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Stellarators are a class of device for the magnetic confinement of plasmas without

toroidal symmetry. As the confining magnetic field is produced by clever shaping

of external electro-magnetic coils rather than through internal plasma currents, stel-

larators enjoy enhanced stability properties over their two-dimensional counterpart,

the tokamak. However, the design of a stellarator with acceptable confinement prop-

erties requires numerical optimization of the magnetic field in the non-convex, high-

dimensional spaces describing their geometry. Another major challenge facing the

stellarator program is the sensitive dependence of confinement properties on electro-

magnetic coil shapes, necessitating the construction of the coils under tight tolerances.

In this Thesis, we address these challenges with the application of adjoint methods

and shape sensitivity analysis.

Adjoint methods enable the efficient computation of the gradient of a function

that depends on the solution to a system of equations, such as linear or nonlinear

PDEs. Rather than perform a finite-difference step with respect to each parameter,



one additional adjoint PDE is solved to compute the derivative with respect to any

parameter. This enables gradient-based optimization in high-dimensional spaces and

efficient sensitivity analysis. We present the first applications of adjoint methods for

stellarator shape optimization.

The first example we discuss is the optimization of coil shapes based on the gen-

eralization of a continuous current potential model. We optimize the geometry of

the coil-winding surface using an adjoint-based method, producing coil shapes that

can be more easily constructed. Understanding the sensitivity of coil metrics to

perturbations of the winding surface allows us to gain intuition about features of con-

figurations that enable simpler coils. We next consider solutions of the drift-kinetic

equation, a kinetic model for collisional transport in curved magnetic fields. An ad-

joint drift-kinetic equation is derived based on the self-adjointness property of the

Fokker-Planck collision operator. This adjoint method allows us to understand the

sensitivity of neoclassical quantities, such as the radial collisional transport and self-

driven plasma current, to perturbations of the magnetic field strength. Finally, we

consider functions that depend on solutions of the magneto-hydrodynamic (MHD)

equilibrium equations. We generalize the well-known self-adjointness property of the

MHD force operator to include perturbations of the rotational transform and the

currents outside the confinement region. This self-adjointness property is applied to

develop an adjoint method for computing the derivatives of such functions with re-

spect to perturbations of coil shapes or the plasma boundary. We present a method

of solution for the adjoint equations based on a variational principle used in MHD

stability analysis.
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Chapter 1: Introduction

This Chapter aims to motivate and place in context the work of this Thesis.

We begin with an introduction to the stellarator concept of toroidal confinement in

Section 1.1, including the necessity of optimization of the magnetic field. We then

discuss important properties of a stellarator device in Section 1.2. To put stellarator

optimization in perspective, we briefly discuss the relevant history in Section 1.3.

We then, in Section 1.4, provide a detailed introduction to stellarator optimization,

including typical assumptions, numerical methods, and associated challenges. We

conclude with an overview of this Thesis in Section 1.5.

Throughout this Chapter, we use terminology related to magnetic field geometry

and toroidal coordinate systems, which are introduced in Appendix A.

1.1 The stellarator concept

The fusion community must face several significant scientific challenges to demon-

strate a viable magnetic fusion reactor. A large fraction of the present research in

magnetic fusion is dedicated to the tokamak, a concept that relies on a large plasma

current for confinement. Driving such a current requires a significant amount of recir-

culated power and necessitates either pulsed operation or non-inductive current drive,

both of which are disadvantageous for a fusion reactor. This large current makes them

susceptible to current-driven instabilities that can limit plasma performance. These

instabilities, such as tearing and kink instabilities, can result in catastrophic termi-

nations of the discharge (Chapter 7.9 in [235]). Runaway electrons formed due to

1



disruptions can be accelerated by the inductive electric field, possibly causing dam-

age to plasma-facing components and applying large electro-magnetic forces to the

vacuum vessel. The effect of runaway electrons will be much more harmful in large

reactor-scale tokamaks due to the exponential dependence of the density of relativis-

tic electrons on the plasma current [104]. Thus in a reactor, disruptions must be

mitigated by active feedback and operation within a safe margin of stability lim-

its. However, such control will be difficult when alpha particles provide a significant

fraction of the heating power [93].

Remarkably, Lyman Spitzer predicted these possible difficulties of tokamak con-

finement in 1952 [210], before the first toroidal confinement experiment,

“... a large induced current is open to the two practical objectives that it

cannot be sustained in a steady equilibrium and that the rapid generation

of such a current is likely to lead to plasma oscillations.”

These observations led to the development of the stellarator concept. In contrast to

the tokamak, a stellarator generates a poloidal magnetic field through clever shaping

by external currents rather than internal plasma currents. A small amount of current

in the plasma is self-driven due to pressure gradients, though this is typically not large

enough to result in significant MHD modes. There is some experimental evidence

that stellarator configurations may be able to operate above the linear MHD stability

pressure threshold [234] rather than being terminated by a disruption. The Large

Helical Device (LHD) has operated up to a volume-averaged β of 5% without any

disruptive MHD phenomena, though the heat transport increases due to low-n mode

activity [201]. Here β = p/(B2/(2µ0)) is the ratio of the plasma pressure, p, to the

magnetic pressure, and n is the toroidal mode number. Similarly, high-beta discharges

in the Wendelstein 7-Advanced Stellarator (W7-AS) have shown saturation of low-n

and interchange modes at a low level that merely slowly degrades confinement [234].

Stellarators can also operate at higher density than tokamaks due to the absence of

2



(a) (b)

Figure 1.1: A schematic image of a tokamak (a) and stellarator (b). The electro-
magnetic coils are shown in blue, and the plasma domain is shown in green. Magnetic
field lines lying on the outermost magnetic surface are shown in black.

the Greenwald limit [72]. While in tokamaks, the limits on the density and pressure

due to the Greenwald and MHD stability limits set hard boundaries on the operating

points, in a stellarator much softer limits exist. Performance at high beta is often

instead limited by equilibrium properties, such as magnetic field stochasticity near

the edge. For example, if the Shafranov shift becomes comparable to the minor radius

of the plasma, this can lead to loss of magnetic surfaces [212]. The ability to operate

at high beta is critical for an economical fusion reactor: in the temperature range

of 10-20 keV, the fusion power density scales as P ∼ β2B4 [208]. See Figure 1.1 for

schematics of a tokamak and stellarator configuration.

Despite these clear advantages, much care must be taken to design a stellarator

with acceptable confinement properties. Due to its continuous toroidal symmetry, the

tokamak enjoys confinement of collisionless single-particle trajectories and the exis-

tence of closed, nested magnetic surfaces. However, in the general three-dimensional

field of a stellarator, these properties are not always present. The trajectories of ener-

3



getic ions, such as the alpha particles produced in a fusion reaction, may therefore be

lost, resulting in damage to material surfaces. Stellarators can experience enhanced

neoclassical transport, the collisional transport of thermal particles due to the mag-

netic field geometry, leading to increased transport of heat and particles, especially

at low collisionality (Figure 1.2). The presence of large magnetic islands or chaotic

regions in a three-dimensional field can also severely limit performance by locally

flattening the temperature profile.

However, none of these challenges appear to be showstoppers for stellarator con-

finement. The success of modern stellarators can be attributed to the ability to design

the magnetic field with numerical optimization. While tokamak optimization is also

possible [107], it is much more difficult as confinement properties become very sen-

sitive to the current density and pressure profiles. These profiles can be determined

with multi-scale modeling on turbulent and transport time scales, which is very com-

putationally intensive. On the other hand, the physical properties of stellarators are

relatively insensitive to these profiles, as they primarily rely on the externally pro-

duced magnetic field for confinement [27]. Given the ability to numerically optimize

the magnetic field of a stellarator, in Section 1.2, we discuss the properties one should

consider in a design.

1.2 What makes a good stellarator?

We now outline the desired physical properties of a stellarator and standard proxy

functions applied during their design. We will reserve any discussion of coils, the

external currents that produce the magnetic field, until Section 1.4.3.

Equilibrium properties

The operating space of stellarators is often restricted due to MHD equilibrium

properties rather than stability limits. For example, when β ∼ ει2/2 where ε is the

inverse aspect ratio and ι is the rotational transform, the Shafranov shift becomes

4
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Figure 12. The so-called ‘mono-energetic’ diffusion coefficient (see
[63] for details) versus collisionality, ν∗ = νR/ιv, where ν is the
mono-energetic pitch-angle-scattering frequency, R the major radius
and v the speed of the particles, in the standard configuration of
W7-X (bold) and a tokamak (dashed) with similar aspect ratios
(r/R = 0.255/5.527) and an elongation of 1.5. The asymptotic
regimes are indicated by dotted straight lines. In the order of
increasing collisionality: the

√
ν regime, the 1/ν regime, the plateau

regime and the Pfirsch–Schlüter regime. At very low collisionality
(below the range shown) the transport again becomes proportional
to ν. The diffusivity has been normalized to the plateau value in a
circular tokamak, and the radial electric field has been chosen as
Er/vB = 3 · 10−5, where B is the magnetic field strength. If the
electric field is made larger, the transition from the

√
ν regime to the

1/ν regime occurs at higher collisionality. From [48].

4.3. Fluctuations and turbulent transport

In the treatment just given, we focused on the equilibrium
properties of the plasma, treating the time derivative
as O(δ2vT /L). This is sufficient for calculating the
collisional (neoclassical) transport but fails to capture turbulent
fluctuations and transport. To do so, we need to elevate the
time derivative to order O(δvT /L) and also allow fa1 to vary
on the length scale of the gyroradius. If it is assumed that
the fluctuating electric and magnetic fields, δE = −∇δφ −
∂δA/∂t and δB = ∇ × δA, are small and the wave numbers
are ordered as

k∥L ∼ k⊥ ρi ∼ 1, (120)

the result is the famous gyrokinetic equation

∂ga

∂t
+ (v∥b + vda + δvda) · ∇(fa0 + ga) − ⟨Ca(ga)⟩R

= eafa0

Ta

∂ ⟨χ⟩R

∂t
, (121)

where the distribution function has been written as

fa1 = −eaδφ(r, t)

Ta

fa0 + ga(R, H, µ, t),

and where χ = δφ −v · δA is the gyrokinetic potential. Here,
the gyro-average at fixed guiding-centre position is denoted by
⟨· · ·⟩R, and the perturbation of the drift velocity is given by

δvda = b × ∇ ⟨χ⟩R

B
. (122)

According to equation (120) perturbations are assumed to vary
much more rapidly across the field than along it. The physical

reason for this ordering is that unless the parallel phase velocity
exceeds the ion thermal speed,

ω

k∥
> vT i,

there is strong ion Landau damping. Since the frequency for
drift waves is of order ω∗ ∼ k⊥ ρivT i/L, it follows that the
parallel wavelength must be of order L if k⊥ ρi = O(1) to
avoid Landau damping. For each Fourier component of the
fluctuations we then have

⟨χ⟩R,k = J0
(
δφk − v∥δA∥k

)
+

J1v⊥

k⊥
δB∥k, (123)

where the argument of the Bessel functions is k⊥ v⊥ /)a,
δB∥ = b · δB, and we have adopted the Coulomb gauge,
∇ · δA = 0.

The gyrokinetic field equations determining δφ, δA∥ and
δB∥ are

∑

a

nae
2
a

Ta

δφ =
∑

a

ea

∫
gaJ0 d3v,

δA∥ = µ0

k2
⊥

∑

a

ea

∫
v∥gaJ0 d3v, (124)

δB∥ = −µ0

k⊥

∑

a

ea

∫
v⊥ gaJ1 d3v,

where the volume element in velocity space is given by
equation (103). The gyrokinetic particle and heat fluxes are

(
δΓa · ∇ψ

δqa · ∇ψ

)
=

∫ (
1

mav2

2 − 5Ta

2

)
gaδvd · ∇ψ d3v,

and are thus of order δ2 in our basic gyroradius expansion (54).
This is the same order as the neoclassical transport, and we thus
expect that the two transport channels should be comparable,
at least generally speaking. In practice, turbulent transport
tends to dominate except in low-collisionality plasmas without
axisymmetry.

4.4. Ambipolarity and plasma rotation

There is an important difference between neoclassical and
turbulent transport concerning ambipolarity. It follows from
equations (122), (123) and (124) that the turbulent transport is
automatically ambipolar,

⟨δJ · ∇ψ⟩ =
∑

a

ea ⟨δΓa · ∇ψ⟩ = 0,

to leading order, regardless of the magnitude of the radial
electric field. However, as we shall see, neoclassical
transport is in general not ambipolar unless the electric
field assumes a particular value. Since the total transport
must be ambipolar (on the transport time scale ∂/∂t ∼
δ2vT a/L), the radial electric field must therefore adjust so as
to make the neoclassical channel ambipolar (unless the field
is quasisymmetric). This fixes the perpendicular flow velocity
of each species,

Va⊥ = b × (∇φ − ∇pa/naea)

B
,

31

Figure 1.2: The neoclassical diffusion coefficient, D∗11, as a function of the normalized
collisionality, ν∗ = νR/(ιv), where ν is the collision frequency, ι is the rotational
transform, v is the speed, and R is the major radius. An axisymmetric field exhibits
a low-collisionality regime in which D∗11 ∼ ν, while a stellarator exhibits D∗11 ∼ 1/ν.
Thus the neoclassical transport in a general three-dimensional field can be especially
deleterious at low collisionality. Figure reproduced from [101] with permission.

comparable to the minor radius, which may result in flux-surface break-up [97, 212].

There is a tendency of the edge magnetic field to become stochastic at large beta [201],

so a design should try to maximize the volume of continuously nested flux surfaces

[119]. One should also minimize the island width at low-order rational surfaces, which

can be estimated using analytic expressions [38, 147], assuming the magnetic field is

close to having perfect magnetic surfaces. Such islands can also be minimized by

controlling the rotational transform, either by maintaining low magnetic shear and

eliminating low-order rational surfaces altogether or by taking advantage of large

magnetic shear, as the magnetic island width scales as 1/
√
ι′(ψ) [26]. See Figure 1.3

for a visualization of magnetic surfaces, magnetic islands, and chaotic field lines in

the NCSX stellarator.

Pressure-driven currents

There are several sources of self-driven plasma current [97]: the parallel bootstrap

current arises due to collisions between trapped and passing particles in the presence of
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Figure 1.3: A Poincare surface computed from the NCSX coil shapes [236]. To
produce this Figure, magnetic field lines are integrated toroidally around the device.
Each time they hit a plane at constant toroidal angle, a point is plotted with color
indicating the field line. A general 3D field contains regions of chaotic field lines
and magnetic island chains along with a volume of nested toroidal magnetic surfaces.
Figure adapted from [121].

density and temperature gradients, and the parallel Pfirsch-Schüter and perpendicular

diamagnetic currents occur due to equilibrium pressure gradients. The bootstrap

current can cause shifts in the rotational transform toward low-order rational values,

which must especially be avoided in low-shear devices. Control of the edge rotational

transform is also vital for designs with an island divertor [75]. In the presence of

reduced bootstrap current, the magnetic field structure becomes less sensitive to

changes in beta. For these reasons, the Wendelstein 7-X (W7-X) configuration was

designed for minimal bootstrap current [86]. Often optimization is performed with

a low-collisionality semi-analytic bootstrap current model [205]. Bootstrap current

optimization will be described further in Chapter 4. The Pfirsch-Schlüter current does

not provide any net current and therefore does not shift the rotational transform.

However, it can give rise to a Shafranov shift and thus affect the equilibrium beta

limit [232]. The Pfirsch-Schlüter current can be reduced by minimizing the magnitude

of the geodesic curvature. The net diamagnetic current will only be non-zero in the

presence of another source of net current; thus, the reduction of the bootstrap current
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will automatically reduce the diamagnetic current.

While the presence of self-driven current can give rise to unfavorable shifts in

the rotational transform, there are situations in which significant bootstrap current

may be desirable. If the bootstrap current provides a source of rotational transform in

addition to the external coils, the coil complexity may be reduced and a more compact

device may be possible. Plasma current can also provide island healing [95], reducing

the width of islands in comparison with those in the vacuum configuration. For these

reasons, the National Compact Stellarator Experiment (NCSX) was designed to be

quasi-axisymmetric with a significant fraction of rotational transform provided by the

plasma current [114].

Energetic-particle confinement

A successful stellarator reactor must confine energetic alpha particles for at least

their slowing-down time such that their energy can be deposited with the thermal

population. Prompt losses of fast particles should especially be avoided because they

can lead to damage to material surfaces. Collisional diffusion and deflection are

minimal at energies near the birth energy of 3.5 MeV for a D-T reaction (Chapter 3

in [99]), so collisionless guiding center orbits are an informative metric of energetic

particle confinement. If the collision frequency is small enough that energetic ions

can complete their bounce or transit orbits, then the parallel adiabatic invariant,

J =

∮
dl v||, (1.1)

is a conserved quantity, where v|| is the velocity parallel to the magnetic field and l

measures length along a field line. For trapped particles, the integral is taken along

a closed trajectory between bounce points. For passing particles, it is taken along a

field line until it comes infinitesimally close to its starting point. If J is constant on a

magnetic surface, then the collisionless trajectories will experience no net radial drift,

a property known as omnigeneity [39]. Thus several properties involving J , such as
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its variation within a flux surface, have been considered during the design process

[58, 213]. There is evidence that targeting quasi-symmetry (defined shortly) near the

half-radius may also improve energetic particle confinement [105].

Quasi-symmetry

Quasi-symmetric magnetic fields are a subset of omnigeneous magnetic fields. A

quasi-symmetric magnetic field possesses a symmetry direction of the magnetic field

strength when expressed in Boozer coordinates (Appendix A.4),

B(ψ, ϑB, ϕB) = B(ψ,MϑB −NϕB), (1.2)

for fixed integers M and N . If M = 0, the contours of the magnetic field strength

close poloidally, known as quasi-poloidal symmetry. If N = 0, the contours of the

magnetic field strength close toroidally, known as quasi-axisymmetry. If both M and

N are non-zero, known as quasi-helical symmetry, the contours of the field strength

close both toroidally and poloidally.

This symmetry implies guiding center confinement [24] and neoclassical proper-

ties that are comparable to those of an equivalent tokamak [97], including the ability

to rotate in the direction of quasi-symmetry [100]. A quasi-symmetric field is om-

nigeneous, though the converse is not necessarily true. Quasi-symmetry is typically

targeted by minimizing the symmetry-breaking Fourier harmonics of the magnetic

field strength.

Neoclassical transport

Stellarators experience enhanced neoclassical transport at low collisionality in

comparison with tokamaks (Figure 1.2). Neoclassical transport is typically the domi-

nant transport channel in classical (unoptimized) stellarators. It is common to employ

the effective ripple (εeff) proxy, which quantifies the geometric dependence of the radial

fluxes in the low-collisionality 1/ν regime [168]. A discussion of εeff and neoclassical
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diffusion in the 1/ν regime is given in Chapter 5 and Appendix M. Neoclassical op-

timization will be discussed in more depth in Chapter 4. A review of neoclassical

optimization strategies is given in [165].

Stability

Although stellarators may be able to operate above linear MHD stability limits,

it is desirable to design a stellarator with an increased beta limit to reduce enhanced

transport caused by MHD modes. It is common to employ the magnetic well [85]

(discussed in Chapter 5) or Mercier criterion [157] as proxies for the stability of low-n

interchange modes. One can also try to increase magnetic shear, the radial derivative

of the rotational transform ι′(ψ), to improve large n ballooning stability and Mercier

stability [95]. It appears that stellarators can also be designed with reduced microtur-

bulence, though turbulence optimization has yet to be demonstrated experimentally.

Some proxies have been proposed, such as reducing the overlap between bad curvature

and trapping regions [239] or increasing nonlinear energy transfer between unstable

and damped modes [96].

1.3 A brief history of the stellarator

Lyman Spitzer’s first stellarator concept used a simple figure-eight design (Figure

1.4), which produced rotational transform by “twisting the torus out of the plane”

[211]. Spitzer and his team experimentally demonstrated that external shaping could

produce rotational transform in a vacuum field with the Model A, B, and C series

stellarators at Princeton [215]. Results from the Model B1 demonstrated confinement

of energetic electrons for several milliseconds, much longer than would be possible

with a purely toroidal field. However, the observed diffusion of thermal particles

was much larger than that predicted from Bohm scaling [46]. The Model C, using

a racetrack configuration with helically wound coils, was able to demonstrate the

existence of nested magnetic surfaces [207]. Nonetheless, the Model C experienced
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Figure 1.4: A diagram of the figure-eight stellarator design from Lyman Spitzer’s
1951 Project Matterhorn report. Figure reproduced from [209].

poor confinement with Bohm-like diffusion [241]. These early stellarator experiments

operated until the late 1960s when promising results from the Soviet T-3 tokamak

became available, and it was decided that Princeton’s Model C would be converted

to a tokamak [1].

Meanwhile, the Wendelstein line of stellarators was active at IPP Garching, ini-

tially adopting Princeton’s racetrack design. Experiments on WII-A provided insight

into the benefits of low magnetic shear and accurate construction of the coil system

for avoiding magnetic islands [19]. The performance continued, however, to be limited

by neoclassical transport at low collisionality and low equilibrium pressure limits due

to the Shafranov shift [108].

A significant breakthrough in the stellarator program came with the design of

W7-AS, which aimed to improve confinement with equilibrium optimization. To

demonstrate the stellarator optimization concept, W7-AS was partially optimized

for minimal geodesic curvature. Such an objective was predicted to minimize radial
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Figure 1.5: The modular field (MF) coils, toroidal field (TF) coils, and flux surfaces
of the W7-AS stellarator. Figure reproduced from [108] with permission.

magnetic drifts and pressure-driven parallel currents. For the first time, the magnetic

field shaping was supplied by non-planar, modular coils (Figure 1.5) that provided the

freedom to tailor the magnetic field more carefully than helical coils. The experiment

operated from 1988 to 2002, demonstrating the improved equilibrium and stability

properties and reduction of neoclassical transport enabled through equilibrium opti-

mization [108, 117].

The success of W7-AS paved the way for the W7-X experiment [233], which was

fully optimized for nested magnetic surfaces, fast-particle confinement, reduced par-

allel currents, minimal neoclassical transport at low collisionality, and MHD stability

up to an average β of 5% [15]. The early optimization efforts of the Wendelstein

team benefited greatly from the discovery that guiding center confinement could be

achieved with a quasi-symmetric [24] magnetic field. Nührenberg and Zille of the

Wendelstein team then demonstrated that quasi-symmetric equilibria could be ob-

tained from numerical optimization of MHD equilibria [175]. The W7-X configuration

was designed based on one of their quasi-helical configurations, modified to achieve
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Figure 1.6: Modular field coils (silver), toroidal field coils (bronze), and magnetic
surfaces of the W7-X stellarator. Figure reproduced from [223] with permission.

the objectives outlined above. The resulting configuration was quasi-isodynamic, a

quasi-omnigenous magnetic field with poloidally closed contours of the magnetic field

strength [98, 176]. Experiments from the initial campaigns of W7-X have demon-

strated the success of the stellarator equilibrium optimization concept, confirming

the desired magnetic topology to within a tolerance of 10−5 [188]. High-beta opera-

tion will not be demonstrated until an actively-cooled divertor is installed for the next

operating campaign. However, there is initial evidence that recent high-performance

shots could not have been achieved without neoclassical optimization [237].

W7-X was not, however, the first experimental demonstration of a fully optimized

stellarator. The Helically Symmetric eXperiment (HSX) was designed to have quasi-

helical symmetry, Mercier stability, and low magnetic shear [8] using the equilibrium

optimization tools developed by the Wendelstein team [6]. HSX has demonstrated

a reduction of electron thermal diffusivity [35] due to the decrease in neoclassical

transport and a reduction of flow damping in the symmetry direction [77]. The

inward-shifted configuration of LHD was partially optimized for reduced neoclassical

transport and energetic particle confinement [163], though its ideal MHD stability is
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worsened in comparison with the standard configuration. Experiments have demon-

strated higher electron temperatures and improved energetic ion confinement in the

inward-shifted configuration as compared with the standard configuration [164].

There continues to be an effort toward advanced stellarator designs. Construc-

tion has commenced for the Chinese First Quasi-symmetric Stellarator (CFQS) [206],

which will be the first quasi-axisymmetric device in operation. The quasi-axisymmetric

NCSX [242] was designed and partially constructed at the Princeton Plasma Physics

Laboratory (PPPL), but its funding was terminated before its completion. As the

field of stellarator optimization has developed, several other stellarator equilibria

have been optimized to be quasi-symmetric [12, 57, 70, 106, 134, 135, 167] and quasi-

omnigeneous [122, 159].

1.4 Stellarator optimization

Historically, stellarator optimization has largely used a two-staged approach: in

the first step, the magnetic field in the confinement region is optimized to obtain the

desirable physics properties. The magnetic field must satisfy the MHD equilibrium

equations; thus this task amounts to optimization in the space of free parameters

that describe the MHD equilibrium. Often a fixed-boundary MHD calculation is

performed, in which an outer flux surface is prescribed, as opposed to a free-boundary

calculation, in which the currents in the vacuum region are prescribed. As a second

step, the currents in the vacuum region are optimized to be consistent with the

boundary obtained in the first step. As numerical MHD equilibrium calculations

form the foundation of stellarator optimization, these will be described in Section

1.4.1. The two stages of the optimization process are described in Sections 1.4.2 and

1.4.3. We will conclude with a discussion of the present challenges associated with

the design of stellarators and how this Thesis will address them in Section 1.4.4.
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1.4.1 MHD equilibrium calculations

The MHD equilibrium equations,

J×B = ∇p (1.3a)

∇×B = µ0J (1.3b)

∇ ·B = 0, (1.3c)

describe the steady-state behavior of the magnetic field in strongly magnetized plas-

mas. Many assumptions are made in arriving at (1.3), such as small plasma re-

sistivity, low frequency in comparison with the cyclotron and collision frequencies,

and small electron inertia. In practice, these equations describe the long-wavelength,

low-frequency behavior of magnetic fusion plasma very well [64].

Finding solutions to (1.3) is non-trivial in a general three-dimensional field, as

well-posedness requires a set of constraints to be satisfied on every closed field line

unless the pressure profile is locally flattened ([84], Section 10.3 in [121]). An al-

ternative is to rely on the assumption that there exists a set of continuously nested

toroidal magnetic surfaces, Γ(ψ), labeled by the toroidal flux label, ψ. Although

magnetic surfaces are not guaranteed to exist in general three-dimensional geometry,

any stellarator configuration of physical interest will possess a large region of con-

tinuously nested surfaces, and making this assumption will allow for tractable MHD

equilibrium calculations.

Under the assumption of continuously nested toroidal magnetic surfaces, (1.3) can

be shown to be stationary points of an energy functional [133],

W [B] =

∫
VP

d3x

(
B2

2µ0

− p

)
, (1.4)

where VP is the volume of the confinement region bounded by a magnetic surface

SP . Variations of W are computed at prescribed and fixed pressure (p(ψ)), rotational
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PDE BC Given

(∇×B)×B = µ0∇p(ψ) B · n̂|SP = 0 p(ψ), ψ0, & SP
∇ ·B = 0 ι(ψ) or IT (ψ)

Table 1.1: Summary of fixed-boundary equilibrium PDE.

transform (ι(ψ)), and the toroidal flux label on SP (ψ0) ([97], Section 11.1 in [121]).

Solutions to (1.3) under these assumptions can be computed efficiently and robustly

using gradient-descent methods to obtain local minima of W [B]. This approach is

implemented in the VMEC [111] and NSTAB [69] codes.

Sometimes another function of flux is prescribed instead of the rotational trans-

form, such as the net toroidal current inside a constant ψ surface,

IT (ψ) =

∫
ST (ψ)

d2xJ · n̂, (1.5)

where ST (ψ) is a surface at constant toroidal angle bounded by Γ(ψ) (Figure A.2) and

n̂ is the unit normal. This choice of flux function is more common in the context of

optimization, as IT (ψ) can be chosen to vanish for a vacuum field or to be consistent

with a bootrstrap current model at finite pressure [206, 214].

We can consider (1.3) to be an equation determining the magnetic field B, as the

current density is computed from Ampere’s law (1.3b) and the pressure is given as a

function of flux, p(ψ). The MHD equilibrium equations are solved with a Dirichlet

boundary condition,

B · n̂|SP = 0. (1.6)

In the fixed-boundary approach, SP is given and fixed during the equilibrium calcu-

lation. The relevant equations for a fixed-boundary calculation are summarized in

Table 1.1.

In the free-boundary approach, the current density, JC , in the vacuum region,

R3\VP , is prescribed instead of SP . The magnetic field due to this current is computed

15



PDE BC Given

(∇×B)×B = µ0∇p(ψ) B · n̂|SP = 0 p(ψ), ψ0, & JC

∇ ·B = 0 SP s.t.

 (BP + BC) · n̂|SP = 0[[
B2/(2µ0) + p

]]
SP

= 0
ι(ψ) or IT (ψ)

Table 1.2: Summary of free-boundary equilibrium PDEs. The magnetic field due to
the plasma current, BP , is computed from the Biot-Savart law (1.7) or the virtual
casing principle. The magnetic field due to the coil current, BC , is computed from
the Biot-Savart law.

from the Biot-Savart law,

BC(x) =
µ0

4π

∫
R3\VP

d3x′
JC(x′)× (x− x′)

|x− x′|3
. (1.7)

For a given SP , the plasma current, JP , is computed from (1.3). The magnetic

field due to the plasma current can similarly be computed from the Biot-Savart law

or more efficiently with the application of the virtual casing principle [143]. The total

magnetic field must be tangent to the boundary,

(BP + BC) · n̂|SP = 0. (1.8)

Furthermore, the total pressure must be continuous across SP ,[[
B2/(2µ0) + p

]]
SP

= 0, (1.9)

to ensure force balance.

In the free-boundary approach, SP is varied until (1.8) and (1.9) are satisfied.

These conditions (1.8)-(1.9) can also be obtained from a variational principle similar

to (1.4) including the vacuum region [14]. The free-boundary equilibrium problem is

summarized in Table 1.2. Figure 1.7 shows the geometry of equilibrium calculations.

Due to its efficiency and robustness, equilibrium optimization has primarily relied

on this variational approach. There are several alternative approaches to obtaining

numerical solutions to (1.3) in a three-dimensional field. For example, sometimes the

pressure is assumed to be piece-wise constant [120], or the magnetic field is taken to
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Figure 1.7: An equilibrium is computed with a fixed plasma boundary, SP , or pre-
scribed external currents, JC . We assume the existence of a set of closed, nested
toroidal surfaces, Γ(ψ).

resistively relax to an equilibrium [90, 115]. For a review of other 3D equilibrium

models, see Chapter 11 in [121].

