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Frame theory generalizes the idea of bases in Hilbert space, and the frame

potential is an important tool when studying frame theory. In this thesis, we first

explore the minimization problem of a generalized definition of frame potential,

namely the p-frame potential, and show there exists a universal optimizer under

certain conditions by applying a method involving ultraspherical polynomials and

spherical designs.

Next, we further discuss the topic on Grassmannian frames, which are special

cases of minimizers of p-frame potentials. We present the construction of equiangu-

lar lines in lower dimensions since numerical result showed their connections with

Grassmannian frames. We also derive properties of the (6, 4)-Grassmannian frame.

Then, we obtain lower bounds for the generalized frame potentials in the com-

plex setting. The frame potentials may provide a different approach to determine

the existence of Gabor frames that are equiangular. This relates the potential min-

imization problem to the unsolved Zauner conjecture. In addition, we study the



properties of Gramian matrices of Gabor frames in an attempt to search for Gabor

frames with a small number of different inner products. We also calculate the num-

ber of different inner products in Gabor frames generated by Alltop sequences and

Björck sequences.

In addition, we also present examples related to a generalized support uncer-

tainty inequality and shift-invariant spaces on LCA groups.
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Chapter 1: Background and Introduction

1.1 Definitions and Notation

Definition 1.1.1. A finite frame for a Hilbert space Hd is a set of vectors {xi}Ni=1 ⊂

Hd such that for any x ∈ Hd,

A‖x‖2 ≤
N∑
i=1

|〈x, xi〉|2 ≤ B‖x‖2

for 0 < A ≤ B <∞.

If, in addition, each xk is unit-norm, we say that X is a unit-norm frame. X

is called tight if A = B. A tight unit-norm frame is called a finite unit-norm tight

frame (FUNTF). One attractive feature of FUNTFs is the fact that they can be

used to decompose and reconstruct any vector x via the following formula:

x =
d

N

N∑
k=1

〈x, xk〉xk. (1.1)

A set of lines in Euclidean space is called equiangular if the angles between

each pair of lines are the same. A frame X is said to be equiangular if there exists
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c > 0 such that ∣∣∣〈 xk
‖xk‖

,
xl
‖xl‖

〉∣∣∣ = c for all k 6= l.

If in addition X is tight, then X is called an equiangular tight frame (ETF). It follows

from [14, Proposition 1.2] that the vectors of an ETF have necessarily equal norm.

Consequently, and without loss of generality, all ETFs considered in the sequel will

be unit-norm frames, i.e., FUNTFs.

Denote S(N, d) to be the collection of all sets of N unit norm vectors in Rd.

For p ∈ [0,∞], we can define the p-frame potential of a finite unit norm frame.

Definition 1.1.2. Let X = {xi}Ni=1 ⊂ Hd be a finite unit norm frame. Then its

p-frame potential is defined as

FPp,N,d(X) :=


N∑
k=1

N∑
l 6=k

|〈xk, x`〉|p, when p <∞

max
k 6=`
|〈xk, x`〉|, when p =∞.

(1.2)

Definition 1.1.3.

Fp,N,d = inf
X∈S(N,d)

FPp,N,d(X).

We say X is an optimal configuration of FPp,N,d if

FPp,N,d(X) = Fp,N,d.

Definition 1.1.4. Let H ∈ {R,C}. A unit sphere in Hd−1 is the set of points of
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distance 1 from a fixed point, i.e.,

Sd−1 = {x ∈ Hd | ‖x‖ = 1}.

Definition 1.1.5. A set of unit norm vectors X = {vi}Ni=1 ⊂ Sd−1 is called a (N, d)-

Grassmannian frame if

M∞(X) = inf
U∈S(N,d)

FP∞,N,d(U). (1.3)

Definition 1.1.6. A spherical t-design is a finite subset X of the sphere such that

every polynomial on Rd of total degree at most t has the same average over the

subset as over the entire sphere. i.e.,

∫
Sd−1

p(t)dt =
1

|X|
∑
t∈X

p(t),

where p is any polynomial of degree at most t.

SIC-POVM, short for symmetric informationally complete positive operator-

valued measure, is an important object in quantum measurement theory. The defi-

nition of POVM is as follow [17, II.1.2]:

Definition 1.1.7. Let Ω be a nonempty set and F a σ-algebra of subsets of Ω so

that (Ω,F) is a measurable space. Let H be a Hilbert space, and let L(H) be the

set of all bounded linear operators on H. A POVM E : F → L(H) on (Ω,F) is

defined by the following properties:
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1. E(X) ≥ 0 for all X ∈ F ;

2. E(Ω) = I;

3. E(∪Xi) =
∑
E(Xi) for all disjoint sequences {Xi} ⊂ F ,

where the series converges in the weak operator topology of L(H).

Definition 1.1.8. A Gabor frame for Cd with g ∈ Cd is the set of all vectors of

the form MαkT βlg where (k, l) ∈ (Z/NZ)2, α, β > 0. The operators M and T are

defined as

T =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0

. . .

0 · · · 0 1


M =



1

ω

ω2

. . .

ωd−1


,

where ω = e2πi/d.

1.2 History and Background

Frames are extensions of bases. In finite dimensional Hilbert spaces Hd, frames

are precisely spanning sets and can be used to reconstruct any vector in the space.

Frames, and FUNTFs in particular, have significant applications in image processing

[19], speech processing and Σ∆ quantization. More detailed discussions on finite

frames can be found in [22,49,67].
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The optimization of frame potential can be considered as an energy optimiza-

tion problem, where the energy of a set X = {xi}Ni=1 ⊂ Sd−1 ⊂ Rd with respect to a

function F is

EF (X) =
∑
i 6=j

F (〈xi, xj〉). (1.4)

The frame potential of a frame X is then FP2,N,d(X) = E|t|2(X). There are other

problems posed in this category. For example, part of the ”Distribution of Points

on the 2-Sphere” problem [57] is to optimize the energy when F (t) = 1
(2−2t)p

for

0 < p < 2, d = 3. When F (t) = arccos(|t|), it becomes the Fejes-Tóth problem and

remains open for d ≥ 2, see [12].

Another function to consider is F (t) = |t|p, which makes a `p-type norm com-

paring it to FP2,N,d as `2-type norm. This leads to one of our main focus, the p-frame

potential optimization problem. Our goal is to find Fp,N,d and the corresponding op-

timal configuration. The 2-frame potential and maximum correlation defined in 1.2

are special cases of the p-frame potential.

If equiangular tight frames exist for a given pair {N, d}, they minimize FPp,N,d

for all p ∈ [2,∞)(e.g. [32]). It is then natural to ask whether universal optimizers

exist for any fixed {N, d}.

Problem 1.2.1. For what pair {N, d}, can we find a universal sequence U =

{ui}Ni=1 ⊂ Sd−1 such that FPp,N,d(U) = µp,d,N ≡ min
X

FPp,N,d(X) for all p ∈ [pN,d,∞],

where pN,d depends on N, d?

In fact, the optimal configuration of energy function and existence of universal

optimizer is a fundamental problem in extremal geometry. In [26], Cohn and Kumar

5



used linear programming method and characterized the optimal configurations of

the f -energy
∑

i 6=j f(|xi−xj|2) for a class of functions in terms of spherical t-designs.

When p = 2, the minimizers of FPp,N,d are called the tight frames [8]. The

search for minimizers of FP∞,N,d (or Grassmannian frames) is a part of the packing

problem in Grassmannian spaces. (N, d)-Grassmannian frames are also known as

the optimal N packings in RP d−1.

The packing problem in Grassmannian spaces is described by Conway, Hardin

and Sloane [28]. The Grassmannian space G(d,m) is a set of all m-dimensional

subspaces of the real Euclidean d-dimensional space Rd. The packing problem

is given N, d,m, find a set of n dimensional planes {Pi}Ni=1 ⊂ G(d,m) such that

min
i 6=j

dist(Pi, Pj) is as large as possible. Possible distances that can be used include

geodesic and chordal distance. When m = 1, let vi be a unit vector on Pi, we can

define

dist(vi, vj) = arccos |〈vi, vj〉|.

We can now see that the problem of constructing the (N, d)-Grassmannian frames is

equivalent to the Grassmannian packing problem when m = 1. Papers [28, 31] give

an extensive set of numerical results. These papers also compared the minimizer of

maximum correlation and the known ”equiangular lines” in [46]. When equiangular

tight frames for certain (N, d) exist, they are the (N, d)-Grassmannian frames. When

an ETF does not exist, there are no general methods to construct a Grassmannian

frame. It is proved that there exist Grassmannian frames that are equiangular but

not tight, e.g. (5, 3)-Grassmannian frames [10]. Some of the earlier works [39,46,65]
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set the foundation of constructing equiangular lines. In [68], Welch gave a lower

bound of ∞-frame potential, which can be achieved on some equiangular frames.

We can also ask what is the optimal configuration of p-frame potential when

H = C. It is proved in [32], when equiangular tight frames exist, they are the

optimizers of the p-frame potentials. Then we face the same question as in R, that

is the existence of the equiangular tight frames. For N = d2, this problem links to

a topic in quantum physics, that is the existence of SIC-POVM.

In mathematics, a POVM on a finite nonempty set Ω corresponds to a finite

tight frame {φk}nk=1 ⊂ Cd. [51]. Suppose Ω = {x1, x2, ..., xn}. Let E(xk) = d
n
φk⊗φk

and define E on other sets in F by the 3rd condition in Definition 1.1.7. E satisfies

1st condition by definition, also the 2nd condition since
∑

k E(xk) = d
n
S = d

n
· n
d
I = I

where S is the frame operator of {φk}nk=1.

A POVM on a finite set is said to be informationally complete if for a tight

frame {φk}nk=1, the operators Πk = φk ⊗ φk span the space of operators from Cd2

to Cd2 [51]. So if {φk}nk=1 is informationally complete, n is at least d2. Symmetric

means all the inner products between pairs of the vectors in the tight frame are equal,

that is, the frame is equiangular. The upper bound of cardinality of equiangular

tight frames in Cd is d2. So a SIC-POVM is equivalent to an equiangular tight frame

with d2 vectors in Cd.

Then the natural question is whether SIC-POVMs exist in every dimension d.

Zauner proposed a conjecture in his thesis.

Conjecture 1.2.2. [71] In any Cd,d > 2, there exist SIC-POVMs generated by

7



a single unit norm vector g under the orbit of Heisenberg group. For any k, l ∈

Z/dZ\{(0, 0)}, |〈g,MkT lg〉| = 1√
d+1

, where M,T are the modulation and translation

operators.

This conjecture remains open. Several papers have considered searching for

the generating vector (or sometimes called a fiducial vector) and got results in

dimension 2-16, 19, 24, 28, 35, 48, 124, 323 (see [3, 37, 71] ) and numerical result in

dimensions up to 67. Many known SIC-POVMs are Gabor frames. Finding vectors

that generate SIC-POVMs proved difficult.

1.3 Results

Chapter 2 is joint work with Xuemei Chen, Victor Gonzalez, Eric Goodman

and Kasso Okoudjou [24], and mainly focuses on the p-frame potential in Rd. We

first show some basic properties of the minimal p-frame potential in Section 2.2. We

then present the minimum of p-frames potential Fp,N,2 for large p, and the corre-

sponding optimal configuration in Theorem 2.3.1. Finally, we give a partial result

on optimal configuration for Fp,d+1,d. The complete characterzation for Fp,d+1,d is

proved independently in [69].

Chapter 3 is devoted for the construction of equiangular lines and deriving

properties of Grassmannian frames. We show the construction for the Gramian

matrices of equiangular lines in lower dimensions, which was first done in [39], and fill

in more details. The method utilizes graph theory. We prove a necessary condition

for being (6, 4)-Grassmannian frames in Lemma 3.4.4. The full construction for

8



(6, 4)-Grassmannian frames is given in [48].

In Chapter 4 we explore the connection between p-frame potential in Cd and

problems related to Zauner’s conjecture. We first show properties of p-frame po-

tential for Gabor frames. We prove a property of the Gramian matrices of Gabor

frames in Proposition 4.2.3 and calculate its spectrum in Corollary 4.2.6. We also

discuss the possibility of connecting the optimal configuration of p-potential with the

(t, t)-design. Lastly, we consider the question of whether it is possible to find frames

with a small number of different inner products, and examine the inner products of

Björck sequences and Alltop sequences.

In Chapter 5 and Chapter 6, we discuss two different topics and provide more

detailed proof for several previously known results.

In Chapter 5 we discuss the refined version of classic Support Uncertainty

Inequality, which is derived in [52], and give an example of the mutually unbiased

bases.

In Chapter 6 we characterize the shift invariant spaces in a locally compact

abelian group. We then provide a method to determine whether a set that consist

of translation of a vector is a frame on its closed span. The results in this chapter

are in [18].
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Chapter 2: Optimal Configuration of p-Frame Potential on Rd

2.1 Introduction

Let S(N, d) be the collection of all sets of N unit-norm vectors. We are in-

terested in finding the infimum of the p-frame potential among all N -point config-

urations in S(N, d). It is a standard argument to show that this infimum can be

achieved due to the compactness of the sphere and the continuity of the function,

so we can replace infimum by minimum and define

Fp,N,d := min
X∈S(N,d)

FPp,N,d(X). (2.1)

Any minimizer of (2.1) will be called an optimal configuration of the p-frame

potential. We observe that if X∗ = {x∗1, · · · , x∗N} is optimal, then with any orthog-

onal matrix U , any permutation π, and any si ∈ {1,−1},

{s1Ux
∗
π1
, · · · , sNUx∗πN}

is optimal too. In other words, the optimal configuration is an equivalence class

with respect to orthogonal transformations, permutations or sign switches. So when

10



we say an optimal configuration is unique, we mean that it is unique up to this

equivalence relation.

Note that in the definition of the frame potential, X does not necessarily need

to be a frame of Rd, but we will show in Proposition 2.2.1 that the minimizers of the

p-frame potential must be a frame, as expected. Therefore problem (2.1) remains

the same if we had restricted X to be a unit-norm frame with N frame vectors.

The name “frame potential” originates from the special case p = 2,

FP2,N,d(X) =
N∑
k=1

N∑
l 6=k

|〈xk, xl〉|2 (2.2)

which was studied by Benedetto and Fickus [8]. They proved that X∗ is an optimal

configuration of FP2,N,d(X) if and only if X∗ = {x∗k}Nk=1 is a FUNTF.

Another important special case is p =∞. In this case, the quantity

c(X) := FP∞,N,d(X) = max
k 6=`
|〈xk, x`〉| (2.3)

is also called coherence of X = {xk}Nk=1 ∈ S(N, d), and its minimizers are called

Grassmannian frames [9, 16,58,68]. The following Welch bound [68] is well known:

FP∞,N,d(X) ≥

√
N − d
d(N − 1)

, (2.4)

and the equality in (2.4) holds if and only if X = {xk}Nk=1 is an ETF, which is

only possible if N ≤ d(d+ 1)

2
. The coherence minimization problem corresponds

to p = ∞ because it is the limiting case when p grows to infinity; see Proposition
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2.2.2. It is known that ETFs, when exist, are minimizers of (1.2) for p > 2 [13,32].

When p is an even integer, the minimizers of FPp,N,d have long been investi-

gated in the setting of spherical designs, see [32,55,66]. A set of N points X ⊂ Sd−1

(the unit sphere in Rd) is called a spherical t-design if for every homogeneous poly-

nomial h of degree t or less,

∫
Sd−1

h(ξ)dσ(ξ) =
1

N

∑
x∈X

h(x),

where σ is the normalized surface measure on Sd−1. For example, a spherical 1-

design is a set of points whose center of mass is at the origin. More generally, as

shown in [56, Corollary 1], if p is an even integer and X ∈ S(N, d) is symmetric,

that is X = −X, then

FPp,N,d(X) ≥ N2 1 · 3 · 5 · · · (p− 1)

d(d+ 2) · · · (d+ p− 2)
−N, (2.5)

and equality holds if and only if X is a spherical p-design.

Optimal configurations of (2.1) are often not symmetric since xi and −xi are

considered the same points as far as frame potential is concerned. However, we can

still use (2.5) by symmetrizing a frame. Given X = {xi}Ni=1 such that its coherence

c(X) < 1 (i.e. no repeated vectors or opposite vectors), we let

Xsym := {xi}Ni=1 ∪ {−xi}Ni=1 ∈ S(2N, d).

12



Some straightforward computations result in

FPp,2N,d(X
sym) = 4 FPp,N,d(X) + 2N (2.6)

which combined with (2.5), can be used to prove

Proposition 2.1.1. Let p be an even integer, then

FPp,N,d(X) =
1

4
(FPp,2N,d(X

sym)− 2N) ≥ N2 1 · 3 · 5 · · · (p− 1)

d(d+ 2) · · · (d+ p− 2)
−N,

and equality holds if and only if Xsym is a spherical p-design.

Not only is Proposition 2.1.1 limited to even p’s, but it is also not trivial to

find spherical t-designs for large t. More generally, and to the best of our knowledge,

little is known about the complete solutions to (2.1) even in the simplest case d = 2.

When N = 3, a solution is given in [32] for all positive p. See also [12,50] for related

results. For any N and p =∞, it is shown in [10] that the Grassmannian frame is

X
(h)
N =


cos 0

sin 0

 ,
cos π

N

sin π
N

 ,
cos 2π

N

sin 2π
N

 , · · · ,
cos (N−1)π

N

sin (N−1)π
N


 , (2.7)

which can be viewed as N equally spaced points on the half circle. The main

result of this chapter establishes that the unique optimal configuration when d = 2,

N ≥ 4, and p > 4bN
2
c − 2 is X

(h)
N , where bcc is the largest integer that does not

exceed c. Moreover for N = 4, our result is sharper as we prove this is the case

for p > 2. Such a result is expected since optimal configurations for large p are

13



approaching the Grassmannian frame. Moreover, we are able to show that X
(h)
N is

the optimal configuration for a large class of kernel functions. See Theorem 2.3.11.

The phenomenon that a given configuration is the optimal configuration for a large

range of functions is what we call universal. Such a name stems from the work [26].

In addition to these results, we present numerical results for all other values of p

and N when d = 2. Finally, we also consider the special case of N = d + 1 and

d ≥ 3 and state a conjecture regarding the function Fp,N,d for p ∈ (0, 2]. Based

on the results of the present paper, Table 2.1 gives the state of affairs concerning

the solutions of (2.1) and is an invitation to initiate a broader discussion on the

problem. We would like to remark that the case N = d+ 1 has been solved during

the revision of this manuscript; see Section 2.4 for more details.

The rest of this chapter is organized as follows. Section 2.2 states some basic

results of the p-frame potential including some asymptotic results as N → ∞.

Section 2.3 presents the results for d = 2. Section 2.4 presents conjectures (now

proved in [69]) and partial results for the case N = d + 1. Section 2.5 raises some

questions that we would like to answer in the future. We will use [m : n] for the

index set {m,m+ 1, · · · , n}.
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R2 Rd

p ∈ (0, ln 3
ln 2

) N = 3: ONB+ [32] N = d+ 1: ONB+ [35]

p ∈ ( ln 3
ln 2
, 2) N = 3: ETF [32] N = d+ 1: see Conjecture 2.4.5

p ∈ (0, 2) N = 2k: k copies of ONB [32] N = kd: k copies of ONB [32]

p = 2 FUNTF [8]

p ∈ (4bN
2
c − 2,∞) N ≥ 5 : X

(h)
N (Theorem 2.3.1)

ETF if exists [32,58]
p =∞ Any N : X

(h)
N [10]

p ∈ (2,∞) N = 4: X
(h)
4 (Theorem 2.3.1)

p ∈ (n− 4, n− 2) N = kn, n ≥ 6 even:
k copies of n-gon (Corollary 2.2.12)

ONB+ refers to an orthonormal basis with a repeated vector. See Definition
2.4.1(a).

Table 2.1: Optimal configurations for the p-frame potential

2.2 Some basic results

Intuitively, minimizing the frame potential amounts to promoting large angles

among vectors. Consequently, it is expected that optimal configurations will not

be subsets of lower dimension subspaces. If X is a subset of a lower dimension

subspace, then one can always find a vector e that is orthogonal to X, and replacing

any vector in X by e won’t increase the frame potential. In other words, it is trivial

to show that problem (2.1) might as well be restricted to frames. The following

result shows something stronger, that is, it excludes the possibility that a minimizer

doesn’t span Rd.

Proposition 2.2.1. For p ∈ (0,∞], any optimal configuration of (2.1) is a frame

of Rd.

Proof. We first consider the case p ∈ (0,∞). Suppose not, and say X∗ = {x∗k}Nk=1 ⊂

15



Sd−1 is a minimizer so that spanX∗ is a strict subset of Rd. Because there are

N ≥ d vectors, it is possible to select two indices k1 and k2 such that |〈x∗k1 , x
∗
k2
〉| >

0. Finally, select any unit-norm vector x0 ∈ (spanX∗)⊥ and replace x∗k1 with x0;

i.e., define Y = {x∗k}k 6=k1 ∪ {x0}. A direct computation shows that FPp,M,N(Y ) <

FPp,M,N(X∗).

Now consider the case p =∞ and let X∗ = {x∗k}Nk=1 ⊂ Sd−1 be a minimizer of

FP∞,N,d. Suppose that the dimension of span(X∗) ≤ d − 1. Choose a unit vector

e ∈ (spanX∗)⊥. There could be multiple pairs of vectors that achieve the maximal

inner product F∞ = FP∞,N,d(X
∗). Without loss of generality, we assume these

vectors are among the first K vectors, that is,

|〈x∗i , x∗j〉| < F∞, if either i or j does not belong to [1 : K], i 6= j. (2.8)

We will construct Y = {yk}Kk=1 ∪ {x∗k}Nk=K+1 that will have smaller coherence.

For i = 1, 2, · · · , K, let yi =
√

1− εix∗i +
√
εie, where 0 < εi < 1. Define

f(a, b) :=

√
a
√
b

1−
√

1− a
√

1− b
on (0, 1]× (0, 1].

If we choose εi, εj such that

f(εi, εj) =

√
εi
√
εj

1−
√

1− εi
√

1− εj
< F∞, (2.9)
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then

|〈yi, yj〉| = |
√

1− εi
√

1− εj〈x∗i , x∗j〉+
√
εi
√
εj| ≤

√
1− εi

√
1− εjF∞+

√
εi
√
εj < F∞.

(2.10)

We will pick εi iteratively to satisfy (2.9):

Step 1: pick 0 < ε1 < 1 arbitrarily.

Step i: given ε1, · · · , εi−1, pick εi > 0 such that f(εj, εi) < F∞, for all j = 1, · · · , i−

1. This is possible because limε→0 f(εj, ε) = 0 for all j ≤ i− 1.

For convenience, let yk = x∗k for k = K + 1, · · · , N . The new frame Y =

{yk}Kk=1 has a smaller coherence because for any pair i, j, if i, j ∈ [1 : K], then

|〈yi, yj〉| < F∞ by (2.10); if i, j ∈ [K + 1 : N ], then |〈yi, yj〉| = |〈x∗i , x∗j〉| < F∞ by

(2.8); if i ∈ [1 : K], j ∈ [K + 1 : N ], then |〈yi, yj〉| = |〈
√

1− εix∗i +
√
εie, x

∗
j〉| =

√
1− εi|〈x∗i , x∗j〉| < F∞.

This is a contradiction, so the optimal configuration must be a frame.

Now we establish the relationship between large p and p = ∞. We denote

X(p) an optimal configuration for (2.1) when p <∞.

Proposition 2.2.2. limp→∞F1/p
p,N,d = F∞,N,d. Moreover, if X is a cluster point of

the set {X(p)}p>0, then X optimizes the coherence as X = arg min
Y ∈S(N,d)

c(Y ).

Proof. On one hand, we have

F1/p
p,N,d =

(∑
i 6=j

|〈x(p)
i , x

(p)
j 〉|p

)1/p

≥ c(X(p)) ≥ F∞,N,d. (2.11)
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On the other hand,

F1/p
p,N,d ≤

(∑
i 6=j

|〈x(∞)
i , x

(∞)
j 〉|p

)1/p

≤

(∑
i 6=j

Fp∞,N,d

)1/p

= F∞,N,d[N(N − 1)]1/p.

