibrium play.
18During our observation period, no bidder submits bids to more than 14 auctions on any single

day.
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distributed with rate µTY ; and (iii) her daily retention rate αTY that represents

her probability of remaining in the bidder pool for another period. As we argue

in Appendix 2.10.4, our dataset exhibits sufficient variation to identify the above

primitives.

Given a bidder’s endowed valuation and her beliefs over the market state and

the highest rival bids (which are estimated in Section 2.5.1), her decisions, including

whether and when to visit the platform, which auction(s) to participate in, and how

much to bid, can be analytically obtained as we described in Section 2.4. This,

in principle, allows us to recover all model primitives in an efficient manner by

iteratively obtaining the likelihood of a given equilibrium outcome as a function of

the set of model primitives using simulation and updating the primitives accordingly.

Bidder `’s observed bidding history X` consists of two parts. The first part

is her participation sequence, B` = [Bt`
` , ..., B

t`+l`
` ], where Bt`

` ∈ {0, 1} indicates

whether she placed a bid on Day t (here, t` and t` + l` denote the first and last

observed bidding days for the bidder in our sample). The second part comprises her

bids on Day t, b`t, in the auctions she entered and the standing bids, S`t, in the

auctions available but not entered within the period from Day t` to Day t` + l`.

Given her endowed valuation x` and her presence in the bidder pool, we

specify the likelihood of each of her observed behaviors. The following formulas

apply to both types of bidders; thus we omit the superscripts specifying the bid-

der type. On Day t, observing a bid by Bidder ` implies that she (i) visits the

market (which occurs with probability P V (X`|θ)) and (ii) places bid b`t (which

has likelihood LB`t(b`t,S`t|x`, θ)). Thus, the likelihood of her placing bid b`t is
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P V (X`|θ)LB`t(b`t,S`t|x`, θ). On the other hand, if no bid is observed on that day,

there are two possibilities: (i) she chooses not to visit the platform (which occurs

with probability 1 − P V (x`|θ)), or (ii) she visits the platform but finds it optimal

to not place a bid (which occurs with probability P V (x`, θ)L
NB
`t (S`t|x`, θ)). Thus, the

corresponding likelihood of not observing a bid is 1−P V (x`|θ)+P V (x`|θ)LNB`t (S`t|x`, θ).19

In addition, we specify the likelihood associated with her exit from the bidder pool.

Given that the day when she exits from the bidder pool cannot be observed, we

assume that she leaves the bidder pool on any day within E days20 of her last bid

(we then take the expectation over the likelihoods of all possible exit days). In

summary, the overall likelihood of a bidder’s entire bidding history conditional on

her endowed valuation x` is given by L`(X`|x`, θ) =

(
αl`

t`+l`∏
t=t`

(
P V (x`|θ)LB`t(b`t,S`t|x`, θ)︸ ︷︷ ︸

Placing the bid(s) b`t on day t

)Bt`` ( 1− P V (x`|θ) + P V (x`|θ)LNB`t (S`t|x`, θ)︸ ︷︷ ︸
Not placing a bid on day t

)1−Bt``
)

·
(

1 +
E−1∑
t′=1

αt
′
t`+l`+t

′∏
t=t`+l`+1

(
1− P V (x`|θ) + P V (x`|θ)LNB`t (S`t|x`, θ)

))
(1− α)︸ ︷︷ ︸

Exiting bidder pool within E = 14 days since the last bidding day

. (2.6)

As the bidder’s valuation x` is not observed, we need to consider the unconditional

likelihood function, L`(X`|θ) =
∫
x`
L`(X`|x`, θ)f(x`|λ, γ)dx`, where f(x`|λ, γ) de-

notes the PDF of the Weibull valuation distribution. As L`(X`|θ) has no closed-form

expression, the MLE approach is computationally intractable. To overcome this is-

sue, we construct the simulated likelihood function L̂(X`|θ) by employing Monte

19Expressions for PV (X`|θ), LB
`t(b`t,S`t|x`, θ), and LNB

`t (S`t|x`, θ) are detailed in Appendix

2.10.4.
20Our estimates are obtained under E = 14 days. We have tested other values (e.g., E = 21

days and 28 days) and found that the resulting estimates do not differ significantly.
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Carlo integration.21 The MSL estimate θ̂MSL is obtained by maximizing the log of

the simulated likelihood of all bidders, namely θ̂MSL = arg maxθ
∑

` log
(
L̂`(X`|θ)

)
.

2.5.3 Estimation Results

Table 2.7 reports our estimates for MU and UD bidders, including their valu-

ation distribution, average daily participation cost, and daily retention probability.

These estimates highlight several differences between MU and UD bidders. On av-

erage, MU bidders possess higher endowed valuations than UD bidders, but exhibit

substantially lower variability in idiosyncratic valuations within-type across individ-

ual bidders. MU type’s average valuation is higher by $20.86 per unit (the average

auction lot size in Market A is 150.3 units), which is both statistically and eco-

nomically significant. By comparison, UD bidders exhibit more variability in their

idiosyncratic terms. Despite the non-dominance of valuation components across MU

and UD bidders, UD bidders shade their bids (Expression (2.5)), which contributes

to MU bidders winning the majority of auctions.

Per daily platform visit, MU bidders incur a substantially higher average par-

ticipation cost of $107.52 compared with $70.64 for UD bidders. On the other hand,

MU bidders tend to have a lower per-auction participation cost, as they typically

participate in multiple auctions within a day. Evidence suggests that the MU bid-

ders’ higher cost to visit on a day is associated with having to review, compare, and

match downstream channels for multiple auctions: MU bidders, on average, spend

21For additional discussion on L̂`(X`|θ), refer to Appendix 2.10.4.
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87.8 minutes on the platform per day, compared with 75.9 minutes for UD bidders.22

Depending on the profit margin of the bidders’ downstream resale channels, partic-

ipation costs in the order of $100 can be substantial, thus affecting their incentives

to participate on the platform.

To validate the model, we compare the predicted distributions of the number

of bidders per auction and the final price in the post-treatment period with those

observed in the dataset. Our model is fairly accurate in predicting both distributions

(see Appendix 2.10.5).

2.6 Implications for Platform Design

We explore how our findings from Section 2.5 lead to implications for platform

design, with a focus on relating the performance of different listing policies to their

induced levels of market thickness.

A platform’s listing policy influences revenues by manipulating the induced

market thickness. Separate strands in the existing literature contemplate dual, but

countervailing, effects from market thickness/availability on the behavior of po-

tential buyers and on revenues. For example, using a dataset of notebook auctions,

22As a side remark, note that MU bidders incur higher participation costs than UD bidders. This

may be due to the fact that MU bidders have to process more information given that they are bid-

ding and monitoring multiple auctions simultaneously. Similarly, it is plausible that cross-market

bidders incur higher participation costs than single-market bidders, as they have to switch between

marketplaces and process additional information while cross-bidding. Therefore, the presence of

cross-market bidders in the data tends to bias our participation cost estimates upwards.
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Table 2.7: Maximum Simulated Likelihood Estimates for the Primitives of the Struc-

tural Model

MU Bidders UD Bidders

Valuation per auction (x)

Mean $18,594 $15,459

($138) ($203)

Standard Deviation $876 $897

($127) ($164)

Idiosyncratic Error (SD) (ν) $2,978 $4,313

($72) ($244)

Avg. Daily Participation Cost (µ) $107.52 $70.64

($15.38) ($10.06)

Retention Rate (α) 0.968 0.843

(0.001) (0.014)

Number of Bidders 74 113

Note: Standard deviations of the estimates are in parentheses. Valuations are

at normalized scale.
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Ch07 suggest that increasing the number of concurrently available and substitutable

products reduces bidders’ willingness to pay by up to 10.2%. On the other hand,

the operations literature suggests that higher product availability may increase the

seller’s revenue by stimulating demand (e.g., [21]). In a matching context, Ga16

present evidence that thicker markets enhance efficiency by raising matching prob-

abilities. In this subsection, we decompose and analyze the contending effects of

supply-side cannibalization and demand-side participation in response to market

thickness. Within this framework, we study how market thickness can be adjusted

through the platform’s listing policy to balance these effects.

In simulating counterfactuals, we evaluate the performance of four listing poli-

cies that differ in how auction ending times are distributed throughout the week un-

der six different levels of incoming supply (which together induce a market thickness

level). The four listing policies are

(i) Uniform: The number of auctions ending on each weekday is roughly the same.

(ii) Three-Day Batch: Auctions end only on Mondays, Wednesdays, and Fridays.

(iii) Batch: Auctions end only on Tuesdays and Thursdays.

(iv) Single-Day Batch: Auctions end only on Wednesdays.

Given the same supply level, market thickness on auction-ending days increases by

switching from policy (i) to policy (iv). We consider six supply levels, denoted by

“1
3
x,” “1

2
x,” “1x” (baseline), “2x,” “3x,” and “5x.” In particular, we first derive our

“baseline” supply case by fitting Market A’s supply data to a gamma distribution to
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appropriately account for variability observed in the data. To derive the remaining

supply levels, we simply scale the average supply level of the baseline case by the

corresponding factor while keeping the coefficient of variation the same.

In simulating the demand side of the platform (i.e., bidder behavior) in our

counterfactuals, we keep the rate of new bidders joining and leaving the bidder pool

the same (except for single-unit bidders departing upon winning), mirroring how

the estimated model treats this arrival process as exogenous. Once a bidder joins

the pool, she endogenously considers when to visit the platform, in which auctions

to bid, and how much to bid in each auction. Thus, the behavior of bidders in

the bidder pool is entirely endogenous and based on equilibrium beliefs that are

updated to match the counterfactual simulation. Each simulated counterfactual

assumes a supply rate at which auction pallets arrive to post on the platform and a

listing policy (in Section 2.6.1, we additionally allow for targeted recommendations).

While the supply rate is exogenously determined by the retailer’s setting and reverse

logistics, we vary it to consider how the optimal listing policy and resulting level of

market thickness depends on the relative balance of supply and demand levels. The

exogenous rate of newly-registered bidders arriving into the bidder pool is estimated

non-parametrically from Market A’s post-treatment period. Bidders’ equilibrium

participation and bidding behavior are simulated using an iterative algorithm.23

In Table 2.8, we present the ratio of the revenue obtained relative to the

23For each listing policy (or recommendation system in Section 2.6.1), we simulate the equilib-

rium beliefs for the market state and the highest rival bids (i.e., Ψ and G), using the iterative

algorithm of Appendix 2.11.5.
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revenue under the batch listing policy at that supply level. Therefore, each row

reports the relative performance of the four listing policies at the row’s associated

supply level. In the brackets next to the relative revenues, we display the average

market thickness associated with each case.

At the baseline supply level, our counterfactual revenue improvement due to

switching Market A from the uniform listing policy to the batch listing policy is

roughly 7.0%, offering out-of-sample validation of the 7.3% increase estimated in

our ATE analysis of Section 2.3.3 using time-wise separate data.24 Besides, the

optimal policy in the baseline case turns out to be the single-day batch policy,

which yields 4.8% more revenue than the batch policy. These relative differences

in performance translate into substantial revenue gains. Over the 10 months of the

post-treatment period, Market A’s revenue from iPhone 4, iPhone 4s, and iPhone

5 auctions amounted to $4, 608, 941: the 11.3% relative difference between the uni-

form and the best-performing single-day policy translates to $520, 810 of additional

revenue for the platform.25

The relative performance of the four policies and consequently which listing

policy is “optimal” hinges on the platform’s underlying supply level. For low levels

of supply, “1
3
x” and “1

2
x,” the single-day batch policy performs best by inducing

the thickest market. In this scenario, the participation cost exhibits a dominant

24To illustrate the dampening effect of cannibalization, our simulations project an 8.8% increase

in revenue if the platform were able to exogenously increase bidder participation to the same level,

without adding or batching auctions to attract bidders (i.e., no cannibalization).
25Perhaps reflecting our projections, as of January 2017, Market A enforced a single-day listing

policy that ends all auctions exclusively on Tuesdays.
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Table 2.8: Each Listing Policy’s Simulated Revenues as Percentage of Simulated

Revenue under Batch Listing

Supply Level Uniform Three-Day Batch Batch Single-Day Batch

1
3
x 90.1% [0.6] 96.5% [1.1] 100% [1.6] 106.1% [3.2]

1
2
x 91.3% [0.9] 96.6% [1.5] 100% [2.2] 105.5% [4.4]

1x (baseline) 93.5% [2.1] 97.2% [3.4] 100% [5.2] 104.8% [10.3]

($−299, 581) ($−129, 050) ($221, 229)

2x 97.8% [4.2] 101.0% [6.9] 100% [10.5] 95.0% [20.6]

3x 109.6% [6.3] 110.8% [10.3] 100% [15.7] 88.4% [31.0]

5x 122.1% [10.1] 117.8% [16.7] 100% [25.4] 81.9% [50.2]

Note. Values in bold correspond to the row-optimal listing policies with a significance

level of 0.001. Market thickness averages are in brackets.

effect on the platform’s revenues by deterring bidders’ visits; thus, the platform

finds it optimal to increase the bidders’ expected payoff per visit by providing more

options each auction-ending day. By contrast, for high levels of supply (e.g., “5x”),

the uniform policy and the three-day batch policy perform relatively better than the

rest of the policies by maintaining a thinner market. In this case, the cannibalization

between auctions becomes the dominant effect; thus, the platform finds it optimal

to spread out the auction ending times throughout the week.

The market thickness induced by the platform’s listing policy impacts rev-
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enues. Intuitively, platform revenues are maximized when the platform’s market

thickness comes close to the level that effectively balances its trade-off of overcom-

ing bidder participation costs (thus, inducing higher participation rates) against

competition as substitutes among auctions on the supply side. Using simulated

data from the above counterfactual simulations, Figure 2.5 (the left plot) depicts

an auction’s average final per-device revenue as a function of the market’s (log) av-

erage market thickness. Interestingly, low market thickness does not lead to a high

average final price, due primarily to the participation costs and the hurdles to entry

they present. As shown in the middle plot of Figure 2.5, the expected number of

MU bidders per auction drops from 10 to 4 when market thickness decreases from 7

auctions to 1. On the other hand, cannibalization is also evident in the same plot:

the number of MU bidders in an auction keeps decreasing when market thickness

increases beyond 10 auctions. By comparison, UD bidders are much less sensitive to

the shift in market thickness. As displayed in the right plot of Figure 2.5, there is no

statistically significant increase in the expected number of UD bidders per auction

associated with higher market thickness. Illustrating the trade-off between demand-

side participation and supply-side cannibalization as market thickness increases, the

average final price is maximized at moderate levels of market thickness.

Given the reduced-formed regressions and the counterfactual simulations, Ta-

ble 2.9 summarizes the overall effects of the policy switch on bidder behavior, in-

cluding the rates of platform visit and auction participation, as well as their bidding

amount. As bidders’ non-bidding website visits are not observed, we employ the

counterfactual simulations to estimate the change in the bidders’ rate of platform
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Figure 2.5: Effect of Market Thickness on Auctions’ Final Prices and Bidder Par-

ticipation (Left plot is a scatter plot of simulated final prices. Center and right

plots show the fitted curves for simulated numbers of participants, where grey-curve

represents 95%-CI).

Table 2.9: Revenue Funnel of Participation Effects from Listing Policies

Mechanisms Change in % Evidence Type

Platform Visit 11.9% Counterfactural Simulation

Auction Participation 9.7% (p-value = 0.03) Observed

Bidding Decision Not Significant Observed

visits associated with the policy switch. As evident in Table 2.9, the increase in

the platform’s revenues is primarily due to the increase in traffic to the platform

(which, consequently, results in higher auction participation rates). On the other

hand, additional analysis in Appendix 2.11.4 shows that the listing policy has little

effect on bidders’ bidding decisions.
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2.6.1 Targeted Recommendations

In this section we discuss the design of recommendation systems for a compet-

itive online market (e.g., online auction markets). Complementing the listing policy,

a recommendation system is intended to mitigate cannibalization on days of high

market thickness by incentivizing buyers to visit the platform. As is evident in the

left plot of Figure 2.6, daily market thickness (blue curve) exhibits large variations

even though the listing policy is fixed. On the other hand, bidder participation does

not scale up to match the realized supply; thus, the number of bidders per auction

(red curve) drops on days where the realized supply is high (e.g., from Day 1 to

Day 20 and on Days 55, 89, and 98).26 As shown in the right plot of Figure 2.6,

the ratio of bidders who submit at least one bid to all active bidders in the bidder

pool remains consistently below 60%. Therefore, the decline in the number of bid-

ders per auction on these days is not the result of fluctuations in the overall bidder

pool. Instead, we argue that the daily supply-demand mismatches are mainly due

to the fact that it is costly for bidders to continuously monitor the market and ob-

tain up-to-date information about the realized supply; thus, they decide whether to

visit the platform based on their beliefs about the market in steady state. Namely,

they cannot account for the inherent variability in the realized number of auctions

available on the platform.

Given this, the platform can benefit from communicating credible market

26The left plot of Figure 2.6 also implies that sellers do not strategize the weekly supply or the

time of their listings to match the demand.
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Figure 2.6: Variability of Daily Market Thickness and Demand Response in Market

A (market thickness is defined as the number of auctions ending on a given day,

and vertical dashed lines denote the days with supply shocks)

thickness information to bidders as a way to incentivize additional visits. Yet,

sharing information about the daily supply to the entire bidder pool may actually

backfire. Specifically, our counterfactual simulation of the full information policy,

which discloses the realized market thickness daily to all bidders, indicates that in

the resulting equilibrium the final price drops by 28.3% (on days when the realized

supply is low, bidder participation drops significantly and, consequently, the final

price per device drops).

To remedy the adverse effect of the low-supply information revealed from the

communication, we consider recommendation systems that send recommendations

to disclose the market state only when the market thickness is above threshold κ

and only to η fraction of randomly-selected MU bidders. We focus exclusively on

MU bidders because they win most auctions (Table 2.2) and UD bidders are much

less responsive to market thickness information (right plot in Figure 2.5).
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If a bidder receives a recommendation, she will update her belief about the

realized supply of auctions on the platform, taking into account both the platform’s

revealed supply state and how other bidders who received the same recommendation

may respond. If she does not receive a recommendation, she will still update her

belief by inferring that one of the following two cases must be true: (1) the market

thickness on that day is lower than κ; (2) The market thickness exceeds κ, but she

was not selected to receive the information. Due to Case (1), the bidder will adjust

her belief about market thickness downwards if she does not receive a recommenda-

tion. Our counterfactual will elucidate how this affects the participation decisions

of various types of bidders.

We optimize over parameters κ and η in Market A, which operates under

its optimal single-day batch policy. The optimal system sends recommendations

to 10% of the MU bidders when the market thickness on a given day is above

22. Recommendations are sent out roughly on 11.0% of the days in the simulation

horizon. Implementing this recommendation system further improves the platform’s

overall revenue by 0.9%, including a 1.6% increase during the recommendation days.

Figure 2.7 plots MU bidders’ equilibrium rates of visiting the platform in the

presence and absence of (optimal) recommendations. Bidders’ responses to receiving

a recommendation (blue curve) vary drastically depending on their valuations. For

bidders with lower valuations (below $131), receiving a recommendation is actually

bad news, and substantially decreases their probability of visiting. By contrast, bid-

ders with higher valuations (above $131) become significantly more likely to visit the

platform after receiving a recommendation. Since the supply of auctions is higher on
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Figure 2.7: Effects of Recommendations on Bidders’ Market Participation (the left

vertical dashed line denotes the MU bidder whose participation rate remains un-

changed upon receiving a recommendation. The right vertical dashed line denotes

the MU bidder whose participation rate remains unchanged upon not receiving a

recommendation)
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days when recommendations are sent out, high-valuation bidders’ expected payoff

per visit is higher. Besides, their increased platform visits intensify the competition

and deters the low-valuation bidders. Thus, the optimal recommendation system

increases revenues mainly by altering the composition of participants through self-

selection on the market’s high-inventory days. Figure 2.7 also reveals how bidders

respond to not receiving a recommendation (red curve). First, a high-valuation

bidder (above $140) who did not receive a recommendation in the presence of a rec-

ommendation system is slightly less likely to visit the platform than in the absence

of a recommendation system (black curve). Such a bidder infers that the supply

of auctions may be low, which, in turn, weakens her incentive to participate. On

the other hand, for low-valuation bidders (below $140), not receiving the recom-

mendation can be interpreted as facing less competition on the platform. Thus, the

incentives for participation for low-valuation bidders are (slightly) higher.

2.7 Concluding Remarks

In this paper, we empirically illustrate the role of listing policies in inducing

the optimal market thickness level and, consequently, in generating higher revenues.

In particular, we highlight that optimizing this seemingly innocuous market design

lever affects revenues significantly by inducing the appropriate level of market thick-

ness on the platform. We also explore the design of a recommendation system that

selectively informs bidders about the market state and establish that it can ben-

efit the B2B auction platform by mitigating cannibalization among substitutable
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auctions.

Using a proprietary dataset, obtained from a leading online B2B auction plat-

form, we estimate that inducing higher market thickness (by concentrating the auc-

tions’ ending times on certain weekdays) leads to a 7.3% increase in the platform’s

revenues. Additional analysis points to the presence of significant participation costs

associated with visiting the platform and bidding in auctions that adversely affects

bidders’ participation rates. Motivated by the descriptive results, we develop and

estimate a structural model, which endogenizes bidders’ decision-making including

whether and when to visit the platform, which auction(s) to participate in, and

how much to bid. Notably, the revenue impact of inducing higher market thickness

predicted by counterfactual simulation on the estimated model is consistent with

the results from the reduced-form analysis.

Complementary to illustrating the revenue impact of the listing policy, we

discuss the design of a recommendation system, which alters the composition of

participants through self-selection. Appropriately designing the system yields an

additional revenue increase by successively increasing the level of competition be-

tween bidders when the daily supply is significantly higher than average.

More broadly, our work highlights that marketplace design can have signif-

icantly positive revenue implications for online two-sided platforms by mitigating

frictions that impede participation. Given their growing prominence, we believe

that exploring the impact of platform design, especially focusing on non-price levers,

on market thickness and, consequently, revenues and welfare in the context of other

two-sided marketplaces is a very fruitful direction for future research.
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2.8 Appendix: Natural Experiment

2.8.1 AIPW Estimator of the Average Treatment Effect

The propensity score ejt of an auction j that gets listed at time t is its proba-

bility of being assigned to Market A on the basis of its vector of observable attributes

AUCjt and the listing time t at which the auction lot becomes available. To estimate

the propensity score, we specify

Logit(ejt) = β̃0 + δ̃t + β̃
T
AUCjt, (2.7)

where δ̃t and β̃ respectively denote the week-t fixed effect and the attribute-coefficient

vector. Using the dependent variable Ajt, we first estimate model (2.7) by logistic

regression to obtain predicted propensity scores êjt.

The estimator of the ATEs (i.e., τPre and τPost) is characterized as follows:

τ̂ =N−1
obs

∑
jt

(Ajt · LFPjt
êjt

− Ajt − êjt
êjt

· L̂FP jt,1

)
−N−1

obs

∑
jt

(1− Ajt · LFPjt
1− êjt

+
Ajt − êjt
1− êjt

· L̂FP jt,0

)
, (2.8)

where Nobs is the period’s sample size, corresponding to the pre- and post-treatment

periods, respectively, and êjt is the estimated propensity score for auction jt obtained

by Expression (2.7). We restrict attention to auctions with estimated propensity

scores between 0.2 and 0.8 in order to ensure that each unit will not have a weight

that is more than 0.025, and that the requisite overlap assumption holds Im04.

While the classic ATE estimate is derived as the difference in observed outcomes

weighted appropriately using the associated propensity score projections êjt, Robins’
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AIPW estimator adds terms involving the projections L̂FP jt,1 and L̂FP jt,0. In

turn, these projections are derived from estimating the following linear models of

log-revenue outcomes, as an alternative to the classic ATE:

LFPjt,A = β0,A + δt,A + βTAAUCjt,A + εjt,A, (2.9)

where A is the indicator of Market A, β0,A is the intercept, δt,A is a fixed effect for

week t, and βA denotes the attribute-coefficient vector. Note that Robins’ AIPW

is a doubly robust estimator; that is, it offers a consistent estimator of the ATE if

either the classic ATE propensity score model (i.e., Expression (2.7)) or the linear

outcome model (i.e, Expression (2.9)) is well specified.

2.8.2 Assessing Overlap

The purpose of this section is to assess the overlap in the covariates of Markets

A and B and, subsequently, to argue that our estimation approach is indeed valid. To

this end, we restrict attention to observations that have predicted propensity scores

between 0.2 and 0.8 and, first, present the corresponding distributions of predicted

propensity scores and summary statistics.27 In our propensity score model, we

include variables to capture weekly fixed effects (i.e., the time at which an auction

was held), the auction lot size, and fixed effects for product models and carriers.

We then calculate the differences between the means of each of the covariates in the

treatment and control groups, respectively. A covariate with a difference in means

27Given the sample size, the selection of the cutoff points follows the rule that no observation

will have a weight that is more than 0.05 Im04
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Figure 2.8: Histograms of Propensity Scores in Samples of the Pre-treatment Period

(left) and the Post-treatment Period (right)

that is greater than 0.25 standard deviations is considered to be lacking overlap.

During the pre-treatment period, the treatment effect relates to unobserved

differences between Markets A and B. As deduced from the left plot of Figure

2.8, there is a sufficiently large overlap between the treatment group (Market A)

and the control group (Market B). In the first three columns of Table 2.10, we

present the means of the covariates (with standard deviations in parentheses) and

the cross-market differences for each covariate. All differences in means lie within

0.14 standard deviations, which indicates that the two groups are well balanced.

During the post-treatment period, the treatment effect relates to both the un-

observed differences between Markets A and B and the listing policy switch. In the

right plot of Figure 2.8, we provide a histogram with the predicted propensity scores

of the treatment group (Market A) and the control group (Market B). Although the

overlap is not as large as that in the pre-treatment period, we believe that the level

of overlap in the post-treatment period is sufficient. As both distributions spread
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Table 2.10: Overlap of Covariates in the Selected Samples of the Pre- and Post-

treatment Periods

Pre-treatment Post-treatment

Ctr. Group Trt. Group Diff./S.D. Ctr. Group Trt. Group Diff./S.D.

Auction Lot Size 77.34 (37.58) 80.52 (37.32) 0.08 63.29 (37.65) 92.70 (26.53) 0.78

iPh. 4-AT&T .023 (.152) .012 (.112) -0.07 .075 (.264) .084 (.278) 0.03

iPh. 4-Sprint .192 (.394) .194 (.395) 0.01 .104 (.306) .069 (.254) -0.11

iPh. 4-Verizon .291 (.454) .256 (.436) -0.07 .037 (.191) .045 (.207) 0.03

iPh. 4s-AT&T .175 (.380) .161 (.368) -0.03 .162 (.369) .259 (.438) 0.26

iPh. 4s-Sprint .103 (.304) .129 (.336) 0.08 .223 (.416) .196 (.397) -0.06

iPh. 4s-Verizon .133 (.339) .183 (.386) 0.14 .163 (.369) .165 (.371) 0.01

iPh. 5-Sprint .036 (.188) .031 (.175) -0.02 .154 (.361) .105 (.307) -0.13

iPh. 5-Verizon .020 (.143) .014 (.119) -0.04 .032 (.177) .039 (.194) 0.04
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out within [0.2, 0.8], we have observations from both groups in every propensity

score bin. In the last three columns of Table 2.10, we present the covariate means

(with standard deviations in parentheses) and the cross-group differences for each

covariate. The differences in means for all covariates (with the exception of the auc-

tion lot size) are within 0.26 standard deviations. In general, an outcome regression

model relies on control observations when predicting the outcome of treated units

if they were not treated. A large difference in covariate distributions across groups

implies that the predictions heavily rely on extrapolation; hence, they are sensitive

to the specification of the outcome regression model.

To evaluate how our ATE estimation is affected by the lack of overlap in the

auction lot size (in the post-treatment period), we conduct the following robustness

checks:

(i) First, we rerun the ATE analysis based on a subsample in which the treatment

and control groups have a large overlap and there are sufficient observations to

make statistically significant inferences. Although the assumption of overlap in

the alternative approach is more credible compared to the original estimation,

the estimated effect does not necessarily apply to all observations.

(ii) Second, to test whether the estimation is sensitive to the specification of the

outcome regression model, we conduct two additional robustness checks by

replacing the auction lot covariate with its log scale value (to make it concave)

and by adding a quadratic term for the auction lot (to make it convex).

For the subsample in (i), we select auctions with lot size between 50 and
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90. This results in 49 observations for the control group and 58 observations for

the treatment group. The subsample accounts for 27% of the original sample. To

assess the overlap for the subsample, we present the histogram of predicted propen-

sity scores (left plot of Table 2.11) and the differences in means of the covariates

(right table of Table 2.11). Compared with the original sample, the overlap in the

subsample is sufficiently higher.

Table 2.11: Histogram of the Predicted Propensity Scores in the Selected Subsample

in the Post-treatment Period (left) and a Table Assessing the Overlap of Covariates

in the Selected Subsample (right)

Ctr. Group Trt. Group Diff./S.D.

Auction Lot Size 69.11 (11.44) 69.51 (11.30) 0.03

iPh. 4-AT&T .122 (.327) .030 (.171) -0.28

iPh. 4-Sprint 0 0 0

iPh. 4-Verizon .107 (.309) .092 (.290) -0.04

iPh. 4s-AT&T .109 (.312) .056 (.230) -0.17

iPh. 4s-Sprint .351 (.477) .400 (.490) 0.10

iPh. 4s-Verizon .185 (.388) .129 (.335) -0.14

iPh. 5-Sprint .052 (.223) .093 (.291) 0.18

iPh. 5-Verizon .048 (.214) .085 (.280) 0.17

We perform the ATE analysis based on the subsample and then compare the

result with that obtained from the original sample. The results can be found in

Table 2.12. The estimated ATE of the subsample is significantly positive and on a

similar scale to the ATE estimate corresponding to the original sample. Though the

subsample estimate may suffer from selection bias, comparison of the two results
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Table 2.12: Average Treatment Effect Estimates using the Original Sample and the

Selected Subsample

Auction lot size specification Original Sample Selected Subsample

Linear 7.3%∗∗∗ 8.1%∗∗∗

(0.009) (0.011)

Note: ∗∗∗ p<0.01

suggests that the lack of overlap for the auction lot size covariate seems to have a

very limited impact on the ATE estimation. In what follows, we conduct another

analysis to check whether our ATE estimation is sensitive to the specification of the

outcome regression model.

The key issue corresponding to the lack of overlap between treated and con-

trolled units is that the controlled outcome predictions of the treated units with

outlying values heavily rely on extrapolation, as few control units are observed in

this region when estimating the outcome regression model. In other words, the

prediction precision may be sensitive to the specification of the outcome regression

model. In our case, the predicted outcomes may be subject to the functional form of

auction lot size. In our robustness check (ii), we consider concave (log) and convex

(quadratic) specifications regarding the auction lot size in the outcome regression

model. As shown in Table 2.13, the ATE estimates remain almost the same under

different specifications. In particular, there is a strong linear relationship between

the final price of an auction and its size. This is quite intuitive given that the cell
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Table 2.13: Robustness Check of Auction Lot Size Specification

Auction lot size specification Original Sample

Linear 7.3%∗∗∗

(0.009)

Concave (Log) 7.2%∗∗∗

(0.009)

Convex (Quadratic) 7.3%∗∗∗

(0.009)

Note: ∗∗∗ p<0.01

phones sold in an auction are relatively homogeneous; thus, the price is likely to

increase linearly with the lot size. Within a moderate lot size range, economies of

scale and demand satiation effects are not significant; thus, the dependence between

the final price and the lot size can be well described by a linear relationship. This

implies that the estimated ATE is not significantly influenced by outliers, including

those with auction lots larger than 90, whose predicted control outcomes heavily

rely on extrapolation. In conclusion, our original ATE estimation remains reliable.

2.8.3 Cross-market Bidders

In this section, we establish that the presence of bidders that are cross-registered

in both Markets A and B implies that our estimate on the revenue impact of the

switch in the listing policy is conservative. In other words, if the markets were
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truly independent, then switching to a batch listing policy would result in a higher

increase in the platform’s revenues than our estimated 7.3%. Our approach involves

developing a model that features cross-market bidders and computing the platform’s

revenues as a function of their share in the total population via simulation.

2.8.3.1 Model.

First, we provide an outline of the model.

(a) Model Setting and Assumptions.

1. The platform has two markets, A and B. Each market has a single-market

bidder pool of fixed size M . Both markets share a cross-market bidder

pool of fixed size L. Each bidder has a private valuation x drawn from

a common distribution with cdf F (·), which has a positive support. The

bidder has demand for K auctions upon entry into the pool.

2. The platform operates over an infinite horizon. All auctions are identical,

second-price auctions and last for one day. Under the uniform policy,

auctions are listed every day; under the batch policy, auctions are listed

every other day.

3. Each day, a bidder first decides whether or not to participate on the

platform. If she does, she incurs a participation cost c drawn from the

exponential distribution with rate µ. If the bidder chooses to participate

on a given day, she selects a number of auctions equal to her unsatisfied

demand to participate at random. For each auction j she participates
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in, she places a bid equal to x + εj, where εj is an idiosyncratic term

drawn from N(0, σ2
ε ). At the end of the day, she exits the bidder pool

with probability 1 − ρ. As soon as a bidder exits, a new bidder joins so

that the pool size remains constant.

(b) Notation. We use k and sm to denote a bidder’s demand that is still not

satisfied and the number of auctions in Market m that the bidder has chosen

to participate in, respectively. Moreover, we introduce the following notation:

1. Gmt(y), gmt(y): the CDF and PDF of the highest rival bid in an auction

in Market m on Day t.

2. Pmt(w;x, k): the probability of a single-market bidder winning w auctions

in Market m on Day t.

3. Pt(wA, wB;x, sA, sB): the probability of a cross-market bidder winning

wA Market A auctions and wB Market B auctions on Day t.

4. umt(x, k): a single-market bidder’s expected payoff in Market m on Day

t.

5. ut(x, k): a cross-market bidder’s expected payoff by visiting the platform

on Day t.

6. vmt(x, k): a single-market bidder’s aggregate payoff on Day t.

7. vt(x, k): a cross-market bidder’s aggregate payoff on Day t.

(c) Participation decisions when both markets implement the uniform

policy. Suppose that there are Nm auctions in Market m on each day. Since
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both markets use the uniform policy, we omit subscript t.

1. Single-market bidders: The expected payoff of a single-market bidder in

Market m when she visits the platform is given by

um(x, k) = min{Nm, k}
∫ x

0

(x− y)gm(y)dy

+ ρ

min{Nm,k}∑
w=0

Pm
(
w;x,min{NM , k}

)
vm(x, k − w). (2.10)

The bidder visits the platform if um(x, k)−c ≥ ρvm(x, k), where ρvm(x, k)

is the payoff corresponding to waiting. Hence, her aggregate payoff is

equal to

vm(x, k) = E
[

max
{
um(x, k)− c, ρvm(x, k)

}]
= um(x, k) +

1

µ
exp

(
− µ

(
um(x, k)− ρvm(x, k)

))
− 1

µ
. (2.11)

Lastly, combining (2.10) and (2.11), we can solve for um(x, k) and vm(x, k)

numerically for k = 1, 2, ..., K, given gm, Pm and x.

2. Cross-market bidders: The expected payoff of a cross-market bidder when

she visits the platform is given by

u(x, k) =
1

|C(k,NA, NB)|
∑

(kA,kB)∈C(k,NA,NB)

( ∑
m∈{A,B}

km

∫ x

0

(x− y)gm(y)dy

+ ρ

kA∑
wA=0

kB∑
wB=0

P (wA, wB;x, kA, kB)v(x, k − wA − wB)
)
, (2.12)

where C(k,NA, NB) =
{

(kA, kB) : kA + kB = min(k,NA + NB), kA =

0, 1, ..., NA, kB = 0, 1, ..., NB

}
. Then, she will visit the platform if u(x, k)−

c ≥ ρv(x, k), where ρv(x, k) is the payoff corresponding to waiting.
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Hence, her aggregate payoff is equal to

v(x, k) = E
[

max
(
u(x, k)− c, ρv(x, k)

)]
= u(x, k) +

1

µ
exp

(
− µ

(
u(x, k)− ρv(x, k)

))
− 1

µ
. (2.13)

Lastly, combining Expressions (2.12) and (2.13), we can solve for u(x, k)

and v(x, k) numerically, for k = 1, 2, ..., K, given gA, gB, P , and x.

(d) Participation decisions when Market A implements the uniform pol-

icy and Market B implements the batch policy. In Market A, there are

0 auctions on odd days, denoted by t = 1 below, and 2NA auctions on even

days, denoted by t = 2 below. In Market B, there are NB auctions every day.

1. Single-Market-A bidders: For a single-market bidder in Market A, she

only visits the platform on even days. Then,

uA2(x, k) = min(2NA, k)

∫ x

0

(x− y)gA2(y)dy

+ ρ2

min(2NA,k)∑
w=0

PA2

(
w;x,min(2NA, k)

)
vA2(x, k − w). (2.14)

She will visit the platform if uA2(x, k)−c ≥ ρ2vA2(x, k), where ρ2vA2(x, k)

is the payoff corresponding to waiting. Hence, her aggregate payoff is

equal to

vA2(x, k) =E
[

max
(
uA2(x, k)− c, ρ2vA2(x, k)

)]
=uA2(x, k) +

1

µ
exp

(
− µ

(
uA2(x, k)− ρ2vA2(x, k)

))
− 1

µ
.

(2.15)
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Lastly, combining (2.14) and (2.15), we can solve for uA2(x, k) and vA2(x, k)

numerically for k = 1, 2, ..., K, given gA2, PA2, and x.

2. Single-Market-B bidders: For a single-market bidder in Market B, her

expected payoff of visiting the platform on day t ∈ {0, 1} (let t′ ∈ {0, 1}\t)

is

uBt(x, k) = min(NB, k)

∫ x

0

(x− y)gBt(y)dy

+ ρ

min(NB ,k)∑
w=0

PBt
(
w;x,min(NB, k)

)
vBt′(x, k − w). (2.16)

She will visit the platform if uBt(x, k)− c ≥ ρvBt′(x, k), where ρvBt′(x, k)

is the payoff corresponding to waiting. Hence, her aggregate payoff is

equal to

vBt =E
[

max
(
uBt(x, k)− c, ρvBt′(x, k)

)]
=uBt(x, k) +

1

µ

(
− µ

(
uBt(x, k)− ρvBt′(x, k)

))
− 1

µ
. (2.17)

Lastly, combining Expressions (2.16) and (2.17), we can solve for

uB1(x, k), uB2(x, k), vB1(x, k),

and vB2(x, k) numerically for k = 1, 2, ..., K, given gB1, gB2, PB1, PB2,

and x.

3. Cross-market bidders: For a cross-market bidder visiting the platform,
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her expected payoffs on odd and even days are given as follows:

u1(x, k) = min(k,NB)

∫ x

0

(x− y)gB1(y)dy

+ ρ

min(k,NB)∑
wB=0

P1

(
0, wB;x, 0,min(k,NB)

)
v2(x, k − wB),

(2.18)

and u2(x, k) =
1

|C(k, 2NA, NB)|
∑

(kA,kB)∈C(k,2NA,NB)

( ∑
m∈{A,B}

km

∫ x

0

(x− y)gm2(y)dy

+ ρ

kA∑
wA=0

kB∑
wB=0

P2(wA, wB;x, kA, kB)v1(x, k − wA − wB)
)
,

(2.19)

where C(k, 2NA, NB) =
{

(kA, kB) : kA + kB = min(k, 2NA + NB), kA =

0, 1, ..., NA, kB = 0, 1, ..., NB

}
. On day t ∈ {0, 1} (with t′ ∈ {0, 1}\t), she

will visit the platform if ut(x, k) − c ≥ ρvt′(x, k), where ρvt′(x, k) is the

payoff corresponding to waiting. Hence, her aggregate payoff on Day t is

equal to

vt(x, k) =E
[

max
(
ut(x, k)− c, ρvt′(x, k)

)]
=ut(x, k) +

1

µ
exp

(
− µ

(
ut(x, k)− ρvt′(x, k)

))
− 1

µ
. (2.20)

Lastly, combining Expressions (2.18), (2.19), and (2.20), we can solve

for u1(x, k), u2(x, k), v1(x, k), and v2(x, k) numerically for k = 1, 2, ..., K,

given gA2, gB1, gB2, P1, P2 and x.

(e) Simulation. We provide a brief summary of how we simulate bids on each

day (through Day T ):
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- Day 0: We initialize gmt(y), Pmt(w;x, k), and Pt(wA, wB;x, sA, sB) for the

first 2M single-market bidders and L cross-market bidders in the three

bidder pools.

- Day t: First, we update the bidder pools by replacing the bidders who

exit with new bidders. The new bidders form their beliefs about the

state of the market, i.e., gmt(y), Pmt(w;x, k), and Pt(wA, wB;x, sA, sB)

based on all bids between Day 1 and Day t. Then, all active bidders

make platform-visit decisions and, if they choose to visit the platform,

they place bids in a random subset of the auctions. When all bids are

placed, auctions are allocated to their winners and we update the latter’s

demand that has not been yet satisfied.