1.4.2 Equilibrium optimization

The goal of stellarator optimization is ultimately to obtain the currents in the vac-

uum region needed to produce a stellarator configuration with desired physical prop-

erties. In this sense, it is logical to optimize the coils directly based on a free-boundary

equilibrium. However, fixed-boundary optimization has been predominantly used for

several practical reasons. Free-boundary equilibrium calculations tend to be more

expensive, as they require iterations between an equilibrium solve and vacuum field

calculations. This iterative scheme will not always converge in practice, hence the his-

torical use of the more robust fixed-boundary method. It has also been suggested that

fixed-boundary optimization may yield better equilibrium properties, as the model

assumes the existence of at least one magnetic surface. With this approach, con-

siderations of the physics properties of a configuration are largely decoupled from

engineering considerations of the coils. As a second step, the electro-magnetic coils

are designed, as described in Section 1.4.3.
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The fixed-boundary optimization problem is,

min
SP

f(SP ,B(SP )), (1.10)

where B is seen as a function of SP through the fixed-boundary equations (Table

(1.1)). Here, the objective function, f , quantifies physics or engineering properties

of an equilibrium, such as those outlined in Section 1.2. It is common to consider

several objectives during an optimization, taking the objective function to be a sum

of squares,

f(SP ,B(SP )) =
∑
i

(
fi(SP ,B(SP ))− f target

i

)2

σ2
i

. (1.11)

Here f target
i is the target value for objective i and the σi parameters quantify the

relative weighting of the objectives.

Sometimes additional equality or inequality constraints are imposed,

g(SP ,B(SP )) = 0 (1.12a)

h(SP ,B(SP )) ≤ 0. (1.12b)

For example, the rotational transform might be constrained to be equal to a target

value, or a maximum plasma volume may be imposed. Depending on the choice

of optimization method, a local or global minimum will be sought. We will delay

discussion of specific optimization algorithms until Section 1.4.4. The fixed-boundary

optimization method is implemented in the STELLOPT [197, 213] and ROSE codes

[59].

1.4.3 Coil optimization

Once a target plasma boundary, SP , and equilibrium magnetic field, B0, are iden-

tified from equilibrium optimization, electro-magnetic coils that are consistent with

this equilibrium must be identified. The total magnetic field, B, can be decomposed
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into that which results from the target equilibrium plasma current, BP
0 , and that

which results from the coil currents, BC , computed from the Biot-Savart law. If the

two are consistent, then the following relation will be satisfied,

0 = BP
0 (x) · n̂(x) +

µ0

4π

∫
R3\VP

d3x′
JC(x′)× (x− x′) · n̂(x)

|x− x′|3
, (1.13)

for all x ∈ SP . In other words, the coils must be consistent with the last magnetic

surface of the target equilibrium.

We note that the above is in the form of an integral equation of the first kind,

g(t) =

∫ b

a

dsK(t, s)f(s), (1.14)

where g(t) is given in some domain t ∈ [c, d], K(t, s) is a known kernel function, and

f(s) must be inferred. It is well-known that such problems are ill-posed [131], in the

sense that small changes in the prescribed data, g(t), result in large changes in the

solution, f(s), and a unique solution may not exist.

Thus finding a solution for JC in (1.13) is not well-posed. In some ways, this is ad-

vantageous, as there may be many possible coil arrangements that provide the desired

plasma configuration, and the one with the most favorable engineering properties can

be chosen. However, one must be careful when obtaining numerical solutions to this

problem so that noise in the prescribed data is not amplified. A classical technique

for such problems is Tikhonov regularization [225], in which (1.14) is replaced by the

optimization problem,

min
f(t)

∫ d

c

dt

(∫ b

a

dsK(t, s)f(s)− g(t)

)2

+ λ

∫ b

a

ds
(
f(s)

)2

 . (1.15)

When λ = 0, the above is equivalent to (1.14). In order for the problem to be

well-posed, additional information about the nature of the solution is provided. In

(1.15), the assumption is made that the norm of the solution will be small. The

regularization parameter, λ, describes the trade-off between obtaining a solution of
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(1.14) and satisfying the expected or desired behavior of the solution. The regularized

problem now has a unique solution and depends continuously on g(t) for all λ > 0.

In the context of coil optimization, we can choose the regularization term to

coincide with the desired properties of our coils, such as small curvature or length.

In this way, we seek coils that can be constructed more feasibly. We schematically

write the modified coils problem as,

min
JC

(∫
SP

d2x

((
BP

0 + BC

)
· n̂
)2

+ λ

∫
R3\VP

d3xF (JC)2

)
, (1.16)

where BC is the magnetic field due to JC computed from the Biot-Savart law (1.7)

and F (JC) is some function of the coil currents that characterizes desired engineering

properties.

1.4.3.1 Coil properties

Given the freedom inherent in designing stellarator coils, we now outline some

desired properties for a set of stellarator coils.

• Physics objectives - Our primary interest is to find a coil set consistent with our tar-

get fixed-boundary equilibrium. This objective is typically quantified by the error in

obtaining the last magnetic surface, as in (1.13). In practice, some physics metrics

depend very sensitively on coil perturbations, so other critical physics properties

of the equilibrium can be included in the coil optimization, such as the magnetic

ripple on axis (a measure of quasi-symmetry) or the rotational transform [56].

• Manufacturability - Coil shapes have a minimum allowable radius of curvature

due to their finite build, and overly-complex coils may be difficult to manufacture

without excessive cost [220]. There are many metrics suggested for quantifying

complexity, such as length [243], torsion [118], and curvature [32].

• Stresses - Complex support structures must be built to maintain coil locations and

shapes under their large electro-magnetic, thermal, and gravitational stresses. As
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coils tend to become more circular and planar under electro-magnetic stresses [129],

it is advantageous to minimize curvature and non-planarity when possible.

• Access to the plasma chamber - There should be sufficient distance between coils

to allow for diagnostic ports and ease of machine assembly and maintenance. Coils

with relatively straight sections on the outboard side may particularly provide

improved access [32].

• Coil-plasma separation - In a reactor, coils should be designed sufficiently far from

the plasma boundary to allow space for neutron shielding, a blanket, the first wall,

coil casing, and the vacuum vessel. Increased coil-plasma distance can also reduce

the magnetic field ripple due to the finite number of coils. The minimum coil-

plasma distance effectively sets the required size of a reactor, as ≈ 1.3 m is needed

for the breeding module [166]. Achieving a sufficient coil-plasma distance is difficult

in practice: coils that are very far from the plasma may become overly-complex, as

shaping components of the magnetic field decay rapidly with distance [137].

Several approaches to achieve such objectives are described in Section 1.4.3.2 and

Section 1.4.3.3.

1.4.3.2 Current potential methods

The first stellarator coil design code, NESCOIL [158], assumes that all currents

in the vacuum region lie on a closed toroidal surface called the winding surface, SC .

This method was used to design the modular coils of W7-AS [108], W7-X [15], and

HSX [5] and was later generalized to include regularization in the REGCOIL [136]

code. In the limit of a large number of coils, we can describe a set of discrete coils by

a continuous current density on SC ,

J = δ(b(x))JC(θ, φ). (1.17)
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Here b(x) is the signed-distance function [179],

b(x) =


−d(x, SC) x ∈ VC

0 x ∈ SC

d(x, SC) x 6∈ VC

. (1.18)

The volume enclosed by SC is VC and d(x, SC) is the shortest distance from x to any

point on SC . The signed distance function is also discussed in Section 2.1. The surface

current JC is a function of the two angles, θ and φ, parameterizing the position on

SC . As a consequence of Ampere’s law (Appendix B), the continuous surface current

can be written as,

JC = n̂×∇Φ. (1.19)

We can note that current will flow along the contours of Φ, as JC · ∇Φ = 0. In this

way, once Φ is computed, the coil shapes can be chosen to be a set of the contours of

Φ. As we will see in Section 3, it is possible to construct an objective function that

is a convex function of Φ, possessing a unique global minimum that can be obtained

through linear least-squares. Thus current potential methods are particularly robust

and efficient, though based on some severe assumptions. Coil complexity can be

approximated from the properties of the current potential. In REGCOIL, this is

done with the norm of the current density,

χ2
J =

∫
SC

d2x |JC |2, (1.20)

as large values of χ2
J indicate small coil-coil spacing. An example REGCOIL calcula-

tion is shown in Figure 1.8.

1.4.3.3 Filamentary methods

Other coil design codes instead assume that all currents in the vacuum region are

confined to filamentary lines, {Ck}, taken to be the center of each winding pack. This
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Figure 1.8: An example of a REGCOIL calculation for the W7-X standard configura-
tion equilibrium. The winding surface is taken to be a surface uniformly offset from
SP by 0.5 m. (a) The current potential and the uniformly-spaced contours taken for
the coil set. (b) The coil set computed from the contours on the winding surface. (c)
The 5 unique coils in one half period and the plasma surface.
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assumption is again an idealization, as stellarator coils have a finite build consisting

of several layers, each with several turns of the conducting material. However, the

filamentary method is more realistic than current potential methods, as it accounts

for the ripple due to the finite nature of coils. The lines and the current through each

are optimized to minimize some objective function that includes the normal field error

on SP in addition to engineering objectives, which serve as a form of regularization.

For example, the FOCUS code [243] uses the coil length as a form of regularization,

and the COILOPT code [216] includes the coil-plasma separation, coil-coil separation,

and the coil curvature. These optimization problems are generally nonlinear and non-

convex so that the resulting local minimum will depend on the initial guess. For this

reason, a current potential solution can be used to initialize the optimization with

filamentary methods.

1.4.4 Challenges and outlook

Although there have arguably been significant successes in optimized stellarator

design, there is still room for improvement in the algorithms and numerical methods.

Specifically, we aim to address several major challenges that arise in the optimization

of stellarator configurations.

1. Coil complexity - In the standard two-step approach, coil design is decoupled from

equilibrium optimization. While this may allow for improved physics properties,

the resulting equilibrium may require overly-complex coils that cannot be manu-

factured economically or are not consistent with engineering constraints. As was

stated in the 2018 report of the National Stellarator Coordinating Committee [73],

“The highest priority for technology is to better integrate the engineering

design with the physics design at the earliest possible stage.”

For this reason, it is favorable to include coil complexity metrics in equilibrium
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optimization. As an example, one approach is to compute the properties of the

current potential (Section 1.4.3.2) on a winding surface that is uniformly offset

from the plasma surface [59] during fixed-boundary optimization. It has also been

proposed that properties of the optimal filamentary coils for a given plasma bound-

ary be included in equilibrium optimization [118]. Alternatively, the coils can be

directly optimized with a free-boundary method. This approach was implemented

in the late stages of the NCSX design [119, 217] and in the QPS (Quasi-Poloidally

Symmetric Stellarator) design [218], resulting in simultaneous attainment of en-

gineering feasibility and desired plasma properties. Another tactic to reduce coil

complexity is replacing non-planar modular coils by permanent magnets [103, 246].

2. Non-convexity - The optimization problems that arise in stellarator design are often

non-convex (except for the current potential methods described in Section 1.4.3.2).

While convex optimization problems can be solved in polynomial time (Chapter

1 in [29]), obtaining the global optimum of a non-convex optimization problem is

generally NP -hard. As global optima are difficult to locate, it is common to apply

algorithms that instead converge to local optima. Such methods are sensitive to the

initial conditions and tend to get “stuck” in small local minima or saddle points.

For this reason, it is very valuable to have initial configurations that are close to the

desired configuration. One approach is to begin with an analytic construction of

an equilibrium close to quasi-symmetry or omnigeneity by employing an expansion

about the magnetic axis [139, 142, 193].

Gradient information is invaluable for obtaining the local minimum of an ob-

jective function. While there are some algorithms for derivative-free local opti-

mization, they typically are only effective for small problems (Chapter 9 in [170]).

Gradient information is also useful for global optimization; for example, with a

multi-start approach, many local optimization problems are solved to approxi-

mately obtain the global minimum. As considerations of the gradient will be
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central to this Thesis, we will discuss this topic further in Chapter 2.

In Figure 1.9 we show a benchmark of several optimization problems on the

Rosenbrock function,

f({xi}Ni=1) =
N−1∑
i=1

100(xi+1 − x2
i )

2 + (xi − 1)2, (1.21)

with N = 2, a non-convex function with a long, thin valley that is often used to

benchmark optimization algorithms. We can note that the gradient-based BFGS

method converges rather directly toward the optimum. In contrast, the gradient-

free particle swarm method takes a scattered trajectory and requires many addi-

tional functional evaluations.

3. High-dimensionality - Often, the optimization problems that arise in stellarator de-

sign require navigation through the high-dimensional spaces that describe the outer

boundary of the plasma or coil shapes. While such shapes are infinite-dimensional

in reality, often they are parameterized with Fourier series, and only a finite num-

ber of modes are retained during the optimization. The number of parameters used

in practice to describe such shapes is typically O(102) [242]. We show a benchmark

of the N -dimensional Rosenbrock function (1.21) in Figure 1.10, noting that the

number of function evaluations required to obtain the optimum scales poorly with

N for the gradient-free methods and finite difference based gradient-free methods.

As computing the gradient with a finite-difference method requires O(N) func-

tion evaluations, the associated cost is reduced significantly if analytic derivatives

are available. Stellarator equilibrium optimization has historically proceeded with

gradient-free methods, such as genetic algorithms [161] and the Brent algorithm

[59], or gradient-based methods with finite-difference gradient calculations [213].

Recently, gradient-based optimization of coils shapes has begun to take advan-

tage of analytic gradient and Hessian calculations [243, 244]. However, for many

functions of interest, it is not so simple to compute the analytic derivative, as the
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objective function may depend on the solution to a system of equations. For such

objectives, analytic derivatives can be computed with an adjoint method. This

topic will be discussed in detail in Chapter 2 and throughout the Thesis.

4. Tight engineering tolerances - Once an optimal design is identified, engineering

and metrology coil tolerances must be determined from the allowable deviations

of physics parameters. In the NCSX design, it was determined that coil tolerances

of ≈ 1.5 mm were required to achieve good flux surfaces in 90% of the plasma

volume [31]. These tight modular coil tolerances were identified as the largest

contributor to the cost growth of the project, ultimately leading to the termination

of its funding [220]. The first recommendation that came out of an analysis of the

NCSX project was,

“Be critical and surgical in requiring either small tolerances or low mag-

netic permeability requirements. . . The impact is not only in increased

cost but schedule stretch-out which has a large management overhead

cost.”

One approach to address this challenge is to optimize the expected value of an

objective function over a distribution of possible deviations, known as stochastic

optimization. This technique has been shown to increase the tolerances of an

optimized coil set [150, 151]. There has also been a recent development of tools for

the efficient evaluation of tolerance information to avoid costly parameter scans or

Monte Carlo sampling methods [31, 88]. The eigenvectors of the Hessian matrix

illuminate the most sensitive perturbation directions at a local minimum [243, 245],

and in this Thesis, we will discuss the shape gradient approach [138].
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Figure 1.9: The optimization path of the gradient-based BFGS quasi-Newton local
optimization method and gradient-free particle swarm global optimization method on
the 2D Rosenbrock function (1.21). The BFGS optimization is initialized at (x1, x2) =
(10, 10) and converges to the optimum at (1, 1) in 58 function evaluations, using an
analytic gradient to obtain the descent direction. The particle swarm optimization is
initialized with a swarm of 20 particles at (10, 10) and converges to the optimum at
(1, 1) in 3400 evaluations. The gradient-based method converges more directly toward
a minimum, while the gradient-free method converges in a scattered way requiring
excessive function evaluations. For (a), the optimization was terminated when the
maximum of the absolute value of the gradient elements was less than 10−8, and
for (b), the optimizations was terminated when the relative change in the objective
function over the previous 20 iterations was less than 10−8.
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Figure 1.10: The number of function evaluations required for convergence to the min-
imum of the N -dimensional Rosenbrock function (1.21) as a function of the dimen-
sion. Results are shown for the gradient-based BFGS algorithm with finite-difference
and analytic gradients and the gradient-free particle swarm method. We note that
the gradient-free and finite-difference gradient-based methods scale poorly with the
dimension. Knowledge of analytic gradients reduces the associated cost by several or-
ders of magnitude in comparison. The cost reduction provided by analytic derivatives
increases with increasing dimension. For the BFGS algorithm the optimization was
terminated when the maximum of the absolute value of the gradient elements was less
than 10−8, and for the particle swarm algorithm the optimizations was terminated
when the relative change in the objective function over the previous 20 iterations was
less than 10−8.
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1.5 Overview of this Thesis

This Thesis aims to address each of the challenges outlined in the previous Section.

The focus will be on adjoint methods, which allow for efficient analytic gradient

calculations. With such gradient information available, we can navigate through high-

dimensional, non-convex spaces that arise in stellarator design with gradient-based

methods, addressing objectives 2 and 3. Derivatives obtained from the adjoint method

can also be used to analyze local sensitivity to perturbations using the shape gradient,

addressing objective 4. Specific applications of the adjoint method described in this

Thesis will enable efficient free-boundary coil optimization or coupled coil-plasma

optimization, addressing objective 1.

We begin in Chapter 2 with an introduction to some mathematical fundamentals

that lay the groundwork for this Thesis, including an overview of shape optimization

and adjoint methods. Chapter 3 describes an adjoint method for the optimization of

the coil winding surface for minimal coil complexity. Chapter 4 describes an adjoint

method for the optimization of several neoclassical figures of merit local to a mag-

netic surface, including radial fluxes and the bootstrap current. Chapter 5 describes

an adjoint method for the optimization of functions which depend on MHD equi-

librium solutions, such as those that arise in fixed and free-boundary optimization.

The adjoint method discussed in Chapter 5 requires the solution of linearized MHD

equilibrium equations, which are discussed in Chapter 6. In Chapter 7, we summarize

and discuss ongoing and future research related to this Thesis.
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Chapter 2: Mathematical fundamentals

2.1 Shape optimization

The design of a stellarator requires optimizing in the space of shapes: equilibrium

design involves optimization of the shape of the plasma boundary, SP , and coil design

involves optimization of the shapes of filamentary coils or toroidal winding surfaces.

The mathematical field of shape optimization has developed to study such problems,

contributing to the design of aerodynamic car bodies [180] and airplane wings with

increased lift [162]. In this Section, we briefly outline several concepts from this field.

We refer to several fundamental textbooks [40, 52, 91, 191] and a Ph.D. thesis with

a gentler introduction [47].

2.1.1 Definitions and identities

Consider some functional, f , which depends on the shape of some domain, Γ. In

order to compute the derivative of f , we must first identify a deformation field, δx,

which describes the change of the shape. If the shape begins in a state Γ, the shape

deformed in the direction δx by magnitude ε is Γε = {x0 + εδx(x0) : x0 ∈ Γ}. In this

way, we can define the shape derivative of f as,

δf(Γ; δx) ≡ lim
ε→0

f(Γε)− f(Γ)

ε
. (2.1)

This is a functional derivative in the direction δx (a Gateaux functional derivative).

We can prove some useful properties of the shape derivative for specific choices of
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functional,

J1(Γ) =

∫
Γ

d3x j1(Γ) (2.2a)

J2(Γ) =

∫
∂Γ

d2x j2(Γ), (2.2b)

volume and surface integrals.

For volume-integrated functionals, the shape derivative can be evaluated by noting

the Jacobian of the transformation x ∈ Γ→ x ∈ Γε is given by I + ε∇δx, where I is

the identity tensor. This allows us to relate the volume integral over Γε to a volume

integral over Γ,

δJ1(Γ; δx) = lim
ε→0

1

ε

(∫
Γε

d3x j1(Γε)−
∫

Γ

d3x j1(Γ)

)

= lim
ε→0

1

ε

∫
Γ

d3x
[
det (I + ε∇δx) j1(Γε)|x+εδx − j1(Γ)

]
. (2.3)

Noting that j1(Γε)|x+εδx = j1(Γ)|x + εδj1(Γ; δx) + εδx · ∇j1(Γ) +O(ε2) we have,

δJ1(Γ; δx) =

∫
Γ

d3x

(
δj1(Γ; δx) + δx · ∇j1(Γ) +

d

dε

(
det(I + ε∇δx)

) ∣∣∣∣
ε=0

j1(Γ)

)
.

(2.4)

The derivative of the determinant of a matrix can be computed from Jacobi’s formula,

d/dt
(
det(A(t))

)
= det(A(t))tr(A(t)−1A′(t)),

δJ1(Γ; δx) =

∫
Γ

d3x
[
δj1(Γ; δx) + δx · ∇j1(Γ) + (∇ · δx) j1(Γ)

]
. (2.5)

From the divergence theorem, we arrive at the following form for the shape derivative

of volume-integrated functionals,

δJ1(Γ; δx) =

∫
Γ

d3x δj1(Γ; δx) +

∫
∂Γ

d2x δx · n̂j1(Γ). (2.6)

The first term accounts for the Eulerian change to j1 while the second term accounts

for the motion of the boundary. In fluid mechanics, this relation is sometimes referred

to as the Reynolds transport theorem (Chapter 2 in [145]), which describes the time

32



(a) (b)

Figure 2.1: (a) An unperturbed volume, Γ. (b) The normal perturbation field of
magnitude εδx · n̂ (black) and the perturbed volume, Γε (green). We can see that the
linear change in volume associated with the perturbation field is δV =

∫
∂Γ
d2x δx · n̂.

derivative of integrated quantities associated with a moving fluid. A physical picture

of this result is given in Figure 2.1.

We can now use (2.6) to obtain the shape derivative of the surface-integrated

functional (2.2b). To do so, we recall that the normal vector can be expressed as

n̂ = ∇b|∂Γ, where b is the signed distance function [179],

b(x) =


−d(x, ∂Γ) x ∈ Γ

0 x ∈ ∂Γ

d(x, ∂Γ) x 6∈ Γ

, (2.7)

and d(x, ∂Γ) is the shortest distance from x to any point on ∂Γ. This can be seen

by noting that n̂ points outward, in the direction of increasing b(x), and the shortest

path between a point near ∂Γ and ∂Γ will be along the normal direction. As b(x)

measures Euclidian distance, ∇b has unit length.

We can now apply the divergence theorem to write (2.2b) as

J2(Γ) =

∫
Γ

d3x∇ ·
(
j2(Γ)∇b(Γ)

)
. (2.8)
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We apply the transport theorem for volume-integrated functionals (2.6) to obtain,

δJ2(Γ; δx) =∫
∂Γ

d2x
[
δx · n̂

(
n̂ · ∇j2 + j2∇2b

)
+∇b · ∇δb(Γ; δx) + δj2(Γ; δx)

]
. (2.9)

We can interchange shape and spatial derivatives1 to see that∇b·∇δb = 1
2
δ (∇b · ∇b) =

0, as ∇b will remain a unit vector. We can also recognize that the mean curvature,

H, is related to the normal vector by H = 1
2
∇∂Γ ·n̂, where ∇∂Γ ·f = ∇·f−n̂ ·(∇f) ·n̂ is

the tangential divergence operator. (Sometimes H is defined with the opposite sign.)

For surface-integrated functionals we therefore obtain the following shape derivative,

δJ2(Γ; δx) =

∫
∂Γ

d2x
[
δj2(Γ; δx) + (n̂ · ∇j2 + 2Hj2) δx · n̂

]
. (2.10)

The first term accounts for the Eulerian change to j2, while the second and third

terms account for the motion of the boundary. As one would expect, an outward

perturbation of a surface with large mean curvature leads to a large change in the

area. See Figure 2.2 for a physical picture.

We can already see from (2.6) and (2.10) that the shape derivatives of volume and

surface-integrated functionals involve integrals over the boundary. It may appear

that to understand the form of these shape derivatives, we will need to specify the

structure of j1(Γ) and j2(Γ). However, we can make a more general statement about

shape derivatives of any form. The Hadamard-Zolesio structure theorem [52, 87]

states that the shape derivative of a general functional of the domain Γ with sufficient

smoothness can be expressed as,

δJ(Γ; δx) =

∫
∂Γ

d2x δx · n̂G, (2.11)

where G is called the shape gradient. This is an example of the Riesz representation

theorem, which (roughly) states that any linear functional can be expressed as an

1Under the assumption of sufficient smoothness, spatial and shape derivatives can be shown to
commute by noting that x and Γ are independent variables (Chapter 6 in [40]).
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Figure 2.2: A local orthogonal basis is formed by the principal directions on ∂Γ, shown
as the blue and red lines, with curvatures κ1 and κ2, respectively. The unperturbed
surface area element bounded by the principal directions is given by dA = l1l2. Upon
a normal displacement of magnitude εδx · n̂, the new area element is given by (dA)ε =
l1l2(1 + κ1εδx · n̂)(1 + κ2εδx · n̂), so the linear change in the area element is δA =
(dA)2Hδx · n̂, where H = κ1+κ2

2
is the mean curvature.

inner product with an element of the appropriate space (Chapter 4 in [199]). The

shape derivative is a linear functional of the normal perturbation to the boundary,

δx · n̂, and can be expressed as a surface integral with the shape gradient. This

form is especially powerful for computation, as the deformation field only needs to

be defined on the boundary, and the derivative can be written in terms of a surface

integral rather than a volume integral. Intuitively, linear changes to a functional

only depend on normal perturbations of the boundary. If the shape gradient can be

determined, then for any possible deformation field, δx, the corresponding change to

the functional δJ(Γ; δx), is known. We can think of G as being a measure of the local

sensitivity: regions of increased |G| correspond to regions of increased sensitivity of

J(Γ) with respect to normal perturbations.

For stellarator optimization, we are also interested in functionals which depend

on the shape of a set of filamentary lines, C = {Ck}. We expect that perturbations of

the coils in the tangential direction will not result in a linear change to the functional.

We can, therefore, write the shape derivative in a form analogous to the structure
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theorem (2.11) by the Riesz representation theorem,

δf(C; δxCk) =
∑
k

∮
CK

dl δxCk × t̂ · Gk, (2.12)

where t̂ is the tangent vector, integration is taken along each coil, and the sum is

taken over all coils. As a curve has two independent directions perpendicular to the

tangent vector, the shape gradient is now a vector, Gk. Its direction indicates the

direction of perturbation which leads to the largest increase in the functional, and its

magnitude indicates the level of sensitivity to a given perturbation.

To motivate this form of the coil shape gradient, we consider the example of the

magnetic field computed from the Biot-Savart law applied to a set of filamentary coils

{Ck},

B(x, C) =
µ0

4π

∑
k

ICk

∮
Ck

dl
t̂(l)× (x− xk(l))

|x− xk(l)|3
, (2.13)

where xk is the position along the kth coil and t̂ = x′k(l) is the unit tangent vector.

The shape derivative of the magnetic field can now be computed with respect to a coil

perturbation field δx by considering the perturbation of a general closed line integral

QL(C) =
∮
C
dl Q(C) [9, 138],

δQL(C; δx) =

∮
C

dl

(
δx ·

(
−κQ+

(
I− t̂t̂

)
· ∇Q

)
+ δQ(C; δx)

)
, (2.14)

where κ(l) = t̂
′
(l) is the curvature vector.

Upon application of this identity and integration by parts, we obtain,

δB(x, C; δxk) =

µ0

4π

∑
k

∮
Ck

dl δxk × t̂(l) ·

(
− I

|x− xk(l)|3
+ 3(x− xk(l))

(x− xk(l))

|x− xk(l)|5

)
, (2.15)

where I is the identity tensor. Thus the shape derivative of a figure of merit that

depends on the vacuum magnetic field through the Biot-Savart law can be expressed

in the coil shape gradient form (2.12). In Chapter 5 we will show explicit examples
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of other figures of merit that can be expressed in this form.

2.1.2 Parameter derivatives

In practice, it may be convenient to describe a shape by a set of parameters, Ω.

We can relate the shape derivative and shape gradient defined in the previous Section

to derivatives with respect to such parameters.

Suppose that we have a surface described by a set of parameters, Ω. For example,

in the context of stellarator equilibrium calculations, the plasma boundary is often

described by a set of Fourier coefficients of the cylindrical coordinates, {Rc
m,n, Z

s
m,n},

R =
∑
m,n

Rc
m,n cos(mθ − nNPφ) (2.16a)

Z =
∑
m,n

Zs
m,n sin(mθ − nNPφ). (2.16b)

Here θ is a poloidal angle, φ is a toroidal angle, and the configuration is assumed to

possess stellarator symmetry, which implies thatR(−θ,−φ) = R(θ, φ) and Z(−θ,−φ) =

−Z(θ, φ) [53]. The number of periods is NP , representing the discrete rotational

symmetry of the equilibrium (Section 12 in [121]). This is the representation of the

boundary shape used in the VMEC code [111].

In this case, we can compute the shape derivative corresponding to perturbations

of each parameter, δx =
(
∂x(Ω)/∂Ωi

)
δΩi

δJ(Γ(Ω); δx) =
∂J(Γ(Ω))

∂Ωi

δΩi, (2.17)

by expression our functional as a function of the parameters. We apply the structure

theorem (2.11) to obtain the following expression,

∂J(Γ(Ω))

∂Ωi

=

∫
∂Γ

d2x
∂x(Ω)

∂Ωi

· n̂G. (2.18)

Given ∂J(Γ(Ω))/∂Ωi and ∂x(Ω)/∂Ωi, we can consider this to be a linear system for

G. For numerical calculation, the above can be discretized using a collocation method
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or by expanding G in a set of basis functions. Often the linear system is not square,

in which case an SVD or QR decomposition can be used.

Now suppose that our coils are described by a set of parameters, Ω. For example,

the Cartesian components of the filamentary line can be described by a Fourier series,

xk =
∑
m

Xkc
m cos(mθ) +Xks

m sin(mθ) (2.19a)

yk =
∑
m

Y kc
m cos(mθ) + Y ks

m sin(mθ) (2.19b)

zk =
∑
m

Zkc
m cos(mθ) + Zks

m sin(mθ), (2.19c)

where θ ∈ [0, 2π] is an angle parameterizing each curve. Again we compute the shape

derivative corresponding to perturbations of each parameter, δxCk =
(
∂xCk(Ω)/∂Ωi

)
δΩi,

δf(C; δxCk) =
∂f({Ck(Ω)})

∂Ωi

δΩi, (2.20)

to obtain,

∂f(C)

∂Ωi

=
∑
k

∮
Ck

dl
∂xCk(Ω)

∂Ωi

× t̂ · Gk. (2.21)

As with the case of functionals of surfaces, we can consider the above to be a linear

system for Gk that can be solved numerically.

An overview of this method and examples of its application for figures of merit

relevant for stellarator optimization are provided in [138].

2.1.3 Discussion and applications

The shape derivatives computed in this Section are quite general, applying to

any functional of surfaces, volumes, or lines. For some problems we will be able to

use the expressions for the shape derivatives, (2.6) and (2.10), to obtain an explicit

expression for the shape gradient. For example, if we consider the volume functional,
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(2.2a) with j1 = 1, then we see from (2.6) that the shape gradient will be G = 1. If we

consider the surface functional, (2.2b) with j2 = 1, then we see from (2.10) that the

shape gradient will be G = 2H. However, for many functionals, this type of explicit

calculation is not possible. We are often interested in functionals which depend on

solutions of a PDE, in which case we can compute the shape gradient by solving an

additional PDE, known as an adjoint equation. We describe the adjoint method in

more detail in the following Section.

For other problems, it may be more convenient to compute the shape derivative

from parameter derivatives, as in (2.17) and (2.20), rather than applying the transport

theorems. The shape gradient can then be inferred by solving the corresponding linear

systems, (2.18) and (2.21). Sometimes these parameter derivatives can be obtained

analytically or with an adjoint method; otherwise, they are obtained with a finite-

difference method.