(2.12)

Taking the limit of both inequalities gives us the desired limit.

For the second part of the proposition, let X = limk→∞X
(pk) where pk → ∞

as k →∞. Then by (2.11) and (2.12),

c(X(pk)) ≤ F1/pk
pk,N,d

≤ F∞,N,d[N(N − 1)]1/pk .

Letting k →∞, by continuity of the coherence, we get c(X) ≤ F∞,N,d which forces

c(X) = F∞,N,d.

Next, we establish a continuity result of Fp,N,d.

Proposition 2.2.3. The minimal frame potential Fp,N,d is a continuous and non-

increasing function of p ∈ (0,∞).

Proof. We first prove that the function is non-increasing. Letting p > q, for any

X ∈ S(N, d),

FPq,N,d(X) ≥ FPp,N,d(X) ≥ Fp,N,d,

so Fq,N,d = FPq,N,d(X
(p)) ≥ Fp,N,d.

For continuity, we have

∑
i 6=j,|〈xi,xj〉|6=0

|〈xi, xj〉|q ln |〈xi, xj〉| ≤
FPp,N,d(X)− FPq,N,d(X)

p− q
,
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which comes from applying the inequality aq ln a ≤ ap − aq

p− q
for 0 < q < p, a > 0 to

every nonzero term in the frame potential.

So

0 ≤ Fq,N,d −Fp,N,d
p− q

=
Fq,N,d − FPp,N,d(X

(p))

p− q

≤ FPq,N,d(X
(p))− FPp,N,d(X

(p))

p− q

≤
∑

i 6=j,|〈x(p)i ,x
(p)
j 〉|6=0

|〈x(p)
i , x

(p)
j 〉|q ln

1

|〈x(p)
i , x

(p)
j 〉|

≤
∑

i 6=j,|〈x(p)i ,x
(p)
j 〉|6=0

ln
1

|〈x(p)
i , x

(p)
j 〉|

:= Cp.

Therefore 0 ≤ Fq,N,d −Fp,N,d ≤ (p− q)Cp, which implies the continuity of F .

Next, for fixed p, d, we consider the asymptotics of Fp,N,d as the number of

points N grows. In particular, we show that Fp,N,d ∼ N2, see Proposition 2.2.6. We

note that this behavior was numerically observed in [5]. We begin by establishing

some preliminary results.

Lemma 2.2.4. Given d ≥ 2, and p ∈ (0,∞), the sequence
{
Fp,N,d
N(N−1)

}
N≥d+1

is a

non-decreasing sequence.

Proof. Let X(N) = {x(N)
i }Ni=1 be an optimal configuration for FPp,N,d. For each
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k ∈ [1 : N ],

Fp,N,d = FPp,N,d(X
(N)) = FPp,N,d

(
X(N)\{x(N)

k }
)

+ 2
∑
j 6=k

|〈x(N)
k , x

(N)
j 〉|p (2.13)

≥ Fp,N−1,d + 2
∑
j 6=k

|〈x(N)
k , x

(N)
j 〉|p. (2.14)

Summing (2.13) over k, we obtain

NFp,N,d ≥ NFp,N−1,d + 2Fp,N,d =⇒ (N − 2)Fp,N,d ≥ NFp,N−1,d

=⇒ Fp,N,d
N(N − 1)

≥ Fp,N−1,d

(N − 1)(N − 2)
.

It follows that τ := limN→∞
Fp,N,d
N2 exists. In fact, in the minimal energy

literature, τ is called the transfinite diameter due to Fekete. Furthermore, τ is

related to the continuous version of the frame potential, which is introduced in [32].

More specifically, given a probability measure µ on the sphere, the probabilistic

p-frame potential is defined as

PFPp,d(µ) :=

∫
Sd−1

∫
Sd−1

|〈x, y〉|pdµ(x)dµ(y). (2.15)

Let M(Sd−1) be the collection of all probability measures on the sphere. Simple

compactness and continuity arguments show that

Pp,d := min
µ∈M(Sd−1)

PFPp,d(µ) (2.16)
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exists.

Given any N point configuration X, its normalized counting measure is defined

as

νX :=
1

N

∑
x∈X

δx.

We have

PFPp,d(νX) =

∫ ∫
|〈x, y〉|pdνX(x)dνX(y) =

1

N2

N∑
i=1

N∑
j=1

|〈xi, xj〉|p =
FPp,N,d(X) +N

N2
.

(2.17)

Consequently, if X is an optimal configuration, i.e., Fp,N = FPp,N,d(X), then

by (2.17), it is plausible that τ = Pp,d. This is indeed the case, and it was proved in

a more general setting by Farkas and Nagy [33]. For the sake of completeness, we

reproduce their proof below.

Lemma 2.2.5. Given d ≥ 2 and p ∈ (0,∞), τ = lim
N→∞

Fp,N,d
N2

≤ Pp,d.

Proof. Let µ∗ be the optimal probability measure, that is,

∫ ∫
|〈x, y〉|pdµ∗(x)dµ∗(y) = Pp,d = PFPp,d(µ

∗).

Consequently,

Fp,N,d =

∫
· · ·
∫ [

min
X

FP(X)
]
dµ∗(x1) · · · dµ∗(xN)

≤
∫
· · ·
∫

FP(X)dµ∗(x1) · · · dµ∗(xN)

=
∑
i 6=j

∫
· · ·
∫
|〈xi, xj〉|pdµ∗(x1) · · · dµ∗(xN) =

∑
i 6=j

Pp,d = N(N − 1)Pp,d.
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The result follows by dividing N2 on both sides and taking the limit.

We can now state and prove that Fp,N,d ∼ N2 as N →∞.

Proposition 2.2.6. Given d ≥ 2 and p ∈ (0,∞), we have τ = lim
N→∞

Fp,N,d
N2

=

Pp,N,d. Moreover, if {XN}N≥d+1 is a sequence of N-point configurations such that

limN→∞
FPN (XN )

N2 = τ , then every weak star cluster point ν∗ of the normalized count-

ing measure νXN = 1
N

∑
x∈XN δx solves (2.16), that is PFPp,d(ν

∗) = Pp,d. In partic-

ular, this holds for any sequence of the optimal configurations of FPp,N,d.

Proof. By weak star convergence and (2.17)

Pp,d ≤ PFPp,d(ν
∗) = lim

N→∞
PFPp,d(νXN ) = lim

N→∞

FPp,N,d(XN) +N

N2
= τ.

In view of Lemma 2.2.5, we have τ = Pp,d and ν∗ is an optimal probability measure.

The exact value of τ can be found in many cases. We list two examples in the

following corollary.

Corollary 2.2.7. (a) When d ≥ 2 and p ∈ (0, 2], we have lim
N→∞

Fp,N,d
N2

= Pp,d =
1

d
.

(b) When d = 2 and p is an even integer, we have lim
N→∞

Fp,N,2
N2

= Pp,2 =

1 · 3 · 5 · · · (p− 1)

2 · 4 · 6 · · · p
.

Proof. (a) By [32, Theorem 3.5] we know that when N = kd, the frame potential

is minimized by k copies of orthonormal basis. So limN→∞
Fp,N,d
N2 = limk→∞

Fp,kd,d
(kd)2

=

limk→∞
(k−1)kd

(kd)2
= 1

d
. Note that this recovers [32, Theorem 4.9], which states that

Pp,d = 1
d
.
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(b) In dimension d = 2, it is known that 2N equally spaced points on the

unit circle forms a spherical (2N − 1)-design ( [66, Section 4]), so Proposition 2.1.1

implies that X
(h)
N is an optimal configuration if p ≤ 2N − 2 is an even integer. In

other words, with fixed even integer p, when N is large enough,
(
X

(h)
N

)sym
is going

to be a (2N − 1)-design (hence p-design), so the equality in Proposition 2.1.1 holds

and we get the desired result.

Paper [11] provides a more detailed discussion on the minimizers of the proba-

bilistic p-frame potential. It is proved that for certain p, the minimizers are discrete

measures. The description of the result involves tight spherical designs, which are

spherical designs with smallest possible cardinality.

Definition 2.2.8. A discrete set C ⊂ Sd−1 is a tight t-design if one of the following

conditions is satisfied.

1. C is a spherical deisgn of degree t = 2m and |C| =
(
d+m−1
d−1

)
+
(
d+m−2
d−1

)
.

2. C is a spherical deisgn of degree t = 2m+ 1 and |C| = 2
(
d+m−1
d−1

)
.

Equivalently, it can be also defined in term of number of distances between

distinct elements in the set.

Definition 2.2.9. A discrete set C ⊂ Ω is a tight t-design if one of the following

conditions is satisfied.

1. C is a design of degree t = 2m − 1 and there are m distances between its

distinct elements, including at least one pair diameter apart;
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2. C is a design of degree t = 2m and there are m distances between its distinct

elements.

The main result in [11] shows that the spherical tight designs are the minimiz-

ers of the probabilistic p-frame potential for certain p.

Theorem 2.2.10 ( [11]). If there exists a tight spherical (2t + 1)-design C ⊂ Sd−1,

then the measure

νC =
1

|C|
∑
x∈C

δx

is a minimizer of the probabilistic p-frame potential PFPp,d with 2t − 2 ≤ p ≤ 2t

over µ ∈M(Sd−1).

Let N = k|C|, where C be the same as in Theorem 2.2.10 and k ∈ N. Denote

C ′ to be the configuration C repeated k times. Then

νC =
1

|C|
∑
x∈C

δx =
1

|C ′|
∑
x∈C′

δx = νC′ .

We can then obtain the following corollary:

Corollary 2.2.11 ( [11]). The N-point discrete p frame potential FPp,N,d is mini-

mized by the configuration C repeated k times, i.e.

1

N
Fp,N,d = PFPp,d(νC)

Since the tight spherical designs in R2 are characterized, we also have the

following result regarding Fp,N,2.
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Corollary 2.2.12. Let N ≥ 6 be a even integer, then

1. the optimal configuration of FPp,N,2 is an N-gon with N − 4 ≤ p ≤ N − 2;

2. for k ∈ N, the optimal configuration of FPp,kN,2 is k exact copies of N-gon

with N − 4 ≤ p ≤ N − 2.

Proof. When N is even, then the N -gon is a tight (N − 1)-design. Thus t = N−2
2

is

an integer.

1. Denote

S ′N = {µ | µ =
1

N

N∑
i=1

δxi , xi ∈ S1}.

By Theorem 2.2.10, if C is a N -gon, then µ = 1
|C|
∑
x∈C

δx ∈ S ′N is optimal

configuration of min
µ∈P(Sd−1)

If (µ). So N -gon is minimizer for FPp,N,2.

2. This follows from Corollary 2.2.11.

2.3 Optimal configurations in dimension 2

This section focuses on the case d = 2, when the points are on the unit circle

S1 ⊂ R2. Our main result is the following. It shows that for each p,N , there exist

a pN such that the optimal configuration of FPp,N,2 is universal for all p > pN . In

Section 2.3.1 we present intermediate results that are necessary to prove Theorem

2.3.1. In Section 2.3.2, we will finish the proof of Theorem 2.3.1.
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Theorem 2.3.1. Let X
(h)
N be the equally spaced points on half of the circle S1 as in

(2.7). The following statements hold.

(a) If N = 4 and p > 2, then X
(h)
4 is the unique optimal configuration of (2.1).

(b) If N ≥ 5 and p >


2N − 2, N is even

2N − 4, N is odd

, then X
(h)
N is the unique optimal

configuration of (2.1).

(c) If N ≥ 5, and 2 < p ≤


2N − 2, N is even

2N − 4, N is odd

is an even integer, then X
(h)
N

is an optimal configuration of (2.1), but it is unclear whether there are other

optimal configurations.

2.3.1 A class of minimal energy problems

We recall that when N = 2k is even and 0 < p < 2, the solution to (2.1)

was given in [32, Theorem 3.5], where it was established that the minimizers are k

copies of any orthonormal basis of R2. The case p = 2 was settled by Benedetto and

Fickus [8]. In order to address other values of p, we will consider a more general

problem

min
X⊂Cr,|X|=N

∑
i 6=j

f(‖xi − xj‖2), (2.18)

where f : (0, 4r2] → R is a nonnegative and decreasing function, and Cr is a

1−dimensional circle with radius r. This circle Cr does not need to be centered

at 0 and could be in any dimension. It will become clear later why we require points

on a general circle instead of the usual S1.
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The proof of Theorem 2.3.1 involves two results.

The first result only requires f to be convex, but it only works for up to 4

points.

Theorem 2.3.2. Given r > 0, let f : (0, 4r2]→ R be a decreasing convex function.

Any configuration X∗4 of 4 equally spaced points on Cr is an optimal configuration

of (2.18) with N = 4. If in addition, f is strictly convex, then no other 4-point

configuration is optimal.

Proof. Let X4 = {xi}4
i=1 be an arbitrary configuration with xi ordered counter

clockwise. Let αik ∈ [0, 2π) be the angle between xi and xi+k for any k ∈ [1 : 3].

The index of the vectors is cyclic as xi = xi−4. Then ‖xi−xi+k‖2 = 2r2−2r2 cosαik =

4r2 sin2 αik
2
. It is evident that

∑4
i=1 αik = 2πk. Using the convexity of f ,

∑
i 6=j

f
(
‖xi − xj‖2

)
=

3∑
k=1

4∑
i=1

f
(
‖xi − xi+k‖2

)
= 4

3∑
k=1

1

4

4∑
i=1

f
(
‖xi − xi+k‖2

)
(2.19)

≥ 4
3∑

k=1

f

(
1

4

4∑
i=1

‖xi − xi+k‖2

)
= 4

3∑
k=1

f

(
4r2

4

4∑
i=1

sin2 αik
2

)
.

Next, let βik = αik/2. In order to minimize the right hand side of (2.19), we

solve

max
4∑
i=1

sin2 βik subject to βik ≥ 0,
4∑
i=1

βik = πk.

When k = 1, we let βi = βi1 for short. Using Lagrange multipliers, we have

0 = ∂
∂βj

[
∑4

i=1 sin2 βi + λ(
∑4

i=1 βi − π)] = sin 2βj + λ, which implies that

sin 2βi = sin 2βj =⇒ 2βi = 2βj, or 2βi + 2βj = π,
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since
∑4

i=1 βi = π.

If we are in the case that β1 +β2 = π/2 (or any pair i 6= j with βi+βj = π/2),

then
∑4

i=1 sin2 βi = sin2(β1) + sin2(π/2− β1) + sin2(β3) + sin2(π/2− β3) = 2. If we

are in the other case that β1 = β2 = β3 = β4, then
∑4

i=1 sin2 βi = 4 sin2 π
4

= 2. So

for k = 1,
4∑
i=1

sin2 βi1 ≤ 4 sin2 π

4
,

and the equality holds when βi1 + βj1 = π/2 for some i 6= j.

When k = 2, it is obvious that

4∑
i=1

sin2 βi2 ≤ 4 = 4 sin2 π

2

with equality at βi2 = π/2, for all i ∈ [1 : 4]. This implies that βi1 + βi+1,1 = π/2

for some i.

When k = 3,
∑4

i=1 sin2 βi3 =
∑4

i=1 sin2(π− βi1) =
∑4

i=1 sin2 βi1 which reduces

to the k = 1 case.

In summary, for any k = 1, 2, 3,

4∑
i=1

sin2 αik
2
≤ 4 sin2 πk

4
,

and the equality holds simultaneously when αi1+αi+1,1 = π, or equivalently x1+x3 =

0, x2 + x4 = 0.
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Following (2.19), we have

∑
i 6=j

f
(
‖xi − xj‖2

)
≥ 4

3∑
k=1

f
(4r2

4

4∑
i=1

sin2 αik
2

)
≥ 4

3∑
k=1

f
(

4r2 sin2 πk

4

)
= 8f(2r2) + 4f(4r2).

(2.20)

It is easy to check that four equally spaced points on Cr achieve this minimum.

If f is strictly convex, then the inequality of (2.19) becomes equality if ‖xi −

xi+k‖ = ‖xj − xj+k‖ for every i 6= j, which only holds for equally spaced points.

Remark 2.3.3. The proof of Theorem 2.3.2 breaks down for N ≥ 5 because∑N
i=1 sin2 βi1 is not maximized at equally spaced points.

The second result regarding (2.18) is a variation of the main result of the

work by Cohn and Kumar [26, Theorem 1.2]. Let m be a positive integer. An m-

sharp configuration X ⊂ Sd−1 is a spherical (2m− 1)-design with m inner products

between its distinct points. A list of known sharp configurations was given in [26].

For example, N equally spaced points on S1 is an bN/2c-sharp configuration. A

C∞ function f : I → R is called K-completely monotonic if (−1)kf (k)(x) ≥ 0 for

all x ∈ I and all k ≤ K, and strictly K-completely monotonic if strict inequality

always holds in the interior of I. The notion ∞-completely monotonic is simply

called completely monotonic as traditionally defined, which means (−1)kf (k)(x) ≥ 0

for all x ∈ I and all k ≥ 0. It was proven in [26] that sharp configurations are the
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unique universal optimal configurations of the problem

min
X∈S(N,d)

∑
i 6=j

f(‖xi − xj‖2), (2.21)

for completely monotonic functions f .

Another notion that we will need is that of absolutely monotonic functions. A

C∞ function f : I → R is called K-absolutely monotonic if f (k)(x) ≥ 0 for all x ∈ I

and all k ≤ K. Similarly, ∞-absolutely monotonic means the inequality is true for

all nonnegative integers k, and will be simply referred to as absolutely monotonic.

It is straightforward that f(t) being completely monotonic is equivalent to f(−t)

being absolutely monotonic.

As remarked by [26], the complete monotonicity assumption of f can be weak-

ened slightly. The proof of the next result is a variation of [26, Theorem 1.2]. It is

also proved in [11] after we submitted our work.

Theorem 2.3.4. Fix a positive integer m and let f : (0, 4]→ R be a function such

that (−1)kf (k)(t) ≥ 0 for all t ∈ (0, 4], k ≤ 2m. Then an m-sharp configuration

is an optimal configuration of (2.21). Furthermore, if (−1)kf (k)(t) > 0 for all t ∈

(0, 4), k ≤ 2m, then the m-sharp configuration is the unique optimal configuration

of (2.21).

Similar to the main result [26, Theorem 1.2], Theorem 2.3.4 involves the idea

of linear programming. We will need the following proposition by Yudin.

Proposition 2.3.5 ( [70]). Let f : (0, 4]→ R be any function. Suppose h : [−1, 1]→
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R is a polynomial such that

h(t) ≤ f(2− 2t)

for all t ∈ [−1, 1), and suppose there are nonnegative coefficients α0, · · · , αd such

that h has the expansion

h(t) =
d∑
i=0

αiC
n/2−1
i (t)

in terms of ultraspherical polynomials. Then every set of N points on Sn−1 has

potential energy at least

N2α0 −Nh(1)

with respect to the potential function f .

Let −1 ≤ t1 < t2 < · · · < tm < 1 be the m distinct inner products of the

m-sharp configuration. Let a(t) = f(2 − 2t) be defined on [−1, 1) and h(t) be the

Hermite interpolating polynomial that agrees with a(t) to order 2 at each ti (i.e.

h(ti) = a(ti) and h′(ti) = a′(ti)).

We claim that the Hermite interpolating polynomial h satisfies all the condi-

tions described in Proposition 2.3.5. In order to prove our claim, we need several

lemmas.

Let f be a smooth function. Given a polynomial g with deg(g) ≥ 1, let H(f, g)

denote the Hermite interpolating polynomial of degree less than deg(g) that agrees

with f at each root of g to the order of that root. The following fact is proven in

the proof of [26, Proposition 2.2].

Lemma 2.3.6. Let a be differentiable up to K on a subset of [−1, 1), and g1, g2
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be two polynomials such that deg(g1) + deg(g2) ≤ K, then H(a, g1g2) = H(a, g1) +

g1H(Q(a, g1), g2) where

Q(a, g) :=
a−H(a, g)

g
.

We provide a variation of [26, Proposition 2.2] below. The proof is also similar.

Proposition 2.3.7. Let c, d ∈ R. If a is (strictly) K-absolutely monotonic on (c, d),

then given any nonconstant polynomial g, Q(a, g) = a−H(a,g)
g

is (strictly) absolutely

monotone up to K − deg g on (c, d).

Proof. By [26, Lemma 2.1],

Q(a, g)(t) =
a(t)−H(a, g)(t)

g(t)
=
a(deg g)(ξ)

deg g!
(2.22)

for some ξ ∈ (c, d).

A direct consequence of Lemma 2.3.6 is that Q(a, g1g2) = Q(Q(a, g1), g2). For

n ∈ [1 : K − deg(g)], s0 ∈ (c, d), there exists ξ′ ∈ (c, d) such that

Q(a, g)(n)(s0)

n!
= Q (Q(a, g), (t− s0)n) (s0) = Q(a, (t− s0)ng)(s0) =

a(n+deg g)(ξ′)

(n+ deg g)!
.

(2.23)

The right hand side of (2.23) is nonnegative due to the absolute monotonicity of

a.

In order to prove that h is positive definite, Cohn and Kumar introduced the

term conductive (see [26, Definition 5.2]). Since we want to show that the absolutely

monotonic requirement of a can be loosened, we alter the definition slightly to keep
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track of the requirement.

Definition 2.3.8. A nonconstant polynomial g with all its roots in [−1, 1) is K-

conductive if for any K-absolutely monotone function a on [−1, 1), H(a, g) is positive

definite.

The following Lemma is a variation of [26, Lemma 5.3].

Lemma 2.3.9. If g1 and g2 are K-conductive and g1 is positive definite, then g1g2

is (K + deg g1)-conductive.

Proof. Let a be (K + deg g1)-absolutely monotone, then Q(a, g1) is K-absolutely

monotone according to Proposition 2.3.7. Consequently, H(Q(a, g1), g2) is positive

definite due to the conductivity of g2. Finally, H(a, g1g2) = H(a, g1)+g1H(Q(a, g1), g2)

is positive definite because all three functions are positive definite and positive def-

inite functions are closed under taking products.

Proof of Theorem 2.3.4. Using our notation, h = H(a, F 2) where F =
∏m

i=1(t− ti).

For r ∈ [−1, 1), l(t) = t− r is K-conductive for any K ≥ 0 since H(a, l) is the

nonconstant polynomial a(r). It is also proven in [26, Section 5] that
∏j

i=1(t− ti) is

strictly positive definite for all j ≤ m.

For any K ≥ 0, g1 = t−t1, g2 = t−t2 are both K-conductive and g1 is positive

definite, then Lemma 2.3.9 implies that g1g2 is (K + 1)-conductive. Using Lemma

2.3.9 repeatedly on g1 = t− tj, g2 =
∏j−1

i=1 (t− ti), we get that F 2 is K-conductive for

any K ≥ 2m. In particular F 2 is 2m-conductive and it follows that h = H(a, F 2) is

positive definite.
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It is also clear that h(t) ≤ a(t) by applying (2.22) with g = F 2. By 2.3.5, the

energy has a lower bound that is achieved by the m-sharp configuration.

If further f is strictly 2m-completely monotone, the uniqueness is the same as

in [26, Section 6] where only a(deg h+1)(t) > 0 is needed in [26, Lemma 6.4]. This is

true since deg h+ 1 ≤ 2m.

A direct consequence of Theorem 2.3.4 for dimension d = 2 is that equally

spaced points are optimal configurations if the energy kernel function f is completely

monotonic up to certain order. But notice that
∑

i 6=j f(‖xi − xj‖2) only depends

on the relative distances between xi’s so the result should be true for any circle Cr

(whose radius is r) if we rescale f properly.

Corollary 2.3.10. For N ≥ 4, let m = bN/2c. For r > 0, suppose that f :

(0, 4r2]→ R is completely monotonic up to 2m. Then N equally spaced points on Cr

is an optimal configuration of (2.18). Moreover, if f is strictly completely monotonic

up to 2m, then the equally spaced points is the unique optimal configuration of (2.18).