2.8.3.2 Simulation Results.

(a) Parameters. Our simulation scenarios are based on the following parameters:

NA = NB = 3 2M + L = 40 F = N(50, 15) Fε = N(0, 1)

K = 8 µ = 0.01 ρ = 0.8 T = 2, 000.

We chose the parameters above in order to make our simulation scenarios

relatively comparable to what we observe in the dataset. We then simulate

the model for 1,000 days and analyze the corresponding bids.

(b) Arbitrage effect of cross-market bidders. We evaluate the effect of the

policy switch under a number of scenarios corresponding to different ratios

for the cross-market bidders, ranging from 0% to 80%. Under the parameters
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Table 2.14: Average Final Price per Market in Different Simulation Scenarios

Ratio of cross-market bidders 0% 10% 20% 30% 60% 80%

Market A 54.64 55.63 56.81 57.66 59.49 60.67

Market B 49.37 50.61 51.92 53.02 55.67 57.25

Abs. Change 5.28 5.03 4.89 4.64 3.82 3.42

Change in % 10.7% 9.9% 9.4% 8.8% 6.9% 6.0%

noted above, Market A and Market B are identical when they both implement

the uniform policy. Thus, we only need to consider the cross-market price

difference when Market A is under the batch policy, while Market B is under

the uniform policy.

As is evident in Table 2.14, the revenue increase corresponding to the policy

switch is decreasing in the proportion of cross-market bidders in the population

of bidders. This is due to the fact that cross-market bidders play the role of

an arbitrageur and tend to shrink the price gap between the two markets. In

particular, when Market A auctions are expected to have higher final prices

than those in Market B, a cross-market bidder will certainly choose to bid

in Market B, thus intensifying the competition in Market B and resulting

in a decrease in the price gap between the two markets. In summary, this

analysis implies that our estimate of the revenue impact of the policy switch

in Section 2.3.3 is conservative compared to the case where the two markets

are completely independent (i.e., when there are no cross-market bidders).
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Table 2.15: Average Number of Weekly Participants in Markets A and B (S.D. in

the parentheses)

Market B Market A

Pre-treatment Period 27.7 (18.3) 17.3 (14.8)

Post-treatment Period 52.1 (18.5) 46.2 (15.4)

Changing Rate (%) 88.1% 167.1%

Therefore, designating our setting as a “natural experiment” is well justified.

2.8.4 Aggregate Participation Increase in Market A

In this subsection, we measure the increase of the overall auction participation

in Market A resulted from the policy switch. Explicitly, we count the number of

unique bidders participating an auction (not limited to iPhone 4, iPhone 4s, and

iPhone 5 auctions) per market per week and aggregate them across markets and

across periods. The results are displayed in Table 2.15. As is evident in the table,

Market A has a substantial increase of the unique participants per week in the post-

treatment period. This indicates that the policy switch from the uniform policy to

the batch policy attracts more bidders to Market A.

2.8.5 Additional Evidence of Participation Costs

We provide additional evidence for participation costs driving the revenue in-

crease in Market A by examining the platform-visit decisions of cross-market bidders.
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To that end, we examine whether cross-market bidders exhibit different participa-

tion patterns in Market B across weekdays before and after the adoption of the

batch policy in Market A. In particular, we compare bidders’ participation rates

in Market B on Tuesdays and Thursdays to those on Mondays, Wednesdays, and

Fridays by computing the ratio of the total number of participants on Tuesdays and

Thursdays over the total number of participants on the remaining weekdays. As-

suming that cross-market bidders are equally likely to participate in the market on

any given weekday would imply a ratio of 2/3. During the pre-treatment period, we

observe the cross-market bidders’ participation ratio to be 63% (i.e., close to 2/3)

in Market B, consistent with the use of the uniform listing policy in both markets.

However, while Market B persisted in employing the uniform listing period through-

out the post-treatment period, its participation ratio for cross-registrants increased

to 84%, suggesting that these bidders strongly preferred to participate in Market

B on the auction-clearing days of the other market (i.e., Tuesdays and Thursdays

in Market A). Within the same period, an average cross-market bidder bids in a

higher fraction of available auctions in Market B on Tuesday/Thursday than on

Monday/Wednesday/Friday (as shown in Figure 2.9).28 This spillover effect in the

cross-market bidders’ participation rates suggests that the costs involved in visiting

the platform, carefully examining the inventory of open auctions, and placing a bid

are substantial. Thus, bidders are strategic in their decision to visit the platform

and actively participate in auctions. In other words, bidders choose to visit the

28We formally analyze this spillover effect in the cross-market bidders’ participation rate using

a difference-in-differences methodology in Appendix 2.11.2.
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Figure 2.9: Average Auction Participation Rates in Market B in the Post-treatment

Period

platform only when their expected payoffs from doing so exceed some threshold.

In summary, the above discussion (including Section 2.3.4) suggests the fol-

lowing mechanism to explain the revenue increase: an increase in market thickness

boosts bidder participation both on aggregate and per auction. In turn, this addi-

tional traffic results in higher revenues for the platform. Underlying this mechanism

is the fact that visiting the platform on a given day, monitoring the set of avail-

able auctions, and choosing whether and how much to bid entails a significant cost

for bidders. In other words, although one expects that the auction platform would

eliminate frictions and an auction’s ending time would not affect its final price, we

demonstrate that this is not the case (at least in the liquidation auctions). Thus, op-

timizing over listing policies (i.e., auctions’ ending times) brings significant benefits

to the platform.
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2.9 Appendix: Proofs

2.9.1 Characterizations of rMU(x`;G,ψ), rUD(x`;G,Ψ), vUD(x`;G,Ψ),

and vf(x`;G,Ψ)

When a MU bidder ` participates in the platform and observes market state

ω`t, her conditional payoff becomes

uMU(x`; ζ`·, ω`t, G) = max
σSLT ,σBID

∑
j∈σSLT

∫ σBID,j

sj

(x` + ζ`j − pj)gj(pj|ω`t)dpj. (2.21)

Therefore, her expected payoff for visiting the platform is

rMU(x`;G,Ψ) =

∫
ω

∫
ζ`·

uMU(x`; ζ`·, ω`t, G)dFζ(ζ`·)dΨ(ω`t). (2.22)

For a UD bidder `, her conditional payoff after visiting the platform is given

by

uUDj (x`; ζ`j, ω`t, G,Ψ) = max
σBID,j

∫ σBID,j

sj

(x` + ζ`j − pj)gj(pj|ω`t)dpj

+ αUD(1−Gj(b`j|ω`t)
)
vf (x`;G,Ψ). (2.23)

Therefore, her aggregated payoff for participating in the platform is:

vUD(x`;G,Ψ) =

∫
ω

∫
ζ`j∗

uUDj∗ (x`; ζ`j∗ , ω`t, G)dFUD
ζ (ζ`j∗)dΨ(ω`t),

where j∗ = σUDSLT (x`; ζ`·, ω`t) denotes the auction in which it is optimal to bid. Lastly,

a UD bidder’s continuation payoff is characterized by the following Bellman equa-

tion:

vf (x`;G,Ψ) =

∫ ∞
0

max
{
vUD(x`;G,Ψ)− c, αUDvf (x`;G,Ψ)

}
µUDe−µ

UDcdc. (2.24)
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2.9.2 Independence between b` and gj(pj|ω`t)

In this subsection, we show that Expressions (2.21) and (2.23) can account for

the effect of b` on the distribution of the highest rival bids.

Recall that the market state is denoted by ω`t = (nt, s`t), and let wj denote

the current highest bid in auction j, which is unobservable. The conditional PDF

of wj is denoted by hj(wj|nt, s`t). Let pj denote the highest rival bid (i.e., the final

price) in auction j, and let kj(pj|nt, s`t) denote its conditional PDF. The expected

payoff of a bidder that places a bid b`j in auction j is

∫ b`j

sj

(∫ b`j

wj

(x` + ζ`j − pj)kj(pj|nt, wj, s`t,−j)dpj
)
hj(wj|nt, s`t)dwj,

where sj denotes the current standing bid in auction j, and s`t,−j is the vector of

the standing bids excluding auction j. In turn, this is equal to:

∫ b`j

sj

(x` + ζ`j − pj)

(∫ pj

sj

kj
(
pj|nt, wj, s`t,−j

)
hj(wj|nt, s`t)dwj

)
dpj.

Let

gj(pj|nt, s`t) =

∫ pj

sj

kj
(
pj|nt, wj, s`t,−j

)
hj(wj|nt, s`t)dwj.

We can verify that gj(pj|nt, s`t) is a probability density function and that it is

independent of b`. �

2.9.3 Proof of Proposition 2.4.1

To establish the existence of the equilibrium, we first establish that the mapping

from beliefs about the highest rival bids to their actual distribution is continuous
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and compact. Then, we conclude that the mapping has a fixed point, using the

Schauder fixed-point theorem.

Mapping Γ.

We denote the unconditional CDF of the highest rival bids by G. Its jth

component is the following Gj
n(yjn) =

∫
ω
G

(j)
n (yjn|ω)dΨ(ω), which is the unconditional

distribution of the highest rival bid yjn in the auction with the jth−lowest standing

bid. We then specify the mapping between G and the resulting unconditional rival

bids distribution Ĝ as

Ĝ(·) = Γ(·; G) = P
(
fh(xMU ,mMU ,b,mUD, o, n) ≤ ·; G

)
=

∫ ( ∑
o,n,mMU ,mUD

1
(
fh(xMU ,mMU ,b(xUD; G),mUD, o, n) ≤ ·

)
· P (o, n)PMU(mMU ; xMU ,G)PUD

(
mUD; b(xUD; G),G

))
P (dxMU , dxUD).

The notation we use above can be summarized as follows:

(i) o: the exogenous order of bidders in the pool visiting the platform.

(ii) n: number of auctions (i.e., market thickness).

(iii) N̄ : upper bound of n.

(iv) mMU ,mUD: sets of MU and UD bidders who visit the platform.

(v) xMU ,xUD: vectors of valuations of MU and UD bidders in the bidder pool.

(vi) b(xUD; G): bidding function of UD bidders.
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(vii) fh(·): vector of functions that generate the final price in each auction.

We can ignore all discrete variables (i.e., mMU , mUD, o, and n) as they only

take a finite number of values. It is sufficient to establish the continuity and com-

pactness of the following mapping Γsub : H → H, where H is the space of probability

CDFs, with fixed mMU ,mUD, o, and n. Specifically,

G̃(·) = Γsub(·; G)

=

∫ (
1
(
fh(xMU ,mMU ,b(xUD; G),mUD, o, n) ≤ ·

)
· P (o, n)PMU(mMU ; xMU ,G)PUD

(
mUD; b(xUD; G),G

))
P (dxMU , dxUD).

Note that Γ =
∑

Γsub. In addition, we have the following specifications for the

components of Γsub(G):

PMU(mMU ; xMU ,G)

=
∏
`MU

P
(
cMU ≤ rMU(x`MU ; G)

)
1(`MU∈mMU )

P
(
cMU > rMU(x`MU ; G)

)
1(`MU 6∈mMU )

, and

PUD(mUD; b,G)

=
∏
`UD

P
(
cUD ≤ rUD(b`UD ; G)

)
1(`UD∈mUD)

P
(
cUD > rUD(b`UD ; G)

)
1(`UD 6∈mUD)

,

where rMU(·; G) and rUD(·; G) denote the expected payoffs per market visit for MU

and UD bidders, respectively. Furthermore, Proposition 2.9.4 (specified in Appendix

2.9.4) implies that bidders simply choose to bid in the auction(s) with the lowest

standing bid(s).29 The expected payoffs per market visit for both types of bidders

29We provide proofs for the propositions in the remainder of the Appendix.
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are:

rMU(x`MU ; G) =
N̄∑
n=1

pn

min(n,K)∑
j=1

∫ x
`MU

0

Gj
n(y)dy, and rUD(b`UD ; G) =

N̄∑
n=1

pn

∫ b
`UD

0

G1
n(y)dy,

where `MU and `UD are indices corresponding to the MU and UD bidders. The

probability that there are n auctions is denoted by pn. The optimal bid b`UD placed

by UD bidder `UD is:

b`UD = x`UD −
αUD

1− αUD
(
rUD(b`UD ; G) +

1

µUD
exp
(
− µUDrUD(b`UD ; G)

)
− 1

µUD

)
,

where µUD is the parameter of the participation cost distribution of the UD bidders.

By definition, the vector of functions that generate the final price in each

auction can be denoted by fh = (f 1
h , ..., f

N̄
h ), and the element f jh maps all bidders’

auction selections and bidding decisions to the final price in auction j. For ease of

exposition, we define f jh as a function of the ordered valuations of the participating

bidders. In auction j, we use x
j,(`)
MU , x

j,(`)
UD to denote the `th-highest valuation among

MU and UD bidders, respectively, and we use xjMU and xjUD to denote the vectors

of valuations of MU and UD bidders who choose auction j. We can write f jh as

f jh(xjMU ,x
j
UD; G) =


x
j,(2)
MU , if x

j,(2)
MU > b(x

j,(1)
UD ,G)

b(x
j,(2)
UD ,G), if b(x

j,(2)
UD ,G) > x

j,(1)
MU

x
j,(1)
MU ∧ b(x

j,(1)
UD ,G), otherwise.

So far, we have completed the specification of mapping Γsub. In addition, we

note that the steady-state beliefs of the market state (i.e., Ψ(ω)) and the highest

rival bids (i.e., Gj(y|ω)) affect bidders’ behavior only through G. Thus, to establish

consistency, it is sufficient to show that G is induced by bidders playing their optimal

strategies. In what follows, we show the continuity and compactness of Γsub.
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Continuity of Γsub.

We prove the following three lemmas to establish the continuity of Γsub. Given

mMU , mapping Γ1(·; G) , PMU(mMU ; ·,G) is uniformly bounded and Lipschitz

continuous in G.

Proof: The mapping is uniformly bounded since PMU(mMU ; ·,G) is a proba-

bility CDF. To show that Γ1 is Lipschitz continuous, first note that for all G,G′ ∈ H

and for all x`MU ∈ [0, B] (recall that B is the upper bound of the valuations), we

have:

|rMU(x`MU ; G)−rMU(x`MU ; G′)| ≤
N̄∑
n=1

pn

min(n,K)∑
j=1

∫ x
`MU

0

|Gj
n(y)−G

′j
n (y)|dy ≤ N̄2B|G−G′|∞.

Therefore, rMU(·; G) is uniformly bounded, and Lipschitz continuous in G.

Second, using the fact that the participation costs follow the exponential dis-

tribution, we show that exp
(
− µMUr

MU(·; G)
)

is uniformly bounded and Lipschitz

continuous in rMU(·; G). Note that 0 ≤ rMU(x`MU ; G) ≤ N̄B. Moreover, for any

u, u′ ∈ [0, N̄B], we have

|exp(−µMUu)− exp(−µMUu′)| ≤
∫ u

u′
|µexp(−µMU t)|dt ≤ µMU |u− u′|,

and exp(−µMUu) ∈ [0, 1]. In turn, this implies that exp
(
− µMUrMU(·; G)

)
is

uniformly bounded and Lipschitz continuous in rMU(·; G). From the definition of

PMU(mMU ; ·,G), which is equal to the product between exp
(
−µMUrMU(x`MU ; G)

)
and 1− exp

(
−µMUrMU(x`MU ; G)

)
for a finite number of bidders, we conclude that

PMU(mMU ; ·,G) is Lipschitz continuous in G. �

Given mUD, mapping Γ2(·; G) , PUD(mUD; b(·; G),G) is uniformly bounded
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and Lipschitz continuous in G. Proof: The mapping is uniformly bounded as

PUD(mUD; b(·; G),G) is a probability CDF. To establish Lipschitz continuity, we

decompose Γ2 into three parts:

(i) Mapping Γ2a(·; G) , PUD(mUD; ·,G);

(ii) Function f2b(b) , PUD(mUD; b,G) given G; and

(iii) Mapping Γ2c(·; G) , b(·; G).

We show that each part is uniformly bounded and Lipschitz continuous separately.

Note that mUD is fixed. The claim for Γ2a(G) follows using the same argument as

in Lemma 2.9.3. For f2b(b), it is sufficient to show

P
(
cUD ≤ rUD(b; G)

)
= 1− exp(−µUDrUD(b; G)),

is Lipschitz continuous in b given G. This holds since

∣∣∣∂P(cUD ≤ rUD(b;G)
)

∂b

∣∣∣ =
∣∣µUDexp(− µUDrUD(b; G)

) N̄∑
n=1

pnG
1
n(b)

∣∣ ≤ µUD.

Lastly, mapping Γ2c(G) : H 7→ [0, B]L, where recall that L denotes the upper

bound of the size of the bidder pool, is uniformly bounded. For a UD bidder with

x`UD ∈ [0, B] and for all G,G′ ∈ H, according to the optimal bidding decision of

UD bidders, we have

b = x`UD − F (b,G), and b′ = x`UD − F (b′,G′),

where

F (b,G) =
αUD

1− αUD
(
rUD(b; G) +

1

µUD
exp
(
− µUDrUD(b; G)

)
− 1

µUD

)
.
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Note that b− b′ + F (b,G)− F (b′,G′) = 0, which further implies that

b− b′ + F (b,G)− F (b′,G) = F (b′,G′)− F (b′,G).

The left-hand side of the above equation is equal to
∫ b
b′

1 + ∂F
∂b

(u,G)du. Thus,

∂F

∂b
(u,G) =

∂F

∂rUD
∂rUD

∂b
(u,G) =

αUD

1− αUD
(

1− exp
(
− µUDrUD(u; G)

))( N̄∑
n=1

pnG
1
n(u)

)
> 0,

which implies that |b− b′ + F (b,G)− F (b′,G)| ≥ |b− b′|. On the other hand,

|F (b′,G′)− F (b′,G)| ≤ 2αUD

1− αUD
|rUD(b′; G′)− rUD(b′; G)| ≤ 2αUDN̄B

1− α
|G−G′|∞.

Thus,

|b− b′|∞ ≤
2αUDN̄B

1− αUD
|G−G′|∞.

Finally, we conclude that Γ2c(G) is Lipschitz continuous in G, using the triangular

inequality. �

Mapping Γ3 corresponding to auction j and defined as follows:

Γ3(·; G) ,
∫
1
(
f jh(xjMU ,x

j
UD; G) ≤ ·

)
P o(dx),

is uniformly bounded and Lipschitz continuous in G, given o, n,mMU ,mUD. Proof:

For any yj ∈ [0, B], and for any G,G′ ∈ H, we have

Γ3(yj; G) = G̃(yj)

=

∫
1
(
b(x

j,(1)
UD ; G) < x

j,(2)
MU ≤ yj

)
P o(dx) +

∫
1
(
x
j,(1)
MU < b(x

j,(2)
UD ; G) ≤ yj

)
P o(dx)

+

∫
1
(
x
j,(2)
MU ≤ b(x

(1)
UD; G), x

j,(1)
MU ≥ b(x

j,(1)
UD ; G), x

j,(1)
MU ∧ b(x

j,(1)
UD ; G) ≤ yj

)
P o(dx).

85



Then,
∣∣G̃(yj)− G̃′(yj)

∣∣ ≤ I1 + I2 + I3, for I1, I2, and I3, is defined as:

I1 =

∫ ∣∣1(b(xj,(1)
UD ; G) < x

j,(2)
MU ≤ yj

)
− 1

(
b(x

j,(1)
UD ; G′) < x

j,(2)
MU ≤ yj

)∣∣P o(dx)

I2 =

∫ ∣∣1(b(xj,(1)
UD ; G) < x

j,(2)
MU ≤ yj

)
− 1

(
b(x

j,(1)
UD ; G′) < x

j,(2)
MU ≤ yj

)∣∣P o(dx)

I3 =

∫ ∣∣∣1(xj,(2)
MU ≤ b(x

j,(1)
UD ; G), x

j,(1)
MU ≥ b(x

j,(1)
UD ,G), x

j,(1)
MU ∧ b(x

j,(1)
UD ; G) ≤ yj

)
− 1

(
x
j,(2)
MU ≤ b(x

j,(1)
UD ; G′), x

j,(1)
MU ≥ b(x

j,(1)
UD ; G′), x

j,(1)
MU ∧ b(x

j,(1)
UD ; G′) ≤ yj

)∣∣∣P o(dx).

The claim follows by showing that I1, I2, and I3 are bounded by |G − G′|∞. For

brevity, we establish that I1 is bounded by |G−G′|∞ (the proofs for I2 and I3 follow

a similar approach). Specifically,∫
b(x

j,(1)
UD ;G)≥xj,(2)MU ,b(x

j,(1)
UD ;G′)<x

j,(2)
MU ≤yj

1P o(x)

≤
∫
b(x

j,(1)
UD ;G′)<x

j,(2)
MU ≤b(x

j,(1)
UD ;G)

1P o(dx) =

∫
F
j,(2)
MU

(
b(x

j,(1)
UD ; G)

)
− F j,(2)

MU

(
b(x

j,(1)
UD ; G′)

)
P o(dx

j,(1)
UD )

≤ |f j,(2)
MU |∞

∫
b(x

j,(1)
UD ; G)− b(xj,(1)

UD ; G′)P o(dx
j,(1)
UD ) ≤M

j,(2)
MU ·

2αUDN̄B2

1− αUD
|G−G′|∞,

where F
j,(2)
MU (x

j,(2)
MU ) and f

j,(2)
MU (x

j,(2)
MU ) are the CDF and PDF of the second-highest

valuation among MU bidders in auction j, respectively. The last inequality holds

from Lemma 2.9.3, and M
j,(2)
MU , sup

G
|f j,(2)
MU |∞ <∞, which is independent of G. �

In summary, combining Lemmas 2.9.3, 2.9.3, and 2.9.3, we conclude that Γsub

is uniformly bounded and Lipschitz continuous in G. Therefore, Γ is a continuous

mapping.

Compactness of Γsub.

Here we show that Γsub is a compact mapping using the Arzela–Ascoli theorem.

To apply the theorem, Γsub needs to satisfy the following conditions:
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1. The image Γsub(·;H) is uniformly bounded.

2. Sequence {Γsub(y; Gn)} is equicontinuous in y ∈ [0, B]N̄ .

The fact that Γsub(H) is uniformly bounded can be derived in a straightforward

manner. To establish the equicontinuity of the mapping, we show that for any

G ∈ H and for any y,y′ ∈ [0, B]N̄ , we have

∣∣Γsub(y; G)− Γsub(y
′; G)

∣∣ ≤ K0 ·
∣∣y − y′

∣∣,
where K0 is a constant, which is independent of G. It is sufficient to show that the

following inequality holds for the jth auction given yj, y
′
j and fixed m1,m2, n, o:

|Γsub,j(yj; G)− Γsub,j(y
′
j; G)| ≤ J1 + J2 + J3,

where J1, J2, and J3 are defined as follows:

J1 =

∫ ∣∣∣1(b(xj,(1)
UD ; G) < x

j,(2)
MU < yj

)
− 1

(
b(x

j,(1)
UD ; G) < x

j,(2)
MU < y′j

)∣∣∣P o(dx)

J2 =

∫ ∣∣∣1(x
j,(1)
MU < b(x

j,(2)
UD ; G) ≤ yj)− 1(x

j,(1)
MU < b(x

j,(2)
UD ; G) ≤ y′j)

∣∣∣P o(dx)

J3 =

∫ ∣∣∣1(xj,(2)
MU ≤ b(x

j,(1)
UD ; G), x

j,(1)
MU ≤ b(x

j,(1)
UD ; G), x

j,(1)
MU ∧ b(x

j,(1)
UD ; G) ≤ yj

)
− 1

(
x
j,(2)
MU ≤ b(x

j,(1)
UD ; G), x

j,(1)
MU ≤ b(x

j,(1)
UD ; G), x

j,(1)
MU ∧ b(x

j,(1)
UD ; G) ≤ y′j

)∣∣∣P o(dx).

In each case, the difference within the absolute value takes value −1, 0, or 1. For

brevity, we only show that J3 is bounded by |y− y′| (Using similar arguments, one
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can show that J1 and J2 are bounded by |y − y′| as well). We have

J3 =

∫
1

(
x
j,(2)
MU ≤ b(x

j,(1)
UD ,G), x

j,(1)
MU ≤ b(x

j,(1)
UD ; G), yj < x

j,(1)
MU ∧ b(x

j,(1)
UD ; G) ≤ y′j

)
P o(dx)

≤
∫
1
(
yj < x

j,(1)
MU ∧ b(x

j,(1)
UD ; G) ≤ y′j

)
P o(dx)

=

∫ (
1(yj < x

j,(1)
MU ≤ y′j) · 1

(
x
j,(1)
MU ≤ b(x

j,(1)
UD ; G)

)
+ 1
(
yj < b(x

j,(1)
UD ; G) ≤ y′j

)
· 1
(
b(x

j,(1)
UD ; G) < x

j,(1)
MU

))
P o(dx)

≤
∫ y′j

yj

P o(dx
j,(1)
MU ) +

∫
yj<b(x

j,(1)
UD ;G)≤y′j

P o(dx
j,(1)
UD ). (2.25)

For the first term in Expression (2.25), we have∫ y′j

yj

P o(dx
j,(1)
MU ) ≤

∣∣∣dF j,(1)
MU

dx
j,(1)
MU

∣∣∣
∞
· |y′j − yj| ≤M

j,(1)
MU · |y

′
j − yj|,

where M
j,(1)
MU , sup

G
|f j,(1)
MU |∞ < ∞. For the second term in Expression (2.25), we

define vectors z, z′ as the solutions to the following equations:

zj = yj + F (yj,G), and z′j = y′j + F (y′j,G).

Recall that from Lemma 2.9.3:

F (b,G) =
αUD

1− αUD
(
rUD(b; G) +

1

µUD
exp
(
− µUDrUD(b; G)

)
− 1

µUD

)
.

Therefore,∫
yj<b(x

j,(1)
UD ;G)≤y′j

P o(dx
j,(1)
UD ) =

∫
zj<x

j,(1)
UD ≤z

′
j

P o(dx
j,(1)
UD ) ≤M

j,(1)
UD · |z

′
j − zj|,

where M
j,(1)
UD , sup

G
|f j,(1)
UD |∞ <∞. Finally,

|z′j − zj| ≤ |y′j − yj|+ |F (y′j,G)− F (yj,G)| ≤ 1

1− αUD
|y′j − yj|.

Therefore, we establish that {Γsub(y; G)}, G ∈ H, is equicontinuous in y. Applying

the Arzela–Ascoli theorem, we obtain that Γsub is a compact mapping. �

Finally, employing the Schauder fixed-point theorem implies the existence of

a fixed point such that Γ(G) = G. This completes the proof of the proposition. �

88



2.9.4 UD Bidders’ Auction Selection

Assume that νMU = νUD = 0 and K ≥ N̄ ; the UD bidders’ optimal auction

selection decision is to choose the auction with the lowest standing bid.

Proof. The assumptions of the proposition (i.e., νMU = νUD = 0 and K ≥ N̄)

directly imply that MU bidders place a bid in all open auctions (provided that

they place at least one bid). Given this observation, the proposition states that

it is optimal for a UD bidder to bid in the auction with the lowest standing bid

at the time she places her bid, if all other competing UD bidders also bid in the

auction with the lowest standing bid at the time they place their bids. In other

words, participating in the auction with the lowest standing bid (at the time she

determines which auction to participate in) is an equilibrium strategy for a UD

bidder.

Prior to proving the proposition, we first state and prove Lemmas 2.9.4, 2.9.4,

and 2.9.4 that establish the following: if the last agent that places a bid is a UD

bidder, it is optimal for her to bid in the auction with the lowest standing bid,

assuming that all other UD bidders also place bids in the auctions with the lowest

standing bids (at the time they decide which auction to participate in).

Suppose that there are n auctions on the platform, and they are ordered with

respect to their standing bids (i.e., auction i’s standing bid is no greater than auction

j’s if i < j). It is sufficient to show that the conditional CDFs of the current winning

bids satisfy the following relationship:

G0
1(w|s) ≥ G0

2(w|s) ≥ ... ≥ G0
n(w|s), (2.26)
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where G0
j(w|s) is the conditional CDF of the current winning bid in the auction

with the jth-lowest standing bid. In what follows, we focus on the case where the

number of UD bidders is known and denoted by N . One can extend the results to

the case where N is unknown, by taking the expectation over the number of UD

bidders on the platform.

We first start with the simplest case, where there are only two auctions and

all bidders are UD bidders. Suppose that there are 2 identical auctions and N + 1

UD bidders placing bids in an exogenous sequence. It is optimal for the last UD

bidder to bid in the auction with the lowest standing bid, assuming that the rest of

the UD bidders also place bids in the auctions with the lowest standing bids (at the

time they choose which auction to participate in).

Proof. It is sufficient to show that, after the first N UD bidders place their bids, the

conditional CDFs of the winning bids given the standing bids (s1, s2), with s1 ≤ s2,

follow the relationship

G0
1(w|s1, s2) ≥ G0

2(w|s1, s2),

where G0
j(w|s1, s2) is the conditional CDF of the winning bid in auction j.

We use X1, X2, ..., XN to denote the random variables corresponding to the

bids of the first N bidders. The corresponding order statistics are denoted by

X(1), X(2), ..., X(N) (i.e., X(`) is the `th-largest bid among these N bids).

One important observation is that after all bids are submitted, the two stand-

ing bids (s1, s2) and the two (invisible) winning bids, denoted by (W1,W2), are

comprised of X(1), X(2), X(3), and X(4). We can verify this observation by way of
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contradiction. In particular, suppose that the last four bids are X(1), X(2), X(3), and

X(`) and X(`) < X(4). Note that the 4th-highest bid can always be placed (since it

is impossible to have both standing bids greater than X(4)). Before X(4) is removed

from these four remaining bids, it has to first serve as the standing bid of an auc-

tion. In this case, X(4) is the lowest standing bid among these two auctions, and it

is outbid by a higher incoming bid (which can only be one of X(1), X(2), or X(3)).

In this case, bidding X(`) has no impact on the vector of standing bids, which yields

the contradiction.

Given this observation, we note that there are the following three cases to

consider:

Cases (s1, s2) (W1,W2)

1 s1 = X(4), s2 = X(3) W1 = X(1),W2 = X(2)

2 s1 = X(4), s2 = X(3) W1 = X(2),W2 = X(1)

3 s1 = X(4), s2 = X(2) W1 = X(3),W2 = X(1)

In Case 1, we have

∆1 , G0
1(w|s1, s2,Case 1)−G0

2(w|s1, s2,Case 1)

= P (X(1)|X(4) = s1, X(3) = s2)− P (X(2)|X(4) = s1, X(3) = s2).

Similarly, in Case 2, we have:

∆2 , G0
1(w|s1, s2,Case 2)−G0

2(w|s1, s2,Case 2)

= P (X(1)|X(4) = s1, X(3) = s2)− P (X(2)|X(4) = s1, X(3) = s2)

= −∆1.
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We also note that the conditional probabilities of a bidding sequence falling

into Case 1 or Case 2 given (s1, s2) are identical (i.e., P (Case 1|s1, s2) = P (Case 2|s1, s2)).

The reason is the following: for any bidding sequence that falls into Case 1, switch-

ing the order of bids X(1) and X(2) results in a bidding sequence that falls into

Case 2, as (i) the decisions of these two bidders are the same, provided that their

bids are larger than the standing bids, and (ii) both bids are invisible (thus, they

do not alter the sequence of the following bids). In other words, the total number

of bidding sequences that lead to Case 1 is the same as the corresponding num-

ber for Case 2. We also note that each bidding sequence has the same chance

of occurring (as the order in which bidders place their bids is exogenous); thus,

P (Case 1|s1, s2) = P (Case 2|s1, s2) for any s1, s2. Finally, in Case 3, we have:

∆3 , G0
1(w|s1, s2,Case 3)−G0

2(w|s1, s2,Case 3)

= P (X(3) ≤ w|X(4) = s1, X(2) = s2)− P (X(1) ≤ w|X(4) = s1, X(2) = s2).

Note that ∆3 ≥ 0 since {X(1) ≤ w,X(4) = s1, X(2) = s2} ⊆ {X(3) ≤ w,X(4) =

s1, X(2) = s2}. Summarizing the discussion above, we obtain that

G0
1(w|s1, s2)−G0

2(w|s1, s2)

= P (Case 1|s1, s2)∆1 + P (Case 2|s1, s2)∆2 + P (Case 3|s1, s2)∆3 ≥ 0.

�

Next, we extend Lemma 2.9.4 to the case where there are n auctions, but still

all bidders are UD.

Suppose that there are n identical auctions and N+1 UD bidders placing bids

in an exogenous sequence. It is optimal for the last UD bidder to bid in the auction
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with the lowest standing bid, assuming that the rest of the UD bidders also place

bids in the auctions with the lowest standing bids (at the time they choose which

auction to participate in).

Proof. It is sufficient to show that, after the first N bidders place their bids, the

conditional CDFs of the winning bids given the standing bid vector s follow the

relationship specified in Expression (2.26). Equivalently, in the following proof, we

show that for any i < j, we have

G0
i (w|s) ≥ G0

j(w|s).

Observe that after the first N bids are submitted, the vector of standing bids s

and the vector of current winning bids W are comprised of X(`), where 1 ≤ ` ≤ 2n.

This follows using a similar argument as in the proof of Lemma 2.9.4.

Next, we consider the following three cases separately for auctions i and j.

Cases (si, sj) (Wi,Wj)

1 si = X(l), sj = X(k) Wi = X(L),Wj = X(K) Given K < L < k < l

2 si = X(l), sj = X(k) Wi = X(K),Wj = X(L) i.e., X(l) < X(k) < X(L) < X(K)

3 si = X(l), sj = X(L) Wi = X(k),Wj = X(K)

{
X−(l,k,L,K) ∈ (s−i,−j,W−i,−j)

}
In the table,

{
X−(l,k,L,K) ∈ (s−i,−j,W−i,−j)

}
denotes the set of all valid assignments

of the remaining X(`) (1 ≤ ` ≤ 2n and ` 6= l, k, L,K) to the standing bids and the

winning bids of all auctions excluding auctions i and j, which are denoted by s−i,−j

and W−i,−j, respectively.
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Specifically, for a given assignment in Case 1, denoted by a1, we have:

si = X(l), sj = X(k),Wi = X(L),Wj = X(K) and sm = Xm′ ,Wm = Xm′′ ,

where m 6= i, j,m′ 6= l, k,m′′ 6= L,K, and m′ > m′′. Then, we have:

∆1(a1) ,G0
i (w|si, sj, a1)−G0

j(w|si, sj, a1)

=P (X(L) ≤ w|X(l) = si, X(k) = sj, X(m′) = sm,m 6= i, j,m′ 6= l, k)

− P (X(K) ≤ w|X(l) = si, X(k) = sj, X(m′) = sm,m 6= i, j,m′ 6= l, k).

Based on a given bidding sequence that results in an outcome in assignment a1,

we can develop a new bidding sequence that leads to an outcome in the assignment

described in Case 2, denoted by a2. Specifically, we can switch the order of two

bidders who placed bids X(L) and X(K) in the bidding sequence of a1, to show that

the new bidding sequence belongs to a2 and leads to the same vector of standing

bids s as the original one in a1. In particular, the following is an illustration of a

bidding sequence in a1:

Each circle stands for a bid, and the two red circles represent bids X(L) and

X(K). At the first red circle, a bidder’s auction choice is the same regardless of

whether her bid is X(L) or X(K). Suppose that the corresponding auction is auction

i, given the definition of a1. After the switch, at the first red circle, X(K) will be

placed in auction i. Note that in a1, the highest losing bid in that auction at the

first red circle is no greater than X(l); thus, when X(K) is placed, it does not get
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revealed as X(K) > X(l). In other words, the subsequence of bidding until the second

red circle will not be affected after the switch. Similarly, at the second red circle,

the bidder with bid X(L) will choose to bid in auction j (the same decision at this

circle in the sequence of a1). In addition, bid X(L) does not get revealed as the

highest losing bid in auction j at the second red circle since it is no greater than

X(k), which, in turn, is lower than X(l). In summary, the bidding sequence in a1 is

identical to the new sequence in a2 except that we switched the bids corresponding

to the two red circles. Moreover, these two sequences lead to the same vector of

standing bids.

Given a2 in Case 2, we have:

∆2(a2) ,G0
i (w|si, sj, a2)−G0

j(w|si, sj, a2)

=P (X(K) ≤ w|X(l) = si, X(k) = sj, X(m′) = sm,m 6= i, j,m′ 6= l, k)

− P (X(L) ≤ w|X(l) = si, X(k) = sj, X(m′) = sm,m 6= i, j,m′ 6= l, k)

=−∆1(a1).

In addition, P (a1|s) = P (a2|s), as the numbers of assignments in Cases 1 and 2 are

the same, and their elements can be matched one to one using the above argument.

Given an assignment in Case 3, we have:

si = X(l), sj = X(L),Wi = X(k),Wj = X(K) and sm = X(m′),Wm = X(m′′),

where m 6= i, j,m′ 6= l, L,m′′ 6= k,K, and m′ > m′′. Then, we have:

∆3(a3) , P (X(k) ≤ w|si = X(l), sj = X(L), a3)−P (X(K) ≤ w|si = X(l), sj = X(L), a3).
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Note that ∆3(a3) ≥ 0, we have

{
X(K) ≤ w, si = X(l), sj = X(L), a3

}
⊆
{
X(k) ≤ w, si = X(l), sj = X(L), a3

}
.

Therefore, by taking the expectation of ∆1(a1),∆2(a2) and ∆3(a3) over a1 in

Case 1, a2 in Case 2, and a3 in Case 3, we have:

G0
i (w|s)−G0

j(w|s)

=
∑

a1∈Case 1

P (a1|s)∆1(a1) +
∑

a2∈Case 2

P (a2|s)∆2(a2) +
∑

a3∈Case 3

P (a3|s)∆3(a3) ≥ 0.

�

Lastly, we consider the general case, which includes MU bidders. In particular,

we establish the following lemma.

Suppose that there are n identical auctions. Furthermore, N + 1 UD bidders

and N ′ MU bidders place their bids in an exogenous sequence. If the last one is a

UD bidder, it is optimal for her to bid in the auction with the lowest standing bid,

assuming that the rest of the UD bidders also place bids in the auctions with the

lowest standing bids (at the time they choose which auction to participate in).

Proof. It is sufficient to show that, after all MU bidders and the first N UD bidders

place their bids, the conditional CDFs of the winning bids given the standing bid

vector s follow the relationship specified in Expression (2.26).

Since a MU bidder participates in all auctions (if she chooses to bid at all),

there is at most one MU winner at any given time. Thus, there are two types of

outcomes: either all winners are UD bidders (Case 1) or there is a single MU winner

(Case 2). In what follows, we show that Expression (2.26) holds in both cases.
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In Case 1, where the highest 2n bids are placed by UD bidders, the claim

follows directly from Lemma 2.9.4.

In Case 2, where there is at least one auction being won by a MU bidder, we

denote the winning MU bid by M . Given the vector of standing bids s after the

submissions of all bids, for any two auctions i and j with i < j, we aim to show

that:

G0
i (w|s,Case 2) ≥ G0

j(w|s,Case 2).

We then use Wi and Wj to denote the winning bids in auctions i and j, and consider

the following three cases:

(i) Wi = M,Wj = M , where the MU bidder is winning both auctions.

(ii) Wi = M,Wj = X(l), where the MU bidder is winning auction i but not auction

j.

(iii) Wi = X(l),Wj = X(l′), where the MU bidder is winning neither auction.

In sub-case (i), we have G0
i

(
w|s,Case 2(i)

)
= G0

j

(
w|s,Case 2(i)

)
. In sub-case

(ii), we have X(l) ≥ M ; otherwise, the MU bidder is also winning auction j. Thus,

G0
i

(
w|s,Case 2(ii)

)
≥ G0

j

(
w|s,Case 2(ii)

)
, because

{
X(l) ≤ w, s,Case 2(ii)

}
⊆{

M ≤ w, s,Case 2(ii)
}
. In sub-case (iii), we can again apply the argument in the

proof of Lemma 2.9.4 to show that G0
i

(
w|s,Case 2(iii)

)
≥ G0

j

(
w|s,Case 2(iii)

)
. In

summary, we have shown that with the presence of MU bidders, Expression (2.26)

holds. �
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Proof of Proposition 3. The optimal bid, given that the bidder has already chosen

an auction, can be directly derived using the first-order conditions for the payoff

maximization problem. For the auction selection decision, we use induction to show

that choosing to bid in the auction with the lowest standing bid is optimal, given

that all other UD bidders follow the same strategy.

Step 1. Consider the bidder that places the last bid on a given day (Bidder

A). Lemma 2.9.4 directly implies that it is optimal for Bidder A to choose to bid in

the auction with the lowest standing bid.

Step 2 (Induction step). We then assume that Auction 1, which has the

lowest standing bid, is the optimal auction choice for a bidder given s and N future

competing bidders. Specifically,

vN1 (b, x; s) ≥ vN2 (b, x; s) ≥ ... ≥ vNn (b, x; s),

where vNi (b, x; s) denotes the expected payoff for the bidder if she places a bid in

auction i. The conditional expected payoff vNi (b, x; s) can be expressed as

vNi (b, x; s) =

∫ b

si

(∫ b

wi

(x−pi)ĝNi (pi|wi, s−i)+αUD
(
1−ĜN

i (b|wi, s−i)vf (x)
))
g0
i (wi|s)dwi.