As the shape gradient measures the local sensitivity of a figure of merit to pertur-

bations of a shape, we can use it to quantify the uncertainty in a figure of merit given

a distribution of small perturbations to the shape. As shown in [138], the plasma

surface or coil shape gradient can be used to determine the allowable deformations of

a shape given a permissible change to a figure of merit. Suppose a figure of merit f

has an allowable deviation ∆f (in either direction). If we define a local tolerance for

the kth coil as,

Tk(l) =
wk(l)∆f∑

k′

∮
dl wk′(l′)|Gk′(l′)|

, (2.22)

such that the perturbation amplitude |δxCk(l)× t̂(l)| ≤ Tk(l) along the kth coil, then

the the change of the figure of merit will be,

|δf
(
C; δxCk

)
| ≤

∑
k

∮
Ck

dl |δxCk × t̂ · Gk| ≤
∑
k

∮
Ck

dl Tk|Gk| = ∆f, (2.23)

upon application of the triangle inequality. Here wk(l) is a weight function which
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allows for the distribution of tolerance to be non-uniform along the coil. In identifying

such a tolerance we have relied on a local approximation of the function, considering

small-amplitude perturbations such that a linear approximation is valid.

Similarly, a tolerance with respect to perturbations of a surface can be defined

with respect to the surface shape gradient,

T =
w∆f∫

∂Γ
d2xwG

, (2.24)

where w is a weight function defined on the surface ∂Γ. For example, we could

consider the tolerance of a figure of merit that depends on the position of the plasma

boundary, SP . If we constrain perturbations of the surface such that |δx·n̂| ≤ T , then

we find that the corresponding change to the figure of merit is δf ≤ ∆f . However, the

deformation of a magnetic surface is not a quantify that can be directly experimentally

controlled, requiring equilibrium reconstruction methods [89].

A more practically relevant quantity is computed from the sensitivity to pertur-

bations of the magnetic field, SB, defined through,

δf(SP ; δx) = 〈G〉ψδV (δx) +

∫
SP

d2xSBδB(δx) · n̂, (2.25)

where δV and δB are the perturbations to the volume enclosed by SP and magnetic

field resulting from a surface displacement of δx and 〈. . . 〉ψ is the flux-surface average

(A.10).

The quantity SB, which quantifies the local sensitivity to perturbations of the

magnetic field, is computed from the shape gradient as,

B · ∇SB = 〈G〉ψ − G. (2.26)

A tolerance with respect to magnetic field perturbations can then be constructed as,

TB =
w∆f∫

SP
d2xw|SB|

, (2.27)

for a chosen weight function w, such that if the normal magnetic perturbations satisfy
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|δB · n̂| ≤ TB, then δf ≤ ∆f . The tolerance with respect to magnetic perturbations

can inform allowable coil deformations, location of trim coils, and position of current

leads. In this way, important engineering tolerances are inferred, addressing objective

4 from Section 1.4.4.

2.2 Adjoint methods

An adjoint method is a numerical method for the efficient calculation of derivatives

of an objective function that depends on the solution to some set of equations, known

as the forward system. At the heart of the adjoint method is the adjoint equation,

in which the adjoint of the linearized forward operator appears in addition to an

inhomogeneous term that depends on the objective function of interest.

There are other instances in which the adjoint operator may become useful. An ad-

joint Fokker-Planck equation is used to compute the quasilinear generation of current

by RF waves [9] or to study runaway electron dynamics [148]. An adjoint gyroki-

netic equation can also be used to analyze the evolution of free energy [141]. Finally,

adjoint operators are used to predict and correct discretization error [78, 189] and

perform efficient grid adaptation [231]. In this Chapter, we focus our attention on

adjoints for efficient derivative calculations.

Adjoint methods were introduced by the optimal control theory community in the

1960s [74, 126], and were later adopted by the fluid dynamics community [190]. They

have since been popularized for aeronautical design [123], car aerodynamics [180],

geophysics [192], and nuclear fission reactor design [68]. Aside from the body of work

associated with this Thesis, there is only one other example of the use of adjoint

methods in fusion sciences: for the shape optimization of tokamak divertors based on

adjoint fluid equations [47, 49, 50, 51]. We refer to several introductory articles on

adjoint methods [4, 79, 192].

We begin our overview of adjoint methods with its application for objective func-
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tions that depend on the solution of finite-dimensional, discrete linear systems in

Section 2.2.1. We will then generalize to objective functions that depend on the so-

lution of infinite-dimensional, possibly nonlinear systems in Section 2.2.2. The two

approaches are compared in Section 2.2.3.

2.2.1 Discrete approach

Suppose we would like to solve the optimization problem,

min
Ω
f(Ω,−→x ), (2.28)

where −→x is the solution of a linear system,

←→
A (Ω)−→x =

−→
b (Ω). (2.29)

Here
←→
A is an N×N matrix and −→x and

−→
b are N×1 column vectors. Let Ω = {Ωi}NΩ

i=1

be a set of design parameters defining our optimization space. To minimize (2.28)

with a gradient-based method, we compute the derivative with respect to Ω using the

chain rule,

df(Ω,−→x (Ω))

dΩ
=
∂f(Ω,−→x )

∂Ω
+

(
∂f(Ω,−→x )

∂−→x

)T
∂−→x (Ω)

∂Ω
. (2.30)

Here ∂f(Ω,−→x )/∂−→x is the gradient of f with respect to −→x , a column vector. To

evaluate ∂−→x (Ω)/∂Ω, we must compute linear perturbations of (2.29),

∂
←→
A (Ω)

∂Ω
−→x (Ω) +

←→
A (Ω)

∂−→x (Ω)

∂Ω
=
∂
−→
b (Ω)

∂Ω
. (2.31)

We schematically evaluate the perturbation to the solution as,

∂−→x (Ω)

∂Ω
=
←→
A (Ω)−1

(
∂
−→
b (Ω)

∂Ω
− ∂
←→
A (Ω)

∂Ω
−→x (Ω)

)
. (2.32)
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Inserting the result into (2.30), we obtain

df(Ω,−→x (Ω))

dΩ
=
∂f(Ω,−→x )

∂Ω

+

(
∂f(Ω,−→x )

∂−→x

)T
←→A (Ω)−1

(
∂
−→
b (Ω)

∂Ω
− ∂
←→
A (Ω)

∂Ω
−→x (Ω)

) . (2.33)

This approach to computing the derivative, the forward-sensitivity method, requires

computing NΩ + 1 solutions to a linear system of size N × N : we must solve (2.29)

once for −→x , and we must solve,

←→
A (Ωi)

−→y =
∂
−→
b (Ω)

∂Ωi

− ∂
←→
A (Ω)

∂Ωi

−→x (Ωi), (2.34)

for ←→y once for each Ωi.

By rearranging parentheses, (2.33) is equivalent to,

df(Ω,−→x (Ω))

dΩ
=
∂f(Ω,−→x )

∂Ω

+

((←→
A (Ω)T

)−1 ∂f(Ω,−→x )

∂−→x

)T (
∂
−→
b (Ω)

∂Ω
− ∂
←→
A (Ω)

∂Ω
−→x (Ω)

)
, (2.35)

where we have noted that the transpose and inverse operations can be interchanged

for any invertible matrix. Thus we can see that if we compute the solution to the

following adjoint equation,

←→
A (Ω)T←→z =

∂f(Ω,−→x )

∂−→x
, (2.36)

then we can compute the derivative of the objective function in a more convenient

way,

df(Ω,−→x (Ω))

dΩ
=
∂f(Ω,−→x )

∂Ω
+−→z T

(
∂
−→
b (Ω)

∂Ω
− ∂
←→
A (Ω)

∂Ω
−→x (Ω)

)
. (2.37)

This method for computing the derivative, known as the adjoint method, only requires

two solutions of a linear system of size N × N : (2.29) and (2.36). In general, the

partial derivatives of
−→
b (Ω) and

←→
A (Ω) can be computed analytically. In this way, no

approximations are made in obtaining (2.37). The power of this approach becomes
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apparent in high-dimensional spaces: the adjoint method requires only two solutions

of such linear systems, while the forward-sensitivity method requires NΩ +1 solutions.

Approximating the derivative with a finite-difference method also requires at least

NΩ + 1 solutions, depending on the size of the stencil.

The approach presented in this Section can be understood as a linear algebra trick.

We want to solve a linear system for many right-hand sides, as in (2.34). Moreover,

we are only interested in a specific inner product with these solutions, (2.33). As

we are allowed to interchange the transpose and inverse operations, we arrive at the

adjoint form (2.36). If the partial derivatives of
←→
A (Ω) and

−→
b (Ω) can be computed

analytically, and the adjoint equation is solved exactly, then no approximations are

made here. In this sense, we can consider the adjoint-based derivative to be the exact

analytic derivative. In practice, there may be a small amount of error introduced due

to the finite tolerance of the linear solve.

2.2.1.1 Computational complexity comparison

We now compare the computational complexity of the forward-sensitivity method,

the finite-difference method, and the adjoint method for computing the derivative.

Here we will ignore any cost associated with constructing
←→
A (Ω),

−→
b (Ω), or their

derivatives. For some matrix types (e.g. sparse) the number of required operations

may be reduced from what is given here, but we simply try to estimate the relative

costs. The flop counts for matrix computations can be found in standard references

such as [226].

For both the forward and adjoint sensitivity methods, we must form the right-

hand side of (2.34) for each Ωi, each of which requires a matrix-vector product and a

vector-vector sum for a combined cost of ≈ 2N2 + N flops. The forward-sensitivity

method requires solving (2.34) NΩ times. For example, an LU factorization method

can be used, which requires ≈ 2
3
N3 flops. Once the factorization is known, solving the
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system (2.31) via backward substitution costs ≈ 2N2 flops for each Ωi. Once ∂−→x /∂Ω

is obtained, NΩ vector-vector products must be performed to obtain the derivatives

of f as in (2.33), each which requires 2N flops. Thus the composite number of flops

is ≈ 4NΩN
2 + 2

3
N3. With a finite-difference method, the total cost of computing

∂−→x /∂Ω requires at least ≈ 2
3
NΩN

3 flops, assuming that the linear solve is the most

expensive step and a one-sided stencil is used.

Alternatively, the adjoint method for computing the derivative requires two linear

solves. If an LU factorization method is used, then the matrix factorization of
←→
A =

←→
L
←→
U can be reused to solve the adjoint system (2.36), as

←→
A T =

←→
U T←→L T where

←→
U T is lower-triangular and

←→
L T is upper-triangular. Thus the cost of computing the

two solutions requires ≈ 2
3
N3 + 4N2 flops. Once the adjoint solution is obtained, NΩ

matrix-vector products and vector-vector sums must be computed in (2.37) each with

cost ≈ 2N2 +N flops. Again, NΩ vector-vector products are required, each of which

requires ≈ 2N flops. Thus the total complexity is ≈ 2NΩN
2 + 2

3
N3 flops, assuming

large N . A summary of these approximate flop counts is given in Table 2.1.

We see that the adjoint method provides modest savings over the forward-sensitivity

method when NΩ is comparable to N . However, for many problems the assumptions

made in this Section do not apply. In particular, if
←→
A is sparse,

←→
L and

←→
U will

be generally be dense, in which case the matrix-vector multiplication that appears

on the right-hand-side of (2.37) will be significantly cheaper than backsubstitution

to solve (2.34), and there will be a more significant savings with the application of

the adjoint method over the forward-sensitivity method. For very large matrices it

may be impractical to LU factorize
←→
A . Instead, a preconditioner may be factorized,

and the linear system is solved with a Krylov subspace iterative method. Again for

such systems, solving the factorized system will be significantly more expensive than

matrix-vector multiplication.

In comparison with finite differences, the adjoint method offers a reduction of
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Forward Sensitivity Finite difference Adjoint

4NΩN
2 + 2

3
N3 2

3
NΩN

3 2NΩN
2 + 2

3
N3

Table 2.1: Approximate flop counts for the forward-sensitivity, finite-difference, and
adjoint method for calculation of the derivative.

complexity by O(NΩ). The accuracy of the finite-difference method depends on the

size of the stencil and choice of step size. While a wider stencil provides a more

accurate derivative, it increases the number of required function evaluations. The

step size must also be chosen carefully to avoid the introduction of noise: a large step

size will introduce nonlinearity, while a small step size will introduce round-off error.

For these reasons, the adjoint method is preferable over a finite-difference method.

2.2.2 Continuous approach

The adjoint method presented in the previous Section applies only to functions

that depended on the solution of a linear system in a finite-dimensional space. We now

generalize this result to obtain an adjoint equation in an infinite-dimensional space.

Often in optimization, we are interested in an objective function which depends on

the solution of a PDE,

L(Ω, u) = 0, (2.38)

such as the MHD equilibrium equations (1.3). Here L is some linear or nonlinear

operator, and u is an unknown. We are optimizing with respect to a set of parameters,

Ω, which may generally be infinite-dimensional; for example, Ω may describe the

shape of some domain. Our differential operator may depend on these parameters.

We assume that u is a member of some Hilbert space, H, which possesses an inner

product structure denoted by 〈. , .〉. If this PDE is linear, then the discretized form

of this problem can generally be written as (2.29), and the adjoint equation can

be obtained after discretization as described in the previous Section. The method
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described in this Section will allow us to get an adjoint equation before discretization.

We can consider u to depend on Ω through the solution to (2.38). We perform

linear perturbations about the base state (2.38) corresponding to perturbations of Ω,

δL(Ω, u; δΩ) + δL
(
Ω, u; δu(Ω; δΩ)

)
= 0. (2.39)

Our objective function, f(Ω, u), is some linear or nonlinear scalar functional of Ω and

u. Linear perturbations of f(Ω, u) can generally be written as an inner product with

δu,

δf(Ω, u; δu) =
〈
f̃ , δu

〉
. (2.40)

This is another example of the Riesz representation theorem: as δf is a linear func-

tional of δu, we can express it as an inner product with f̃ ∈ H.

We are interested in computing linear perturbations to f such that u(Ω) satis-

fies the PDE. The constrained problem is expressed through the objective function,

f(Ω, u(Ω)), whose derivative with respect to Ω is computed to be,

δf(Ω, u(Ω); δΩ) = δf(Ω, u; δΩ) +
〈
f̃ , δu(Ω; δΩ)

〉
, (2.41)

and δu(Ω; δΩ) satisfies (2.39). This is an analogous expression to (2.33) in the dis-

crete linear case. Computing the derivative in this way requires many solutions of a

PDE: one solution of the initial base state (2.38) and one solution of (2.39) for each

perturbation of the optimization parameters, δΩ.

A more efficient method of computing these derivatives is by application of La-

grange multipliers, enforcing (2.38) as a constraint. We now define the corresponding

Lagrangian as,

L(Ω, ũ, λ̃) = f(Ω, ũ) +
〈
λ̃, L(Ω, ũ)

〉
, (2.42)

where λ̃ ∈ H is a Lagrange multiplier. In the above expression, ũ ∈ H but it does not

necessarily satisfy (2.38), hence the distinction by the tilde. If L is stationary with
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respect to λ̃, then ũ is a weak solution of the PDE, indicated by u. If L is stationary

with respect to ũ, then λ̃ will satisfy the weak form of an adjoint PDE, at which

point we denote λ̃ by λ. If L is stationary with respect to both ũ and λ̃, or ũ = u

and λ̃ = λ, then derivatives of L with respect to Ω are equal to derivatives of f with

respect to Ω,

δL(Ω, ũ, λ̃; δΩ)|ũ=u,λ̃=λ = δf(Ω, u(Ω); δΩ). (2.43)

We will show this directly in a moment.

We now look for a stationary point of L with respect to ũ,

δL(Ω, ũ, λ̃; δũ) =
〈
f̃ , δũ

〉
+
〈
λ̃, δL(Ω, ũ; δũ)

〉
= 0. (2.44)

We note that δL(Ω, ũ; δũ) is a linear functional of δũ, so we can write this schemati-

cally as,

δL(Ω, ũ; δũ) = L̂(Ω, ũ)δu, (2.45)

where L̂(Ω, ũ) is a linear operator. The adjoint of an operator A, which we denote by

A†, is defined by 〈Ay, x〉 = 〈y, A†x〉 for x, y ∈ H. Thus we can rewrite the above as,

δL(Ω, ũ, λ̃; δũ) =
〈
f̃ + L̂(Ω, ũ)†λ̃, δũ

〉
= 0. (2.46)

This is a weak form of the adjoint PDE,

f̃ + L̂(Ω, ũ)†λ = 0. (2.47)

We indicate its solution by λ, as it corresponds with a stationary point of L with

respect to ũ. We now see that if ũ satisfies (2.38) and λ̃ satisfies (2.47), then derivatives

of f with respect to Ω are equal to derivatives of L with respect to Ω,

δL(Ω, ũ, λ̃; δΩ)|ũ=u,λ̃=λ = δf(Ω, u; δΩ) +
〈
λ, δL(Ω, u; δΩ)

〉
= δf(Ω, u; δΩ)−

〈
λ, δL(Ω, u; δu(Ω; δΩ)

〉
, (2.48)
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where we have used (2.39). If we now apply the adjoint condition and enforce that λ

satisfy the adjoint PDE (2.47), then we indeed obtain (2.41), as desired.

The adjoint method for computing the derivative of f with respect to the param-

eters Ω is,

δf(Ω, u(Ω); δΩ) = δL(Ω, ũ, λ̃; δΩ)|ũ=u,λ̃=λ = δf(Ω, u; δΩ) +
〈
λ, δL(Ω, u; δΩ)

〉
.

(2.49)

This is the continuous analogue of (2.37). The first term corresponds with the ex-

plicit dependence of f on Ω, while the second term corresponds with the dependence

through u.

Note that, if (2.38) is satisfied, then we can choose λ to be whatever we would

like, as the second term in the Lagrangian functional (2.42) will always vanish. For

some problems, other choices for λ may be convenient, although (2.49) will no longer

hold. In Chapter 5, a slightly different choice for the adjoint variable will be made.

Rather than being a stationary point, boundary terms remain in the expression for

δL(Ω, u, λ; δu) (see (5.42)-(5.43) and (5.52)-(5.53)).

In practice, the infinite-dimensional optimization space may be approximated by a

discrete set of parameters, Ω = {Ωi}NΩ
i=1. Thus with the solution of only two PDEs, the

forward (2.38) and adjoint (2.47) problems, we obtain the derivative of our objective

function with respect to an arbitrary number of parameters. An alternative is the

forward-sensitivity method, using (2.39) and (2.41), which requires NΩ linear PDE

solution and one (possibly) nonlinear PDE solutions, (2.38).

The finite-difference method requires at least NΩ + 1 (possibly) nonlinear PDE

solutions, depending on the size of the stencil. Thus the adjoint method provides a

significant advantage when NΩ is large, assuming that the PDE solve is expensive in

comparison with other operations, such as performing the inner products. It is not

straightforward to compare the complexity of these methods as in Section 2.2.1.1 as

the flop count will depend on the numerical methods used to solve a PDE. However,
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we can see that the adjoint method provides a reduction in the number of required

PDE solves by O(NΩ) over both the forward-sensitivity and finite-difference methods.

Of course, both the forward and adjoint PDEs are typically solved numerically by

approximation in a finite-dimensional space. The accuracy of the derivative computed

with the adjoint method will, therefore, depend on the tolerance to which the base

state and adjoint PDEs are solved in addition to the discrepancy between the infinite-

dimensional inner product and its finite-dimensional approximation.

2.2.3 Comparison of discrete and continuous approaches

We now see that there are two general strategies to the application of the adjoint

method: obtaining the adjoint before discretization, the continuous adjoint approach,

or obtaining the adjoint after discretization, the discrete approach. There are relative

merits to each. With the discrete adjoint method, the accuracy of the derivative only

depends on the tolerance to which the forward and adjoint systems are solved. On

the other hand, with the continuous method, it also depends on the discretization

error of the PDE due to the difference between the infinite-dimensional inner product

and its finite-dimensional approximation. The two approaches must agree in the

limit of infinite resolution. In practice, the difference between the two is relatively

small, though it has been suggested that the discrepancy between the continuous

and discrete gradients may become important near a local minimum [47], where the

gradient obtained from the continuous approach may not be a descent direction of

the discretized problem.

The continuous approach offers the advantage that the adjoint equation can be

derived independently of the choice of discretization; thus, if the adjoint equation has

a significantly different structure from the forward equation, a distinct discretization

scheme can be applied. It also may offer further insight into the structure of the ad-

joint equations and its boundary conditions. For this reason, the continuous approach
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may be preferable in the presence of shocks or singularities [79], as we demonstrate in

Chapter 6. For both approaches, the resulting adjoint equation is linear. Implemen-

tation of the discrete method is sometimes more straightforward, as the adjoint and

forward operators have the same eigenvalues, so the same numerical linear algebra

methods can typically be used to solve both problems. As we will see in Chapter 4, if

an LU factorization method is used to solve the linear system, then the factorization

of the matrix or its preconditioner can be reused to solve the discrete adjoint problem.

There is not a clear consensus in the literature as to which approach is preferable,

and the choice usually depends on the application of interest.

2.2.4 Discussion and applications

With an adjoint method, optimization within a high-dimensional space is no longer

a significant challenge. An adjoint-based derivative provides a reduction of computa-

tional complexity over finite differences by approximately the optimization dimension,

NΩ, as summarized in Table 2.1. Given that the cost of computing the gradient be-

comes comparable to the cost of the forward solve, we can easily take advantage of

gradient-based optimization methods. For line-search gradient-based methods, each

iteration reduces to a one-dimensional line search once a descent direction is identified

[170]. Therefore with adjoint methods, high-dimensional, non-convex optimization

becomes feasible, allowing us to address objectives 2 and 3 from Section 1.4.4.

2.3 Conclusions

In the following Chapters, we will demonstrate the application of shape calculus

and adjoint methods for several problems arising in stellarator optimization. In Chap-

ter 3 we describe a discrete adjoint method for the optimization of coil shapes based

on the current potential method described in Section 1.4.3.2. With the derivatives
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obtained from the adjoint method, we compute a shape gradient with respect to per-

turbations of the coil-winding surface, allowing us to identify regions where figures of

merit become sensitive to coil perturbations. In Chapter 4, we compare a continuous

and discrete adjoint method for computing geometric derivatives of several neoclassi-

cal quantities. These geometric derivatives allow us to compute a sensitivity function

for local magnetic field strength perturbations that is analogous to the shape gradi-

ent. In Chapter 5, we describe a continuous adjoint method for computing the shape

gradient of quantities that depend on MHD equilibrium solutions. These shape gra-

dients can be used for equilibrium optimization of the plasma boundary or coil shapes

and sensitivity analysis. For this application, the adjoint equation contains singular

behavior, so a distinct discretization and solution scheme are required, discussed in

Chapter 6.
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Chapter 3: Adjoint winding surface optimization

In this Chapter, we apply the linear adjoint approach described in Section 2.2.1 for

the optimization of coil shapes. We assume that coils are confined to a winding surface

using the current potential method introduced in Section 1.4.3.2. The application of

the adjoint method will allow us to efficiently optimize in the space of the geometry

of the coil-winding surface and study the sensitivity to local perturbations using the

shape gradient.

The material in this Chapter has been adapted from [185] with permission.

3.1 Introduction

In the traditional stellarator optimization method, coils are designed to produce a

target outer plasma boundary. The plasma boundary is separately optimized for vari-

ous physics quantities, including magnetohydrodynamic (MHD) stability, neoclassical

confinement, and profiles of rotational transform and pressure [175]. The coil shapes

are then optimized such that one of the magnetic surfaces approximately matches

the desired plasma surface. In general, the desired plasma configuration cannot be

produced exactly due to engineering constraints on the coil complexity. Additional

difficulty is introduced by the ill-posedness of solving Laplace’s equation numerically

in the vacuum region for a prescribed normal magnetic field on the plasma boundary

[25, 158].

In addition to the minimization of the magnetic field error, several factors should

be considered in the design of coil shapes. The winding surface upon which the
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currents lie should be sufficiently separated from the plasma surface to allow for

neutron shielding to protect the coils, the vacuum vessel, and a divertor system. In

a reactor, the coil-plasma distance is closely tied to the tritium-breeding ratio and

overall cost of electricity, as it determines the allowable blanket thickness. The coil-

plasma distance was targeted in the ARIES-CS study to reduce machine size [60].

In practice, the minimum feasible coil-plasma separation is a function of the desired

plasma shape. Concave regions (such as the bean-shaped W7-X cross-section) are

especially challenging to produce [137] and require the winding surface to be near

the plasma surface. While decreasing the inter-coil spacing minimizes ripple fields,

increasing coil-coil spacing allows adequate space for removal of blanket modules,

heat transport plumbing, diagnostics, and support structures. The curvature of a coil

should be below a certain threshold to allow for the finite thickness of the conducting

material and to avoid prohibitively high manufacturing costs. The length of each coil

should also be considered, as the expense will grow with the amount of conducting

material that needs to be produced. For these reasons, identifying coils with suitable

engineering properties can impact the size and cost of a stellarator device.

Most coil design codes have assumed the coils to lie on a closed toroidal winding

surface enclosing the desired plasma surface. In NESCOIL [158], the currents on this

surface are determined by minimizing the integral-squared normal magnetic field on

the target plasma surface. The current density is computed using a stream function

approach, where the current potential on the winding surface is decomposed in Fourier

harmonics. The optimization takes the form of a least-squares problem that can be

solved with the solution of a single linear system. The coil filament shapes are then

obtained from the contours of the current potential. Because it is guaranteed to find

a global minimum, NESCOIL is often used in the preliminary stages of the design

process [57, 135, 212]. NESCOIL was used for the initial coil configuration studies

for NCSX [194], and the W7-X coils were designed using an extension of NESCOIL,
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which modified the winding surface geometry for quality of magnetic surfaces and

engineering properties of the coils [15]. However, the inversion of the Biot-Savart

integral by NESCOIL is fundamentally ill-posed, resulting in solutions with amplified

noise. The REGCOIL [136] approach addresses this problem with Tikhonov regu-

larization. Here the surface-average-squared current density, corresponding to the

squared-inverse distance between coils, is added to the objective function. With the

addition of this regularization term, REGCOIL can simultaneously increase the min-

imum coil-coil distances and improve the reconstruction of the desired plasma surface

over NESCOIL solutions. In this Chapter, we build on the REGCOIL method to

optimize the current distribution in three dimensions. The current distribution on

a single winding surface is computed with REGCOIL, and the winding surface ge-

ometry is optimized to reproduce the plasma surface with fidelity and improve the

engineering properties of the coil shapes.

Other nonlinear coil optimization tools exist which evolve discrete coil shapes

rather than continuous surface current distributions. Drevlak’s ONSET code [154]

optimizes coils within limiting inner and outer coil surfaces. The COILOPT [216, 218]

code, developed for the design of the NCSX coil set [242], optimizes coil filaments

on a winding surface which is allowed to vary. COILOPT++ [32] improved upon

COILOPT by defining coils using splines, which enables one to straighten modular

coils to improve access to the plasma. The need for a winding surface was elimi-

nated with the FOCUS [243] code, which represents coils as three-dimensional space

curves. The FOCUS approach employs analytic differentiation for gradient-based op-

timization, as we do in this Chapter. As the design of optimal coils is central to the

development of an economical stellarator, it is important to have several approaches.

The current potential method could have several advantages, including the possible

implementation of adjoint methods. Furthermore, the complexity of the nonlinear

optimization is reduced over other approaches, as the current distribution on the
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winding surface is efficiently and robustly computed by solving a linear system. By

optimizing the winding surface, it is possible to gain insight into what features of

plasma surfaces require coils to be close to the plasma, and what features allow coils

to be placed farther away [137].

Parallels can be drawn between the design of stellarator coils and the design of

magnetic resonance imaging (MRI) coils. MRI gradient coils which lie on a cylindrical

winding surface must provide a specified spatial variation in the magnetic field within

a region of interest. This inverse problem is often solved with a linear least-squares

system by minimizing the squared departure from the desired field at specified points

with respect to the current in differential surface elements [228]. This method is

comparable to the NESCOIL [158] approach for stellarator coil design. Gradient coil

design was improved by the addition of a regularization term related to the integral-

squared current density [63] or the integral-squared curvature [62], comparable to the

REGCOIL approach. The adjoint method has been applied to compute the sensitivity

of an objective function with respect to the current potential on the MRI winding

surface. Here the Biot-Savart law is written in terms of a matrix equation using

the least-squares finite element method, and the adjoint of this matrix is inverted to

compute the derivatives [124]. As the adjoint formalism has proven fruitful in this

field, we anticipate that it could have similar applications in the closely-related field

of stellarator coil design.

In the Sections that follow, we present a new method for the design of the coil-

winding surface using adjoint-based optimization. An adjoint solve is performed to

obtain gradients of several figures of merit, the integral-squared normal magnetic field

on the plasma surface and root-mean-squared current density on the winding surface,

with respect to the Fourier components describing the coil surface. A brief overview

of the REGCOIL approach is given in Section 3.2. The optimization method and

objective function are described in Section 3.3. The adjoint method for computing
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gradients of the objective function is outlined in Section 3.4. Optimization results

for the W7-X and HSX winding surfaces are presented in Section 3.5. In Section 3.6

we demonstrate a method for computing local sensitivity of figures of merit to per-

turbations of the winding surface using the shape gradient. We discuss properties of

optimized winding surface configurations in Section 3.7. In Section 3.8 we summarize

our results and conclude.

3.2 Overview of the REGCOIL system

First, we review the problem of determining coil shapes once the plasma boundary

and coil-winding surface have been specified. Given the winding surface geometry, our

task is to obtain the surface current density, J. The divergence-free surface current

density can be related to a scalar current potential Φ, the stream function for J,

J = n̂×∇Φ. (3.1)

Here n̂ is the unit normal on the winding surface. The current potential Φ can be

decomposed into single-valued and secular terms,

Φ(θ, φ) = Φsv(θ, φ) +
Gφ

2π
+
Iθ

2π
. (3.2)

Here φ is the cylindrical azimuthal angle and θ is a poloidal angle. The quantities G

and I are the currents linking the surface poloidally and toroidally, respectively. The

single-valued term (Φsv) is determined by solving the REGCOIL system. It is chosen

to minimize the primary objective function,

χ2 = χ2
B + λχ2

J . (3.3)
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Here χ2
B is the surface-integrated-squared normal magnetic field on the desired plasma

surface,

χ2
B =

∫
SP

d2x (B · n̂)2 . (3.4)

The normal component of the magnetic field on the plasma surface, B · n̂, includes

contributions from currents in the plasma, current density J on the winding surface,

and currents in other external coils. The quantity χ2
J is the surface-integrated-squared

current density on the winding surface,

χ2
J =

∫
Scoil

d2x |J|2. (3.5)

As discussed in Section 1.4.3, minimization of χ2
B by itself (λ = 0) is fundamentally

ill-posed, as very different coil shapes can provide almost identical normal field on

the plasma surface. (Oppositely directed currents cancel in the Biot-Savart integral.)

The addition of χ2
J to the objective function is a form of Tikhonov regularization.

As we will show, minimization of χ2
J also simplifies coil shapes. While the NESCOIL

formulation relies on Fourier series truncation for regularization, the formulation in

REGCOIL allows for finer control of regularization while improving engineering prop-

erties of the coil set. The regularization parameter λ can be chosen to obtain a target

maximum current density Jmax, corresponding to a minimum tolerable inter-coil spac-

ing. A 1D nonlinear root finding algorithm is typically used for this process.