2.3.2 Proof of the main theorem: A lifting trick

How do Theorem 2.3.2 and Corollary 2.3.10 help to prove our main theorem on

FPp,N,2? On the unit circle, we have |〈xi, xj〉|p =
∣∣∣2−‖xi−xj‖22

∣∣∣p = h(‖xi−xj‖2), where

h(t) =
∣∣2−t

2

∣∣p. Unfortunately neither result can be applied because the function h(t)

is not differentiable at t = 2 unless p is an even integer; worse, it is not even

decreasing on [0,4]. This should not come as a surprise since the frame potential

does not distinguish between antipodal points. Consequently, rather than analyzing
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the frame potential in terms of the distance between vectors, we should consider it

in terms of the distance between lines, as was done in [25].

Define P : Sd−1 →M(d, d) as P (x) = xx∗, where M(d, d) is the space of d× d

symmetric matrices endowed with the Frobenius norm. P (Sd−1) identifies antipodal

points, and is the projective space embedded in M(d, d). We write P (x) as Px and

list some of the properties.


〈Px, Py〉 = |〈x, y〉|2

‖Px − Py‖2 = 2− 2|〈x, y〉|2.
(2.24)

When d = 2, we can explicitly write the embedding as P : S1 →M(2, 2)(= R3),

P (x) = Px = xx∗ =

 x2
1 x1x2

x1x2 x2
2

←→ (x2
1,
√

2x1x2, x
2
2).

It is not hard to see that P (S1) is a circle in R3 centered at (1
2
, 0, 1

2
) with radius

r = 1√
2
, and this is where we can apply Theorem 2.3.2 or Corollary 2.3.10. One

can verify that equally spaced points on the circle P (S1) are precisely X
(h)
N , equally

spaced points on the half circle, so we have the following theorem.

Theorem 2.3.11. Let g : [0, 1)→ R and consider

min
X∈S(N,2)

∑
i 6=j

g(|〈xi, xj〉|2), (2.25)

Then the following statements hold.
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(a) If g is convex and increasing, then X
(h)
4 is an optimal configuration of (2.25)

when N = 4. Moreover if g is strictly convex, then X
(h)
4 is the unique optimal

configuration.

(b) If g is absolutely monotone up to 2bN/2c, then X
(h)
N is an optimal configuration

of (2.25). Moreover if g is strictly absolutely monotone up to 2bN/2c, then

X
(h)
N is the unique optimal configuration.

Proof. As defined, Pxi = xix
∗
i . Denote Pxi by Pi for simplicity. By (2.24),

g(|〈xi, xj〉|2) = g(1− ‖Pi − Pj‖2/2) =: f(‖Pi − Pj‖2),

where f(t) = g(1− t/2) is defined on (0, 2]. As discussed earlier, view the points Pi

on a circle in R3 with radius 1/
√

2, so solving (2.25) is equivalent to solving (2.18)

with r = 1/
√

2.

If g is convex and increasing, then f is convex and decreasing. Applying

Theorem 2.3.2 gives equally spaced Pi, which is equally spaced points on the half

circle. This is part (a).

If g is absolutely monotone up to 2bN/2c, then f is completely monotone up

to 2bN/2c. Applying Corollary 2.3.10 gives part (b).

Remark 2.3.12. Observe that in Theorem 2.3.11, the assumption of (b) is much

stronger than (a). If g is twice differentiable, then g being convex and decreasing is

equivalent to g being absolutely monotone up to 2. Furthermore, Theorem 2.3.11 is
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a very general result that goes beyond frame potentials. Indeed, it cover the cases

where the energy can be expressed as a function of squares of the inner products.

We expect to pursue this line of investigations elsewhere, with the goal of analyzing

other energy kernels suitable for finding certain well conditioned frames.

We are now ready to prove Theorem 2.3.1 as a special case of Theorem 2.3.11.

Proof of Theorem 2.3.1. The p-frame potential kernel |〈xi, xj〉|p = gp(|〈xi, xj〉|2)

with gp(t) = tp/2. The function gp is strictly convex and increasing on [0,1) if

p > 2.

(a) This part is due to Theorem 2.3.11(a).

(b) We notice that gp is strictly absolutely monotone up to dp/2e, where dce is the

smallest integer that is no less than c. In order to apply Theorem 2.3.11(b),

we require dp/2e ≥ 2bN/2c, which is equivalent to p > 2N − 2 if N is even

and p > 2N − 4 if N is odd.

(c) Finally, this part is true because gp is absolutely monotone when p is an even

integer.

Remark 2.3.13. By Proposition 2.2.6, we can let p go to infinity in Theorem 2.3.1

and get that X
(h)
N is the Grassmannian frame, as was shown in [10].

As seen, the 1-dimensional projective space is isomorphic to a circle. It is

well known that higher a dimensional projective space is not a higher dimensional

sphere. This is why the main result Theorem 2.3.11 is limited to d = 2.
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At this point, we summarize the p-frame potential results in S1 as the following

remark.

Remark 2.3.14. Let d = 2.l

(a) When N = 4 we have completed the characterization of Fp,4,2.

(b) When N ≥ 6 is even, then [32, Theorem 3.5], Corollary 2.2.12, and parts

(b) and (c) of Theorem 2.3.1 give the value of Fp,N,2 when p ∈ (0, 2] ∪⋃
m|N,m≥6 even

(m − 4,m − 2) ∪ {4, 6, · · · , 2N − 2} ∪ (2N − 2,∞). We further

know that the minimizer is unique for p ∈ (0, 2)∪ (2N −2,∞). The numerical

result is displayed in Figure 2.1 for N = 6. Figure 2.2 show an example of

Corollary 2.2.12 when N = 6, 10, 30.

(c) When N ≥ 5 is odd, we know Fp,N,2 for p ∈ {2, 4, · · · , 2N − 4}∪ (2N − 4,∞).

We suspect that for p ∈ (2, 2N − 4], X
(h)
N will still be the minimizer. The case

p ∈ (0, 2) seems rather intriguing as demonstrated in Figure 2.1 for N = 5.

Figure 2.1 displays the numerical experiment for d = 2 and N = 5, 6, as well

as the known result for d = 2 and N = 4. It appears that for p from 0 to about 1.78,

the optimal configuration for FPp,5,2 is two copies of ONB plus a repeated vector;

for p ∈ (1.78, 2), the optimal configuration has the structure {x, x, y, y, z} whose

angles vary as p changes; for p ∈ (2, 6), the optimal configuration is X
(h)
5 .
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Figure 2.1: Fp,N,2 for N = 4, 5, 6. The solid portion indicates proven cases as
commented in Remark 2.3.14.
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Figure 2.2: Fp,N,2 for N = 6, 10, 30. The solid portion indicates proven cases.
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2.4 Special case of N = d+ 1 points in dimension d.

In this last section, we report on some numerical experiments and the resulting

conjectures when minimizing the p-frame potential with N = d + 1 vectors in Rd,

and p ∈ (0,∞) and some partial results. Observe that the case p = 2 is a special

case of the work by Benedetto and Fickus [8]. Additionally, the case p > 2 is

handled by Ehler and Okoudjou [32, Proposition 3.1], for which the simplex is the

optimal configuration. To be specific, the simplex is an ETF of d+ 1 vectors for Rd.

Therefore, the focus in this section are values p < 2. The following definition will

be used through the rest of this section.

Definition 2.4.1. l

(a) X is an ONB+ if X is formed by an orthonormal basis of Rd with one of the

vectors repeated.

(b) Given n ≥ 2, the simplex of Rn is denoted by ETFn. An explicit construction

of ETFn is to project e1, e2, · · · , en, en+1, the canonical basis of Rn+1, onto the

orthogonal complement of
∑n+1

i=1 ei.

2.4.1 Embedded ETFs

From numerical tests, we have noticed that minimizers for Fp,d+1,d take forms

similar to ETFs. In particular, they take the form of ETFs that have been embedded

to higher dimensions.
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Definition 2.4.2. For 1 ≤ k ≤ d, the frame

Ldk =

ETFk 0

0 Id−k

 =



ETFk 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


∈ S(d+ 1, d)

is called an embedded ETF.

Remark 2.4.3. l

(a) In Definition 2.4.2, the entry ETFk is the synthesis operator for the ETFk

configuration, and Id−k is the (d − k) × (d − k) identity matrix. These

frames are lifted in the sense that unit vectors for the remaining dimensions

(ek+1, ek+2, . . . , and ed) have been added such that the ETFk frame is moved

from Rk to Rd. We refer to [63, 64] for more on constructions of these classes

of ETFs.

(b) The Ldk frames are not tight, except for the case k = d, and we have Ldd is

ETFd.

(c) In addition to considering ETFd as an Ldd configuration, ONB+ is the Ld1 frame.

Example 2.4.4. The ETF in R2 can be embedded to R3 as
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L3
2 =


1 −1/2 −1/2 0

0
√

3/2 −
√

3/2 0

0 0 0 1

 .

We see that this frame is neither tight nor equiangular by computing the frame

operator and Grammian,

S =


3/2 0 0

0 3/2 0

0 0 1

 G =



1 −1/2 −1/2 0

−1/2 1 −1/2 0

−1/2 −1/2 1 0

0 0 0 1


.
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More generally, the Grammian of the Ldk frame is



1 −1/k −1/k · · · −1/k 0 0 · · · 0

−1/k 1 −1/k · · · −1/k 0 0 · · · 0

−1/k −1/k 1 · · · −1/k 0 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...

−1/k −1/k −1/k · · · 1 0 0 · · · 0

0 0 0 · · · 0 1 0 · · · 0

0 0 0 · · · 0 0 1 · · · 0

...
...

...
. . .

...
...

...
. . .

...

0 0 0 · · · 0 0 0 · · · 1



(2.26)

indicating that each Ldk frame is a two-distance set (see, [4, 30]) with inner prod-

ucts −1/k and 0; note, however, that Ldd, or the ETFd configuration, will have only

one inner product, −1/d.

2.4.2 Embedded ETFs as the conjectured minimizers and partial re-

sults

Numerical computations suggest that the Ldk frames are minimizers of FPp,d+1,d.

Conjecture 2.4.5. Suppose d ≥ 2 and for every natural number 1 ≤ k ≤ d− 1, let

pk =
log(k + 2)− log k

log(k + 1)− log k
.
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We also define p0 = 0. The following configurations minimize the p-frame potential

FPp,d+1,d:

� when p ∈ (pk−1, pk], the Ldk configuration, k = 1, 2, · · · , d− 1;

� when p ∈ (pd−1,∞], the ETFd, or Ldd configuration.

Certain cases have been known for some time. The case d = 2 is completely

established in [32]. For d ≥ 3, the statement that ETFd is the minimizer follows

from [8] when p = 2, from [32, Proposition 3.1] when p > 2, and from [58] for

p = ∞. A. Glazyrin [35] recently established that the ONB+, or Ld1 is the optimal

configuration for p ∈ (0, 2( ln 3
ln 2
− 1)], leading to the fact that Fp,d+1,d = 2 for all p in

this range and all d ≥ 2. The number 2( ln 3
ln 2
− 1) is approximately 1.17 and is less

than p1.

The values pk may be found by using the p-frame potentials of the Ldk frames.

By (2.26),

FPp,d+1,d(L
d
k) =

(
(k + 1)2 − (k + 1)

)(1

k

)p
= (k + 1)k

(
1

k

)p
.

We find pk so that the p-frame potentials of Ldk and Ldk+1 are equal at the value pk,

so

(k + 1)k

(
1

k

)pk
= (k + 2)(k + 1)

(
1

k + 1

)pk
leads to pk = log(k+2)−log k

log(k+1)−log k
.
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Remark 2.4.6. l

(a) The value pk, where the p-frame potential of the Ldk+1 frame drops below the

p-frame potential of the Ldk frame, does not depend on d, the overall dimension.

(b) Following Conjecture 2.4.5, we will call the values pk are the switching points as

these are the values of p where the minimizing configuration seems to change.

The final switching point is approaching to 2:

lim
d→∞

pd−1 = lim
d→∞

log
(
d+1
d−1

)
log
(

d
d−1

) = 2.

In [34], partial result of Conjecture 2.4.5 is obtained through applying the

Lagrange multiplier method. It is proved that the critical configurations of FPp,d+1,d

are all members of a set Ldk,m(α, β), which is defined below.

Definition 2.4.7. Let 1 ≤ k ≤ m ≤ d + 1 and 0 ≤ α, β ≤ 1. Then Ldk,m(α, β) is

the set of unit vectors {xi}d+1
i=1 such that the following conditions hold:

1. xm+1, · · · , xd+1 are pairwise orthogonal and orthogonal to all other vectors;

2. 〈xi, xj〉 = −α2 when 1 ≤ i < j ≤ k;

3. 〈xi, xj〉 = −β2 when k + 1 ≤ i < j ≤ m;

4. 〈xi, xj〉 = −αβ when 1 ≤ i ≤ k and k + 1 ≤ j ≤ m.

Theorem 2.4.8 ( [34], Theorem 1). For any full-dimensional configuration X crit-

ical for FPp,d+1,d, p > 1, one can change signs of vectors in X so that the resulting
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set is Ldk,m(α, β) for some 1 ≤ k < m ≤ d+ 1 and

αp + αp−2 = βp + βp−2 = kαp + (m− k)βp.

By reorganizing the vectors in Ldk,m(α, β), we will be able to obtain a Ldk′,m′(α
′, β′)

such that Ldk,m(α, β) = Ldk′,m′(α
′, β′) and α′, β′ 6= 0. Suppose d ≥ 4 and m < d + 1,

then Ep(L
d
k,m(α, β)) = Ep(L

d−1
k,m(α, β)). Since Conjecture 2.4.5 is true for dimen-

sion 2 and 3, without loss of generality, we only consider critical points of the form

Ldk,d+1(α, β) where α, β 6= 0. In this case Ldk,d+1(α, β) is an example of full spark

frames in Rd, which are frames X ∈ Rd such that any d vectors in X form a basis

for Rd. (Definition in [1]).

Then if we can prove the conjecture below, Conjecture 2.4.5 will follow.

Conjecture 2.4.9. Let pk = log(k+2)−log(k)
log(k+1)−log(k)

. Then for given d ≥ 4, p and N = d+ 1,

the following statements hold:

1. when p ∈ [1, pd−1), the minimizers of p−frame potential are not full spark

frames;

2. when p ∈ [pd−1,∞), the Ldd configuration minimize the p−frame potential.

To prove the first statement in the conjecture, we would like to further examine

the frames Ldk,d+1(α, β), α, β 6= 0 . Consider fp1,k,d(β) ≡ Ep(Lk,d+1(α, β)) as function

of β ∈ (0,
√

1
d−k ). Since we only need ton consider critical points, it is sufficient to

show fp1,k,d > 2 for all d ≥ 4 and 1 ≤ k ≤ bd+1
2
c.

We have the following quick corollaries of [34, Thm 1].
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Corollary 2.4.10. For d > 51,

Ep(L
d
k,d+1(α, β)) > 2

for any p ∈ [1, p1],1 ≤ k < d+ 1 and α, β ∈ (0, 1].

Proof. Suppose Ldk,d+1(α, β) is a critical configuration of Ep where α, β 6= 0. By (3)

in [34],

max(0,
2− k
2d− k

) ≤ β2 <
1

d− k
.

α, β are symmetric, it is sufficient to consider 1 ≤ k ≤ bd+1
2
c. So for fixed d,

β <
1√
d− k

≤
√

2

d− 1
.

By [34, Theorem 1] , αp1 + αp1−2 = βp1 + βp1−2. g(y) = yp1−2 + yp changes

from decreasing to increasing, so we consider two cases:

1. α = β

By (3) in [34],

dβ4 + (d− 1)β2 = 1,

α2 = β2 = 1/d.

Ep(L
d
k,d+1(α, β)) = (

1

d
)p1d(d+ 1) ≥ 2 for d ≥ 2

2. α 6= β

Denote x0 as the solution of g(y) = g(1) = 2 in interval (0, 1). Then α, β > x0.
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By Intermediate Value Theorem, x0 >
1
5
. Since d > 51,

β <

√
2

d− 1
<

1

5
.

This leads to a contradiction. So there is no possible critical point in this case.

Corollary 2.4.11. For fixed d ≥ 9, 2 ≤ k < bd+1
2
c, fp1,k,d(β) > 2 for any β ∈

(0,
√

1
d−k ).

Proof. Here we only need to consider the critical point of fp1,k,d. Since 0 < β <√
1

d−k ≤
√

2
d−1
≤
√

2−p1
p1

, the function g(β) = βp1 + βp1−2 is decreasing on the

domain β ∈ (0,
√

1
d−k ).

Now consider

g(α) =
(1− (d− k)β2

dβ2 + k − 1

)p1/2
+
(1− (d− k)β2

dβ2 + k − 1

)p1/2−1

.

Since

dα2

dβ
=
−β2k(d− k + 1)

(dβ2 + k − 1)2
< 0,

we have dα
dβ
< 0. Denote b0 = max(0, 1+c−ck

2d−k ) and
√

2−p1
p1
≡ c. So dg(α)

dβ
≥ 0 when

β ≥
√
b0; and dg(α)

dβ
≤ 0 when β ≤

√
b0. Since

√
b0 < 1/5 and g(β) > 2 < g(α) when

β <
√
b0. No α, β exist such that g(α) = g(β) and β2 ∈ (0,

√
b0). So there is only

one critical point in (0,
√

1
d−k ).

We know that α = β is one solution of g(α) = g(β) , Thus α = β = 1√
d

is the

49



only critical point of fp1,k,d. By checking the the critical point and endpoints we can

conclude that fp1,k,d(β) > 2 for β ∈ (0, 1√
d−k ).

Conjecture 2.4.5 can be proved for FPp,5,4.

Theorem 2.4.12. Let p0 = 0 and pk = log(k+2)−log(k)
log(k+1)−log(k)

for k = 1, 2, 3. Then the

p-frame potential for a frame of 5 vectors in R4 when p ∈ [pk, pk+1] is Ldk+1 for

k = 1, 2, 3, 4.

Proof. The p-frame potential for Ldk,m(α, β) is the same with Ld+1
k,m(α, β). Since the

minimizing configuration is proved for R3, we only need to consider m = 5 for d = 4.

L4
1,5 and L4

4,5 are the same . L4
2,5 and L4

3,5 are the same.

1. p ∈ (1, p1], L4
1,5 case

FPp,N,d(L
4
1,5(α, β)) = 8(αβ)p + 12β2p,

with 4α2β2 + 3β2 = 1. Take y = β2 ∈ [1/7, 1/3], we have

FPp1,N,d = 8
(1− 3y

4

)p1/2 + 12yp1 > 2.

Since FPp,N,d(X) ≥ FPp1 for any frame X with 5 unit vectors in R4,

FPp(L
4
1,5(α, β)) > 2

for any α, β.
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2. p ∈ (1, p1], L4
2,5 case

FPp,N,d(L
4
2,5(α, β)) = 2α2p + 12(αβ)p + 6β2p,

with 4α2β2 + α2 + 2β2 = 1. Take y = β2 ∈ [0, 1/2], we have

FPp2,N,d(L
4
2,5(α, β)) = 2

(1− 2y

1 + 4y

)p1 + 12
(y − 2y2

1 + 4y

)p1/2 + 6yp1 ≥ 2.

with equality at β = 0, 1/2.

3. p ∈ [p1, p2], L4
1,5(α, β) case

We need

FPp,N,d(L
4
1,5(α, β)) = 8(αβ)p + 12β2p = 8

(1− 3y

4

)p/2
+ 12yp ≥ 6(1/2)p,

with y ∈ [1/7, 1/3]. The inequality is equivalent to

8(1− 3y)p/2 + 12(2y)p ≥ 6.

If we fix y, and view 8(1 − 3y)p/2 + 12(2y)p as a function of p, then it is

decreasing by checking the derivative with respect to p. So we only need to

consider the inequality at p2.

Ep2(L
4
1,5(α, β)) ≥ (1/2)p2
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4. p ∈ [p1, p2], L4
2,5(α, β) case We need

2
(2− 4y

1 + 4y

)p
+ 12

(4y − 8y2

1 + 4y

)p/2
+ 6(2y)p ≥ 6.

In this case we only need to check p = p2. And we have

2
(2− 4y

1 + 4y

)p2 + 12
(4y − 8y2

1 + 4y

)p2/2 + 6(2y)p2 ≥ 6.

5. p ∈ [p2, p3], L4
1,5(α, β) case

We need

FPp,N,d(L
4
1,5(α, β)) = 8(αβ)p + 12β2p = 8

(1− 3y

4

)p/2
+ 12yp ≥ 12(1/3)p,

which is equivalent to

8
(9(1− 3y)

4

)p/2
+ 12(3y)p ≥ 12.

If we fix y, 8(1−3y)p/2 + 12(2y)p decreases with increasing p. So we only need

to consider the inequality at p3. We can check

8
(9(1− 3y)

4

)p3/2 + 12(3y)p3 ≥ 12.
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6. p ∈ [p2, p3], L4
2,5(α, β) case We need

2
(3− 6y

1 + 4y

)p
+ 12

(9y − 18y2

1 + 4y

)p/2
+ 6(3y)p ≥ 12.

LHS is decreasing function w.r.t. p, so we only need to check p = p3. And the

inequality holds at p3.

7. p ∈ [p3, 2], L4
1,5(α, β) case We need

8(4− 12y)p/2 + 12(4y)p ≥ 20.

Since 8(4 − 12y)p/2 + 12(4y)p is increasing w.r.t. p except when y = 1/4.So

again we only need to check the endpoints of p. And the inequality does hold.

8. p ∈ [p3, 2], L4
2,5(α, β) case We need

2
(4− 8y

1 + 4y

)p
+ 12

(16y − 32y2

1 + 4y

)p/2
+ 6(4y)p ≥ 20.

LHS is increasing function w.r.t p when y ∈ [1/4, 1/2] and decreasing when

y ∈ [0, 1/4). So we need to check the endpoints of p. And the inequality holds.

Remark 2.4.13. In the work by Zhiqiang Xu and Zili Xu [69], they prove the rest

of the conjecture 2.4.5.
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2.4.3 Description of the Numerical Computations

Numerical computations in Sage [62] were used to test Conjecture 2.4.5 numer-

ically for d + 1 vectors in Rd. For each d = 3, 4, 5, 6, 7 and each k = 1, 2, . . . , d, the

program checked numerically whether Ldk is the minimizer on the regions [pk−1, pk].

For p = pk−1 and for p = pk specifically, along with some random values p in

[pk−1, pk], it used a basic gradient descent to numerically minimize the p-frame po-

tential of several randomly chosen frames and then it compared these to the appro-

priate Ldk frame. The only lower frame potential found seemed within the realm of

numerical error (<1e-15). The number of comparisons was not selected rigorously;

rather we only use the program as a guide. More details and the code may be found

online at https://www.math.umd.edu/~okoudjou/.

2.5 Future research on optimal configurations in R2

In this section, we discuss two questions related to the unsolved cases in R2.

Question 1.What is the optimal configuration for FPp,5,2 when p ∈ (0, log 3/ log 2)?

For any X = {xi}5
i=1, p ∈ (0, log 3/ log 2), we have

FPp,5,2(X) = FPp,3,2({x1, x2, x3}) + FPp,3,2({x1, x4, x5}) + FPp,3,2({x2, x4, x5}) + · · ·

FPp,3,2({x3, x4, x5})− 2|〈x4, x5〉|p

≥ 4− 2|〈x4, x5〉|p. (2.27)

Since permutation on the vectors in a set X does not change the p-frame potential,

54

https://www.math.umd.edu/~okoudjou/


we have

FPp,5,2(X) ≥ 4− 2 min
xi,xj∈X

|〈xi, xj〉|p.

If we can prove that the optimal configuration for FPp,5,2 with p ∈ (0, log 3/ log 2)

contains at least one pair of orthogonal vectors, then we can conclude that Fp,5,2 = 4

and two copies of ONB plus a repeated vector is an optimal configuration for FPp,5,2.

One of our future goals is to prove this statement.

It is then natural to ask whether this method could be generalized to any N, d.