In auction i, ĝNi (pi|s) and ĜN
i (pi|s) respectively stand for the PDF and CDF of

the highest rival bid against the incumbent winner given standing bids s and N

incoming bidders.

The optimal bid of the next UD bidder (Bidder B) is denoted by b1.30 Without

loss of generality, we show that for Bidder A, inequality vN+1
1 (b; s) ≥ vN+1

2 (b; s) holds.

30For brevity, we omit the discussion of the case where the next bidder is a MU bidder, since

the claim follows in a similar fashion when we classify the information set.
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We construct four information sets and establish that the inequality holds in each

set.

(i) b1 ≤ s1 (i.e., Bidder B does not submit a competing bid). In this case, it

follows from the induction step that it is optimal for Bidder A to place a bid

in Auction 1.

(ii) s1 < b1 ≤ min(W1, s2) (i.e., whether Bidder B submits a bid depends on which

auction Bidder A places her bid in). In this case, Bidder B will not bid in

any auction if Bidder A bids in Auction 1 because bid b1 is lower than both

the standing bid in Auction 2 and the new standing bid in Auction 1 (i.e., the

previously winning bid W1). If Bidder A chooses to bid in auction 1, she will

have only N future competitors and, as a result, the state would be updated

from (s1, s2, ..., sn) with N+1 incoming bids to (b1, s2, ..., sn) with N incoming

bids. Therefore, her conditional expected payoff is

vN+1
1 (b, x; s) =

∫ b

b1

(∫ b

w1

(x− p1)ĝN1 (p1|w1, s−1)dp1

+ αUD
(
1− ĜN

1 (b|w1, s−1)
)
vf (x,G,Ψ)

)
g0

1(w1|b1, s−1)dw1

=vN1 (b, x; b1, s−1).

On the other hand, if Bidder A places a bid in Auction 2, Bidder B will bid

in Auction 1. In this case, the standing bid in Auction 1 increases to b1. Her
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conditional expected payoff from bidding in Auction 2 is

vN+1
2 (b, x; s) =

∫ b

s2

(∫ b

w2

(x− p2)ĝN2 (p2|b1, w2, s−1,−2)dp2

+ αUD
(
1− ĜN

2 (b|b1, w2, s−1,−2)
)
vf (x,G,Ψ)

)
g0

2(w2|b1, s−1)dw2

=vN2 (b, x; b1, s−1).

Note that b1 ≤ s2 ≤ ... ≤ sn and, by induction, we conclude that

vN1 (b, x; b1, s−1) ≥ vN2 (b, x; b1, s−1).

(iii) W1 < b1,W1 < s2 (i.e., Bidder B will submit a bid regardless of where Bidder A

places her bid). In this case, no matter which auction Bidder A chooses, Bidder

B always places a bid in Auction 1. If Bidder A enters Auction 1, Bidder B will

also bid in Auction 1 and outbid the new standing bid W1. Bidder B’s bid b1

therefore serves as the new winning bid in Auction 1. Bidder A’s conditional

expected payoff can thus be written as

vN+1
1 (b, x; s) =

∫ b

W1

(∫ b

b1

(x− p1)ĝN1 (p1|b1, s−1)dp1

+ αUD
(
1− ĜN

1 (b|b1, s−1)
)
vf (x,G,Ψ)

)
g0

1(b1|W1, s−1)db1

=vN1 (b, x;W1, s−1).

Similarly, if Bidder A places a bid in Auction 2, her conditional expected payoff

can be written as

vN+1
2 (b, x; s) =

∫ b

s2

(∫ b

w2

(x− p2)ĝN2 (p2|W1, w2, s−1,−2)dp2

+ αUD
(
1− ĜN

2 (b|W1, w2, s−1,−2)
)
vf (x,G,Ψ)

)
g0

2(w2|W1, s−1)dw2

=vN2 (b, x;W1, s−1).
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Note that W1 ≤ s2 ≤ ... ≤ sn and, by induction, we conclude that

vN1 (b, x;W1, s−1) ≥ vN2 (b, x;W1, s−1).

(iv) s2 < b1, s2 < W1 (i.e., Bidder B will also submit a bid regardless of Bidder

A’s decision). In this case, Bidder B will submit a bid in Auction 2 if Bidder

A enters Auction 1, whereas Bidder B will place a bid in Auction 1 if Bidder

A places a bid in Auction 2. When Bidder A places a bid in Auction 1

knowing that W1 > s2, she will update her belief about W1 accordingly (i.e.,

the conditional PDF of W1 becomes g0
1(w1|s2, s−1)). Her conditional expected

payoff then becomes

vN+1
1 (b, x; s)

=

∫ b

s2

(∫ b

w1

(x− p1)ĝN1 (p1|w1,min(b1,W2), s−1,−2)dp1+

αUD
(
1− ĜN

1 (b|w1,min(b1,W2), s−1,−2)
)
vf (x,G,Ψ)

)
g0

1(w1|s2,min(b1,W2), s−1,−2)dw1

= vN1
(
b, x; s2,min(b1,W2), s−1,−2

)
,

where W2 is the current winning bid in Auction 2. On the other hand, when

Bidder A submits a bid in Auction 2, she expects Bidder B to place a bid in

Auction 1. In addition, she only knows that the standing bid is the smaller

one between b1 and W1 (i.e., min(b1,W1)). Therefore, her conditional expected

payoff of submitting a bid in Auction 2 is

vN+1
2 (b, x; s) =

∫ b

s2

(∫ b

w2

(x− p2)ĝN2 (p2|min(b1,W1), w2, s−1,−2)dp2+

αUD
(
1− ĜN

2 (b|min(b1,W1), w2, s−1,−2)
)
vf (x,G,Ψ)

)
g0

2(w2|min(b1,W1), s2, s−1,−2)dw2

= vN2
(
b, x; min(b1,W1), s2, s−1,−2

)
.
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Note that both W1 and W2 have the same conditional PDF (i.e., g0
1(w1|s2, s) =

g0
2(w2|s2, s)) as Auctions 1 and 2 are indistinguishable given Bidder A’s in-

formation set. Furthermore, expressions vN1
(
b, x; s2,min(b1,W2), s−1,−2

)
and

vN2
(
b, x; min(b1,W1), s2, s−1,−2

)
are symmetric in terms of Auctions 1 and 2.

Thus,

E
[
vN1
(
b, x; s2,min(b1,W2), s−1,−2

)]
= E

[
vN2
(
b, x; min(b1,W1), s2, s−1,−2

)]
and for Bidder A, bidding in Auction 1 is a weakly dominant strategy.

In summary, given N incoming competing bids, it is a weakly dominant strat-

egy for a UD bidder to bid in the auction with the lowest standing bid. This strategy

depends on neither the bidders’ valuations nor the market state. In the case of an

unknown number of incoming bidders, one can derive the same conclusion by taking

an expectation over N . �
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2.10 Appendix: Structural Model

2.10.1 Substitutability of iPhone 4, iPhone 4s, and iPhone 5 Models

In this section, we present evidence supporting that bidders view auctions for

iPhone 4, iPhone 4s, and iPhone 5 as substitutes. In particular, we test whether

bidders significantly prefer one model to the others at both the population and

individual bidder levels.

Stated more precisely, we allow that devices substitute for one another after

controlling for a price (value) differential. For example, an iPhone 5 may be worth

more than an iPhone 4s. Supposing that the normalizing price difference were $100,

bidders would be indifferent in substituting between the two at that differential.

That is, if the bidder’s valuation for the iPhone 4s is $200, then she would be

willing to purchase instead the iPhone 5 at $299 but not $301. In equilibrium,

bidders would be willing to substitute freely across the auctions of different phone

models, but that the going bids in auctions would tend to differ by fixed, normalizing

amounts. In our example, prices would tend to be $100 higher for iPhone 5 auctions

than iPhone 4s auctions.

Accordingly, we examine the substitutability assumption by testing its key

empirical prediction that bidders should freely substitute across auctions of the

different phone models, in proportion to their availability that day. Thus, we carry

out two critical, empirical tests regarding whether the number of bids placed for

each model type varies in proportion with its supply.
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First, does the market’s total number of bids for each type of phone model

accrue in proportion to each model’s share of the available supply? In other words,

suppose that today’s marketplace features 50% iPhone 5 and 50% iPhone 4s auc-

tions. If we were to find that a disproportionate 80% of bids are placed for iPhone 5,

this would provide evidence refuting the claim that the two models are substitutable

to bidders. On the other hand, suppose that 50% of bids are for iPhone 5, followed

the next day by 25% of bids when iPhone 5 constitutes 25% of the supply. This

pattern supports our hypothesis of substitutability. Thus, our primary statistical

test is designed to importantly distinguish these cases, showing that bidders do not

exhibit an overriding preference for one model over another as models’ supply varies

from day to day.

Second, while our primary test provides our most critical piece of evidence, we

carry out a second test that provides additional assurance. In particular, even if we

observe that the proportion of bids matches the daily, available share of supply for

each model, it remains conceivable that some bidders greatly prefer, for example,

the iPhone 5 but simply do not bother to bid if they do not see a sufficient supply

of iPhone 5 auctions available that day. However, such a bidder would still reveal

her strong preference for focusing her bidding in iPhone 5 auctions when tracked

across her own visits to the platform. Thus our second, bidder-level statistical

test examines whether individual bidders act to flexibly match the available, daily

supplies of the phone models when placing bids.

At the population level, given a model pair, i.e., (iPhone) Model 1 and (iPhone)

Model 2, we use b1t and b2t to denote the number of bids placed in auctions for Model
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1 and Model 2 phones that end on Day t, respectively. Also, we use n1t and n2t to

denote the total number of auctions for Model 1 and Model 2 phones that end on

Day t, respectively. Then, we propose to test the following null hypothesis: On a

given day, the expected ratio of bids placed in Model 1 auctions to bids placed in

Model 2 auctions is equal to the ratio of the total number of Model 1 auctions to the

total number of Model 2 auctions. Specifically, we focus on the following statistic:

R̂ =
1

T

T∑
t=1

(
b1t

b1t + b2t

/
n1t

n1t + n2t

− 1

)
,

where T is the number of days when at least one Model 1 auction ends. On a given

day, a consistent mismatch between b1t/(b1t + b2t) and n1t/(n1t + n2t) indicates that

bidders prefer one model to the other. For an iPhone model, the statistic R̂ manages

to capture not only the daily mismatch between its shares of bids and auctions, but

also how the trend of bid shares matches the trend of auction shares over time. If

R̂ differs significantly from zero, we reject Hypothesis 2.10.1 and conclude that one

model is preferred to the other at the population level; thus, the models cannot be

considered as substitutes.

Our findings are presented in the first two columns of Table 2.16. For all three

model pairs, we cannot reject Hypothesis 2.10.1. This implies that on a daily basis,

the number of bids for each model is proportional to the number of auctions for that

model. Therefore, each model is not more or less popular than other models at the

population level. Thus, we can treat the three models as substitutes.

Furthermore, we test whether the models are substitutable at the individual

bidder level. We find that more than 90% of the bidders do not show a strong
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Table 2.16: Hypothesis Testing Results regarding Bidders’ Preference for iPhone

Models

Population Level Test Individual Level Test

(Model 1, Model 2) R̂ p-value % of Bidders without a Strong Preference

(iPhone 4, iPhone 4s) 0.055 0.157 94.7%

(iPhone 4, iPhone 5) 0.000 0.987 92.6%

(iPhone 4s, iPhone 5) -0.039 0.122 96.8%

preference for a specific model. In particular, given Bidder `, we construct the

following null hypothesis to test: On a given day, when Bidder ` participates in

at least one Model 1 or Model 2 auction, the expected ratio of Model 1 auctions

to Model 2 auctions that Bidder ` participates in is equal to the ratio of the total

number of Model 1 auctions to the total number of Model 2 auctions. In other

words, we focus on the following statistic for Bidder `:

R̂` =
1

|T`|
∑
t∈T`

(
p1t`

p1t` + p2t`

/
n1t

n1t + n2t

− 1

)
,

where T` is the set of days when Bidder ` participated in at least one Model 1 or

Model 2 auction, and p1t` (resp., p2t`) are the numbers of Model 1 (resp., Model 2)

auctions which Bidder ` participated in on Day t. If R̂` differs significantly from zero,

we reject Hypothesis 2.10.1 and conclude that the bidder has a strong preference for

either Model 1 or Model 2. Specifically, we say that the bidder does not exhibit a

strong preference for either of the two models if the p-value of the test result is less

than 0.01. We report our findings in the last column of Table 2.16. For each model
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pair, there are more than 90% of bidders without a strong preference. Therefore,

the findings provide convincing evidence that supports the idea that auctions of the

three models can be viewed as substitutes.

2.10.2 Kernel Density Estimators

In this section, we specify the kernel density estimators for Ψ(ω`t) and gj(pj|ω`t).

Assuming the within-day timing of a participating bidder’s bids to be exogenous,

the steady-state vector s`t of standing bids encountered by bidders per platform visit

can be viewed as identically and independently distributed. We use Sn = {s`t,n}

and yn = {y`t,n} to denote the observations of the vectors of standing bids31 and

highest rival bids (final prices), respectively, when the market thickness is n auc-

tions. The corresponding sample size is denoted by Nn. The kernel density esti-

mator of the standing bids conditional on market thickness n can be written as

ψ̂(sn|n) = 1
Nn

∑
`tKhs

(
sn − s`t,n

)
, where Khs(s) is the multivariate Gaussian kernel

density with identical bandwidth hs:

Khs(s) =

(
1√

2πhs

)n n∏
j=1

exp

(
−

s2
j

2h2
s

)
.

The selection of the optimal bandwidth h∗s is conducted by minimizing the cross-

validation (CV) estimator of the risk function. Finally, the kernel density estimator

of the highest rival bid in auction j (i.e., y(j)), given market state ω = (n, s), can be

31If a bidder places multiple bids within a day, we assume that the market state is observed

upon her last bid of the day, which reflects the most recent market state for her decision.
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written as

ĝj(y
(j)|ω) =

1
Nn

∑
`tKhy,1(y

(j) − y(j)
`t,n)KHy(s− s`t,n)

1
Nn

∑
`tKHy(s− s`t,n)

,

where y
(j)
`t,n is the jth element of y`t,n, and hy,1 is the bandwidth associated with

the highest rival bid. For tractability, we assume that the bandwidth matrix of

standing bids takes the form Hy = hy,2In. The optimal bandwidths h∗y,1 and h∗y,2 are

determined by minimizing the CV estimator of the risk function, CV (hy,1, hy,2), of

the conditional density estimation.32

2.10.3 Bandwidth Selection in Kernel Density Estimation

In this subsection, we describe the bandwidth selection process we use when

we non-parametrically estimate the distributions of the steady state of the market

and the highest rival bids, respectively. The risk, or mean integrated squared er-

ror R(f, f̂), which we define below, is a metric for the distance between a density

estimator f̂ and the true density f :

R(f, f̂) = EX

(∫ (
f(x)− f̂(x|X)

)2
dx
)
,

where X ∼ f . As f is unknown, the risk cannot be evaluated. Therefore, we

consider the cross-validation (CV) estimator of risk, which is defined as follows:

CV (h) =

∫ (
f̂(x)

)2
dx− 2

n

n∑
i=1

f̂(−i)(Xi),

where f̂(−i)(Xi) is the kernel density estimator obtained by removing the ith obser-

vation, Xi. In our case, f̂ is the kernel density estimator with bandwidth h, which

32We provide additional details on the bandwidth selection procedure for both ψ̂n(sn) and ĝj(y|ω)

in Appendix 2.10.3.
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is the parameter to be optimized (i.e., the bandwidth h is chosen so that the CV

estimator of risk is minimized).

For the kernel density estimator of the standing bids, the CV estimator of risk

can be further specified as:

CV (hs) =
1

N2|Hs|
∑
`t

∑
`′t′

K̄
(
H−1
s (s`t−s`′t′)

)
− 2

N(N − 1)|Hs|
∑
`t

∑
`′t′ 6=`t

K
(
H−1
s (s`t−s`′t′)

)
,

where N denotes the total number of observations (here, we use `t and `′t′ as

observation indices). Furthermore, the bandwidth matrix is given by Hs = hsIn and

K, K̄ denote the kernel and the corresponding convolution functions, respectively.

Note that when estimating the conditional distribution of highest rival bids,

directly optimizing the cross-validation of the risk function may lead to very small

bandwidths (due to the fact that multiple vectors of standing bids can be associated

with the same vector of highest rival bids). To resolve this issue, we employ boot-

strap sampling from the original dataset, drawing only one observation (y`t,n, s`t,n)

per auction (to ensure that we do not duplicate the vectors of highest rival bids

within a bootstrap sample). Given a bootstrap subsample b, the subsample CV

estimator of risk can be specified as

CV (b)(hy,1, hy,2) =

1

N

∑
`t

∑
`′t′ 6=`t

∑
`′′t′′ 6=`tKHy(s

(b)
`t − s

(b)
`′t′)KHy(s

(b)
`t − s

(b)
`′′t′′)K

√
2hy,1

(y
(b)
`′′t′′ − y

(b)
`′t′)(∑

`′t′ 6=`tKHy(s
(b)
`t − s

(b)
`′t′)
)2

− 2

N

∑
`t

∑
`′t′ 6=`tKHy(s

(b)
`t − s

(b)
`′t′)Khy,1(y

(b)
`t − y

(b)
`′t′)∑

`′t′ 6=`tKHy(s
(b)
`t − s

(b)
`′t′)

.

Lastly, we consider the average of the subsample CV estimators of risk (we draw

50 bootstrap samples) as the objective function to optimize when selecting the
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bandwidth for the kernel density estimation.

2.10.4 Simulated Maximum Likelihood Estimation

In this subsection, we provide expressions for P V (x`|θ), LB`t(b`t,S`t|x`, θ), and

LNB`t (S`t|x`, θ), where θ = [α, µ, ν, λ, γ], and describe how we derive the simulated

likelihood function L̂`(X`|θ), using importance sampling. Before presenting the tech-

nical details, we preview how each primitive is estimated by exploiting the variations

in the data.

The data contain sufficient variations for us to identify all the model primitives.

First, in the data, a bidder (whose endowed valuation x` is given) may choose a

subset of auctions on a given day and place bids in the selected auctions. The

variations in her auction selections and in her bids can be mainly explained by

the idiosyncratic valuation distribution (characterized by ν). In addition to the

bid variations of a given bidder, we observe sizable bid variations across bidders

(e.g., some bidders consistently submit much higher bids than others in the same

auction). The cross-bidder bid variations are characterized by the bidders’ endowed

valuations (i.e., x`), whose distribution is characterized by λTY and γTY . Second, we

observe that each bidder’s platform-visit sequence follows a stochastic process with a

certain frequency (e.g., some bidders tend to participate on the platform more often

than others). In our model, a bidder’s platform-visit pattern is determined by the

interplay between her expected payoff, which depends on the endowed valuation (i.e.,

λTY and γTY ) as well as the idiosyncratic valuation (i.e., νTY ), and the distribution
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of participation cost (characterized by µTY ). Note that λTY , γTY , and νTY are

pinned down by the above bid variations; thus, the variation in bidders’ platform

visits can be employed to identify µTY . Lastly, in the data, each bidder exits the

platform at some point, while her stay in the bidder pool may vary from a few days

to a few months. The variations in the duration of bidders’ stays in the bidder pool

are then used to estimate the retention rate α. Therefore, our data have enough

variations to recover all the modeling primitives.

We use P V (x`|θ) to denote the probability that Bidder ` visits the platform

on Day t:

P V (x`|θ) = P
(
c`t ≤ r(x`; θ, Ĝ, Ψ̂)

)
= 1− exp

(
− µr(x`; θ, Ĝ, Ψ̂)

)
,

where recall that r(x`; θ,G,Ψ) is the unconditional payoff per platform visit (Section

2.4). Given x`, θ
MU , Ĝ, and Ψ̂, a MU bidder’s payoff per platform visit rMU can be

calculated using Expressions (2.21) and (2.22). For a UD bidder, given x`, θ
UD, Ĝ,

and Ψ̂, we solve for rUD and the continuation valuation vf simultaneously from

rUD(x`; θ
UD, Ĝ, Ψ̂)

=

∫
ω

∫
ζ`·

n(ω)∑
j

1
{
σUDSLT (x`; ζ`·, ω, θ

UD) = j
}

·
∫ x`−αvf (x`;θ

UD,Ĝ,Ψ̂)+ζ`j

sj

Ĝ(pj|ω)dpjdFζ(ζ`·; ν
UD)dΨ̂(ω), (2.27)

and vf (x`; θ
UD, Ĝ, Ψ̂) =

1

1− αUD
(
rUD(x`; θ

UD, Ĝ, Ψ̂) +
1

µUD
exp

(
− µUDrUD(x`; θ

UD, Ĝ, Ψ̂)
)
− 1

µUD

)
,

(2.28)
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where Expression (2.27) is derived from Expressions (2.5) and (2.23), and Expression

(2.28) is derived from Expression (2.24). For computational tractability, we employ

Monte Carlo integration to approximate all the integrations over ζ`·. Any integration

of Ĝ or Ψ̂ can be done quickly due to the selection of the Gaussian kernel.

Conditional on Bidder ` visiting the platform on Day t, we let LB`t(b`t,S`t|x`, θ)

denote the likelihood of her placing bid(s) b`t, and we let LNB`t (S`t|x`, θ) denote the

likelihood of her not placing any bid.

First, assume that ` is a MU bidder (who is interested in winning K = 14

auctions, which are all open auctions, on a given day).33 Then, when she visits the

platform on Day t, she will not bid in auction j if and only if her bid is lower than

the current standing bid s`j (i.e., b`j = x` + ζMU
`j < s`j). Therefore,

LNB,MU
`t (S`t|x`, θMU) =

∏
j′∈At

Φ(s`j′ |x`, νMU),

where Φ(·|x`, νMU) denotes the CDF of the normal distribution with mean x`

and standard deviation νMU , and At denotes the set of all auctions on Day t. On

the other hand, if she places bids b`t = {b`j}, and J t
` denotes the set of auctions

that Bidder ` chooses to participate in on Day t, the likelihood of placing these bids

is given by
∏

j∈J t`
φ(b`j|x`, νMU). Therefore,

LB,MU
`t (b`t,S`t|x`, θMU) =

∏
j∈J t`

φ(b`j|x`, νMU)
∏

j′∈At\J t`

Φ(s`j′ |x`, νMU).

Next, assume that Bidder ` has unit demand. Then, given that she visits

33Recall that K is the observed maximum auction participation on a given day.
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the platform on Day t, she will not place a bid if and only if all auctions on the

day have standing bids that are higher than her potential bids (i.e., b`j = x` −

αUDvf (x`; θ
UD, Ĝ, Ψ̂) + ζUD`j < s`j,∀j ∈ At). Therefore,

LNB,UD`t

(
S`t|x`, θUD

)
=
∏
j′∈At

Φ
(
s`j′|x` − αUDvf (x`; θUD, Ĝ, Ψ̂), νUD

)
.

On the other hand, if she places a bid b`t = b`j in auction j, this implies

that participating in auction j yields the highest payoff among all open auctions

on the same day (as was shown in Proposition 2.9.4). In addition, if she chooses

auction j (i.e., σUDSLT (x`; ζ`·,S`t, θ
UD) = j), the likelihood of placing bid b`j = x` −

αUDvf (x`; θ
UD, Ĝ, Ψ̂)+ζUD`j is equal to φ

(
b`j|x`−αUDvf (x`; θUD, Ĝ, Ψ̂), νUD

)
. Thus,

LB,UD`t

(
b`t,S`t|x`, θUD

)
=

φ
(
b`j|x` − αUDvf (x`; θUD, Ĝ, Ψ̂), νUD

) ∫
ζ`·

1
{
σUDSLT (x`; ζ`·,S`t, θ

UD) = j
}
dFζ(ζ`·; ν

UD)

To obtain the simulated likelihood, L̂`(X`|θ), we first rewrite the unconditional

likelihood function as

L`(X`|θ) =

∫
x`

L`(X`|x`, θ)
f(x`|λ, γ)

fI(x`|λI , γI)
fI(x`|λI , γI)dx`

= ExI

(
L`(X`|xI , θ)

f(xI |λ, γ)

fI(xI |λI , γI)

)
, (2.29)

where fI(xI |λI , γI) is PDF of the candidate Weibull distribution with parameters λI

and γI . Then, we draw M samples for the bidder’s valuation xm,I ,m = 1, 2, ...,M

from the candidate Weibull distribution. Finally, we (approximately) compute in-

tegral (2.29) using Monte Carlo integration and obtain

L̂`(X`|θ) =
1

M

M∑
m=1

L`(X`|xm,I , θ)
f(xm,I |λ, γ)

fI(xm,I |λI , γI)
.

113



In our estimation process, we draw M = 200 samples and set λI , γI such that they

satisfy the first and second moment conditions of the empirical bid distribution.

2.10.5 Model Validation

To validate the model, we compare the predicted distributions of (i) the num-

ber of bidders participating in an auction and (ii) the final price in the post-treatment

period, with those observed in the dataset. Given that these distributions concern

outcomes in the post-treatment period, they can be viewed as out-of-sample predic-

tions (recall that the model was estimated using pre-treatment data). Our findings

provide support for the validity of the model. In particular:

(a) The mean and the standard deviation of the simulated distribution of partici-

pating bidders (who placed at least one bid) per auction in the post-treatment

period are shown in the first two columns of Table 2.17 (with standard errors

in parentheses). As is evident from the table, our counterfactual simulations

provide a relatively accurate prediction of the corresponding distribution. In

particular, both the mean and the standard deviation of the simulated distri-

bution are not significantly different from those observed in the data.

(b) Similarly, we simulate the mean and the standard deviation of the final price

distribution (on a normalized scale) in the post-treatment period. The re-

sults are shown in the last two columns of Table 2.17 (with standard errors in

parentheses). As one can deduce from the table, the simulations provide an ac-

curate out-of-sample prediction of the average final price in the post-treatment
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Table 2.17: Comparison between Observed and Simulated Distributions of the Num-

ber of Bidders per Auction and Final Price per Device in the Post-treatment Period

No. of Bidders per Auction Final Price per Unit ($)

Mean Standard Deviation Mean Standard Deviation

Observed 5.24 2.33 168.75 15.49

Simulated 5.79 2.01 167.97 18.30

(0.68) (0.35) (5.24) (1.99)

period.
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2.11 Appendix: Supporting Material

2.11.1 Effects of Policy Switch on Aggregate Supply and Demand

In this subsection, we first check whether the aggregate supply and the aggre-

gate demand are affected by the policy switch, by plotting their trends during the

pre- and post-treatment periods in Markets A and B. We further employ difference-

in-differences analyses to test the hypothesis that both the supply and the demand

remain parallel over time between two marketplaces.

In Figure 2.10, we plot the weekly number of auctions and weekly number

of registrants in Markets A and B, respectively, over time. For both the supply

and the demand, the gap between the trends of the two markets does not seem to

consistently change across periods.

2.11.2 Spillover Effects on Participation Rates

This subsection focuses on auction participation behaviors in Market B and the

subset of cross-market bidders (i.e., bidders that are registered in both Markets A

and B). The objective is to establish that the change in Market A’s market thickness

has a strong positive effect on the cross-market bidders’ participation rates in Market

B. To this end, we specify the following linear model for the bidders’ participation

rates in Market B:

APR`tw = ξ` + ηw + β1CMB` + β2TTt + β3CMB` · TTt + ε`tw, (2.30)

where the dependent variable APR`tw is defined as
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Figure 2.10: Trends of Weekly Supply and Weekly Demand
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APR`tw =
No. of Mkt. B auctions Bidder ` bids on Day t in Week w

No. of Mkt. B auctions ending on Day t in Week w
.

In Equation (2.30), ξ` denotes the fixed effect associated with Bidder `’s id-

iosyncratic participation behavior, and ηw denotes a weekly fixed effect introduced

to control for changes over time.

We include fixed effect ξ` to control for Bidder `’s idiosyncratic participation

behaviors. We also include fixed effect ηw to control for changes over time (e.g.,

releases of new products on participation rates) in Week w. Furthermore, CMB` and

TTt are binary variables denoting whether i is a cross-market bidder and whether

the day of the Week t is Tuesday or Thursday, respectively. Thus, coefficient β1

captures the participation pattern of cross-market bidders in Market B, and β2

captures the baseline difference in participation rates between [Tuesday, Thursday]

and [Monday, Wednesday, Friday]. Finally, the quantity of interest, β3, is meant

to capture the potential spillover effect on the cross-market bidders’ participation

rates on Tuesdays and Thursdays.

For the results that follow, we focus only on the treatment period and re-

strict attention to iPhone 4 (thus, we do not need to control for product char-

acteristics). In this sample, cross-market bidders account for 49% of the total

Market B bidders. First, we plot in Figure 2.9 the average participation rates

corresponding to cross-market bidders and exclusively to Market B bidders on Mon-

day/Wednesday/Friday and Thursday/Thursday, respectively. Although on Mon-

day/Wednesday/Friday, cross-market and Market B bidders have similar participa-
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tion rates, on Tuesday/Thursday, the participation rate of cross-market bidders is

substantially higher than the participation rate of Market B bidders.

Second, we employ difference in differences to estimate coefficient β3. As we

report in Table 2.18, we estimate that the relative increase in the cross-market

bidders’ participation rates that can be attributed to the change in Market A’s

market thickness is roughly 39% (2.7% in absolute terms).

Table 2.18: Difference-in-Differences Estimate of Spillover Participation Effect

Caused by Batch Listing

Dependent Variable

Auction Participation Rate

Spillover Participation Effect β̂3 0.027∗∗∗

(0.005)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The size of the spillover effect provides evidence supporting the presence of

participation frictions associated with visiting a market on any given day and ac-

tively bidding and monitoring the auctions listed on the platform.
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2.11.3 Regression Analysis in Support of Cannibalization among Auc-

tions

In this section, we establish that high market thickness may have a negative

impact on the final price of the platform’s auctions. To this end, we conduct a

regression analysis using data on Samsung Galaxy S3 auctions in Market A. We

address the potential issue of demand endogeneity by using an additional dataset

tracking the retail price of Galaxy S3 phones that was obtained from Amazon.

Demand Endogeneity.

To address the potential issue arising from demand endogeneity, we use a

dataset tracking the price of Galaxy S3 phones that was obtained from Amazon.

The prices on Amazon, which is a retail market, are largely exogenous to the prices

on the platform, which is a secondary market. This allows us to control for market

trends in the demand for Galaxy S3 phones; thus, we can attribute price fluctuations

we observe on the platform to changes in the induced market thickness.

Data and Variables.

The data we use for this analysis includes (1) detailed Galaxy S3 auction data

from Market A, and (2) weekly retail price data from Amazon. Our observation

window is from March 15, 2013 to December 7, 2015.34 In the Galaxy S3 auction

34We collect Amazon’s retail prices for Samsung Galaxy S3 from CamelCamelCamel.com, a tool

tracking prices for products sold on Amazon.
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Figure 2.11: Weekly Supply and Prices of Samsung Galaxy S3 (the vertical dashed

line highlights the release of Galaxy S5 on 04-11-2014)

dataset, there are 376 observations within the observation window. For each auction,

the dataset contains the start and ending times of the auction, its final price, lot

size, and carrier information. Market thickness on a given day is measured by two

metrics: the number of auctions ending on that day and the number of units in

those auctions. The dataset we obtained from Amazon tracks the retail price of a

Galaxy S3 phone within our observation window.

In Figure 2.11, we plot the price trends of Galaxy S3 phones in Market A (red

curve) and on Amazon (green curve) as well as the weekly supply in Market A (blue

curve). The supply shock in the local market (corresponding to the dashed line in

the figure) is due to the release of a new Samsung Galaxy model.
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Empirical Evidence.

Here, we establish that high market thickness may have a negative impact on

the final price of an auction. To this end, first, we compute the correlation between

market thickness and the auction’s final price without controlling for demand endo-

geneity. As already mentioned, market thickness on a given day is measured in two

ways: (1) by the number of auctions ending on that day and (2) by the number of

units in those auctions. We find that the correlation coefficients corresponding to the

market thickness metrics are equal to -0.30 and -0.31, respectively, thus establishing

the negative impact of market thickness on price.

Next, we address demand endogeneity by explicitly controlling for the market

value of Galaxy S3 phones using the Amazon data. In the regression analysis, we

select the final price per unit as the dependent variable. We include fixed effects for

both the product carrier and new product releases.

The estimation results are displayed in Table 2.19. As is evident in the results

for Models 1 and 2 (without including the fixed effect corresponding to a new product

release), high market thickness has a significantly negative impact on the final price.

Particularly, we note that adding one Galaxy S3 auction to the platform’s market

thickness results in a decrease in the final price per unit by $7.63. Similarly, adding

10 units of Galaxy S3 phones decreases the final price per unit by $1.10.

Furthermore, we control for possible supply endogeneity by considering the ex-

ogenous shocks corresponding to new product releases (i.e., the releases of Samsung

Galaxy S4, S5, and S6). When a new Samsung Galaxy model is released, we expect
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Table 2.19: Regression Estimates in Support of the Cannibalization Effect

Dependent Variable

Final Price per Unit

Model 1 Model 2 Model 3 Model 4

No. of units per day -0.11∗∗∗ -0.043∗∗

(0.02) (0.017)

No. of auctions per day -7.63∗∗∗ -3.06∗∗∗

(1.39) (1.06)

Auction lot size -0.15∗∗ -0.08∗

(0.06) (0.048)

Amazon retail value 0.54∗∗∗ 0.53∗∗∗ 0.226∗∗∗ 0.225∗∗∗

(0.02) (0.02) (0.027) (0.027)

FEs of Rel. of S4, S5, S6 No No Yes Yes

FEs of carriers Yes Yes Yes Yes

Constant -54.42∗∗∗ -43.42∗∗∗ 122.44∗∗∗ 128.20∗∗∗

(7.39) (8.02) (15.56) (15.61)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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a jump in the number of Galaxy S3 phones that become available in the secondary

market. As shown in Table 2.19 (Models 3 and 4), the cannibalization effect remains

significant even after we account for the release of new products. In particular, our

results indicate that adding an auction to the platform’s market thickness results in

a decrease in the final price per unit by $3.06, whereas adding 10 Galaxy S3 phones

results decreases their unit price by $0.43.

2.11.4 Listing Policy Has Little Impact on Bids

In this section, we look into how bidders’ bidding strategies respond to the

listing policy switch in Market A. We focus on a sample of bidders who placed a

bid in either only Market A or only Market B in both the pre- and post-treatment

periods (i.e., cross-market bidders are excluded). Therefore, in the post-treatment

period, Market A bidders are directly subject to the policy switch, while Market

B bidders are not. There are 14 Market A bidders, 21 Market B bidders, and 814

total bids observed in the sample. Then, we estimate the following difference-in-

differences model to capture any effect on their bidding strategies:

log(Bidi) = β0 + FEProdi + β1IsMktAi + β2IsPosti + β3IsMktAi · IsPosti + εi,

where for each observation i, Bidi is the variable corresponding to the placed bid

(normalized to a single unit), FEProdi captures fixed effects associated with prod-

uct features, IsMktAi is the dummy variable of Market A auctions, and IsPosti is

the dummy variable of the post-treatment period. Thus, the coefficient of interest is

β3, which captures the effect of the policy switch on the size of the bids. As shown
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Table 2.20: Difference-in-Differences Estimate of Batch Listing’s Effect on Bids

Dependent Variable

Log(Bid)

IsPost −0.763∗∗∗

(0.118)

IsMktA 1.206∗∗∗

(0.070)

IsMktA · IsPost −0.173

(0.146)

FEs of Products Yes

Constant 3.359∗∗∗

(0.765)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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in Table 2.20, the policy switch does not seem to affect bidders’ bidding strategies,

given that β3 is not significantly different from zero. This finding rules out the al-

ternative mechanism that could explain the increase in revenues observed after the

listing policy switch, i.e., that the increase is the outcome of bidders changing their

bidding strategies.

2.11.5 Algorithm for Estimating a Steady-State Equilibrium

In this subsection, we describe an iterative algorithm that converges to the

steady-state equilibrium. Given the stochastic supply, a dynamic bidder pool, and

a listing policy, a bidder’s decision whether to visit the platform, which auction(s)

to participate in, and how to bid are all endogenously determined. Overall, the

algorithm starts by initializing the beliefs for the highest rival bid G and the state

distribution Ψ, based on which bidders decide whether to visit the platform and

how to bid. Once the corresponding bidding data are generated, they are used to

re-estimate G and Ψ. The algorithm iterates between the data simulation step and

the belief estimation step until they converge (Algorithm 1). The expected payoff

r(x;G,Ψ) is calculated numerically for MU and UD bidders separately. We employ

kernel density estimation for the conditional distribution of the highest rival bid G

and the distribution of standing bids Ψ, which are specified in Section 2.5.1.
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Algorithm 1 Estimating a steady-state equilibrium
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Chapter 3: Information Provision in Service Platforms: Optimizing

for Supply

Abstract. This paper explores the interaction between information design and

supply-side decisions, including supplier entry/exit and pricing, in peer-to-peer ser-

vice platforms. We develop a dynamic model of a two-sided platform that allows

us to analyze the long-run implications of alternative information-provision policies.

Our analysis highlights three mechanisms through which such a policy may increase

platform revenues. First, in cases where the platform is not dominant in the mar-

ket, a downgrading policy increases the volume of transactions on the platform and,

surprisingly, may also result in an increase in the volume of high-quality providers

active in the platform. Second, when the platform is dominant in the market, a

downgrading policy helps the platform modulate the composition of suppliers active

on the platform, leading to an overall more revenue-efficient set of suppliers. Third,

when commission subsidies are used by the platform to incentivize entry of new

providers, a downgrading policy helps the platform achieve equivalent new-provider

entry while extracting higher revenue per transaction.

Keywords: platform operations, information provision, social learning, product

line design, applied game theory
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3.1 Introduction

Online peer-to-peer service platforms, such as Upwork, Taskrabbit, and Thumb-

tack, have been proliferating over the years. They serve the intermediaries to connect

service providers with different quality with consumers who have various pending

tasks, which have different equality sensitivity. Some work (e.g., article editing)

values high-quality services more than others (e.g., plumbing). In other words, such

platforms feature substantial heterogeneities on both supply and demand sides of

the market. Moreover, like any two-sided marketplaces, participants on both sides

are strategic. In addition to participants’ entry decisions, consumers choose which

provider to transact, and service providers set prices for their service to maximize

their utilities, respectively.

Service platforms’ revenues primarily come from the commission charged from

each transaction, which usually is proportional to the transaction price. Notice that

services delivered by high-quality providers charge high prices. Service platforms

may benefit from expanding the pool of active, high-quality professionals.

A critical challenge encountered by service platforms is that providers’ quality

is ex-ante unknown, and it has to be learned through their services delivered on the

platform. In other words, the size of high-quality providers population depends on

the scale of employment of new providers (i.e., experimentation) on the platform. If

a service platform fails to experiment with sufficient new providers in the first place,

the discovered high-quality providers will be in short later.

In this paper, we explore the effectiveness of a service platform’s information
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provision policy joint with its commission scheme in maximizing the platform’s com-

mission revenue. In particular, we investigate when and how information provision

policy complements the commission scheme in incentivizing experimentation on new

providers and optimizing provider composition. To address these questions, we de-

velop a discrete-time infinite-horizon model with learning on new providers’ quality.

The model characterizes the strategic behaviors of all participants and specifies the

matching with heterogeneity on both sides of the market.

We focus on a class of information provision policies, which delay the disclosure

of high-quality providers to consumers by labeling them as new providers. We hence-

forth refer to them as informational delay policy. We establish that informational

delay policy adds values to a service platform through three distinct mechanisms.

First, the informational delay can increase the experimentation on new providers by

improving their expected quality, when it is difficult for the platform to do so under

a single commission scheme. Second, even though the platform achieves the maxi-

mum experimentation on new providers solely using the single-commission scheme,

the informational delay can further improve the platform’s revenue by optimizing

the providers’ composition. Third, when the platform implements a differentiated

commission scheme, which can incentivize the experimentation on new providers

through subsidy, the informational delay can improve the platform’s revenue by

lowering the subsidy.
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3.1.1 Related Literature

Our work ties to the burgeoning literature that addresses the issues resulted

from the information friction of the uncertainty of workers’ quality in online labor

markets. [42] shows that the information friction can lead to market failure. He

demonstrates that a labor market could fail by hiring too many mediocre workers

and too few novices with potential when the quality of inexperienced workers can

only be revealed on the job. Some recent work has established the effectiveness of

several online labor marketplaces’ information provision mechanisms (e.g., agencies,

reviews, and ratings) in mitigating the inefficiencies incurred by the information

friction. In a field experiment, [43] observes that a public evaluation significantly

increases the chance of inexperienced workers being hired as well as their wages in an

online labor marketplace. Based on a proprietary dataset, [44] identify that buyers

are willing to pay higher for sellers with a higher reputation (revealed by reviews

and ratings). [45] study the role of outsourcing agencies in reducing the informa-

tion friction by signaling the high quality of affiliated inexperienced workers. They

further estimate that the presence of agencies increases the revenue generated per

worker by 11%. [46] highlight the research opportunities of platforms’ information

design to reduce friction. Our work contributes to the literature by studying the

design of a straightforward yet effective information provision policy, which exploits

the workers’ quality uncertainty to maximize the platform’s revenues.