The single-valued part of the current potential Φsv is represented using a finite

Fourier series,

Φsv(θ, φ) =
∑
m,n

Φm,n sin(mθ − nNPφ), (3.6)

whereNP is the number of periods. Only a sine series is needed if stellarator symmetry

is imposed on the current density (J(−θ,−φ) = J(θ, φ)). As the minimization of χ2

with respect to Φm,n is a linear least-squares problem, it can be solved via the normal

equations to obtain a unique solution. The Fourier amplitudes Φm,n are determined
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by the minimization of χ2,

∂χ2

∂Φm,n

=
∂χ2

B

∂Φm,n

+ λ
∂χ2

J

∂Φm,n

= 0, (3.7)

which takes the form of a linear system,

∑
m,n

Am′,n′;m,nΦm,n = bm′,n′ . (3.8)

We will use the notation
←→
A
−→
Φ =

−→
b . Throughout bold-faced type with a right-facing

arrow will denote the vector space of basis functions for Φsv unless otherwise noted.

For additional details see [136].

3.3 Winding surface optimization

We use REGCOIL to compute the distribution of current on a fixed, two-dimensional

winding surface. To design coil shapes in three-dimensional space, we modify the

winding surface geometry by minimizing an objective function (3.10). This objec-

tive function quantifies fundamental physics and engineering properties and is easy

to calculate from the REGCOIL solution. Optimal coil geometries are obtained by

nonlinear, constrained optimization.1

3.3.1 Objective function

The cylindrical components of the winding surface are decomposed in Fourier

harmonics,

R =
∑
m,n

Rc
m,n cos(mθ + nNpφ) (3.9a)

Z =
∑
m,n

Zs
m,n sin(mθ + nNpφ), (3.9b)

1The adjoint method and winding-surface optimization tools are implemented in the main branch
of the REGCOIL code https://github.com/landreman/regcoil.
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where stellarator symmetry of the winding surface is assumed (R(−θ,−φ) = R(θ, φ)

and Z(−θ,−φ) = −Z(θ, φ)). We take the Fourier components of the winding sur-

face, Ω = {Rc
m,n, Z

s
m,n}, as our optimization parameters and assume that the desired

plasma surface is held fixed. Throughout, Ω displayed with a subscript index will

refer to a single Fourier component, while in the absence of a subscript, it refers to

the set of Fourier components. For a given winding surface geometry, Ω, and desired

plasma surface, the current potential Φ(Ω) can be determined by solving the REG-

COIL system to obtain a solution which both reproduces the desired plasma surface

with fidelity and maximizes coil-coil distance, as described in Section 3.2.

We define an objective function, f , which will be minimized with respect to Ω,

f(Ω,
−→
Φ(Ω)) = χ2

B(Ω,
−→
Φ(Ω))− αV V 1/3

coil (Ω) + αSS(Ω) + αJ‖J‖2 (Ω,
−→
Φ(Ω)). (3.10)

The coefficients αV , αS , and αJ are positive constants that weigh the relative impor-

tance of the terms in f . We take χ2
B (3.4) as our proxy for the desired physics proper-

ties of the plasma surface. The normal magnetic field depends on
−→
Φ , the single-valued

current potential on the surface, and Ω, the geometric properties of the coil-winding

surface. The quantity Vcoil is the total volume enclosed by the coil-winding surface,

Vcoil =

∫
Scoil

d3x. (3.11)

We use V
1/3

coil as a proxy for the coil-plasma separation. Our objective function de-

creases with increasing Vcoil, as we desire a winding surface which allows for increased

coil-plasma separation. This minimizes coil ripple and provides increased access for

neutral beams and diagnostics. We recognize that increasing Vcoil implies increased

coil length and experiment size, which may not always be desired.

The quantity S is a measure of the spectral width of the Fourier series describing
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the coil-winding surface [110],

S =
∑
m,n

mp
(

(Rc
m,n)2 + (Zs

m,n)2
)
. (3.12)

Smaller values of S correspond to Fourier spectra which decay rapidly with increas-

ing m. We take advantage of the non-uniqueness of the representation in (3.9) to

obtain surface parameterization which are more efficient. As χ2
B, ‖J‖2, and Vcoil are

coordinate-independent, these terms remain unchanged if the surface is reparame-

terized (θ is redefined). Minimization of S removes this zero-gradient direction in

parameter space. We use a typical value of p = 2. One could also remove the redun-

dancy in the definition of θ by using the unique and spectrally condensed represen-

tation of Hirshman and Breslau [109] or by solving the nonlinear constraint equation

of Hirshman and Meier [110] once the optimal surface has been obtained.

The quantity ‖J‖2 =
√
χ2
J/Acoil is the 2-norm of the current density, where Acoil

is the winding surface area,

Acoil =

∫
coil

d2x . (3.13)

Although we are using a current potential approach rather than directly optimizing

coil shapes, including ‖J‖2 in the objective function allows us to obtain coils with

good engineering properties. Derivatives of coil-specific metrics (such as curvature)

could be computed from the current potential if desired. For example, consider N

contours beginning at equally-spaced toroidal angles φi0 and θ0 = 0. The ith contour

is defined by functions θi(s) and φi(s) for parameter s, where ∂Φ/∂s = 0. The

derivatives of coil metrics which depend on x(θi(s), φi(s)), could be computed with

the adjoint method which will be described in Section 3.4. As the direct targeting of

coil metrics introduces additional arbitrary weights in the objective function and the

solution to another adjoint equation must be obtained to compute its gradient, we

instead include ‖J‖2 in our objective function.
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To demonstrate this correlation between‖J‖2 and coil shape complexity, we com-

pute the coil set on the actual W7-X winding surface using REGCOIL. The regu-

larization parameter λ is varied to achieve several values of ‖J‖2. Coil shapes are

obtained from the contours of Φ. In Figure 3.1, two of the W7-X non-planar coils

computed in this way are shown, and the corresponding coil metrics are given in

Table 3.1. (These correspond to the two leftmost coils in Figure 3.5.) We consider

the average and maximum length l, toroidal extent ∆φ, curvature κ, and the mini-

mum coil-coil distance dmin
coil-coil. The average, maximum, and minimum are taken over

the set of 5 unique coils. The coil shapes become more complex as ‖J‖2 increases,

quantified by increasing κ and ∆φ and decreasing dmin
coil-coil. Here the curvature, κ, of

a three-dimensional parameterized curve, x(t), is,

κ =

∣∣x′(t)× x′′(t)
∣∣∣∣x′(t)∣∣3 . (3.14)

We have compared coil shapes on a single winding surface, finding them to become

simpler as‖J‖2 decreases. As‖J‖2 =
(
χ2
J/Acoil

)1/2
, we would find similar trends with

χ2
J . We have chosen to include ‖J‖2 in the objective function as it is normalized by

Acoil, so it is a more useful quantity for comparison of coil shapes on different winding

surfaces.

To minimize f , the relative weights in (3.10) (αV , αS , and αJ) are chosen such

that each of the terms in the objective function have similar magnitudes, though

much tuning of these parameters is required to obtain results which simultaneously

improve the physics properties (decrease χ2
B) and engineering properties (increase

Vcoil and dmin
coil-coil, decrease κ and ∆φ).

3.3.2 Optimization constraints

Minimization of f is performed subject to the inequality constraint dmin ≥ dtarget
min .

Here dmin is the minimum distance between the coil-winding surface and the plasma
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(a) (b) (c)

Figure 3.1: Two non-planar W7-X coils (corresponding to the two leftmost coils in
Figure 3.5) computed with REGCOIL using the actual W7-X winding surface. The
regularization parameter λ is chosen to achieve the shown values of ‖J‖2. As ‖J‖2

increases, the average length, toroidal extent, and curvature increase. Figure adapted
from [185] with permission.

‖J‖2 [MA/m] 2.20 2.70 3.20

Jmax [MA/m] 4.55 9.50 29.1

χ2
B [T2 m2] 1.89 5.25× 10−3 2.10× 10−3

Average l [m] 8.03 9.18 9.81

Max l [m] 8.26 10.5 11.8

Average ∆φ [rad.] 0.146 0.222 0.253

Max ∆φ [rad.] 0.161 0.282 0.372

Average κ [m−1] 1.04 1.29 1.32

Max κ [m−1] 2.54 20.3 56.1

dmin
coil-coil [m] 0.353 0.182 0.0758

Table 3.1: Comparison of metrics for coils computed with REGCOIL using the actual
W7-X winding surface. Average and max are evaluated for the set of 5 unique coils.
The regularization parameter λ is varied to achieve these values of‖J‖2. Table adapted
from [185] with permission.
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surface,

dmin = min
θ,φ

(
dcoil-plasma

)
= min

θ,φ

(
min
θp,φp
|xC − xP |

)
, (3.15)

and dtarget
min is the minimum tolerable coil-plasma separation. The quantities θp and φp

are poloidal and toroidal angles on the plasma surface, xP and xC are the position

vectors on the plasma and winding surface, and dcoil-plasma is the coil-plasma distance

as a function of θ and φ.

The maximum current density Jmax is also constrained,

Jmax = max
θ,φ

J. (3.16)

This roughly corresponds to a fixed minimum coil-coil spacing. This constraint is

enforced by fixing Jmax to obtain the regularization parameter λ in the REGCOIL

solve, so we avoid the need for an equality constraint or the inclusion of Jmax in

the objective function. Rather,
−→
Φ(Ω) is determined such that Jmax is fixed. The

inequality-constrained nonlinear optimization is performed using the NLOPT [125]

software package using a conservative convex separable quadratic approximation (CC-

SAQ) [224]. While there are several gradient-based inequality-constrained algorithms

available, we choose to use CCSAQ as it is relatively insensitive to the bound con-

straints imposed on the optimization parameters. We recognize that there are many

possible combinations of constraints, objective functions, and regularization condi-

tions that could be used. For example,‖J‖2 could be fixed to determine λ while Jmax

could be included in the objective function. We found that the formulation we have

presented produces the best coil shapes.

3.4 Derivatives of f and the adjoint method

We must compute derivatives of f with respect to the geometric parameters Ω

in order to use gradient-based optimization methods. The spectral width S and the
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volume Vcoil are explicit functions of Ω, so their analytic derivatives can be obtained.

On the other hand, χ2
B and ‖J‖2 depend both explicitly on coil geometry and on

Φ(Ω). One approach to obtain the derivatives of these quantities could be to solve the

REGCOIL linear system NΩ + 1 times, taking a finite-difference step in each Fourier

coefficient. However, if NΩ is large, the computational cost of this method could

be prohibitively expensive. Instead, we will apply the adjoint method to compute

derivatives. This technique will be demonstrated below.

The derivative of χ2
B can be computed using the chain rule,

∂χ2
B(Ω,

−→
Φ(Ω))

∂Ωm,n

=
∂χ2

B(Ω,
−→
Φ)

∂Ωm,n

+
∂χ2

B(Ω,
−→
Φ)

∂
−→
Φ

· ∂
−→
Φ(Ω)

∂Ωm,n

, (3.17)

where
−→
Φ(Ω) is understood to vary with Ω such that (3.8) is satisfied. The dot product

is a contraction over the current potential basis functions, {Φm,n}. We can compute

∂
−→
Φ(Ω)/∂Ωm,n by differentiating the linear system (3.8) with respect to Ωm,n,

∂
←→
A (Ω)

∂Ωm,n

−→
Φ +

←→
A
∂
−→
Φ(Ω)

∂Ωm,n

=
∂
−→
b (Ω)

∂Ωm,n

, (3.18)

and formally solving this equation to obtain,

∂Φ(Ω)

∂Ωm,n

=
←→
A −1

(
∂
−→
b (Ω)

∂Ωm,n

− ∂
←→
A (Ω)

∂Ωm,n

−→
Φ

)
. (3.19)

Equation (3.19) is inserted into (3.17),

∂χ2
B(Ω,

−→
Φ(Ω))

∂Ωm,n

=
∂χ2

B(Ω,
−→
Φ)

∂Ωm,n

+
∂χ2

B(Ω,
−→
Φ)

∂
−→
Φ

·

←→A −1

(
∂
−→
b (Ω)

∂Ωm,n

− ∂
←→
A (Ω)

∂Ωm,n

−→
Φ

) . (3.20)

This expression could be evaluated by solving the linear system (3.18) for ∂
−→
Φ/∂Ωm,n

and performing the inner product with ∂χ2
B/∂
−→
Φ . However, the computational cost

of this method scales similarly to that of finite differencing, as described in Section
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2.2.1.1. Instead, we can exploit the adjoint property of the operator to obtain,

∂χ2
B(Ω,

−→
Φ(Ω))

∂Ωm,n

=
∂χ2

B(Ω,
−→
Φ)

∂Ωm,n

+

[(←→
A −1

)T ∂χ2
B(Ω,

−→
Φ)

∂
−→
Φ

]
·

(
∂
−→
b (Ω)

∂Ωm,n

− ∂
←→
A (Ω)

∂Ωm,n

−→
Φ

)
. (3.21)

For any invertible matrix,
(←→

A −1
)T

=
(←→

A T
)−1

. Hence we can instead solve a linear

system involving the matrix
←→
A T to compute an adjoint variable −→q , defined as the

solution of

←→
A T−→q =

∂χ2
B(Ω,

−→
Φ)

∂
−→
Φ

. (3.22)

Rather than compute a finite-difference derivative for each Ωm,n or solve a linear

system to compute each ∂
−→
Φ/∂Ωm,n as in (3.19), we solve two linear systems: the

forward (3.8) and adjoint (3.22). The adjoint equation is similar to the forward

equation (
←→
A T has the same dimensions and eigenspectrum as

←→
A ), so the same

computational tools can be used to solve the adjoint problem. We then perform an

inner product with −→q to obtain the derivatives with respect to each Ωm,n,

∂χ2
B(Ω,

−→
Φ(Ω))

∂Ωm,n

=
∂χ2

B(Ω,
−→
Φ)

∂Ωm,n

+−→q ·

(
∂
−→
b (Ω)

∂Ωm,n

− ∂
←→
A (Ω)

∂Ωm,n

Φ

)
. (3.23)

The derivatives ∂
−→
b /∂Ωm,n, ∂

←→
A /∂Ωm,n, ∂χ2

B/∂Ωm,n, and ∂χ2
B/∂
−→
Φ can be computed

analytically. In the above discussion, the regularization parameter λ has been as-

sumed to be fixed. A similar method can be used if a λ search is performed to obtain

a target Jmax (see Appendix C). The same method is used to compute derivatives of

‖J‖2.

We note that adjoint methods provide the most significant reduction in computa-

tional cost when the linear solve is expensive. For the REGCOIL system, this is not

the case, as the cost of constructing
←→
A and

−→
b exceeds that of the solve. We have

implemented OpenMP multithreading for the construction of ∂
←→
A /∂Ω and ∂

−→
b /∂Ω
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such that the cost of computing the gradients via the adjoint method is cheaper than

computing finite-difference derivatives serially.

The constraint functions, dmin and Jmax, must also be differentiated with respect

to Ωm,n. As dmin is defined in terms of the minimum function, we approximate it

using the smooth log-sum-exponent function [29],

dmin, lse = −1

q
log

(∫
SC
d2xC

∫
SP
d2xP exp

(
−q|xC − xP |

)∫
SC
d2xC

∫
SP
d2xP

)
. (3.24)

This function can be analytically differentiated with respect to Ωm,n. As q approaches

infinity, dmin, lse approaches dmin. For q very large, the function obtains very sharp

gradients. A typical value of q = 104 m−1 was used. The log-sum-exponent function

is also used to approximate Jmax, as described in Appendix C.

3.5 Winding surface optimization results

3.5.1 Trends with optimization parameters

Beginning with the actual W7-X winding surface, we perform scans over the coef-

ficients αV and αS in the objective function (3.10). The plasma surface was obtained

from a fixed-boundary VMEC solution that predated the coil design and is free from

modular coil ripple. The constraint target is set to be the minimum coil-plasma

distance on the initial winding surface, dtarget
min = 0.37 m. The cross-sections of the

optimized surfaces in the poloidal plane are shown in Figures 3.2 and 3.3 along with

the last-closed flux surface (red), a constant offset surface at dtarget
min (black solid), and

the initial winding surface (black dashed).

We perform a scan over αS with αV = αJ = 0. For optimal values of αS , the

addition of the spectral width term should simply reparameterize the surface, elimi-

nating the zero-gradient direction in parameter space. Thus we expect that when χ2
B

is the only other term in the objective function, the winding surface should collapse
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to a constant offset surface. When αS is too large, the surface shape changes to favor

a condensed Fourier series. When αS is too small, the optimization may terminate

prematurely in a local minimum due to the non-uniqueness of the representation.

Indeed we find that with increasing αS , the winding surface approaches a torus with

a circular cross-section, which has a minimal Fourier spectrum. At moderately small

values of αS (∼ 0.3) the surface approaches a constant offset surface at dtarget
min , as χ2

B

is dominant in objective function. For very small values of αS (∼ 0.003), we find that

the optimization terminates at a point relatively close to the initial surface, and the

resulting winding surface deviates from a constant offset surface. An intermediate

value of αS = 0.3 was chosen for the following optimizations of the W7-X winding

surface.

A scan over αV is performed at fixed αS = 0.3 and αJ = 0 such that the spectral

width does not greatly increase. As αV increases, dcoil-plasma increases significantly on

the outboard side while it remains fixed in the inboard concave regions. This trend is

not surprising, as concave plasma shapes have been shown to be inefficient to produce

with coils [137]. Interestingly, the winding surface obtains a somewhat pointed shape

at the triangle cross-section (φ = 0.5 2π/Np), becoming elongated at the tip of the

triangle and “pinching” toward the plasma surface at the edges.

3.5.2 Optimal W7-X winding surface

We now include nonzero αJ and attempt a comprehensive optimization. The Jmax

constraint is selected such that the metrics (l, κ, and ∆φ) of the coils computed on

the initial surface roughly match those of the actual non-planar coil set. The coil-

plasma distance constraint dtarget
min is set to be the minimum dcoil-plasma on the initial

winding surface. Parameters αV = 0.5, αS = 0.24, and αJ = 1.6 × 10−6 were used

in the objective function. Optimization was performed over 118 Fourier coefficients(
|n| ≤ 4 and m ≤ 6 in (3.9)

)
and the objective function was evaluated a total of 5165
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Figure 3.2: Optimized winding surfaces obtained with αV = αJ = 0 and the values
of αS shown. The actual W7-X winding surface is used as the initial surface in
the optimization (black dashed). As αS increases, the magnitude of the spectral-
width term in the objective function increases, and the winding surface approaches
a cylindrical torus with a minimal Fourier spectrum. For moderately small values of
αS , the winding surface approaches a uniform offset surface from the plasma surface
(black solid). Figure adapted from [185] with permission.
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Figure 3.3: Optimized winding surfaces obtained with αS = 0.3, αJ = 0, and the
values of αV shown. The actual W7-X winding surface is used as the initial surface
in the optimization (black dashed). As αV increases, dcoil-plasma increases on the
outboard side while it remains fixed in the concave region. Figure adapted from [185]
with permission.
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times to reach the optimum (1.5× 104 linear solves rather than 6.1× 105 required for

finite-difference derivatives). The optimal surface and coil set are shown in Figures

3.4 and 3.5, and the corresponding metrics are shown in Table 3.2. We find a solution

which increases Vcoil by 22% and decreases χ2
B by 52% over the initial winding surface.

(Note that it is numerically impossible to obtain a current distribution that exactly

reproduces the plasma surface, so χ2
B is nonzero when computed from the REGCOIL

solution on the initial winding surface.) In addition, the optimized coil set features a

smaller average and maximum ∆φ and κ and larger dmin
coil-coil. The length of the coils

increases to accommodate for the increase in Vcoil. Again we find that the increase in

Vcoil is most pronounced in the outboard convex regions while dcoil-plasma is maintained

in the concave regions of the bean-shaped cross-sections. The “pinching” feature of

the winding surface is again present in the triangle cross-section (φ = 0.5 2π/Np).

It should be noted that the decrease in dcoil-plasma at the bottom and top of the bean

cross-section (φ = 0) might interfere with the current W7-X divertor baffles. However,

the increase in volume on the outboard side would allow for increased flexibility

for the neutral beam injection duct [200]. We have performed this optimization to

show that a winding surface could be constructed that increases Vcoil (and thus the

average dcoil-plasma), improves coil shapes, and decreases χ2
B. If further engineering

considerations were necessary, these could be implemented. The surface we have

obtained is optimal with respect to the engineering considerations and constraints

we have imposed, which differ from those of the W7-X team [15]. Thus the direct

comparison between our method and those of [15] cannot be made based on these

results.

3.5.3 Optimal HSX winding surface

We perform the same procedure for the optimization of the HSX winding surface.

Parameters αV = 3.13× 10−4, αS = 0, and αJ = 3× 10−10 were used in the objective
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Figure 3.4: The actual W7-X coil-winding surface and plasma surface are shown with
our optimized winding surface. In comparison with the actual surface, the optimized
surface reduces χ2

B by 52% and increases Vcoil by 22%. Figure adapted from [185]
with permission.
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(a)

(b)

Figure 3.5: Comparisons of coil set computed with REGCOIL using the actual W7-X
winding surface (dark blue) and the optimized surface (light blue). Figure reproduced
from [185] with permission.
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Initial Optimized Actual coil set

χ2
B [T2m2] 0.115 0.0711

Vcoil[m
3] 156 190

‖J‖2 [MA/m] 2.21 2.16

Jmax [MA/m] 7.70 7.70

Average l [m] 8.51 8.95 8.69

Max l [m] 8.84 9.14 8.74

Average ∆φ [rad.] 0.190 0.179 0.198

Max ∆φ [rad.] 0.222 0.197 0.208

Average κ [m−1] 1.21 1.10 1.20

Max κ [m−1] 9.01 4.84 2.59

dmin
coil-coil [m] 0.223 0.271 0.261

Table 3.2: Comparison of metrics of the actual W7-X winding surface and our opti-
mized surface. We also show metrics of the coil set computed on the winding surfaces
using REGCOIL and the metrics for the actual W7-X nonplanar coils. Regulariza-
tion in REGCOIL is chosen such that the coil metrics computed on the initial surface
roughly match those of the actual coil set. Coil complexity improves from the initial
to the final surface (decreased average and max ∆φ and κ, increased dmin

coil-coil). The
average and max l increases to allow for the increase in Vcoil. Table adapted from
[185] with permission.
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function. We found that the spectral width term was not necessary to obtain a

satisfying optimum in this case. The initial winding surface was taken to be a toroidal

surface on which the actual modular coils lie. The plasma equilibrium used is a fixed-

boundary VMEC solution without coil ripple. Optimization was performed over 100

Fourier coefficients
(
|n| ≤ 5 and m ≤ 4 in (3.9)

)
and the objective function was

evaluated a total of 560 times to reach the optimum (1.7 × 103 linear solves rather

than 5.7× 104 required for forward-difference derivatives). The coil-plasma distance

constraint was set to be dtarget
min = 0.14 m, the minimum coil-plasma distance on the

actual winding surface. The optimal surface and coil set are shown in Figures 3.6 and

3.7, and the corresponding coil metrics are shown in Table 3.3. We find a solution that

increases Vcoil by 18% and decreases χ2
B by 4% over the initial winding surface. The

coil set computed with REGCOIL using the optimized surface appears qualitatively

similar to that computed with the initial surface but with increased dcoil-plasma on

the outboard side. The average and maximum ∆φ and κ decreased while dmin
coil-coil

was increased for the coil set computed on the optimal surface in comparison to that

of the initial surface. As was observed in the W7-X optimization (Figure 3.4), the

optimized HSX winding surface obtains a somewhat pinched shape near the triangle

cross-section (φ = 0.5 2π/Np).
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Figure 3.6: The actual HSX coil-winding surface and plasma surface are shown with
our optimized winding surface. In comparison with the actual surface, the optimized
surface has decreased χ2

B by 4% and increased Vcoil by 18%. Figure adapted from
[185] with permission.
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(a)

(b)

Figure 3.7: The coils obtained from REGCOIL using the actual HSX winding surface
(dark blue) and optimized surface (light blue). Figure reproduced from [185] with
permission.
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Initial Optimized Actual coil set

χ2
B [T2m2] 1.53× 10−5 1.47× 10−5

Vcoil[m
3] 2.60 3.07

‖J‖2 [MA/m] 0.956 0.891

Jmax [MA/m] 1.84 1.84

Average l [m] 2.26 2.39 2.24

Max l [m] 2.49 2.46 2.33

Average ∆φ [rad.] 0.372 0.365 0.362

Max ∆φ [rad.] 0.530 0.505 0.478

Average κ [m−1] 5.15 4.80 5.05

Max κ [m−1] 33.4 25.8 11.7

dmin
coil-coil [m] 0.0850 0.0853 0.0930

Table 3.3: Comparison of metrics of the actual HSX winding surface and our opti-
mized surface. We also show metrics of the coil set computed on the winding surfaces
using REGCOIL and the metrics for the actual HSX modular coils. Regularization
in REGCOIL is chosen such that the coil metrics computed on the initial surface
roughly match those of the actual coil set. Coil complexity improves from the initial
to the final surface (decreased average and max ∆φ and κ, increased dmin

coil-coil). The
average and max l increases to allow for the increase in Vcoil. Table adapted from
[185] with permission.
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3.6 Local winding surface sensitivity

With the adjoint method we have computed derivatives of the objective function

with respect to Fourier components of the winding surface, ∂f/∂Ω. While this repre-

sentation of derivatives is convenient for gradient-based optimization, the sensitivity

to local displacements of the surface is obscured. Alternatively, it is possible to repre-

sent the sensitivity of f with respect to normal displacements of surface area elements

of a given winding surface SC ,

δf(SC ; δx) =

∫
SC

d2x Gδx · n̂. (3.25)

The shape gradient and shape derivatives are described in detail in Section 2.1. As

both χ2
B and ‖J‖2 are defined in terms of surface integrals over the winding surface,

it can be shown that the shape derivative of these functions can be written in the

Hadamard form [171]. The shape gradients Gχ2
B

and G‖J‖2 can be computed from the

Fourier derivatives (∂χ2
B/∂Ω and ∂‖J‖2 /∂Ω) using a singular value decomposition

method [138]. Here the perturbations δf and δx are written in terms of the Fourier

derivatives, and G is also represented in a finite Fourier series,

∂f(Ω)

∂Ωm,n

=

∫
SC

d2x

∑
m,n

Gm,n cos(mθ + nNpφ)

 ∂x(Ω)

∂Ωm,n

· n̂. (3.26)

After discretizing in θ and φ, (3.26) takes the form of a (generally not square) matrix

equation which can be solved using the Moore-Penrose pseudoinverse to obtain Gm,n.

We compute Gχ2
B

and G‖J‖2 (Figure 3.9) at fixed λ. These quantities are computed

on the actual W7-X winding surface and a surface uniformly offset from the plasma

surface with dcoil-plasma = 0.61 m (the area-averaged dcoil-plasma over the actual surface).

We consider surfaces that are equidistant from the plasma surface on average as G

scales inversely with Acoil. The poloidal cross-sections of these surfaces are shown in

Figure 3.8. For each surface λ is chosen to achieve Jmax = 7.7 MA/m as was used
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in Section 3.5.2. On both surfaces we observe a narrow region featuring a large posi-

tive Gχ2
B

, indicating that dcoil-plasma should decrease at that location in order that χ2
B

decreases. This corresponds to locations on the plasma surface with significant con-

cavity (Figure 3.11b). The maximum Gχ2
B

occurs at φ = 0.15 2π/Np on both surfaces

(Figure 3.4). In comparison with this region, the magnitude of Gχ2
B

is relatively small

over the majority of the area of the surfaces shown, demonstrating that engineering

tolerances might be more relaxed in these locations. There is also a region of negative

Gχ2
B

near φ = π/Np and θ = 0. This is the “tip” of the triangle-shaped cross-section,

where dcoil-plasma was increased over the course of the optimization (Figures 3.2, 3.3,

and 3.4). We find that Gχ2
B

computed on the actual winding surface has similar trends

to that computed on the surface uniformly offset from the plasma. This indicates that

the shape gradient depends on the specific geometry of the winding surface. We have

computed Gχ2
B

for several other winding surfaces with varying dcoil-plasma. Regardless

of the winding surface chosen, we observe increased sensitivity in the concave regions.

The quantity G‖J‖2 roughly quantifies how coil complexity changes with normal

displacements of the coil surface. In view of Figure 3.10, the locations of large G‖J‖2
overlap with areas of increased J . On the actual winding surface, the maximum of

G‖J‖2 occurs near the location of the closest approach between coils (two rightmost

coils in Figure 3.5(a)). The shape gradients G‖J‖2 and Gχ2
B

have very similar trends.

The concave regions of the plasma surface are difficult to produce with external coils,

resulting in increased coil complexity and J . Therefore, ‖J‖2 is most sensitive to

displacements of the coil-winding surface in these regions.

We recognize several ways that the shape gradient technique could be improved

to provide more relevant diagnostics for experimental design. With a winding surface

representation, the shape gradient does not allow for calculation of the sensitivity to

lateral coil displacements. Also, our analysis does not account for field ripple due to

the finite number of coils. Although Figure 3.9 indicates that the coils should move
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Figure 3.8: The cross-sections of the two winding surfaces used to compute Gχ2
B

and
G‖J‖2 are shown in the poloidal plane. Figure adapted from [185] with permission.

toward the plasma to reduce the field error, the ripple fields might be significant with

a filamentary model. A similar calculation could be performed using the filamentary

coil sensitivity techniques presented in Section 2.1 and discussed further in Chapter

5. Finally, χ2
B does not account for the sensitivity to resonant fields that could cause

the formation of islands, though there is ongoing work toward computing the shape

gradient for such a metric [76].

Sensitivity studies on NCSX similarly found that coil errors on the inboard side

in regions of small dcoil-plasma had a significant effect on flux surface quality [236]. The

necessity of small dcoil-plasma for bean-shaped plasmas has been noted in many coil

optimization efforts [60, 216] and has been demonstrated by evaluating the singular

value decomposition of the discretized Biot-Savart integral operator [137]. We can

identify these regions where the fidelity of the plasma surface requires tighter tolerance

on coil positions using the shape gradient.
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(a) Offset from plasma (b) Actual

(c) Offset from plasma (d) Actual

Figure 3.9: Shape gradient for χ2
B ((a) and (b)) ||J||2 ((c) and (d)). These functions

are computed using the W7-X plasma surface and a uniform offset winding surface
from the plasma surface with dcoil-plasma = 0.61 m ((a) and (c)) and the actual winding
surface ((b) and (d)). The region of increased Gχ2

B
corresponds with concave regions

of the plasma surface (Figure 3.11b). Regions of large positive ‖J‖2 correspond to
regions with increased J (Figure 3.10). Figure adapted from [185] with permission.
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(a) Offset from plasma (b) Actual

Figure 3.10: Current density magnitude, J , computed from REGCOIL using the W7-
X plasma surface and (a) a uniform offset winding surface from the plasma surface
with dcoil-plasma = 0.61 m and (b) the actual winding surface. Figure adapted from
[185] with permission.