Consider the complete graph KN with N vertices x1, · · · , xN and assign |〈xi, xj〉| to

the edge connecting xi and xj. Then the process in equation (2.27) is covering the

edges of K5 with K3 while having as few repeated edges as possible. This is similar

to the goal of the edge clique covering problem (cf. [43]). In the future, we would

like to further explore the possibility of utilizing the results in edge clique covering

problem to construct the optimal configurations for FPp,N,d.

Question 2. What is the optimal configuration of FPp,N,2 for the p not listed

in Remark 2.3.14 part(b)?

By Corollary 2.2.12, if k is an integer and N ≥ 6 is even, the optimal con-

figuration of FPp,kN,2 is known when p ∈ (N − 4, N − 2). We would ask whether

statement still true for any integer N ≥ 4? The answer is no. We consider the

following example.

Example 2.5.1. Let N = 24. Then the optimal configuration of FPp,N,2 is 4 copies

of 6-gons when p ∈ (2, 4), which is not equivalent to 6 copies of X
(h)
4 .

It is still unknown whether it is possible to loosen the restriction on N in
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Corollary 2.2.12 and if yes, to what extent. Settling this problem could give us

partial results of Question 2.
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Chapter 3: Equiangular Lines and Grassmannian Frames

3.1 Preliminaries

In this section we describes the method applied to construct equiangular lines,

which is developed in [39]. Define a (N, d) equiangular line sets to be a set of N

equiangular lines in Rd.

Define the Gram matrix G of a set of vectors {vi}Ni=1 as Gi,j = 〈vi, vj〉. The

following correspondence between equiangular line sets and matrices with certain

properties is well known.

Theorem 3.1.1. A set of N equiangular lines in Rd exists if and only if there exists

a N ×N Hermitian matrix G with the following properties:

1. Gii = 1, |Gij| = a ∈ [0, 1) for i 6= j ∈ {1, · · · , N}.

2. rank(G) ≤ d.

3. All principal minors of G are non-negative.

To prove the theorem we need the following results on Gram matrices and

positive semidefinite matrices.
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Theorem 3.1.2 ( [44], Theorem 7.2.10). Suppose G is a N ×N Gram matrix of a

set of vectors {vi}Ni=1, then it is Hermitian and positive-semidefinite. Furthermore,

rank(G) = dim span{vi}Ni=1.

Theorem 3.1.3 (Cholesky factorization, [44], Corollary 7.2.9). Suppose A is a N×

N Hermitian matrix, then A is positive semidefinite if and only if there is a lower

triangular matrix L ∈ Mn with nonnegative diagonal entries such that A = LL∗. If

A is real, L may be taken to be real.

We reproduce the proof here.

Proof. Suppose A is positive semidefinite, then there exist a unique square root

A1/2. Let A1/2 = QR be a QR factorization and L = R∗. Then L is a lower triangle

matrix. We have

A = (A1/2)∗A1/2 = R∗Q∗QR = R∗R = LL∗.

Suppose A = LL∗ = (L∗)∗L∗. Then A is the Gram for the set of columns

vectors of L∗. By Theorem 3.1.2, A is positive semi-definite.

Theorem 3.1.4 (Sylvester’s criterion, [44],Observation 7.1.2 & Theorem 7.2.5). A

N ×N Hermitian matrix A is positive semidefinite

1. if and only if every principal minor of A is nonnegative.

2. if the first N − 1 leading principal minors of A are positive and det(A) ≥ 0.

Proof of Theorem 3.1.1. Suppose first that there exist an (N, d) equiangular line

set with unit vectors {vi}Ni=1 on each of the lines. Then by definition, its Gram
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matrix satisfies condition 1. By Theorem 3.1.2 and 3.1.4, the Gram matrix satisfies

condition 2 and 3 correspondingly.

Suppose then there exist a Hermitian matrix G that satisfies condition 1-3.

By Theorem 3.1.4 and condition 3, G is positive semidefinite. By Theorem 3.1.3

and condition 2, there exist a N × N matrix L such that G = LTL. Let L =

[v′1 · · · v′N ], then G is Gram matrix of {v′i}Ni=1. By Theorem 3.1.2, dim span{v′i}Ni=1 ≤

d. So {v′i}Ni=1 can be embedded in Rd. Therefore there exist a corresponding (N, d)

equiangular line set.

Remark 3.1.5. Given a Hermitian matrix A that satisfies the three conditions in

Theorem 3.1.1, we could construct a set of equiangular lines concretely by Theorem

3.1.3. We give two examples.

Example 1

A =


1 −1/2 −1/2

−1/2 1 −1/2

−1/2 −1/2 1

 .

is a positive semidefinite matrix of rank 2, thus should be the Gram matrix for a

set of 3 equiangular lines in R2. The eigenvalue of A are 0, 3/2, 3/2.

A1/2 =
1√
6


2 −1 −1

−1 2 −1

−1 −1 2

 =


2/
√

6 0 −1/
√

3

−1/
√

6 1/
√

2 −1/
√

3

−1/
√

6 −1/
√

2 −1/
√

3




1 −1/2 −1/2

0
√

3/2 −
√

3/2

0 0 0

 .
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So

A =


1 0 0

−1/2
√

3/2 0

−1/2 −
√

3/2 0




1 −1/2 −1/2

0
√

3/2 −
√

3/2

0 0 0

 .

A is then the Gram matrix of the set of 3 equiangular lines represented by the

vectors (1, 0),(−1/2,
√

3/2), (−1/2,−
√

3/2).

Exmaple 2

A =



1 1/3 1/3 −1/3

1/3 1 −1/3 1/3

1/3 −1/3 1 1/3

−1/3 1/3 1/3 1


is a positive semidefinite matrix of rank 3. Using matlab, we have

A1/2 =

√
3

6



3 1 1 −1

1 3 −1 1

1 −1 3 1

−1 1 1 3



=



√
3/2 0 0 1/2

√
3/6

√
6/3 0 −1/2

√
3/6 −

√
6/6

√
2/2 −1/2

−
√

3/6
√

6/6
√

2/2 1/2





1 1/3 1/3 −1/3

0 2
√

2/3 −2
√

2/3 2
√

2/3

0 0
√

6/3
√

6/3

0 0 0 0


.
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So

A =



1 0 0 0

1/3 2
√

2/3 0 0

1/3 −2
√

2/3
√

6/3 0

−1/3 2
√

2/3
√

6/3 0





1 1/3 1/3 −1/3

0 2
√

2/3 −2
√

2/3 2
√

2/3

0 0
√

6/3
√

6/3

0 0 0 0


.

Then one configuration of equiangular lines that has Gram matrix A is (1, 0, 0),

(1/3, 2
√

2/3, 0), (1/3,−2
√

2/3,
√

6/3), (−1/3, 2
√

2/3,
√

6/3).

Given Theorem 3.1.1, equiangular line sets can be obtained by constructing

Hermitian matrices that satisfy condition 1-3 in Theorem 3.1.1. We will start the

construction with (d+1, d) equiangular line sets, and construct their Gram matrices

recursively.

3.1.1 Constructing (d+ 1, d) equiangular line sets

For any d and N = d + 1, condition 2 in Theorem 3.1.1 is equivalent to

det(G) = 0. Paper [26] uses the following method to construct matrix G that

satisfies conditions 1-3:

Step 1. List all the possible form of G that satisfy condition 1.

Step 2. Find a ∈ [0, 1) such that det(G) = 0.

Step 3. Replace all the a with the solution in step 2. Since the 1×1 principal minor

is always 1, by Theorem 3.1.4 we need to check whether Gk are positive for

k = 2, · · · , N − 1. Where Gk is the k × k leading principal minors of G .
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Remark 3.1.6. Without loss of generality, orthogonal transformation and per-

mutation of vectors in {vi}Ni=1 or replacing any vi with −vi does not change the

corresponding set of lines. In step 1, we say two Hermitian matrices A and B are

equivalent if it is possible to obtain B by

� multiplying rows and corresponding columns of A by -1;

� exchanging rows and corresponding columns of A.

In step 1, to enumerate the possible forms of G, we consider the graph with the

vectors {vi}Ni=1 as vertices, and connect vi, vj with an edge if 〈vi, vj〉 = −a. Without

loss of generality, we assume the non-diagonal entries of first row and column are a.

So v1 is disconnected in the graph. We can then examine the matrices corresponding

to simple graphs with N − 1 vertices.

3.1.2 Constructing (N, d) equiangular line sets with N > d+ 1

Suppose we have all the possible Gram matrices of (k, d) equiangular line sets

for k = d+ 1, · · · , N . If (N + 1, d) equiangular line sets exist, all its subsets are also

equiangular line sets. So the Gram matrix of (N + 1, d) equiangular line sets can

be constructed by adding an extra row and column to the Gram matrix of a (N, d)

equiangular line set, such that the extended matrix still satisfies condition 1-3 in

Theorem 3.1.1. In Section 3.2 and Section 3.3, we will give detailed construction of

equiangular lines in R3 and R4 respectively. The results were first derived in [39].

In Section 3.4 we derive properties of (6, 4)- Grassmannian frames. In Section 3.5

we draw attention to some unsolved problems related to Equiangular lines and
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Grassmannian frames.

3.2 Equiangular line sets in R3

3.2.1 N = 4

In this section we apply the method in Section 3.1.1 to construct (4, 3) equian-

gular lines.

There are 3 cases to consider in step 1. For the matrix G in each case, we

solve for det(G) = 0 and compute the principal minors G2 and G3. There are 2

configurations that satisfy all the conditions in Theorem 3.1.1.

3.2.1.1 Case 1

G =



1 a a a

a 1 a a

a a 1 a

a a a 1


Since det(G) = (1 − a)3(1 + 3a) > 0 for all a ∈ [0, 1), rank(G) = 4. G does not

satisfy condition 3. There exist no equiangular line set with N = 4, d = 3 that

correspond to G in this case.
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3.2.1.2 Case 2

G =



1 a a −a

a 1 −a a

a −a 1 a

−a a a 1


det(G) = (1 + a)3(1 − 3a). Solution for det(G) = 0 is a = 1

3
. The leading

principal minors are

G2 = 1− a2 > 0;

G3 = (1 + a)2(1− 2a) > 0 when a =
1

3
.

So case 2 corresponds to a set of 4 equiangular lines in R3, and the angle between

any two lines is cos−1(1
3
).

3.2.1.3 Case 3

G =



1 a a a

a 1 a a

a a 1 −a

a a −a 1


det(G) = (1− a2)(1− 5a2). Solution for det(G) = 0 in [0, 1) is a = 1√

5
. The leading
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principal minors are

G2 = 1− a2 > 0;

G3 = (a− 1)2(2a+ 1) > 0.

Case 3 corresponds to a set of 4 equiangular lines in R3, and the angle between any

two lines is cos−1( 1√
5
).

Therefore there are only 2 possible angles in a (4, 3) equiangular line sets and

we have the following.

Theorem 3.2.1. (4, 3) equiangular line sets exist, and a = 1
3

or a = 1√
5
.

3.2.2 N = 5

In this section and section 3.2.3, we build on the result in Section 3.2.1. A

candidate G for the Gram matrix can be obtained by attaching a row and column to

one of the possible Gram matrices of (4, 3) equiangular line set S. Then every k× k

principal submatrix of G is the Gram of a subset of S, thus is the Gram matrix of

a (k, d) equiangular line set with the same angle a. For 5 lines in R3, there exists

one such extension that satisfies conditions 1-3 in Theorem 3.1.1.

Theorem 3.2.2. (5, 3) equiangular line set exists, and the angle a = 1√
5
.

Proof. Since the a value in different cases are all different, any 4 × 4 principal

submatrix in the Gram matrix of (5, 3) equiangular line set belong to the same case

in section 3.2.1.
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Suppose there exists G′, a matrix extension of case 2. Then the submatrices

obtained by removing 1st or 4th row and the corresponding column are equivalent

with case 2. The only G′ for which that holds is



1 a a −a a

a 1 −a a −a

a −a 1 a −a

−a a a 1 a

a −a −a a 1


.

However if we remove 2nd row and column, the remaining submatrix is not

equivalent to the Gram matrix in case 2. No such G can be obtained from case 2.

There exist one extension of case 3 that satisfies condition 1-3 in Theorem

3.1.1.

G =



1 a a a a

a 1 a a −a

a a 1 −a −a

a a −a 1 a

a −a −a a 1



In this case a = 1√
5
. det(G) = 25a4 − 10a2 + 1 = 0. All the 4 × 4 principal

submatrices are equivalent to case 3, so all principal minors of G are non-negative.

By Theorem 3.1.4, G is a positive semidefinite matrix. Since all 4 × 4 submatrices
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are equivalent to case 3, their determinant are all 0. The leading principal minor

is positive, so rank(G) = 3. By Theorem 3.1.1, G is the Gram matrix of a (5, 3)

equiangular line set.

3.2.3 N = 6

The Gram matrix of (6, 3) equiangular line set can be obtained by further

extending the Gram matrix of the (5, 3) equiangular line set. Applying the same

procedure as in section 3.2.2, we obtain one extension of G in 3.2.2.

G =



1 a a a a a

a 1 a a −a −a

a a 1 −a −a a

a a −a 1 a −a

a −a −a a 1 a

a −a a −a a 1



.

The angle a = 1√
5

is the same with the (5, 3) equiangular line set. det(G) = −125a6+

75a4 − 15a2 + 1 = 0. G is a positive semidefinite matrix of rank 3.

3.3 Equiangular line sets in R4

3.3.1 N=5

In this section we construct the Gram matrix of (5, 4) equiangular line set.

To enumerate the possible forms of G, we consider the graph with the vectors
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{vi}5
i=1 as vertices, and connect vi, vj with an edge if 〈vi, vj〉 = −a. Without loss of

generality, we assume the non-diagonal entries of the first row and column are a. So

v1 is disconnected in the graph. We will then examine the matrices corresponding

to simple graphs with 4 vertices. [29] listed all simple graphs with 4 vertices, see

also figure 3.1. The 11 different graphs correspond to 7 different cases. Using the

same notation as in figure 3.1,we present the matrix that corresponds to each graph

and check whether there exists a corresponding equiangular line set.

3.3.1.1 Case 1: K̄4

There is no edge in this graph, so the non-diagonal entries of corresponding G

are all a. We have

G =



1 a a a a

a 1 a a a

a a 1 a a

a a a 1 a

a a a a 1


det(G) = (1 − a)3(1 + 4a) > 0 for all a ∈ [0, 1), rank(G) = 5. There exist no

corresponding equiangular line set.

3.3.1.2 Case 2: co-diamond, K1,3

There exist one edge in ’co-diamond’. So there exist distinct j, k ∈ {1, · · · , 4}

such that 〈vj, vk〉 = −a. In K1,3, there are three edges and there exist one vertex

that is an endpoint of all three edges. Without loss of generality, we have 〈v2, v3〉 =
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Figure 3.1: [29]List of all simple graphs with 4 vertices
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〈v2, v4〉 = 〈v2, v5〉 = −a.

G =



1 a a a a

a 1 a a a

a a 1 a a

a a a 1 −a

a a a −a 1


∼



1 a a a a

a 1 −a −a −a

a −a 1 a a

a −a a 1 a

a −a a a 1


= G′.

G and G′ are matrices that correspond to ’co-diamond’ and K1,3 respectively.

By multiplying −1 to 2nd row and column of G′, we can see that G and G′ are

equivalent. We only need to check whether G satisfies all the conditions in Theorem

3.1.1.

det(G) = (1 − a)2(1 + a)(1 + a − 8a2). Solution for det(G) = 0 in [0, 1) is

a = 1+
√

33
16

. The leading principal minors are

G2 = 1− a2 > 0;

G3 = (a− 1)2(2a+ 1) > 0;

G4 = (1− a)3(3a+ 1) > 0.

So G is a positive semidefinite matrix of rank 4 when a = 1+
√

33
16

. Case 2

corresponds to a set of 5 equiangular lines in R4, and the angle between any two

lines is cos−1(1+
√

33
16

).
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3.3.1.3 Case 3: co-paw,C4

There are two edges in ’co-paw’ and one vertice that is the end point of both

edges. So there exist distinct j, k1, k2 ∈ {1, · · · , 4} such that 〈vj, vk1〉 = 〈vj, vk2〉 =

−a. In C4, there are 4 edges and 〈v2, v3〉 = 〈v2, v5〉 = 〈v3, v4〉 = 〈v4, v5〉 = −a.

G =



1 a a a a

a 1 a a a

a a 1 a −a

a a a 1 −a

a a −a −a 1


∼



1 a a a a

a 1 −a a −a

a −a 1 −a a

a a −a 1 −a

a −a a −a 1


= G′.

G and G′ are matrices that correspond to ’co-paw’ and C4 respectively. By multi-

plying −1 to 2nd and 4th rows and columns of G′, we can see that G and G′ are

equivalent. We only need to check whether G satisfies all the conditions in Theorem

3.1.1.

det(G) = (1 − a)2(1 + 3a)(1 − a − 4a2). Solution for det(G) = 0 in [0, 1) is

a =
√

17−1
8

. The leading principal minors are

G2 = 1− a2 > 0;

G3 = (a− 1)2(2a+ 1) > 0;

G4 = (1− a)3(3a+ 1) > 0.

G is a positive semidefinite matrix of rank 4 when a =
√

17−1
8

. Case 3 correspond to a
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set of 5 equiangular lines in R4, and the angle between any two lines is cos−1(
√

17−1
8

).

3.3.1.4 Case 4: C4, paw

For C4, 〈v2, v5〉 = 〈v3, v4〉 = −a. For ’paw’, 〈v2, v3〉 = 〈v2, v4〉 = 〈v2, v5〉 =

〈v3, v4〉 = −a.

G =



1 a a a a

a 1 a a −a

a a 1 −a a

a a −a 1 a

a −a a a 1


∼



1 a a a a

a 1 −a −a −a

a −a 1 −a a

a −a −a 1 a

a −a a a 1


= G′.

G and G′ are matrices that correspond to C4 and ’paw’ respectively. By multiplying

−1 to 2nd row and column of G′, we can see that G and G′ are equivalent. We only

need to check whether G satisfies all the conditions in Theorem 3.1.1.

det(G) = (1− a)2(1− 3a)(1 + a− 4a2). Solutions for det(G) = 0 in [0, 1) are

a =
√

17+1
8

and a = 1
3
. The leading principal minors are

G2 = 1− a2 > 0;

G3 = (a− 1)2(2a+ 1) > 0

for both solutions. However G4 = (1−a)2(1−5a2). We have G4 < 0 when a =
√

17+1
8

and G4 > 0 when a = 1
3
. G is a positive semidefinite matrix of rank 4 when a = 1

3
.

Case 4 correspond to a set of 5 equiangular lines in R4, and the angle between any
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two lines is cos−1(1
3
).

3.3.1.5 Case 5: co-claw, diamond

There are 3 edges, and one isolated vertice in ’co-claw’. 〈v3, v4〉 = 〈v3, v5〉 =

〈v4, v5〉 = −a. ’Diamond’, or K4 − e, is the complete graph minus one edge. In-

ner product between any two vectors in {vi}5
i=2 are −a except one pair of vectors.

Without loss of generality we let 〈v2, v4〉 = a.

G =



1 a a a a

a 1 a a a

a a 1 −a −a

a a −a 1 −a

a a −a −a 1


∼



1 a a a a

a 1 −a a −a

a −a 1 −a −a

a a −a 1 −a

a −a −a −a 1


G and G′ are matrices that correspond to ’co-claw’ and ’diamond’ respectively. By

multiplying −1 to 5nd and 3rd rows and columns of G′, we can see that G and

G′ are equivalent. We only need to check whether G satisfies all the conditions in

Theorem 3.1.1.

det(G) = (1 + a)2(1 − a)(1 − a − 8a2). Solution for det(G) = 0 in [0, 1) is
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a =
√

33−1
16

. The leading principal minors are

G2 = 1− a2 > 0;

G3 = (a− 1)2(2a+ 1) > 0;

G4 = (1− a2)(1− 5a2) > 0.

G is a positive semidefinite matrix of rank 4 when a =
√

33−1
16

.Case 5 correspond to a

set of 4 equiangular lines in R3, and the angle between any two lines is cos−1(
√

33−1
16

).

3.3.1.6 Case 6: P4

There are 3 edges in P4. We have 〈v2, v5〉 = 〈v3, v4〉 = 〈v3, v5〉 = −a.

G =



1 a a a a

a 1 a a −a

a a 1 −a −a

a a −a 1 a

a −a −a a 1



det(G) = (1− 5a2)2. Solution for det(G) = 0 in [0, 1) is a = 1√
5
. This is the set of 5

equiangular lines in R3 embedded in R4.

3.3.1.7 Case 7: K4

K4 is the complete graph. So
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G =



1 a a a a

a 1 −a −a −a

a −a 1 −a −a

a −a −a 1 −a

a −a −a −a 1


det(G) = (1 + a)3(1 − 4a). Solution for det(G) = 0 in [0, 1) is a = 1

4
. The leading

principal minors are

G2 = 1− a2 > 0;

G3 = (a+ 1)2(1− 2a) > 0;

G4 = (a+ 1)3(1− 3a) > 0.

Case 3 correspond to a set of 4 equiangular lines in R3, and the angle between any

two lines is cos−1(1
4
).

By the above construction, we have the following result.

Theorem 3.3.1. (5, 4) equiangular line sets exist. a ∈ {1+
√

33
16

,
√

17−1
8

, 1
3
,
√

33−1
16

, 1√
5
, 1

4
}.

3.3.2 N=6

If a equiangular line set with 6 lines exists, then any subset of 5 lines is also an

equiangular line set with the same angle. Since the a value in different cases are all

different, any 5×5 principal submatrix in the Gram matrix of (6, 4) equiangular line

set belong to one of the possible cases in section 3.3.1. Without loss of generality,
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suppose the number of −a in the added row is less than 3.

Theorem 3.3.2 (Welch Bound). Suppose {vi}Ni=1 ⊂ Sd−1 with N > d, then

max
i 6=j
|〈vi, vj〉| ≥

√
N − d
d(N − 1)

.

The Welch Bound for (6, 4) equiangular line set is 1√
10

. So case 5 and 7 can

be excluded.

If there exists a (6, 4) equiangular line set that has same a with any of the

cases in 3.3.1, we can add a new vertex that is endpoint of at most 2 edges to

the corresponding graph, such that any induced subgraph of the new graph with 5

vertices belong to the same case. This is not possible for case 2,3.

3.3.2.1 The extension of 3.3.1.4

Theorem 3.3.3.

G =



1 a a a a −a

a 1 a a −a a

a a 1 −a a a

a a −a 1 a a

a −a a a 1 a

−a a a a a 1


is the Gram matrix of a (6, 4) equiangular line set.

Proof. det(G) = (1 + a)2(1 − 3a)2(1 + 3a). The only solution for det(G) = 0 in

a ∈ [0, 1) is a = 1
3
.
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Since each column or row of G contains only one −a, by removing any row

and corresponding column in G, the principal submatrix will be the Gram matrix

of a (5, 4) line set {vi}5
i=1 with distinct j1, k1, j2, k2 ∈ {1, 2, 3, 4} such that

1. 〈vj1 , vk1〉 = 〈vj2 , vk2〉 = −a,

2. 〈vj, vk〉 = a for (j, k) 6∈ {(j1, k1), (j2, k2)}.

Changing the order of lines does not change the set, so all 5×5 principal submatrices

are equivalent. By calculation in section 3.3.1, all the principal minors of G are non-

negative. So G is positive semidefinite.

All 5 × 5 principal minors of G are 0. The leading 4 × 4 principal minor is

positive. rank(G) = 4. G is the Gram matrix of a (6, 4) equiangular line set.

Remark 3.3.4. If a 4 × 4 principal minor of G is 0, then the corresponding sub-

set of lines can be embedded into R3. Three 4 × 4 principal minors are 0. The

corresponding subsets are {v2, v3, v4, v5}, {v1, v3, v4, v6} and {v2, v2, v5, v6}.

3.3.2.2 The extension of 3.3.1.6

The extension of 3.3.1 is the same with the Gram matrix in 3.2.3. The corre-

sponding line set can be embedded into R3.