Our work is related to the rich literature that focuses on the settings involving

experimentation, quality uncertainty, and self-interest agents. In the case where the
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realized outcomes are observable to all agents (i.e., information transparency), the

equilibrium is very likely to be suboptimal regarding social surplus. [47] show that in

a market with two-sided learning, sellers’ pricing decisions joint with buyers’ choices

in equilibrium result in excessive experimentation compared to the socially efficient

solution. On the other hand, [48] and [49] present that in a multi-armed bandit prob-

lem with incentive constraints, the system suffers from the under-experimentation

issue. Both papers show that information provision policies can effectively allevi-

ate the issue. In our work of two-sided online service marketplace, we also observe

the under-experimentation issue under the full information setting, and informa-

tion provision policies, especially the one with imprecise information disclosure, can

effectively elicit experimentation, which echoes [49].

3.2 Model Description

We consider a dynamic model of a two-sided platform that connects service

providers with consumers. The model consists of three types of players, who interact

with one another over an infinite discrete-time horizon: (i) the platform, which

chooses a commission to be charged per transaction and an information provision

policy; (ii) the supply (i.e., a population of service providers), who choose whether

to join the platform and, if so, what price to charge for providing service, and (iii)

the demand (i.e., consumers), who choose whether to seek service on the platform

and, if so, with which service provider.
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Consumers.

We assume that in each period there is a short-lived population of consumers

with total mass normalized to one who enters the platform seeking service. Con-

sumers are heterogeneous in their willingness to pay for service quality. We use

θi to denote consumer i’s type, and we assume that consumer types are uniformly

distributed on the interval [1, 2]. A consumer’s net utility from transacting with

provider j is given by

ui = θiqj − pj,

where qj is the provider’s service quality and pj is the provider’s service price. Upon

entering the platform, each consumer observes the set of available service providers,

the price set by each provider, and any information on the provider’s service quality

provided by the platform (the latter is determined by the platform’s information

provision policy, described in detail below). Then, each consumer chooses among

the available service providers to maximize her expected utility. Apart from the

providers available on the platform, consumers also have the option of seeking service

outside of the platform; we assume that doing so results in service quality q0 ∈ (0, 1)

at a price p0 ∈ (0, 1). We further assume that q0 ≥ p0, so that the outside option

results in non-negative utility for all consumer types.

Service Providers.

We assume that there is a large pool of potential service providers, a fraction

1 − β of whom cease to exist in each period and are replaced by new potential
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providers of equal mass. In every period, the potential providers may choose to

enter the platform or pursue employment outside of it. Employment outside of the

platform yields an expected profit of w0 per period. Inside the platform, expected

profits depend on the platform’s commission and information-provision policies, and

the resulting equilibrium behavior of the service providers and consumers. We as-

sume that the service quality of each provider j can be high or low, qj ∈ {qH , qL},

where we normalize qH = 1 and qL = 0. The probability of a randomly chosen

provider being of high quality is denoted by γ := P (qj = qH). Our analysis will be

primarily concerned with environments where the supply of high-quality providers

is relatively scarce. Accordingly, we assume that (i) E[qj] = γqh + (1 − γ)ql < q0

(i.e., although there are high-quality providers in the market, the expected quality

of a randomly drawn provider is lower than that of the outside option), and (ii)

γβ < 1− β (i.e., the volume of surviving high-quality providers in each period does

not exceed the volume of providers who cease to exist).

We assume that the service quality of a new provider entering the platform

is initially unknown, but is perfectly revealed to the platform after the provider

engages in a single transaction with a consumer.1 In every period, each provider,

taking into account the platform’s commission and information-provision policies,

chooses whether to join the platform and, if so, what price to charge for service.

Finally, we assume that the price set by a provider is bounded below by b0, for some

b0 ∈ [0, p0] (e.g., this may represent the per-period cost of providing service).

1Adding noise to the process of quality revelation does not affect the qualitative nature of our

model insights.

134



Platform.

The platform is long-lived and seeks to maximize its expected per-period profit

by choosing a commission rate of τ and an information-provision policy. The com-

mission rate is a percentage fee collected by the platform on any transaction that oc-

curs between a consumer and a provider. The information-provision policy specifies

a message or label for each provider that is displayed to the consumers and contains

information on the provider’s service quality, based on the platform’s observations of

the provider’s past service outcomes. According to the platform’s quality-learning

process described above, the platform’s information about provider j’s quality in

any given period is summarized by the state sj ∈ {H,L, U}, corresponding to high,

low, or unknown quality, respectively. The information-provision policy employed

by the platform is expressed as a (possibly stochastic) mapping from the platform’s

private information about provider j to a “label” which is assigned to the provider

and published on the platform, i.e.,

g(sj) =



H w. p. ρHsj

L w. p. ρLsj

U w. p. ρUsj ,

(3.1)

where ρHsj +ρLsj +ρUsj = 1, for all sj ∈ {H,L, U}. Designing an information-provision

policy consists of choosing the probability with which each label is assigned to each

supplier state. At one extreme, a policy such that ρHH = ρLL = ρUU = 1 corresponds to
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full information disclosure, since the platform’s knowledge can be perfectly inferred

from the labels it assigns. At the other extreme, any policy with ρHsj , ρ
L
sj

, and ρUsj

chosen independently of sj corresponds to no information disclosure, since none of

the platform’s information can be inferred from the labels it assigns to the suppliers.

Policies involving intermediate levels of information provision can be constructed

by choosing the probabilities ρHsj , ρ
L
sj
, ρUsj appropriately “between” the above two

extremes.

Concerning the design of information-provision policies, it is straightforward

to show that the platform cannot benefit by concealing the quality of a provider

who is known to be of low quality. However, as we demonstrate in our analysis, it

is far from evident that the same holds for providers known to be of high quality.

In the analysis that follows, we will focus on the class of policies satisfying

ρLL = ρUU = 1, and ρUH = 1− ρHH =: α ∈ [0, 1]. (3.2)

In words, the platform always assigns label L to providers of low quality and label

U to providers of unknown quality. However, providers of high quality are assigned

label U with probability α ∈ [0, 1], and label H otherwise. At first glance, it may

appear counter-intuitive for the platform to conceal the quality of its best providers,

given that these providers are its highest earners. However, in Section 3.4, we

demonstrate three mechanisms, along with sufficient conditions, through which a

policy involving α > 0 improves platform profits.

From a practical standpoint, we note that the class of policies described in

(3.2) is particularly appealing in that it is operationally equivalent to a policy that
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delays disclosing information on the quality of a high-quality service provider. To

emphasize this connection, we refer to a policy of the form (3.2) as an “information-

delay” policy with delay α.

3.3 Equilibrium

Given that the underlying supply and demand processes are time-invariant in

our model, our analysis will focus on steady-state equilibria of the supply-demand

game, for a fixed platform policy {τ, α}. For the existence of a steady-state equilib-

rium, the supply-demand game must simultaneously satisfy several conditions relat-

ing to supply-side participation and pricing, demand-side participation and provider

choice, and supply-demand matching. We now describe these conditions in detail.

Consider first the platform participation decisions of individual suppliers. In

a steady-state equilibrium, the expected lifetime earnings of a high-quality provider

who is assigned label H in any given period are given by

V H
H = max

{(1− τ)pH
1− β

,
w0

1− β

}
. (3.3)

That is, such a provider will stay in the platform provided the price he can charge

as an H-labeled provider is sufficiently high, or the platform’s commission rate is

sufficiently low. Otherwise, he will seek employment outside the platform. The

expected lifetime earnings of a high-quality provider who is assigned label U are

given by

V H
U = max

{
η(1− τ)pU + β

(
αV H
U + (1− α)V H

H
)
,
w0

1− β

}
, (3.4)
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where the (endogenous) parameter η ∈ [0, 1] here accounts for rationing that may

occur if in equilibrium the demand for U -labeled providers is lower than the avail-

ability of such providers.2 Finally, for a supplier of unknown quality (i.e., who has

not yet transacted on the platform), the expected lifetime earnings are given by

V U
U =

max

{
(1− η)βV U

U + η

(
(1− τU)pU + β

(
γ
(
αV H
U + (1− α)V H

H
)

+ (1− γ)

(
w0

1− β

)))
,
w0

1− β

}
.

(3.5)

For the quantities V H
H , V

H
U , and V U

U , they are complicated by the fact that prices

are determined endogenously by the demand for each provider type, as well as the

competition between providers. Moreover, we note that (i) our model assumes that

each provider must receive a minimum payment b0 ≥ 0 for providing service, which

implies that in any equilibrium with positive i-labeled provider participation, we

have (1− τ)pi ≥ b0, for i ∈ {U ,H}, and (ii) free entry of providers into the platform

implies V U
U = w0

1−β . Assuming that a steady-state equilibrium exists, we use δji to

denote the mass of providers of quality j ∈ {U,H} who are active in the platform

2Note that there can never be rationing among providers labeled H in equilibrium since, in

such a case, a provider could increase his earnings by unilaterally lowering his price slightly, which

would guarantee being matched to a customer. Note also that if η < 1 then (1− τ)pU = b0, that

is, rationing in equilibrium occurs only if the providers’ compensation when they provide service

is equal to the minimum possible, i.e., b0.
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in any period and who are assigned label i ∈ {U ,H}.3,4

Next, we discuss the demand for different provider types (i.e., labels) in a

steady-state equilibrium. Recall that each consumer chooses a provider to maximize

her expected utility, i.e.,

arg max
i∈{0,U ,H}

θqi − pi,

where {0,U ,H} represents the set of available options to customers, i.e., transacting

with the outside option or with a provider on the platform carrying with label U

or H. According to the information policy (3.2), the expected quality of a provider

with label H is qH = qH = 1, while the expected quality of a provider with label U

is given by

q̂U(α) =
δUU qU + δHU qH
δUU + δHU

=
δUU γ + δHU
δUU + δHU

. (3.7)

The latter expression reflects the fact that, as a result of the platform’s information-

delay policy, label U may contain providers of high quality in addition to providers

of unknown quality, so that q̂U(α) ∈ [qU , qH ]. Given expected qualities qi and equi-

librium prices pi, let ζi denote the mass of customers that engage in a transaction

with a provider carrying the label i, for i ∈ {U ,H}. The following result describes

how the quantities qi, pi, and ζi are related, and provides the main structure of a

3A provider of low quality never remains in the platform: according to (3.2), the platform

immediately reveals his quality so that he cannot demand a positive price inside the platform.
4Note that these quantities must satisfy the time-invariance conditions

δHH = β
(
δHH + (1− α)(δHU + γδUU )

)
and δHU = βα

(
δHU + γδUU

)
. (3.6)
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steady-state equilibrium.

Proposition 3.3.1 Consider a steady-state equilibrium under a platform policy

{τ, α}.

1. Suppose qU(α) < q0. Then the equilibrium satisfies:

- If 1 < pU−p0
qU−q0

< pH−pU
1−qU

< pH−p0
1−q0 < 2, then ζU = pU−p0

qU−q0
− 1 and ζH =

2− pH−p0
1−q0 .

- If max
(
pH−p0
1−q0 , 1

)
< pH−pU

1−qU
< min

(
pU−p0
qU−q0

, 2
)
, then ζU = pH−pU

1−qU
− 1 and

ζH = 2− pH−pU
1−qU

.

2. Suppose qU(α) ≥ q0. Then the equilibrium satisfies:

- If pU−p0
qU−q0

< 1 < pH−pU
1−qU

< 2, then ζU = pH−pU
1−qU

− 1 and ζH = 2− pH−pU
1−qU

.

- If 1 < pU−p0
qU−q0

< pH−pU
1−qU

, then ζU = pH−pU
1−qU

− pU−p0
qU−q0

and ζH = 2− pH−pU
1−qU

.

To conclude this section, we establish that a steady-state equilibrium, as de-

scribed above, indeed exists for any given platform policy.

Proposition 3.3.2 For any policy {τ, α}, a steady-state equilibrium exists.

In summary, a steady-state equilibrium exists for any platform policy {τ, α},

and the supply-demand interactions induced by the platform’s policy are fully de-

scribed by the endogenous quantities δij, ζi, and pi, for j ∈ {U,H} and i ∈ {U ,H}.
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3.4 Value Drivers of Information Provision

In this section, we demonstrate the mechanisms through which optimizing the

platform’s information provision increases the platform’s equilibrium profits. The

mechanisms through which optimal information provision may benefit the platform

depend on the platform’s market position, and in particular, the extent to which

the platform “covers” the available customer demand.

To illustrate each mechanism, our exposition proceeds in two steps: first,

we characterize the equilibrium outcome assuming that platform employs a full-

information policy. That is, in any period, the platform discloses all information

it processes regarding the quality of each provider active on the platform. Next,

we show that employing an appropriately designed information-delay policy of the

form given in (3.2) leads to higher profits for the platform, focusing on the intuition

underlying each mechanism.

Before proceeding to the first mechanism, we place two assumptions on our

model parameters.

Assumption 1 The following inequalities hold: (a) q0 − p0 < E[qj] − b0; (b) q0 <

(2−β)γ
2(1−β)+βγ

.

Assumption 1a ensures that the platform’s profit under a full-information policy is

positive. In particular, when this assumption is violated, no consumer would ever

transact with a provider inside the platform, preferring the outside option instead.

Assumption 1b is a technical condition we impose for tractability, which essentially
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places an upper bound on the quality of the outside option.

3.4.1 Information Obfuscation Leads to Experimentation

The first setting we consider involves markets where it is not profitable for

the entire population of customers to engage in transactions within the platform.

In other words, the customers’ outside option provides sufficiently high utility to a

subset of customers. Formally, in this section, we restrict attention to markets that

satisfy the following assumption.

Assumption 2 There exists a consumer type θ̄ ∈ (1, 2) such that θ̄q0− p0 > θ̄E[qj]

.

The implication of Assumption 2 is that, irrespective of the platform’s chosen com-

mission τ , a subset of customers in equilibrium will always prefer to use the outside

option. That is, when Assumption 2 holds, the platform’s market coverage under

full information is only, which is formalized in the following result.

Proposition 3.4.1 Suppose Assumption 2 holds. Then, when the platform employs

a full-information policy (i.e., α = 0), the mass of customers that choose the outside

option under the optimal commission is strictly positive.

Proposition 3.4.1 suggests that the platform may increase its revenues by incentiviz-

ing a higher volume of transactions. Indeed, Proposition 3.4.2 below establishes that

setting α appropriately (and higher than zero) leads to a higher mass of customers

engaging with the platform. However, this (direct) effect does not imply that the
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platform’s revenues would also increase. Besides, we show that the overall increase

in the volume of transactions has a second (indirect) effect. In essence, customers

transact with a higher mass of novice providers and, thus, the mass of providers la-

beled H at the resulting steady-state is also higher than the case when the platform

follows a full-information provision policy.

Proposition 3.4.2 Suppose Assumption 2 holds. Then, the optimal information

provision policy for the platform features positive delay, i.e., α∗ > 0. Moreover, the

overall volume of transactions and the volume of transactions with providers labeled

H is higher than under the case when the platform uses a full-information provision

policy.

The intuition behind Proposition 3.4.2 can be best described as follows: set-

ting α > 0 results in bundling a subset of high-quality providers with novices. In

turn, the expected quality of transacting with a provider labeled U is higher than

under a full-information provision policy. Customers find transacting within the

platform more attractive, which leads to an increase in the overall volume of trans-

actions. Finally, the higher overall volume of transactions has a second (indirect)

effect. Although each provider in the platform has a lower number of transactions

labeled as H (given that the platform “delays” labeling a high-quality provider as

H), the mass of providers labeled H at each period is higher than under a full in-

formation provision policy. Obfuscating information leads to more experimentation

with novice providers and results in a higher mass of providers labeled H available

on the platform.
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3.4.2 Improving the Composition of Service Providers

The next setting we consider involves markets where it is profitable for the en-

tire population of customers to engage in transactions within the platform. In other

words, the customers’ outside option is not sufficiently attractive to customers, who

find it optimal to seek service from the platform’s service providers. In particular,

in this section, we impose the following assumption.

Assumption 3 There exists a consumer type θ ∈ (1, 2) such that θq0−p0 < θE[qj].

We establish that when Assumption 3 holds, and the platform discloses all the

information it has at its disposal, all customers would choose the platform under

the optimal commission.

Proposition 3.4.3 Suppose Assumption 3 holds and b0/w0 < ρ for a constant ρ ∈

(0, 1). Then, when the platform follows the full-information provision policy and

sets the single commission optimally, the entire population of customers engages in

transactions within the platform.

Proposition 3.4.3 states that under Assumption 3, the platform finds it optimal to

set its commission so that the entire population of customers transacts within the

platform at equilibrium. In this case, the platform cannot increase its revenues

by inducing more transactions. However, appropriately designing its information

provision policy can still add value: Proposition 3.4.4 below establishes that setting

α appropriately (and introducing a delay in revealing high-quality providers) leads

to higher revenues for the platform. Although the volume of transactions remains
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the same, introducing the optimal level of delay, leads to an increase in the average

commission per transaction.

Proposition 3.4.4 Suppose Assumption 3 holds and b0/w0 < ρ for a constant ρ ∈

(0, 1). Then, the optimal information provision policy for the platform features

positive delay, i.e., α∗ > 0. Moreover, the volume of transactions with providers

labeled H is lower than under the case when the platform uses a full-information

provision policy.

Intuitively, the mechanism described in Proposition 3.4.4 is analogous to price

discrimination by reducing the quality of a portion of a firm’s output, i.e., “dam-

aging” a firm’s product solely to offer two versions of it and engaging in price dis-

crimination. In particular, by setting α∗ > 0, the platform essentially downgrades a

subset of its high-quality providers. In turn, the price set by the providers labeled

H at equilibrium is higher than in the case that the platform uses a full-information

provision policy. Thus, the volume of transactions with providers labeled H de-

creases, the revenue per transaction increases, and the platform’s revenue benefits.

3.4.3 Experimentation via Commission Subsidies

So far, our analysis has exclusively considered the case when the platform sets

the same commission rate for every transaction. The single commission scheme is

widely adopted in practice and allows us to transparently describe the mechanisms

through which delayed information provision may benefit a platform. In this section,

we extend our original setting by considering the case when the platform may set
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different commission rates for transactions with providers of different labels, i.e., the

platform sets τU and τH, i.e., the commission rates for transactions with providers

labeled U and H, respectively.

Moreover, we restrict attention to settings where it is not profitable for the

platform to cover the entire market. In such a case, a natural alternative to induce

a higher volume of transactions (and more experimentation with new providers) is

to “subsidize” transactions with providers labeled U by setting τU ≤ τH. The propo-

sition below establishes that when the platform uses a full-information provision

policy setting τU ≤ τH is indeed optimal.

Proposition 3.4.5 When the platform follows the full-information provision policy,

it finds it optimal to set the commission rate for transactions with providers labeled

U lower than that for transactions with providers labeled H.

The intuition behind this proposition is straightforward: the platform benefits

from inducing a higher volume of transactions in markets, as doing so also increases

the rate at which it reveals high-quality providers. The platform can incentivize an

increase in the volume of transactions with new providers by setting the correspond-

ing commission rate lower, i.e., effectively subsidizing engaging in transactions with

them.

Finally, Proposition 3.4.6 below establishes that appropriately designing the

platform’s information-provision policy leads to benefits even in this case where

commission rates associated with different provider labels may be different. To state

the proposition, we will abuse notation slightly by letting τ ∗U(α), τ ∗H(α) denote the
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optimal commission rate for transactions with providers labeled U , H, respectively,

when the platform uses an information delay policy with parameter α.

Proposition 3.4.6 Then, the optimal information provision policy for the platform

features positive delay, i.e., α∗ > 0. Moreover, the commission rate for transac-

tions with providers labeled U is higher than the case when the platform uses a

full-information provision policy, i.e., τ ∗U(α∗) > τ ∗U(0).

Proposition 3.4.6 suggests that introducing a delay in revealing high-quality

providers can complement setting a lower commission rate for providers labeled U

in increasing the overall volume of transactions and subsequently the platform’s

revenues. The optimal policy uses both design levers, i.e., the information provision

policy and different commission rates, and, thus, establish the value of such joint

optimization.

3.5 Concluding Remarks

In this paper, we investigate the benefits of information provision policy in

online peer-to-peer service platforms. Services providers are strategic in terms of

entering the platform and pricing their service. Their service qualities are hetero-

geneous and learned through transactions. Consumers are strategic in terms of

their hiring decisions. Therefore, when designing the information provision policy

and commission fee structure, the platform needs to take into account the strategic

behaviors of all participants, as well as the learning process of providers’ qualities.

We establish that the informational delay can benefit the platform implements
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either a single commission scheme or a differentiated commission scheme. Under an

optimal single commission scheme, the informational delay can further increase the

platform’s revenue by increasing the experimentation of new providers or optimiz-

ing the provider composition and inducing profitable price discrimination. Under

an optimal differentiated commission scheme, the informational delay can further

improve the platform’s revenue by lowering the revenue loss incurred by subsidizing

new providers.

3.6 Appendix: Technical propositions and lemmas

Definition 3.6.1 Given an information provision policy {α} and commission struc-

ture {τU , τH}, if qU ≤ q0, then we classify the equilibrium into the following four types

as their characterization are different.

E1: There is no rationing among providers with label U (i.e., η = 1), and all

customers choose the platform (i.e., δU + δH = 1).

E2: There is rationing among providers with label U (i.e., η < 1), and all customers

choose the platform (i.e., δU + δH = 1).

E3: There is rationing among providers with label U (i.e., η < 1), and not all

customers choose the platform (i.e., δU + δH < 1).

E4: There is no rationing among providers with label U (i.e., η = 1), and there

not all customers choose the platform (i.e., δU + δH < 1).
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Lemma 3.6.1 The equilibrium quantities of H providers with label U and label H

can be simplified as:

δHU = βγλδUU and δHH =
βγ

1− β
(
1− (1− β)λ

)
δUU , (3.8)

where λ = α
1−βα .

Proof. The claim immediately follows from (3.6). �

Lemma 3.6.2 In equilibrium, the free-entry condition for new providers (i.e., V U
U =

w0

1−β ) is equivalent to

F (λ, η) ,
βγ

1− β
· 1− (1− β)λ

1 + βγλη

(
(1− τH)pH − w0

)
=
w0

η
− (1− τU)pU , (3.9)

where λ = α
1−βα .

Proof. First, by (3.5), V H
U ≥ w0

1−β , and V H
H ≥ w0

1−β , we rewrite V U
U = w0

1−β as:

(1− τU)pU + βpHU γV
H
U + β(1− pHU )γV H

H − βγ
w0

1− β
=
w0

η
.

Second, we substitute V H
U and V H

H in the above equality using (3.4) and (3.3),

respectively, and obtain:

(δUU + ηδHU )
(

(1− τU)pU −
w0

η

)
+ δHH

(
(1− τH)pH − w0

)
= 0.

Lastly, by substituting δUH and δHH in the above equality using (3.8) and letting

λ = α
1−βα , we obtain (3.9). Therefore, we have shown that the free-entry condition

is equivalent to (3.9). �
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3.6.1 Single commission scheme

In this section, we introduce technical lemmas and propositions related to the

single-commission structure (i.e. τU = τH).

Lemma 3.6.3 Suppose τU = τH = τ and λ = α
1−βα ≥ 0. Then, in equilibrium,

the quantity and the expected quality of hired providers with label U are δU = (1 +

βγλη)δUU and qU = γ+βγλη
1+βγλη

, respectively. The remaining quantities have different

characterizations across types:

If an E1 holds,

- Quantity of hired new providers: δUU = 1−β
1−β+βγ

.

- Prices of providers with label U and providers with label H:

· pU = w0

1−τ −
βγ

1−β+βγ

(
1− (1− β)λ

)(
1

1+βγλ
+ 1−β

1−β+βγ

)
(1− γ).

· pH = pU +
(

1
1+βγλ

+ 1−β
1−β+βγ

)
(1− γ).

- Rationing rate: η = 1.

- Platform revenue: πr,1(τ, λ) = τ
1−τw0.

- The equilibrium satisfies the following conditions:

· Providers with label U are not financially constrained. That is, (1 −

τ)pU ≥ b0.

· The customer at 1+δU prefers providers with label U to the outside option.

That is, pU ≤ p0 −
(

1
1+βγλ

+ 1−β
1−β+βγ

)(
q0 − γ − βγλ(1− q0)

)
.
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If an E2 holds,

- Quantity of hired new providers: δUU = 1
1−β+βγ

1−β −βγλ(1−η)
.

- Prices of providers with label U and providers with label H:

· pU = b0
1−τ .

· pH = b0
1−τ +

(
1

1+βγλη
+ 1

1−β+βγ
1−β −βγλ(1−η)

)
(1− γ).

- Rationing rate: η is solved from (3.9).

- Platform revenue: πr,2(τ, λ) = τ
(

b0
1−τ +

(
1

1+βγλη
+ δUU

)
δHH(1− γ)

)
.

- The equilibrium satisfies the following conditions:

· Providers with label U get rationed. That is, 0 < η < 1.

· The customer at 1+δU prefers providers with label U to the outside option.

That is, 1 + δU ≤ p0−pU
q0−qU

.

If an E3 holds,

- Quantity of hired new providers: δUU =
p0− b0

1−τ
q0−γ−βγλη(1−q0)

− 1
1+βγλη

- Prices of providers with label U and providers with label H:

· pU = b0
1−τ .

· pH = p0 +
(

2− βγ
1−β

(
1− (1− β)λ

)
δUU

)
(1− q0).

- Rationing rate: η is solved from (3.9).

- Platform revenue: πr,3(τ, λ) = τ
1−τ

(
βγ

1−β + 1
η

)
w0δ

U
U .
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- The equilibrium satisfies the following conditions:

· Providers with label U get rationed. That is, 0 < η < 1.

· There are customers choosing the platform. That is, δUU > 0.

· Not all customers choose the platform. That is,
(

1−β+βγ
1−β − βγλ(1 −

η)
)
δUU < 1.

If an E4 holds,

- Quantity of hired new providers: δUU =
1−β+βγ

1−β (p0− w0
1−τ )+ 2βγ

1−β (1−q0)−(q0−γ)−(1−q0)βγλ

( βγ
1−β )2(1−q0)+(q0−γ)−

(
1−β+2βγ

1−β (1−q0)−(q0−γ)
)
βγλ

.

- Prices of providers with label U and providers with label H:

· pU = p0 − ( 1
1+βγλ

+ δUU )
(
q0 − γ − βγλ(1− q0)

)
.

· pH = p0 +
(

2− βγ
1−β

(
1− (1− β)λ

)
δUU

)
(1− q0).

- Rationing rate: η = 1.

- Platform revenue: πr,4(τ, λ) = τ
1−τ ·

1−β+βγ
1−β w0δ

U
U .

- The equilibrium satisfies the following conditions:

· Providers with label U are not financially constraint. That is, (1−τ)pU ≥

b0.

· There are customers but not all choosing the platform. That is, 0 < δUU <

1−β
1−β+βγ

.

Proof. First of all, the quantity of hired providers with label U is δU = ζU =

δUU + ηδHU = (1 + βγλη)δUU , where the last equality is obtained from (3.8). Then, the
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expected quality of hired providers with label U is:

qU =
δUU γ + ηδHU
δUU + ηδHU

=
γ + βγλη

1 + βγλη
.

The second equality follows from (3.8).

Next, we characterize the rest equilibrium quantities by types:

E1: In this case, there is no rationing among providers with label U (i.e., η = 1),

and all customers hire providers from the platform (i.e., δU + δHH = 1). From

these two equalities and (3.8), we solve for δUU = 1−β
1−β+βγ

. We then characterize

the prices based on Case 2 of the equilibrium definition. In particular, pH =

pU+(1+ζU)(1−qU) = pU+
(

1
1+βγλ

+ 1−β
1−β+βγ

)
(1−γ), which is a function of pU .

Then, we solve for pU from (3.9). To characterize the platform revenue, we

have (1−τ)(δHHpH+δUpU) = w0 from (3.9), from which we obtain πr,1 = τ
1−τw0.

E2: In this case, providers with label U are financially constraint, so their price is

pU = b0
1−τ . Note that all customers choose to hire providers from the platform

(i.e., δU + δHH = 1). So, we solve for δUU from the last equality and (3.8).

Then, we characterize pH based on Case 2 of the equilibrium definition. In

particular, pH = pU+(1+ζU)(1−qU) = b0
1−τ +

(
1

1+βγλη
+ 1

1−β+βγ
1−β −βγλ(1−η)

)
(1−γ).

Given the characterization of pU and pH, we determine η from (3.9). Lastly,

for the platform revenue, we have πr,2 = τ(pUδU + pHδ
H
H) = τ

(
b0

1−τ + ( 1
1+βγλη

+

δUU )δHH(1−γ)
)
, where the second equality is obtained by substituting pH using

the above characterization.

E3: In this case, providers with label U are financially constraint, so their price is
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pU = b0
1−τ . Then, by the Case 1 of the equilibrium definition, we solve for δUU

and pH. Given the characterization of pU and pH, we determine η using (3.9).

Lastly, for the platform revenue, we obtain δUpU + δHHpH = w0

1−τ

(
βγ

1−β + 1
η

)
δUU ,

from which we obtain the characterization of πr,3.

E4: In this case, there is no rationing (i.e., η = 1). By Case 1 in the equilibrium

definition, we obtain pU = p0 − (1 + δU)(q0 − qU) = p0 −
(

1
1+βγλ

+ δUU
)(
q0 −

γ − βγλ(1 − q0)
)

and pH = p0 +
(
2 − δHH

)
(1 − q0) = p0 +

(
2 − βγ

1−β

(
1 − (1 −

β)λ
)
δUU
)
(1 − q0). Notice that pU and pH only depends on δUU , so we can plug

them into (3.9) and solve for δUU in closed from. Lastly, we obtain πr,4 by

letting η = 1 in πr,3.

Therefore, we have completed the equilibrium characterization for all four types. �

Lemma 3.6.4 Suppose τU = τH = τ and α = 0. Then, each equilibrium type can

be characterized as follows.

In E1,

- Prices of new providers and H-label providers: pU = w0

1−τ−
βγ
(

2(1−β)+βγ
)

(1−β+βγ)2
(1−γ),

pH = pU + (1 + δUU )(1− γ).

- Quantities of new providers and H-label providers: δUU = 1−β
1−β+βγ

, δHH = βγ
1−β+βγ

.

- Rationing rate: η = 1.

- The equilibrium satisfies the following conditions:

· The customer at 1 + δUU prefers the new provider to the outside option

(i.e., p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

).
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· New providers are not financially constrained (i.e., (1− τ)pU ≥ b0).

- Platform revenue: πr,1(τ) = τ
1−τw0.

In E2,

- Prices of new providers and H-label providers: pU = b0
1−τ , pH = pU + (1 +

δUU )(1− γ)

- Quantities of new providers and H-label providers: δUU = 1−β
1−β+βγ

, δHH = βγ
1−β+βγ

.

- Rationing rate: η = 1−β
βγ

w0
1−β+βγ
βγ

b0−w0+
2(1−β)+βγ
1−β+βγ (1−τ)(1−γ)

.

- The equilibrium satisfies the following conditions:

· The customer at 1 + δUU prefers the new provider to the outside option

(i.e., p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

).

· New providers get rationed (i.e., 0 < η < 1).

- Platform revenue: πr,2(τ) = τ
(
b0

1−τ + βγ(2(1−β)+βγ)
(1−β+βγ)2

(1− γ)
)
.

In E3,

- Prices of new providers and H-label providers: pU = b0
1−τ , pH = p0 + (2 −

βγ
1−β δ

U
U )(1− q0).

- Quantities of new providers and H-label providers: δUU = p0−pU
q0−γ − 1, δHH =

βγ
1−β δ

U
U .

- Rationing rate: η = w0
βγ
1−β (1−τ)pH− βγ

1−βw0+b0
.
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- The equilibrium satisfies the following conditions:

· Not all customers choose the platform (i.e., δUU + δHH < 1).

· New providers get rationed (i.e., 0 < η < 1).

· There are customers choosing the platform δUU > 0.

- Platform revenue:

πr,3(τ) =
(

1+
βγ

1− β
·1
η

) τ

q0 − γ

(
p0−(q0−γ)− b0

1− τ

)( b0

1− τ
+

(2 + βγ
1−β )(1− q0)− ( 1

η
− 1)p0

1−β
βγ

+ 1
η

)
In E4,

- Prices of new providers andH-label providers: pU =
1−β+βγ
βγ

w0
1−τ +( 1

η
−1)p0−

(
2+ βγ

1−β

)
(1−q0)

1
η

+ 1−β
βγ

,

pH = p0 + (2− βγ
1−β δ

U
U )(1− q0).

- Quantities of new providers and H-label providers: δUU = p0−pU
q0−γ − 1, δHH =

βγ
1−β δ

U
U .

- Rationing rate: η = 1.

- The equilibrium satisfies the following conditions:

· Not all customers choose the platform (i.e., δUU + δHH < 1).

· New providers are not financially constrained (i.e., (1− τ)pU ≥ b0).

· There are customers choosing the platform δUU > 0.

- Platform revenue:

πr,4(τ) =
(1− β + βγ)2

βγ(1− β)

w0

(q0 − γ)( 1
η

+ 1−β
βγ

)

τ

1− τ

(
p0+

2βγ

1− β + βγ

(
1−1

2
η
)
(1−q0)− w0

1− τ

)
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Proof. We show Lemma 3.6.4 by letting α = 0 in Lemma 3.6.3. �

Proposition 3.6.1 specifies the equilibrium type under a given single commis-

sion with full information.

Proposition 3.6.1 Suppose τU = τH = τ and α = 0. Then, an equilibrium exists.

Moreover,

If p0 ≤ q0 − γ, then there is no provider on the platform.

If q0 − γ < p0 ≤ 2(1−β)+βγ
1−β+βγ

(q0 − γ) and

1. If 0 < b0 ≤ p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, then

b0

p0 − (q0 − γ)
<

w0

p0 + 1−β
1−β+βγ

(q0 − γ)( 2
η
− 1)

≤
1−β+βγ

βγ
w0 − ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ
1−β (1− q0)− ( 1

η
− 1)p0

.

(3.10)

Moreover,

(a) If 0 ≤ τ < 1−
1−β+βγ
βγ

w0−( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1−q0)−( 1

η
−1)p0

, then an E3 holds.

(b) If 1 −
1−β+βγ
βγ

w0−( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1−q0)−( 1

η
−1)p0

≤ τ < 1 − w0

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

, then an E4

holds.

(c) Otherwise, there is no provider on the platform.

2. If p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 < b0 ≤ w0, then

(a) If 0 < τ < 1− b0
p0−(q0−γ)

, then an E3 holds.

(b) Otherwise, there is no provider on the platform.
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If 2(1−β)+βγ
1−β+βγ

(q0 − γ) < p0 <
2(1−β)+βγ

1−β · 1−q0
1
η
−1

, then

p0 − 2(1−β)+βγ
1−β+βγ

(q0 − γ)

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0 − γ)( 1

η
− 1)

w0 ≤
p0 − (q0 − γ)

p0 + 1−β
1−β+βγ

(q0 − γ)( 2
η
− 1)

w0. (3.11)

Moreover,

3. If 0 < b0 ≤
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, then

w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0 − γ)( 1

η
− 1)

≤ (1− β + βγ)2

βγ
(
2(1− β) + βγ

)w0 − b0

1− γ
. (3.12)

Moreover,

(a) If 0 < τ < 1− (1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ , then an E2 holds.

(b) If 1− (1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ ≤ τ ≤ 1− w0

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

, then an

E1 holds.

(c) If 1− w0

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

< τ < 1− w0

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

, then an

E4 holds.

(d) Otherwise, there is no provider on the platform.

4. If
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0 < b0 <
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, then

w0

p0 + 1−β
1−β+βγ

(q0 − γ)( 2
η
− 1)

<

1−β+βγ
βγ

w0 − ( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1− q0)− ( 1

η
− 1)p0

<
b0

p0 − 2(1−β)+βγ
1−β+βγ

(q0 − γ)
.

(3.13)

Moreover,
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(a) If 0 < τ ≤ 1− b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
, then an E2 holds.

(b) If 1− b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
< τ < 1−

1−β+βγ
βγ

w0−( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1−q0)−( 1

η
−1)p0

, then an E3 holds.

(c) If 1 −
1−β+βγ
βγ

w0−( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1−q0)−( 1

η
−1)p0

≤ τ < 1 − w0

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

, then an E4

holds.

(d) Otherwise, there is no provider on the platform.

5. If p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 ≤ b0 ≤ w0, then

(a) If 0 < τ ≤ 1− b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
, then an E2 holds.

(b) 1− b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
< τ < 1− b0

p0−(q0−γ)
, then an E3 holds.

(c) Otherwise, there is no provider on the platform.

If p0 >
2(1−β)+βγ

1−β · 1−q0
1
η
−1

, then

p0 − (q0 − γ)

p0 + 1−β
1−β+βγ

(q0 − γ)( 2
η
− 1)

w0 <
p0 − 2(1−β)+βγ

1−β+βγ
(q0 − γ)

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0 − γ)( 1

η
− 1)

w0. (3.14)

Moreover,

6. If 0 < b0 <
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, then

w0

p0 + 1−β
1−β+βγ

(q0 − γ)( 2
η
− 1)

<
w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0 − γ)( 1

η
− 1)

<
(1− β + βγ)2

βγ
(
2(1− β) + βγ

)w0 − b0

1− γ
. (3.15)

Moreover,

(a) If 0 < τ < 1− (1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ , then an E2 holds.
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(b) If 1− (1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ ≤ τ ≤ 1− w0

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

, then an

E1 holds.

(c) If 1− w0

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

< τ < 1− w0

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

, then an

E4 holds.

(d) Otherwise, there is no provider on the platform.

7. If p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 < b0 ≤
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, then

b0

p0 − q0 + γ
≤

( 1
η

+ 1−β
βγ

)b0 − 1−β+βγ
βγ

w0

( 1
η
− 1)p0 − 2(1−β)+βγ

1−β (1− q0)

≤ w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0 − γ)( 1

η
− 1)

≤ (1− β + βγ)2

βγ
(
2(1− β) + βγ

)w0 − b0

1− γ
.

(3.16)

Moreover,

(a) If 0 < τ < 1− (1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ , then an E2 holds.

(b) If 1− (1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ ≤ τ ≤ 1− w0

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

, then an

E1 holds.

(c) If 1 − w0

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

< τ ≤ 1 −
( 1
η

+ 1−β
βγ

)b0− 1−β+βγ
βγ

w0

( 1
η
−1)p0− 2(1−β)+βγ

1−β (1−q0)
, then

an E4 holds.

(d) If 1−
( 1
η

+ 1−β
βγ

)b0− 1−β+βγ
βγ

w0

( 1
η
−1)p0− 2(1−β)+βγ

1−β (1−q0)
< τ < 1− b0

p0−q0+γ
, then an E3 holds.

(e) Otherwise, there is no provider on the platform.

8. If
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0 < b0 ≤ w0, and
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(a) If 0 < τ ≤ 1− b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
, then an E2 holds.

(b) If 1− b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
< τ < 1− b0

p0−q0+γ
, then and E3 holds.

(c) Otherwise, there is no provider on the platform.

Proof. By the equilibrium characterization in Lemma 3.6.4, to show the exis-

tence of equilibrium of a given type, it suffices to verify the conditions it satisfy. In

particular,

- To show that E1 occurs, we need to verify:

· The customer at 1 + δUU prefers the new provider to the outside option

(i.e., p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

).

· New providers are not financially constrained (i.e., (1− τ)pU ≥ b0).

- To show that E2 occurs, we need to verify:

· The customer at 1 + δUU prefers the new provider to the outside option

(i.e., p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

).

· New providers get rationed (i.e., 0 < η < 1).

- To show that E3 occurs, we need to verify:

· Not all customers choose the platform (i.e., δUU + δHH < 1).

· New providers get rationed (i.e., 0 < η < 1).

· There are customers choosing the platform δUU > 0.

- To show that E4 occurs, we need to verify:
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· Not all customers choose the platform (i.e., δUU + δHH < 1).

· New providers are not financially constrained (i.e., (1− τ)pU ≥ b0).

· There are customers choosing the platform δUU > 0.

First, it is straightforward to verify that when p0 ≤ q0−γ, no providers choose

to stay on the platform.

Second, we show the cases when q0 − γ < p0 ≤ 2(1−β)+βγ
1−β+βγ

(q0 − γ). There

are two groups of cases corresponding to 0 < b0 ≤ p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 and

p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 < b0 ≤ w0, respectively.

1. In the case with low b0, we first show that the inequalities in (3.10) hold. In

particular, it is straightforward to verify that both inequality in (3.10) are

equivalent to b0 ≤ p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0.

(a) Then, to show an E3 arises in case 1-(a), it suffices to verify conditions

δUU +δHH < 1, 0 < η < 1, and δUU > 0. Notice that δHU = 0 and δHH = βγ
1−β δ

U
U .