3.7 Metrics for configuration optimization

The results presented here and in [137] indicate that the concave regions of the

surface are both the regions where a small coil-plasma distance is required and the

sensitivity to the winding surface position is highest. The regions of concavity can

be determined by considering the principal curvatures of the plasma surface. Let

n̂(x0) represent the normal vector at the plasma surface at some point x0, and let An

represent a plane that includes this normal vector. The intersection of the plane and

the surface makes a curve x(l), which has curvature κ0 at the point x0, as calculated

from (3.14). The two principal curvatures κ1 and κ2 represent the maximum and

minimum curvatures, κ0, from all possible planes An. We choose the convention for

the principal curvatures such that convex curves have positive curvature and concave

curves have negative curvatures. Therefore, small values of the second principal

curvature, κ2, represent regions on the surface where the concavity is increased.

The second principal curvature for the W7-X plasma surface is shown in Figure

83



3.11b. Although κ2 and the shape gradients are evaluated on different surfaces,

we note that regions of high concavity (negative κ2) coincide with regions of large,

positive G (Figure 3.9). The regions of high concavity also correspond to the regions

where the optimization procedure tends to place the winding surface closest to the

plasma (Figure 3.11). We recognize that our winding surface optimization accounts

for several engineering considerations in addition to reproducing the desired plasma

surface. However, for a wide range of parameters the winding surfaces we obtain

feature small dcoil-plasma in the bean-shaped cross-sections (Figures 3.2 and 3.3). Thus

κ2, which is exceedingly fast to compute, may serve as a target for optimization

of the plasma configuration. By minimizing the regions of high concavity, it may

be possible to find stellarator equilibria that are more amenable to coils that are

positioned farther from the plasma. Any increase in the minimal distance between

the plasma and the coils has implications for the size of a reactor, where dcoil-plasma

is set by the required blanket width. Similar metrics are considered in the ROSE

code, such as the integrated absolute value of the Gaussian curvature and integrated

absolute value of the maximum curvature [59].
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(a) (b)

Figure 3.11: (a) The minimum distance between the W7-X plasma surface and the
optimized winding surface obtained in Section 3.5.2 and (b) the second principle
curvature κ2 are shown as a function of location on the plasma surface. Locations
of large negative κ2 coincide with regions where the optimization resulted in small
dcoil-plasma. Figure adapted from [185] with permission.

3.8 Conclusions

We have outlined a new method for the optimization of the stellarator coil-winding

surface using a continuous current potential approach. Rather than evolving filamen-

tary coil shapes, we use REGCOIL to obtain the current density on a winding surface

and optimize the winding surface using analytic gradients of the objective function.

We have shown that we can indirectly improve the coil curvature and toroidal extent

by targeting the root-mean-squared current density in our objective function (Fig-

ure 3.1). This approach offers several potential advantages over other nonlinear coil

optimization tools.

1. The difficulty of the optimization is reduced by the application of the REGCOIL

method, which takes the form of a linear least-squares system. The optimal coil

shapes on a given winding surface can thus be efficiently and robustly computed.

2. By fixing the maximum current density to obtain the regularization in REGCOIL,

85



we eliminate the need to implement an additional equality constraint or arbitrary

weight in the objective function.

3. By using REGCOIL to compute coil shapes on a given surface, we can apply the

adjoint method for computing derivatives (Section 3.4). This allows us to reduce

the number of function evaluations required during the nonlinear optimization by

a factor of ≈ 50.

4. Given the critical role coil design plays in the stellarator optimization process, it

is important to have many tools that approach the problem from different an-

gles. Our approach differs from the other available nonlinear coil optimization

applications [32, 154, 216, 218, 243] as we optimize a continuous current potential.

We have demonstrated this method by optimizing coils for W7-X and HSX (Sections

3.5.2 and 3.5.3). We find that we can simultaneously decrease the integral-squared

error in reproducing the plasma surface, increase the volume contained within the

winding surface, maintain the minimum coil-plasma distance, and improve the coil

metrics over REGCOIL solutions computed on the initial winding surfaces (Tables 3.2

and 3.3). Several features of these optimized winding surfaces are noteworthy. While

the coil-plasma distance must be small in concave regions, it can increase greatly on

the outboard, convex side of the bean cross-section. At triangle-shaped cross-sections,

the winding surface obtains a somewhat “pinched” appearance (Figures 3.3, 3.4, and

3.6). A similar W7-X winding surface shape has been obtained with the ONSET code

(see ref. [154], Figure 5). Further work is required to understand this behavior.

There are several limitations to this approach that should be noted. First, we have

applied a local nonlinear optimization algorithm. This is a reasonable choice if the

initial condition is close to a global optimum. Second, we currently have not added

coil-specific metrics to our objective function (for example, curvature or length). This

could be implemented if necessary for engineering purposes.

We should also note that this application does not allow for the full benefits of
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adjoint methods. While adjoint methods significantly reduce CPU time if the solve is

the computational bottleneck, this is not the case for the REGCOIL system. Other

applications that are dominated by the linear solve CPU time would see increased

benefits from the implementation of an adjoint method, as will be seen in the following

Chapters.

We demonstrate a technique for visualization of shape derivatives in real space

rather than Fourier space. This shape gradient describes how an objective function

changes with respect to normal displacements of the winding surface. We apply

this technique to visualize the derivatives of the integral-squared normal field on

the plasma surface and the root-mean-squared current density for the W7-X plasma

surface and two winding surfaces (Figure 3.9). This diagnostic identifies the concave

regions as being very sensitive to the positions of coils, as has been observed from

previous coil optimization efforts. We will continue to gain insight from the shape

gradient concept in Chapters 4, 5, and 6.
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Chapter 4: Adjoint-based optimization of neoclassical properties

Several critical quantities for stellarator design arise from neoclassical physics,

the kinetic theory of collisional transport in the presence of magnetic field gradients

and curvature. This so-called neoclassical transport results from the random-walk

of charged particles as they exhibit guiding center motion. Due to the complicated

guiding center orbits present in a 3D field, neoclassical transport is generally enhanced

in a stellarator. One of the primary goals of stellarator optimization is to reduce this

transport. Furthermore, the bootstrap current, driven by collisional processes, should

be minimized in low-shear designs or if an island divertor system is to be used. These

neoclassical properties are described by solutions of the drift-kinetic equation (DKE),(
v||b̂ + vd

)
· ∇f = C(f), (4.1)

where f is the distribution function, v|| = v · b̂ is the parallel component of the

velocity, vd is the guiding center drift velocity, and C is the collision operator. The

DKE is obtained from the Fokker-Planck equation under the assumption that the

plasma is strongly magnetized such that (4.1) describes length scales much longer

than the gyroradius and frequencies much smaller than the gyrofrequency. We have

taken the equilibrium limit, assuming time scales longer than the gyroperiod but

shorter than the transport time scale on which the profiles relax. In this Chapter

we make an additional assumption of local thermodynamic equilibrium, such that

f ≈ fM , a Maxwellian distribution (defined in Section 4.2), to lowest order. This

assumption is valid in stellarator configurations, provided that the collisionless orbits
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are sufficiently confined and the collision frequency is not too low [33, 227]. The

departure from a Maxwellian, f1, is driven by gradients in fM due to variations in

the density, temperature, and electrostatic potential. The drift-kinetic equation is

described in many references, including Chapter 7 in [99] and [94, 97].

In this Chapter, we will apply both the discrete and continuous adjoint methods

described in Chapter 2 to efficiently compute derivatives of functions that depend on

such solutions of the drift kinetic equation. This analysis will allow us to efficiently

optimize the local magnetic field for several neoclassical quantities in addition to

analyzing their sensitivity to changes in the magnetic field.

The material in this Chapter has been adapted from [186].

4.1 Introduction

Neoclassical transport is governed by solutions of the drift kinetic equation (DKE)

(5.131) from which moments (e.g., radial fluxes and bootstrap current) are computed.

The DKE local to a flux surface can be solved numerically [18, 140]. However, this

four-dimensional problem is expensive to solve within an optimization loop, especially

in low-collisionality regimes for which increased pitch-angle resolution is required to

resolve the collisional boundary layer.

Therefore, it is sometimes desirable to consider an analytic reduction of the DKE.

Under the assumption of low collisionality, a bounce-averaged DKE can be consid-

ered [17, 34]. While bounce-averaging can significantly reduce the computational cost

by decreasing the spatial dimensionality, this approach typically requires restrictions

on the geometry, such as closeness to omnigeneity or a model magnetic field. Addi-

tional reduction of the DKE can be made in low-collisionality regimes, resulting in

semi-analytic expressions. For example the effective ripple, εeff [168], quantifies the

geometric dependence of the 1/ν radial transport (ν is the collision frequency) and

has been widely used during optimization studies [106, 134, 242]. (The effective ripple
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will be discussed further in Chapter 5 and Appendix M.) The 1/ν regime, though,

is only relevant when Er is small enough that the typical poloidal rotation frequency

is much smaller than the typical collision frequency [116], which is not always an

experimentally-relevant regime. A low-collisionality semi-analytic bootstrap current

model [205] is also commonly adopted for stellarator design [15, 114]. However, this

analytic expression is known to be ill-behaved near rational surfaces. Furthermore,

benchmarks with numerical solutions of the DKE in the low-collisionality limit have

been shown to differ significantly from the semi-analytic model [16, 127]. Any analytic

reduction of the DKE implies additional assumptions, such as on the collisionality,

size of Er, or on the magnetic geometry.

Due to the limitations of bounce-averaged and semi-analytic models, there are

benefits to computing neoclassical quantities using numerical solutions to the DKE

without approximation. With the numerical methods currently used for stellarator

optimization, this approach becomes computationally challenging within an optimiza-

tion loop. Due to their fully three-dimensional nature, optimization of stellarator

geometry requires navigation through high-dimensional spaces, such as the space of

the shape of the outer boundary of the plasma or the shapes of electromagnetic coils.

The number of parameters required to describe these spaces, N , is often quite large

(O(102)). Knowledge of the gradient of the objective function with respect to these

parameters can significantly improve the convergence to a local minimum. Once a

descent direction is identified, each iteration reduces to a one-dimensional line search.

Gradient-based optimization with the Levenberg-Marquardt algorithm in the STEL-

LOPT code [218] has been widely used in the stellarator community and led to the

design of NCSX [197].

Although derivative information is valuable, numerically computing the deriva-

tive of a figure of merit f (for example, with finite-difference derivatives) can be

prohibitively expensive, as f must be evaluated O(N) times. For neoclassical opti-
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mization, this implies solving the DKE O(N) times; thus including finite-collisionality

neoclassical quantities in the objective function is often impractical. In this Chapter,

we describe an adjoint method for neoclassical optimization. With this method, the

computation of the derivatives of f with respect to N parameters has cost compara-

ble to solving the DKE twice, thus making the inclusion of these quantities possible

within an optimization loop. In this Chapter, we obtain derivatives of neoclassical

figures of merit with respect to local geometric parameters on a surface rather than

the outer boundary or coil shapes. However, the geometric derivatives we compute

provide an important step toward adjoint-based optimization of MHD equilibria, as

discussed in Section 4.5.2.2 and Chapter 5.

In Section 4.2, we provide an overview of the numerical solution of the DKE

local to a flux surface. In Section 4.3 the adjoint neoclassical method is described.

The continuous and discrete approaches for this problem are presented, and their

implementation and benchmarks are discussed in Section 4.4. The adjoint method

is used to compute derivatives of moments of the neoclassical distribution function

with respect to local geometric quantities. The derivative information can be used

to identify regions of increased sensitivity to magnetic perturbations, as discussed

in Section 4.5.1. We demonstrate adjoint-based optimization in Section 4.5.2.1 by

locally modifying the field strength on a flux surface. A discussion of the application

of this method for optimization of MHD equilibria is presented in 4.5.2.2. Finally,

the adjoint method is applied to accelerate the calculation of the ambipolar electric

field in Section 4.5.3.

4.2 Drift kinetic equation

The local drift kinetic equation is,(
v||b̂ + vE

)
· ∇f1s − Cs(f1s) = −vms · ∇ψ

∂fMs

∂ψ
, (4.2)
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Here b̂ = B/B is a unit vector in the direction of the magnetic field, v|| = v · b̂ is the

parallel component of the velocity, and 2πψ is the toroidal flux. The Fokker-Planck

collision operator is Cs(f1s), linearized about a Maxwellian fMs = nsv
−3
ts π

−3/2e−v
2/v2

ts

where vts =
√

2Ts/ms is the thermal speed, ns is the density, Ts is the temperature,

ms is the mass, and the subscript indicates species. In (4.2), derivatives are performed

holding Ws = msv
2/2 + qsΦ and µ = v2

⊥/2B fixed, where v =
√

v · v is the magni-

tude of velocity, Φ is the electrostatic potential, v⊥ =
√
v2 − v2

|| is the perpendicular

velocity, and qs is the charge. The radial magnetic drift is,

vms · ∇ψ =
ms

qsB2

(
v2
|| +

v2
⊥
2

)
b̂×∇B · ∇ψ, (4.3)

assuming a magnetic field in MHD force balance, and vE is the E×B velocity,

vE =
B×∇Φ

B2
. (4.4)

Throughout we assume Φ = Φ(ψ) such that (4.2) is linear. In (4.2) we will not

consider the effect of inductive electric fields, as these can be assumed to be small for

stellarators without inductive current drive. We also do not consider the effects of

magnetic drifts tangential to the flux surface in (4.2), as these only become important

when Er is small [184]. We can assume radial locality, manifested by the absence of

any radial derivatives of f1s in (4.2), when ν∗ � ρ∗ [33], where ν∗ = ν/(vt/L)� 1 is

the normalized collision frequency for macroscopic scale length L and ρ∗ = vtm/(LqB)

is the normalized gyrofrequency. Numerical solutions to (4.2) are computed with the

Stellarator Fokker-Planck Iterative Neoclassical Solver (SFINCS) [140] code which

allows for general stellarator geometry with flux surfaces.

SFINCS solves (4.2) locally on a flux surface ψ, a four-dimensional system. The

SFINCS coordinates include two angles (poloidal angle θ and toroidal angle φ), speed

Xs = v/vts, and pitch angle ξs = v||/v. Specifics about the implementation of (4.2)

in the SFINCS code are described in Appendix D. We will refer to two choices of
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implementation: the full trajectory model and the DKES trajectory model. The

full trajectory model maintains µ conservation as radial coupling (terms involving

∂f1s/∂ψ) is dropped. While the DKES model does not conserve µ when Er 6= 0, the

adjoint operator under the DKES model takes a particularly simple form, as discussed

in Section 4.3.1. This model also does not introduce any unphysical constraints on

the distribution function when Er = 0, as occurs for the full trajectory model [140].

These constraints motivate the introduction of particle and heat sources, which are

discussed in the following Section. We will discuss details of the implementation of

the DKE in the SFINCS code, as these need to be considered in arriving at the adjoint

equation. However, the adjoint neoclassical approach is quite general and could be

implemented in other drift-kinetic codes with slight modification.

From solutions of (4.2), several neoclassical quantities are computed, including

the flux-surface averaged parallel flow,

V||,s =

〈
B
∫
d3v f1sv||

〉
ψ

ns〈B2〉1/2ψ

, (4.5)

the radial particle flux,

Γs =

〈∫
d3v (vms · ∇ρ) f1s

〉
ψ

, (4.6)

and the radial heat flux (sometimes referred to as an energy flux),

Qs =

〈∫
d3v

msv
2

2
(vms · ∇ρ) f1s

〉
ψ

. (4.7)

Here the flux-surface average of a quantity A is,

〈A〉ψ =

∫ 2π

0
dθ
∫ 2π

0
dφ
√
gA

V ′(ψ)
(4.8a)

V ′(ψ) =

∫ 2π

0

dθ

∫ 2π

0

dφ
√
g, (4.8b)

and
√
g = (∇ψ ×∇θ · ∇φ)−1 is the Jacobian. We will also consider species-summed

quantities including the bootstrap current, Jb =
∑

s qsnsV||,s, the radial current, Jr =
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∑
s qsΓs, and the total heat flux, Qtot =

∑
sQs. Here the effective normalized radius

is ρ =
√
ψ/ψ0, where 2πψ0 is the toroidal flux at the boundary.

4.2.1 Sources and constraints

To avoid unphysical constraints on f1s implied by the moment equations of (4.2)

in the presence of a non-zero Er [140], particle and heat sources are added to the

DKE (D.1),

L0sf1s − Cs(f1s)− fMs

(
X2
s −

5

2

)
Sf1s(ψ)− fMs

(
X2
s −

3

2

)
Sf2s(ψ) = S0s, (4.9)

where Sf1s(ψ) and Sf2s(ψ) are unknowns such that Sf1s provides a particle source and Sf2s

provides a heat source. The collisionless trajectory operator in SFINCS coordinates

is,

L0s = ẋ · ∇+ Ẋs
∂

∂Xs

+ ξ̇s
∂

∂ξs
, (4.10)

and the inhomogeneous drive term is S0s = −(vms · ∇ψ)∂fMs/∂ψ. The source func-

tions are determined via the requirement that 〈
∫
d3v f1s〉ψ = 0 and 〈

∫
d3v X2

s f1s〉ψ = 0

(i.e. f1s does not provide net density or pressure). So, the following system of equa-

tions is solved,
L0s − Cs −fMs(X

2
s − 5

2
) −fMs(X

2
s − 3

2
)

L1s 0 0

L2s 0 0


︸ ︷︷ ︸

Ls


f1s

Sf1s

Sf2s


︸ ︷︷ ︸

Fs

=


S0s

0

0


︸ ︷︷ ︸

Ss

. (4.11)
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The velocity-space averaging operations are denoted L1sf1s = 〈
∫
d3v f1s〉ψ and L2sf1s =

〈
∫
d3v f1sX

2
s 〉ψ. The full multi-species system can be written as,

L1

...

LNspecies




F1

...

FNspecies


=


S1

...

SNspecies


. (4.12)

Here the linear systems corresponding to each species as in (4.11) are coupled through

the collision operator. We use the following notation to refer to the above system,

LF = S. (4.13)

4.3 Adjoint approach

The goal of the adjoint neoclassical approach is to compute derivatives of a mo-

ment of the distribution function efficiently, R (e.g., V||,s,Γs, Qs, Jb, Jr, Qtot), with

respect to many parameters. Consider a set of parameters, Ω = {Ωi}NΩ
i=1, on which R

depends. Computing a forward-difference derivative with respect to Ω requires NΩ +1

solutions of (4.13). With the adjoint approach, ∂R/∂Ω can be computed with one so-

lution of (4.13) and one solution of a linear adjoint equation of the same size as (4.13).

Thus if NΩ is very large and the solution to (4.13) is computationally expensive to

obtain, the adjoint approach can reduce the cost by NΩ. For stellarator optimization,

it is desirable to compute derivatives with respect to parameters that describe the

magnetic geometry. In fully three-dimensional geometry, NΩ is O(102) and solving

(4.13) is the most expensive part of computing R (rather than constructing the lin-

ear system or taking a moment of the distribution function). The discretized linear

system is typically very large (N ∼ 105− 106 for the calculations shown in the Chap-

ter) and sparse. Thus matrix-matrix products are significantly less expensive than

the linear solve, which is performed with a preconditioned Krylov iterative method.
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Consequently, the adjoint method provides a factor of NΩ ∼ 102 savings over both

the forward sensitivity and finite-difference methods, as described in Section 2.2.1.1.

The adjoint method also allows us to avoid additional round-off or truncation error

arising from finite-difference derivatives. In what follows, we consider Ω to be a set of

parameters describing the magnetic geometry, which will be specified in Section 4.4.

We compute the derivatives of R using two approaches. In the first approach, we

define an inner product that involves integrals over the distribution function, and an

adjoint operator is obtained with respect to this inner product. This is the continuous

approach introduced in Section 2.2.2. In the second approach, we consider the DKE

after discretization, defining an adjoint operator with respect to the Euclidean dot

product. This is the discrete approach introduced in Section 2.2.1. While these

approaches should provide identical results within discretization error, the advantages

and drawbacks of each method will be discussed at the end of Section 4.3.2.

4.3.1 Continuous approach

Let F = {Fs}
Nspecies

s=1 be the set of unknowns computed with SFINCS before dis-

cretization, denoted by the column vector in (4.12) with Fs given by (4.11). That

is, F consists of a set of Nspecies distribution functions over (θ, φ,Xs, ξs) and their

associated source functions. We define an inner product between two such quantities

in the following way,

〈F,G〉 =
∑
s

〈∫
d3v

f1sg1s

fMs

〉
ψ

+ Sf1sS
g
1s + Sf2sS

g
2s. (4.14)

Here the superscript on S1s and S2s denotes the distribution function with which the

source functions are associated and the sum is over species. The space of continuous

functions, F , of this form such that 〈F, F 〉 is bounded will be denoted by H. It can

be seen that (4.14) is indeed an inner product, as it satisfies conjugate symmetry

(〈G,F 〉 = 〈F,G〉 ∀F,G ∈ H), linearity (〈F +G,H〉 = 〈F,H〉+ 〈G,H〉 ∀F,G,H ∈ H
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and 〈F, aG〉 = a〈F,G〉 ∀F,G ∈ H, a ∈ R), and positive definiteness (〈F, F 〉 ≥ 0 and

〈F, F 〉 = 0 only if F = 0 ∀F ∈ H) [199]. This implies that if H is finite-dimensional,

then for any linear operator L there exists a unique adjoint operator L† such that

〈LF,G〉 = 〈F,L†G〉 for all F,G ∈ H. While here H is not finite-dimensional, we will

show that such an adjoint operator exists for this inner product.

Note that the norm associated with this inner product ||F || =
√
〈F, F 〉 is similar

to the free energy norm,

W =
∑
s

〈∫
d3v

Tsf
2
1s

2fMs

〉
ψ

, (4.15)

which obeys a conservation equation in gyrokinetic theory [2, 132, 141]. The choice

of inner product (4.14) is advantageous, as the linearized Fokker-Planck collision

operator becomes self-adjoint for species linearized about Maxwellians with the same

temperature. In what follows, we assume that all included species are of the same

temperature. This assumption could be lifted, with a modification to the collision

operator that appears in the adjoint equation (Appendix E). This assumption is not

necessary when using the discrete approach (Section 4.3.2).

Consider a moment of the distribution function R ∈ {V||,s,Γs, Qs, Jb, Jr, Qtot},

which can be written as an inner product with a vector R̃ ∈ H,

R = 〈F, R̃〉, (4.16)

according to (4.14). For example,

J̃r =


qsvms · ∇ψfMs

0

0



Nspecies

s=1

, (4.17)

where the column structure corresponds with that in (4.11) and (4.12).

We are interested in computing the derivative of R with respect to a set of pa-
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rameters, Ω = {Ωi}NΩ
i=1 such that the DKE is satisfied. Computing such a derivative

with the forward sensitivity method requires that we compute ∂F (Ω)/∂Ωi from the

linearized DKE,

∂L(Ω)

∂Ωi

F + L
∂F (Ω)

∂Ωi

=
∂S(Ω)

∂Ωi

, (4.18)

for each Ωi and evaluate the derivative using the chain rule,

∂R(Ω, F (Ω))

∂Ωi

=
∂R(Ω, F )

∂Ωi

+

〈
R̃, ∂F (Ω)

∂Ωi

〉
. (4.19)

We see that the forward sensitivity method requires solutions of NΩ linear systems of

the same dimension as the DKE (4.13).

To avoid this additional computational cost, we instead apply the adjoint method

by constructing the Lagrangian functional, enforcing (4.13) as a constraint,

L(Ω, F, λR) = R(Ω, F ) +
〈
λR,LF − S

〉
. (4.20)

Here λR is the Lagrange multiplier. We obtain the adjoint equation by finding a

stationary point of L with respect to F ,

δL(Ω, F, λR; δF ) = 〈δF, R̃〉+
〈
λR,LδF

〉
= 0. (4.21)

We can now use the adjoint property to express the above as,

δL(Ω, F, λR; δF ) = 〈δF, R̃+ L†λR〉. (4.22)

A stationary point of L with respect to F corresponds to λR which satisfies the weak

form of the adjoint equation,

L†λR + R̃ = 0. (4.23)

With this adjoint variable, we can now compute derivatives of R with respect to any
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parameter by computing the corresponding perturbations of L,

∂R(Ω, F (Ω))

∂Ωi

=
∂L(Ω, F, λR)

∂Ωi

=
∂R(Ω, F )

∂Ωi

+

〈
λR,

∂L(Ω)

∂Ωi

F − ∂S(Ω)

∂Ωi

〉
. (4.24)

The first term on the right hand side accounts for the explicit dependence on Ωi

while the second accounts for the implicit dependence on Ωi through F . Thus, using

(4.24), the derivative with respect to Ω can be computed with the solution to two

linear systems, (4.13) and (4.23). The partial derivatives on the right hand side of

(4.24) can be computed analytically by considering the explicit geometric dependence

of R, L, and S.

When NΩ is large, the cost of computing ∂R/∂Ω using (4.24) is dominated not

by the linear solve but by constructing ∂S/∂Ω and ∂L/∂Ω and computing the inner

product. Thus the cost still scales with NΩ. However, we obtain a significant savings

in comparison with forward-difference derivatives, as shown in Section 4.4.

The adjoint operator for each species takes the following form,

L†s =


L†0s − Cs fMs fMsX

2
s

L†1s 0 0

L†2s 0 0


, (4.25)

where L†1s = 5/2L1s − L2s and L†2s = 3/2L1s − L2s. The same column structure is

used as for the forward operator (4.12), L† = {L†s}
Nspecies

i=1 . The quantity L†0s satisfies

〈
∫
d3v g1sL0sf1s/fMs〉ψ = 〈

∫
d3v f1sL†0sg1s/fMs〉ψ and depends on which trajectory

model is applied. The expression (4.25) can be verified by noting that

〈LF,G〉 =
∑
s

〈
f1s

(
(L†0s − Cs)g1s + fMs

(
Sg1s + Sg2sX

2
s

))
fMs

〉
ψ

+ Sf1sL
†
1sg1s + Sf2sL

†
2sg1s

= 〈F,L†G〉. (4.26)
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For the DKES trajectories the adjoint operator is,

L†0s = −L0s. (4.27)

This anti-self-adjoint property is used in obtaining the variational principle which

provides bounds on neoclassical transport coefficients in the DKES code [230]. For

full trajectories it is,

L†0s = −L0s +
qs
Ts

Φ′(ψ)vms · ∇ψ. (4.28)

The anti-self-adjoint property does not hold for this trajectory model as the E × B

drift (F.9) is no longer divergenceless. Appendix F contains details on obtaining these

adjoint operators.

4.3.2 Discrete approach

Next, we consider the discrete adjoint approach. Let
−→
F be the set of unknowns

computed with SFINCS after discretization of F . The linear DKE (4.13) upon dis-

cretization can then be written schematically as,

←→
L
−→
F =

−→
S . (4.29)

In this case, we can define an inner product as the vector dot product,

〈
−→
F ,
−→
G〉 =

−→
F ·
−→
G. (4.30)

In real Euclidean space, the adjoint operator,
(←→

L
)†

, which satisfies,

〈←→
L
−→
F ,
−→
G
〉

=

〈
−→
F ,
(←→

L
)†−→

G

〉
(4.31)

is simply the transpose of the matrix,
(←→

L
)T

. Again, the moments of the distribution

function, R can be expressed as an inner product with a vector
−→
R,

R = 〈
−→
F ,
−→
R〉. (4.32)
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Using the discrete approach, the following adjoint equation must be solved(←→
L
)T −→
λR =

−→
R. (4.33)

The adjoint variable,
−→
λR, can again be used to compute the derivative of R with

respect to Ω,

∂R
(

Ω,
−→
F (Ω)

)
∂Ωi

=
∂R

(
Ω,
−→
F
)

∂Ωi

+

〈
−→
λR,

(
∂
−→
S (Ω)

∂Ωi

− ∂
←→
L (Ω)

∂Ωi

−→
F

)〉
. (4.34)

As with the continuous approach, the partial derivatives on the right hand side can

be computed analytically. In this way, the derivative of R with respect to Ω can be

computed with only two linear solves, (4.29) and (4.33).

In the SFINCS implementation, the DKE is typically solved with the precon-

ditioned GMRES algorithm. In the continuous approach, a preconditioner matrix

for both the forward and adjoint operator must be LU -factorized. Here the pre-

conditioner matrix is the same as the full matrix but without cross-species or speed

coupling. As the adjoint matrix is sufficiently different from the forward matrix, we

do not obtain convergence when the same preconditioner is used for both problems.

However, in the discrete approach, the LU -factorization for the preconditioner of the

forward matrix can be reused for the preconditioner of the adjoint matrix. (If a ma-

trix A has been factorized as A = LU then AT = UTLT where UT is lower triangular

and LT is upper triangular). This provides a significant reduction in memory and

computational cost for the discrete approach.

Furthermore, the discrete adjoint approach provides the exact derivatives for the

discretized problem. With this method, the adjoint equation is obtained using the

vector dot product and matrix transpose, which can be computed without any nu-

merical approximation. The error in the derivatives obtained by the adjoint method

is therefore only limited by the tolerance to which the linear solve is performed with

GMRES. On the other hand, the continuous adjoint approach relies on a continuous
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inner product that must ultimately be approximated numerically. Thus the con-

tinuous approach provides the exact derivatives only in the limit that the discrete

approximation of the inner product exactly reproduces the continuous inner product.

Therefore we expect the results of the discrete and adjoint approaches to agree within

discretization error, as will be demonstrated in Section 4.4.

The continuous approach can be advantageous in that an adjoint equation may be

prescribed independently of the discretization scheme. Note that in the discrete ap-

proach, the adjoint operator is obtained from the matrix transpose of the discretized

forward operator, which implies that the same spatial and velocity resolution pa-

rameters must be used for both the forward and adjoint solutions. In this Chapter,

we will employ the same discretization parameters for both the adjoint and forward

problems, but this restriction is not required for the continuous approach.

4.4 Implementation and benchmarks

The adjoint method has been implemented in the SFINCS code1 using both the

discrete and continuous approaches. The magnetic geometry is specified in Boozer

coordinates (Appendix A.4) such that the covariant form of the magnetic field is,

B = I(ψ)∇ϑB +G(ψ)∇ϕB +K(ψ, ϑB, ϕB)∇ψ, (4.35)

where I(ψ) = µ0IT (ψ)/2π and G(ψ) = µ0IP (ψ)/2π, IT (ψ) is the toroidal current

enclosed by ψ, and IP (ψ) is the poloidal current outside of ψ. The contravariant form

is,

B = ∇ψ ×∇ϑB − ι(ψ)∇ψ ×∇ϕB, (4.36)

1The adjoint method is implemented in the main branch of the SFINCS code
https://github.com/landreman/sfincs.
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where ι(ψ) is the rotational transform. The Jacobian is obtained from dotting (4.35)

with (4.36),

√
g =

G(ψ) + ι(ψ)I(ψ)

B2
. (4.37)

As K(ψ, ϑB, ϕB) does not appear in any of the trajectory coefficients ((D.2) and

(D.4)), in the drive term in (D.1), or in the geometric factors used to define the mo-

ments of the distribution function ((4.5), (4.6), and (4.7)), all the geometric depen-

dence enters through B(ψ, ϑB, ϕB), G(ψ), I(ψ), and ι(ψ). We choose to use Boozer

coordinates for these computations as it reduces the number of geometric parameters

that must be considered, but the neoclassical adjoint method is not limited to this

choice of coordinate system.