3.4 Proposition of (6, 4)-Grassmannian Frame

In this section we will prove a proposition of (6, 4)-Grassmannian frames that

is similar to Lemma VI.6 in [10]. First we will need the following propositions that

are proved in [10].
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Proposition 3.4.1. [10] Let N ≥ d, Y = {y1, · · · , yN} ⊂ Sd−1 ⊂ Rd, and assume

span(Y ) = Rd. Let

Q = {v ∈ Rd : |〈v, yk〉| ≤ 1, for k = 1, · · · , N}

and C be the set of extreme points of Q. Then

(a) Q is a bounded convex set,

(b) If v0 ∈ C then there are at least d distinct integers k1, · · · , kd ∈ {1, · · · , N}

such that |〈v0, yki〉| = 1 for 1 = 1, · · · , d,

(c) card(C) ≤
(
N
d

)
2d <∞.

Proposition 3.4.2. [10] Let N, d, Y,Q and C be as in proposition 3.4.1, and c ∈ C

have the property that ‖c‖ = max{‖c′‖ : c′ ∈ C}. Then for any v ∈ Q \ C,

‖v‖ < ‖c‖.

We can then prove a generalized version of [10, Lemma VI.5], which follows

similar arguments in the proof of (5,3) version.

Lemma 3.4.3. Let U = {b, y1, · · · , yd+1} ⊂ Sd−1 ⊂ Rd, and α =M∞(U). Then if

|〈b, y1〉| < α,|〈b, y2〉| < α, there exist c ∈ Sd−1 such that

|〈c, yk〉| < α for k = 1, · · · , d+ 1.

Proof. We consider two cases:
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Case 1. dim(span{y1, · · · , yd+1}) < d.

Then choose c ∈ (span{y1, · · · , yd+1})⊥, we have

〈 c
‖c‖

, yk〉 = 0 < α for k = 1, · · · , d+ 1.

Case 2. span{y1, · · · , yd+1} = Rd.

Let Q = {v ∈ Rd : |〈v, yk〉| ≤ 1, k = 1, · · · , d + 1} and C be the extreme points of

Q. Then by Proposition 3.4.1, Q is convex and C is finite. Then by assumption,

there are at most d − 1 distinct integers k1, · · · , kd−1 ∈ {1, · · · , d + 1} such that

|〈 b
α
, ykd−1

〉| = 1. By Proposition 3.4.1, b
α

is not a extreme point of Q.

Choose c with the property ‖c‖ = max{‖c′‖ : c′ ∈ C}. Then by Proposition

3.4.2, ‖c‖ > ‖ b
α
‖ = 1

α
. So

|〈 c
‖c‖

, yk〉| ≤
1

‖c‖
< α for k = 1, · · · , d+ 1.

Now we are ready to prove the following lemma on (6, 4)-Grassmannian frames.

Lemma 3.4.4. Let U = {ui}6
i=1 be a (6, 4)-Grassmannian frame, and α =M∞(U).

Then for any j, there are distinct j1, j2, j3, j4 ∈ {1, · · · , 6} \ {j} such that

|〈uj, ujk〉| = α for k = 1, 2, 3, 4.

Proof. Assume the contrapositive. Without loss of generality, let |〈u1, u2〉| < α and
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|〈u1, u3〉| < α. We would like to show either U is not Grassmannian frame, or such

U does not exist.

Under our assumption, by Lemma 3.4.3, there exist c1 ∈ S3 such that

|〈c1, uk〉| < α for k = 2, · · · , 6.

Let Ũ = {u2, · · · , u6}, we have two cases:

1. There exist j0, k0 ∈ {2, · · · , 6} such that j0 6= k0, for which |〈uj0 , uk0〉| < α.

Following the same procedure as in [10] Lemma VI.6 case 1, we can construct

a frame W such that M∞(W ) =M∞(U).

Without loss of generality assume |〈u2, u3〉| < α. Let b = u2, and {y1, · · · , y5} =

{c1, u3, · · · , u6}. Then by Lemma 3.4.3, there exists c2 ∈ S3 such that 〈c2, yk〉 <

α for k = 1, · · · , 5 .

By the construction above, let b = u3, {y1, · · · , y5} = {c1, c2, u4, u5, u6}. We

can apply Lemma 3.4.3 again and have c3 ∈ S3 such that 〈c3, yk〉 < α for

k = 1, · · · , 5. Repeat this procedure and we have c4,c5 such that |〈ci, cj〉| < α

for i 6= j, and |〈ci, u6〉| < α for i = 1, · · · , 5. Let W = {c1, · · · , c5, u6}. Then

M∞(W ) < α =M∞(U).

2. Ũ is equiangular

Ũ has 5 vectors, so it has the same configuration of the 5 equiangular lines in

R4. The calculation below is based on result in [39], where the possible angles

between lines and the Gram matrices are constructed.
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By [39], α ∈ {
√

33±1
16

,
√

17−1
8

, 1
3
, 1√

5
, 1

4
}. 1

4
is less than the Welch bound of N =

6, d = 4, which is 1√
10

, so we can rule out the case α = 1/4. [39] also shows

there exists an equiangular frame {X}6
i=1 ⊂ R4 such that M∞(X) = 1/3. So

the only possibility we need to consider is α = 1
3
.

Relabel u2, · · · , u6 as v1, · · · , v5. By [39], there exist a subset of four vectors

in Ũ that can be embedded into R3. Without loss of generality, by we have

v1 = (0, 0, 1, 0)T ,

v2 = (
√

1− α2, 0, α, 0)T ,

v3 = (x3, y3, α, 0)T ,

v4 = (x4, y4, α, 0)T ,

v5 = (x5, y5, α, z5)T ,

and 〈v2, v3〉 = 〈v2, v4〉 = 〈v3, v4〉 = −α, 〈v2, v5〉 = 〈v3, v5〉 = 〈v4, v5〉 = α. So

x3 = x4 = −α
√

1 + α

1− α
= −
√

2

3
.

Also

y3y4 =
α(α + 1)

α− 1
,

y2
3 = y2

4 =
(2α− 1)(α + 1)

α− 1
,

so (y3, y4) = (
√

2
3
,−
√

2
3
) or (−

√
2
3
,
√

2
3
).

81



By solving the equations, we have

v1 = (0, 0, 1, 0)T ,

v2 = (
2
√

2

3
, 0,

1

3
, 0)T ,

v3 = (−
√

2

3
,

√
2

3
,
1

3
, 0)T ,

v4 = (

√
2

3
,

√
2

3
,−1

3
, 0)T ,

v5 = (
1

3
√

2
,

1√
6
,
1

3
,±
√

2

3
)T ,

or

v1 = (0, 0, 1, 0)T ,

v2 = (
2
√

2

3
, 0,

1

3
, 0)T ,

v3 = (−
√

2

3
,−
√

2

3
,
1

3
, 0)T ,

v4 = (

√
2

3
,−
√

2

3
,−1

3
, 0)T ,

v5 = (
1

3
√

2
,− 1√

6
,
1

3
,±
√

2

3
)T ,

We claim that such pair of Ũ and c1 that satisfy our assumption does not exist.

To prove that we first assume that it is possible to construct the c1 such that

‖c1‖ = 1 and 〈c1, vi〉 < α for v = 1, · · · , 5, and reach a contradiction. Denote

c1 = (xc, yc, zc, wc)
T .

(a) Suppose v1 = (0, 0, 1, 0)T , v2 = (2
√

2
3
, 0, 1

3
, 0)T , v3 = (−

√
2

3
,
√

2
3
, 1

3
, 0)T , v4 =

(
√

2
3
,
√

2
3
,−1

3
, 0)T , v5 = ( 1

3
√

2
, 1√

6
, 1

3
,
√

2
3
)T , c = (xc, yc, zc,

√
1− x2

c − y2
c − z2

c )
T .
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Then the condition 〈c1, vi〉 < α for v = 1, · · · , 5 turns into the following

system of inequalities:

− 1

3
< zc <

1

3
(3.1)

− 1

3
<

2
√

2

3
xc +

1

3
zc <

1

3
(3.2)

− 1

3
< −
√

2

3
xc +

√
2

3
yc +

1

3
zc <

1

3
(3.3)

− 1

3
<

√
2

3
xc +

√
2

3
yc −

1

3
zc <

1

3
(3.4)

− 1

3
<

1

3
√

2
xc +

1√
6
yc +

1

3
zc +

√
2

3

√
1− x2

c − y2
c − z2

c <
1

3
(3.5)

Consider the function

f1(xc, yc, zc) =
1

3
√

2
xc +

1√
6
yc +

1

3
zc +

√
2

3

√
1− x2

c − y2
c − z2

c .

We claim that the minimum of f1 is equal to 1
3

and is achieved at

(− 1
3
√

2
,− 1√

6
,−1

3
) if we include the boundary of (3.1)-(3.4). Since

df1(− 1

3
√

2
,− 1√

6
,−1

3
) = (

√
2

3
,

√
2

3
,
2

3
).

For any (x, y, z) that satisfies (3.1)-(3.4),the vector v′ pointing from (− 1
3
√

2
,− 1√

6
,−1

3
)

to (x, y, z) has

Dv′f1(− 1

3
√

2
,− 1√

6
,−1

3
) =

√
2

3
(x+

1

3
√

2
) +

√
2

3
(y+

1√
6

) +
2

3
(z+

1

3
) > 0
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by (3.1)(3.3), so its a local minimum. Let (x, y, z) be any point that

satisfy (3.1)-(3.4),w =
√

1− x2 − y2 − z2. The Hessian of f1 is

H =


1
w

+ x2

w3
xy
w3

xz
w3

xy
w3

1
w

+ y2

w3
yz
w3

xz
w3

yz
w3

1
w

+ z2

w3



The leading principal minors of H are 1
w

+ x2

w3 , x2y2

w7 , 1
d3

+ x2+y2+z2

w5 +

x2z2+x2y2

w7 , which are all positive. So f is convex on the domain defined

by (3.1)-(3.3). The local minimum is then global minimum.

(b) v1 = (0, 0, 1, 0)T , v2 = (2
√

2
3
, 0, 1

3
, 0)T , v3 = (−

√
2

3
,−
√

2
3
, 1

3
, 0)T , v4 =

(
√

2
3
,−
√

2
3
,−1

3
, 0)T , v5 = ( 1

3
√

2
,− 1√

6
, 1

3
,
√

2
3
)T , c = (xc, yc, zc,

√
1− x2

c − y2
c − z2

c )
T .

Then similarly

f2(xc, yc, zc) =
1

3
√

2
xc −

1√
6
yc +

1

3
zc +

√
2

3

√
1− x2

c − y2
c − z2

c

is convex. So local minimum is the global minimum. The local minimum

is achieved at (− 1
3
√

2
, 1√

6
,−1

3
) and is equal to 1

3
. Since

Dv′f2(− 1

3
√

2
,

1√
6
,−1

3
) =

√
2

3
(x+

1

3
√

2
)−

√
2

3
(y +

1√
6

) +
2

3
(z +

1

3
) > 0

for any v′ pointing from (− 1
3
√

2
, 1√

6
,−1

3
) to any interior points.

(c) v1 = (0, 0, 1, 0)T , v2 = (2
√

2
3
, 0, 1

3
, 0)T , v3 = (−

√
2

3
,
√

2
3
, 1

3
, 0)T , v4 = (

√
2

3
,
√

2
3
,−1

3
, 0)T ,
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v5 = ( 1
3
√

2
, 1√

6
, 1

3
,
√

2
3
)T , c = (xc, yc, zc,−

√
1− x2

c − y2
c − z2

c )
T . Then

f3(xc, yc, zc) = −(
1

3
√

2
xc +

1√
6
yc +

1

3
zc −

√
2

3

√
1− x2

c − y2
c − z2

c )

is convex. Its local minimums is achieved at ( 1
3
√

2
, 1√

6
, 1

3
) and is equal to

1
3
. Since

Dv′f3(
1

3
√

2
,

1√
6
,
1

3
) = −(

√
2

3
(x+

1

3
√

2
) +

√
2

3
(y +

1√
6

) +
2

3
(z +

1

3
)) > 0

for any v′ pointing from (− 1
3
√

2
, 1√

6
,−1

3
) to any interior points.

(d) v1 = (0, 0, 1, 0)T , v2 = (2
√

2
3
, 0, 1

3
, 0)T , v3 = (−

√
2

3
,−
√

2
3
, 1

3
, 0)T , v4 =

(
√

2
3
,−
√

2
3
,−1

3
, 0)T , v5 = ( 1

3
√

2
,− 1√

6
, 1

3
,
√

2
3
)T , c = (xc, yc, zc,−

√
1− x2

c − y2
c − z2

c )
T .

Then

f4(xc, yc, zc) = −(
1

3
√

2
xc −

1√
6
yc +

1

3
zc −

√
2

3

√
1− x2

c − y2
c − z2

c )

is convex. Its local minimums is achieved at ( 1
3
√

2
,− 1√

6
, 1

3
) and is equal

to 1
3
. Since

Dv′f4(
1

3
√

2
,− 1√

6
,+

1

3
) = −(

√
2

3
(x+

1

3
√

2
)−
√

2

3
(y+

1√
6

)+
2

3
(z+

1

3
)) > 0

for any v′ pointing from (− 1
3
√

2
, 1√

6
,−1

3
) to any interior points.

So the system of inequalities has no solution. There exist no c1 that satisfies
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the assumption. So Ũ is not equiangular.

For frame U = {ui}6
i=1, we consider the graph with the vectors as vertices,

and connect ui, uj with an edge when |〈ui, uj〉| < α. By Lemma 3.4.4, each vertex

is connected to at least 4 edges. By [47], besides the equiangular frame, 3 possible

simple graphs satisfy the condition in Lemma 3.4.4. Without loss of generality, we

can put the corresponding Gram matrices into 3 cases. Denote α > 0 the maximum

correlation, and x, y, z ∈ (−α, α). Then the possible Gram matrix of the frames is

in one of the following forms:

G1 =



1 α α α α x

α 1 y ±α ±α ±α

α y 1 ±α ±α ±α

α ±α ±α 1 z ±α

α ±α ±α z 1 ±α

x ±α ±α ±α ±α 1



G2 =



1 α α α α α

α 1 ±α ±α ±α ±α

α ±α 1 ±α ±α x

α ±α ±α 1 y ±α

α ±α ±α y 1 ±α

α ±α x ±α ±α 1
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G3 =



1 α α α α α

α 1 ±α ±α ±α ±α

α ±α 1 ±α ±α ±α

α ±α ±α 1 ±α ±α

α ±α ±α ±α 1 x

α ±α ±α ±α x 1


If the equiangular frame is not (6, 4)-Grassmannian, then there exist a Gram

matrix G such that G ∈ {G1, G2, G3} and

1. G is positive semi-definite;

2. rank(G) ≤ 4;

3. α < 1
3
.

Remark 3.4.5. In [48], the construction of (6, 4)-Grassmannian frames is provided

independently.

Theorem 3.4.6 ( [48]). The (6, 4)-Grassmannian frames are the equiangular frames

and is unique up to isometry.

µ6,4 =
1

3
.

3.5 Problems related to Grassmannian frames and equiangular lines

In the proof of Lemma 3.4.4, we used the information on the configurations of

6 equiangular lines in R4, and 5 equiangular lines in R4. In order to generalize the
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Lemma to (d + 2, d)−Grassmannian frames, we need the configurations of (d + 2)

and (d+ 1) equiangular lines in Rd. This leads to some unsolved problems.

First, the d+1 equiangular tight frames are characterized as regular simplex.

This can be shown applying the Naimark’s Theorem.

Theorem 3.5.1 ( [23] Naimark’s Theorem). A family of vectors {fm}Mm=1 is a

Parseval frame for an RN if and only if there is a an orthonormal projection P on

RM satisfying Pem = fm for all m = 1, · · · ,M where {em}Mm=1 is an orthonormal

basis for RN .

Furthermore, the complement preserves the ”equiangular” property of the orig-

inal frames.

Corollary 3.5.2 ( [23]). If {fm}Mm=1 is an equiangular tight frame for RN with

Pem =
√

N
N
fm, then {

√
M

M−N (I−P )em}Mm=1 is an equiangular tight frame for RM−N .

This is called the complementary equiangular tight frame.

The ETFs with d + 1 vectors in Rd are Naimark complements of ETF with

d + 1 vectors in R, i.e. {1}d+1
i=1 . However if we remove the tight frame condition,

there exist other possible configuration, as we can see in [39], there are 5 possible

angles for set of 5 equiangular lines in R4. This leads to the first question.

Problem 3.5.3. Is it possible to characterize the configurations of d+1 equiangular

lines in Rd.

In [21], the concept of Naimark complement is extended to any frame in real

space, using the fact that for any frame it is possible to construct a tight frame
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that contains it. It is then natural to ask whether the extended notion of Naimark

complement would help with characterizing the equiangular lines. However the

answer is not obvious. Since the complement of {fn}d+1
n=1 ⊂ Rd is in a space of

dimension 2d + 1 − K. Denote F the synthesis operator of {fn}d+1
n=1, then K is

the multiplicity of the largest eigenvalue of FF ∗. To further explore this problem,

we may start with the spectrum of FF ∗, where F is the synthesis operator of a

equiangular frame.

Our second problem considers (d+2, d)-Grassmannian frames and equiangular

lines. By [23, Theorem 5.1] part (8), ETF with d + 2 vectors does not exist in Rd.

Since if it exists, then its Naimark complement is a equiangular tight frame of d+ 2

vectors in R2, which does not exist. Then we would like to ask what is the (d+2, d)-

Grassmannian frames. One candidate is the (d+2, d) equiangular lines. It is proved

in [10] that (5, 3)-Grassmannian frames are equiangular frames. We would like to

know whether that is true for any d.

Problem 3.5.4. When does a d + 2 equiangular frame exist in Rd? If they exist,

are they the (d+ 2, d)-Grassmannian frame?

The third problem is how to determine whether (N, d) Grassmannian frames

are tight frames. This question is also discussed in detail in [40].

Let ΩN,d(F) denote the space of unit-norm frames for Fd consisting of N vectors

and let ΩN,d(F) denote the space of unit-norm, tight frames for Fd consisting of N

vectors. [40] gave the following definition.
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Definition 3.5.5. The 1-Grassmannian constant is

µN,d(F) = min
Φ∈ΩN,d(F)

µ(Φ).

And a frame Φ ∈ ΩN,d is a 1-Grassmannian frame if

µ(Φ) = µN,d(F).

Then Naimark’s Theorem gives

Theorem 3.5.6 ( [40]). If a 1-Grassmannian frame Φ ∈ ΩN,d(F) has coherence

µN,d(F), then a 1-Grassmannian frame Φ′ ∈ ΩN,N−d(F) exists, and its coherence is

d
N−dµN,d(F). More succinctly,

µN,N−d(F) =
d

N − d
µN,d(F).

So we can determine whether (N, d) Grassmannian frames are tight without

constructing the frame, given information on (N,N − d)-Grassmannian frames.

Example 3.5.7. We can determine whether the (6, 4) Grassmannian frame is tight

with Theorem 3.5.6. It is known that µ6,2(R) = cos(π/6) =
√

3/2. Then

µ6,4 =
2

4
µ6,2(R) =

√
3

4
>

1

3
.

So (6, 4)-Grassmannian frames are not tight.
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Chapter 4: p-Frame Potential of Finite Gabor Frames

4.1 Introduction and background

The Zauner Conjecture, which concerns ETFs with d2 vectors in Cd, is still

open. Neither the construction nor the existence of SIC-POVMs in all Cd is es-

tablished. We would like to approach the conjecture with alternate ways by asking

three different questions. First, we would like to know if we can instead character-

ize POVMs that are informationally complete. Second, whether we can prove the

existence by linking the SIC-POVMs to the minimizers of p-frame potential, which

always exist. Third, whether it is possible to find frames that have a small number

of different inner products. In this chapter we will further discuss topics related to

these three questions.

In Section 4.2, we compute the spectrum of the Gram matrix of a finite Gabor

frame. Section 4.3 discusses some known bounds for the p-frame potentials. Section

4.4 is focusd on the relation between spherical design and the optimizers of p-frame

potentials. In section 4.5, we compute the inner products of vectors in Gabor frames

that are generated by two type of special sequences. Section 4.3, 4.3, 4.5 deal with

the three questions discussed in the previous paragraph correspondingly. We discuss

some possible ways to approach the questions in Section 4.6.
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4.2 Spectrum of Gram matrices

In this section we analyze the spectrum of the Gram matrix of a finite Gabor

frame. The motivation is to characterize finite Gabor frames that are informationally

complete. Recall that a set of operators {Πk,l}d−1
k,l=0 is informationally complete if it

is linearly independent.

Φ = {MkT lφ}(k,l)∈Zd×Zd is the orbit of φ under Weyl-Heisenberg group action.

For convenience, we index the vectors in a finite Gabor frame Φ as φdk+l ≡MkT lφ.

Then the operator corresponding to φi is Ei = 1
d
φi⊗φi ≡ 1

d
Πi. In order to determine

whether the operators {Πk,l}d−1
k,l=0 form a linear independent set, we can define its

Gram matrix similarly as in Cd with the Frobenius inner product.

Definition 4.2.1 ( [44]). The Frobenius inner product of two m × n matrices A

and B is

〈A,B〉F = tr(B∗A) =
∑

Ai,jBi,j

The Frobenius inner product is indeed an inner product in Mm×n(C), the space

of m × n matrices. Suppose ai, bi ∈ Cm for i = 1, · · · , d, and define the matrices

A = [a1, · · · , an], B = [b1, · · · , bn]. Then wA = [aT1 · · · aTn ]T , wB = [bT1 · · · bTn ]T are

vectors in Cmn, and

〈wA, wB〉 =
∑

Ai,jBi,j = 〈A,B〉F .

So the Frobenius inner product is equivalent to the inner product defined on Cd2 if
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we view the matrices Πk,l as vectors in Cd2 .

Since a set of vectors is linear independent if and only if its Gram matrix is

nonsingular, we can determine the linearly independence of {Πk,l}d−1
k,l=0 by examining

the Gram matrix of the operators. First, we can compute the entries of the Gram

matrix.

Proposition 4.2.2. Let φ ∈ Cd be a unit vector and Πk,l = MkT lφ⊗MkT lφ, G be

the Gram matrix of {Πk,l}d−1
k,l=0. Then the dk + l, dk′ + l′-th entry of G is

Gdk+l,dk′+l′ = |〈φ,Mk′−kT l
′−lφ〉|2, (4.1)

where k, k′ ∈ {0, · · · , d− 1}.

Proof.

Gdk+l,dk′+l′ = 〈Πk,l,Πk′,l′〉F =
∑
i,j

(Πk,l)i,j(Πk′,l′)i,j

=
∑
i,j

(φdk+l ⊗ φdk+l)i,j(φdk′+l′ ⊗ φdk′+l′)i,j

= |〈φdk+l, φdk′+l′〉|2 = |〈MkT lφ,Mk′T l
′
φ〉|2 = |〈φ,Mk′−kT l

′−lφ〉|2.

We observe from Proposition 4.2.2 that each row of G is a rearrangement of

the first row of G. Entries of G follow a certain pattern.

Proposition 4.2.3. G is a block circulant matrix with circulant blocks.
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Proof. The Gram matrix of {Πk,l}d−1
k,l=0 is a d2 × d2 matrix. We separate G into d2

blocks as following:

G =



A0,0 A0,1 A0,2 · · · A0,d−1

A1,0 A1,1 A1,2 · · · A1,d−1

...
...

...
...

...

Ad−1,0 Ad−1,1 Ad−1,2 · · · Ad−1,d−1


Each of the block is a d× d submatrix of G. The l, l′-th entry in block Ak,k′ is then

Gdk+l,dk′+l′ .

First we show that G is block circulant, that is, Ak,k′ = Ak+1,k′+1 for any

k, k′ ∈ Z/dZ. For any l, l′ ∈ Z/dZ the l, l′-entry in Ak+1,k′+1 is

Gd(k+1)+l,d(k′+1)+l = |〈Mk+1T lφ,Mk′+1T l
′
φ〉|2 = |〈φ,Mk′−kT l

′−lφ〉|2.