The first condition is equivalent to δUU < 1−β
1−β+βγ

, which is equivalent to

p0 − 2(1−β)+βγ
1−β+βγ

(q0 − γ) < b0
1−τ . The last inequality holds since its left-

hand side is non-positive while the right-hand side is positive. Then, by

Lemma 3.6.4, we have the closed-form characterization of η. Using the

characterization, we show η > 0, since it is equivalent to

τ < 1−
w0 − ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ
1−β (1− q0)− ( 1

η
− 1)p0

, (3.17)
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which holds because of

τ < 1−
1−β+βγ

βγ
w0 − ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ
1−β (1− q0)− ( 1

η
− 1)p0

. (3.18)

Moreover, we show η < 1, which is equivalent to (3.18). Lastly, we verify

the third condition (i.e., δUU > 0). Notice that it is equivalent to

τ < 1− b0

p0 − q0 + γ
, (3.19)

which holds because of (3.18) and (3.10). Therefore, an E3 occurs under

in this case.

(b) Then, to show an E4 arises in case 1-(b), it suffices to verify conditions

δUU + δHH < 1, (1 − τ)pU ≥ b0, and δUU > 0. For the first condition, it is

equivalent to show that δUU <
1−β

1−β+βγ
, which holds because τ < 1, b0 > 0,

and p0 ≤ 2(1−β)+βγ
1−β+βγ

(q0 − γ). By Lemma 3.6.4, we have a closed-form

characterization of pU in E4. By the characterization, we show that the

second condition (i.e., (1− τ)pU ≥ b0) is equivalent to

τ ≥ 1−
1−β+βγ

βγ
w0 − ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ
1−β (1− q0)− ( 1

η
− 1)p0

, (3.20)

which is the given condition. Besides, the last condition (i.e., δUU > 0)

holds as it is equivalent to

τ < 1− w0

p0 + 1−β
1−β+βγ

(q0 − γ)( 2
η
− 1)

, (3.21)

which is the given condition. Therefore, an E4 occurs.
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(c) For bigger τ , no new providers engage in the platform. We omit the proof

for brevity.

2. In the case with high b0, there are two cases to consider.

(a) In case 2-(a), we show that an E3 arises. Similar to case 1-(a), it suffices

to show conditions 0 < δUU < 1−β
1−β+βγ

and 0 < η < 1 hold. Follow the

same argument as in case 1-(a), we show these conditions hold for this

case.

(b) For bigger τ , no new providers engage in the platform. We omit the proof

for brevity.

Third, we show the cases when 2(1−β)+βγ
1−β+βγ

(q0−γ) < p0 <
2(1−β)+βγ

1−β · 1−q01
η
−1

. Notice

that (3.11) holds as it is equivalent to p0 ≤ 2(1−β)+βγ
1−β · 1−q0

1
η
−1

, which is given. There

are three groups of cases corresponding to 0 < b0 ≤
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0,

p0− 2(1−β)+βγ
1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0 < b0 <
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, and p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 ≤

b0 ≤ w0, respectively.

3. In the case of low b0, we first show that (3.12) holds. In particular, it is

equivalent to 0 < b0 ≤
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, which is given.

(a) Then, to show an E2 arises in case 3-(a), it suffices to verify conditions

0 < η < 1 and p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

. We notice that η < 1 holds as it is

equivalent to

τ < 1− (1− β + βγ)2

βγ
(
2(1− β) + βγ

)w0 − b0

1− γ
, (3.22)
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which is given. Moreover, notice that η > 0 is equivalent to

τ < 1− 1− β + βγ

2(1− β) + βγ
·
w0 − 1−β+βγ

βγ
b0

1− γ
, (3.23)

which holds given (3.22) and 1−β+βγ
2(1−β)+βγ

· w0− 1−β+βγ
βγ

b0

1−γ < (1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ .

The last inequality holds as it is equivalent to w0 > 0. Lastly, we notice

that condition p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

is equivalent to

τ < 1− b0

p0 − 2(1−β)+βγ
1−β+βγ

(q0 − γ)
. (3.24)

To show the last inequality holds, it suffices to show b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
≤

(1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ , which holds as it is equivalent to b0 ≤
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0.

Therefore, an E2 occurs.

(b) Then, to show an E1 holds in case 3-(b), it suffices to verify conditions

p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

and (1 − τ)pU ≥ b0. The first condition is equivalent

to

τ ≤ 1− w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0 − γ)( 1

η
− 1)

, (3.25)

which is given. The second condition is equivalent to

τ ≥ 1− (1− β + βγ)2

βγ
(
2(1− β) + βγ

)w0 − b0

1− γ
, (3.26)

which is also given. Therefore, an E1 occurs.

(c) Then, to show an E4 holds in case 3-(c), it suffices to verify conditions

δUU + δHH < 1, δUU > 0, and (1− τ)pU ≥ b0. Notice that the first condition

is equivalent to δU <
1−β

1−β+βγ
, which is equivalent to

τ > 1− w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0 − γ)( 1

η
− 1)

, (3.27)
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and it is given. Notice δUU > 0 is equivalent to (3.21), which is also

given. Lastly, we notice that (1 − τ)pU ≥ b0 holds because (1 − τ)pU =
1−β+βγ
βγ

w0−(1−τ)

((
2+ βγ

1−β

)
(1−q0)−

(
1
η
−1
)
p0

)
1
η

+ 1−β
βγ

is increasing in τ (as
(
2+ βγ

1−β

)
(1−

q0)−
(

1
η
−1
)
p0 > 0) and (1−τ)pU ≥ b0 when τ = 1− w0

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

,

which is the threshold of shifting from E1 to E4. The last inequality holds

because of the continuity of the equilibrium regarding τ .5 Therefore, an

E4 occurs.

(d) For bigger τ , no new providers engage in the platform. We omit the proof

for brevity.

4. In the case of moderate b0, we first show that (3.13) holds. In particular, the

first inequality of (3.13) holds because it is equivalent to b0 <
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0,

which is given. The second inequality of (3.13) holds because it is equivalent

to b0 >
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, which is also given.

(a) Then, to show an E2 holds in case 4-(a), it suffices to verify conditions

0 < η < 1 and p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

. By the proof of case 3-(a), we notice

that η > 0 is equivalent to (3.23), and η < 1 is equivalent to (3.22). Using

w0 > 0, we can show that (3.23) holds if (3.22) holds. Next, we show

that (3.22) holds under the following given condition:

τ ≤ 1− b0

p0 − 2(1−β)+βγ
1−β+βγ

(q0 − γ)
. (3.28)

In particular, we can show b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
> (1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ as it is

5The continuity of equilibrium is straightforward to show, and we omit it for brevity.
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equivalent to b0 >
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, which is given. Thus,

we have shown 0 < η < 1. Lastly, condition p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

holds as

it is equivalent to (3.28). Therefore, an E2 occurs.

(b) Then, to show an E3 holds in case 4-(b), it suffices to verify conditions

0 < δUU < 1−β
1−β+βγ

and 0 < η < 1, similar to case 1-(a). Notice that

δUU <
1−β

1−β+βγ
is equivalent to

τ > 1− b0

p0 − 2(1−β)+βγ
1−β+βγ

(q0 − γ)
. (3.29)

which is given. Then, we notice that δUU > 0 is equivalent to (3.19). To

show (3.19) holds under

τ < 1−
1−β+βγ

βγ
w0 − ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ
1−β (1− q0)− ( 1

η
− 1)p0

, (3.30)

it suffices to show
1−β+βγ
βγ

w0−( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1−q0)−( 1

η
−1)p0

> b0
p0−(q0−γ)

. The last inequality

is equivalent to b0 <
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, which is given. Then, in case

1-(a), we have shown η > 0 is equivalent to (3.17), and η < 1 is equivalent

to (3.18). Since w0 > 0, (3.17) holds as long as (3.18) holds. Besides,

(3.18) is given in this case. Therefore, an E3 occurs.

(c) Then, to show an E4 holds in case 4-(c), it suffices to verify conditions

0 < δUU < 1−β
1−β+βγ

and (1 − τ)pU ≥ b0, similar to the proof of case 1-

(b). Notice that δUU > 0 is equivalent to (3.21), which is given, and

(1 − τ)pU ≥ b0 is equivalent to (3.20), which is also given. Lastly, we

show δUU < 1−β
1−β+βγ

. In particular, we notice that δUU is decreasing in

τ by the characterization of δUU in Lemma 3.6.4, and δUU < 1−β
1−β+βγ

at
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τ = 1−
1−β+βγ
βγ

w0−( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1−q0)−( 1

η
−1)p0

, which the threshold of shifting from E3 to

E4. Therefore, δUU <
1−β

1−β+βγ
holds in this case, and an E4 occurs.

(d) For bigger τ , no new providers engage in the platform. We omit the proof

for brevity.

5. In the case of high b0, there are two cases to consider.

(a) In case 5-(a), we show an E2 holds by verifying conditions 0 < η < 1

and p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

as in case 3-(a). Notice that η > 0 is equivalent to

(3.23), η < 1 is equivalent to (3.22), and p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

is equivalent

to (3.24). (3.24) holds as it is given. As in the proof of case 3-(a),

(3.23) will hold if (3.22) holds. To show (3.22) given (3.24), it suffices

to show (1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ < b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
. The last inequality holds

as it is equivalent to b0 >
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, which holds as

b0 ≥ p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, which is given, and (3.11). Therefore, an E2

occurs.

(b) Then, to show an E3 holds in case 5-(b), it suffices to verify conditions

0 < δUU <
1−β

1−β+βγ
and 0 < η < 1, similar to case 1-(a). Notice that δUU > 0

is equivalent to (3.19), which is given, and δUU <
1−β

1−β+βγ
is equivalent to

(3.29), which is also given. Moreover, η > 0 is equivalent to (3.17), and

η < 1 is equivalent to (3.18). Besides, (3.17) will hold if (3.18) holds.

(3.18) holds in case 5-(b) because b0
p0−(q0−γ)

≥
1−β+βγ
βγ

w0−( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1−q0)−( 1

η
−1)p0

, and

the last inequality is equivalent to b0 ≥ p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, which is
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given. Therefore, an E3 occurs.

(c) For bigger τ , no new providers engage in the platform. We omit the proof

for brevity.

Fourth, we show that when p0 > 2(1−β)+βγ
1−β · 1−q0

1
η
−1

, (3.14) holds. In fact,

(3.14) is equivalent to p0 > 2(1−β)+βγ
1−β · 1−q0

1
η
−1

. Then, there are three groups cor-

responding to 0 < b0 ≤ p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 < b0 ≤

p0− 2(1−β)+βγ
1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, and
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0 < b0 ≤ w0, re-

spectively.

6. In the case of low b0, we first show that (3.15) holds. Given η > 0, it is

straightforward to show the first inequality of (3.15) holds. Then, we can show

that its second inequality is equivalent to b0 <
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0.

The last inequality holds given b0 <
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 and (3.14).

(a) Then, to show an E2 arises in case 6-(a), it suffices to verify conditions

0 < η < 1 and p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

. By the proof of case 3-(a), we notice

that η > 0 is equivalent to (3.23), and η < 1 is equivalent to (3.22). Using

w0 > 0, we can show that (3.23) holds if (3.22) holds. Notice that (3.22)

is given in case 6-(a). Moreover, p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

is equivalent to (3.28).

(3.28) holds in this case as b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
< (1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ . The

last inequality is equivalent to b0 <
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, which

holds by (3.14). Therefore, an E2 occurs.

(b) Then, to show an E1 arises in case 6-(b), it suffices to verify conditions
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p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

, which is equivalent to (3.25), and (1 − τ)pU ≥ b0,

which is equivalent to (3.26). Notices that (3.25) and (3.26) are given in

this case. Therefore, an E1 occurs.

(c) Then, to show an E4 holds in case 6-(c), it suffices to verify conditions

0 < δUU < 1−β
1−β+βγ

and (1 − τ)pU ≥ b0, similar to the proof of case 1-

(b). Notice that δUU < 1−β
1−β+βγ

is equivalent to (3.27), which is given,

and δUU > 0 is equivalent to (3.21), which is also given. Lastly, we show

(1− τ)pU ≥ b0 holds. Notice that it is equivalent to

τ ≤ 1−
( 1
η

+ 1−β
βγ

)b0 − 1−β+βγ
βγ

w0

( 1
η
− 1)p0 − 2(1−β)+βγ

1−β (1− q0)
. (3.31)

To show (3.31) under (3.21), it suffices to show
( 1
η

+ 1−β
βγ

)b0− 1−β+βγ
βγ

w0

( 1
η
−1)p0− 2(1−β)+βγ

1−β (1−q0)
<

w0

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

. The last inequality is equivalent to b0 <
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0,

which is given. Therefore, an E4 occurs.

(d) For bigger τ , no new providers engage in the platform. We omit the proof

for brevity.

7. In the case of moderate b0, we first show that (3.16) holds. The first in-

equality holds because it is equivalent to b0 ≥ p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, which

is given. Then second and third inequalities are both equivalent to b0 ≤

p0− 2(1−β)+βγ
1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, which is also given.

(a) Then, we show an E2 arises in case 7-(a). We omit the proof as it is the

same as case 6-(a).
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(b) Then, we show an E1 arises in case 7-(b). We omit the proof as it is the

same as case 6-(b).

(c) Then, to show an E4 arises in case 7-(c), it suffices to verify conditions

0 < δUU <
1−β

1−β+βγ
and (1 − τ)pU ≥ b0, similar to the proof of case 1-(b).

Notice that δUU <
1−β

1−β+βγ
is equivalent to (3.27), which is given. Then, we

notice that (1− τ)pU ≥ b0 is equivalent to (3.31), which is given. Lastly,

we notice that δUU > 0 is equivalent to (3.21). (3.21) holds under (3.31)

because w0

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

<
( 1
η

+ 1−β
βγ

)b0− 1−β+βγ
βγ

w0

( 1
η
−1)p0− 2(1−β)+βγ

1−β (1−q0)
, which is equivalent

to b0 >
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0. Notice that the last inequality is given.

Therefore, an E4 occurs.

(d) Then, to show an E3 arises in case 7-(d), it suffices to verify conditions

0 < δUU < 1−β
1−β+βγ

and 0 < η < 1, similar to case 1-(a). Notice that

δUU > 0 is equivalent to (3.19), which is given. Then, we notice that η > 0

is equivalent to

τ > 1−
( 1
η

+ 1−β
βγ

)b0 − w0

( 1
η
− 1)p0 − 2(1−β)+βγ

1−β (1− q0)
, (3.32)

and η < 1 is equivalent to

τ > 1−
( 1
η

+ 1−β
βγ

)b0 − 1−β+βγ
βγ

w0

( 1
η
− 1)p0 − 2(1−β)+βγ

1−β (1− q0)
. (3.33)

Under w0 > 0 and p0 >
2(1−β)+βγ

1−β · 1−q0
1
η
−1

, it is straightforward to show that

( 1
η

+ 1−β
βγ

)b0− 1−β+βγ
βγ

w0

( 1
η
−1)p0− 2(1−β)+βγ

1−β (1−q0)
<

( 1
η

+ 1−β
βγ

)b0−w0

( 1
η
−1)p0− 2(1−β)+βγ

1−β (1−q0)
, which implies that (3.32)

holds as long as (3.33) holds. We further notice that (3.33) is given.

Lastly, we notice that δUU <
1−β

1−β+βγ
is equivalent to (3.29). To show (3.29)
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holds, it suffices to show that b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
≥

( 1
η

+ 1−β
βγ

)b0− 1−β+βγ
βγ

w0

( 1
η
−1)p0− 2(1−β)+βγ

1−β (1−q0)
.

Then, we can show that the last inequality is equivalent to b0 ≤
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0,

which is given. Therefore, an E3 occurs.

(e) For bigger τ , no new providers engage in the platform. We omit the proof

for brevity.

8. In the case of high b0, there are three cases to consider.

(a) To show an E2 holds in case 8-(a), it suffices to verify conditions 0 <

η < 1 and p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

. Notice that p0−pU
q0−γ ≥

2(1−β)+βγ
1−β+βγ

is equivalent

to (3.28), which is given. Then, we notice that η > 0 is equivalent

to (3.23), and η < 1 is equivalent to (3.22). Using w0 > 0, we can

show that (3.23) holds if (3.22) holds. Moreover, (3.22) holds under

(3.28) because (1−β+βγ)2

βγ
(

2(1−β)+βγ
) w0−b0

1−γ < b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
holds. The last

inequality is equivalent to b0 >
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, which is

given. Therefore, an E2 occurs.

(b) To show an E3 holds in case 8-(b), it suffices to verify conditions 0 <

δUU < 1−β
1−β+βγ

and 0 < η < 1, similar to case 1-(a). Notice that δUU > 0

is equivalent to (3.19), which is given, and δUU < 1−β
1−β+βγ

is equivalent

to (3.29), which is also given. Then, we notice that η > 0 is equivalent

to (3.32) and η < 1 is equivalent to (3.33). Under w0 > 0 and p0 >

2(1−β)+βγ
1−β · 1−q0

1
η
−1

, we can show that (3.32) holds as long as (3.33) holds,

following the argument in case 7-(d). Then, we show that (3.33) holds
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under (3.29) because
( 1
η

+ 1−β
βγ

)b0− 1−β+βγ
βγ

w0

( 1
η
−1)p0− 2(1−β)+βγ

1−β (1−q0)
> b0

p0− 2(1−β)+βγ
1−β+βγ (q0−γ)

. The last

inequality is equivalent to b0 >
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, which is

given. Therefore, an E3 occurs.

(c) For bigger τ , no new providers engage in the platform. We omit the proof

for brevity.

Therefore, we have completed the proof of Proposition 3.6.1. �

Proposition 3.6.2 specifies the revenue optimal single commission under a full-

information policy. We use τ ∗(0) to denote the optimal single commission under the

full information.

Proposition 3.6.2 We let τ ∗4 = 1− 2w0

p0+w0+ 2βγ
1−β+βγ (1− 1

2
η)(1−q0)

. Under the full infor-

mation, τ ∗(0) can be characterized as follows:

If q0 − γ < p0 <
2(1−β)+βγ

1−β+βγ
(q0 − γ) and

1. If 0 < b0 ≤ p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, then

(a) If b0 >
1−β+βγ

1−β+βγ/η

(
1−

(2+ βγ
1−β )(1−q0)−( 1

η
−1)p0

1−β+βγ
2βγ

(p0+w0)+(1− 1
2
η)(1−q0)

)
w0, then

τ ∗(0) = arg maxπr,3(τ)1

{
0 < τ < 1−

1−β+βγ
βγ

w0 − ( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1− q0)− ( 1

η
− 1)p0

}
,

(3.34)

and an E3 holds.

(b) Otherwise, τ ∗(0) = τ ∗4 and an E4 holds.

2. If p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 < b0 ≤ w0, then
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τ ∗(0) = arg maxπr,3(τ)1

{
0 < τ < 1− b0

p0 − (q0 − γ)

}
,

and an E3 holds.

If 2(1−β)+βγ
1−β+βγ

(q0 − γ) < p0 <
2(1−β)+βγ

1−β · 1−q0
1
η
−1

, then

3. If 0 < b0 ≤
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, then

τ ∗(0) = max

{
τ ∗4 , 1−

w0

p0 +

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0 − γ)( 1

η
− 1)

}
(3.35)

Moreover, if

p0 ≥ w0 +
2(1− β)

1− β + βγ

(3(1− β) + βγ

2(1− β + βγ)
− 1− β

1− β + βγ

1

η

)
(q0 − γ), (3.36)

then an E1 holds; Otherwise, an E4 holds.

4. If
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0 < b0 <
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, then

(a) If b0 >
1−β+βγ

1−β+βγ/η

(
1−

(2+ βγ
1−β )(1−q0)−( 1

η
−1)p0

1−β+βγ
2βγ

(p0+w0)+(1− 1
2
η)(1−q0)

)
w0, then

τ ∗(0) = arg maxπr,3(τ)1

{
1− b0

p0 − 2(1−β)+βγ
1−β+βγ

(q0 − γ)

≤ τ < 1−
1−β+βγ

βγ
w0 − ( 1

η
+ 1−β

βγ
)b0

2(1−β)+βγ
1−β (1− q0)− ( 1

η
− 1)p0

}
,

(3.37)

and an E2 or E3 holds.
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(b) Otherwise, τ ∗(0) = τ ∗4 , and an E4 holds.

5. If p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 ≤ b0 ≤ w0, then

τ ∗(0) = arg maxπr,3(τ)1

{
1− b0

p0 − 2(1−β)+βγ
1−β+βγ

(q0 − γ)
≤ τ < 1− b0

p0 − (q0 − γ)

}
,

(3.38)

and an E2 or E3 holds.

If p0 >
2(1−β)+βγ

1−β · 1−q0
1
η
−1

, then

6. If 0 < b0 ≤ p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0, then τ ∗(0) is characterized by (3.35). More-

over, if (3.36) holds, then an E1 holds. Otherwise, an E4 holds.

7. If p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 < b0 ≤
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0, then

(a) If b0 ≤ 1−β+βγ
1−β+βγ/η

(
1−

(2+ βγ
1−β )(1−q0)−( 1

η
−1)p0

1−β+βγ
2βγ

(p0+w0)+(1− 1
2
η)(1−q0)

)
w0, then τ ∗(0) is charac-

terized by (3.35). Moreover, if (3.36) holds, then an E1 holds. Otherwise,

an E4 holds.

(b) Otherwise,

τ ∗(0) = arg maxπr,3(τ)1

{
1−

( 1
η

+ 1−β
βγ

)b0 − 1−β+βγ
βγ

w0

( 1
η
− 1)p0 − 2(1−β)+βγ

1−β (1− q0)
< τ < 1− b0

p0 − q0 + γ

}
,

(3.39)

and an E3 holds.

8. If
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

w0 < b0 ≤ w0, then τ ∗(0) is characterized by

(3.38), and an E2 or E3 holds. If τ ∗(0) = 1 − b0
p0− 2(1−β)+βγ

1−β+βγ (q0−γ)
, then an E2

occurs. Otherwise, an E3 occurs.
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Proof. We show this proposition based on three observations.

First of all, by Lemma 3.6.4, the platform revenue increases in τ under E1

and E2. Therefore, the first observation is that τ ∗(0) is not in the interior of the

commission intervals in cases 3-(a), 3-(b), 4-(a), 5-(a), 6-(a), 6-(b), 7-(a), 7-(b), and

8-(a) in Proposition 3.6.1. By the continuity of the equilibrium with respect to τ ,

we only need to search for τ ∗(0) in the boundary and interior of the commission

intervals in the remaining cases where E3 and E4 holds.

The second observation is that, if τ ∗(0) is in the interior of the commission

interval where E4 arises, we show that τ ∗(0) = 1− 2w0

p0+w0+ 2βγ
1−β+βγ (1− 1

2
η)(1−q0)

, τ ∗4 . By

the definition of π4,r(τ) in Lemma 3.6.4, it is equivalent to maximize the following

quadratic function:

(u− 1)

(
1

w0

(
p0 +

2βγ

1− β + βγ

(
1− 1

2
η
)
(1− q0)

)
− u

)
,

where u = 1
1−τ . By maximizing the above expression, we obtain τ ∗(0) = τ ∗4 .

The third observation is that if E3 and E4 can occur in the same case when

changing τ (e.g., case 1 in Proposition 3.6.1), then there does not exist τ̂3 and τ̂4

such that π′r,3(τ̂3) = 0, π′r,4(τ̂4) = 0, and τ̂3 and τ̂4 follow the same order as the

order of E3 and E4 occurring when τ increases in a given case.6 In other words,

we cannot have interior local optimal commission in E3 and E4 at the same time.

In particular, by the equilibrium characterization of E3 and E4 in Lemma 3.6.4, we

notice that the platform revenue under E3 and E4 can be written as π = τh(pU),

6In cases 1 and 4, we require τ̂3 < τ̂4 as E3 occurs first and in case 7, we require τ̂3 > τ̂4 as E4

occurs first.
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where h(pU) is a function of pU . In particular,

h(pU) = δUU pU + δHHpH

=
βγ

1− β
δUU

(
1− β
βγ

pU + p0 +
(

2− βγ

1− β
δUU

)
(1− q0)

)

=
1 + βγ

1−β
1
η

q0 − γ

(
p0 − (q0 − γ)− pU

)(
pU +

(
2 + βγ

1−β

)
(1− q0)−

(
1
η
− 1
)
p0

1−β
βγ

+ 1
η

)
.

Notice that τ influences h(pU) only through pU . Therefore, π′(τ) = 0 is equivalent

to τp′U = − h(pU )
h′(pU )

, where p′U is the derivative of p′U with respect to τ . Notice that

h′(pU)

h(pU)
= − 1

p0 − (q0 − γ)− pU
+

1

pU +

(
2+ βγ

1−β

)
(1−q0)−

(
1
η
−1
)
p0

1−β
βγ

+ 1
η

,

which is decreasing in pU . Then, we show the observation by considering the follow-

ing two possible types of cases:

1. In cases 1 and 4, where E3 occurs before E4 as we increase τ , we show that

such τ̂3 and τ̂4 do not exist simultaneously. We show this by the way of

contradiction. Suppose such τ̂3 and τ̂4 exist. Thus, we have τ̂3 < τ̂4, τ̂3p
′
U(τ̂3) =

− h
(
pU (τ̂3)

)
h′
(
pU (τ̂3)

) , and τ̂4p
′
U(τ̂4) = − h

(
pU (τ̂4)

)
h′
(
pU (τ̂4)

) . Moreover, we show that p′U(τ̂3) <

p′U(τ̂4), which can be rewritten as (by Lemma 3.6.4) b0
(1−τ̂3)2

< 1−β+βγ

1−β+βγ 1
η

· w0

(1−τ̂4)2
.

To show the last inequality holds, it suffices to show that

b0 ≤
1− β + βγ

1− β + βγ 1
η

w0. (3.40)

We also notice that b0 <
p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 in cases 1 and 4. Then, to

show (3.40), it suffices to show p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 <
1−β+βγ

1−β+βγ 1
η

w0. The last

inequality is equivalent to p0 <
2(1−β)+βγ

1−β · 1−q0
1
η
−1

, which holds in cases 1 and
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4. Therefore, we have shown p′U(τ̂3) < p′U(τ̂4). Given the last inequality, we

obtain τ̂3p
′
U(τ̂3) < τ̂4p

′
U(τ̂4) and −h′(pU (τ̂3))

h(pU (τ̂3))
> −h′(pU (τ̂4))

h(pU (τ̂4))
, which results in a

contradiction. Therefore, such τ̂3 and τ̂4 do not exist simultaneously.

2. In case 7, where E4 occurs before E3 as we increase τ , we show that such τ̂3

and τ̂4 do not exist simultaneously. We show this by the way of contradiction.

Suppose such τ̂3 and τ̂4 exist. Thus, we have τ̂3 > τ̂4, τ̂3p
′
U(τ̂3) = − h

(
pU (τ̂3)

)
h′
(
pU (τ̂3)

) ,

and τ̂4p
′
U(τ̂4) = − h

(
pU (τ̂4)

)
h′
(
pU (τ̂4)

) . Moreover, we show that p′U(τ̂3) > p′U(τ̂4), which

can be rewritten as (by Lemma 3.6.4) b0
(1−τ̂3)2

> 1−β+βγ

1−β+βγ 1
η

· w0

(1−τ̂4)2
. To show the

last inequality holds, it suffices to show that

b0 ≥
1− β + βγ

1− β + βγ 1
η

w0. (3.41)

We also notice that b0 > p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 in case 7. Then, to show

(3.41), it suffices to show p0−(q0−γ)

p0+ 1−β
1−β+βγ (q0−γ)( 2

η
−1)

w0 >
1−β+βγ

1−β+βγ 1
η

w0. The last in-

equality is equivalent to p0 >
2(1−β)+βγ

1−β · 1−q0
1
η
−1

, which holds in case 7. There-

fore, we have shown p′U(τ̂3) < p′U(τ̂4). Given the last inequality, we obtain

τ̂3p
′
U(τ̂3) > τ̂4p

′
U(τ̂4) and −h′(pU (τ̂3))

h(pU (τ̂3))
< −h′(pU (τ̂4))

h(pU (τ̂4))
, which results in a contradic-

tion. Therefore, such τ̂3 and τ̂4 do not exist simultaneously.

Given the above observations, we can characterize τ ∗(0) and the equilibrium

type under τ ∗(0) in each case:

1. In case 1, it is straightforward to show that if τ ∗4 < 1 −
1−β+βγ
βγ

w0−( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1−q0)−( 1

η
−1)p0

is equivalent to

b0 >
1− β + βγ

1− β + βγ/η

(
1−

(2 + βγ
1−β )(1− q0)− ( 1

η
− 1)p0

1−β+βγ
2βγ

(p0 + w0) + (1− 1
2
η)(1− q0)

)
w0. (3.42)
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Based on the third observation, if (3.42) holds, then τ ∗(0) is determined by

(3.34) and an E3 occurs under τ ∗(0). Otherwise, τ ∗(0) = τ ∗4 and an E4 occurs

under τ ∗(0).

2. The characterization of case 2 is straightforward so we omit the proof for

brevity.

3. We establish (3.35) as the characterization of τ ∗(0) in case 3 based on the

first and the second observations. Then, it is straightforward to show that

τ ∗4 ≤ 1 − w0

p0+

(
2(1−β)+βγ

)
(1−β)

(1−β+βγ)2
(q0−γ)( 1

η
−1)

is equivalent to (3.36). Therefore, if

(3.36) holds, the platform revenue is decreasing in τ in the commission interval

associated with E4 (i.e., case 3-(c) in Proposition 3.6.1), and an E1 holds under

τ ∗(0). Otherwise, an E4 holds.

4. In case 4, the proof is similar to case 1. If (3.42) holds, then τ ∗4 < 1 −
1−β+βγ
βγ

w0−( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1−q0)−( 1

η
−1)p0

. Therefore, τ ∗(0) is obtained by (3.37), and an E2 or an

E3 occurs under τ ∗(0). Otherwise, we have τ ∗(0) = τ ∗4 and an E4 occurs.

5. We can show case 5 based on the first observation. We omit the proof for

brevity.

6. We can show case 6 based on the first and second observation. Since the proof

is similar to case 3, we omit the proof for brevity.

7. In case 7, based on the third observation, we only need to search for τ ∗(0) when

an E1 or an E4 occurs if τ ∗4 ≤ 1 −
1−β+βγ
βγ

w0−( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1−q0)−( 1

η
−1)p0

, which is equivalent
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to b0 ≤ 1−β+βγ
1−β+βγ/η

(
1−

(2+ βγ
1−β )(1−q0)−( 1

η
−1)p0

1−β+βγ
2βγ

(p0+w0)+(1− 1
2
η)(1−q0)

)
w0. In this case, τ ∗(0) is given

by (3.35), and we can determine whether an E1 or an E4 occurs under τ ∗(0)

based on (3.36) (similar to the proof of case 3). On the other hand, we can

show τ ∗(0) is characterized by (3.39) if τ ∗4 > 1−
1−β+βγ
βγ

w0−( 1
η

+ 1−β
βγ

)b0

2(1−β)+βγ
1−β (1−q0)−( 1

η
−1)p0

, which

is equivalent to b0 >
1−β+βγ

1−β+βγ/η

(
1 −

(2+ βγ
1−β )(1−q0)−( 1

η
−1)p0

1−β+βγ
2βγ

(p0+w0)+(1− 1
2
η)(1−q0)

)
w0. By all three

observations, we can show that in this case τ ∗(0) is characterized by (3.39)

and an E3 occurs under τ ∗(0).

8. We can show case 8 based on the first observation. We omit the proof for

brevity.

Therefore, we have completed the characterization of τ ∗(0) as well as the corre-

sponding equilibrium type in each case. �

Lemma 3.6.5 Suppose an E1 holds under (τ ∗(0), 0) and η < 1. Then, λ∗ > 0.

Besides, the optimal delay policy results in lower δHH compared the full-information

policy with τ ∗(0).

Proof. In this proof, we first show that λ∗ > 0 by finding a policy with λ > 0, which

results in an E1 with higher platform revenue than that under (τ ∗(0), 0). We then

show that for any policy with λ > 0, the corresponding quantity of providers with

label H is less than βγ
1−β+βγ

, which is the quantity of providers with label H under

λ = 0 and E1.

First, we notice that the platform revenue in E1 is τ
1−τw0 by Lemma 3.6.3.

Therefore, within E1, the conditional optimal τ given λ is the maximum τ such that
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E1 holds. By Lemma 3.6.3, to show an E1 holds, we need to check two conditions:

pU ≤ p0 −
(

1
1+βγλ

+ 1−β
1−β+βγ

)(
q0 − γ − βγλ(1 − q0)

)
and (1 − τ)pU ≥ b0. Next, we

show that at the optimal commission given λ, denoted by τ ∗(λ), the first condition is

binding while the second condition is not binding. In particular, it is straightforward

to verify that the left-handed side of both conditions (i.e., pU and (1 − τU)pU)

are increasing in τ . Therefore, given λ, τ ∗(λ) is solved from pU = p0 −
(

1
1+βγλ

+

1−β
1−β+βγ

)(
q0 − γ − βγλ(1− q0)

)
, which is equivalent to

w0

1− τ
= p0 +

1− β
1− β + βγ

(q0 − γ)
(1

η
− 1
)(

1 +
1− β

1− β + βγ
(1 + βγλ)

)
,

from which we solve for τ ∗(λ) = 1− w0

p0+ 1−β
1−β+βγ (q0−γ)

(
1
η
−1

)(
1+ 1−β

1−β+βγ (1+βγλ)

) . Besides,

we notice that τ ∗(λ) is increasing in λ. In other words, if both policies (τ ∗(λ), λ),

where λ > 0, and (τ ∗(0), 0) result in an E1, then τ ∗(λ) > τ ∗(0). Hence, the first

policy with delay leads to a higher platform revenue than the second policy, which

is the full-information policy with the optimal commission. To show such (τ ∗(λ), λ)

policy exists, it suffices to show that condition (1− τ)pU ≥ b0 holds under the given

policy. It is straightforward to verify that the left-handed side of the condition is

increasing in λ. Therefore, if policy (τ ∗(0), 0) satisfies the condition, then policy

(τ ∗(λ), λ) will satisfy the condition. In sum, we have establish that λ∗ > 0 under

the given conditions.

Second, we show that any policy with a positive delay (i.e., λ > 0) results in

fewer providers with label H compared a full-information, which results in an E1.

We let δH+
H and δH0

H denote the quantity of providers with label H under the given

delay policy and the given full-information policy, respectively. By Lemma 3.6.3,
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we have δH0
H = βγ

1−β+βγ
. Then, we show δH+

H < δH0
H holds, when E1, E2, E3, and E4

occurs under the given delay policy (λ > 0):

1. If an E1 holds under the given delay policy, then δH+
H = βγ

1−β+βγ

(
1− (1− β)λ

)
(by Lemmas 3.6.1 and 3.6.3). Therefore, δH+

H < δH0
H .

2. If an E2 holds under the given delay policy, then by Lemma 3.6.3 the quantity

of hired new providers is 1
1−β+βγ

1−β −βγλ(1−η)
< 1

1−β+βγ
1−β −βγλ

. The last inequality

holds because η > 0. Then, by the characterization of δHH in Lemma 3.6.1,

we obtain δH+
H < βγ

1−β

(
1− (1− β)λ

)
1

1−β+βγ
1−β −βγλ

. Then, it is straightforward to

show that the right-handed side of the last inequality is decreasing in λ, which

hence is maximized at λ = 0. Therefore, δH+
H < βγ

1−β+βγ
= δH0

H .

3. If an E3 holds under the given delay policy, then by Lemma 3.6.3 the quantity

of hired new providers is less than 1
1−β+βγ

1−β −βγλ(1−η)
. By following the same

proof as in case E2, we can show δH+
H < δH0

H .

4. If an E4 holds under the given delay policy, then by Lemma 3.6.3, the total

quantity of hired providers is less than 1. That is, (1 +βγλ)δUU + βγ
1−β

(
1− (1−

β)λ
)
δUU < 1, which is equivalent to δUU <

1−β
1−β+βγ

. Then, by the characterization

of δHH in Lemma 3.6.1, we obtain δH+
H < δH0

H .

Therefore, we have shown that a full-information policy, which results in an E1,

have more providers with label H than an policy with a positive delay. �
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3.6.2 Differentiated commissions

In this sections, we introduce technical lemmas and proposition for the case

of differentiated commissions.

Lemma 3.6.6 The revenue maximization problem over informational delay and

general commission rates can be formulated as

max
τU ,τH,λ≥0

τUpU(δUU + ηδHU ) + τHpHδ
H
H

s.t.

(Steady state condition) (3.6), δUU + ηδHU + δHH ≤ 1

(Expected quality of unrevealed providers) qU =
δUU γ + ηδHU
δUU + ηδHU

,

(Price of newcomers) pU =


p0 − (1 + δUU + ηδHU )(q0 − qU), qU ≤ q0

p0 + (2− δUU − ηδHU − δHH)(qU − q0), qU > q0

(Price of H-label providers) pH =


p0 + (2− δHH)(1− q0), qU ≤ q0

pU + (2− δHH)(1− qU), qU > q0

(Free-entry condition) (3.9)

(Stay of H-label providers) (1− τH)pH ≥ w0

(Financial constraint) (1− τU)pU ≥ b0

Proof. In this proof, we only focus on the characterization the price functions

of unrevealed and H-label providers as other components are straightforward to

verify. We consider the four matching structures in the equilibrium definition in

Section 3.3, separately. First of all, we notice that ζU = δUU + ηδHU and ζH = δHH ,
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which are the market clearing conditions.

1. In case 1 (qU < q0), we have ζU = pU−p0
qU−q0

− 1 and ζH = 2− pH−p0
1−q0 . Then by the

market-clearing conditions, we obtain pU = p0 − (1 + δUU + ηδHU )(q0 − qU) and

pH = p0 + (2− δHH)(qH − q0).

2. In case 2 (qU ≤ q0), we have ζU = pH−pU
1−qU

− 1 and ζH = 2− pH−pU
1−qU

. Then by the

market clearing conditions, we obtain pH = pU + (2− δHH)(qH − qU). Besides,

customer with sensitivity ζU + 1 (weakly) prefer the providers with label U to

the outside option (i.e., (ζU + 1)qU − pU ≥ (ζU + 1)q0 − p0 or, equivalently,

pU ≤ p0− (ζU + 1)(q0− qU)). Next, we show that pU < p0− (ζU + 1)(q0− qU) is

suboptimal. If the inequality holds, the platform can increase the revenue by

raising the commissions. In particular, by (3.9), increasing τH or τU or both

can increase pU given all other equilibrium outcomes fixed. In other words, if

pU < p0−(ζU+1)(q0−qU) holds, the platform can always increase its revenue by

slightly increasing either commission. Therefore, if the optimal policy leads to

the matching structure specified in case 2, equality pU = p0− (ζU + 1)(q0− qU)

should hold. Therefore, we obtain pU = p0 − (1 + δUU + ηδHU )(q0 − qU) and

pH = p0 + (2− δHH)(1− q0).

3. In this case (qU ≥ q0), we have the same matching structure as case 2. Thus,

we have pH = pU + (2 − δHH)(qH − qU). Besides, customer with sensitivity 1

(weakly) prefers unrevealed providers over the outside option (i.e., qU − pU ≥

q0 − p0 or, equivalently, pU ≤ p0 + qU − q0). Follow the same argument in

case 2, if the optimal policy leads to the matching structure specified by case
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3, we have pU = p0 + qU − q0. Therefore, pH = pU + (2 − δHH)(qH − qU), and

pU = p0 + (2− δUU − ηδHU − δHH)(qU − q0), where δUU + ηδHU + δHH = 1.

4. In this case (qU > q0), we have ζU = pH−pU
1−qU

− pU−p0
qU−q0

and ζH = 2 − pH−pU
1−qU

. By

the market clearing conditions, we obtain pH = pU + (2 − δHH)(qH − qU) and

pU = p0 + (2− δUU − ηδHU − δHH)(qU − q0).

Therefore, we have formulated the platform’s revenue maximization problem using

information provision policy and differentiated commissions. �

Lemma 3.6.7 Suppose γ < 1−β
β

holds. Then, the optimal information-commission

policy results in no rationing (i.e., η = 1) in equilibrium. Moreover, under the full

information (i.e., λ = 0), the optimal commission scheme results in no rationing in

equilibrium.

Proof. It suffices to show that given a policy (τU , τH, λ), which leads to η < 1 in

equilibrium, we can always find another policy (τ̃U , τ̃H, λ̃), which leads to a strictly

higher platform revenue.

First, by (3.9), we can re-write the platform revenue as:

πr = δUU

(
βγ

1− β
(
1− (1− β)λ

)
pH + (1 + βγλη)pU −

( βγ

1− β
+

1

η

)
w0

)
. (3.43)

Note that (3.43) is independent of the commissions. Then, we consider the following

two cases:

- qU ≤ q0. In this case, by the characterization of pU and pH from Lemma 3.6.6,

πr can be further written as:

185



πr = δUU

((1− β + βγ

1− β
− βγλ(1− η)

)
p0 −

(
q0 − γ − βγλη(1− q0)

)
+

2βγ

1− β
(
1− (1− β)λ

)
(1− q0)−

( βγ

1− β
+

1

η

)
w0

−
( βγ

1− β
(
1− (1− β)λ

))2

(1− q0)δUU − (1 + βγλη)
(
q0 − γ − βγλη(1− q0)

)
δUU

)
.