We approximate B by a truncated Fourier series,

B =
∑
m,n

Bc
m,n cos(mϑB − nNPϕB), (4.38)

where the sum is taken over Fourier modes m ≤ mmax and |n| ≤ nmax and NP is

the number of periods. In (4.38), we have assumed stellarator symmetry such that

B(−ϑB,−ϕB) = B(ϑB, ϕB), and Np symmetry such that B(ϑB, ϕB + 2π/NP ) =

B(ϑB, ϕB). Thus we compute derivatives with respect to the parameters

Ω = {Bc
m,n, I(ψ), G(ψ), ι(ψ)}. Additionally, derivatives with respect to Er are com-

puted, which are used for efficient ambipolar solutions and computing derivatives of

geometric quantities at ambipolarity (Section 4.5.3) rather than at fixed Er.

To demonstrate, we compute ∂R/∂Bc
0,0 for moments of the ion distribution func-

tion using the discrete and continuous adjoint methods. A 3-mode model of the

standard configuration W7-X geometry at ρ =
√
ψ/ψ0 = 0.5 is used (Table 1 in [16]),

B = Bc
0,0 +Bc

0,1 cos(NPϕB) +Bc
1,1 cos(ϑB −NPϕB) +Bc

1,0 cos(ϑB), (4.39)

where Bc
0,1 = 0.04645Bc

0,0, Bc
1,1 = −0.04351Bc

0,0, and Bc
1,0 = −0.01902Bc

0,0. Electron

and ion (qi = e) species are included, and the derivatives are computed at the am-
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bipolar Er with the full trajectory model. The derivatives are also computed with

a forward-difference approach with varying step size ∆Bc
0,0. In Figure 4.1 we show

the fractional-difference between ∂R/∂Bc
0,0 computed using the adjoint method and

with forward-difference derivatives. We see that at large values of ∆Bc
0,0, the ad-

joint and numerical derivatives begin to differ significantly due to discretization error

from the forward-difference approximation. The fractional error decreases propor-

tional to ∆Bc
0,0 as expected until the rounding error begins to dominate [203] when

∆Bc
0,0/B

c
0,0 is approximately 10−4, where Bc

0,0 is the value of the unperturbed mode.

The discrete and continuous approaches show qualitatively similar trends. However,

the minimum fractional difference is lower in the discrete approach due to the addi-

tional discretization error that arises with the continuous approach. With sufficient

resolution parameters (41 θ grid points, 61 φ grid points, 85 ξ basis functions, and

7 X basis functions), the fractional error of the continuous approach is ≤ 0.1% and

should not be significant for most applications. We find similar agreement for other

derivatives and with the DKES trajectory model.

To demonstrate that the discrete and continuous methods indeed produce the same

derivative information, we compute the fractional difference between the derivatives

computed with the two methods as a function of the resolution parameters. As an

example, in Figure 4.2a we show the fractional difference in ∂Qi/∂ι, where Qi is the

radial ion heat flux, as a function of the number of Legendre polynomials used for

the pitch angle discretization, Nξ, keeping the other resolution parameters fixed. As

Nξ is increased, the fractional differences converge to a finite value, approximately

10−4, due to the discretization error in the other resolution parameters. Similar

resolution parameters are required for the convergence of the moment itself, Qi, and

its derivative computed with the continuous method, ∂Qi/∂ι. Convergence of Qi

within 5% is obtained with Nξ = 38, similar to that required for the convergence of

∂Q/∂ι, as can be seen in Figure 4.2a.

104



10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

F
ra

ct
io

na
l d

iff
er

en
ce

(a) Discrete approach

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

(b) Continuous approach

Figure 4.1: Fractional difference between derivatives with respect to Bc
0,0 computed

with the adjoint method and with a forward-difference derivative with step size ∆Bc
0,0.

The full trajectory model was used with (a) the discrete and (b) the continuous adjoint
approaches. Figure adapted from [186] with permission.

In Figure 4.2b, we compare the cost of calculating derivatives of one moment with

respect to NΩ parameters using the continuous and discrete adjoint methods and

forward-difference derivatives. All computations are performed on the Edison com-

puter at NERSC using 48 processors, and the elapsed wall time is reported. Here we

include the cost of solving the linear system and computing diagnostics NΩ + 1 times

for the forward-difference approach, and the cost of solving the forward and adjoint

linear systems and computing diagnostics for the adjoint approaches. The cost of the

continuous approach is slightly more than that of the discrete approach due to the

cost of factorizing the adjoint preconditioner. However, at large NΩ the cost of com-

puting diagnostics for the adjoint approach (e.g., computing ∂S/∂Ω and ∂L/∂Ω and

performing the inner product in (4.24)) dominates that of solving the adjoint linear

system; thus the discrete and continuous approaches become comparable in cost. In

this regime, the adjoint approach provides speed-up by a factor of approximately 50.
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Figure 4.2: (a) The fractional difference between ∂Qi/∂ι computed with the con-
tinuous and discrete approaches converges with the number of pitch angle Legendre
modes, Nξ. (b) Comparison of the computational cost of computing ∂R/∂Ω with
forward-difference derivatives and the adjoint approach as a function of NΩ, the num-
ber of parameters in the gradient. Figure reproduced from [186] with permission.

4.5 Applications of the adjoint method

4.5.1 Local magnetic sensitivity analysis

With the adjoint method, it is possible to compute derivatives of a moment of

the distribution function with respect to the Fourier amplitudes of the field strength,

{∂R/∂Bc
m,n}. Rather than consider sensitivity in Fourier space, we would like to

compute the sensitivity to local perturbations of the field strength. We now quantify

the relationship between these two representations of sensitivity information.

Consider the Gateaux functional derivative [52] of R with respect to B,

δR(B(x); δB) = lim
ε→0

R(B(x) + εδB(x))−R(B(x))

ε
. (4.40)

Here the field strength is perturbed at fixed I(ψ), G(ψ), and ι(ψ). As δR(B(x); δB)

is a linear functional of δB, by the Riesz representation theorem [199], δR can be

expressed as an inner product with δB and some element of the appropriate space.

The function δB is defined on a flux surface, ψ; thus it is sensible to express δR in
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the following way,

δR(B(x); δB) =
〈
SRδB(x)

〉
ψ
. (4.41)

Here δR quantifies the change in the moment R associated with a local perturbation

to the field strength, δB(x). The function SR is analogous to the shape gradient

introduced in Section 2.1, which will be discussed further in Section 4.5.2.2.

Suppose that B is stellarator symmetric and NP symmetric. If Er = 0, then

SR must also possess stellarator and NP symmetry (Appendix G). However, when

Er 6= 0, SR is no longer guaranteed to have stellarator symmetry. Nonetheless, it

may be desirable to ignore the stellarator-asymmetric part of SR if an optimized

stellarator-symmetric configuration is desired. For the remainder of this Chapter,

we will make this assumption, though the analysis could be extended to consider the

effect of breaking of stellarator symmetry. A truncated Fourier series can approximate

the quantity SR under these assumptions,

SR =
∑
m,n

Sm,n cos(mϑB − nNPϕB), (4.42)

where the sum is taken over m ≤ mmax and |n| ≤ nmax. The quantity δB(x) can be

written in terms of perturbations to the Fourier coefficients,

δB(x) =
∑
m,n

δBc
m,n cos(mϑB − nNPϕB), (4.43)

and now δR can be written in terms of these perturbations to the Fourier coefficients,

δR =
∑
m,n

∂R
∂Bc

m,n

δBc
m,n. (4.44)

In this way, (4.41) can be expressed as a linear system,

∂R
∂Bc

m,n

=
∑
m′,n′

Dm,n;m′,n′Sm′,n′ , (4.45)

107



(a) (b)

(c)

Figure 4.3: (a) The local magnetic sensitivity function for the bootstrap current, SJb ,
is shown for the W7-X standard configuration. Positive values indicate that increasing
the field strength at a given location will increase Jb through (4.41). (b) The local
sensitivity function for the ion particle flux, SΓi . (c) The magnetic field strength on
the ρ = 0.7 surface. Figure adapted from [186] with permission.

where,

Dm,n;m′,n′ =

V ′(ψ)−1

∫ 2π

0

dϑB

∫ 2π

0

dϕB
√
g cos(mϑB − nNPϕB) cos(m′ϑB − n′NPϕB). (4.46)

If the same number of modes is used to discretize δR and SR, then the linear system

is square.

In contrast to derivatives with respect to the Fourier modes of B, the sensitivity

function, SR, is a spatially local quantity, quantifying the change in a figure of merit
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resulting from a local perturbation of the field strength. In this way, SR can inform

where perturbations to the magnetic field strength can be tolerated. The sensitivity

function could be related directly to a local magnetic tolerance, as described in Section

2.1.3. In contrast with the work in [138], here we are considering perturbations to

the field strength on any flux surface rather than at the plasma boundary. However,

SR still provides insight into where trim coils should be placed or coil displacements

can be tolerated without sacrificing desired neoclassical properties. The sensitivity

function can also be used for gradient-based optimization in the space of the field

strength on a flux surface, as demonstrated in Section 4.5.2.1.

We compute SJb for the W7-X standard configuration at ρ = 0.70, shown in

Figure 4.3a. We use a fixed-boundary equilibrium that preceded the coil design

and does not include coil ripple, and the full equilibrium is used rather than the

truncated Fourier series considered in Section 4.4. The same resolution parameters

are used as in Section 4.4, and derivatives with respect to Bc
m,n are computed for

mmax = nmax = 20. The largest modes for this configuration are the helical curvature

Bc
1,1, the toroidal curvature Bc

1,0, and the toroidal mirror Bc
0,1. We find that SJb is

large and negative on the inboard side, indicating that increasing the magnitude of

the toroidal curvature component of B would lead to an increase in Jb. This result is

in agreement with previous analysis [155], which found that at low collisionality, the

bootstrap current coefficients depend strongly on the toroidal curvature. Additionally,

we note a localized region of strong sensitivity on the inboard side near the bean-

shaped cross-section. Experimental [55] and numerical [75] evidence indicates that the

magnitude of the bootstrap current is increased in the lower mirror-ratio configuration

of W7-X, where the mirror-ratio is defined as (Bmax−Bmin)/(Bmax+Bmin). Our result

appears to be consistent with these observations: we note that the localized region of

strongly positive SJb is near the maximum of the magnetic field strength (Figure 4.3c),

indicating that increasing the mirror-ratio would lead to a decrease in the magnitude

109



of bootstrap current, as Jb < 0 for this configuration.

In Figure 4.3b is the sensitivity function for the ion particle flux, SΓi , computed

for the same configuration using mmax = 20 and nmax = 20. We find that the particle

flux is more sensitive to perturbations on the outboard side in localized regions, while

on the inboard side the sensitivity is relatively small in magnitude.

4.5.2 Gradient-based optimization

4.5.2.1 Optimization of the magnetic field strength

As a second demonstration of the adjoint neoclassical method, we consider opti-

mizing in the space of the field strength on a surface, taking Ω = {Bc
m,n}. As Boozer

coordinates are used, the covariant form (4.35) satisfies (∇ × B) · ∇ψ = 0 and the

contravariant form (4.36) satisfies ∇ ·B = 0. As we will artificially modify the field

strength while keeping other geometry parameters fixed, the resulting field will not

necessarily satisfy both of these conditions with both the covariant and contravariant

forms. While there is no guarantee that the resulting field strength will be consistent

with a global equilibrium solution, it provides insight into how local changes to the

field strength can impact neoclassical properties. As a second step, the outer bound-

ary could be optimized to match the desired field strength on a single surface. In

Section 4.5.2.2, we discuss how the derivatives computed in this Chapter could be

coupled to the optimization of an MHD equilibrium.

We perform optimization with a BFGS quasi-Newton method (Chapter 6 in [170])

using an objective function χ2 = J2
b , implemented in the sfincs adjoint branch

of the STELLOPT code. A backtracking line search is used at each iteration to

find a step size that satisfies a condition of sufficient decrease of χ2. We use the

same equilibrium as in Section 4.5.1, retaining modes m ≤ 12 and |n| ≤ 12, and

compute derivatives with respect to these modes. Convergence to χ2 ≤ 10−10 was
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Figure 4.4: (a) Convergence of χ2 = J2
b for optimization over Ω = {Bc

m,n} with an
adjoint-based BFGS method. (b) The change in field strength from the initial to
optimized configuration. Figure adapted from [186] with permission.

obtained within 8 BFGS iterations (28 function evaluations), as shown in Figure

4.4a. The difference in field strength between the initial and optimized configuration,

Bopt −Binit, is shown in Figure 4.4b. As expected from the analysis in Section 4.5.1,

the field strength increased on the outboard side and decreased on the inboard side

in comparison with Binit. (Note that Jb < 0.)

4.5.2.2 Optimization of MHD equilibria

The local sensitivity function, SR, along with ∂R/∂I, ∂R/∂G, and ∂R/∂ι, can be

used to determine how perturbations to the outer boundary of the plasma, SP , result

in perturbations to R. This is quantified through the idea of the shape gradient,

introduced in Section 2.1. The partial derivatives of R can be computed with the

adjoint method outlined in Section 4.3, and the shape gradient can be obtained with

only one additional MHD equilibrium solution through the application of another

adjoint method.

Consider a figure of merit which is integrated over the toroidal confinement vol-
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ume, VP ,

fR(SP ) =

∫
VP

d3xw(ψ)R(ψ), (4.47)

where w(ψ) is a weighting function. That is, SFINCS is run on a set of ψ surfaces

within VP and the volume integral is computed numerically. Here we consider SP

to be the plasma boundary used for a fixed-boundary MHD equilibrium calculation.

From the Hadamard-Zolesio structure theorem (Section 2.1), the perturbation to fR

resulting from normal perturbation to SP can be written in the following form,

δfR(SP ; δx) =

∫
SP

d2x (δx · n̂)G, (4.48)

under certain assumptions of smoothness [52]. This can be thought of as another

instance of the Riesz representation theorem, as δfR is a linear functional of δx. Here

n̂ is the outward unit normal on SP and δx is a vector field describing the perturba-

tion to the surface. Intuitively, only normal perturbations to SP result in a change

to fR. The shape gradient is G, which quantifies the contribution of a local normal

perturbation of the boundary to the change in fR. The shape gradient can be used for

fixed-boundary optimization of equilibria or analysis of sensitivity to perturbations

of magnetic surfaces. It can be computed using a second adjoint method, where a

perturbed MHD force balance equation is solved with the addition of a bulk force

that depends on derivatives computed from the neoclassical adjoint method. This

will be described in detail in Chapter 5. While the continuous neoclassical adjoint

method described in this Chapter arises from the self-adjointness of the linearized

Fokker-Planck operator, the adjoint method for MHD equilibria arises from the self-

adjointness of the MHD force operator. In practice, these two adjoint methods could

be coupled by first computing an MHD equilibrium solution, computing neoclassical

transport and its geometric derivatives from this equilibrium with the neoclassical ad-

joint method, and passing these derivatives back to the equilibrium code to compute
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the shape gradient with the perturbed MHD adjoint method. In this way, deriva-

tives of neoclassical quantities with respect to the shape of the outer boundary are

computed with only two equilibrium solutions and two DKE solutions.

Rather than solve an additional adjoint equation, the outer boundary could be

optimized by numerically computing derivatives of {Bc
m,n(ψ), G(ψ), I(ψ)} with re-

spect to the double Fourier series describing the outer boundary shape in cylindrical

coordinates, {Rc
m,n, Z

s
m,n}, using a finite-difference method. This could be done using

the STELLOPT code [197, 213] with BOOZ XFORM [202] to perform the coordi-

nate transformation. For example, if the rotational transform is held fixed in the

VMEC equilibrium calculation [111], the derivative of a moment, R, with respect to

a boundary coefficient, Rc
m,n, can be computed as,

∂R(ψ)

∂Rc
m,n(ψ)

=
∑
m′,n′

∂R(ψ)

∂Bc
m′,n′(ψ)

∂Bc
m′,n′(ψ)

∂Rc
m,n(ψ)

+
∂R(ψ)

∂G(ψ)

∂G(ψ)

∂Rc
m,n(ψ)

+
∂R(ψ)

∂I(ψ)

∂I(ψ)

∂Rc
m,n(ψ)

,

(4.49)

where ∂R(ψ)/∂Bc
m,n(ψ), ∂R(ψ)/∂G(ψ), and ∂R(ψ)/∂I(ψ) are computed with the

neoclassical adjoint method and ∂Bc
m,n(ψ)/∂Rc

m,n(ψ), ∂G(ψ)/∂Rc
m,n(ψ), and

∂I(ψ)/∂Rc
m,n(ψ) are computed with finite-difference derivatives using STELLOPT.

Similarly, derivatives of {Bc
m,n(ψ), G(ψ), I(ψ)} could be computed with respect to

coil parameters using a free-boundary equilibrium solution, allowing for direct op-

timization of neoclassical quantities with respect to coil shapes. The neoclassical

calculation with SFINCS is typically significantly more expensive than the equilib-

rium calculation (for the geometry discussed in Section 4.5.1 fixed-boundary VMEC

took 54 seconds while SFINCS took 157 seconds on 4 processors of the NERSC Edi-

son computer). As such, combining adjoint-based with finite-difference derivatives

can still result in a significant computational savings.
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4.5.3 Ambipolarity

As stellarators are not intrinsically ambipolar, the radial electric field is not truly

an independent parameter. The ambipolar Er must be obtained which satisfies the

condition Jr(Er) = 0. The application of adjoint-based derivatives for computing the

ambipolar solution is discussed in Section 4.5.3.1. An adjoint method to compute

derivatives with respect to geometric parameters at fixed ambipolarity is discussed in

Section 4.5.3.2.

4.5.3.1 Accelerating ambipolar solve

A nonlinear root-finding algorithm must be used to compute the ambipolar Er.

This root-finding can be accelerated with derivative information, such as with a

Newton-Raphson method [195]. The derivative required, ∂Jr/∂Er, can be computed

with the discrete or continuous adjoint method as described in Section 4.3 with the

replacement Ωi → Er, considering R = Jr.

We implement three nonlinear root finding methods: Brent’s method [30], the

Newton-Raphson method, and a hybrid between the bisection and Newton-Raphson

methods [195]. Brent’s method guarantees at least linear convergence by combining

quadratic interpolation with bisection and does not require derivatives. The Newton-

Raphson method can provide quadratic convergence under certain assumptions but

in general is not guaranteed to converge. If an iterate lies near a stationary point

or a poor initial guess is given, the method can fail. For this reason, we implement

the hybrid method, which combines the possible quadratic convergence properties of

Newton-Raphson with the guaranteed linear convergence of the bisection method.

Both Brent’s method and the hybrid method require the root to be bracketed and

therefore may require additional function evaluations to obtain the bracket.

We compare these methods in Figure 4.5, using the W7-X standard configuration
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Figure 4.5: The ambipolar root is obtained with Brent, Newton-Raphson, and Newton
hybrid nonlinear root solvers. The derivatives obtained with the adjoint method
provide better convergence properties for the Newton methods. Figure adapted from
[186] with permission.

considered in Section 4.5.1 with the full trajectory model and the discrete adjoint

approach, beginning with an initial guess of Er = −10 kV/m with bounds at Emin
r =

−100 kV/m and Emax
r = 100 kV/m. The root is located at Er = −3.84 kV/m.

For this example, the hybrid and Newton methods had nearly identical convergence

properties. However, the Newton method is less expensive as it does not require Jr

to be evaluated at the bounds of the interval. The Newton method provides a 22%

savings in wall clock time over Brent’s method to obtain the root within the same

tolerance.

In the above discussion, we have assumed that there is only one stable root of

interest. Of course, a given configuration may possess several roots, especially if the

ions and electrons are in different collisionality regimes [92]. Multiple roots can be

obtained by performing several root solves with different initial values and brackets,

which could be trivially parallelized. Thus the adjoint method could still provide an

acceleration in this more general case.
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4.5.3.2 Derivatives at ambipolarity

The adjoint method described in Section 4.3 assumes that Er is held constant

when computing derivatives with respect to Ω. However, Er cannot truly be deter-

mined independently from geometric quantities, as the ambipolar solution should be

recomputed as the geometry is altered. It is therefore desirable to compute deriva-

tives at fixed ambipolarity (fixed Jr = 0) rather than at fixed Er. This is performed

by solving an additional adjoint equation,

L†λJr + J̃r = 0, (4.50)

in the continuous approach or, (←→
L
)T −→
λ Jr =

−→
Jr, (4.51)

in the discrete approach. Details are described in Appendix H.

It should be noted that by computing derivatives at ambipolarity, we assume that

a given moment R is a differentiable function of the geometry at fixed Jr = 0. That

is, this method cannot be applied to cases in which a stable root disappears as the

geometry varies. As this will occur at a stationary point of Jr(Er), this situation

could be avoided within an optimization loop by computing derivatives at constant

Er rather than constant Jr if |∂Jr/∂Er| falls below a given threshold at ambipolarity.

Although an additional adjoint solve is required, this method of computing deriva-

tives at ambipolarity is advantageous as several linear solves are typically needed to

obtain the ambipolar root. A comparison of the computational cost between the

adjoint method and the forward-difference method for derivatives at ambipolarity is

shown in Figure 4.6a. Here the full trajectory model is used, and the results for

both the discrete and continuous adjoint methods are shown. For the finite-difference

derivative, the ambipolar solve is performed with Brent’s method at each step in Ω.

As in Figure 4.2b, we find that for large NΩ, the cost of the continuous and discrete
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Figure 4.6: (a) The cost of computing the gradient ∂R/∂Ω at ambipolarity scales with
NΩ, the number of parameters in Ω. (b) The fractional difference between ∂R/∂Bc

0,0

at constant ambipolarity obtained with the adjoint method and with finite-difference
derivatives. Figure adapted from [186] with permission.

approaches are essentially the same, as the cost is no longer dominated by the lin-

ear solve. When computing the derivatives at ambipolarity, both adjoint methods

decrease the cost by a factor of approximately 200 for large NΩ.

In Figure 4.6b we show a benchmark between derivatives at ambipolarity,

(∂R/∂Bc
0,0)Jr , computed with the discrete adjoint method and with forward-difference

derivatives. For the forward-difference method, the Newton solver is used to obtain

the ambipolar Er as Bc
0,0 is varied. As the forward difference step size ∆Bc

0,0 decreases,

the fractional difference again decreases proportional to ∆Bc
0,0 until it reaches a min-

imum when ∆Bc
0,0/B

c
0,0 is approximately 10−4. In comparison with Figure 4.1, we see

that the minimum fractional difference is slightly larger at fixed ambipolarity than

at fixed Er, as the tolerance parameters associated with the Newton solver introduce

an additional source of error to the forward-difference approach.

In Figures 4.7a and 4.7b we compare the sensitivity function for the particle flux,

SΓi , computed using derivatives at constant Er with that computed at constant Jr.

Here derivatives are computed using the discrete adjoint method with full trajecto-
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ries, and the sensitivity function is constructed as described in Section 4.5.1. The

configuration and numerical parameters are the same as described in Section 4.5.1.

At constant Jr, the large region of increased sensitivity on the outboard side that

appears at constant Er remains, though the overall magnitude of the sensitivity de-

creases. Thus it may be important to account for the effect of the ambipolar Er

when optimizing for radial transport. In Figures 4.7c and 4.7d we perform the same

comparison for SJb , finding the derivatives at fixed Er and at fixed Jr to be virtually

identical. This is to be expected, as numerical calculations of neoclassical transport

coefficients for W7-X have found that the bootstrap coefficients are much less sensitive

to Er than those for the radial transport (Figures 18 and 26 in [16]). Furthermore, the

bootstrap current in the 1/ν regime is independent of Er, and the finite-collisionality

correction is small for optimized stellarators, such as W7-X [102]. Therefore, the am-

bipolarity corrections to the derivatives are less important for Jb than for the radial

transport.

4.6 Conclusions

We have described a method by which moments R of the neoclassical distribu-

tion function can be differentiated efficiently with respect to many parameters. The

adjoint approach requires defining an inner product from which the adjoint operator

is obtained. We consider two choices for this inner product. One choice corresponds

with computing the adjoint of the linear operator after discretization, and the other

corresponds with computing it before discretization. In the case of the former, the

Euclidean dot product can be used, and in the case of the latter, an inner product

whose corresponding norm is similar to the free energy norm (4.14) is defined. In

Section 4.4, we show that these approaches provide the same derivative information

within discretization error, as expected. Both methods provide a reduction in com-

putational cost by a factor of approximately 50 in comparison with forward-difference
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Figure 4.7: The sensitivity function for the ion particle flux, SΓi , is computed at (a)
constant Er and (b) constant Jr. Similarly, SJb is computed at (c) constant Er and
(d) constant Jr. Figure adapted from [186] with permission.
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derivatives when differentiating with respect to many (O(102)) parameters. In Section

4.5.3.2 the adjoint method is extended to compute derivatives at ambipolarity. This

method provides a reduction in cost by a factor of approximately 200 over a forward-

difference approach. We have implemented this method in the SFINCS code, and

similar methods could be applied to other drift kinetic solvers.

In this Chapter, we consider derivatives with respect to geometric quantities that

enter the DKE through Boozer coordinates. However, the adjoint neoclassical method

we have described is much more general, allowing for many possible applications. For

example, derivatives of the radial fluxes with respect to the temperature and density

profiles could be used to accelerate the solution of the transport equations using

a Newton method [13]. The transport solution could furthermore be incorporated

into the optimization loop to self-consistently evolve the macroscopic profiles in the

presence of neoclassical fluxes. Rather than simply optimizing for minimal fluxes,

an objective function such as the total fusion power could be considered [107], with

optimization accelerated by adjoint-based derivatives.

Another application of the continuous adjoint formulation is the correction of

discretization error. The same solution obtained in Section 4.3.1 can be used to

quantify and correct for the error in a moment, R, providing similar accuracy to

that computed with a higher-order stencil or finer mesh without the associated cost.

This method has been applied in the field of computational fluid dynamics by solving

adjoint Euler equations [189, 231] and could prove useful for efficiently obtaining

solutions of the DKE in low-collisionality regimes.

In Section 4.5.2.1, we have shown an example of adjoint-based neoclassical op-

timization, where the optimization space is taken to be the Fourier modes of the

field strength on a surface, {Bc
m,n}. While optimization within this space is not nec-

essarily consistent with a global equilibrium solution, it demonstrates the adjoint

neoclassical method for efficient optimization. In Section 4.5.2.2, two approaches
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to self-consistently optimize MHD equilibria are discussed. Further discussion and

demonstration will be provided in Chapter 5.

In Appendix G we show that when Er = 0 and the unperturbed geometry is stel-

larator symmetric, the sensitivity functions for moments of the distribution function

are also stellarator symmetric. However, when Er 6= 0 this is no longer true. This

implies that obtaining minimal neoclassical transport in the
√
ν regime may require

breaking of stellarator symmetry. In this Chapter, we have ignored the effects of

stellarator symmetry-breaking, though we hope to extend this work to study these

effects in the future.
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Chapter 5: Adjoint shape gradient for MHD equilibria

Most stellarator optimization to date has assumed that the magnetic field satis-

fies the MHD equilibrium equations with either a fixed or free-boundary approach, as

detailed in Section 1.4.2. If a gradient-based optimization approach is applied, deriva-

tives of quantities that depend on the equilibrium solutions must be computed with

respect to the shapes of the filamentary coils or plasma boundary. In this Chapter,

we demonstrate an adjoint approach for obtaining the coil or surface shape gradient

of such functions. With the shape gradient efficiently computed, shape derivatives

with respect to any shape perturbation can be calculated.

The material in this Chapter has been adapted with permission from [10] and

[187].

5.1 Introduction

Several figures of merit quantifying confinement must be considered in the numer-

ical optimization of stellarator MHD equilibrium. These figures of merit describing

a configuration depend on the shape of the outer plasma boundary or the shape of

the electro-magnetic coils. It is thus desirable to obtain derivatives with respect to

these shapes for optimization of equilibria or identification of sensitivity information.

These so-called shape derivatives can be computed by directly perturbing the shape,

recomputing the equilibrium, and computing the resulting change to a figure of merit

that depends on the equilibrium solution. However, this direct finite-difference ap-

proach requires recomputing the equilibrium for each possible perturbation of the
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shape. For stellarators whose geometry is described by a set of NΩ ∼ 102 parameters,

this requires NΩ solutions to the MHD equilibrium equations. Despite this computa-

tional complexity, gradient-based optimization of stellarators has proceeded with the

direct approach (e.g. [134, 196, 197]).

As the target optimized configuration can never be realized exactly, an analysis of

the sensitivity to perturbations, such as errors in coil fabrication or assembly, is central

to the success of a stellarator. Tight tolerances have proven to be a significant driver of

the cost of stellarator experiments [130, 220]; thus an improvement to the algorithms

used to conduct sensitivity studies can have a substantial impact on the field. In

studies of the coil tolerances for flux surface quality of LHD [240] and NCSX [31, 236],

perturbations of several distributions were manually applied to each coil. Sensitivity

analysis can also be performed with analytic derivatives. Numerical derivatives with

respect to tilt angle and coil translation of the CNT coils have been used to compute

the sensitivity of the rotational transform on axis [88]. Analytic derivatives have

recently been applied to study coil sensitivities of the CNT stellarator by considering

the eigenvectors of the Hessian matrix [243]. Thus, in addition to gradient-based

optimization, derivatives with respect to shape can be applied to sensitivity analysis.

The shape gradient quantifies the change in a figure of merit associated with a

local perturbation to a shape. Thus, if the shape gradient can be obtained, the

shape derivative with respect to any perturbation is known (more precise definitions

of the shape derivative and gradient are given in Sections 2.1 and 5.2). The shape

gradient representation can be computed from parameter derivatives by solving a

small linear system (Sections 2.1.2). However, computing parameter derivatives can

often be computationally expensive, as numerical derivatives require evaluating the

objective function at least NΩ + 1 times if one-sided finite-difference derivatives are

used, or 2NΩ times for centered differences. As computing the objective function

often involves solving a linear or nonlinear system, such as the MHD equilibrium
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equations, this implies solving the system of equations ≥ NΩ + 1 times. Numerical

derivatives also introduce additional noise, and the finite-difference step size must be

chosen carefully.

Rather than use parameter derivatives, in this Chapter we will use an adjoint

method to compute the shape gradient. This is sometimes termed adjoint shape

sensitivity or adjoint shape optimization, which has its origins in aerodynamic en-

gineering and computational fluid dynamics [82, 190]. As with adjoint methods for

parameter derivatives, this technique only requires the solution of two linear or non-

linear systems of equations. This technique has been applied to magnetic confinement

fusion for the design of tokamak divertor shapes by solving forward and adjoint fluid

equations [48, 49, 50]. As stellarators require many parameters to describe their shape,

adjoint shape sensitivity could significantly decrease the cost of computing the shape

gradient. If one is optimizing in the space of parameters describing the boundary of

the plasma or the shape of coils, the shape gradient representation obtained from the

adjoint method can be converted to parameter derivatives upon multiplication with

a small matrix (Section 2.1).