Which is equal to the l, l′-entry in Ak,k′ . So the Gram matrix is a block circulant

matrix. And we have Ak,k′ = A0,k′−k. For simplicity, we denote Ak ≡ A0,k. G can

be then written as

G =



A0 A1 A2 . . . Ad−1

Ad−1 A0 A1 . . . Ad−2

...
...

...
...

...

A1 A2 A3 . . . A0


.

Second we show each block itself is circulant. Without loss of generality, we

only need to show that Ak is circulant when k ∈ Z/dZ. For any k, l, l′ ∈ Z/dZ, the
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l + 1, l′ + 1-th entry of Ak is

Al+1,dk+l′+1 = |〈T lφ,MkT l
′
φ〉|2 = |〈φ,MkT l

′−lφ〉|2 = Al,dk+l′ .

Where Al,dk+l′ is the l, l-th entry of Ak. Each block is circulant. So the block Ak is

of the form

Ak =



A0
k A1

k A2
k · · · Ad−1

k

Ad−1
k A0

k A1
k · · · Ad−2

k

· · · · · · · · · · · · · · ·

A1
k A2

k A3
k · · · A0

k



First we need the following well known result (see e.g. [38]).

Theorem 4.2.4. Let

B =



b0 b1 b2 · · · bn−1

bn−1 b0 b1 · · · bn−2

...
...

...
...

...

b1 b2 b3 · · · b0


be a n× n circulant matrix. Then its n eigenvalues are

λj =
n−1∑
j=0

bjω
j

for j ∈ Z/nZ.

Now we can calculate the eigenvalues of G. The following result is well known
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(see [27, 60]). It is an extension of the method used to calculate the eigenvalues

of circulant matrices. Denote DFTn the n × n DFT matrix. Where DFTn =

(ω
jk
√
n

)j,k∈Z/nZ and ω is the n-th root of unity. We can compute the spectrum of a

matrix that is block circulant with circulant blocks.

Theorem 4.2.5. Let G be a block circulant matrix with circulant blocks as in (4.2).

G can be diagonalized by DFTd ⊗DFTd. The eigenvalues of G are

λa,b =
d−1∑
l=0

d−1∑
k=0

ωak+blAlk, i, j ∈ {0, 1, · · · d− 1}.

Proof. For any a ∈ Z/dZ, consider the functions ha : Cd → Cd2 defined as following

ha(v) = (vT , ρav
T , ρ2

av
T , · · · , ρd−1

a vT ),

where ρa = ωa. We first prove the claim that the column vectors of DFTd ⊗DFTd

are linearly independent and are eigenvectors of G. As a result of this claim the

matrix G can be diagonalized by DFTd ⊗DFTd.

Denote Ha = A0 + A1ρa + A2ρ
2
a + · · · + Ad−1ρ

d−1
a . Each Hi is a circulant

matrix, thus can be diagonalized by the d× d DFT matrix DFTd. Suppose v is an
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eigenvector of Ha and Hav = λv. Then v is a column vector of DFTd and

Gha(v) =



A0 A1 A2 . . . Ad−1

Ad−1 A0 A1 . . . Ad−2

...
...

...
...

...

A1 A2 A3 . . . A0





v

ρav

...

ρd−1
a v


=



Hav

ρaHav

· · ·

ρd−1
a Hav


= λha(v).

So the vectors ha(v), which by definition are exactly the columns of DFTd ⊗

DFTd, are eigenvectors of G. Since det(DFTd⊗DFTd) = det(DFTd)
2d 6= 0, DFTd⊗

DFTd is invertible. The matrix G can be diagonalized by DFTd ⊗DFTd.

By (4.2), the eigenvalues of G are the collections of eigenvalues of {Ha}da=1.

Denoting the 1,n-th entry in Ha as Hn
a , n ∈ {0, 1, · · · , d− 1}. The d eigenvalues of

Ha are:

λa,b = H0
a + ρbH

1
a + ρ2

bH
2
a + · · ·+ ρd−1

b Hd−1
a

=
d−1∑
l=0

ρlbH
l
a =

d−1∑
l=0

ρlb(
d−1∑
k=0

ρkaA
l
k) =

d−1∑
l=0

d−1∑
k=0

ρkbρ
l
aA

k
l

=
d−1∑
l=0

d−1∑
k=0

ωak+blAlk.

The spectrum of G is then {λa,b =
d−1∑
l=0

d−1∑
k=0

ωak+blAlk}d−1
a,b=0.

We can now compute the spectrum of the Gram matrix of {Πk,l}d−1
k,l=0 with the

general result for block circulant matrices with circulant blocks.

Corollary 4.2.6. Let φ ∈ Cd be a unit vector and Πk,l = MkT lφ ⊗MkT lφ, G be
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the Gram matrix of {Πk,l}d−1
k,l=0. Then

λa,b =



d−1∑
k=0

ωbl|〈g, T lg〉|2 +
(d−1)/2∑
k=1

d−1∑
l=0

cos

(
2π(ak+bl)

d

)
|〈g,MkT lg〉|2, d odd

d−1∑
l=0

ωbl|〈g, T lg〉|2 +
d/2−1∑
k=1

d−1∑
l=0

cos

(
2π(ak+bl)

d

)
|〈g,MkT lg〉|2 + ...

d−1∑
k=0

ωad/2+bl|〈g,Md/2T lg〉|2, d even

Proof. 1. If d is odd, since G = GT ,

A0 = AT0 , A1 = ATd−1, ... ,A(d−1)/2 = AT(d+1)/2. Then for k = 1, · · · , (d − 1)/2,

l = 0, · · · , (d − 1)/2, we have Alk = Ad−ld−k. For l = 0, · · · , (d − 1)/2, we have

Al0 = Ad−l0 . Applying Theorem 4.2.5,

λa,b =
d−1∑
l=0

ωblAl0 +

(d−1)/2∑
k=1

d−1∑
l=0

(ωak+bl + ω−(ak+bl))Alk

=
d−1∑
k=0

ωbl|〈g, T lg〉|2 +

(d−1)/2∑
k=1

d−1∑
l=0

cos

(
2π(ak + bl)

d

)
|〈g,MkT lg〉|2.

2. If d is even, since G = GT ,

A0 = AT0 , A1 = ATd−1, ... , Ad/2−1 = ATd/2+1, Ad/2 = ATd/2, since G = GT .

Then for k = 1, · · · , d/2 − 1, l = 0, · · · , d/2 − 1, we have Alk = Ad−ld−k. For
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k = 0, d/2,l = 0, · · · , (d− 1)/2, we have Alk = Ad−lk . Applying Theorem 4.2.5,

λa,b =
d−1∑
l=0

ωblAl0 +

d/2−1∑
k=1

d−1∑
l=0

(ωak+bl + ω−(ak+bl))Alk +
d−1∑
l=0

ωad/2+blAld/2−1

=
d−1∑
l=0

ωbl|〈g, T lg〉|2 +

d/2−1∑
k=1

d−1∑
l=0

cos

(
2π(ak + bl)

d

)
|〈g,MkT lg〉|2 + ...

d−1∑
k=0

ωad/2+bl|〈g,Md/2T lg〉|2

4.2.1 Future problem: applying Inverse Function Theorem

One question we would like to consider is whether it is possible to construct a

Gabor frame {MkT lg}dk,l=0 such that there is a ball B ∈ Cd with small radius and

〈g,MkT lg〉 ∈ B for all k, l = 0, · · · , d − 1. In this subsection we suggest applying

the Inverse Function Theorem(IVT) and state the problem.

Define F : Cd → Cd2 as F (g) = {〈g,MkT lg〉}d−1
k,l=0, and let Fk,l(g) = 〈g,MkT lg〉.

F has the following property.

Proposition 4.2.7. F is real differentiable.

Proof. Let h ∈ Cd. Then

F (g + h)− F (g) = {〈g,MkT lh〉+ 〈h,MkT lg〉+ 〈h,MkT lh〉}d−1
k,l=0

Define DF (g)(h) = {〈g,MkT lh〉 + 〈h,MkT lg〉}d−1
k,l=0. DF (g) : Cd → Cd2 is
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R-linear (but not C-linear), since if c ∈ R,

DF (g)(ch) = {〈g, cMkT lh〉+ 〈ch,MkT lg〉}d−1
k,l=0

= {c〈g,MkT lh〉+ c〈h,MkT lg〉}d−1
k,l=0

And lim‖h‖→0
‖F (g+h)−F (g)−DF (g)(h)‖

‖h‖ = lim‖h‖→0
‖{〈h,MkT lh〉}d−1

k,l=0‖
‖h‖ = 0.

For any g ∈ Cd, DF (g) is continuous. So we want to see whether we can get

any conclusion by applying Inverse Function Theorem (for example guarantee F−1

exists on some set near or include the point eiθ1√
d+1

, eiθ2√
d+1

, . . . )).

Theorem 4.2.8 (Inverse Function Theorem). Suppose X and Y are Banach spaces,

U ⊂ X is open, f ∈ C1, x0 ∈ U and Df(x0) is invertible. Then there is a ball

B = B(x0, r) in U centered at x0 such that

1. V = f(B) is open,

2. f |B : B → V is a homeomorphism,

3. g = (f |B)−1 ∈ Ck(V,B) and g′(y) = [f ′(g(y))]−1 for all y ∈ V .

To apply this theorem, we need a g ∈ Cd such that DF (g) is invertible. This

is difficult because F is not complex differentiable and we want to separate it into

real and imaginary part and consider it to be a R2d → R2d2 function. Furthermore,

to achieve our goal, it’s necessary to find the corresponding neighborhood U of g

and the diameter of the corresponding V = F (U), but the theorem and its proof

does not provide much information on V besides it being an open set.
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4.3 p-Frame potentials of Gabor frames

In this section we will investigate the lower bound of p-frame potential of

Gabor frames in Cd. We separate the problem into three cases: 0 < p < 2, p = 2

and p > 2. For p ∈ (0,∞] and d ≥ 2, define Zp,d on unit sphere by

Zp,d(g) ≡
d−1∑
k,l=0

|〈g,MkT lg〉|p =
2 FPp,d2,d({MkT lg}d−1

k,l=0) + d2

d2

4.3.1 p=2

Under the special case p = 2. The minimizers of 2-frame potential among all

frames are characterized in [8].

Theorem 4.3.1 ( [8],Theorem 6.2). Given any d and N , let {xi}Ni=1 ⊂ Cd−1. Then

max
(
0,
N2 − dN

2d

)
≤ FP2,N,d({xi}Ni=1) ≤ N2.

The lower bounds of N and N2/d are achieved if and only if {xi} is an orthonormal

set or a unit norm tight frame in Cd, respectively.

For the Gabor Frames, we make the following observation.

Proposition 4.3.2. Suppose g ∈ Sd−1, then {MkT lg}d−1
k,l=0 is tight frame.

Proof. To prove this we can show that the frame operator of {MkT lg}d−1
k,l=0 is a
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constant times identity. It is sufficient to have

∑
k,l

〈ej,MkT lg〉MkT lg = Cej, ∀j ∈ {0, 1, · · · , d− 1}

for some constant C, where {ej}d−1
j=0 is the standard orthonormal basis of Cd.

(∑
k,l

〈ej,MkT lg〉MkT lg
)
m

=
∑
k,l

gj−lgm−le
2πi(m−j)k/d

=


0, m 6= j,

d, m = j.

Thus ∑
k,l

〈ej,MkT lg〉MkT lg = dej, ∀j ∈ {0, 1, · · · , d− 1}.

Remark 4.3.3. When p = 2, by Theorem 4.3.1 and Proposition 4.3.2 we conclude

that for any g ∈ Sd−1, Z2,d(g) is a constant and

Z2,d(g) =
1

d
.

4.3.2 p > 2

Before we compute the lower bound for Zp,d for p > 2, we first show a general

lower bound for the p-frame potential among any frames. The following lower bound

is proved in [32].
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Theorem 4.3.4. Suppose p > 2 is any real number. For any frame X = {xi}Ni=1 ⊂

Sd−1. Then ∑
i<j

|〈xi, xj〉|p ≥
(

2N

d(N − 1)

)p/2(
N

2

)
.

To prove this theorem, we need the following well known result.

Proof of Theorem 4.3.4.

(∑
i<j

(|〈xi, xj〉|2)p/2(
N
2

) )2/p

≥

∑
i<j

|〈xi, xj〉|2(
N
2

)
≥ (N2/d−N)/2(

N
2

) =
N − d
d(N − 1)

. (4.2)

We have ∑
i<j

|〈xi, xj〉|p ≥
(

N − d
d(N − 1)

)p/2(
N

2

)

The equality holds if and only if X is a ETF.

As a result we can get a lower bound for any Gabor frames generated by

g ∈ Cd.

Corollary 4.3.5. Suppose p > 2 is any real number and g ∈ Cd, then Zp,d(g) ≥

d−1
(d+1)p/2−1 + 1. The equality holds if and only if X = {MkT lg}d−1

k,l=0 is ETF.

103



Proof.

Zp,d(g) ≥
2

(
d2−d
d(d2−1)

)p/2(
d2

2

)
+ d2

d2

=

d2(d2−1)

(d+1)p/2
+ d2

d2

=
d− 1

(d+ 1)p/2−1
+ 1

The condition equality hold is the same as in Theorem 4.3.4.

Corollary 4.3.5 shows that the lower bound of Zp,d is achieved if and only if

for a fixed d, there exist Gabor frames that are also ETFs. Zauner conjectured that

Gabor frames that are ETFs exist for any d. The conjecture is still open, so it is

not known whether the bound in Corollary 4.3.5 can be achieved for all d. However,

the minimizers of Zp,d exist by a compactness argument. So a natural question to

ask would be the following.

Problem 4.3.6. Can the lower bound in Corollary 4.3.5 be achieved for all d? In

another word, is it true that g ∈ Cd minimizes Zp,d if and only if the Gabor frame

generated by g is ETF.

This problem will be further discussed in Section 4.4.

4.3.2.1 Further questions

Theorem 4.3.5 solve the minimization problem for the dimensions which have

known the exact construction of SIC-POVMs. In those dimensions, the minimizers
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of Zp,d when 2 < p <∞ also minimize Z∞,d. To better understand this minimization

problem, it is then natural to ask whether the minimizers of Zp,d are the same for

2 < p < ∞ and p = ∞ in the dimension when there is currently no known exact

construction of SIC-POVM.

Another question is that, suppose g is a minimizer of Zp,d, whether the op-

erators {Pk,l = (MkT lg)(MkT lg)∗}d−1
k,l=0 are linear independent. Denote the Gram

matrix of {Pk,l}d−1
k,l=0 as G. The p/2-th hadamard power of G, defined as G(p/2) =

{Gp/2
i,j }i,j is positive semidefinite, since G is positive semidefinite and all entries of

G are non-negative. ( [45])

Since G(p/2) is also a block circulant matrix with circulant blocks, by Theorem

4.2.2 the eigenvalues of G(p/2) are

λa,b =
∑
k,l

ωak+bl|〈g,MkT lg〉|p.

We had a few observations:

� Since G(p/2) is positive semidefinite, all λa,b are non-negative.

� Zp,d(g) is the largest eigenvalue of G(p/2).

By the above observation, minimizing Zp,d can also be viewed as finding the

lower bound for the largest eigenvalue of some symmetric positive semidefinite ma-

trices that are block circulant with circulant blocks.
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4.3.3 0 < p < 2

In this section we give a lower bound for Zp,2(g) when g is a unit vector in R2.

Theorem 4.3.7. Suppose 0 < p < 2 and g ∈ R2 is a unit vector, then Zp,2(g) ≥ 2.

Equality holds when g ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}.

Proof. We prove this claim by applying method in calculus. Suppose g = (x, y) with

x, y ∈ [−1, 1], then |y| = (1− x2)1/2.

Zp,2 = 2p|x(1− x2)1/2|p + |2x2 − 1|p.

Zp,2 is differentiable except at x = 0. For x 6= 0, let

dZp,2
dx

= 2pp|x(1− x2)1/2|p−1sgn(x)
1− 2x2

(1− x2)1/2
+ 4px|2x2 − 1|p−1sgn(2x2 − 1) = 0

(4.3)

Solving for (4.3), we have x2 = 2±
√

2
4

. So the critical points for Zp,2 are−1, 0, 1,±
√

2±
√

2
4

.

Comparing Zp,2 at these values, we get the minimum of Zp,2 is 2 when x = −1, 0, 1.

4.3.3.1 Numerical result

Suppose p = 1 and g ∈ Cd. Let {v1, · · · , vd} be the standard basis for Cd. For

d = 2, 3, 4, 5, matlab results show that d ≤ Z1,d ≤ d2−1√
d+1

+ 1. Which means Z1,d is

minimized when g ∈ {eiθvi | θ ∈ [0, 2π), and i = 1, · · · , d} and maximized when

{MkT lg} is equiangular tight frame.
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Suppose p = 3, 4 and g ∈ Cd. Numerical results show that for d = 2, 3, 4, 5,

Zp,d ≤ d and is maximized when g ∈ {eiθvi | θ ∈ [0, 2π), and i = 1, · · · , d}.

4.4 Optimization of Zp,d and spherical (t, t)-designs

In this section we give a more detailed discussion on the problem posed in

Section 4.3.2: is it true that g ∈ Cd minimizes Zp,d if and only if {MkT lg}d−1
k,l=0 is

ETF. We will focus on one of the possible ways to connect the Zauner’s conjecture

and the minimization of Zp,d using the concept of spherical designs.

Denote g∗ the minimizer for Zp,d on Sd−1. We first establish the existence of

a minimizer g∗ using the following proposition of Zp,d.

Proposition 4.4.1. Zp,d(g) is a continuous function of g under `1 norm.

Proof. Let g, g′ ∈ Sd−1. Composition of continous functions is continuous, and

Zp,d =
d−1∑
k,l=0

f1(〈g,MkT lg〉) where f1 : C → R is f1(t) = |t|p. Since f1 is continuous

function, we only need to prove that for any fixed k, l, 〈g,MkT lg〉 is continuous.

Denote g = (a1, · · · , ad) and g′ = (a′1, · · · , a′d).

|〈g,MkT lg〉 − 〈g′,MkT lg′〉| = |
d∑
i=1

aiai+l − a′ia′i+l|

≤
d∑
i=1

|aiai+l − a′ia′i+l|

≤
∑

(|ai| · |ai+l − a′i+l|+ |a′i+l − ai+l| · |ai − a′i|+ |ai+l| · |ai − a′i|).

For any ε > 0, let δ = min
(

ε
3‖g‖1 ,

√
ε/3
)
. |ai| < ‖g‖1 for any i. Then if ‖g−g′‖1 < δ,
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we have

|〈g,MkT lg〉− 〈g′,MkT lg′〉| ≤ ‖g− g′‖1‖g‖1 +‖g− g′‖1‖g− g′‖1 +‖g− g′‖1‖g‖1 < ε.

〈g,MkT lg〉 are continuous functions of g under `1 norm. So Zp,d are also continuous

functions of g under `1 norm.

In addition, we make the following observation.

Observation: For p an integer, g1, g2 ∈ Sd−1, denote h = g1 − g2, then Zp,d

has Lipschitz property.

Proof.

|Zp,d(g1)− Zp,d(g2)| = |
∑
k,l

|〈g1,M
kT lg1〉|p −

∑
k,l

|〈g2,M
kT lg2〉|p|

≤
∑
k,l

|〈g1,M
kT lg1〉p − 〈g2,M

kT lg2〉p|

=
∑
k,l

|〈g1,M
kT lg1〉 − 〈g2,M

kT lg2〉| × |
p−1∑
q=0

〈g1,M
kT lg1〉q〈g2,M

kT lg2〉p−1−q|

≤ p
∑
k,l

|〈g1,M
kT lg1〉 − 〈g2,M

kT lg2〉|

= p
∑
k,l

|〈h,MkT lg2〉+ 〈g2,M
kT lh〉+ 〈h,MkT lh〉|

≤ 3pd2‖h‖ = 3pd2‖g1 − g2‖
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Remark 4.4.2. If we fix g and view Zp,d as a function of p, i.e. let fg(p) ≡ Zp,d(g).

Then for p ∈ (0,∞), fg(p) is a decreasing function. And we have lim
p→∞

fg(p) =

(] of (k, l) s.t. MkT lg = g). Since if g 6= MkT lg, then |〈g,MkT lg〉| < 1 and

lim
p→∞
|〈g,MkT lg〉|p = 0.

Since Zp,d is a continuous function and Sd−1 is compact, minimizers of Zp,d

always exist. We then would like to know whether the lower bound in Corollary

4.3.5 can always be achieved.

The relation between equiangular tight frames and spherical designs is estab-

lished in [67]. In the rest of the section we will first describe the relation, then state

our question that is equivalent to Problem 4.3.6 in terms of spherical designs and

discuss our attempts of solving the problem.

Theorem 4.4.3 ( [67], Thm 6.7). For any {fi}Ni=1 ⊂ Cd and positive integer t,

N∑
j=1

n∑
k=1

|〈fj, fk〉|2t ≥
1(

d+t−1
t

)( N∑
l=1

‖fl‖2t
)2
.

And if the equality hold, then {fi}Ni=1 is called a (t, t)-design for Cd. Without

loss of generality we only consider collection of vectors on unit sphere. {fi}Ni=1 ⊂

Sd−1 is a spherical (t, t)-design if

N∑
j=1

N∑
k=1

|〈fj, fk〉|2t =
N2(
d+t−1
t

) .
For any t > 2 we make the following observation:

Proposition 4.4.4. If t > 2, there is no (t, t)-design for Cd with d2 unit norm
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vectors.

Proof. By theorem 4.3.4, for any {fi}d
2

i=1 ⊂ Sd−1,

N∑
j=1

N∑
k=1

|〈fj, fk〉|2t ≥
d2(d− 1)

(d+ 1)t−1
+ d2

Suppose {fi}d
2

i=1 ⊂ Sd−1 is a (t, t)-design, then

N∑
j=1

N∑
k=1

|〈fj, fk〉|2t =
d4(

d+t−1
t

) .
For t > 2, d4

(d+t−1
t )

< d2 ≤ d2(d−1)
(d+1)t−1 + d2, which is a contradiction with the bound in

Theorem 4.3.4. So no (t, t)-design exist when t > 2.

For any g ∈ Sd−1 we have

Z4,d(g) = 1/d2
∑
k1,l1

∑
k2,l2

|〈Mk1T l1g,Mk2T l2g〉|4 ≥ 2d

d+ 1
=

d2(
d+1

2

) . (4.4)

and our goal is to prove that the lower bound can be achieved. This is equivalent

with showing that the minimizer of Z4,d(g) is (2, 2)-design. Renes etc. has shown

in [51] that SIC-POVMs are exactly (2, 2)-designs with d2 vectors.

By Theorem 6.7 in [67], the equality in (4.4) holds if and only if any of the

following equivalent conditions hold.
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1. Generalized Bessel identity

2d

d+ 1
‖x‖4 =

d−1∑
k,l=0

|〈x,MkT lg〉|4, ∀x ∈ Cd

2. Generalized Plancherel identity

2d

d+ 1
〈x, y〉2 =

d−1∑
k,l=0

〈x,MkT lg〉2〈MkT lg, y〉2, ∀x, y ∈ Cd

We can now restate Problem 4.3.6.

Problem 4.4.5. Is it true that for all g∗ ∈ Cd that are the minimizers of Zp,d, the

Generalized Bessel identity or the Generalized Plancherel identity holds?

4.5 Sequences with small number of different inner products

This section concerns the first question mentioned in the beginning of the

chapter. Instead of looking for frames with only one angle among vectors, char-

acterizing frames with small number of different inner products may give us more

insight into Zauner’s conjecture. In this section we investigate the Gabor frames

generated by two special sequences, Björck sequences and Alltop sequences.

4.5.1 Björck Sequences

The construction of Björck sequence is related to the study of ambiguity func-

tion and CAZAC sequences. In this section we will apply the result in [7] to compute
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the number of possible different values the inner products take in Gabor frames gen-

erated by Björck sequences.