(3.44)

Given λ, η, and δUU , it is evident that πr is fully determined (i.e., it is indepen-

dent of τU and τH). Noticeably, we can show that ∂πr
∂η

> 0. To see this, ∂πr
∂η

has the same sign as:

βγλp0 + βγλ(1− q0) + 2(βγλ)2(1− q0)ηδUU + βγλ(1 + γ − 2q0)δUU +
w0

η2
> 0

(3.45)

The last inequality holds as 1 + γ − 2q0 > 0 (note that η < 1 and γ < 1−β
β

).

Then, given (τU , τH, λ), which results in δUU , η and pU , we let λ̃ = λ, and we

choose τ̃U and τ̃H such that the following holds:

βγ

1− β
1− (1− β)λ

1 + βγλ

(
(1− τ̃H)p̃H − w0

)
= w0 − (1− τ̃U)p̃U , and (1− τ̃U)p̃U = (1− τU)pU ,

where p̃H = p0 +
(

2− βγ
1−β

(
1− (1− β)λ

)
δUU

)
(1− q0), and p̃U = p0 − δUU

(
q0 −

γ − βγλ(1 − q0)
)
. Therefore, under policy (τ̃U , τ̃H, λ̃), the resulting δ̃UU = δUU ,

yet, η̃ = 1. Besides, it is straightforward to verify that (1 − τ̃H)p̃H ≥ w0 and

w0 ≥ (1 − τ̃U)p̃U = (1 − τU)pU ≥ b0. Lastly, by (3.45), we show that policy

(τ̃U , τ̃H, λ̃) strictly outperforms policy (τU , τH, λ) in revenue.
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- qU > q0. In this case, we first show that given a policy (τU , τH, λ) with δUU

and η in equilibrium, we can find an alternative policy (τ̃U , τ̃H, λ̃) such that

its equilibrium outcomes satisfy δ̃UU = δUU , η̃ = 1, and λ̃ = λη. Note that if

we can find such policy, it will have the same expected quality of unrevealed

providers (i.e., q̃U = qU). In particular, we choose τ̃U and τ̃H such that:

βγ

1− β
· 1− (1− β)λ̃

1 + βγλ̃

(
(1− τ̃H)p̃H − w0

)
= w0 − (1− τ̃U)p̃U , and (1− τ̃U)p̃U = (1− τU)pU ,

where p̃U = p0 +
(
2 − 1−β+βγ

1−β δUU
)
(qU − q0) and p̃H = p̃U +

(
2 − βγ

1−β

(
1 − (1 −

β)λ̃
)
δUU
)
(1 − qU). It is straightforward to show that we can solve for τ̃U and

τ̃H from the above two equations.

Next, we show that the alternative policy leads to a higher platform revenue.

We let u , λη = λ̃η̃ = λ̃, which is the same under both policies. Then, given

u, we can write down the platform revenue as (by (3.43) and Lemma 3.6.6):

πr(λ) =

δUU

((1− β + βγ

1− β
− βγλ+ βγu

)(
p0 +

(
2−

(1− β + βγ

1− β
− βγλ+ βγu

)
δUU
)
(qU − q0)

)
+

2βγ

1− β
(
1− (1− β)λ

)
(1− qU)−

( βγ

1− β
(
1− (1− β)λ

))2

(1− qU)δUU −
( βγ

1− β
+
λ

u

)
w0

)
.

(3.46)

To simplify the notation, let A(λ) , 1−β+βγ
1−β − βγλ + βγu, B(λ) , βγ

1−β

(
1 −

(1 − β)λ
)
, a , qU − q0 = βγu(1−q0)−(q0−γ)

1+βγu
≥ 0, and b , 1 − qU = 1−γ

1+βγu
≥ 0.

Then, the revenue function becomes:
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πr(λ) = δUU

(
A(λ)

(
p0 +

(
2− A(λ)δUU

)
a
)

+ 2B(λ)b−B2(λ)bδUU −
( βγ

1− β
+
λ

u

)
w0

)
.

Notice that u and δUU are fixed while we change the policy following the above

rules, it suffices to show that πr(λ) is decreasing in λ given u and δUU . Besides,

it is straightforward to verify that ∂πr
∂λ

has the same sign as

−p0 − 2a
(
1− A(λ)δUU

)
− 2b

(
1−B(λ)δUU

)
− w0

βγu
< 0.

The above inequality holds as A(λ)δUU = δU + δHH ≤ 1 and B(λ)δUU = δHH < 1.

In other words, we have shown that ∂πr
∂λ

< 0 and the proposed policy without

rationing results in a higher platform revenue than the original policy with

rationing. Therefore, we conclude that in the case qU ≥ q0, the policy with

η < 1 is suboptimal.

In sum, any general commission scheme with η < 1 is suboptimal. Besides, the

above argument applies in the set of full-information policies. �

In Lemma 3.6.8, we characterize the quantity of hired new providers resulted

from the optimal general commission scheme given an informational delay.

Lemma 3.6.8 Suppose γ < 1−β
β

holds. Then, given λ ∈ [0, q0−γ
βγ(1−q0)

], the number of

hired new providers under the optimal commission scheme is

δU∗U (λ) = min

(
1

2
·

1−β+βγ
1−β (p0 − w0)− (q0 − γ) + 2βγ

1−β (1− q0)− βγλ(1− q0)

q0 − γ +
(
βγ

1−β

)2
(1− q0)− βγλ

(
1 + γ − 2q0 + 2βγ

1−β (1− q0)
) , 1− β

1− β + βγ

)
.

(3.47)

Besides, δU∗U (λ) is increasing in λ ∈ [0, q0−γ
βγ(1−q0)

].
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Proof. By Lemma 3.6.7 (under γ < 1−β
β

), we only need to consider the equilibrium

with η = 1. For λ ∈ [0, q0−γ
βγ(1−q0)

], we have qU ≤ q0. From (3.44), we note that πr can

be rewritten as:

πr(δ
U
U , λ) =δUU

(
1− β + βγ

1− β
(p0 − w0)−

(
q0 − γ − βγλ(1− q0)

)
+

2βγ

1− β
(
1− (1− β)λ

)
(1− q0)

−
(

(1 + βγλ)
(
q0 − γ − βγλ(1− q0)

)
+
( βγ

1− β
− βγλ

)2
(1− q0)

)
δUU

)

=δUU

(
1− β + βγ

1− β
(p0 − w0)− (q0 − γ) +

2βγ

1− β
(1− q0)− βγλ(1− q0)

−
(
q0 − γ +

( βγ

1− β
)2

(1− q0)− βγλ
(
1 + γ − 2q0 +

2βγ

1− β
(1− q0)

))
δUU

)
,

(3.48)

which is maximized by δU∗U (λ) characterized in Lemma 3.6.8.

Given δU∗U (λ), we can find corresponding τU and τH such that the equilibrium

with δU∗U (λ) holds. In particular, we can verify that τ ∗U = 1 − w0

p∗U
and τ ∗H = 1 − w0

p∗H
,

where p∗U = p0 −
(
1 + (1 + βγλ)δUU

∗(λ)
)
(q0 − qU) and p∗H = p0 +

(
2− βγ

1−β

(
1− (1−

β)λ
)
δUU
∗(λ)

)
(1− q0) satisfy the free-entry condition, stay of H-label providers, and

the financial constraint.

Next, to show that δU∗U (λ) is increasing in λ, it suffices to show that it holds
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when δU∗U (λ) < 1−β
1−β+βγ

. In this case, we note that
dδU∗U
dλ

(λ) has the same sign as:

(
1 + γ − 2q0 +

2βγ

1− β
(1− q0)

)(1− β + βγ

1− β
(p0 − w0)− (q0 − γ) +

2βγ

1− β
(1− q0)

)
− (1− q0)

(
q0 − γ +

( βγ

1− β
)2

(1− q0)
)

>
(
1 + γ − 2q0 +

2βγ

1− β
(1− q0)

)
·
(1− β + βγ

1− β
(p0 − w0) +

βγ

1− β
(1− q0)

)
− (1− q0)

(
q0 − γ +

( βγ

1− β
)2

(1− q0)
)

=
1− β + βγ

1− β
(p0 − w0)

(
1 + γ − 2q0 +

2βγ

1− β
(1− q0)

)
+

1− β + βγ

1− β
(1− q0)

( βγ

1− β
(1− q0)− (q0 − γ)

)
>

1− β + βγ

1− β
(p0 − w0)

(
1 + γ − 2q0 +

2βγ

1− β
(1− q0)

)
>0.

The third and second to last inequalities hold because βγ
1−β (1 − q0) − (q0 − γ) > 0

(Assumption 1). �

Proposition 3.6.3 characterizes the optimal full-information policy with differ-

entiated commissions.

Proposition 3.6.3 Suppose γ < 1−β
β

holds. Then, the optimal general commissions

under the full-information policy, τ ∗U(0) and τ ∗H(0), can be characterized as:

τ ∗U(0) = 1− w0

p∗U(0)
and τ ∗H(0) = 1− w0

p∗H(0)
, (3.49)

where

δU∗U (0) = min

(
1−β+βγ

1−β (p0 − w0)− (q0 − γ) + 2βγ
1−β (1− q0)

2
(
q0 − γ +

(
βγ

1−β

)2
(1− q0)

) ,
1− β

1− β + βγ

)
, (3.50)

p∗U(0) = p0 −
(
1 + δU∗U (0)

)
(q0 − γ), and p∗H(0) = p0 +

(
2− βγ

1− β
δU∗U (0)

)
(1− q0).
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Besides, τ ∗U(0) < τ ∗H(0).7

Proof. First, by Lemma 3.6.8 (under γ < 1−β
β

) and λ = 0, it is straightforward

to verify that δU∗U (0) is characterized by (3.50).

Next, we characterize the optimal commissions given λ = 0 (i.e., τ ∗U(0) and

τ ∗H(0)). The optimal commissions may not be unique as they can result in the same

equilibrium. Among the equivalent commission pairs, we choose the commission

pair with the largest τH. In particular, given an equilibrium with pU and pH under

λ, the following conditions hold at the optimal commissions:

(1− τU)pU = w0 and (1− τH)pH = w0. (3.51)

Notice that τU and τH determined by the above conditions satisfy the free-entry

condition ((3.9)). On the other hand, by the condition that providers with label H

stay on the platform in Lemma 3.6.6 (i.e., (1− τH)pH ≥ w0), any higher τH becomes

infeasible.

Lastly, by (3.51), we obtain (3.49). Moreover, given λ = 0 and η = 1, p∗U(0)

and p∗H(0) in (3.49) are characterized by Lemma 3.6.6. �

In Lemma 3.6.9, we provide a sufficient condition under which the platform

serves all customers under the full information with the optimal differentiated com-

missions.

7The optimal commissions are not unique and we choose the pair with the largest τH. In the

following analysis, if there are multiple optimal commission pairs, we present the pair with the

largest τH.
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Lemma 3.6.9 Suppose γ < 1−β
β

and η < 1
2
. Then, δU∗U (0) = 1−β

1−β+βγ
, where δU∗U (0)

is characterized by (3.50).

Proof. By (3.50), to show δU∗U (0) = 1−β
1−β+βγ

, it is equivalent to show

1−β+βγ
1−β (p0 − w0)− (q0 − γ) + 2βγ

1−β (1− q0)

2
(
q0 − γ +

(
βγ

1−β

)2
(1− q0)

) ≥ 1− β
1− β + βγ

.

It is straightforward to verify that the above inequality is equivalent to

1− β + βγ

1− β
p0 − w0

q0 − γ
+

2(1− β)

1− β + βγ

1

η
≥ 1 +

2(1− β)

1− β + βγ
. (3.52)

Notice that p0 ≥ w0. Therefore, to show (3.52) holds, it suffices to show 2(1−β)
1−β+βγ

1
η
≥

1 + 2(1−β)
1−β+βγ

, which is equivalent to η ≤ 2(1−β)
3(1−β)+βγ

. Then, the last inequality holds

given γ < 1−β
β

and η < 1
2
. �

In Lemma 3.6.10, we establish that all customers choose the platform under

the optimal differentiated commissions given λ = q0−qN
βγ(1−q0)

.

Lemma 3.6.10 Suppose γ < 1−β
β

holds. Then, we have δU∗U
(

q0−γ
βγ(1−q0)

)
= 1−β

1−β+βγ
,

where δU∗U (λ) is characterized in Lemma 3.6.8.

Proof. Given the characterization of δU∗U (λ) in Lemma 3.6.8 (which holds under

γ < 1−β
β

), it is equivalent to show:

1

2
·

1−β+βγ
1−β (p0 − w0)− (q0 − γ) + 2βγ

1−β (1− q0)− (q0 − γ)

q0 − γ +
(
βγ

1−β

)2
(1− q0)− q0−γ

1−q0

(
1 + γ − 2q0 + 2βγ

1−β (1− q0)
) ≥ 1− β

1− β + βγ
.

192



The above inequality can be rewritten as:

1− β + βγ

1− β
(p0 − w0) +

2βγ

1− β
(1− q0)− 2(q0 − γ)

≥ 2(1− β)

1− β + βγ

(
q0 − γ +

( βγ

1− β

)2

(1− q0)− q0 − γ
1− q0

((
1 +

2βγ

1− β
)
(1− q0)− (q0 − γ)

))

=
2(1− β)

1− β + βγ

(( βγ

1− β

)2

(1− q0)− 2βγ

1− β
(q0 − γ) +

(q0 − γ)2

1− q0

)

=
2(1− β)

1− β + βγ
· 1

1− q0

( βγ

1− β
(1− q0)− (q0 − γ)

)2

.

Note that p0 − w0 > 0, to make the above inequality holds, it suffices to show that

2 >
2(1− β)

1− β + βγ
· 1

1− q0

( βγ

1− β
(1− q0)− (q0 − γ)

)
=

2βγ

1− β + βγ
(1− η),

The above inequality holds as βγ < 1− β (γ < 1−β
β

) and η > 0 (Assumption 1). �

In Lemma 3.6.11, we specify the shape of the platform revenue regarding the

informational delay λ under the optimal differentiated commissions.

Lemma 3.6.11 Suppose γ < 1−β
β

holds and δU∗U (λ) is characterized by (3.47) in

Lemma 3.6.8. Then, for λ ∈ [0, q0−γ
βγ(1−q0)

], If δU∗U (λ) < 1−β
1−β+βγ

, the platform revenue

under the optimal commission rates is convex in λ. Otherwise, the platform revenue

under the optimal commission rates is linearly increasing in λ.

Proof. First, we show that when δU∗U (λ) < 1−β
1−β+βγ

the platform revenue is convex in
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λ. To simplify the notation, we introduce

A ,
1− β + βγ

1− β
(p0 − w0)− (q0 − γ) +

2βγ

1− β
(1− q0), (3.53)

B , βγ(1− q0), (3.54)

C , q0 − γ +
( βγ

1− β
)2

(1− q0), (3.55)

and D , βγ
(
1 + γ − 2q0 +

2βγ

1− β
(1− q0)

)
. (3.56)

Then, by (3.48), the platform revenue under the optimal commission rates given λ

(i.e., at δU∗U (λ)) is π∗r(λ) = 1
4
· (A−Bλ)2

C−Dλ =

(
A−BC

D

)2
4(C−Dλ)

+ B
2D

(
A − BC

D

)
+ B2

4D2 (C − Dλ).

Therefore, π∗r(λ) is convex in λ as C −Dλ > 0.

Next, by (3.48), it is straightforward to verify that when δU∗U (λ) = 1−β
1−β+βγ

the

platform’s revenue under the optimal commission rates is linearly increasing in λ.

Besides, the coefficient of λ has the same sign as:

− (1− q0) +
1− β + 2βγ

1− β + βγ
(1− q0)− 1− β

1− β + βγ
(q0 − γ)

=
βγ

1− β + βγ
(1− q0)− 1− β

1− β + βγ
(q0 − γ)

> 0.

The last inequality holds as 1−β
βγ
· q0−γ

1−q0 < 1 (Assumption 1). �

In Lemma 3.6.12, we characterize the optimal informational delay and a suf-

ficient and necessary condition for the optimal informational delay to be positive

within [0, q0−γ
βγ(1−q0)

].

Lemma 3.6.12 Suppose γ < 1−β
β

holds and λ ∈ [0, q0−γ
βγ(1−q0)

]. Then, if δU∗U (0) =

1−β
1−β+βγ

, then λ∗ = q0−γ
βγ(1−q0)

. Otherwise, λ∗ = q0−γ
βγ(1−q0)

if (3.57) holds, and λ∗ = 0 if

(3.57) does not hold.
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Proof. Note that in the interval of
[
0, q0−γ

βγ(1−q0)

]
, we have qU ≤ q0. Besides, by Lemma

3.6.7 (under γ < 1−β
β

), we only need to consider the policies with η = 1.

First, we show that the optimal informational delay is λ∗ = q0−γ
βγ(1−q0)

, if all

customers choose the platform under the full information and the optimal differ-

entiated commissions (i.e., δU∗U (0) = 1−β
1−β+βγ

). The result holds by Lemma 3.6.11

(under γ < 1−β
β

), where we show that the platform revenue is linearly increasing in

λ.

Next, we consider the case where not all customers choose the platform un-

der the full information and the optimal differentiated commissions (i.e., δU∗U (0) <

1−β
1−β+βγ

).

On the one hand, at λ = 0 we plug δU∗U (0) into πr ((3.48)), and we have:

πr(0) =
1

4
·

(
1−β+βγ

1−β (p0 − w0)− (q0 − γ) + 2βγ
1−β (1− q0)

)2

q0 − γ +
(
βγ

1−β

)2
(1− q0)

=
1

4
· A

2

C
,

where A and C are defined by (3.53) and (3.55). On the other hand, at λ = q0−γ
βγ(1−q0)

we have δU∗U
(

q0−γ
βγ(1−q0)

)
= 1−β

1−β+βγ
= x̄ by Lemma 3.6.10 (under γ < 1−β

β
). Besides, we

can characterize the platform revenue as (by (3.48))

πr

( q0 − γ
βγ(1− q0)

)
= x̄

(
A−B q0 − γ

βγ(1− q0)
−
(
C −D q0 − γ

βγ(1− q0)

)
x̄
)

= x̄
(
A− Cx̄+ (Dx̄−B)

q0 − γ
βγ(1− q0)

)
,

where B and D are defined by (3.54) and (3.56).

It is straightforward to verify that x̄
(
A − Cx̄ + (Dx̄ − B) q0−γ

βγ(1−q0)

)
≥ 1

4
· A2

C

is equivalent to q0−γ
βγ(1−q0)

≥ (A−2x̄C)2

4Cx̄(x̄D−B)
, which is (3.57). Notice that πr is convex

in λ (Lemma 3.6.11), we conclude that the optimal informational delay within [0,
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q0−γ
βγ(1−q0)

] is λ ∈ q0−γ
βγ(1−q0)

. Similarly, if (3.57) does not hold, then q0−γ
βγ(1−q0)

< (A−2x̄C)2

4Cx̄(x̄D−B)
,

which is equivalent to πr
(

q0−qN
βγ(1−q0)

)
< πr(0). Notice that πr is convex in λ (Lemma

3.6.11), we conclude that the optimal informational delay within [0, q0−qN
βγ(1−q0)

] is zero.

�

In Lemma 3.6.13, we characterize the optimal informational delay when λ ≥

q0−qN
βγ(1−q0)

.

Lemma 3.6.13 Suppose γ < 1−β
β

holds. Then, the revenue optimal policy within[
q0−γ

βγ(1−q0)
, 1

1−β

)
has delay λ = q0−γ

βγ(1−q0)
.

Proof. By Lemma 3.6.7 (under γ < 1−β
β

), we only need to search for the optimal

policy among those with η = 1 in equilibrium.

First, we show that given a policy (τU , τH, λ) with δUU , η = 1, and λ > q0−γ
βγ(1−q0)

in equilibrium, we can find an alternative policy (τ̃U , τ̃H, λ̃) with δ̃UU = δUU , η̃ = 1,

and q0−γ
βγ(1−q0)

≤ λ̃ < λ. In particular, we select τ̃U and τ̃H such that

βγ

1− β
· 1− (1− β)λ̃

1 + βγλ̃

(
(1− τ̃H)p̃H − w0

)
= w0 − (1− τ̃U)p̃U , and (1− τ̃U)p̃U = (1− τU)pU ,

where p̃U = p0+
(
2− 1−β+βγ

1−β δUU
)
(q̃U−q0) and p̃H = p̃U+

(
2− βγ

1−β

(
1−(1−β)λ̃

)
δUU
)
(1−

q̃U). It is straightforward to show that we can solve for τ̃U and τ̃H from the above

two equations.

Then, we show the alternative policy results in a higher platform revenue

compared to the original policy. It suffices to show that given η = 1 and δUU ∈

[0, 1−β
1−β+βγ

], we have ∂πr
∂λ

(δUU , λ) < 0, where πr(δ
U
U , λ) is the platform revenue. By
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(3.46) and η = 1, we have:

πr(δ
U
U , λ) =δUU

(
1− β + βγ

1− β
(p0 − w0) +

1− β + βγ

1− β
(
2− 1− β + βγ

1− β
δUU
)βγλ(1− q0)− (q0 − γ)

1 + βγλ

+
βγ

1− β
(
1− (1− β)λ

)(
2− βγ

1− β
(
1− (1− β)λ

)
δUU

) 1− γ
1 + βγλ

)
.

To simplify the notation, we let θU0 , 2 − 1−β+βγ
1−β δUU and θHU , 2 − βγ

1−β

(
1 − (1 −

β)λ
)
δUU . Then, ∂πr

∂λ
(δUU , λ) can be expressed as

∂πr
∂λ

(δUU , λ)

=δUU

(
1− β + βγ

1− β
βγ(1− γ)

(1 + βγλ)2
θU0 −

βγ(1− γ)

1 + βγλ
θHU

+
βγ(1− γ)

1 + βγλ
(2− θHU)− βγ

1− β
(
1− (1− β)λ

) βγ(1− γ)

(1 + βγλ)2
θHU

)

=δUU

(
1− β + βγ

1− β
βγ(1− γ)

(1 + βγλ)2
θU0 −

1− β + βγ

1− β
βγ(1− γ)

(1 + βγλ)2
θHU +

βγ(1− γ)

1 + βγλ
(2− θHU)

)

=δUU

(
− 1− β + βγ

1− β
· βγ(1− γ)

(1 + βγλ)2
(θHU − θU0) +

βγ(1− γ)

1 + βγλ
(2− θHU)

)
Thus, ∂πr

∂λ
(δUU , λ) has the same sign as:

−1− β + βγ

1− β
· θHU − θU0

1 + βγλ
+ 2− θHU = −1− β + βγ

1− β
δUU +

βγ

1− β
(
1− (1− β)λ

)
δUU < 0.

The last inequality holds as 1−β+βγ
1−β δUU is the quantity of total hired providers and

βγ
1−β

(
1 − (1 − β)λ

)
δUU is quantity of providers with label H. Notice that the pro-

posed policy has lower delay compared with the original policy (i.e., λ̃ < λ), so the

proposed policy results in higher platform revenue.

Therefore, for λ ∈ [ q0−γ
βγ(1−q0)

, 1
1−β ), the platform revenue is decreasing in the

informational delay, and the optimal policy has informational delay q0−γ
βγ(1−q0)

. �

Proposition 3.6.4 characterize the optimal information-commission policy un-

der the differentiated commission scheme.
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Proposition 3.6.4 Suppose γ < 1−β
β

holds. Then, if δU∗U (0) = 1−β
1−β+βγ

, then λ∗ =

q0−γ
βγ(1−q0)

. Otherwise, λ∗ = q0−γ
βγ(1−q0)

if

q0 − γ
βγ(1− q0)

≥((
1−β+βγ

1−β (p0 − w0)− (q0 − γ) + 2βγ
1−β (1− q0)

)
− 2
(

1−β
1−β+βγ

)(
q0 − γ +

(
βγ

1−β

)2
(1− q0)

))2

4
(
q0 − γ +

(
βγ

1−β

)2
(1− q0)

)(
1−β

1−β+βγ

)(
1−β

1−β+βγ

(
βγ
(
1 + γ − 2q0 + 2βγ

1−β (1− q0)
))
− βγ(1− q0)

) ,
(3.57)

and λ∗ = 0 if (3.57) does not hold.

Moreover, if λ∗ = q0−γ
βγ(1−q0)

, then

τ ∗U(λ∗) = 1− w0

p∗U(λ∗)
and τ ∗H(λ) = 1− w0

p∗H(λ∗)
, (3.58)

where p∗U(λ∗) = p0 and p∗H(λ∗) = p0 +
(2(1−β)+βγ

1−β+βγ
+ βγ

1−β+βγ
η
)
(1− q0). If λ∗ = 0, then

the optimal policy is given by Proposition 3.6.3.8

Proof. We characterize the global optimal informational delay by characteriz-

ing the optimal delay within two complement intervals [0, q0−γ
βγ(1−q0)

] and ( q0−γ
βγ(1−q0)

, 1
1−β ).

We have qU ≤ q0 in the first interval and qU > q0 in the second interval.

First, we search for the optimal delay within [0, q0−γ
βγ(1−q0)

]. In particular, the

optimal informational delay is characterized by Lemma 3.6.12. Moreover, Lemma

3.6.12 provides a sufficient and necessary condition for the optimal informational

delay to be optimal.

8The optimal commissions are not unique and we choose the pair with the largest τH. In the

following analysis, if there are multiple optimal commission pairs, we present the pair with the

largest τH.
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Second, we search for the optimal delay within
(

q0−γ
βγ(1−q0)

, 1
1−β

)
. In Lemma

3.6.13, we establish that λ = q0−γ
βγ(1−q0)

is revenue optimal.

By the continuity of the equilibrium regarding λ at λ = q0−γ
βγ(1−q0)

as well as

Lemmas 3.6.12 and 3.6.13, we conclude that the revenue optimal delay found within

[0, q0−γ
βγ(1−q0)

] dominates that found within
(

q0−γ
βγ(1−q0)

, 1
1−β

)
. Therefore, the character-

izations of the optimal informational delay as well as the sufficient and necessary

condition for the optimal informational delay to be positive in Lemma 3.6.12 apply

to the entire interval (i.e., λ ∈ (0, 1
1−β )).

Lastly, we characterize the optimal commissions when λ∗ = q0−γ
βγ(1−q0)

(i.e.,

τ ∗U(λ∗) and τ ∗H(λ∗)). By (3.51), we obtain (3.58), where p∗U(λ∗) and p∗H(λ∗) are

determined by Lemma 3.6.6.

In sum, we have proved Proposition 3.6.4. �

In Corollary 3.6.1, we compare the optimal commissions when λ∗ > 0 with

those under the full information policy (i.e., λ = 0).

Corollary 3.6.1 Suppose γ < 1−β
β

and η < 1
2

hold. Then, we have τ ∗U(0) < τ ∗U(λ∗)

and τ ∗H(0) < τ ∗H(λ∗), where λ∗ = q0−γ
βγ(1−q0)

and
(
τ ∗U(λ), τ ∗H(λ)

)
are the optimal com-

mission rates for providers with label U and label H, respectively, given λ.

Proof. First, by Lemma 3.6.9 and Proposition 3.6.4, we know λ∗ = q0−γ
βγ(1−q0)

.

Second, we compare τU . At λ = 0, we notice that τ ∗U(0) = 1− w0

p0−(1+δU∗U (0))(q0−γ)

by (3.49), where δU∗U (0) is characterized by (3.50). Then, at λ = λ∗, we have

τ ∗U(λ∗) = 1 − w0

p0
(as pU = p0 at λ∗ = q0−γ

βγ(1−q0)
) by Proposition 3.6.4. Therefore, we

have τ ∗U(0) < τ ∗U(λ∗).
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Third, we compare τH. At λ = 0, we notice that τ ∗H(0) = 1 − w0

p∗H(0)
, where

p∗H(0) = p0 +
(

2− βγ
1−β δ

U∗
U (0)

)
(1− q0), by (3.49). Moreover, we can simplify p∗H(0)

as p∗H(0) = p0 + 2(1−β)+βγ
1−β+βγ

(1 − q0) as δU∗U (0) = 1−β
1−β+βγ

under η < 1
2

(Lemma 3.6.9).

At λ = λ∗, we obtain τ ∗H(λ∗) = 1 − w0

p∗H(λ∗)
, where p∗H(λ∗) = p0 +

(2(1−β)+βγ
1−β+βγ

+

βγ
1−β+βγ

η
)
(1− q0), by (3.58). Then, to show τ ∗H(0) < τ ∗H(λ∗), it is equivalent to show

p∗H(0) < p∗H(λ∗). Given η > 0 and the above characterizations of p∗H(0) and p∗H(λ∗),

it is straightforward to show the last inequality holds. �

3.7 Appendix: Proofs for Section 3.3

Proof of Proposition 3.3.2

We take three steps to establish the existence of an equilibrium. First, we

construct an auxiliary normal form game with finitely many players and convex and

compact strategy spaces. Second, we establish the existence of the auxiliary game

by [50]. Third, we show that the equilibrium of the auxiliary game corresponds to

an equilibrium defined in Section 3.3.

In the first step, we construct the auxiliary game. In this auxiliary game, we

assume there are 15 agents. In what follows, we characterize each agent’s strategic

space and payoff function, denoted by ui. Given agent i, we further establish that ui

is the upper semi-continuous (u.s.c.) in the actions of all agents and quasi-concave

(q.c.) in agent i’s action, and maxui is lower semi-continuous (l.s.c.) in the actions

of all agents other than agent i. For the notation, we let a denote the action vector

of all agents and let a−i denote the action vectors of all agents except agent i. We
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then let {Mi} a set of large constants such that Mj �Mi � 0 if i < j.

- Agent 1: We denote the agent’s action by δ̃UU ∈ [0,M1] and the payoff function

by

u1(δ̃UU , a−1) = −ηδ̃UU
∣∣∣V U
U −

w0

1− β

∣∣∣,
where η is the action of agent 13 with action space [0,M1], and V U

U is the

action of agent 6 with action space [0,M4]. Therefore, u1 is u.s.c. in a and

q.c. in δ̃UU . Besides, maxδ̃UU
u1 = 0, which is l.s.c in a−1.

- Agent 2: We denote the agent’s action by δHU ∈ [0,M2] and the payoff function

by

u2(δHU , a−2) = −
∣∣∣δHU − βγρUH

1− βρUHsU
ηδ̃UU

∣∣∣,
where sU is the action of agent 4 with action space [0, 1]. Therefore, u2 is u.s.c.

in a and q.c. in δHU . Besides, maxδHU u2 = 0, which is l.s.c. in a−2.

- Agent 3: We denote the agent’s action by δHH ∈ [0,M3] and the payoff function

by

u3(δHH , a−3) = −
∣∣∣δHH − β(1− ρUH)

1− βsH
(
sUδ

H
U + γηδ̃UU

)∣∣∣.
Therefore, u3 is u.s.c. in a and q.c. in δHH . Besides, maxδHH u3 = 0, which is

l.s.c. in a−3.

- Agent 4: We denote the agent’s action by sU ∈ [0, 1] and the payoff function

by

u4(sU , a−4) = −sU max
( w0

1− β
− V H

U , 0
)
− (1− sU) max

(
V H
U −

w0

1− β
, 0
)
,
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where V H
U is the action of agent 7 with action space [0,M3]. Therefore, u4 is

u.s.c. in a and q.c. in sU . Besides, maxsU u4 = 0, which is l.s.c. in a−4.

- Agent 5: We denote the agent’s action by sH ∈ [0, 1] and the payoff function

by

u5(sH, a−5) = −sHmax
( w0

1− β
− V H

H , 0
)
− (1− sH) max

(
V H
H −

w0

1− β
, 0
)
,

where V H
H is the action of agent 9 with action space [0,M2]. Therefore, u5 is

u.s.c. in a and q.c. in sH. Besides, maxsH u5 = 0, which is l.s.c. in a−5.

- Agent 6: We denote the agent’s action by V U
U ∈ [0,M4] and the payoff function

by

u6(V U
U , a−6) =

−

∣∣∣∣∣V U
U −

η

1− (1− η)β

(
(1− τU)pU + βγρHU sHV

H
U + βγ(1− ρHU )sHV

H
H

+ β
(
γρHU (1− sU) + γ(1− ρHU )(1− sH) + 1− γ

) w0

1− β

)∣∣∣∣∣,
where pU is the action of agent 14 with action space [ b0

1−τU
,M1]. Therefore, u6

is u.s.c. in a and q.c. in V U
U . Besides, maxV UU u6 = 0, which is l.s.c. in a−6.

- Agent 7: We denote the agent’s action by V H
U ∈ [0,M3] and the payoff function
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by

u7(V H
U , a−7) =

−

∣∣∣∣∣V H
U

− 1

1− βρHU sU

(
η(1− τ)pU + β(1− ρHU )sHV

H
H + β

(
ρHU (1− sU) + (1− ρHU )(1− sH)

) w0

1− β

)∣∣∣∣∣.
Therefore, u7 is u.s.c. in a and q.c. in V H

U . Besides, maxV HU u7 = 0, which is

l.s.c. in a−7.

- Agent 8: We denote the agent’s action by V H
H ∈ [0,M2] and the payoff function

by

u8(V H
H , a−8) = −

∣∣∣V H
H −

(1− τH)pH
1− β

∣∣∣,
where pH is the action of agent 12 with action space [ b0

1−τH
,M1]. Therefore, u8

is u.s.c. in a and q.c. in V H
H . Besides, maxV HH u9 = 0, which is l.s.c. in a−8.

- Agent 9: We denote the agent’s action by ζH ∈ [0, 1] and denote the payoff

function by

u9(ζH , a−9) = −

∣∣∣∣∣ζH −
(

2−max
{pH − p0

qH − q0

,
pH − pU
qH − qU

, 1
})∣∣∣∣∣,

where qH = 1. Therefore, u9 is u.s.c. in a and q.c. in ζH. Besides,

max
ζH

u9 =


0, if max

{
pH−p0
qH−q0

, pH−pU
qH−qU

, 1
}
≤ 2,

−
∣∣∣2−max

{
pH−p0
qH−q0

, pH−pU
qH−qU

, 1
}∣∣∣, otherwise.

Therefore, maxζH u9 is l.s.c. in a9.

- Agent 10: We denote the agent’s action by ζ̃U ∈ [0, 1] and the payoff function
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by

u10(ζ̃U , a−10) =

−
∣∣∣ζ̃U −DU(a−10)

∣∣∣(1{pU<p0}(a−10) + 1{pU>p0}(a−10) + 1{qU<q0}(a−10) + 1{qU>q0}(a−10)
)
,

where DU(a−10) =



max

{
min

{
pU−p0
qU−q0

, pH−pU
qH−qU

, 2
}
, 1

}
− 1, if qU < q0,

max

{
min

{
pH−pU
qH−qU

, 2
}
, 1

}

−min

{
max

{
pU−p0
qU−q0

, 1
}
,max

{
min

{
pH−pU
qH−qU

, 2
}
, 1

}}
, if qU > q0,

max

{
min

{
pH−pU
qH−qU

, 2
}
, 1

}
− 1, if qU = q0 and pU < p0,

0, if qU = q0 and pU ≥ p0.

In the characterization of DU(a−10), qH = 1 and qU is the action of agent

15 with action space [γ, 1]. Next, we show that DU(a−10) is continuous in

{a−10|qU 6= q0} ∪ {a−10|pU 6= p0}. By the definition, it follows that DU(a−10)

is continuous in {a−10|qU < q0} ∪ {a−10|qU > q0}.

Then, we show that DU(a−10) is continuous at any point within {a−10|qU =

q0 and pU < p0}. Given p < p0, it suffices to show that

lim
(qiU ,p

i
U )→(q−0 ,p

−)
DU(qiU , p

i
U) = lim

(qiU ,p
i
U )→(q−0 ,p

+)
DU(qiU , p

i
U) = DU(q0, p), (3.59)

and lim
(qiU ,p

i
U )→(q+0 ,p

−)
DU(qiU , p

i
U) = lim

(qiU ,p
i
U )→(q+0 ,p

+)
DU(qiU , p

i
U) = DU(q0, p). (3.60)

The first equalities in (3.59) and (3.60) hold because DU ’s is continuous in

{a−10|qU < q0} and {a−10|qU > q0}, respectively. To show the second equality
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in (3.59) hold, we notice that when qiU → q−0 and piU → p+, we have

DU(qiU , p
i
U) = max

{
min

{piU − p0

qiU − q0

,
pH − piU
qH − qiU

, 2
}
, 1

}
− 1

converges to

DU(q0, p) = max

{
min

{ pH − p
qH − q0

, 2
}
, 1

}
− 1,

as
piU−p0
qiU−q0

→ +∞ and
pH−piU
qH−qiU

→ pH−p
qH−q0

. Similarly, to show the second equality

in (3.60), we notice that when qiU → q+
0 and piU → p+, we have

DU(qiU , p
i
U) = max

{
min

{pH − piU
qH − qiU

, 2
}
, 1

}

−min

{
max

{piU − p0

qiU − q0

, 1
}
,max

{
min

{pH − piU
qH − qiU

, 2
}
, 1

}}

converges to

DU(q0, p) = max

{
min

{ pH − p
qH − q0

, 2
}
, 1

}
− 1,

as
piU−p0
qiU−q0

→ −∞ and
pH−piU
qH−qiU

→ pH−p
qH−q0

. Therefore, DU(a−10) is continuous at

any points with qU = q0 and pU = p < p0.

Next, we show that DU(a−10) is continuous at any point within {a−10|qU =

q0 and pU > p0}. Given p̄ > p0, it suffices to show that

lim
(qiU ,p

i
U )→(q−0 ,p̄

−)
DU(qiU , p

i
U) = lim

(qiU ,p
i
U )→(q−0 ,p̄

+)
DU(qiU , p

i
U) = DU(q0, p̄), (3.61)

and lim
(qiU ,p

i
U )→(q+0 ,p̄

−)
DU(qiU , p

i
U) = lim

(qiU ,p
i
U )→(q+0 ,p̄

+)
DU(qiU , p

i
U) = DU(q0, p̄). (3.62)
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The first equalities in (3.61) and (3.62) hold because DU ’s is continuous in

{a−10|qU < q0} and {a−10|qU > q0}, respectively. To show the second equality

in (3.61) hold, we notice that when qiU → q−0 and piU → p̄+, we have

DU(qiU , p
i
U) = max

{
min

{piU − p0

qiU − q0

,
pH − piU
qH − qiU

, 2
}
, 1

}
− 1

converges to DU(q0, p̄) = 0, as
piU−p0
qiU−q0

→ −∞ and
pH−piU
qH−qiU

→ pH−p̄
qH−q0

. Similarly, to

show the second equality in (3.62), we notice that when qiU → q+
0 and piU → p̄+,

we have

DU(qiU , p
i
U) = max

{
min

{pH − piU
qH − qiU

, 2
}
, 1

}

−min

{
max

{piU − p0

qiU − q0

, 1
}
,max

{
min

{pH − piU
qH − qiU

, 2
}
, 1

}}

converges to DU(q0, p̄) = 0, as
piU−p0
qiU−q0

→ +∞ and
pH−piU
qH−qiU

→ pH−p̄
qH−q0

. Therefore,

DU(a−10) is continuous at any points with qU = q0 and pU = p̄ > p0. In sum, we

have established the continuity of DU(a−10) in {a−10|qU 6= q0}∪{a−10|pU 6= p0}.
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Then, based on continuity of DU(a−10), we rewrite the u10(ζ̃U , a−10) as follows:

u10(ζ̃U , a−10) =



0, if qU = q0 and pU = p0

−
∣∣ζ̃U −DU(a−10)

∣∣, if qU > q0 and pU = p0

or qU < q0 and pU = p0

or qU = q0 and pU > p0

or qU = q0 and pU < p0

−2
∣∣ζ̃U −DU(a−10)

∣∣, if qU > q0 and pU > p0

or qU < q0 and pU > q0

or qU > q0 and pU < q0

or qU < q0 and pU < q0

Based on the above characterization, it immediately follows that u10 is u.s.c.

in a and q.c. in ζ̃U . Besides, maxζ̃U u10 = 0, which is l.s.c.

In addition, we observe that when qU 6= q0 or pU 6= p0, we have

ζ∗H +DU(a−10) ≤ 1 (3.63)

where

ζ∗H = arg max
ζH

u9 = max

{
2−max

{pH − p0

qH − q0

,
pH − pU
qH − qU

, 1
}
, 0

}
.

In particular, we show (3.63) holds in four possible cases (1) qU < q0, (2)

qU > q0, (3) qU = q0 and pU < p0, and (4) qU = q0 and pU > p0, separately.

(1) In this case, we notice that

DU(a−10) = max

{
min

{pU − p0

qU − q0

,
pH − pU
qH − qU

, 2
}
, 1

}
≤ 1.
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Therefore,

ζ∗H +DU(a−10) ={
DU(a−10), 1 + min

{pU − p0

qU − q0

,
pH − pU
qH − qU

, 2
}
−max

{pH − p0

qH − q0

,
pH − pU
qH − qU

, 1
}}

.