We begin in Section 5.2 with a brief review of shape calculus concepts in the

context of MHD equilibria. In Section 5.3, the fundamental adjoint relations for

perturbations to MHD equilibria are derived and discussed. These relations take

a form that is similar to that of transport coefficients that are related by Onsager

symmetry [177, 178]. Specifically, perturbations to the equilibrium are characterized

as a set of generalized responses to a complementary set of generalized forces. The

responses and forces can be thought of as being related by a matrix operator, which

is symmetric. The resulting relations among forces and responses can be used to

compute the shape gradient of functions of the equilibria with respect to displacements

of the plasma boundary or the coil shapes. In Section 5.4, the continuous adjoint

method that takes advantage of the generalized self-adjointness relations is discussed.
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Several applications to stellarator figures of merit will be demonstrated in Section

5.5.

Although the adjoint relations are based on the equations of linearized MHD, we

perform numerical calculations in this Chapter with nonlinear MHD solutions with

the addition of a small perturbation. Demonstration is performed using nonlinear

stellarator MHD equilibrium codes based on a variational principle, VMEC [111] and

ANIMEC [43]. We obtain expressions for the shape gradients of the volume-averaged

β (Section 5.5.1.1), rotational transform (Section 5.5.2), vacuum magnetic well (Sec-

tion 5.5.3), magnetic ripple (Section 5.5.4), effective ripple in the 1/ν neoclassical

regime [168] where ν is the collision frequency (Section 5.5.5), and departure from

quasi-symmetry (Section 5.5.6). Finally, we demonstrate that the adjoint method

for neoclassical optimization outlined in Chapter 4 can be coupled with a linearized

adjoint MHD solution to compute derivatives of several neoclassical quantities with

respect to the shape of the plasma boundary (Section 5.5.7). We present calculations

of the shape gradient with the adjoint approach for the volume-averaged β, rotational

transform, and vacuum magnetic well figures of merit, which do not require modifi-

cation to VMEC. The calculation for the magnetic ripple is computed with a minor

modification of the ANIMEC code. The adjoint force balance equations needed to

compute the shape gradient for the other figures of merit require the addition of a

bulk force that will necessitate further modification of an equilibrium or linearized

MHD code. Numerical calculations for these figures of merit will, therefore, not be

presented in this Chapter.

5.2 Shape calculus review

We now review shape calculus fundamentals introduced in Chapter 2 in the context

of functions that depend on MHD equilibrium quantities. Consider a functional,

F (SP ), that depends implicitly on the plasma boundary, SP , through the solution
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to the fixed-boundary MHD equilibrium equations (Section 1.4.1) with boundary

condition B · n̂|SP = 0 where n̂ is the outward unit normal on SP . We define a

functional integrated over the plasma volume, VP ,

f(SP ) =

∫
VP

d3xF (SP ), (5.1)

where SP is the boundary of VP . Consider a vector field describing displacements of

the surface, δx, and a displaced surface SP,ε = {x0 + εδx : x0 ∈ SP}. The shape

derivative of F is defined as,

δF (SP ; δx) = lim
ε→0

F (SP,ε)− F (SP )

ε
. (5.2)

The shape derivative of f is defined by the same expression with F → f . Under

certain assumptions of smoothness of δF with respect to δx, the shape derivative of

the volume-integrated quantity, f , can be written in the following way (Section 2.1),

δf(SP ; δx) =

∫
VP

d3x δF (SP ; δx) +

∫
SP

d2x δx · n̂F. (5.3)

The first term accounts for the Eulerian perturbation to F while the second accounts

for the motion of the boundary. This is referred to as the transport theorem for

domain functionals and will be used throughout this Chapter to compute the shape

derivatives of figures of merit of interest.

According to the Hadamard-Zolesio structure theorem [52], the shape derivative of

a functional of SP (not restricted to the form of (5.1)) can be written in the following

form,

δf(SP ; δx) =

∫
SP

d2x δx · n̂G, (5.4)

assuming δf exists for all δx and is sufficiently smooth. In the above expression, G

is the shape gradient. This is an instance of the Riesz representation theorem, which

states that any linear functional can be expressed as an inner product with an element

of the appropriate space [199]. As the shape derivative of f is linear in δx, it can
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be written in the form of (5.4). Intuitively, the shape derivative does not depend on

tangential perturbations to the surface. The shape gradient can be computed from

derivatives with respect to the set of parameters, Ω, used to discretize SP ,

∂f(Ω)

∂Ωi

=

∫
SP

d2x
∂x(Ω)

∂Ωi

· n̂G. (5.5)

For example, Ω = {Rc
m,n, Z

s
m,n} could be assumed, where these are the Fourier coeffi-

cients (5.70) in a cosine and sine representation of the cylindrical coordinates (R,Z)

of SP . Upon discretization of the right-hand side on a surface, the above takes the

form of a linear system that can be solved for G [138]. However, this approach requires

performing at least one additional equilibrium calculation for each parameter with a

finite-difference approach.

The shape gradient can also be computed with respect to perturbations of cur-

rents in the vacuum region. We now consider f to depend on the shape of a set of

filamentary coils, C = {Ck}, through a free-boundary solution to the MHD equilib-

rium equations (Section 1.4.1). We consider a vector field of displacements to the

coils, δxC . The shape derivative of f can also be written in shape gradient form,

δf(C; δxC) =
∑
k

∮
Ck

dl δxCk · G̃k, (5.6)

where G̃k is the shape gradient for coil k, Ck is the line integral along coil k, and the

sum is taken over coils. Again, G̃k can be computed from derivatives with respect to

a set of a parameters describing coil shapes (5.84), analogous to (5.5). Note that we

have defined the shape gradient in a slightly different way here than that introduced

in Chapter 2 (2.12) (without the cross with t̂), although we will find in this Chapter

that G̃k is perpendicular to t̂ for the functionals under consideration. We distinguish

the shape gradient as defined in (5.6) from that defined in (2.12) with a tilde.

To avoid the cost of direct computation of the shape gradient, we apply an adjoint

approach. The shape gradient is thus obtained without perturbing the plasma surface
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or coil shapes directly, but instead by solving an additional adjoint equation that

depends on the figure of merit of interest. We perform the calculation with the direct

approach to demonstrate that the same derivative information is computed with either

method.

5.3 Adjoint relations for MHD equilibria

The goal of this Section is to generalize the well-known self-adjointness [20] of the

MHD force operator,∫
VP

d3x
(
ξ1 · F[ξ2]− ξ2 · F[ξ1]

)
− 1

µ0

∫
SP

d2x n̂ ·
(
ξ2δB[ξ1] ·B− ξ1δB[ξ2] ·B

)
= 0, (5.7)

to allow for perturbations of interest for stellarator optimization. In this expression,

the perturbed magnetic field is expressed in terms of the displacement vector,

δB[ξ1,2] = ∇×
(
ξ1,2 ×B

)
, (5.8)

which follows from the assumption that the rotational transform is fixed by the per-

turbation (flux-freezing). The MHD force operator,

F[ξ1,2] =

(
∇× δB[ξ1,2]

)
×B

µ0

+
(∇×B)× δB[ξ1,2]

µ0

−∇
(
δp[ξ1,2]

)
, (5.9)

is a linearization of the MHD equilibrium equation,

(∇×B)×B

µ0

= ∇p, (5.10)

with boundary condition,

B · n̂|SP = 0, (5.11)
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under the assumption that the magnetic field is perturbed according to (5.8) and the

pressure is perturbed according to,

δp[ξ1,2] = −ξ1,2 · ∇p− γp∇ · ξ1,2, (5.12)

where γ is the adiabatic index. As ξ describes the motion of field lines, modes which

perturb the plasma boundary exhibit non-zero ξ · n̂|SP . The self-adjointness provides

a relationship between two perturbations about an MHD equilibrium state described

by (5.10)-(5.11). This relation is incredibly valuable for ideal MHD stability analysis,

forming the basis for the energy principle.

As described in Section 2.2.2, when formulating a continuous adjoint approach,

the adjoint of the linearized operator appearing in the forward PDE must be obtained.

However, we cannot directly apply the self-adjointness relation from MHD stability

theory (5.7) for the stellarator optimization problem. While MHD perturbations as-

sume fixed rotational transform, stellarator optimization is often performed instead

at fixed toroidal current. While the MHD self-adjointness relation allows for pertur-

bations of the plasma boundary, we would also like to consider linearized equilibrium

states corresponding to perturbations of coils in the vacuum region. We now form

the appropriate generalized self-adjointness relations corresponding to fixed-boundary

perturbations (applied perturbations to the plasma boundary) and free-boundary per-

turbations (applied perturbations to electro-magnetic coils). Even though the bound-

ary shape changes in the former case, we refer to it as “fixed boundary” since the

equilibrium code is run in fixed-boundary mode, and since the associated adjoint

problem will turn out to have no boundary perturbation.

The resulting expressions will allow us to relate the “direct perturbations,” those

corresponding to a linearized equilibrium state associated with the direct perturbation

of the plasma boundary or coil shapes, and “adjoint perturbations,” with which we

can compute the shape gradient efficiently. The adjoint perturbation will correspond
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to the change in the equilibrium when an additional bulk force acts on the plasma

or the toroidal current profile is changed. For the adjoint perturbation, there is no

change to the outer flux surface in the fixed-boundary case or to the coil currents in

the free-boundary case. In this Section, we will show that aspects of the direct and

adjoint changes are related to each other in a manner similar to Onsager symmetry.

Thus, it will be shown that by calculating the adjoint perturbation, with a judiciously

chosen added force or change in the toroidal current profile, the solution to the direct

problem can be determined.

We consider equilibria in which the magnetic field in the plasma can be expressed

in terms of scalar functions ψ(x), χ(ψ), ϑ(x), and ϕ(x),

B = ∇ψ ×∇ϑ−∇χ×∇ϕ = ∇ψ ×∇α, (5.13)

where (ψ,ϑ,ϕ) form any magnetic coordinate system (Appendix A.3). We will regard

ψ as labeling the flux surfaces and consider toroidal geometries for which,

α = ϑ− ι(ψ)ϕ, (5.14)

label field lines in a flux surface, where ϑ is a poloidal angle, ϕ is a toroidal angle,

and ι(ψ) = χ′(ψ) is the rotational transform, with χ(ψ) being the poloidal flux func-

tion. With these definitions, the magnetic flux passing toroidally through a poloidally

closed curve of constant ψ is 2πψ, and the flux passing poloidally between the mag-

netic axis and the surface of constant ψ is 2πχ(ψ). Thus, we assume that good flux

surfaces exist and leave aside the issues of islands and chaotic field lines. In addition

to the representation of the magnetic field, we assume that MHD force balance (5.10)

is satisfied with a scalar pressure, p(ψ).

As mentioned, we will consider two cases, a fixed-boundary case in which the

shape of the outer flux surface is prescribed, and a free-boundary case for which

outside the plasma, whose surface is defined by a particular value of toroidal flux,
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the force balance equation (5.10) does not apply, but rather, the magnetic field is

determined by Ampere’s law,

∇×B = µ0J, (5.15)

with a given current density JC , representing current flowing outside the confinement

region. The fixed-boundary and free-boundary equations are discussed in detail in

Section 1.4.1.

From (5.10) it follows that current density stream-lines also lie in the ψ = constant

surfaces. The toroidal current passing through a surface, ST (ψ) (Figure A.2), whose

perimeter is a closed poloidal loop at constant ψ is given by,

IT (ψ) =

∫
ST (ψ)

d2x n̂ · J =

∫
ST (ψ)

dψ dϑ
√
g∇ϕ · J, (5.16)

where
√
g−1 = ∇ψ ×∇ϑ · ∇φ.

Equations (5.10) and (5.13) to (5.16) describe our base equilibrium configuration.

We now consider small changes in the equilibrium that are assumed to yield a second

equilibrium state of the same form as (5.13), but with new functions such that B′ =

∇ψ′ ×∇ϑ′ −∇χ′(ψ′)×∇ϕ′. Each of the primed variables is assumed to differ from

the corresponding unprimed variables by a small amount (e.g. ψ′ = ψ+ δψ(x)). The

perturbed magnetic field can then be expressed B′ = B + δB, where,

δB = ∇δψ ×∇ϑ+∇ψ ×∇δϑ−∇χ(ψ)×∇δϕ−∇
(
ι(ψ)δψ + δχ(ψ)

)
×∇ϕ.

(5.17)

We write the perturbed poloidal flux as the sum of a term resulting from the pertur-

bation of toroidal flux at fixed rotational transform, ι(ψ)δψ, and a term representing

the perturbed rotational transform, δχ(ψ). Thus, we can regroup the terms in (5.17)

as follows,

δB = ∇×
(
δψ∇ϑ− ι(ψ)δψ∇ϕ− δϑ∇ψ + δϕ∇χ(ψ)

)
−∇δχ(ψ)×∇ϕ. (5.18)
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The group of terms in parentheses in (5.18) corresponds to perturbations of the mag-

netic field allowed by ideal MHD, which is constrained by the “frozen-in law”, and

which preserves the rotational transform, (δι(ψ) = 0). The last term in (5.18) allows

for changes in the rotational transform, (δι(ψ) = χ′(ψ)). Note also that the expres-

sion in parentheses in (5.18) can be written as a sum of terms parallel to ∇ψ and

∇α, and hence it is perpendicular to B. The group of terms in parentheses in (5.18)

can thus be expressed in terms of a vector potential that is perpendicular to the equi-

librium magnetic field, while the last term in (5.18) can be represented in terms of a

vector potential in the toroidal direction, which thus has a component parallel to the

equilibrium field. We can therefore write δB[ξ, δχ(ψ)] = ∇× δA[ξ, δχ(ψ)], where,

δA[ξ, δχ(ψ)] = ξ ×B− δχ(ψ)∇ϕ. (5.19)

Here, the variable ξ can be taken to be perpendicular to the applied magnetic field,

as the perturbed magnetic field,

δB[ξ, δχ(ψ)] = ∇× (ξ ×B)− δχ′(ψ)∇ψ ×∇ϕ, (5.20)

does not depend on ξ ·b̂. We emphasize that this departs from the typical assumption

made in ideal MHD stability theory that ∇ · ξ = 0.

We define a vector field of the displacement of a field line, δx, such that the

perturbation to the field line label α = ϑ− ι(ψ)ϕ and toroidal flux satisfy,

δψ + δx · ∇ψ = 0 (5.21a)

δα + δx · ∇α = 0, (5.21b)

and δx ·B = 0. Noting that δα = δϑ− ι(ψ)δϕ−
(
ι′(ψ)δψ + δχ′(ψ)

)
ϕ, we find,

δx = ξ +
b̂×∇δχ(ψ)

B
ϕ, (5.22)

which follows from (5.18). As one would expect, in the limit δχ(ψ) = 0, we recover

the MHD displacement vector.
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As the pressure profile is often assumed to be held fixed during a configuration

optimization, we assume that the local pressure changes such that p(ψ) is unchanged,

δp[ξ] = −ξ · ∇p, (5.23)

which follows from (5.22). We would similarly like to consider direct perturbations

that fix the toroidal current. The change in toroidal current flowing through the

perturbed surface is computed using (5.3) by expressing (5.16) as a volume integral,

δIT (ψ) =

∫
∂ST (ψ)

dϑ
√
gξ · ∇ψJ · ∇ϕ+

∫
ST (ψ)

dψdϑ
√
gδJ[ξ, δχ(ψ)] · ∇ϕ, (5.24)

where ST (ψ) is a surface at constant toroidal angle (Figure A.2) bounded by the

ψ surface and ∂ST (ψ) is the boundary of such surface, a closed poloidal loop. The

perturbed current density is δJ[ξ, δχ(ψ)] = ∇ × δB[ξ, δχ(ψ)]. Here the first term

accounts for the displacement of the flux surface and the second term accounts for

the change in toroidal current density.

A linearized equilibrium state satisfies,

F[ξ, δχ(ψ)] + δF = 0, (5.25)

where δF is an additional perturbed force to be prescribed and F[ξ, δχ(ψ)] is the

generalized force operator,

F[ξ, δχ(ψ)] = δJ[ξ, δχ(ψ)]×B + J× δB[ξ, δχ(ψ)]−∇δp[ξ]. (5.26)

We now consider two distinct perturbations of the equilibrium of the type de-

scribed by (5.19), (5.20) and (5.23) to (5.26), which we denote with subscripts 1 and

2. In general, variables with subscript 1 will be associated with the direct pertur-

bation, and those with subscripts 2 will be associated with the adjoint perturbation.

We then form the quantity,

UT =

∫
VT

d3x (δJ1 · δA2 − δJ2 · δA1) = 0, (5.27)
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where we use the notation δJ1,2 = δJ[ξ1,2, δχ1,2(ψ)] and δA1,2 = δA[ξ1,2, δχ1,2(ψ)]

and the integral is, for the time being, over all space. The above is seen to vanish

by expressing δJ1,2 in terms of δB1,2 using Ampere’s law (5.15) and applying the

divergence theorem.

We now express the volume integral in (5.27) as the sum of three terms,

UT = UP + UB + UC = 0. (5.28)

Here UP is the contribution from the plasma volume, integrated just up to the plasma-

vacuum boundary. For this term we represent the vector potentials using (5.19),

UP =

∫
VP

d3x
(
δJ1 ·

(
ξ2 ×B− δχ2(ψ)∇ϕ

)
− δJ2 ·

(
ξ1 ×B− δχ1(ψ)∇ϕ

))
. (5.29)

To evaluate (5.29) we use the perturbed force balance relation (5.25).

The term UB comes from integrating over a thin layer at the plasma-vacuum

boundary. At the boundary, the difference between the perturbed and unperturbed

current density has the character of a current sheet due to the displacement of the

outermost flux surface. This effective current sheet causes a jump in the tangential

components of the perturbation to the magnetic fields at the surface. This jump

implies that care must be taken in evaluating the perturbed magnetic fields at the

surface as they have different values on either side of the plasma-vacuum surface.

However, the vector potential is continuous at the plasma-vacuum boundary. Thus,

we write,

UB =

∫
SP

d2x

|∇ψ|
(ξ1 · ∇ψJ · δA2 − ξ2 · ∇ψJ · δA1) , (5.30)

where the vector potentials are expressed as in (5.19). Using this expression for the

vector potentials and expressing the surface integral as an integral over the toroidal

and poloidal angles gives,

UB =

∫
SP

dϑdϕ
√
gJ · ∇ϕ

(
−ξ1 · ∇ψδχ2(ψ) + ξ2 · ∇ψδχ1(ψ)

)
. (5.31)
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Here we note the terms in the vector potential coming from the MHD displacement

cancel.

Last, the quantity UC represents the contribution from the integral over the volume

outside the plasma where only the coil currents need to be included,

UC =

∫
VV

d3x (δJC1 · δAV2 − δJC2 · δAV1) , (5.32)

where δAV1,2 is the change in the vacuum vector potential, and δJC1,2 is the change

in the coil current density.

Combining UP , UB, and UC gives the following relation appropriate to the free-

boundary case UT = UP + UB + UC = 0, or∫
VP

d3x (ξ1 · F2 − ξ2 · F1) + 2π

∫
VP

dψ
(
δχ1(ψ)δI ′T,2(ψ)− δχ2(ψ)δI ′T,1(ψ)

)
+

∫
VV

d3x (δJC1 · δAV2 − δJC2 · δAV1) = 0, (5.33)

where we use the notation F1,2 = F[ξ1,2, δχ1,2(ψ)]. This is the generalized free-

boundary adjoint relation. The steps leading to (5.33) are outlined in Appendix I.

When the coil currents are confined to filaments, the integral over the vacuum region

can be expressed in terms of changes to the coil currents, fluxes through the coils,

and integrals along the coils,∫
VV

d3x δJC1,2 · δAV2,1 =

∑
k

(
δΦC2,1,k

δIC1,2,k
+ ICk

∮
Ck

dl δx1,2,Ck(x) · t̂× δB2,1

)
. (5.34)

Here δΦCk and δICk are the change in magnetic flux through and change in current

in coil k, respectively, and ICk is the current through the unperturbed coil. The unit

tangent vector along Ck is t̂, and δxCk is a vector field of perturbations to the kth

coil. The above expression is obtained upon application of Stokes theorem and the

expression for the perturbation of a line integral (2.14).
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A similar relation can be obtained in the fixed-boundary case. Here the integral

over the plasma volume (5.29) can be written as a surface integral by applying the

divergence theorem,

UP =
1

µ0

∫
SP

d2x n̂ · (δB1 × δA2 − δB2 × δA1) . (5.35)

Again, following steps outlined in Appendix I, this may be rewritten in the following

form,∫
VP

d3x (ξ1 · F2 − ξ2 · F1)− 2π

∫
VP

dψ
(
δIT,2(ψ)δχ′1(ψ)− δIT,1(ψ)δχ′2(ψ)

)
− 1

µ0

∫
SP

d2x n̂ · (ξ2δB1 − ξ1δB2) ·B = 0. (5.36)

The fixed-boundary adjoint relation can also be obtained by applying the self-adjointness

(5.7) of the MHD force operator (Appendix J). If the second term in (5.36) is inte-

grated by parts in ψ, we see that the fixed and free-boundary adjoint relations share

the terms involving the products of displacements with bulk forces and perturbed

fluxes with perturbed toroidal currents. The integral over the vacuum region in (5.33)

is replaced by an integral over the plasma boundary and a boundary term from the

integration by parts in ψ in (5.36).

We now have two integral relations between perturbations 1 and 2, (5.33) and (5.36).

They have a common form in that they each are the sum of three integrals: the

first involving forces and displacements, the second involving the toroidal current

and poloidal flux profiles, and the third involving the manner in which the plasma

boundary is prescribed. In (5.33), the free-boundary case, the changes in coil current

densities are specified. In (5.36), the fixed-boundary case, the displacement of the

outer flux surface is prescribed. Equations (5.33) and (5.36) can also be viewed as the

difference in sums of generalized forces and responses. For example, in (5.33) we can

consider the quantities δF, δχ(ψ), δJC as forces and ξ, δI ′T (ψ), δAV as responses.

The fact that the sum of the products of direct forces and adjoint responses less
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the products of adjoint forces and direct responses vanishes is similar to the relation

between forces and fluxes related by Onsager symmetry [177, 178]. In the case of

Onsager symmetry, this relation follows from the self-adjoint property of the collision

operator. In this case, the symmetry follows from the generalized self-adjointness

relation.

5.4 Continuous adjoint method

We now demonstrate how these relations (5.33) and (5.36) can be used to compute

the shape gradient efficiently with a continuous adjoint method.

5.4.1 Fixed-boundary

Consider a general figure of merit which involves a volume integral over the plasma

domain,

f(SP ,B) =

∫
VP

d3xF (B), (5.37)

where F (B) depends on the plasma surface through the fixed-boundary MHD equilib-

rium equations (Table 1.1). We are interested in computing perturbations of f such

that (5.10) is satisfied. This constraint is enforced using the following Lagrangian

functional,

L(SP ,B, ξ2) = f(SP ,B) +

∫
VP

d3x ξ2 ·
(

(∇×B)×B

µ0

−∇p
)
, (5.38)

where ξ2 is a Lagrange multiplier and we have defined our inner product to be a

volume integral over the domain. To obtain the adjoint equation that ξ2 must satisfy,

we compute the functional derivative of (5.38) with respect to B, where we note that

perturbations to the magnetic field satisfy (5.20). As δf
(
SP ,B; δB[ξ1, δχ1(ψ)]

)
is

a linear functional of ξ1 ∈ VP , δχ′1(ψ), and ξ1 · n̂|SP , from the Riesz representation
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theorem, the functional derivative of f with respect to B is expressed as,

δf (SP ,B; δB1) =

∫
VP

d3x ξ1 · L1 +

∫
VP

dψ χ′1(ψ)L2(ψ) +

∫
SP

d2x ξ1 · n̂L3, (5.39)

for some quantities L1, L2, and L3. The functional derivative of L is now,

δL (SP ,B, ξ2; δB1) =

∫
VP

d3x (ξ1 · L1 + ξ2 · F1)

+

∫
VP

dψ δχ′1(ψ)L2(ψ) +

∫
SP

d2x ξ1 · n̂L3, (5.40)

where F1 = F[ξ1, δχ1(ψ)] is the generalized force operator associated with the direct

perturbation (5.26). We apply the fixed-boundary self-adjointness relation (5.36) to

obtain,

δL (SP ,B, ξ2; δB1) =

∫
VP

d3x ξ2 · (L1 + F1)

+

∫
VP

dψ
(
δχ′1(ψ)L2(ψ)− 2πδIT,2δχ

′
1(ψ) + 2πδIT,1(ψ)δχ′2(ψ)

)
+

∫
SP

d2x

[
ξ1 · n̂

(
L3 +

B · δB2

µ0

)
− ξ2 · n̂

B · δB1

µ0

]
, (5.41)

where F2 = F[ξ2, δχ2(ψ)] is the generalized bulk force associated with the adjoint

perturbation (5.26), δIT,2(ψ) is the adjoint toroidal current perturbation, and δχ2(ψ)

is the adjoint poloidal flux perturbation.

If the direct problem is computed with fixed rotational transform, then δχ1(ψ) =

0, and the adjoint variable (Lagrange multiplier) is chosen to satisfy the linearized

equilibrium problem,

F[ξ2, δχ2(ψ)] + L1 = 0 (5.42a)

n̂ · ξ2|SP = 0 (5.42b)

δχ′2(ψ) = 0, (5.42c)

such that the above functional derivative (5.41) vanishes, except for the final term

that is already in the desired Hadamard form (5.4). If instead the direct problem is
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computed with fixed toroidal current, then δIT,1(ψ) = 0 and the adjoint variable is

chosen to satisfy,

F[ξ2, δχ2(ψ)] + L1 = 0 (5.43a)

n̂ · ξ2|SP = 0 (5.43b)

δIT,2(ψ) =
L2

2π
. (5.43c)

The shape derivative of L with respect to boundary perturbation ξ1 is now computed

to be,

δL (SP ,B, ξ2; ξ1) =

∫
SP

d2x ξ1 · n̂ (F + L3) +

∫
VP

d3x ξ1 · L1

+

∫
VP

dψ δχ′1(ψ)L2(ψ) + δ

(∫
VP

d3x ξ2 ·
(

(∇×B)×B

µ0

−∇p
))

, (5.44)

where the first term is evaluated using the transport theorem (5.3). The notation in

the final term indicates a shape derivative with respect to boundary perturbation ξ1.

The above expression can be evaluated more easily by using the generalized adjoint

relation (5.36), applying the conditions placed on the adjoint state (5.42) or (5.43),

δL (SP ,B, ξ2; ξ1) =

∫
SP

d2x n̂ · ξ1

(
F + L3 +

B · δB2

µ0

)
. (5.45)

So we identify the shape gradient to be,

G =

(
F + L3 +

B · δB2

µ0

)
SP

. (5.46)

Thus by solving a linearized equilibrium problem corresponding to the addition of a

bulk force for δB[ξ2, δχ2(ψ)], we can compute the shape derivative with respect to

any boundary perturbation using the above shape gradient.
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5.4.2 Free-boundary

We now consider free-boundary perturbations. Consider a general figure of merit

which involves a volume integral over the plasma domain,

f(C,B) =

∫
VP

d3xF (B), (5.47)

where F (B) depends on the coil shapes C = {Ck} through the free-boundary MHD

equilibrium equations (Table 1.2). We are interested in computing perturbations of

f such that (5.10) is satisfied, which we enforce with the Lagrangian functional,

L(C,B, ξ2) = f(C,B) +

∫
VP

d3x ξ2 ·
(

(∇×B)×B

µ0

−∇p
)
. (5.48)

In this case, δf(C,B; δB[ξ1, δχ1(ψ)]) is a linear functional of ξ1 ∈ VP , δχ1(ψ), and the

boundary perturbation ξ1 · n̂|SP resulting from a coil perturbation δx1,Ck × t̂. (While

in the fixed-boundary case, we considered δf to be a linear functional of δχ′1(ψ), for

the free-boundary case it is more convenient to consider it to be a linear functional

of δχ(ψ).) By the Riesz representation theorem,

δf
(
C,B; δB[ξ1, δχ1(ψ)]

)
=

∫
VP

d3x ξ1 · L1 +

∫
VP

dψ χ1(ψ)L2(ψ)

+

∫
SP

d2x ξ1 · n̂L3, (5.49)

for some quantities L1, L2(ψ), and L3. The functional derivative of L is now,

δL
(
C,B, ξ2; δB[ξ1, δχ1(ψ)]

)
=

∫
VP

d3x (ξ1 · L1 + ξ2 · F1)

+

∫
VP

dψ δχ1(ψ)L2(ψ) +

∫
SP

d2x ξ1 · n̂L3. (5.50)
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We apply the free-boundary relation (5.33) to obtain,

δL
(
C,B, ξ2; δB[ξ1, δχ1(ψ)]

)
=

∫
VP

d3x ξ1 · (L1 + F2)

+

∫
VP

dψ
(
δχ1(ψ)L2(ψ)− 2πδI ′T,1(ψ)δχ2(ψ) + 2πδI ′T,2(ψ)δχ1(ψ)

)
+
∑
k

ICk

∮
Ck

dl
(
δx1,Ck(x)× δB2 − δx2,Ck(x)× δB1

)
· t̂ +

∫
SP

d2x ξ · n̂L3, (5.51)

where we have considered perturbations to currents in the vacuum region correspond-

ing to displacements of the filamentary coils without change to their currents. If the

direct problem is computed with fixed rotational transform, then δχ1(ψ) = 0, and

the adjoint variable is chosen to satisfy,

F[ξ2, δχ2(ψ)] + L1 = 0 (5.52a)

δχ2(ψ) = 0 (5.52b)

δx2,Ck × t̂ = 0, (5.52c)

such that the above functional derivative vanishes, except for the terms involving

integrals over SP or the filamentary coils. If instead the direct problem is computed

with fixed toroidal current, then δIT,1(ψ) = 0 and the adjoint variable is chosen to

satisfy,

F[ξ2, δχ2(ψ)] + L1 = 0 (5.53a)

δIT,2(ψ) =
L2

2π
(5.53b)

δx2,Ck × t̂ = 0. (5.53c)

The shape derivative of L is now computed to be,

δL
(
C,B, ξ2; δx1,Ck

)
=

∫
VP

d3x (ξ1 · L1) + δ

(∫
VP

d3x ξ2 ·
(

(∇×B)×B

µ0

−∇p
))

+

∫
VP

dψ δχ1(ψ)L2(ψ) +

∫
SP

d2x ξ1 · n̂ (L3 + F ) , (5.54)
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where the notation δ(. . . ) indicates a shape derivative with respect to coil displace-

ment δx1,Ck . We can now simplify the above expression using the free-boundary

relation (5.33) and the conditions placed on the adjoint variable, (5.52) or (5.53). We

now obtain,

δL(C,B, ξ2; δx1,Ck) =

∫
SP

d2x ξ1 · n̂ (L3 + F )

+
∑
k

ICk

∮
Ck

dl δx1,Ck × δB2 · t̂, (5.55)

where it is understood that ξ1 is the perturbation to the boundary arising from the

coil perturbation δx1,Ck . The first term can equivalently be expressed in terms of

displacements of the coil shapes using the virtual casing principle [143], though in

this Chapter for simplicity we will consider figures of merit such that (L3 + F )SP

vanishes.