Definition 4.5.1. Let u : Z/NZ → C. The discrete narrow band ambiguity func-

tion AN(u) : Z/NZ× Z/NZ→ C is defined as

AN(u)[m,n] =
1

N

N−1∑
k=0

u[m+ k]u[k]e−2πikn/N

for all (m,n) ∈ Z/NZ× Z/NZ.

Consider the vector g = (u(1), · · · , u(N))/
√
N ∈ CN , the value of ambiguity

function AN(u)[m,n] can be viewed as a multiple of the inner product between

vectors in {MnTmg}N−1
m,n=0, the Gabor frame generated by g. Since

AN(u)[m,n] =
1

N
〈T−mu,Mnu〉 =

1

N
〈u,MnTmu〉e2πimn/N .

The Björck sequence is defined in term of Legendre symbol.

Definition 4.5.2. Let p be a prime number, k an integer. Denote χ[k] = (k
p
) the

Legendre symbol of k modulo p, where

χ[k] =

(
k

p

)
=



1 if k ≡ m2 mod p for some m ∈ Z/pZ×;

0 if k ≡ 0 mod p;

−1 if k 6≡ m2 mod p for all m ∈ Z/pZ×.

We say k is a quadratic residue modulo p if χ[k] = 1 and denote k ∈ Q; k is a
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quadratic nonresidue if χ[k] = −1 and denote k ∈ QC .

Definition 4.5.3. The Björck sequence of length N , where N is a prime and N ≡ 1

mod 4 is defined by

u[k] = eiθχ[k], where θ = arccos

(
1

1 +
√
N

)
,

for all k ∈ Z/NZ.

The Björck sequence of length N , where p is a prime and N ≡ 3 mod 4 is defined

by

u[k] =


eiφ if k ∈ QC ⊆ (Z/NZ)×,

1 otherwise,

for all k ∈ Z/NZ.

We will then prove the main result for this section.

Theorem 4.5.4. Suppose d is prime and d ≡ 3 mod 4, then |AN(U)[m,n]| take

d different values. Furthermore, |AN(U)[m,n]| = |AN(U)[m′, n′]| if mn ≡ m′n′

mod d.

We need the following results to prove Theorem 4.5.4.

Lemma 4.5.5 ( [7], Lemma 3.6). Suppose N is prime and r, s, t ∈ C. Define a

113



function U : Z/NZ→ C as

U [k] =



r χ[k] = 1,

s χ[k] = −1,

t k = 0.

Let R = r+s
2

, S = r−s
2

, T = t−R, ζd = e2πi/d. Then

AN(U)[m,n] = |S|2AN(χ)[m,n] +
1

N
(E1[m,n] + E2[m,n])

for all m,n ∈ Z/NZ \ {0}, where E1[m,n] = RT̄ + R̄T ζmnp , and

E2[m,n] =


(ST̄ + S̄T ζmnN )χ[m] + (RS̄ + R̄SζmnN )χ[n]

√
N if N ≡ 1 mod 4,

(ST̄ − S̄T ζmnN )χ[m]− (RS̄ + R̄SζmnN )iχ[n]
√
N if N ≡ 3 mod 4.

Suppose N is prime, for any integer a, b denote the quantity

K[a, b;N ] =
∑

x∈Z/NZ

exp(
2πi(ax+ bx−1)

N
),

where x−1 is the multiplicative inverse of x in Z/NZ.

Lemma 4.5.6 ( [7]). Fix an odd prime N , then for all m,n ∈ Z/NZ \ {0},

e−πimn/NAN(χ)[m,n] = ± 1

N
K[1, a;N ] ∈ R,
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where a = (mn)2/16 in Z/NZ.

Remark 4.5.7. By the proof of Lemma 4.5.6, denote b = m/2 in Z/NZ, we have

AN(χ)[m,n] =
e2πibn

N
K[1, a;N ].

So by computation if mn is even in R, then AN(χ)[m,n] = e2πimn

N
K[1, a;N ]. Other-

wise AN(χ)[m,n] = − e2πimn

N
K[1, a;N ].

Proof of Theorem 4.5.4. Using the same notation as in the definition of Björck se-

quence and in Lemma 4.5.5. Let U be the Björck sequence with length N , where

N ≡ 3 mod 4. We have R = 1+eiφ

2
, S = T = 1−eiφ

2
.

Then for any m,n ∈ Z/NZ \ {0},

E1[m,n] + E2[m,n] = (RS̄ + R̄SζmnN ) + (|S|2 − |S|2ζmnN )χ[m]− (RS̄ + R̄SζmnN )iχ[n]
√
N

= (
i
√
N

1 +N
− i
√
N

1 +N
ζmnN ) +

N

1 +N
(1− ζmnN )χ[m] + ...

(
i
√
N

1 +N
− i
√
N

1 +N
ζmnM )iχ[n]

√
N

=
N(1− ζmnN )

1 +N

( i√
N

+ χ[m] + χ[n]
)

So again let a = (mn)2/16 in Z/NZ,

B[m,n] ≡ (1+N)AN(U)[m,n] = ±K[1, a;N ]eπimn/N+(1−ζmnN )(
i√
N

+χ[m]+χ[n]).

(4.5)

Note that in (4.5), all the terms other than χ[m] + χ[n] depend on the product

mn. Now suppose mn ≡ m′n′ mod N . Since χ[mn] = χ[m]χ[n], we consider the
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following subsets of Z/NZ× Z/NZ:

� S1 = {(m,n)|χ[m] = χ[n] = 1,mn is odd in R}

� S2 = {(m,n)|χ[m] = χ[n] = 1,mn is even in R}

� S3 = {(m,n)|χ[m] = χ[n] = −1,mn is odd in R}

� S4 = {(m,n)|χ[m] = χ[n] = −1,mn is even in R}

� S5 = {(m,n)|χ[mn] = −1,mn is odd in R},

� S6 = {(m,n)|χ[mn] = −1,mn is even in R},

If (m,n) and (m′, n′) are in the same set, then B[m,n] = B[m′, n′]. Else

without loss of generality, we have the following possible outcomes:

1. mn ∈ S5,m
′n′ ∈ S6

|B[m,n]| − |B[m′, n′]|

=K[1, a;N ]2 + 2Re(K[1, a;N ]eπimn/N(1− ζ−mnN )
−i√
N

) +
‖1− ζmnN ‖2

N
−

K[1, a;N ]2 + 2Re(K[1, a;N ]eπim
′n′/N(1− ζ−m′n′N )

−i√
N

)− ‖1− ζ
m′n′
N ‖2

N

= 0
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2. mn ∈ S2,m
′n′ ∈ S4

|B[m,n]| − |B[m′, n′]|

=|K[1, a;N ]eπimn/N + (1− ζmnN

i√
N

)|2 + 4‖1− ζmnN ‖2

+ 4Re

(
(K[1, a;N ]eπimn/N + (1− ζmnN )

i√
N

)(1− ζ−mnN )

)
− |K[1, a;N ]eπim

′n′/N + (1− ζmnN

i√
N

)|2 − 4‖1− ζm′n′N ‖2

+ 4Re

(
(K[1, a;N ]eπim

′n′/N + (1− ζm′n′N )
i√
N

)(1− ζ−m′n′N )

)

By computation

Re(K[1, a;N ]eπimn/N + (1− ζmnN )
i√
N

)(1− ζ−mnN )

=Re

(
2iK[1, a;N ] sin(πmn/p)− 2[cos(2πmn/N) + 1]

i√
N

)
= 0

So |B[m,n]| − |B[m′, n′]| = 0.

3. mn ∈ S1,m
′n′ ∈ S2

|B[m,n]| − |B[m′, n′]|

=Re(1− ζmnN )(
i√
N

+ 2)K[1, a;N ]e−πimn/N −Re(1− ζm′n′N )(
i√
N

+ 2)K[1, a;N ]e−πim
′n′/N

=Re(1− ζmnN )(
i√
N

+ 2)K[1, a;N ](e−πimn/N − e−πim′n′/N) = 0

The rest of the possible cases can be derived from case 2 and 3. So we have

|AN(U)[m,n]| = |AN(U)[m′, n′]| if mn ≡ m′n′ mod d.
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4.5.2 Alltop Sequence

In this Section we show the inner products of Gabor frames generated by

Alltop Sequence. The following results are proved in [2].

Let N be an odd integer greater than two, we can define a λ-th quadric phase

sequence by

aλ(k) ≡ N−1/2e2πiλk2/N ,

where λ ∈ Z/NZ.

Define the qubic phase sequence as

bλ(k) ≡ N−1/2e2πi(k3+λk)/N .

Then {aλ}N−1
λ=0 is the same sequence as {Mλv}N−1

λ=0

Theorem 4.5.8 ( [2]). For odd N ≥ 3, let p be the smallest prime divisor of N ,

then

|〈Tmaλ, aµ〉| =



1, if λ = µ,m = 0,

0, if λ = µ,m 6= 0,

N−1/2, otherwise.
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Theorem 4.5.9 ( [2]). For every prime p ≥ 5, then

|〈Tmbλ, bµ〉| =



1, if λ = µ,m = 0,

0, if λ = µ,m 6= 0,

N−1/2, otherwise.

Numerical result shows for 1 ≤ p < 2,Gabor frame generated by Alltop se-

quence has higher potential; for p > 2, Gabor frame generated by Björck sequence

has higher potential.

4.6 Future research

In this section, we discuss two possible approaches to solve the problems in

this chapter.

4.6.1 The minimizer of Zp,d for 1 < p < 2 and Hausdorff-Young

Inequality

Not much is known about the minimizers of Zp,d when 0 < p < 2. In this

section we apply the Hausdorff-Young inequality to acquire an inequality considering

Zp,d when 1 < p < 2.

Suppose we fix a vector g ∈ Cd. Let G = Z/dZ× Z/dZ and f : Z/dZ× Z/dZ

be f(k, l) = 〈g,MkT lg〉 for any (k, l) ∈ Z/dZ × Z/dZ. G is a finite abelian group.
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We have ( 1

|G|
∑

(k,l)∈G

|f(k, l)|p
)1/p

=
( 1

d2
Zp,d(g)

)1/p
. (4.6)

We can apply Hausdorff-Young Inequality to the right hand side of equation

4.6.

Theorem 4.6.1. [59, Hausdorff-Young Inequality] Let H be a finite abelian group,

and f : H → C be a function. Let Ĥ be the group of characters χ : H → S1 of H,

and define the Fourier transform f̂ : Ĥ → C by the formula

f̂(ξ) ≡ 1

|H|
∑
x∈H

f(x)χ(x).

Then if 1 < p < 2 and 1
p

+ 1
q

= 1, we have

(∑
ξ∈Ĥ

|f̂(ξ)|q
)1/q

≤
(

1

|H|
∑
x∈H

|f(x)|p
)1/p

. (4.7)

By [61, ch.10] , the characters of G can be defined as χα,β(k, l) = e
2πi(αk+βl)

d ,

where k, l, α, β ∈ Z/dZ. Denote Ĝ the group of characters of G. Then

f̂(α, β) =
1

|G|
∑

(k,l)∈G

〈g,MkT lg〉e−
2πi(αk+βl)

d .

So we can apply Hausdorff-Young inequality, and obtain the inequality

( 1

d2
Zp,d(g)

)1/p ≥
( ∑

(α,β)∈Z/dZ×Z/dZ

| 1

|G|
∑

(k,l)∈G

〈g,MkT lg〉e−
2πi(αk+βl)

d |q
)1/q

. (4.8)
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By Hewitt and Hirschman in [42], the equality (4.7) holds if and only if f

is a subcharacter or translate of subcharacter. Where a subcharacter is defined as

follow:

Definition 4.6.2. Let G be a locally compact abelian group, A be a compact and

open subgroup of G. c ∈ C, χ ∈ Ĝ. A function h defined on G such that

h(x) = cχ(x)δA(x)

where x ∈ G, is said to be a subcharacter of the group G.

Remark 4.6.3. When g is (1, 0, · · · , 0), f is a subcharacter of G (let A = Z/dZ×

{0}, c = 1 and χ(x) = 1). Similar with when g is any translate of (1, 0, · · · , 0).

However, the lower bound of right hand side of (4.8) does not occur with same g.

4.6.2 Finding the minimizer of Z4,d with the Lagrange multiplier

method

In this section, we focus on the case p = 4. We will concentrate on the question

whether the minimizers of Z4,d satisfy the Generalized Bessel identity or Generalized

Plancherel identity. If they do, we will be able to establish the existence of (2, 2)-

designs with d2 vectors in Cd. We use the Lagrange multiplier method to provide

another angle to view Problem 4.3.6.

For any function f : Cd → R with f(x1 + iy1, · · · , xd + iyd) a differentiable
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function of real variables x1, y1, · · · , xd, yd ∈ R, define a gradient ∇f : Cd → Cd by

∇f ≡
( ∂

∂xj
f(x1 + iy1, · · · , xd + iyd) + i

∂

∂yj
f(x1 + iy1, · · · , xd + iyd)

)d
j=1
.

Then we can calculate the gradient of Z4,d(g) as following.

Proposition 4.6.4. For m ∈ {1, · · · , d},

∇Z4,d(g) = 8
d−1∑
k,l=0

|〈g,MkT lg〉|2〈g,MkT lg〉MkT lg (4.9)

Proof. Denote g = (g1, · · · , gd) = (a1 + ib1, · · · , ad + ibd) with a1, b1, · · · , ad, bd ∈ R

|〈g,MkT lg〉|2 = |
∑
j

gjgj−le
−2πijk/d|2

= |
∑
j

((
ajaj−l cos(2πjk/d) + bjbj−l cos(2πjk/d)...

+ aj−lbj sin(2πjk/d) + ajbj−l sin(2πjk/d)
)
...

+ i
(
− ajaj−l sin(2πjk/d)− bjbj−l sin(2πjk/d)...

+ aj−lbj cos(2πjk/d)− ajbj−l cos(2πjk/d)
))
|2.

Then

∂|〈g,MkT lg〉|2

∂aj
+i
∂|〈g,MkT lg〉|2

∂bj
= 2〈g,MkT lg〉gj−le2πijk/d+2〈g,MkT lg〉gj+le−2πi(j+l)l/d.
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(∇Z4,d(g))j = 4
d−1∑
k,l=0

|〈g,MkT lg〉|2
(
〈g,MkT lg〉gj−le2πijk/d + 〈g,MkT lg〉gj+le−2πi(j+l)k/d

)

= 4
d−1∑
k,l=0

|〈g,MkT lg〉|2
(
〈g,MkT lg〉(MkT lg)j + 〈g,M−kT−lg〉(M−kT−lg)j

)

So

∇Z4,d(g) = 4
d−1∑
k,l=0

|〈g,MkT lg〉|2
(
〈g,MkT lg〉MkT lg + 〈g,M−kT−lg〉M−kT−lg

)

= 8
d−1∑
k,l=0

|〈g,MkT lg〉|2〈g,MkT lg〉MkT lg

The minimizer g∗ should be a critical point of the minimization problem of 2d

variables with restriction ‖g‖2 = 1. Applying the Lagrange multiplier method, at

g∗ we have

4
d−1∑
k,l=0

|〈g∗,MkT lg∗〉|2〈g∗,MkT lg∗〉MkT lg∗ = λg∗, λ ∈ R (4.10)

and
d−1∑
k,l=0

|〈g∗,MkT lg∗〉|4 =
λ

4
|g∗|2

We can see that if {MkT lg}d−1
k,l=0 is a (2, 2)-design for Cd, it is indeed a local

minimum, and also global minimum in this case. But the inverse is not necessary

true. By the Generalized Bessel identity, since g∗ ∈ Cd, λ = 8d
d+1

being a solution of

(4.10) is a necessary condition for {MkT lg∗}d−1
k,l=0 to be a (2,2)-design.

123



As a result we can list some necessary conditions for {MkT lg∗}d−1
k,l=0 to be a

(2,2)-design.

1. By Proposition 4.3.2,

d−1∑
k1,k2,l1,l2=0

〈x,Mk1T l1g〉〈x,Mk2T l2g〉〈Mk1T l1g, y〉〈Mk2T l2g, y〉

=
( d−1∑
k1,l1=0

〈x,Mk1T l1g〉〈Mk1T l1 , y〉
)( d−1∑

k2,l2=0

〈x,Mk2T l2g〉〈Mk2T l2 , y〉
)

= d2〈x, y〉2

for any x, y ∈ Cd. {MkT lg∗}d−1
k,l=0 is a (2,2)-design if and only if Generalized

Plancherel identity holds. So {MkT lg∗}d−1
k,l=0 is a (2,2)-design if and only if

d−1∑
k1 6=k2,l1 6=l2

〈x,Mk1T l1g∗〉〈x,Mk2T l2g∗〉〈Mk1T l1g∗, y〉〈Mk2T l2g∗, y〉 =
d3 + d2 − 2d

d+ 1
〈x, y〉2.

2. By (4.10), for any a, b ∈ Zd, if g∗ is minimizer of Z4,p, then it is also a critical

point. So

MaT bg∗ =
4

λ

d−1∑
k,l=0

|〈g∗,MkT lg∗〉|2〈g∗,MkT lg∗〉Ma+kT b+lg∗e−2πibk/d.

Then a necessary condition of {MkT lg∗}d−1
k,l=0 being a (2,2)-design is

MaT bg∗ =
d+ 1

2d

d−1∑
k,l=0

|〈g∗,MkT lg∗〉|2〈g∗,MkT lg∗〉Ma+kT b+lg∗e−2πibk/d
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Chapter 5: Generalization of Support Uncertainty Inequality

5.1 Introduction

The uncertainty principle originates in quantum physics and can be expressed

mathematically. Its general idea is to show that different representations of a func-

tion can not be sharply concentrated.

The inequalities consist of three main components: a global setting, which is

generally Hilbert spaces; an invertible linear transform mapping initial representa-

tion to the other one without information lost; and a concentration measure [53,

p.630]. Based on the operators, there are different ways to define the concentration

measure. In Section 5.2, we will give a few examples of classic uncertainty inequali-

ties that are developed and stated in different settings. Then in Section 5.3, we will

reproduce the proof of a recent generalization of the inequality, an extension into

frame setting. Section 5.3.3 will give a specific example of mutually unbiased bases

in finite dimensional Hilbert space.
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5.2 Classical Uncertainty Inequalities

The Heisenberg inequality is the earliest version of the uncertainty inequalities,

where variance (i.e. ‖(t − t0)f(t)‖2 for f ∈ L2(R)) is used as the concentration

measure.

Theorem 5.2.1. Let (t0, γ0) ∈ R× R̂. Then

∀f ∈ L2(R), ‖f‖2
2 ≤ 4π‖(t− t0)f(t)‖2‖(γ − γ0)f̂(γ)‖2

This gives a specific case on L2(R), and the two ways of representing functions

are the function itself and its Fourier transform. Later the inequality is generalized to

Hilbert spaces, using the projection onto different orthonormal bases as the different

representations of functions and define another way to measure variance.

Theorem 5.2.2. Let f ∈ H with ‖f‖ = 1. A and B be self-adjoint operators on

H with respective domains D(A) and D(B). Define the mean and variance of A in

state f ∈ D(A) by

ef (A) = 〈Af, f〉, vf (A) = ef (A
2)− ef (A)2

Setting [A,B] = AB −BA and {A,B} = AB +BA, then ∀f ∈ D(AB) ∩D(BA),

vf (A)vf (B) ≥ 1

4
[|ef ([A,B])|2 + |ef ({A− ef (A), B − ef (B)})|2].

126



The inequality above is called Robertson-Schrödinger inequality. The variance

of function f is given by its projection onto eigenspaces of the operators A and B.

However Robertson-Schrödinger inequality has been criticized for several reasons.

First, unlike Heisenburg inequality, which gives a uniform bound for all f , the bound

here depends on the function itself. Also, the definition of variance gives trouble

when applying to certain spaces [53, p.630].

The uncertainty inequality in discrete settings is developed in more recent

years. We can start from projection onto orthonormal bases of finite dimensional

spaces and generalized to infinite dimensional spaces. Here support is used to

measure the variance of two representations. Elad and Bruckstein gave an in-

equality on the quasi-norm ‖ · ‖0, which is defined for a sequence {an}n∈Z to be

‖a‖0 =
∑

n |sgn(an)|.

Theorem 5.2.3. Given two orthonormal bases in a finite-dimensional Hilbert space

and any vector x with set of coefficients a and b with respect to the two bases, then

‖a‖0‖b‖0 ≥
1

µ2

where for orthonormal bases U and V, the mutual coherence µ = supl,k|〈ul, vk〉|

This inequality tells us the product of l0 norm has a lower bound only de-

pending on the two bases. Ricaud and Torrésani extended this result into a broader

setting and showed we can obtain an uncertainty inequality for frames (possibly

in infinite dimensional Hilbert spaces). We will discuss more about the refined

inequality in the next section.
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5.3 Refined Elad-Bruckstein `0 Inequalities

Since we have projection onto bases as representations of functions, it is natural

to ask whether it is possible to generalize the uncertainty inequality to frames. This

is possible because of the existence of dual frames. No information will be lost in

the process of representing a function by different frames. In this section, I will

first introduce the notation used and prove the generalization of Elad-Bruckstein

inequality.

5.3.1 Notation

Given U a frame, let U be the analysis operator, given by U : H→ l2(N)

∀x ∈ H Ux = 〈x, uk〉∞k=1

Let Ũ , Ṽ be the dual frames of U and V . Each frame has at least one dual

frame (which is the canonical dual frame). For some frames, there exist dual frame

other than the canonical dual frame.

In the refined inequality, the order r coherence is introduced, for it is possible

to give better bound than standard mutual coherence.

Definition 5.3.1. Let r ∈ [1, 2] and r′ be conjugate to r. The mutual coherence of

order r of two frames U and V is defined by

µr(U ,V) = sup
l

(
∑
k

|〈uk, vl〉|r
′
)
r
r′
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Remark 5.3.2.

(1) The case r = 1 correspond to standard definition of mutual coherence.

(2) For a finite dimensional Hilbert space, it is clear that order r mutual coherence

is well defined. Suppose instead we have an infinite dimensional Hilbert space, then

µ2(U ,V) = sup
l

∑
k

|〈uk, vl〉|2 ≤ BU sup
l
‖vl‖2 (5.1)

and

µr
′/r
r (U ,V) = sup

l

∑
k

|〈uk, vl〉|r
′
= sup

l

∑
k

|〈uk, vl〉|2|〈uk, vl〉|r
′−2

≤ sup
l

∑
k

|〈uk, vl〉|2 sup
k,l
|〈uk, vl〉|r

′−2 = µ2(U ,V) sup
k,l
|〈uk, vl〉|r

′−2

supl ‖vl‖ < ∞, since if supl ‖vl‖ = ∞ then exist ‖vl‖ > BV . In this case∑
k|〈uk, vl〉|2 ≥ |〈ul, vl〉|2 ≥ BV‖vl‖2, contradict to the definition of frame.

Also supk,l|〈uk, vl〉|2 ≤ max(BU , BV) max(sup ‖vl‖2, sup ‖vl‖2) < ∞. This im-

plies µr(U ,V) for r ∈ [1, 2] is finite. Thus the order r coherence is well-defined on

infinite dimensional spaces.

Definition 5.3.3. Two orthonormal bases U and V in an N-dimensional Hilbert

space H are mutually unbiased bases (MUB) if

|〈uk, vl〉| =
1√
N
, ∀k, l = 0, ...N − 1
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5.3.2 Refined Inequality

The following theorems are proved in [52, p. 4274]. The first theorem states

the inequality and the second theorem gives the condition under which the inequality

is sharp.

Theorem 5.3.4. Let U and V be two frames of Hilbert space H. For any x ∈ H, x 6=

0, denote a = Ux and b = V x the analysis coefficients of x with respect to the two

frames.

For all r ∈ [1, 2], coefficient a and b satisfy the uncertainty inequality

‖a‖0‖b‖0 ≥
1

µr(Ũ ,V)µr(Ṽ ,U)
(5.2)

Therefore, ‖a‖0‖b‖0 ≥ 1
ν∗(U ,Ũ ,V,Ṽ)2

, where

µ∗(U , Ũ ,V , Ṽ) = inf
r∈[1,2]

√
µr(Ũ ,V)µr(Ṽ ,U)

Proof.