Then, to show the above expression is no greater than 1, it is equivalent

to show

min
{pU − p0

qU − q0

,
pH − pU
qH − qU

, 2
}
≤ max

{pH − p0

qH − q0

,
pH − pU
qH − qU

, 1
}
. (3.64)

It is straightforward to verify that under qU < q0, either

pH − p0

qH − q0

≤ pH − pU
qH − qU

≤ pU − p0

qU − q0

or
pH − p0

qH − q0

≤ pH − pU
qH − qU

≤ pH − p0

qH − q0

holds. In the first case, (3.64) is equivalent to min
{
pH−pU
qH−qU

, 2
}
≤ max

{
pH−pU
qH−qU

, 1
}

,

which holds. In the second case, (3.64) is equivalent to min
{
pU−p0
qU−q0

, 2
}
≤

max
{
pH−p0
qH−q0

, 1
}

, which holds.

(2) In this case, we notice that

DU(a−10) = max

{
min

{pH − pU
qH − qU

, 2
}
, 1

}

−min

{
max

{pU − p0

qU − q0

, 1
}
,max

{
min

{pH − pU
qH − qU

, 2
}
, 1

}}
≤ 1.

Then, to show (3.63) holds, it is equivalent to show

max
{pH − p0

qH − q0

,
pH − pU
qH − qU

, 1
}
−max

{
min

{pH − pU
qH − qU

, 2
}
, 1

}

+ min

{
max

{pU − p0

qU − q0

, 1
}
,max

{
min

{pH − pU
qH − qU

, 2
}
, 1

}}
≥ 1.

The above inequality holds as the difference between the first two terms

is non-negative, and the third term is no less than 1.
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(3) In this case, we notice that

DU(a−10) = max

{
min

{pH − pU
qH − qU

, 2
}
, 1

}
− 1 ≤ 1.

Then by the characterization of ζ∗H, to show (3.63) holds, it is equivalent

to show

max
{pH − p0

qH − q0

,
pH − pU
qH − qU

, 1
}
−max

{
min

{pH − pU
qH − qU

, 2
}
, 1

}
≥ 0,

which has been established in case (2).

(4) Notice that DU(a−10) = 0 in this case. Since ζ∗H ≤ 1, (3.63) follows.

Therefore, we have shown (3.63) when qU 6= q0 or pU 6= p0.

- Agent 11: We denote the agent’s action by ζU ∈ [0, 1] and the payoff function

by

u11(ζU , a−11) = −
∣∣∣ζU −min(ζ̃U , 1− ζH)

∣∣∣.
Therefore, u11 is u.s.c. in a and q.c. in ζU . Besides, maxζU u11 = 0, which is

l.s.c. in a−11.

- Agent 12: We denote the agent’s action by pH ∈ [ b0
1−τH

,M1] and the payoff

function by

u12(pH, a−12) =
(
pH −

b0

1− τH

)
(ζH − sHδHH).

Therefore, u12 is u.s.c. in a and q.c. in pH. Besides, maxpH u12(pH, a−12) =

max
{(
M1 − b0

1−τH

)
(ζH − sHδHH), 0

}
, which is l.s.c. in a−12.
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- Agent 13: We denote the agent’s action by η ∈ [0,M1] and the payoff function

by

u13(η, a−13) = −
∣∣∣ζU − η(δ̃UU + sUδ

H
U )
∣∣∣.

Therefore, u13 is u.s.c. in a and q.c. in η. Besides, maxη u13(η, a−13) =

min
{
− ζU +M1(δ̃UU + sUδ

H
U ), 0

}
, which is l.s.c. in a−13.

- Agent 14: We denote the agent’s action by pU ∈ [ b0
1−τU

,M1] and the payoff

function by

u14(pU , a−14) =
(
pU −

b0

1− τU

)
(η − 1).

Therefore, u14 is u.s.c in a and q.c. in pU . Besides, maxpU u14(pU , a−14) =

max
{(
M1 − b0

1−τU

)
(η − 1), 0

}
, which is l.s.c. in a−14.

- Agent 15: We denote the agent’s action by qU ∈ [γ, 1] and the payoff function

by

u15(qU , a−15) = −
∣∣∣qU − ηγ(δ̃UU + sUδ

H
U ) + sHδ

H
H

η(δ̃UU + sUδHU ) + sHδHH

∣∣∣ηδ̃UU .
Therefore, u15 is u.s.c. in a and q.c. in qU . Besides, maxqU u15 = 0, which is

l.s.c. in a−15.

Therefore, we have specified the auxiliary game.

In the second step, we show that the auxiliary game has a pure strategy Nash

equilibrium. It follows by the corollary of Theorem 2 in [50]. Then, we observe the

following in any equilibrium:
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- By the equilibrium actions of agents 2 and 3, we have:

δHU =
βγρUH

1− βρUHsU
ηδ̃UU and δHH =

β(1− ρUH)

1− βsH
(
sUδ

H
U + γηδ̃UU

)
. (3.65)

- By the equilibrium actions of agents 6, 7, and 8, we have:

V U
U =

η

1− (1− η)β

(
(1− τU)pU + βγρHU sHV

H
U + βγ(1− ρHU )sHV

H
H

+ β
(
γρHU (1− sU) + γ(1− ρHU )(1− sH) + 1− γ

) w0

1− β

)
, (3.66)

V H
U =

1

1− βρHU sU

(
η(1− τ)pU + β(1− ρHU )sHV

H
H + β

(
ρHU (1− sU)

+ (1− ρHU )(1− sH)
) w0

1− β

)
, (3.67)

and V H
H =

(1− τH)pH
1− β

. (3.68)

Furthermore, if ηδ̃UU > 0 occurs in the equilibrium, we have the following

observations :

- By the equilibrium action of agent 1, we have:

V U
U =

w0

1− β
. (3.69)

- By the equilibrium action of agent 15, we have:

qU =
ηγ(δ̃UU + sUδ

H
U ) + sHδ

H
H

η(δ̃UU + sUδHU ) + sHδHH
. (3.70)

- By the equilibrium action of 14, we have

0 < η ≤ 1. (3.71)

We show (3.71) by the way of contradiction. Suppose η > 1, then pU =

M1 → +∞ by the equilibrium action of agent 14. As a result, ζ̃U = 0 by the
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equilibrium action of agent 10, and hence ζU = 0 by the equilibrium action of

agent 11. Further, we have η = 0 by the equilibrium action of agent 13 (note

that δ̃UU + sUδ
H
U ≥ δ̃UU > 0), which yields a contradiction.

In addition, by the equilibrium action of agent 13, we have:

ζU = η(δ̃UU + sUδ
H
U ). (3.72)

- By the payoff function of agents 12, we have:

ζH = sHδ
H
H . (3.73)

We first show ζH ≤ sHδ
H
H by the way of contradiction. Suppose ζH > sHδ

H
H .

Then, agent 12’s equilibrium action is pH = M1 → +∞. Then, we have

pH−p0
qH−q0

→ +∞ and pH−pU
qH−qU

→ +∞. By the equilibrium action of agent 9, we

have ζH = 0, which yields a contradiction. Then, we show ζH ≥ sHδ
H
H by

the way of contradiction. Suppose ζH < sHδ
H
H . Then, agent 12’s action is

pH = b0
1−τH

< w0

1−τH
, which then results in V H

H < w0

1−β . By the equilibrium

action of agent 5, we have sH = 0, which yields a contradiction.

In the third step, we show the equilibrium of the auxiliary game coincides

with the equilibrium we defined in Section 3.3. It is straightforward to verify that

(i) the free-entry condition holds because of (3.69). (ii) Providers’ lifetime earnings,

(3.5), (3.4), and (3.3), coincide with (3.66), (3.67), and (3.68), respectively. (iii)

Providers’; retention decisions, sU and sH, coincide with the equilibrium actions of

agents 4 and 5. (iv) The mass of providers, (3.6), coincide with (3.65). (v) Condition

ζU ≤ δUU + sUδ
H
U and ζH ≤ sHδ

H
H
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holds because of (3.72) and (3.73). (vi) Minimum payment constraints hold because

of the action spaces agents 12 and 14.

Next, we verify that ζU and ζH are equal to the mass of customers who choose

providers with label U and label H as their best choice. For the notation, we use ΘU

and ΘH denote the set of customers within [1, 2], whose best choice are providers

with label U and label U , respectively. We use µ(·) to denote the measure a given

customer set.

We first verify that ζH = µ(ΘH), where ζH is characterized by the equilibrium

action of agent 9. Notice that given θ ∈ ΘH, we have θqH − pH ≥ θq0 − p0 and

θqH − pH ≥ θqU − pU , from which we obtain θ ≥ max
{
pH−p0
qH−q0

, pH−pU
qH−qU

}
. Therefore,

ΘH =
[

max
{pH − p0

qH − q0

,
pH − pU
qH − qU

}
,+∞

)
∩ [1, 2],

and µ(ΘH) = max
{

2−max
{
pH−p0
qH−q0

, pH−pU
qH−qU

, 1
}
, 0
}

= ζH.

Then, we verify ζU = µ(ΘU), where ζU is characterized by the equilibrium

action of agent 11. We verify the condition in the following 5 possible cases:

1. Suppose qU < q0 occurs in equilibrium. Notice that for any θ ∈ ΘU , we

have θqU − pU ≥ θq0 − p0 and θqU − pU ≥ θqH − pH, which results in θ ≤

min
{
pU−p0
qU−q0

, pH−pU
qH−qU

}
. Therefore,

ΘU =
(
−∞,min

{pU − p0

qU − q0

,
pH − pU
qH − qU

}]
∩ [1, 2],

and µ(ΘU) = max
{

min
{
pH−p0
qH−q0

, pH−pU
qH−qU

, 2
}
, 1
}
− 1 = ζ̃U = ζU , where the last

equality holds because of (3.63) and the equilibrium action of agent 11.

2. Suppose qU > q0 occurs in equilibrium. Notice that for any θ ∈ ΘU , we have

213



θqU − pU ≥ θq0 − p0 and θqU − pU ≥ θqH − pH, which results in pU−p0
qU−q0

≤ θ ≤

pH−pU
qH−qU

. Therefore,

ΘU =
[pU − p0

qU − q0

,
pH − pU
qH − qU

]
∩ [1, 2],

and

µ(ΘU) =

max
{

min
{pH − pU
qH − qU

, 2
}
, 1
}
−min

{
max

{pU − p0

qU − q0

, 1},max
{

min
{pH − pU
qH − qU

, 2
}
, 1
}}

= ζ̃U = ζU ,

where the last equality holds because of (3.63) and the equilibrium action of

agent 11.

3. Suppose qU = q0 and pU < p0 occur in equilibrium. Notice that for any

θ ∈ ΘU , we have θqU − pU ≥ θq0 − p0 and θqU − pU ≥ θqH − pH, which results

in θ ≤ pH−pU
qH−qU

. Therefore,

ΘU =
(
−∞, pH − pU

qH − qU

]
∩ [1, 2],

and µ(ΘU) = max
{

min
{
pH−pU
qH−qU

, 2
}
, 1
}
−1 = ζ̃H = ζU , where the last equality

holds because of (3.63) and the equilibrium action of agent 11.

4. Suppose qU = q0 and pU > p0 occur in equilibrium. Notice that for any θ ∈ ΘU ,

we have θqU − pU ≥ θq0 − p0 and θqU − pU ≥ θqH − pH. However, the first

inequality cannot hold for any θ. Therefore, ΘU = ∅, and µ(ΘU) = 0 = ζ̃U =

ζU , where the last equality holds because of (3.63) and the equilibrium action

of agent 11.
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5. Suppose qU = q0 and pU = p0 occur in equilibrium. Notice that for any

θ ∈ ΘU , we have θqU − pU ≥ θq0 − p0 and θqU − pU ≥ θqH − pH, which results

in θ ≤ pH−p0
qH−q0

. Besides, since providers U and customers’ outside option are

identical, customers are indifferent in choosing between them, and any

ΘU ⊆
(
−∞, pH − p0

qH − q0

]
∩ [1, 2]

is valid. Therefore, µ(ΘU) ≤ max
{

min
{
pH−p0
qH−q0

, 2
}
, 1
}
− 1. On the other

hand, ζU ≤ 1 − ζH, since ζ̃U can take any value within [0, 1]. To estab-

lish µ(ΘU) = ζU for given ΘU or given ζU , it is equivalent to show that

max
{

min
{
pH−p0
qH−q0

, 2
}
, 1
}
− 1 = 1 − ζH. By the characterization of ζH from

the equilibrium action of agent 9, it is equivalent to show

2−max

{
min

{pH − p0

qH − q0

, 2
}
, 1

}
= max

{
2−max

{pH − p0

qH − q0

,
pH − pU
qH − qU

, 1
}
, 0

}

= max

{
2−max

{pH − p0

qH − q0

, 1
}
, 0

}

= 2 + max

{
−max

{pH − p0

qH − q0

, 1
}
,−2

}

= 2−min

{
max

{pH − p0

qH − q0

, 1
}
, 2

}
.

The second equality holds as pH−pU
qH−qU

= pH−p0
qH−q0

in this case. Then, it is straight-

forward to verify that

max

{
min

{pH − p0

qH − q0

, 2
}
, 1

}
= min

{
max

{pH − p0

qH − q0

, 1
}
, 2

}
.

Therefore, we show that given ζU , there exists ΘU such that µ(ΘU) = ζU .

In sum, we have established the existence of the equilibrium defined in Section

3.3. �
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3.8 Appendix: Proofs for Section 3.4

3.8.1 Proof of Proposition 3.4.1

If p0
q0−γ < 1 + 1−β

1−β+βγ
, then cases 1 and 2 of Proposition 3.6.2 occur. So, E3 or

E4 arises under the optimal full-information policy. Besides, by Section 3.6.4, there

are customers choosing the outside options in E3 and E4. �

3.8.2 Proof of Proposition 3.4.2

We take two steps to show the proposition. In the first step, we show that the

optimal delay is λ? = q0−γ
βγ(1−q0)

> 0 and the optimal commission is

τ ? = 1− w0

p0 + βγ
1−β+βγ

(1− η)
(

1− q0 + 1−β
1−β+βγ

(1− γ)
)

under the given conditions. In the second step, we show that under the given

condition, δHH is higher under the optimal delay policy than that under the full-

information policy.

In the first step, we first show that E1 holds under λ? and τ ?. It is straight-

forward to verify that under λ? and τ ?, we have qU = q0 and pU = p0. By Lemma

3.6.3, it suffices to verify that at λ?, the customer at 1+δU prefers U -label providers

to the outside option and U -label providers are not financially constraint. That is,

pU ≤ p0 and (1 − τ)pU ≥ b0. Besides, we need that the free-entry condition (i.e.,

(3.9)) holds. For pU ≤ p0, it holds because pU = p0. Then, for (1− τ)pU ≥ b0, it is
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equivalent to show:

τ ? ≥ 1− w0 − b0

βγ
1−β+βγ

(1− η)
(

1− q0 + 1−β
1−β+βγ

(1− γ)
) .

The above inequality is equivalent to:

w0 − b0

βγ
1−β+βγ

(1− η)
(

1− q0 + 1−β
1−β+βγ

(1− γ)
) ≥ w0

p0 + βγ
1−β+βγ

(1− η)
(

1− q0 + 1−β
1−β+βγ

(1− γ)
) .

To show the above inequality hold under b0 < p0 − (q0 − γ) (Assumption 1), it

suffices to show that

w0 −
(
p0 − (q0 − γ)

)
βγ

1−β+βγ
(1− η)

(
1− q0 + 1−β

1−β+βγ
(1− γ)

) ≥ w0

p0 + βγ
1−β+βγ

(1− η)
(

1− q0 + 1−β
1−β+βγ

(1− γ)
) .

Notice that the above inequality is equivalent to:

p0

q0 − γ
≤ 1 +

p0

p0 + βγ
1−β+βγ

(1− η)
(

1− q0 + 1−β
1−β+βγ

(1− γ)
) · w0

q0 − γ
.

Since p0 > q0 − γ, to show the above inequality, it suffices to show the following

holds (we substitute p0 with q0 − γ):

p0

q0 − γ
≤ 1 +

w0

q0 − γ + βγ
1−β+βγ

(1− η)
(

1− q0 + 1−β
1−β+βγ

(1− γ)
) ,

which satisfies Assumption 2. Lastly, for the free-entry condition to hold, it is

equivalent to show the following equality holds (notice that η = 1 and δUU = 1−β
1−β+βγ

under E1):

βγ

1− β
·

1− η
1 + q0−γ

1−q0

(
(1− τ)pH − w0

)
= w0 − (1− τ)pU ,

where

(1− τ)pH = w0 + (1− τ)
( 1− β

1− β + βγ
+

βγ

1− β + βγ
η
)(

1− q0 +
1− β

1− β + βγ
(q0 − γ)

)
, and

(1− τ)pU = w0 − (1− τ)
βγ

1− β + βγ
(1− η)

(
1− q0 +

1− β
1− β + βγ

(1− γ)
)
.
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Then, the free-entry condition becomes:

(1− τ)
βγ

1− β
·

1− η
1 + q0−γ

1−q0

( 1− β
1− β + βγ

+
βγ

1− β + βγ
η
)(

1− q0 +
1− β

1− β + βγ
(1− γ)

)
=(1− τ)

βγ

1− β + βγ
(1− η)

(
1− q0 +

1− β
1− β + βγ

(1− γ)
)
.

The above equality holds because it is straightforward to verify that the following

equality always holds:

βγ

1− β
1

1 + q0−γ
1−q0

( 1− β
1− β + βγ

+
βγ

1− β + βγ
η
)

=
βγ

1− β + βγ
.

Next, we show that the equilibrium under λ? and τ ? is the same as the equi-

librium under the optimal information-commission policy with differentiated com-

missions. In particular, by Proposition 3.6.4 and Lemma 3.6.9, we notice that when

η < 1/2 the optimal information-commission policy with differentiated commissions

has delay q0−γ
βγ(1−q0)

, which is the same as λ?. By Lemma 3.6.6, it is straightforward

to verify that under the optimal information-commission policy with differentiated

commissions, the λ, η, δUU , pU , and pH are the same as those under λ? and τ ?. There-

fore, they have the same revenue by (3.43). In other words, λ? and τ ? is the optimal

information-commission policy with single commission.

In the second step, we show that under λ? and τ ?, the δHH is higher than that

under the full-information policy. In particular, under λ? and τ ?, the quantity of

providers with label H is δH?H = (1− η) βγ
1−β+βγ

. On the other hand, under the full-

information policy, the quantity of providers with label H is δH0
H = βγ

1−β

(
p0−pU
q0−γ − 1

)
(under E3 or E4). To show δH?H > δH0

H , it suffices to show:

δH?H >
βγ

1− β

( p0

q0 − γ
− 1
)
> δH0

H .
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In fact, the first inequality holds because it is equivalent to p0
q0−γ < 1+ 1−β

1−β+βγ
(1−η)

(Assumption 2). Besides, the second inequality holds as pU ≥ 0.

Therefore, we have shown that λ∗ > 0 under the given conditions. Besides,

under the optimal information-commission policy with single commission, more

providers with label H are hired compared with the full-information policy. �

3.8.3 Proof of Proposition 3.4.3

First, we let θ = 1+ 1−β
1−β+βγ

∈ (1, 2). Then, Assumption 3 is equivalent to p0 >

2(1−β)+βγ
1−β+βγ

(q0 − γ). Therefore, to characterize τ ∗(0) and determine the equilibrium

type, we only need to consider cases 3, 4, 5, 6, 7, and 8 in Proposition 3.6.2. Second,

under condition b0/w0 < ρ, for some ρ ∈ (0, 1), we only need to focus on cases 3

and 6 in Proposition 3.6.2, as other cases do not hold when b0 is sufficiently small.

Lastly, we show that under η < 1/2, (3.36) holds. In particular, the right-handed

side of (3.36) is less than w0 because 3(1−β)+βγ
2(1−β+βγ)

− 1−β
1−β+βγ

1
η

is negative under η < 1/2

and γ < 1−β
β

. Then, by p0 > w0, we show (3.36) holds. Therefore, by Proposition

3.6.2, an E1 occurs under τ ∗(0). By the definition of E1 (Definition 3.6.1), the

platform serve all customers.

3.8.4 Proof of Proposition 3.4.4

The proposition holds because of Proposition 3.4.3 and Lemma 3.6.5.
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3.8.5 Proof of Proposition 3.4.5

The proposition holds because of Proposition 3.6.3. �

3.8.6 Proof of Proposition 3.4.6

The proposition holds because of Corollary 3.6.1. �
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Chapter 4: Demand Shocks and Supply Adjustment Friction in Two-

sided Marketplaces

Abstract. We explore the effect of sellers’ supply adjustment friction on two-sided

marketplaces’ reactions to unexpected demand shocks using an empirically-validated

analytical model. In the model, sellers, which are heterogeneous in terms of their

quality, engage in a quantity competition under a given demand. When the demand

structure changes, sellers strategically adjust their supply to maximize their profit,

incurring a cost for deviating from the original supply level. We find that sellers’

strategic responses can either benefit or hurt the marketplace, and adjustment fric-

tion is an effective factor in influencing sellers’ strategic decisions. By varying the

adjustment friction, the marketplace can amplify positive effects under favorable

demand shocks and reduce negative effect from unfavorable ones. In particular, a

marketplace that maximizes the total revenue (social welfare) benefits from increas-

ing (decreasing) the friction if the demand expands or the quality sensitivity level

increases, and it benefits from decreasing (increasing) the friction if the demand

shrinks or the quality sensitivity level decreases. We further validate our model em-

pirically by testing its predictions regarding demand impacts on sellers based on data

collected from a low-friction marketplace and empirical findings in a high-friction
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marketplace documented in the literature.

Keywords: Two-sided marketplaces, matching supply and demand, quantity com-

petition, difference-in-differences.

4.1 Introduction

The prosperity of online two-sided marketplaces, such as eBay, Airbnb, and

Upwork, has highlighted the online platform as a successful business model, which

promptly matches supply with demand at a broad scale and can grow virally. Some

of them have become the most prominent players in many traditional markets,

including retailing, and short-term rentals, and labor markets, once dominated by

offline companies. Nevertheless, the operations of online marketplaces encounter

new challenges that are little concerned by the traditional business models, such as

retailing and manufacturing.

One primary challenge is rooted in the decentralized nature of online mar-

ketplaces. Marketplaces’ value creation solely depends on matching supply and

demand; however, marketplaces control neither of the components. On the demand

side, buyers or consumers decide whether or not to join a given marketplace and

which sellers to transact with. On the supply side, sellers or service providers decide

how many products or services to list on the marketplace. Moreover, the transaction

prices of many marketplaces (e.g., eBay and Airbnb) result from buyers’ and sellers’

decisions, and marketplaces lack direct levers to manipulate them.

Many marketplaces feature heterogeneity on both sides of the market. On the
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one hand, sellers differ not only horizontally by what products or services they offer

but also vertically by the quality of their offerings. On the other hand, buyers make

trade-offs between quality and price, and they differ in terms of their valuation for

quality. Intuitively, between a set of products, buyers are willing to pay more for

high-quality products compared with low-quality ones. We henceforth use quality

sensitivity to characterize the trade-offs that buyers make between quality and price.

In a proprietary data set collected from an online B2B marketplace, we further

observe that buyers exhibit significantly different quantity sensitivities.

Moreover, among marketplaces specializing in different product types (e.g.,

merchandise, rental properties, and services), their sellers experience different levels

of friction when they adjust their supply. On eBay, sellers are relatively flexible in

adjusting their listed quantities. Relying on multiple sourcing channels, eBay sellers

can quickly scale up or shrink their listings. By contrast, it is difficult for Airbnb

hosts to modify the number of their listed properties. We show that the adjustment

friction is a catalyst to market expansion in some cases, yet, an obstacle in others.

Like any business, marketplaces operate in a dynamic environment, which

consists of unexpected demand shocks. Some demand shocks seem beneficial to

marketplaces. For example, when brand or bulk sellers enter a marketplace, they

bring their own buyers, who may later transact with other sellers in the market.

Some demand shocks seem detrimental—for example, demand shrinks after the en-

try of competing marketplaces, natural disasters, or economic contraction. However,

sellers’ strategic reactions to demand shocks increase the uncertainties of the actual

impacts on the marketplace. Therefore, it remains a challenge for marketplaces’
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managers to identify the impacts of unanticipated demand changes, and more im-

portantly, magnify gains under favorable shocks and reduce loss under unfavorable

ones.

Our first goal is to characterize how demand changes in size and quality sensi-

tivity affect a marketplace’s total revenue and social welfare. The second goal is to

compare these effects between marketplaces with different adjustment friction. To

achieve these goals, we develop an analytical model which specifies sellers’ supply

decision under adjustment friction and buyers choices. Moreover, it considers het-

erogeneity on both sides of the market and parameterizes demand’s size and quality

sensitivity. To validate the model, we derive a series of hypotheses based on the

model and test them employing a proprietary data set collected from an online B2B

liquidation marketplace.

First, we show that when the demand’s sensitivity level increases, the market-

place’s total revenue, and social welfare can improve even though the overall demand

size shrinks. In other words, a demand contraction is not necessarily an unfavorable

situation depending on the change of its sensitivity distribution. Second, we show

that under the same demand shock, marketplaces with different adjustment fric-

tion are affected differently. After a favorable (unfavorable) demand change, such

as demand expands (shrinks) and demand’s sensitivity level increases (decreases),

the total revenue increase (decrease) more when a marketplace has higher adjust-

ment friction, while social welfare increase (decrease) more when a marketplace

has less adjustment friction. Based on these observations, a revenue-maximization

marketplace should increase (decrease) sellers’ adjustment friction when the demand
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becomes favorable (unfavorable). A social-welfare-maximization marketplace should

decrease (increase) sellers’ adjustment friction when the demand becomes favorable

(unfavorable).

4.1.1 Related literature

Our paper connects to the literature that examines market design levers under

various demand structures. In a ride-sharing platform, [51] examine the effectiveness

of spatial pricing under various demand networks. They show that the platform

achieves the maximum profit when the demand pattern is “balanced”. In the same

platform, [52] characterize the optimal pricing under a demand shock.

Then, our paper is akin to the literature that investigates how demand-side

friction impact buyers’ behavior and the marketplace’s performance. Using a data

set collected from a holiday property-rental platform, [53] characterize the negative

impact of customer’s search friction, and how the friction is affected by the market

thickness. In an online B2B marketplace, [54] design the listing policy with the

consideration of buyers’ participation cost. This work is one of the few papers

investigating the impact of supply-side friction.

4.2 Theoretical Framework

We employ a two-period quantity competition in a vertically differentiated

duopoly to analyze how sellers of a marketplace react to unanticipated demand

changes. The demand varies across the two periods. The model characterizes sellers’
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adjustment friction, which sellers incur when deviating their supply in period 2 (after

the demand change) from the supply level in period 1 (before the demand change). It

also specifies demand changes in both size and sensitivity to seller quality. Using the

model, we characterize demand effects on the total revenue and the social welfare

of a marketplace. Furthermore, we establish that these effects vary substantially

across marketplaces with different friction levels. In this section, we describe the

model setup and the equilibrium concept.

4.2.1 Model setup

We assume there are two periods, denoted by t ∈ {1, 2}, and there are two

sellers, denoted by seller L and seller H, in a marketplace. Sellers list the same

generic product but differ regarding their quality. Seller H has a high-quality, θH ,

given that its product descriptions are accurate and credible. In comparison, seller

L has a low-quality, θL, given that its product descriptions are ambiguous (i.e.,

0 < θL < θH). We then assume that both sellers have the same marginal cost, and

we normalize it to zero.

At a given period, seller i’s profit, where i ∈ {L,H}, is characterized as follows:

Vi,t =


pi,1Qi,1, if t = 1

pi,2Qi,2 − c(Qi,2 −Qi,1)2, if t = 2

(4.1)

where Qi,t denotes its listed quantity, and pi,t denotes the price of its product.

Notice that at t = 1, sellers are not forward-looking as they do not expect the

demand change in the next period. After the unanticipated demand change at

t = 2, seller i adjusts its listed quantity Qi,2 to maximize its profit. At this period,
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term c(Qi−Qi,0)2 denotes the cost incurred by making the supply adjustment, where

Qi,1 is the supply level at period 1.

At period t, the demand consists of a continuum of buyers with mass µt > 0

who are heterogeneous regarding their quality sensitivities. We let x denote a buyer’s

quality sensitivity, and x is drawn from a cumulative distribution function (CDF),

denoted by Ft(x), with support on [0, 1]. Each buyer’s demand is infinitesimally

small and hence denoted by dx. Their utility derived from transacting with a seller

with quality θ or taking the outside option is:

Ut(x, i) =


xθi − pi,t, if i ∈ {L,H}, i.e., choosing seller with quality θi,

0, if i = 0, i.e., choosing the outside option.

(4.2)

If the buyer transacts with a seller, xθi is the buyer’s willingness-to-pay, and pi,t is

the transaction price.

Both the size and sensitivity of the demand may change. First, we change µ

to capture the change of demand size after the site launch. If the marketplace’s

demand expands (shrinks), we assume that µ increases (decreases) in period 2.

Second, we alter F to capture the changes in demand sensitivity. If the demand

sensitivity increases (decreases), we make F skew to the left (right) in period 2.

To obtain crystal implications of demand sensitivity effects, we make the following

assumption:

Assumption 4 The sensitivity distribution F changes within the following class of

distributions:

F = {Fα(§)|CDF satisfies: Fα(§) = §α,where § ∈ [′,∞] and α > ′},
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Figure 4.1: Probability density functions of three examples in F .
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where we call α the sensitivity parameter.

We make this assumption for two reasons: (1) The class includes a broad spectrum

of distributions on [0, 1]. Its elements cover both left-skewed (i.e., α > 1) and right-

skewed (i.e., α < 1) distributions (as demonstrated in Figure 4.1). In addition,

the uniform [0, 1], which is commonly assumed in the literature on competition

with vertical differentiation, is in the class (i.e., α = 1). (2) All distributions in F

are ranked based on their sensitivity. In particular, if Fα1 , Fα2 ∈ F and α1 < α2,

then Fα2 first-order stochastically dominates Fα1 , indicating that given x0 ≥ 0, the

percentage of buyers with sensitivity x > x0 in Fα2 is higher than that of buyers

with x > x0 in Fα1 . That is, the sensitivity parameter α fully characterizes the rank

of the distributions in F .
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4.2.2 Equilibrium

For the notation associated with seller i ∈ {L,H} at period t ∈ {1, 2}, we let

Qi,t denote its quantity, pi,t denote the price of its products, and Di,t denote the

mass of customers, who transact with it. Using the notation, we formally introduce

the notion of equilibrium:

Definition 4.2.1 An equilibrium under a demand change from {µ1, α1} to {µ2, α2}

consists of {Qi,t, pi,t, Di,t}, where i ∈ {L,H} and t ∈ {1, 2}, such that at given period

t:

- Sellers set their quantity Qi,t to maximize their Vi,t.

- Customer x makes choice to maximize their Ut(x, i).

- The demand and supply match (i.e., DL,t = QL,t and DH,t = QH,t).

First of all, the above defined equilibrium exists.

Proposition 4.2.1 An equilibrium exists under any {µ1, α1}, {µ2, α2}, and c.

Then, we characterize the equilibrium prices as follows:

Lemma 4.2.1 Suppose Assumption 4 holds. Then, the equilibrium prices can be

characterized as:

pL,t = θL

(
1− QL,t

µt
− QH,t

µt

) 1
αt and pH,t = (θH − θL)

(
1− QH,t

µt

) 1
αt + θL

(
1− QL,t

µt
− QH,t

µt

) 1
αt .

where t ∈ {1, 2}.
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Besides, we characterize buyers’ equilibrium choice as follows:

Lemma 4.2.2 In equilibrium, buyers with quality sensitivity x ∈ [1−QH,t, 1] trans-

act with the high-quality seller, buyers with quality sensitivity x ∈ [1−QL,t−QH,t, 1−

QH,t) transact with the low-quality seller, and the remaining buyers choose the out-

side option.

Lastly, in two stylized cases, where c = 0 and c = +∞, we provide the closed-

form characterizations of sellers’ quantity under any demand structure.

Lemma 4.2.3 Suppose Assumption 4 holds. Then, the equilibrium quantities at

t = 1 are:

QL,1 = QL(µ1, α1) and QH,1 = QH(µ1, α1),

where QL(µ, α) = αµ
1+α+α2A(α)

, QH(µ, α) = α2A(α)µ
1+α+α2A(α)

, and A(α) =
θL

(
1
α

) 1
α

+(θH−θL)
(

1+ 1
α

) 1
α

θL

(
1
α

) 1
α−1

+(θH−θL)
(

1+ 1
α

) 1
α−1

.

For equilibrium quantities at t = 2,

- If c = 0, then QL,2 = QL(µ2, α2) and QH,2 = QH(µ2, α2).

- If c = +∞, then QL,2 = QL,1 and QH,2 = QH,1.

4.3 Impacts of demand and adjustment friction

For the growth of many online marketplaces, they focus on maximizing either

the total revenue or social welfare. In this section, we first characterize various

demand impacts on the total revenue and the social welfare of a given marketplace.

We show that the marketplace can benefit from an increase in its demand sensitivity
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even though its demand size shrinks simultaneously. Moreover, we compare these

demand impacts across different adjustment friction. To our surprise, marketplaces

with high adjustment friction benefit from some demand changes more than those

with low friction.

Our analyses focus on two stylized types of marketplaces depending on how

difficult a seller can adjust its supply level instantly in response to unexpected de-

mand variation. The first type features zero adjustment friction (i.e., c = 0), where

sellers can immediately adjust their quantity after a demand change. Merchandise

marketplaces, such as eBay and Amazon, normally belong to this type, where sellers

vary their number of listings to react to demand dynamics. The second type fea-

tures infinite friction (i.e., c = +∞), where it is hugely costly for sellers to change

their supply within a short period. Service platforms, such as Upwork and TaskRab-

bit, fall into this category, where the number of tasks listed per user is inelastic to

demand dynamics Cu20.

Under Assumption 4, the total revenue, denoted by π, and the social welfare,

denoted by σ, at period t can be expressed as:

π(QL,t, QH,t, αt, µt) = θL(QL,t +QH,t)
(

1− QL,t

µt
− QH,t

µt

) 1
αt + (θH − θL)QH,t

(
1− QH,t

µt

) 1
αt ,

(4.3)

and σ(QL,t, QH,t, αt, µt) = µt
αt

αt + 1

(
θH − (θH − θL)

(
1− QH,t

µt

)1+ 1
αt − θL

(
1− QL,t

µt
− QH,t

µt

)1+ 1
αt

)
.

(4.4)

Besides, Lemma 4.2.3 further specifies the equilibrium quantities of sellers at period

2 for both friction types. In Sections 4.3.1 and 4.3.2, we analyze the total revenue
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and the social welfare, separately.

4.3.1 Total revenue

In this section, we focus on the effects of demand changes on the total revenue

of a given marketplace, which is characterized by Expression (4.3).

First, Proposition 4.3.1 provides a sufficient and necessary condition regarding

αt and µt such that a frictionless marketplace’s total revenue increases after the

demand change.

Proposition 4.3.1 Suppose Assumption 4 holds and c = 0. Then, the total revenue

increases after the demand change if and only if µ2/µ1 > π̃(α1)/π̃(α2), where

π̃(α) = α(1 + α + α2A(α))−1− 1
α

(
θL(1 + αA(α)) + αA(α)(θH − θL)(1 + α)

1
α

)
.

Besides, π̃(α) is increasing in α.

Proposition 4.3.1 implies that the total revenue is increasing in the sensitivity of

the demand. In particular, if the demand sensitivity increases (reduces), the total

revenue may increase (decrease), although the demand size shrinks (expands).

Second, we compare the revenue effect of demand changes between market-

places with different adjustment friction. Notice that if the demand size or sensitivity

changes slightly (i.e., µ2 = µ1 + ε or α2 = α1 + ε, where ε is a infinitesimal amount),

the total revenue changes by dπ
dµ
ε and dπ

dα
ε, respectively, where

dπ

dµ
=
∂π

∂µ
+

∂π

∂QL

dQL

dµ
+
∂π

∂µ

dQH

dµ
and

dπ

dα
=
∂π

∂α
+

∂π

∂QL

dQL

dα
+
∂π

∂α

dQH

dα
.
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Therefore, dπ
dµ

and dπ
dα

captures the normalized total revenue effects of demand

changes, and they vary across marketplaces with different adjustment friction. In

particular, we compare the demand effects between a marketplace with zero adjust-

ment friction (i.e., c = 0) and a marketplace with infinite friction (i.e., c =∞). For

the notation, we let
(
dπ
dµ

)
c=0

and
(
dπ
dα

)
c=0

denote the demand effects in the friction-

less marketplace, and we let
(
dπ
dµ

)
c=∞ and

(
dπ
dα

)
c=∞ denote the demand effects in the

infinite-friction marketplace. Then, we have the following observations regarding

the comparison between the two types:

Proposition 4.3.2 Suppose Assumption 4 holds. Then,

(dπ
dµ

)
c=∞

>
(dπ
dµ

)
c=0

> 0 and
(dπ
dα

)
c=∞

>
(dπ
dα

)
c=0

> 0. (4.5)

When the demand enlarges or becomes more sensitive, Proposition 4.3.2 im-

plies that the total revenue increases in both infinite-friction and frictionless cases.

Moreover, it suggests that the revenue increase in the infinite-friction case is higher

than that of the frictionless case. In other words, it would benefit the total revenue

if the platform can deter sellers’ strategic reactions to the demand change and make

their supply remain stable.

When the demand contracts or becomes less sensitive, Proposition 4.3.2 implies

that the total revenue decreases in both cases. Moreover, it suggests that the revenue

decrease in the infinite-friction case is higher than that of the frictionless case. In

other words, it would benefit the total revenue if the platform can encourage sellers’

strategic reactions to the demand change and let them adjust their supply promptly.
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4.3.2 Social welfare

In this section, we focus on the effects of demand changes on the social welfare

of a given online marketplace, which is characterized by Expression (4.4).

Proposition 4.3.3 provides a sufficient and necessary condition regarding αt and

µt such that a frictionless marketplace’s social welfare increases after the demand

change.

Proposition 4.3.3 Suppose Assumption 4 holds and c = 0. Then, the social wel-

fare increases after the demand change if and only if µ2/µ1 > σ̃(α1)/σ̃(α2), where

σ̃(α) =
α

1 + α

(
θH − (θH − θL)

( 1 + α

1 + α + α2A(α)

)1+ 1
α − θL

( 1

1 + α + α2A(α)

)1+ 1
α

)
.

Besides, σ̃(α) is increasing in α.

Proposition 4.3.3 implies that social welfare is increasing in the sensitivity of the

demand. In particular, if the demand sensitivity increases (reduces), social welfare

may increase (decrease), although the demand size shrinks (expands).

Second, we compare the social welfare effect of demand changes between mar-

ketplaces with different adjustment friction. Notice that if the demand size or sen-

sitivity changes slightly (i.e., µ2 = µ1 + ε or α2 = α1 + ε, where ε is a infinitesimal

amount), the social welfare changes by dσ
dµ
ε and dσ

dα
ε, respectively, where

dσ

dµ
=
∂σ

∂µ
+

∂σ

∂QL

dQL

dµ
+
∂σ

∂µ

dQH

dµ
and

dσ

dα
=
∂σ

∂α
+

∂σ

∂QL

dQL

dα
+
∂σ

∂α

dQH

dα
.

Therefore, dσ
dµ

and dσ
dα

captures the normalized social welfare effects of demand

changes, and they vary across marketplaces with different adjustment friction. Sim-

ilar to the total revenue analysis, we compare the demand effects on social welfare
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between a marketplace with zero adjustment friction (i.e., c = 0) and a marketplace

with infinite friction (i.e., c = ∞). For the notation, we let
(
dσ
dµ

)
c=0

and
(
dσ
dα

)
c=0

denote the demand effects in the frictionless marketplace, and we let
(
dσ
dµ

)
c=∞ and(

dσ
dα

)
c=∞ denote the demand effects in the infinite-friction marketplace. Then, we

have the following observations regarding the comparison between the two types:

Proposition 4.3.4 Suppose Assumption 4 holds. Then,

(dσ
dα

)
c=0

>
(dσ
dα

)
c=∞

> 0 and
(dσ
dµ

)
c=0

>
(dσ
dµ

)
c=∞

> 0. (4.6)

When the demand enlarges or becomes more sensitive, Proposition 4.3.4 im-

plies that social welfare increases in both infinite-friction and frictionless cases.

Moreover, it suggests that the increase in the frictionless case is higher than that

of the infinite-friction case. In other words, it would benefit social welfare if the

platform can encourage sellers’ strategic reactions to the demand change and let

them adjust their supply promptly.

When the demand contracts or becomes less sensitive, Proposition 4.3.4 im-

plies that the total revenue decreases in both infinite-friction and frictionless cases.

Moreover, it suggests that the decrease in the frictionless case is higher than that

of the infinite-friction case. In other words, it would benefit social welfare if the

platform can deter sellers’ strategic reactions to the demand change and stabilize

their supply.
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4.4 Model validation by hypothesis testing

Using a proprietary data set collected from an online marketplace, where sellers

have considerable flexibility to adjust their supply, we conduct a series of hypoth-

esis testing to validate our theoretical model. The data set records two types of

demand changes in the marketplace, and we observe that sellers adjust their supply

instantly in response. In particular, we validate our model by testing two groups of

hypotheses.