‖a‖∞ = ‖Ux‖∞ = sup
l
|〈x, ul〉|

= sup
l
|〈
∑
k

〈x, vk〉ṽk, ul〉|

= sup
l
|〈
∑
k

bkṽk, ul〉|

≤ sup
l

∑
k

|bk||〈ṽk, ul〉|. (5.3)
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By Holder’s inequality, for any r ∈ [1, 2] and l ∈ Z+

∑
k

|bk||〈ṽk, ul〉| = ‖b〈ṽ, ul〉‖1 ≤ ‖b‖r‖〈ṽ, ul〉‖r′ . (5.4)

Thus by (5.3),

‖a‖∞ ≤ ‖b‖r sup
l
‖〈ṽ, ul〉‖r′ = ‖b‖rµr(Ṽ ,U)1/r. (5.5)

Similarly we get the same conclusion on b:

‖b‖∞ ≤ ‖a‖r sup
l
‖〈ũ, vl〉‖r′ = ‖a‖rµr(Ũ ,V)1/r. (5.6)

By definition and (5.5)(5.6),

∀a, ‖a‖rr =
∑
k

|ak|r ≤
∑
k

sup
k
|ak|r ≤ ‖a‖0‖a‖r∞ ≤ ‖a‖0‖a‖rrµr(Ũ ,V)1/r;(5.7)

∀b, ‖b‖rr ≤ ‖b‖0‖b‖r∞ ≤ ‖b‖0‖b‖rrµr(Ṽ ,U)1/r. (5.8)

Multiplying (5.7) and (5.8) yields ‖a‖0‖b‖0 ≥ 1
µr(Ũ ,V)µr(Ṽ,U)

.

Theorem 5.3.5. ∀r ∈ [1, 2], the inequality (5.2) is sharp if and only if the following

is satisfied:

i |a| and |b| are constant on support of a and b resp;

ii for all k ∈ supp(a) (resp. l ∈ supp(b)), if we fix l, then the sequence |〈ũk, vl〉|
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(resp. fix k, |〈ṽl, uk〉|)is constant on supp(b)(resp. on supp(a));

iii for all k ∈ supp(a), l ∈ supp(b), arg(〈ũk, vl〉) = arg(bl)−arg(ak) = − arg(〈ṽl, uk〉).

Proof. If inequality (5.2) is sharp, then all the inequalities in the proof of theorem

4 have to be sharp. I will prove the conclusion for b and r 6= 1, similar argument

will give same conclusion for a.

The three inequalities involved are in (5.4),(5.6) and (5.8)

Since

‖b‖rr =
∑
k

|bk|r ≤
∑
k

|sgn(bk)|‖b‖r∞, (5.9)

equality in (5.8) holds when |sgn(bk)| = 1, bk = ‖b‖∞ for all k. This implies the

first condition has to hold.

For (5.4), if we keep l fixed, the condition for equality in Holder’s inequality to

hold is ∃C, such that |ṽk, ul|r
′
= C|bk|r. Since by the first condition |bk| is constant,

|ṽk, ul| is also constant. This proves the second condition.

For equality in (5.6) to hold, ‖b‖∞ = supl
∑

k |ak||〈ũk, vl〉|

|bl|eiArg(bl) =
∑
k

|ak||〈ũk, vl〉|ei(Arg(ak)+Arg(〈ũk,vl〉)). (5.10)

Then

Arg(bl) = Arg(ak) + Arg(〈ũk, vl〉) ∀k. (5.11)

This proves the necessity for the third condition.
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If r = 1, (5.6) and (5.8) give the same condition. For (5.4), the equality holds

when |bk| = ‖b‖∞ ∀k.

Remark 5.3.6.

(1) If both U and V are orthonormal bases of a finite dimensional Hilbert space,

U = Ũ and V = Ṽ we get a better bound since by definition µ∗(U , Ũ ,V , Ṽ) =

infr∈[1,2]

√
µr(Ũ ,V)µr(Ṽ ,U) ≤ µ1(U ,V).

(2) The inequality can be also used to generalize Maassen-Uffink uncertainty in-

equality on Renyi entropy to frame representation. See [52, p. 4276].

5.3.3 Example: mutually unbiased bases

The following example is mentioned in paper [52].

Corollary 5.3.7. If U and V are mutually unbiased orthonormal basis, then the

optimal bound of the refined inequality is attained when r=1.

Proof. Since U and V are mutually unbiased

|〈uk, vl〉| =
1√
N

∀l, k (5.12)

where N is the dimension of the Hilbert space.

µr(U ,V) = (
N−1∑
k=0

(N−1/2)r
′
)r/r

′
(5.13)

= (N1− 1
2
r′)r/r

′
(5.14)

= N
r
r′−

1
2
r = N

1
2
r−1 (5.15)
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which is increasing on [1, 2] thus has its minimal value at r = 1.

Remark 5.3.8. If U and V are general pairs of orthonormal bases which are

not mutually unbiased, the refined inequality yield a strictly better bound (i.e.

supr
1

µr(U ,V)µr(V,U)
> 1

µ1(U ,V)2
) [52, pp. 4275].

5.4 Conclusion

The uncertainty inequalities have been developed in different settings, both

Euclidean space and more general Hilbert spaces. For finite dimensional spaces,

we have already obtained optimal bounds for the inequalities. However for infinite

dimensional spaces, the inequality can still be improved ( [52, p. 4278]).
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Chapter 6: Shift-invariant spaces on LCA groups

6.1 Introduction

In Euclidean spaces, a shift-invariant space is a closed subspace of L2(Rd)

that is invariant under integer lattice translations. This subject has been studied

since the 1960s. Henry Helson developed the concept of range function and gave a

characterization of shift-invariant spaces on L2(R) in [41].

The study of shift-invariant spaces also has recent development, cf. [15, 20].

Techniques from Fourier analysis as well as ideas such as fiberization and the concept

of range functions are used to extend the theory into more general settings. The

result was also used to give characterizations of frames in shift-invariant spaces,

decompose the spaces into direct sum of smaller spaces, etc. It can be applied to

various fields such as Gabor theory and wavelet theory.

Then it is reasonable to ask whether the theory fits into a setting that is more

general than Euclidean space, and what are the properties of the groups Rd and

Zd that makes it possible to apply the method developed. In [18], the theory was

extended to the setting of locally compact abelian group G. And the concept of

uniform lattice, which plays a similar role with Zd in Rd, was introduced. With

the existence of Haar measure on LCA groups, it is possible to define the Fourier
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transform of functions in L2(G), as well as to generalize related theorems from

Euclidean Fourier analysis. Similarly, other techniques used to characterize the

shift-invariant spaces in L2(Rd) can also be generalized and applied in L2(G).

In this chapter, we briefly discuss the characterization of shift-invariant spaces

on locally compact abelian groups, and frames of the shift-invariant spaces. The

results in this chapter are originally derived in [18].

6.2 Background

The theory is developed under the following assumptions:

� G is a second countable LCA group with dual group Γ;

� H is a countable uniform lattice (i.e., a discrete subgoup of G such that the

quotient group G/H is compact), and ∆ is the annihilator of H (i.e., ∆ = {γ ∈

Γ : (h, γ) = 1,∀h ∈ H});

� The Haar measures mH , m∆ and mΓ/∆ of H,∆, and Γ/∆ are chosen as that

mH(0) = m∆(0) = mΓ/∆(Γ/∆) = 1, and the inversion formula for the Fourier

transform holds.

If Ω is a Borel measurable secton of Γ/∆ (i.e., a set of representatives of the

quotient group), we have mΓ(Ω) = 1. This will not cause problems since under

the assumptions, Γ/∆ will be compact, then Ω is also compact. Further, we let

EH(A) = {τhφ : h ∈ H,φ ∈ A}, where A ⊆ L2(G) and τhφ(x) = φ(x − h) denotes

translation of φ by h.

With the Haar measure on G, we will be able to define Lp(G) in a similar way
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with Lp(Rd). Since the characters (x, γ) are extensions of the complex exponential

functions, we define the Fourier transform on G in the following way.

Definition 6.2.1. Given a function f ∈ L1(G), the Fourier transform of f is defined

as

f̂(γ) =
∫
G
f(x)(x,−γ)dmG(x), γ ∈ Γ,

and the inversion formula for the Fourier transform is

f(x) =
∫

Γ
f̂(γ)(x, γ)dmΓ(γ).

The Haar measures mG and mΓ are normalized such that the inversion formula

holds, so the Fourier transform on L1(G) ∩ L2(G) can be extended uniquely to an

isometry from L2(G) onto L2(Γ) [54, Theorem 1.6.1].

The following concepts are developed in the study of shift-invariant subspces

of L2(Rd), and modified for the setting of L2(G). They are essential in proving

Theorme 6.3.1.

Proposition 6.2.2. The mapping T : L2(G)→ L2(Ω, `2(∆)), defined as

T f(ω) = {f̂(ω + δ)}δ∈∆,

is an isomorphism that satisfies ‖T f‖2 = ‖f‖L2(G),

where

‖T f‖2 = (
∫

Ω
‖T f(ω)‖2

`2(∆)dmΓ(ω))1/2.

Definition 6.2.3. A range function is a mapping,

J : Ω→ {closed spaces of `2(∆)}.

The subspace J(ω) is called the fiber space associated to ω.
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For a given range function J , we associate to each ω ∈ Ω the orthogonal

projection onto J(ω), Pω : `2(∆) → J(ω). And denote MJ = {Φ ∈ L2(Ω, `2(∆)) :

Φ(ω) ∈ J(ω) a.e. ω ∈ Ω}. MJ is a closed subset of L2(Ω, `2(∆)).

We say a range function J is measurable if for all Φ ∈ L2(Ω, `2(∆)) and all

b ∈ `2(∆), the mapping ω 7→ 〈Pω(Ψ(ω)), b〉 is measurable.

Proposition 6.2.4. Let J be a measurable range function and Pω the associated

orthogonal projections. Denote by P the orthogonal projection onto MJ . Then,

(PΦ)(ω) = Pω(Φ(ω)), a.e. ω ∈ Ω, ∀Φ ∈ L2(Ω, `2(∆)).

Proof. Define the linear operator Q : L2(Ω, `2(∆))→ L2(Ω, `2(∆)) as

(QΦ)(ω) = Pω(Φ(ω)).

Then by definition of Pω, Q is well-defined and is also an orthogonal projection.

Also, by assumption, Ran(Q) ⊆ MJ . Suppose the inclusion is proper. Let

Ψ ⊥ Ran(Q) and Ψ ∈MJ . Then for any Φ ∈ L2(Ω, `2(∆)), 0 = 〈QΦ,Ψ〉 = 〈Φ,QΨ〉.

Since Ψ ∈ MJ , Ψ(ω) ∈ J(ω), (QΨ)(ω) = Pω(Φ(ω)) = Ψ(ω) a.e. ω ∈ Ω. We

have for any Φ, 〈Φ,Ψ〉 = 0. This implies Ψ = 0 a.e. ω ∈ Ω. We conclude that

MJ ⊆ Ran(Q). Thus P = Q.

Proposition 6.2.4 is a generalization of a Lemma in [41, Chapter VI].

6.3 Characterizaton of shift-invariant spaces

Theorem 6.3.1. [18] Let V ⊆ L2(G) be a closed subspace. Then V is H-invariant

(i.e., if f ∈ V then thf ∈ V for any h ∈ H), if and only if there exist a measurable

range function J such that
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V = {f ∈ L2(G) : T f(ω) ∈ J(ω) a.e. ω ∈ Ω}.

If two range functions which are equal almost everywhere are identified, the corre-

spondence is one-to-one and onto.

If V = span{thφ : h ∈ H,φ ∈ A}, where A is a countable subset of L2(G), then

J(ω) = span{T φ(ω) : φ ∈ A} (6.1)

Proof. (⇒) Assume V ⊆ L2(G) is H-invariant. Since L2(G) is separable, V is also

separable. Therefore we claim that ∃ countable set A such that V = S(A).

Let D be a countable dense subset of V. Since V is H-invariant, spanEH(D) ⊆

V . By assumption, V is a closed subspace, then S(D) ⊆ V . Also since D is dense,

D̄ = V , V ⊆ S(D) = spanEH(D). Thus V = S(D).

Define J as in (6.1). We will need to show the following:

1. V = {f ∈ L2(G) : T f(ω) ∈ J(ω) a.e. ω ∈ Ω}.

2. J is measurable.

To prove statement 1, we need T V = MJ .

• T V ⊆MJ :

Take Φ ∈ T V , then T −1Φ ∈ S(A). ∃{gj} ⊂ EH(A) such that gj → T −1Φ

in L2(G). T is an isometry, so Φj ≡ T gj → Φ in L2(Ω, `2(∆)). We can find a

subsequence Φkj such that Φkj(ω) → Φ(ω) a.e. ω ∈ Ω. By our definition of J in

(6.1), clearly Φkj(ω) ∈ J(ω). Since for any ω, J(ω) is closed subspace of `2(∆),

Φ(ω) ∈ J(ω). Thus Φ ∈MJ .
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• MJ ⊆ T V :

It is enough to prove that if Ψ ∈ L2(Ω, `2(∆)) satisfies Ψ ⊥ T V then Ψ ⊥MJ .

Let Ψ ⊥ T V , then for all Φ ∈ T A ⊂ T V ,

〈Φ,Ψ〉 =

∫
Ω

〈Φ(ω),Ψ(ω)〉dmΓ(ω) = 0.

V is H-invariant, for all h, T τhΦ = (h,−·)T Φ ∈ T V . By the assumption,∫
Ω

(h,−ω)〈Φ(ω),Ψ(ω)〉dmΓ(ω) = 0.

The left hand side of the equation above is the Fourier transform of 〈Φ(ω),Ψ(ω)〉.

So we can conclude that 〈Φ(ω),Ψ(ω)〉 = 0 a.e. ω ∈ Ω. Since J(ω) = span{Φ(ω) =

T φ(ω) : φ ∈ A}, Ψ(ω) ⊥ J(ω), we have Ψ ⊥MJ .

To prove statement 2, we will show Pω(Ψ(ω)) = (PΨ)(ω), where P is the

orthogonal projection onto MJ . Note that Proposition 2 can not be directly applied

here since the proposition require J to be measurable.

Denote I the identity operator. Let Ψ ∈ L2(Ω, `2(∆)), then (I − P)Ψ ⊥ MJ .

By similar statement as proving MJ ⊆ T V , for almost every ω ∈ Ω, (I −P)Ψ(ω) ⊥

J(ω). We have

0 = Pω((I − P)Ψ(ω)) = Pω(Ψ(ω)− PΨ(ω)) = Pω(Ψ(ω))− Pω(PΨ(ω)).

By definition, PΨ ∈ MJ , PΨ(ω) ∈ J(ω), then Pω(PΨ(ω)) = PΨ(ω). We conclude

that Pω(Ψ(ω)) = (PΨ)(ω).

The mapping ω 7→ (PΨ)(ω) is measurable. Let b ∈ `2(∆), ω 7→ 〈Pω(Ψ(ω)), b〉 =

〈(PΨ)(ω), b〉 is also measurable. J is a measurable range function.
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(⇐) Assuming there exist a measurable range function J such that V =

T −1MJ , we need to show that V is H-invariant.

Let f ∈ V . ∀h ∈ H, T τhf(ω) = (h,−ω)T f(ω) ∈ J(ω) a.e. ω ∈ Ω since

T f(ω) ∈ J(ω) a.e. ω ∈ Ω by assumption. Then T τhf ∈MJ , τhf ∈ V .

The uniqueness of the range function J will follow from Lemma 6.3.2, which

is a consequence of Proposition 6.2.4.

Lemma 6.3.2. If J and K are two measurable range functions such that MJ = MK,

then J(ω) = K(ω) a.e. ω ∈ Ω.

Suppose for a given H-invariant space V, there are two corresponding range

function J and K. Since MJ = T V = MK , J = K almost everywhere.

6.4 Frames for H-invariant spaces

Applying Theorem 6.3.1, we can determine whether a set EH(A) is a frame

on its closed span by examining the fibers {T φ(ω) : φ ∈ A} when A is a countable

subset of L2(G).

Theorem 6.4.1. Let A be a countable subset of L2(G), J the measurable range

function associated, and A ≤ B positive constants. Then the following are equiva-

lent:

(i) The set {τhφ : h ∈ H,φ ∈ A} is a frame for its closed span with contants A

and B.
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(ii) For a.e. ω ∈ Ω, the set {T φ(ω) : φ ∈ A} ⊆ `2(∆) is a frame for J(ω) with

constants A and B.

Proof. Assuming either (i) or (ii) in the statement of Theorem 6.4.1, we have

∑
φ∈A

∑
h∈H

|〈thφ, f〉L2(G)|2 =
∑
φ∈A

∫
Ω

|〈T φ(ω), T f(ω)〉l2(∆)|2dmΓ(ω) (6.2)

by Parseval’s identity.

(i)⇒ (ii): By Theorem 6.3.1, for any f ∈ span{thφ : h ∈ H,φ ∈ A}, we know

T f ∈ J(ω). Then A‖T f(ω)‖2 ≤
∑
φ∈A
|〈T φ(ω), T f(ω)〉|2 ≤ B‖T f(ω)‖2. Since T is

an isometry, by integrating the inequality over Ω, we get (ii)⇒ (i) from (6.2).

(i)⇒ (ii): It is sufficient to show for all d ∈ D

A‖Pωd‖2 ≤
∑
φ∈A
|〈T φ(ω), Pωd〉|2 ≤ B‖Pωd‖2, a.e.ω ∈ Ω,

where D is a dense countable subset of l2(∆). If this is not true, then there exist

d0 ∈ D such that either

∑
φ∈A

|〈T φ(ω), Pωd0〉|2 > (B + ε)‖Pωd0‖2 (6.3)

or ∑
φ∈A

|〈T φ(ω), Pωd0〉|2 < (A− ε)‖Pωd0‖2 (6.4)

on a measurable set W ⊆ Ω with positive measure.

Suppose (6.3) holds and take f ∈ span{thφ : h ∈ H,φ ∈ A} such that

T f(ω) = χW (ω)Pωd0 (this is possible by Theorem 6.3.1). Then (i) and Proposition
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1 give

A‖T f‖2 ≤
∑
φ∈A

∫
Ω
|〈T φ(ω), T f(ω)〉l2(∆)|2dmΓ(ω) ≤ B‖T f‖2,

which will lead to a contradiction with (6.3). This proves (i)⇒ (ii).

Theorem 6.4.1 allows us to look at a fiber space J(ω), which is a smaller space

compared to the larger space span(EH(A)). For example, if A is a finite set, the

corresponding J(ω) will be finite dimensional space, whereas EH(A) can be a infinite

dimensional when H is infinite.

In [6, Chapter 3], the result was proved for principle shift-invariant space (A

contains a single element) on L2(R), cf. [6, Theorem 3.56]. [36] also proved the

theorem on LCA groups using similar method. The following corollary of Theorem

6.4.1 provides an alternate proof.

Corollary 6.4.2. Let φ ∈ L2(G) and Ωφ = {ω ∈ Ω : ‖T φ(ω)‖2 6= 0}. Then the

following are equivalent:

1. The set EH(φ) is a frame for S(φ) with frame constants A and B.

2. For almost every ω ∈ Ωφ, A ≤ ‖T φ(ω)‖2 ≤ B.

Proof. By Theorem 6.4.1, statement 1 is equivalent with T φ(ω) is frame for its

closed span. The elements in span{T φ(ω)} is in the form of cT φ(ω), where c is any

real number. Then the frame condition gives

A‖cT φ(ω)‖2 ≤ |〈cT φ(ω), T φ(ω)〉|2 ≤ B‖cT φ(ω)‖2.

Where

|〈cT φ(ω), T φ(ω)〉|2 = (|c|‖T φ(ω)‖2)2 = |c|2‖T φ(ω)‖4,
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and

‖cT φ(ω)‖2 = |c|2‖T φ(ω)‖2.

So when ‖T φ(ω)‖2 6= 0, that is, ω ∈ Ωφ,

A ≤ ‖T φ(ω)‖2 ≤ B

A similar procedure yields an analogous result for Riesz bases. Given a

countable subset A ⊆ L2(G) and associated measurable range function J, the set

{τhφ : h ∈ H,φ ∈ A} is a Riesz basis for its closed span if and only if for almost

every ω ∈ Ω, {T φ(ω) : φ ∈ A} is a Riesz basis for J(ω) with the same constants.

6.5 Example

Fix a function g ∈ L2(R), and α, β positive real numbers. Then the system

{τnβMmαg : m,n ∈ Z} is a Gabor system, where Mxg(γ) = e2πix·γg(γ). Theorem

6.4.1 will provide another way to determine whether a Gabor system form a frame

for its closed span.

As a simple example, take f ∈ L2(R) such that f̂ = χ[0,1] and let β = 1.

Then the Gabor system generated by f can be considered as EZ(A), A ≡ {Mmαf :

m ∈ Z}. By Theorem 6.4.1, it is a frame if and only if for almost every ω ∈ T,
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T (Mmαf)(ω) is a frame for its own closed span.

T (Mmα)(ω) = {M̂mαf(ω + k)}k∈Z

= {f̂(ω + k −mα)}k∈Z

= {χ[mα−k,mα+1−k](ω)}k∈Z

If we let α = 2, then T (Mmαf)(ω) is a frame for its closed span. We can

conclude that {τnβMmαf : m,n ∈ Z} is a frame for its closed span.

Note: We can not conclude that whether {τnβMmαg : m,n ∈ Z} is frame for

L2(R) from Theorem 6.4.1. In fact, if αβ > 1, the Gabor system is not a frame for

L2(R).

Aside from Gabor systems, the theory may also give us alternate method to

analyze wavelet systems. For example, in an MRA, the set V0 is a shift-invariant

space. Theorem 6.3.1 may be helpful when constructing MRAs.

145



Bibliography

[1] Boris Alexeev, Jameson Cahill, and Dustin G Mixon, Full spark frames, Journal
of Fourier Analysis and Applications 18 (2012), no. 6, 1167–1194.

[2] W Alltop, Complex sequences with low periodic correlations (corresp.), IEEE
Transactions on Information Theory 26 (1980), no. 3, 350–354.

[3] David Marcus Appleby, Hulya Yadsan-Appleby, and Gerhard Zauner, Galois
automorphisms of a symmetric measurement, arXiv preprint arXiv:1209.1813
(2012).

[4] Alexander Barg, Alexey Glazyrin, Kasso A Okoudjou, and Wei-Hsuan Yu, Fi-
nite two-distance tight frames, Linear Algebra and its Applications 475 (2015),
163–175.

[5] Radel Ben Av, Assaf Goldberger, Giora Dula, and Yossi Strassler, Energy
minimization in CP n: Some numerical and analytical results, ArXiv preprint
(2018), no. arXiv:1810.04640, preprint.

[6] John J. Benedetto, Gabor frames for L2 and related spaces, Wavelets: Math-
ematics and Applications (John J. Benedetto and Michael W. Frazier, eds.),
CRC Press, Boca Raton, FL, 1994, pp. 97–162.

[7] John J Benedetto, Robert L Benedetto, and Joseph T Woodworth, Optimal am-
biguity functions and Weil’s exponential sum bound, Journal of Fourier Analysis
and Applications 18 (2012), no. 3, 471–487.

[8] John J Benedetto and Matthew Fickus, Finite normalized tight frames, Ad-
vances in Computational Mathematics 18 (2003), no. 2-4, 357–385.

[9] John J Benedetto and Andrew Kebo, The role of frame force in quantum de-
tection, J. Fourier Analysis and Applications 14 (2008), 443–474.

[10] John J Benedetto and Joseph D Kolesar, Geometric properties of Grassmannian
frames for R2 and R3, EURASIP Journal on Advances in Signal Processing
2006 (2006), no. 1, 049850.

146



[11] Dmitriy Bilyk, Alexey Glazyrin, Ryan Matzke, Josiah Park, and Oleksandr
Vlasiuk, Optimal measures for p-frame energies on spheres, arXiv preprint
arXiv:1908.00885 (2019).

[12] Dmitriy Bilyk and Ryan Matzke, On the Fejes Tóth problem about the sum of
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