The first set of hypotheses are associated with marketplaces with significant

adjustment friction. In this case, we develop hypotheses regarding sellers’ average

listed quantities and their changing rates of revenue after demand shifts. By empir-

ically rejecting these hypotheses, we verify the alternative case characterized by the

model, which corresponds to marketplaces with small friction.

The second set of hypotheses are associated with marketplaces with small

adjustment friction. In this case, we develop hypotheses regarding sellers’ average

listed quantities, their changing rates of quantity and revenue after demand shifts.

By confirming these hypotheses using consistent empirical observations, we defend

the validity of the model specification.

4.4.1 Hypotheses of marketplaces with large friction

Lemma 4.2.3 states that sellers do not change their quantity to react to any

demand changes when the adjustment friction is infinite. Based on the observation,

we derive the following hypothesis regarding sellers’ responses in marketplaces with
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large adjustment friction: In a marketplace with large adjustment friction, sellers

do not significantly change their listed quantities under any demand change.

Next, we derive hypotheses regarding how sellers’ revenues are affected under

the large adjustment friction. We let ri(µ1, µ2, α1, α2, c) =
pi,2Qi,2
pi,1Qi,1

, where i ∈ {L,H},

denote the revenue changing rate of seller i after the demand change. Notice that ri

depends on not only the demand structures in both periods but also the adjustment

friction c. Then, we have the following observations regarding ri in a marketplace

with infinite friction.

Corollary 4.4.1 Suppose Assumption 4 holds. Then,

- If α2 > α1 and µ2 > µ1, then rH < rL.

- If α2 < α1 and µ2 < µ1, then rH > rL.

Corollary 4.4.1 indicates that when it is difficult for sellers to adjust their quantity

to react to sudden demand changes, the revenue changing rate of seller H is lower

(higher) than that of seller L, when the demand expands (shrinks), and its sensitivity

increases more (less).

Moreover, the patterns revealed by Corollary 4.4.1 hold for sufficiently large

but finite c. In Figure 4.2, we numerically compute rH − rL as we increase c under

different demand changes. As evident in the figure, when c is large, it follows that

rH < rL when the demand expands and becomes more sensitive (i.e., the green

and blue curve) and rH > rL when the demand shrinks and becomes less sensitive.

Therefore, by Corollary 4.4.1 and Figure 4.2, we derive Hypothesis 4.4.1.

In a marketplace with large adjustment friction:
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Figure 4.2: Difference between rH and rL under different demand changes from

µ1 = α1 = 1
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A. If its demand expands and becomes more sensitive, then the revenue changing

rate of high-quality sellers will be lower than that of their low-quality peers.

That is, rH < rL.

B. If its demand shrinks and becomes less sensitive, then the revenue changing

rate of high-quality sellers will be higher than that of their low-quality peers.

That is, rH > rL.

In Section 4.5, we describe the empirical setting and the data collected from a

low-friction marketplace, which we employ to test and reject Hypotheses 4.4.1 and

4.4.1.
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4.4.2 Hypotheses of marketplaces with small friction

Lemma 4.2.3 characterizes sellers’ quantity reactions to demand changes when

the adjustment friction is zero. Then, we observe the following regarding sellers’

average quantity:

Corollary 4.4.2 Suppose Assumption 4 holds and c = 0. Then,

1. If µ2 > µ1 and α2 > α1, then 1
2
(QH,2 +QL,2) > 1

2
(QH,1 +QL,1).

2. If µ2 < µ1 and α2 < α1, then 1
2
(QH,2 +QL,2) < 1

2
(QH,1 +QL,1).

Corollary 4.4.2 implies that when sellers can flexibly adjust their quantity, their

average quantity is increasing in the demand size and sensitivity. Moreover, we

numerically compute the differences of the average quantity between periods as

we increase c and display them in the left plot of Figure 4.3. Notice that the

pattern revealed by Corollary 4.4.2 also holds for c > 0. Moreover, the difference

of average quantity shrinks as we increase c. It implies that in marketplaces with

small adjustment friction, we expect significant changes in the average quantity after

demand changes. By Corollary 4.4.2 and Figure 4.3, we derive Hypothesis 4.4.2.

In a marketplace with small adjustment friction:

A. If its demand expands and its sensitivity level increases, then the average listed

quantity per seller increases significantly.

B. If its demand shrinks and its sensitivity level decreases, then the average listed

quantity per seller decreases significantly.
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Figure 4.3: Difference between the average quantities (left) and difference between

qH and qL (right) under different demand changes from µ1 = α1 = 1
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Next, we derive hypotheses regarding how the quantity of sellers with vari-

ous qualities are affected differently when the adjustment friction is small. We let

qi(µ1, µ2, α1, α2, c) =
Qi,2
Qi,1

, where i ∈ {L,H}, denote the quantity changing rate of

seller i after the demand change. Notice that qi depends on not only the demand

structures in both periods but also the adjustment friction c. Then, we have the

following observations regarding qi in a frictionless marketplace.

Corollary 4.4.3 Suppose Assumption 4 holds, and c = 0. Then,

- If α2 > α1, then qH > qL.

- If α2 < α1, then qH < qL.

Corollary 4.4.3 implies that in a marketplace with zero adjustment friction, the

quantity changing rate of the high-quality seller is higher than that of the low-
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quality seller when the demand becomes more sensitive. On the other hand, the

high-quality seller’s quantity changing rate lower than that of the low-quality seller

when the demand becomes less sensitive. Moreover, for positive c, we numerically

compute qH − qL under several demand changes in the right plot in Figure 4.3. The

plot shows that qH > qL when the demand’s sensitivity increases and qH < qL when

the demand’s sensitivity decreases, and the patterns are consistent with Corollary

4.4.3. By Corollary 4.4.3 and Figure 4.3, we derive Hypothesis 4.4.2.

In a marketplace with small adjustment friction:

A. If the sensitivity level of its demand increases, then the quantity changing rate

of high-quality sellers will be higher than that of their low-quality peers. That

is, qH > qL.

B. If the sensitivity level of its demand decreases, then the quantity changing rate

of high-quality sellers will be lower than that of their low-quality peers. That

is, qH < qL.

Lastly, we derive hypotheses regarding how sellers’ revenues are affected when

the adjustment friction is small. We first observe the following in a frictionless

marketplace:

Corollary 4.4.4 Suppose Assumption 4 holds, ratio θH/θL is sufficiently large, and

c = 0. Then,

- If α2 > α1, then rH > rL.

- If α2 < α1, then rH < rL.
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Corollary 4.4.4 implies that when sellers can freely adjust their quantity to react to

demand changes, the revenue changing rate of seller H is higher (lower) than that

of seller L, when the demand’s sensitivity level increases (decreases).

Moreover, the patterns revealed by Corollary 4.4.4 hold for sufficiently small

but positive c. As evident in Figure 4.2, when c is small, it follows that rH > rL when

the demand becomes more sensitive (i.e., the green and blue curves) and rH < rL

when the demand becomes less sensitive (i.e., the black and red curves). Therefore,

by Corollary 4.4.4 and Figure 4.2, we derive Hypothesis 4.4.2.

In a marketplace with small adjustment friction:

A. If the sensitivity level of its demand increases, then the revenue changing rate

of high-quality unbranded sellers will be higher than that of their low-quality

peers. That is, rH > rL.

B. If the sensitivity level of its demand decreases, then the revenue changing rate

of high-quality unbranded sellers will be lower than that of their low-quality

peers. That is, rH < rL.

In Section 4.5, we describe the empirical setting and the data collected from

a low-friction marketplace, which we employ to test and verify Hypotheses 4.4.2,

4.4.2, and 4.4.2.

4.5 Data and empirical setting

To test the hypotheses developed in Section 4.4, we collect proprietary data

from a leading B2B liquidation platform that hosts multiple online auction market-
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places for retailers to liquidate their big-box salvaging inventory through ascending

English auctions.

The platform owns a two-sided marketplace, where all small and midsize re-

tailers list and sell their salvaging inventory. It is open to all buyers and sellers to

participate, so we refer it as a public marketplace. The public marketplace will be

the subject of our empirical analysis, and we will describe it further in Section 4.5.1.

Besides, the platform helps branded retailers, such as Walmart, Costco, and

Home Depot, launch their own marketplaces for liquidation, which we refer to as

private sites. A private site is one-sided, where only one branded retailer can list and

sell its merchandise. The platform names each private site after the retailer’s brand.

After branded retailers launch their private sites, they direct their inventory and

buyers to the platform’s ecosystem. We exploit the launches of two private sites as

exogenous shocks to the public marketplace, which we will specify in Section 4.5.2.

Lastly, we outline the procedures for hypothesis testing. First, we identify the

demand impacts on the public marketplace resulted from each launch, and the cor-

responding methods are specified in Section 4.5.3. Second, we test all hypotheses by

identifying sellers’ reactions and how their revenues are affected under the identified

demand impacts. We describe the methods employed in this step in Section 4.5.4.

4.5.1 Public marketplace

We describe the public marketplace by specifying its participants on the supply

and demand sides, as well as their characteristics.
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Sellers.

We refer to all the retailers in the public marketplace as sellers. Most sellers

liquidate a variety of product categories, such as consumer electronics, apparel, and

appliances. Sellers create auction listings for their inventory to transact with buyers.

A listing contains an auction of multiple products for sale, which typically belong to

the same category and have similar conditions. The listing reveals necessary product

information, including product names, quantities, and conditions. Listings serve as

the only intermediary, where sellers and buyers interact on the platform.

Since auctions determine the prices, the listed quantities become the essential

lever for sellers to react to market dynamics. We observe that sellers vary their

number of monthly listings substantially in response to the launches of private sites

(specified in Section 4.5.2), which implies that sellers in this marketplace incur little

friction when adjusting their supply.

Sellers’ quality.

Since salvage inventory items come in a variety of different conditions, product

information disclosed within listings is instrumental to buyers’ evaluation of these

products and the decision process. Depending on how accurately each seller de-

scribes their products, buyers may later find that the received merchandise is not

as it was described in the listing. Hence, buyers bear a risk while transacting with

sellers whose listing information has low quality. We then use sellers’ dispute rates,

added by the platform to each of their listings, to approximate the quality of their
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Figure 4.4: Unbranded sellers’ dispute rates (left) and buyers’ quality-price trade-

offs in purchasing salvage iPhone 6 (2016) (right).
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listings. If a buyer finds the purchased merchandise not as described, the buyer

can file a dispute with the seller. Therefore, sellers’ dispute rates capture buyers’

feedback on how accurately their listing information describes the products.1

Given the central role of listings in the communication between sellers and

buyers, buyers discern sellers by their listing qualities. We henceforth use seller

quality to refer to sellers’ qualities of listings and measure the quality of a given

seller by its dispute rate. In the left plot of Figure 4.4, we notice that sellers’

qualities vary widely in the public marketplace.

1In addition to dispute rates, the platform includes other metrics of sellers in their listings

such as tenure on the platform, cumulative transactions, and the number of purchases from repeat

buyers. Among these metrics, we believe that the dispute rate characterizes listing qualities most

accurately.
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Buyers and their quality sensitivity

The demand on the platform consists of business buyers, including downstream

resellers and refurbishers from across the globe (henceforth referred to as buyers).

All buyers are for-profit downstream businesses that would prefer to get desired

products at the lowest prices. Besides, buyers specialize in different product cate-

gories, and some product categories, such as consumer electronics and appliances,

have little overlap in terms of the buyers.

In the public marketplace, we observe that buyers make trade-offs between

seller quality and price. Among the same type of products, buyers are drawn to

listings from high-quality sellers and pay more for their products than those listed by

low-quality sellers. This pattern indicates that buyers’ willingness-to-pay depends

on the seller’s quality. We henceforth use quality sensitivity to characterize the

trade-offs that buyers make between seller quality and price. In the right plot of

Figure 4.4, we use salvage iPhone 6 transactions in 2016 as an example to illustrate

the quality-price trade-offs that buyers make. The correlation between the final

price per unit and the dispute rate is −0.21, which indicates that high (low) seller

quality is associated with a high (low) final price per unit.

4.5.2 Launches of private sites

We can view the launches of private sites as exogenous shocks to the public

marketplace. Their launching decisions and dates depend on a confidential negoti-

ation process between the branded retailer and the platform, which relates little to
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the public marketplace. This process may last from weeks to months. Meanwhile,

unbranded sellers and all buyers have no clue whether or when a new marketplace

will appear.

We build our analysis on two launches of private sites specializing in consumer

electronics (henceforth referred to as CE ).2 The first launch involves two branded

CE retailers who launched their sites on the platform in January and March of

2013, respectively. Since these two launching dates are so close, we consider them

as one launch. Both of the private sites have low dispute rates (zero) than the public

marketplace, whose dispute rate is 13.3%. Then, we infer that the listing quality

in these private sites is higher than the public marketplace. The second launch

involves another branded CE retailer who launched its private site in July of 2015.

It has particularly a very high dispute rate of 44.4%, which indicates that its listing

quality is low.

We exploit the demand shocks resulting from these two launches to test the

hypotheses developed in Section 4.4. Both private sites specialize in CE, so their

launches primarily affect the public marketplace’s supply and demand of the same

category. It is worthwhile to mention that once a branded retailer launches its

private site, it starts attracting its buyer base to the platform. Since buyers can

cross bid in any private sites and the public marketplace, the entry of a private site

impacts the public marketplace by either bolstering or weakening its demand, which

2Some private sites liquidate merchandise from multiple product categories (e.g., Walmart lists

auctions of furniture and apparel), while others specialize in one category (e.g., Macy’s only liqui-

dates apparel).
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subsequently affects its sellers’ behavior.

To participate in the public marketplace or a private site, buyers need to reg-

ister an account with that marketplace. Using buyers’ first registered marketplaces,

we can distinguish buyers based on which marketplace brings them to the plat-

form. In this way, we identify the following two groups of buyers for both launches,

respectively:

- Original Buyer: a buyer whose first registration is with the public marketplace.

- New Buyer: a buyer whose first registration is with the newly-launched private

site.

4.5.3 Identification of private sites’ demand impacts

Before testing the hypotheses, which involves sellers’ reactions under a given

demand shock, we first identify how these two launches affect the public market-

place’s demand. Specifically, we characterize the two launches’ impacts on the de-

mand size (i.e., µ) and sensitivity to quality (i.e., F ) of the public marketplace.

For the effects on µ, we compare the buyer inflow from the newly-launched

private site to the public marketplace with the buyer outflow that moves in the re-

verse direction. In particular, we contrast the New Buyers from the newly-launched

private site who transact in the public marketplace (i.e., inflow) with the Original

Buyers who transact in the newly-launched private site (i.e., outflow). Then, µ ex-

pands (shrinks) if the inflow is more (less) massive than the outflow. We show the

results of the t-test comparison in Section 4.6.

248



For the effects on F , we compare the quality sensitivity between the associated

New Buyers, who cross bid in the public marketplace, and the Original Buyers. If

the cross-bidding New Buyers are more (less) sensitive to the sellers’ quality than

are the Original Buyers, then F becomes more (less) sensitive. Moreover, Lemma

4.2.2 and Expression (4.2) imply that buyers with various quality sensitivities tend

to choose sellers with different qualities and have different willingness-to-pay, for a

given product (i.e., xθ). Therefore, we estimate two regression models regarding

buyers’ choice of sellers and their willingness-to-pay, respectively.

In addition to sellers’ quality, buyers’ choice between sellers and their willingness-

to-pay for auctions depends on product-related characteristics. For example, some

buyers are only interested in purchasing iPhones. These buyers will not participate

in auctions of Samsung Galaxy phones regardless of the seller’s quality of listings.

To tease out quality effects from product-related influences, we focus on buyers’

choice among sellers who list very similar products and buyers’ bids in response to

these listings. After the first launch, we select iPhone 5/5c/5s because they are

homogeneous, as well as one of the most frequently listed products. Likewise, we

consider iPhone 6/6s after the second launch.

In what follows, we define the variables for each regression. Then, the results

of the regression analyses are detailed in Section 4.6.
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Choice between sellers.

For the dependent variable, we consider buyers’ choice between sellers through-

out their lifetime in the public marketplace. The dependent variable of buyer j

choosing unbranded seller i is denoted by Cij.

Notice that product-related characteristics are controlled via the sample selec-

tion. As a result, a buyer’s decision about whether or not to choose a seller depends

primarily on the seller’s characteristics, including their number of completed trans-

actions (NumCompi), number of repeat buyers (NumRepi), and listing quality,

denoted by a dummy variable Qlti:

Qlti =


1, if seller i’s dispute rate is lower than the average.

0, otherwise.

Additionally, we include buyer fixed effects, denoted by νj, to control for buyer’s

idiosyncratic preferences, and a dummy variable, IsNBj, to indicate whether the

buyer is a New Buyer (IsNBj = 1) or an Original Buyer (IsNBj = 0).3 The

corresponding regression is specified by Expression (4.7).

Willingness-to-pay.

For the dependent variable, we use buyers’ bids in a given auction, which is

normalized by its retail value. The reason is bidders’ willingness-to-pay is unob-

3Since high-quality sellers and low-quality unbranded sellers have listings of the selected prod-

ucts simultaneously during more than 83% of the observational weeks, buyers’ choice is unlikely

to be affected by sellers’ availability. Thus, we choose not to include availability-related variables.
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served, and their bids serve a valid proxy.4 Then, we let Bij denote the dependent

variable, where i stands for the auction and j stands for the buyer.

Though the major iPhone features are fixed (i.e., iPhone 5 series or iPhone 6

series), a buyer’s willingness-to-pay is still subject to other product specifications

(e.g., carrier), auction lot size, and the number of concurrent auctions with the same

product. Therefore, we explicitly control for specific product features, including

model (Modi), carrier (Cari), condition (Condi), per-unit retail price (UnitRPi),

auction lot size (Loti), and the number of concurrent cell phone auctions in the public

marketplace (NumAucti). Moreover, unbranded sellers’ characteristics, especially

their quality of listings, will also impact buyers’ bidding decisions. Hence, we include

NumCompi, NumRepi, and Qlti (defined in the Choice between sellers section) as

controls. As in the previous analysis, we use IsNBj to indicate whether or not

buyer j is a New Buyer. Lastly, we add seller fixed effects, buyer fixed effects, and

weekly fixed effects, denoted by ηi, νj, and µi, respectively, to account for unobserved

patterns. The corresponding regression is specified by Expression (4.8).

4.5.4 Identification of private sites’ supply impacts

After identifying each launch’s impacts on demand size and sensitivity, we

test hypotheses by estimating how sellers in the public marketplace react to these

demand changes using their quantities and how their revenues are affected. In

particular, we apply a difference-in-differences (DiD) approach to identify these

impacts. We select the monthly CE listings per seller as the treatment group, as

4If a buyer places multiple bids in an auction, then we select the last bid.
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the demand for this category is most affected. Then, we focus on how sellers adjust

their monthly CE listings in response to each launch.

Notice that sellers adjust their monthly listings to react to other unobserved

platform-level shocks, such as website upgrades and marketing campaigns, in ad-

dition to the launches of private sites. To control for these unobserved shocks, we

construct a control group corresponding to each launch by selecting monthly list-

ings of other product categories in the public marketplace, whose demand is little

affected by the New Buyers from the private site. In particular, we select the con-

trol category that has the least demand overlap with CE. For the first launch, we

choose jewelry and toys as the control category, since the New Buyers participate in

only 3% of its listings. For the second launch, we choose appliances as the control

category, since the New Buyers bid in only 0.1% of them. As a result, these control

groups should barely react to the launches of CE private sites; meanwhile they are

subject to platform-level changes that apply to all listings in the public marketplace.

Moreover, we select the pre-launch and post-launch periods such that there

are no launches of private sites specializing in the control categories. To further

control for seasonality patterns that apply to CE listings (e.g., the release of newer

generation products), we select the pre- and post-launch periods such that they cover

the same months of a year. For the first site launch, the pre-launch period starts in

April 2012 and ends in November 2012, and the post-launch period begins in April

2013 and ends in November 2013.5 For the second site launch, the pre-launch period

5The pre-launch period begins in April 2012 to match the starting month of the post-launch

period. The post-launch period ended in November 2013, as another branded CE retailer launched
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is from January 2014 to May 2015, and the post-launch period is from January 2015

to May 2016.6

Next, we examine whether pre-trends are parallel in the treatment group and

control group concerning buyer registrations and sellers’ listings. Figure 4.5 shows

the trends of monthly registrants in the public marketplaces across categories. They

remain parallel during the pre-launch period in both natural experiments. Then, we

plot the trends of sellers’ monthly listings across categories in Figure 4.6, where we

notice that they are approximately parallel during the pre-launch period. Figures

4.5 and 4.6 imply that the supply and demand of consumer electronics, jewelry

and toys, and appliances have similar organic growth rates, and the parallel trend

assumption is likely to hold.

Lastly, we specify the variables in the DiD analysis. We denote the dependent

variables of interest by Yikt, where we use i to denote sellers, k to represent product

category, and t to signify month. When we estimate the effect on sellers’ monthly

listings and monthly transacted auctions, Yikt counts how many auctions are listed

and sold. When identifying the impact on sellers’ monthly revenues yielded from CE

listings, we discretize the outcome value by assigning rounded monthly revenues at

its private site the following month.
6The pre-launch period starts in January 2015, as a branded appliances retailer launched its

private site in December 2014. The post-launch period ends in May 2016 because a branded CE

retailer closed its private site the following month. We do not consider jewelry and toys as the

control category in the analysis because during the post-launch period there was a supply shock

of jewelry and toys listings in one of the private sites.
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Figure 4.5: Trends of monthly registrants in the public marketplace during the first

launch (left) and the second launch (right).
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Figure 4.6: Average monthly listings per seller during the first launch (left) and the

second launch (right).
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the level of a thousand dollars to Yikt.
7 Variable Trtk indicates whether or not the

observation is associated with CE (i.e., in the treatment group), and variable Postt is

the dummy variable indicating whether or not month t falls within the post-launch

period. Then, we let binary variable Qltit (defined in the Choice between sellers

section) denote the quality of seller i. We employ seller fixed effects, ηi, to control for

sellers’ unobserved time-invariant characteristics. We then consider monthly fixed

effects, µt, to control for the unobserved temporal trends of the public marketplace.

Lastly, we introduce the fixed effects of seller’s tenure (in months) on the platform,

τit, to control for any listing patterns associated with sellers’ learnings or previous

platform experiences. The corresponding regression is specified by Expressions (4.9)

and (4.10).

4.6 Demand impacts of private sites’ launches

In this section, we characterize the two launches’ impacts on the public mar-

ketplace’s demand. We show that the first launch expands the public marketplace’s

demand size and increases its sensitivity level. In contrast, the second launch im-

poses an opposite effect by shrinking the demand size, as well as decreasing its

7Given the underlying counting process (i.e., the number of listed auctions), the revenues yielded

by multiple auctions cannot be well-characterized by continuous distributions. About 52% of

observations have zero revenue due to either no listings or no sales. Additionally, in cases where

there is a sale, the revenues rarely take values near zero given the starting price (average of $374)

and high final price per auction (average of $946). Therefore, considering revenue levels as the

dependent variable, despite the loss of granularity, is sensible.
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Table 4.1: Average monthly listings purchased by Original Buyers and New Buyers

in public marketplace (denoted by Pub. Mkt.) and newly launched private sites

(denoted by NLPS).

Buyer type Pub. Mkt. NLPS Inflow - outflow

After the first launch
Original Buyer 531 115 (outflow)

24∗∗∗

New Buyer 140 (inflow) 216

After the second launch
Original Buyer 626 105 (outflow)

−46∗∗∗

New Buyer 59 (inflow) 87

Note. ∗∗∗p<0.01

sensitivity level.

First, we establish the two launches’ impacts on the size of the marketplace’s

demand. After a launch, Table 4.1 presents the average number of monthly CE

listings in the public marketplace and the newly-launched private site purchased

by Original Buyers and New Buyers, respectively. Then, the public marketplace’s

listings purchased by New Buyers capture the demand inflow to the public mar-

ketplace, and the private site’s listings purchased by Original Buyers represent the

demand outflow from the public marketplace. By comparing the difference between

the inflow and outflow with zero, we obtain the demand size impact of each launch.

As evident in the last column of Table 4.1, the differences are significant from zero,

which implies that the first launch expands the public marketplace’s demand size

while the second one shrinks it. We further explain the findings using the fact that
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the first private site brings more buyers relative to its listings to the platform, while

the other private site does the reverse.

Second, we establish the two launches’ impacts on the sensitivity level of the

public marketplace’s demand. After a launch, we adopt regression analyses to com-

pare the sensitivity levels between the Original Buyers and the New Buyers based

on their choice between sellers and their willingness-to-pay.

For buyers’ choice between sellers, Lemma 4.2.2 suggests that buyers, who

are sensitive to sellers’ quality, tend to choose high-quality sellers more often than

insensitive buyers do. Then, we employ a logistic regression to characterize New

Buyers’ and Original Buyers’ preferences between sellers with different qualities,

and the model is specified as:

logit(Cij) =β0 + γ0IsNBj + (β1 + γ1IsNBj)NumCompi + (β2 + γ2IsNBj)NumRepi

+ (β3 + γ3IsNBj)Qlti + νj, (4.7)

where β3 and β3 + γ3 measure how much Original Buyers and New Buyers, respec-

tively, prefer a high-quality seller (Qlti = 1) to a low-quality seller (Qlti = 0). The

estimates of Expression (4.7) for both site launches are displayed in Table 4.2. The

estimate of γ3 indicates that the New Buyers brought in by the first launch signifi-

cantly more inclined to choose high-quality sellers than the Original Buyers are, so

they are more sensitive to seller qualities than the Original Buyers. Therefore, the

sensitivity level of the public marketplace’s demand increases after the first launch.

By contrast, the New Buyers brought in by the second launch show less preference

for high-quality sellers than do the Original Buyers, so they are less sensitive than
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the Original Buyers. As a result, the sensitivity level of the public marketplace’s

demand decreases after the second launch.

Table 4.2: Comparison of Original Buyers vs. New Buyers regarding seller choice

First launch (high-quality) Second launch (low-quality)

Dependent variable Cij

Qlt (β3) 0.181∗∗∗ 0.572∗∗∗

(0.046) (0.152)

Qlt × IsNB (γ3) 0.309∗∗∗ −3.369∗∗

(0.095) (1.458)

Buyer Fixed Effects Y Y

Observations 24,105 2,527

Log Likelihood −9,580.414 −736.210

Akaike Inf. Crit. 21,200.830 1,690.421

Note. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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For buyers’ willingness-to-pay, Expression (4.2) indicates that buyers, who are

quality-sensitive, value the high-quality sellers’ listings more and, hence, bid higher

than quality-insensitive buyers do. Then, we employ linear regression to compare

New Buyers’ and Original Buyers’ bids, which serve as a proxy for their willingness-

to-pay, and the model is specified as:

Bij =β0 + γ0IsNBj + (β1 + γ1IsNBj)Modi + (β2 + γ2IsNBj)Cari

+ (β3 + γ3IsNBj)Condi + (β4 + γ4IsNBj)UnitRPi + (β5,+γ5IsNBj)Loti

+ (β6 + γ6IsNBj)NumCompi + (β7 + γ7IsNBj)NumRepi + (β8 + γ8IsNBj)Qlti

+ (β9 + γ9IsNBj)NumAucti + ηi + νj + µi + εij, (4.8)

where γ8 measures the difference in bids between New Buyers and Original Buyers

in auctions listed by high-quality sellers. We present the regression results of Ex-

pression (4.8) for both site launches in Table 4.6, which reveals the same pattern

as Table 4.2. Specifically, the estimate of γ8 indicates that in high-quality listings,

the New Buyers from the first (second) private site bid significantly higher (lower)

than the Original Buyers do. Therefore, the first private site brings in more quality-

sensitive buyers, while the other private site brings more quality-insensitive buyers,

to the public marketplace.
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First launch (high-quality) Second launch (low-quality)

Dependent variable Bij

Qlt (β8) −0.005 (0.017) 0.209∗∗∗ (0.068)

Qlt × IsNB (γ8) 0.032∗∗ (0.014) −0.203∗∗∗ (0.058)

Seller Fixed Effects Y Y

Buyer Fixed Effects Y Y

Weekly Fixed Effects Y Y

Observations 1,611 996

R2 0.893 0.963

Adjusted R2 0.685 0.856

Residual Std. Error 0.044 (df = 549) 0.045 (df = 259)

F Statistic 4.305∗∗∗ (df = 1061; 549) 9.035∗∗∗ (df = 736; 259)

Note. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In sum, we have identified the impacts of the two launches on the market-

place’s demand in the dimensions of size and sensitivity. By Propositions 4.3.2 and

4.3.4, we notice that the first launch leads to a favorable impact on the public mar-

ketplace’s total revenue and social welfare by expanding its demand and increasing

the sensitivity. On the other hand, the second launch results in an unfavorable im-
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pact regarding these two metrics by shrinking its demand size and decreasing the

sensitivity level.

4.7 Effects of launches on sellers

In this section, we focus on the effects of newly launched CE private sites on

sellers in the public marketplace and test all the hypotheses developed in Section

4.4. First, we test Hypotheses 4.4.1 and 4.4.2 by examining the average impacts

on sellers’ monthly listings. Second, we test Hypotheses 4.4.1, 4.4.2, and 4.4.2 by

examining heterogeneous impacts on the monthly listings and monthly revenues of

sellers with different qualities.

4.7.1 Average impacts on supply

We reject Hypothesis 4.4.1 by showing that sellers’ supply of CE varies signifi-

cantly after both launches and verify Hypothesis 4.4.2 by showing that their supply

increases after the first launch and decreases after the second launch. In particular,

we specify the DiD model for these tests as follows:

Yikt = f(β0 + β1Trtk + β2Postt + β3Trtk × Postt + γQltit + ηi + µt + τit + εikt),

(4.9)

where f is the negative binomial link function.8

We present the regression results associated with both launches in Table 4.3,

and the estimate of β3 captures the average effects of a launch on sellers’ listings,

8We conduct a Wald test and reject the hypothesis that the data follow a Poisson regression.
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transactions, and revenues of CE per month. First, we reject Hypothesis 4.4.1, which

states that sellers’ listed quantities are irresponsive to any demand shocks when the

adjustment friction is large, as the estimates of β3 are significantly different from zero

for both launches (i.e., Models (1), (2), (4), and (5)). Second, we observe that the

first launch increases sellers’ monthly listings (Model (1)) and monthly transactions

(Model (2)) by 114% and 94%, respectively,9 and the second launch decreases sellers’

monthly listings (Model (4)) and monthly transactions (Model (5)) by 64% and 59%,

respectively.10 Given the demand impacts of both launches revealed in Section 4.6,

we thus confirm Hypothesis 4.4.2, which characterizes sellers’ average reactions to

demand shocks when the adjustment friction is small. Therefore, the estimated

average supply effects validate our analytical model.

4.7.2 Heterogeneous impacts on supply and revenues

In this section, we first reject Hypothesis 4.4.1 and verify Hypothesis 4.4.2,

simultaneously, by showing that the revenue changing rate of high-quality sellers

(i.e., rH) is higher (lower) than that of low-quality sellers (i.e., rL) after the first

(second) launch. Next, we verify Hypothesis 4.4.2 by showing that the changing

rate of high-quality sellers’ listed quantities (i.e., qH) is higher (lower) than that of

low-quality sellers (i.e., qL) after the first (second) launch, which is stated by the

9By the negative binomial link function, we note that exp(1.145)−1 = 1.14 and exp 1.079−1 =

0.94.
10By the negative binomial link function, we note that 1 − exp(−1.029) = 0.64 and 1 −

exp(−0.903) = 0.59.
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Table 4.3: Average listing effect of both launches.

First launch (high-quality) Second launch (low-quality)

Dependent variable

Listings Sold auctions Revenues Listings Sold auctions Revenues

Model (1) (2) (3) (4) (5) (6)

Trt × Post 1.145∗∗∗ 1.079∗∗∗ 1.142∗∗∗ −1.029∗∗∗ −0.903∗∗∗ −0.694∗∗∗

(0.357) (0.359) (0.396) (0.212) (0.213) (0.234)

Seller Fixed Effects Y Y Y Y Y Y

Monthly Fixed Effects Y Y Y Y Y Y

Age Fixed Effects Y Y Y Y Y Y

Observations 543 543 543 3,976 3,976 3,976

Log Likelihood −838 −777 −1,212 −3,526 −3,421 −2,997

Note. ∗∗p<0.05; ∗∗∗p<0.01
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hypothesis. Sepcifically, we obtain the DiD model for the tests by interacting the

term of sellers’ quality (i.e., Qlt) with the cross-term Trt×Post in Expression (4.9),

which is specified as:

Yikt = f
(
β0 + γ0Qltit + (β1 + γ1Qltit)Trtk + (β2 + γ2Qltit)Postt

+ (β3 + γ3Qltit)Trtk × Postt + ηi + µt + τit + εikt
)
, (4.10)

where β3 and β3 + γ3 represent the treatment effect on low-quality sellers and high-

quality sellers, respectively.

We present the estimates of Expression (4.10) for the first and second launches

in Table 4.4. First, Models (3) and (6) of Table 4.4 estimate that rH is higher than

rL by 224% after the first launch and rH is lower than rL by 58% after the second

launch.11 Therefore, the estimated heterogeneous effects on sellers’ revenue contra-

dicts Hypothesis 4.4.1, which specifies the opposite differentiated revenue impacts

under large adjustment friction, and confirm Hypothesis 4.4.2, which specifies the

same effects under small adjustment friction. Next, Models (1) and (4) estimate that

qH is higher than qL by 374% after the first launch and qH is lower than qL by 56%,12,

which are consistent with Hypothesis 4.4.2’s claims. Therefore, the heterogeneous

effects revealed by Expression (4.10) further validate our analytical model.

11By the negative binomial link function, we note that exp(1.446) − 1 = 224% and 1 −

exp(−0.874) = 58%.
12By the negative binomial link function, we note that exp(1.748) − 1 = 374% and 1 −

exp(−0.843) = 56%.
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Table 4.4: Heterogeneous effects of both launches on sellers with various qualities.

First launch (high-quality) Second launch (low-quality)

Dependent variable

Listings Sold auctions Revenues Listings Sold auctions Revenues

Model (1) (2) (3) (4) (5) (6)

Trt × Post 0.378 0.262 0.501 −0.569∗ −0.591∗ −0.146

(0.488) (0.498) (0.632) (0.342) (0.342) (0.401)

Trt × Post × Qlt 1.748∗∗ 1.718∗∗ 1.446∗ −0.843∗ −0.595 −0.874∗

(0.737) (0.741) (0.857) (0.450) (0.450) (0.505)

Seller Fixed Effects Y Y Y Y Y Y

Monthly Fixed Effects Y Y Y Y Y Y

Age Fixed Effects Y Y Y Y Y Y

Observations 543 543 543 3,976 3,976 3,976

Log Likelihood −835 −774 −1,209 −3,523 −3,419 −2,995

Note. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

265



4.8 Additional evidence for model validation

To further validate our analytical model, we collect additional empirical ev-

idence to test the hypotheses developed in Section 4.4. First, we test Hypothesis

4.4.1B by citing an unfavorable demand shock (i.e., Airbnb’s entry to compete for

demand) on a marketplace with high adjustment friction (i.e., hotel market) doc-

umented by [55]. Their findings are consistent with Hypothesis 4.4.1B’s claim.

Second, we select an alternative category as the control group for both launches and

retest all the hypotheses using the DiD method. We obtain the same testing results

as revealed in Section 4.7.

4.8.1 Empirical evidence from high adjustment-friction market

[55] empirically investigate the revenue impact of entry of Airbnb on Texas’

hotels. The hotel industry is known for its inflexibility in making supply adjust-

ments, so we consider it as a marketplace with large adjustment friction. Besides,

when Airbnb enters a state, it substantially weakens the demand for the hotels.

Hypothesis 4.4.1B implies that the high-quality hotels suffer less compared with

those with lower quality. In Table 5 of [55], they identify the same pattern, where

the negative revenue impact exacerbates as the tier of hotel downgrades (i.e., from

luxury to budget). Therefore, [55]’s findings enhance our analytical model’s validity

in characterizing demand shocks on high friction marketplaces.
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4.8.2 Alternative control group in DiD method

We show that the empirical investigation in Section 4.7 is robust to the control

group selection, by retesting all five hypotheses using another qualified product

category as the control group. For both launches, we select listings of a particular

category called “mixed lots” in the public marketplace as the control group. Each

mixed-lots listing contains a set of unsorted merchandise from any categories, such as

consumer electronics, jewelry, toys, and appliances. Sellers list mixed-lots auctions

to expedite the liquidation process by reducing the time of sorting items. Mixed

lots listings qualify for the control group as they have little overlap with CE listings

in terms of buyers. Only 3% mixed-lots listings are participated in by New Buyers

from the first CE private site, and only 0.1% mixed-lots auctions are participated

in by New Buyers from the second CE private site.

Employing the alternative control group, we rerun the DiD analysis of Sec-

tion 4.7 entirely. First, the estimated average supply effects of both launches are

displayed Table 4.5, which contradict Hypothesis 4.4.1 and verify Hypothesis 4.4.2.

Then, the estimated heterogeneous impacts on the listings and revenues of sellers

with various qualities are displayed in Table 4.6, which reject Hypothesis 4.4.1 and

confirm hypotheses 4.4.2 and 4.4.2. Therefore, our hypothesis testing results in

Section 4.7 are robust to the control group selection, which further increases the

validity of the analytical model.
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Table 4.5: Average listing effect of private site launches (use mixed lots auctions as

control group).

First launch (high-quality) Second launch (low-quality)

Dependent variable

Listings Sold auctions Revenues Listings Sold auctions Revenues

Model (1) (2) (3) (4) (5) (6)

Trt × Post 0.861∗∗ 0.967∗∗ 0.947∗∗ −0.412∗∗ −0.426∗∗∗ −0.731∗∗∗

(0.423) (0.423) (0.475) (0.162) (0.165) (0.200)

Seller Fixed Effects Y Y Y Y Y Y

Monthly Fixed Effects Y Y Y Y Y Y

Age Fixed Effects Y Y Y Y Y Y

Observations 557 557 557 2,962 2,962 2,962

Log Likelihood −751 −710 −590 −5,724 −5,560 −4,708

Note. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4.6: Heterogeneous Effects of private sites on unbranded Sellers with Various

Reputations

First launch (high-quality) Second launch (low-quality)

Dependent variable

Listings Sold auctions Revenues Listings Sold auctions Revenues

Model (1) (2) (3) (4) (5) (6)

Trt × Post 0.386 0.434 0.471 0.179 0.169 −0.091

(0.503) (0.509) (0.556) (0.251) (0.259) (0.308)

Trt × Post × Qlt 1.398† 1.484∗ 1.657∗ −0.927∗∗∗ −0.943∗∗∗ −1.043∗∗∗

(0.864) (0.853) (0.977) (0.316) (0.323) (0.396)

Seller Fixed Effects Y Y Y Y Y Y

Monthly Fixed Effects Y Y Y Y Y Y

Age Fixed Effects Y Y Y Y Y Y

Observations 557 557 557 2,962 2,962 2,962

Log Likelihood −750 −708 −588 −5,717 −5,554 −4,702

Note. †p=0.10; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.9 Concluding Remarks

In this paper, we build an analytical model to study how a two-sided mar-

ketplace reacts to unexpected demand shocks in terms of size and sensitivity. By

incorporating the friction of sellers’ supply adjustment, we compare various demand

impacts on a given marketplace under low and high friction levels. Regardless of

whether a given marketplace maximizes the total revenue or social welfare, we es-

tablish that manipulating the friction can amplify the positive impact of favorable

demand shocks and alleviate the negative impact when the demand shocks are un-

favorable.

We further validate our analytical model by a series of hypothesis testing.

Employing two demand shocks on an online liquidation marketplace, where sellers’

adjustment friction is low, we test the model’s hypotheses under both the low-

friction and the high-friction scenarios. All test results strengthen the validity of the

model. Moreover, we cite a demand shock on a high-friction marketplace empirically

investigated by [55] to test our model in the same scenario. As a result, their

empirical evidence is consistent with the model’s predictions.

4.10 Appendix: Parallel Assumption Checks Using Pseudo Treat-

ment

We apply DiD model (4.9) to the pre-entry period of each entry to check the

parallel assumption. We choose the mid-point of the pre-entry period as the pseudo

270



treatment. In other words, if an observation is before (after) the mid-point of the

pre-entry period, Postt is equal to 1 (0). The corresponding estimates are displayed

in Table 4.7. We notice that the coefficients of the interaction term in both entries

are statistically insignificant, which implies that the trend of each group remains

parallel over time.

Table 4.7: Check of parallel assumption using pseudo treatment

Dependent variable

Entry of high-quality retailer Entry of low-quality retailer

Listings Sold auctions Revenues Listings Sold auctions Revenues

Model (1) (2) (3) (4) (5) (6)

Trt × Post −0.352 −0.478 0.657 0.213 0.155 0.478

(0.338) (0.341) (0.464) (0.278) (0.279) (0.318)

Seller Fixed Effects Y Y Y Y Y Y

Monthly Fixed Effects Y Y Y Y Y Y

Age Fixed Effects Y Y Y Y Y Y

Observations 242 242 242 1,658 1,658 1,658

Log Likelihood −342 −310 −293 −1,473 −1,435 −1,367

Note. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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