Some examples of these continuous adjoint methods are discussed in the following

Sections.

5.5 Applications

In this Section we will consider figures of merit which depend on the shape of

the outer boundary of the plasma (Sections 5.5.1.1, 5.5.2.1, 5.5.3.1, and 5.5.4.1) and

on the shape of the electro-magnetic coils (Sections 5.5.2.2 and 5.5.3.2). The shape

gradients of these figures of merit will be computed using both a direct method and

an adjoint method, to demonstrate that the adjoint method produces identical results

to the direct method but at much lower computational expense. For other figures of

merit (Sections 5.5.5-5.5.7) the calculation is not possible with existing codes, but a

discussion of the adjoint linearized equilibrium equations is presented.

142



5.5.1 Volume-averaged β

Consider a figure of merit, the volume-averaged β,

fβ =
fP
fB
, (5.56)

where,

fP =

∫
Vp

d3x p(ψ), (5.57)

and,

fB =

∫
Vp

d3x
B2

2µ0

. (5.58)

(This definition of volume-averaged β is the one employed in the VMEC code [111].)

While fβ is a figure of merit not often considered in stellarator shape optimization,

we include this calculation to demonstrate the adjoint approach, as its shape gradient

can be computed without modifications to an equilibrium code.

5.5.1.1 Surface shape gradient

We consider direct perturbations about an equilibrium with fixed rotational trans-

form,

F[ξ1, δχ1(ψ)] = 0 (5.59a)

ξ1 · n̂|SP = δx · n̂|SP (5.59b)

δχ′1(ψ) = 0. (5.59c)

The differential change in fP associated with displacement ξ1 is,

δfP (SP ; ξ1) = −
∫
VP

d3x ξ1 · ∇p+

∫
SP

d2x ξ1 · n̂p(ψ), (5.60)

which follows from the transport theorem (5.3). The first term accounts for the

change in p at fixed position due to the motion of the flux surfaces, and the second
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term accounts for the motion of the boundary. The differential change in fB associated

with ξ1 is,

δfB(SP ; ξ1) = − 1

µ0

∫
VP

d3x
(
B2∇ · ξ1 + ξ1 · ∇

(
B2 + µ0p

))
+

1

2µ0

∫
SP

d2x ξ1 · n̂B2, (5.61)

where we have noted that the perturbation to the magnetic field strength at fixed

position is given by,

δB = − 1

B

(
B2∇ · ξ1 + ξ1 · ∇

(
B2 + µ0p

)
+ δχ′1(ψ)B · (∇ψ ×∇ϕ)

)
. (5.62)

The first term in (5.61) corresponds with the change in fB due to the perturbation

to the field strength, while the second term accounts for the motion of the boundary.

Applying the divergence theorem we obtain,

δfB(SP ; ξ1) = −
∫
VP

d3x ξ1 · ∇p−
1

2µ0

∫
SP

d2x ξ1 · n̂B2. (5.63)

The differential change in fβ associated with displacement ξ1 satisfies,

δfβ(SP ; ξ1)

fβ
=

∫
SP

d2x ξ1 · n̂

(
p(ψ)

fP
+

B2

2µ0fB

)

−
(

1

fP
− 1

fB

)∫
VP

d3x ξ1 · ∇p. (5.64)

The first term on the right of (5.64) is already in the form of a shape gradient. To

evaluate the second term, we turn to the adjoint problem, choosing,

F[ξ2, δχ2(ψ)]−∇p = 0 (5.65a)

ξ2 · n̂|SP = 0 (5.65b)

δχ′2(ψ) = 0. (5.65c)

That is, we add a bulk force corresponding to the equilibrium pressure gradient. This

additional force produces a proportional change in magnetic field at the boundary
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and thus from (5.36), we find,

δfβ(SP ; ξ1)

fβ
=

∫
SP

d2x ξ1 · n̂

(
p(ψ)

fP
+

B2

2µ0fB
+

(
1

fP
− 1

fB

)
δB2 ·B
µ0

)
. (5.66)

Thus, we can obtain the shape gradient without perturbing the shape of the surface,

G = fβ

(
p(ψ)

fP
+

B2

2µ0fB
+

(
1

fP
− 1

fB

)
δB2 ·B
µ0

)
SP

. (5.67)

In practice, the adjoint magnetic field is approximated from a nonlinear equilibrium

solution by adding a small perturbation to the pressure of magnitude ∆P , p′ = (1 +

∆P )p. A forward-difference approximation is used to obtain,

δB2 ≈
B(p+ ∆Pp)−B(p)

∆P

, (5.68)

where B(p) is the magnetic field evaluated with pressure p(ψ).

A similar expression can be obtained for equilibria for which the rotational trans-

form is allowed to vary, but the toroidal current is held fixed (δIT,1 = 0). In this case,

F[ξ2, δχ2(ψ)]−∇p = 0 (5.69a)

ξ2 · n̂|SP = 0 (5.69b)

δIT,2(ψ) = −IT (ψ)
(
1/fP − 1/fB

)−1 (
1/fB

)
. (5.69c)

The shape gradient can then be obtained from (5.67).

To demonstrate, we use the NCSX LI383 equilibrium [242]. The pressure profile

was perturbed with ∆P = 0.01 to compute the adjoint field. The unperturbed and

adjoint equilibria are computed with the VMEC code [111]. The shape gradient ob-

tained with the adjoint solution, Gadjoint, and that obtained with the direct approach,

Gdirect, are shown in Figure 5.1a. Positive values of the shape gradient indicate that fβ

increases if a normal perturbation is applied at a given location as indicated by (5.4).

For the direct approach parameter derivatives with respect to the Fourier harmonics
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describing the plasma boundary (∂fβ/∂R
c
m,n, ∂fβ/∂Z

s
m,n), where Rc

m,n and Zs
m,n are

defined through,

R =
∑
m,n

Rc
m,n cos(mθ − nNPφ) (5.70a)

Z =
∑
m,n

Zs
m,n sin(mθ − nNPφ), (5.70b)

are computed with a centered 4-point stencil for m ≤ 15 and |n| ≤ 9 using a

polynomial fitting technique. The centered-difference calculation is performed using

a dedicated branch of the STELLOPT code. The shape gradient is obtained using the

method outlined in Chapter 2. The fractional difference between the two methods,

Gresidual =
|Gadjoint − Gdirect|√∫
SP
d2xG2

adjoint/
∫
SP
d2x

, (5.71)

is shown in Figure 5.1c, where the surface-averaged value of Gresidual is 1.7×10−3. We

note that the number of required equilibrium calculations for the direct shape gradient

calculation depends on the Fourier resolution and finite-difference stencil chosen. In

this Chapter we present the number of function evaluations required in order for the

adjoint and direct shape gradient calculations to agree within a few percent. As the

Fourier resolution is increased, the results of the adjoint and direct methods converge

to each other.

The parameter ∆P must be chosen carefully, as the perturbation must be large

enough that the result is not dominated by round-off error, but small enough that

nonlinear effects do not become important. The relationship between Gresidual and

∆P is shown in Figure 5.1d. Here Gdirect is computed using the parameters reported

above such that convergence is obtained. We find that Gresidual decreases as (∆P )1

until ∆P ≈ 0.5, at which point round-off error begins to dominate. This scaling is to

be expected, as δB2 is computed with a forward-difference derivative with step size

∆P .
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For this and the following examples, the computational cost of transforming the

parameter derivatives to the shape gradient was negligible compared to the cost of

computing the parameter derivatives. The direct approach used 2357 calls to VMEC

while the adjoint approach only required two. It is clear that the adjoint method yields

nearly identical derivative information to the direct method but at a substantially

reduced computational cost.

The residual difference is nonzero due to several sources of error, including dis-

cretization error in VMEC. As a result of the assumption of nested magnetic surfaces,

MHD force balance (5.10) is not satisfied exactly, but a finite force residual is intro-

duced. Error is also introduced by computing δB2 with the addition of a small per-

turbation to a nonlinear equilibrium calculation rather than from a linearized MHD

solution.

In Figure 5.1 we find that fβ is everywhere positive. This reflects the fact that

the toroidal flux enclosed by SP is fixed. As perturbations which displace the plasma

surface outward increase the surface area of a toroidal cross-section, the toroidal field

must correspondingly decrease, thus increasing fβ. We find that the shape gradient is

increased in regions of large field strength, as indicated by the second term in (5.67).

5.5.2 Rotational transform

Consider a figure of merit, the average rotational transform in a radially localized

region,

fι =

∫
VP

dψ ι(ψ)w(ψ). (5.72)

Here w(ψ) is a normalized weighting function,

w(ψ) =
e−(ψ−ψm)2/ψ2

w∫
VP
dψ e−(ψ−ψm)2/ψ2

w
, (5.73)
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Figure 5.1: (a) The shape gradient for fβ (5.56) computed using the adjoint solution
(5.67) (left) and using parameter derivatives (right). (b) The shape gradient computed
with the adjoint solution in the φ − θ plane, the VMEC [111] poloidal and toroidal
angles (not magnetic coordinates). (c) The fractional difference (5.71) between the
shape gradient obtained with the adjoint solution and with parameter derivatives.
(d) The fractional difference (5.71) depends on the scale of the perturbation added to
the adjoint force balance equation, ∆P . Figure adapted from [10] with permission.
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and ψm and ψw are parameters defining the center and width of the Gaussian weight-

ing, respectively.

5.5.2.1 Surface shape gradient

We consider direct perturbations about an equilibrium such that the toroidal

current is fixed and the rotational transform is allowed to vary,

F[ξ1, δχ1(ψ)] = 0 (5.74a)

ξ1 · n̂|SP = δx · n̂|SP (5.74b)

δIT,1(ψ) = 0. (5.74c)

The differential change of fι associated with perturbation ξ1 is,

δfι(SP ; ξ1) =

∫
VP

dψ δχ′1(ψ)w(ψ). (5.75)

For the adjoint problem, we prescribe,

F[ξ2, δχ2(ψ)] = 0 (5.76a)

ξ2 · n̂|SP = 0 (5.76b)

δIT,2 = w(ψ). (5.76c)

This additional current produces a proportional change in the magnetic field at the

boundary; thus using (5.36), we obtain the following,

δfι(Sp; ξ1) =
1

2πµ0

∫
SP

d2x n̂ · ξ1δB2 ·B. (5.77)

So, we can obtain the shape gradient from the adjoint solution,

G =

(
δB2 ·B

2πµ0

)
SP

. (5.78)

Note that the computation of the shape derivative of the rotational transform on a

single surface, ψm, with the adjoint approach would require a delta-function current
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perturbation, δIT,2 = δ(ψ−ψm). As this type of perturbation is difficult to resolve in a

numerical computation, the use of the Gaussian envelope allows the shape derivative

of the rotational transform in a localized region of ψm to be computed.

To demonstrate, we use the NCSX LI383 equilibrium. We again apply a forward-

difference approximation (5.68) of the adjoint solution, characterized by amplitude

∆I = 715 A. The parameters of the weight function are taken to be ψm = 0.1ψ0, and

ψw = 0.05ψ0. The shape gradient obtained with the adjoint solution and with the

direct approach are shown in Figure 5.2a. For the direct approach, the shape gradient

is computed from parameter derivatives with respect to the Fourier harmonics of the

boundary (2.16) using an 8-point stencil with m ≤ 18 and |n| ≤ 12. The fractional

difference, Gresidual, between the two approaches is shown in Figure 5.2c, with a surface-

averaged value of 2.7 × 10−2. The direct approach used 7401 calls to VMEC, while

the adjoint only required two. Again, it is apparent that the adjoint method allows

the same derivative information to be computed at a much lower computational cost.

We find that over much of the surface, the shape gradient is close to zero. A region

of large negative shape gradient occurs in the concave region of the plasma surface

with adjacent regions of large positive shape gradient. This indicates that “pinching”

the surface in this region, making it more concave, would increase ι near the axis.

5.5.2.2 Coil shape gradient

The shape gradient of fι can also be computed with a free-boundary approach.

We consider perturbations about an equilibrium with fixed toroidal current,

F[ξ1, δχ1(ψ)] = 0 (5.79a)

δIT,1(ψ) = 0, (5.79b)
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(a)

(b) (c)

Figure 5.2: (a) The shape gradient for fι (5.72) computed using the adjoint solution
(5.78) (left) and using parameter derivatives (right). (b) The shape gradient computed
with the adjoint solution in the φ − θ plane, the VMEC [111] poloidal and toroidal
angles (not magnetic coordinates). (c) The fractional difference (5.71) between the
shape gradient obtained with the adjoint solution and with parameter derivatives.
Again, the results are essentially indistinguishable, as expected. Figure adapted from
[10] with permission.
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with specified perturbation to the coil shapes, δxC1 × t̂. We prescribe the adjoint

problem,

F[ξ2, δχ2(ψ)] = 0 (5.80a)

δxC2 × t̂ = 0 (5.80b)

δIT,2(ψ) = w(ψ), (5.80c)

where w(ψ) is given by (5.73). Using (5.75) and (5.33) and noting that δIT,2(ψ)

vanishes at the plasma boundary and on the axis, we find,

δfι(C; δxC) =
1

2π

∫
VV

d3x δJC1 · δAV2 . (5.81)

Using (5.34), this can be written in terms of changes in the positions of coils in the

vacuum region,

δfι(C; δxC) =
1

2π

∑
k

(
ICk

∮
Ck

dl δxCk(x) · t̂× δB2

)
. (5.82)

When computing the coil shape gradient, the current in each coil is fixed. In arriving

at (5.82), we assume that δIC1,k
= 0. The coil shape gradient is thus

G̃k =
ICk t̂× δB2

2π

∣∣∣∣
Ck

. (5.83)

As anticipated, G̃k has no component in the direction tangent to the coil. The adjoint

magnetic field is computed with a forward-difference approximation (5.68) with step

size ∆I = 5.7× 105 A. Evaluating the shape gradient requires computing the adjoint

magnetic field at the unperturbed coil locations in the vacuum region. This can

be performed with the DIAGNO code [71, 143], which employs the virtual casing

principle.

To demonstrate, we use the NCSX stellarator LI383 equilibrium. The toroidal

current profile was perturbed with ψm = 0.1ψ0 and ψw = 0.05ψ0. The shape gradient

is computed for each of the three unique modular coils per half period of the C09R00

152



coil set1 [236], keeping the planar coils fixed. The result obtained with the adjoint

solution, G̃adjoint,k, is shown in Figure 5.3. The shape gradient is also computed with

the direct approach, G̃direct,k. For the direct approach, the Cartesian components of

each coil are Fourier discretized as,

xk =
∑
m

Xkc
m cos(mθ) +Xks

m sin(mθ) (5.84a)

yk =
∑
m

Y kc
m cos(mθ) + Y ks

m sin(mθ) (5.84b)

zk =
∑
m

Zkc
m cos(mθ) + Zks

m sin(mθ), (5.84c)

where θ ∈ [0, 2π] parameterizes each filament and k denotes each coil shape. The

numerical derivative with respect to these parameters are computed for m ≤ 45 using

an 8-point stencil. In Figure 5.4a the Cartesian components of the shape gradient

computed with the adjoint approach, G̃ladjoint,k, and with the direct approach, G̃ldirect,k,

are shown for each coil, where l ∈ {x, y, z}. The arrows indicate the direction and

magnitude of G̃k such that if a coil were deformed in the direction of G̃k, fι would

increase according to (5.6). The direct approach used 6553 calls to VMEC, while the

adjoint only required two. In Figure 5.4b the fractional difference between the results

obtained with the two methods,

G̃lresidual,k =
|G̃ladjoint,k − G̃ldirect,k|√∮
Ck
dl
(
G̃ladjoint,k

)2

/
∮
Ck
dl

, (5.85)

is plotted. The line-averaged values of G̃lresidual are 6.1× 10−2 for coil 1, 3.8× 10−2 for

coil 2, and 4.8× 10−2 for coil 3.

From Figure 5.3, we see that the sensitivity of fι to coil displacements is much

higher in regions where the coils are close to the plasma surface. The shape gradient

points toward the plasma surface in the concave region of the plasma surface, while on

the outboard side the sensitivity is significantly lower, again indicating the “pinching”

1https://princetonuniversity.github.io/STELLOPT/VMEC%20Free%20Boundary%20Run
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Figure 5.3: The coil shape gradient for fι (5.72) computed using the adjoint solution
(5.83) for each of the 3 unique coil shapes (black). The arrows indicate the direc-

tion of G̃k, and their length indicates the local magnitude relative to the reference
arrow shown. The arrows are not visible on this scale on the outboard side. Figure
reproduced from [10] with permission.

effect seen in Figure 5.2.

5.5.3 Vacuum magnetic well

The averaged radial (normal to a flux surface) curvature is an important metric

for MHD stability [64],

κψ ≡

〈
κ ·
(
∂x

∂ψ

)
α,l

〉
ψ

=

〈
1

2B2

(
∂

∂ψ

(
2µ0p+B2

))
α,l

〉
ψ

, (5.86)

where the curvature is κ = b̂ · ∇b̂, b̂ = B/B is a unit vector in the direction of

the magnetic field and l measures length along a field line. Subscripts in the above

expression (α, l) indicate quantities held fixed while computing the derivative. The
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Figure 5.4: (a) The Cartesian components of the coil shape gradient for each of the
3 unique modular NCSX coils computed with the adjoint and direct approaches. (b)
The fractional difference (5.85) between the shape gradient computed with the adjoint
approach and the direct approach is plotted for each Cartesian component and each
of the 3 unique coils. Figure adapted from [10] with permission.
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flux surface average of a quantity A is,

〈A〉ψ =

∫∞
−∞

dl
B
A∫∞

−∞
dl
B

=

∫ 2π

0
dϑ
∫ 2π

0
dϕ
√
gA

V ′(ψ)
. (5.87)

Here V (ψ) is the volume enclosed by the surface labeled by ψ. The average radial cur-

vature appears in the ideal MHD potential energy functional for interchange modes,

and it provides a stabilizing effect when p′(ψ)κψ < 0. As typically p′(ψ) < 0, κψ > 0

is desirable for MHD stability. In a vacuum field, the expression for the averaged

radial curvature reduces to,

κψ = −V
′′(ψ)

V ′(ψ)
. (5.88)

Thus, as volume increases with flux, V ′′(ψ) < 0 is advantageous [97]. The quantity

p′(ψ)V ′′(ψ) also appears in the Mercier criterion for ideal MHD interchange stabil-

ity [157]. Known as the vacuum magnetic well, V ′′(ψ) has been employed in the

optimization of several stellarator configurations (e.g. [106, 114]).

We consider the following figure of merit,

fW =

∫
VP

dψ w(ψ)V ′(ψ), (5.89)

where w(ψ) is a radial weight function which will be chosen so that (5.89) approxi-

mates V ′′(ψ). This can equivalently be written as,

fW =

∫
VP

d3xw(ψ). (5.90)

5.5.3.1 Surface shape gradient

We consider direct perturbations about an equilibrium with fixed toroidal current

(5.74). The shape derivative of fW is computed upon application of the transport

theorem (5.3), noting that δψ = −ξ1 · ∇ψ,

δfW (SP ; ξ1) = −
∫
VP

d3x ξ1 · ∇w(ψ) +

∫
SP

d2x ξ1 · n̂w(ψ), (5.91)
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where we have assumed w(ψ) to be differentiable. We recast the first term in (5.91)

as a surface integral by applying the fixed-boundary adjoint relation (5.36) and pre-

scribing the adjoint perturbation to satisfy the following,

F[ξ2, δχ2(ψ)]−∇w(ψ) = 0 (5.92a)

ξ2 · n̂|SP = 0 (5.92b)

δIT,2(ψ) = 0. (5.92c)

Upon application of (5.36) we obtain the following expression for the shape gra-

dient which depends on the adjoint solution, δB2,

GW =

(
w(ψ) +

δB2 ·B
µ0

)
SP

. (5.93)

In Figure 5.5 we present the computation of GW for the NCSX LI383 equilibrium

[242] using the the adjoint and direct approaches. We use a weight function,

w(ψ) = exp(−(ψ − ψm,1)2/ψ2
w)− exp(−(ψ − ψm,2)2/ψ2

w), (5.94)

such that fW remains smooth while it approximates V ′(ψm,1)−V ′(ψm,2) where ψm,1 =

0.8ψ0, ψm,2 = 0.1ψ0, and ψw = 0.05ψ0 (Figure 5.5c). We note that fW can be

interpreted as measuring the change in volume due to the interchange of two flux

tubes centered at ψm,1 and ψm,2. If fW > 0, this indicates that moving a flux tube

radially outward will cause it to expand and lower its potential energy.

The adjoint magnetic field is computed with a forward-difference approximation

(5.68) characterized by a step size ∆P = 400 Pa. For the direct approach, derivatives

with respect to the Fourier discretization (5.70) of the boundary are computed for

m ≤ 20 and |n| ≤ 10 using an 8-point centered-difference stencil with a polynomial-

fitting technique. The direct approach requires 6889 calls to VMEC while the adjoint

approach requires two calls. It is clear from Figure 5.5 that the adjoint approach

yields the same gradient information as the finite-difference approach, at much lower
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Figure 5.5: The shape gradient for fW (5.89) is computed using the (a) adjoint and
(b) direct approaches. (c) The weight function (5.94) used to compute fW . Figure
reproduced from [187] with permission.

computational cost. The small difference between Figures 5.5a and 5.5b can is quan-

tified using (5.71), with a surface-averaged value of Gresidual is 3.8× 10−2.

5.5.3.2 Coil shape gradient

The shape derivative of fW can also be computed with respect to a perturbation of

the coil shapes. We consider perturbations about an equilibrium with fixed toroidal

current,

F[ξ1, δχ1(ψ)] = 0 (5.95a)

δIT,1(ψ) = 0, (5.95b)
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with specified perturbation to the coils shapes, δxC1 × t̂. We prescribe the following

adjoint perturbation,

F[ξ2, δχ2(ψ)]−∇w(ψ) = 0 (5.96a)

δxC2 × t̂ = 0 (5.96b)

δIT,2(ψ) = 0. (5.96c)

The same weight function (5.94) is applied, which decreases sufficiently fast that we

can approximate w(ψ0) = 0. Upon application of the free-boundary adjoint relation

(5.33), we obtain the following coil shape gradient,

G̃k =
ICk t̂× δB2

µ0

∣∣∣∣
Ck

. (5.97)

The calculation of G̃k for each of the 3 unique coil shapes from the NCSX C09R00

coil set is shown in Figure 5.6. A two-point centered-difference approximation of the

adjoint magnetic field (5.68) is applied with characteristic step size ∆P = 3× 103 Pa.

The adjoint field is evaluated in the vacuum region using the DIAGNO code. The

shape gradient is also computed with a direct approach. The Cartesian components

of each coil are Fourier-discretized (5.84), and derivatives are computed with respect

to modes with m ≤ 40 with a 4-point centered-difference stencil. The fractional

difference between the results obtained with the two approaches is quantified with

(5.85). The line-averaged value of G̃lresidual,k is 4.1×10−2. The direct approach required

2917 VMEC calls while the adjoint only required three.

5.5.4 Ripple on magnetic axis

We now consider a figure of merit which quantifies the ripple near the magnetic

axis [37, 58, 59]. As all physical quantities must be independent of the poloidal

angle on the magnetic axis, this quantifies the departure from quasi-helical or quasi-
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(a) Adjoint (b) Direct

Figure 5.6: The coil shape gradient for fW is calculated for each of the 3 unique
NCSX coil shapes. The arrows indicate the direction of G̃k (5.97), and their lengths
indicate the magnitude scaled according to the legend. Figure reproduced from [187]
with permission.

axisymmetry near the magnetic axis. We define the magnetic ripple to be,

fR =

∫
VP

d3x f̃R, (5.98)

with,

f̃R(ψ,B) =
1

2
w(ψ)

(
B −B

)2

(5.99a)

B =

∫
VP
d3xw(ψ)B∫

VP
d3xw(ψ)

, (5.99b)

and a weight function given by,

w(ψ) = exp(−ψ2/ψ2
w), (5.100)

with ψw = 0.1ψ0.

5.5.4.1 Surface shape gradient

We compute perturbations about an equilibrium with fixed rotational transform

(5.59). Noting that the local perturbation to the field strength is given by (5.62), the
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shape derivative is computed with the transport theorem (5.3),

δfR(SP ; ξ1) =

∫
SP

d2x ξ1 · n̂f̃R +

∫
VP

d3x

(
∂f̃R(ψ,B)

∂B
δB +

∂f̃R(ψ,B)

∂ψ
δψ

)
. (5.101)

We prescribe the following adjoint perturbation,

F[ξ2, δχ(ψ)]−∇ ·P = 0 (5.102a)

ξ2 · n̂|SP = 0 (5.102b)

δχ′2(ψ) = 0. (5.102c)

The bulk force perturbation required for the adjoint problem is written as the di-

vergence of an anisotropic pressure tensor, P = p⊥I + (p|| − p⊥)b̂b̂ where I is the

identity tensor. The parallel and perpendicular pressures are related by the parallel

force balance condition,

∂p||(ψ,B)

∂B
=
p|| − p⊥
B

, (5.103)

which follows from the requirement that b̂ · δF2 = 0 (5.25). We take the parallel

pressure to be,

p|| = f̃R. (5.104)

Upon application of the fixed-boundary adjoint relation and the expression for the

curvature in an equilibrium field,

κ =
∇⊥B
B

+
∇p
µ0B2

, (5.105)

we obtain the following shape gradient,

GR =

(
p⊥ +

δB2 ·B
µ0

)
SP

. (5.106)

If instead the toroidal current is held fixed in the direct perturbation as in (5.74),
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then the required adjoint current perturbation is given by,

δIT,2(ψ) =
V ′(ψ)

2π

〈
∂f̃R(ψ,B)

∂B
b̂ · ∇ϕ×∇ψ

〉
ψ

, (5.107)

with the shape gradient unchanged. See Appendix L for details of the calculation.

To compute the adjoint perturbation (5.102)-(5.107), we consider the addition of

an anisotropic pressure tensor to the nonlinear force balance equation,

J′ ×B′ = ∇p′ + ∆P∇ ·P(ψ′, B′), (5.108)

where P(ψ′, B′) = p⊥(ψ′, B′)I +
(
p||(ψ

′, B′)− p⊥(ψ′, B′)
)

b̂
′
b̂
′
. Here primes indicate

the perturbed quantities (i.e. B′ = B+δB) where unprimed quantities satisfy (5.10).

As in Section 5.5.3, the perturbation has a scale set by ∆P which is chosen to be

small enough that the response is linear. Enforcing parallel force balance from (5.108)

results in the following condition,

∂p||(ψ
′, B′)

∂B′
=
p||(ψ

′, B′)− p⊥(ψ′, B′)

B′
. (5.109)

If we furthermore assume that ∆P∇ · P is small compared with the other terms

in (5.108), we can consider it to be a perturbation to the base equilibrium (5.10).

In this way, we can apply the perturbed force balance equation (5.25) with δF2 =

−∆P∇ · P(B), where P is now evaluated with the equilibrium field which satisfies

(5.10). Thus the desired pressure tensor (5.104) can be implemented by evaluating

p|| with the perturbed field such that (5.109) is satisfied.

We have implemented the pressure tensor defined by (5.103)-(5.104) in the ANI-

MEC code [43], which modifies the VMEC variational principle to allow 3D equilib-

rium solutions with anisotropic pressures to be computed. The ANIMEC code has

been used to model equilibria with energetic particle species using pressure tensors

based on bi-Maxwellian [45] and slowing-down [44] distribution functions. The varia-

tional principle assumes that p|| only varies on a surface through B and can, therefore,

be used to include the required adjoint bulk force.
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(a) Adjoint (b) Direct

(c) Weight function

Figure 5.7: The shape gradient for fR (5.98) is computed using the (a) adjoint and
(b) direct approaches with a weight function (5.100) shown in (c). Figure reproduced
from [187] with permission.

In Figure 5.7, we present the computation of GR for the NCSX LI383 equilibrium

using the adjoint and direct approaches. For the direct approach, derivatives with

respect to the Fourier discretization of the boundary (5.70) are computed for m ≤ 11

and |n| ≤ 7 using an 8-point centered-difference stencil. The adjoint field is computed

from a forward-difference approximation (5.68) with a characteristic step size of ∆P =

7.96 × 103 Pa. The direct approach required 2761 calls to VMEC while the adjoint

approach required two calls. The surface-averaged value of Gresidual (5.71) is 3.3×10−2.
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5.5.5 Effective ripple in the 1/ν regime

The effective ripple in the 1/ν regime [168] is a figure of merit which has proven

valuable for neoclassical optimization (e.g. [106, 134, 242]). This quantity character-

izes the geometric dependence of the neoclassical particle flux under the assumption

of low-collisionality such that εeff is analogous to the helical ripple amplitude, εh, that

appears in the expression of the 1/ν particle flux for a classical stellarator [66]. The

following expression is obtained for the effective ripple,

ε
3/2
eff (ψ) =

π

4
√

2V ′(ψ)ε2ref

∫ 1/Bmin

1/Bmax

dλ

λ

∫ 2π

0

dα
∑
i

( ∂
∂α
K̂i(α, λ))2

Îi(α, λ)
. (5.110)

Here λ = v2
⊥/(v

2B) is the pitch angle, Bmin and Bmax are the minimum and maximum

values of the field strength on a surface labeled by ψ, and εref is a reference aspect

ratio. We have defined the bounce integrals,

Îi(α, λ) =

∮
dl

v||
Bv

(5.111a)

K̂i(α, λ) =

∮
dl

v3
||

Bv3
, (5.111b)

where the notation
∮
dl =

∑
σ σ
∫ ϕ+

ϕ−
dϕ/b̂ · ∇ϕ indicates integration at constant λ

and α between successive bounce points where v||(ϕ+) = v||(ϕ−) = 0 and σ = sign(v||).

The sum in (5.110) is taken over wells at constant λ and α for ϕ−,i ∈ [0, 2π).

We consider an integrated figure of merit,

fε =

∫
VP

d3xw(ψ)ε
3/2
eff (ψ), (5.112)

where w(ψ) is a radial weight function. We perturb about an equilibrium with fixed

toroidal current (5.74). The shape derivative of fε is computed to be,

δfε(SP ; ξ1) =

∫
VP

d3x
(
Pε : ∇ξ1 + δχ′1(ψ)Iε

)
, (5.113)

where the double dot (:) indicates contraction between dyadic tensors A and B as
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A : B =
∑

i,j AijBji, with,

Iε =
πw(ψ)

2
√

2ε2ref

∫ 1/B

1/Bmax

dλ

λ

×

[( ∂
∂α
K̂(α, λ, ϕ)

)2

Î2(α, λ, ϕ)

−ϕB×∇ψ · ∇

(
|v|||
vB2

)
+ B×∇ψ · ∇ϕ ∂

∂B

(
|v|||
vB

)
+2

∂

∂α

(
∂
∂α
K̂(α, λ, ϕ)

Î(α, λ, ϕ)

)−ϕB×∇ψ · ∇

(
|v|||3

v3B2

)
+ B×∇ψ · ∇ϕ ∂

∂B

(
|v|||3

v3B

)],
(5.114)

and Pε = p||b̂b̂ + p⊥(I− b̂b̂) with,

p|| = −
πw(ψ)

2
√

2ε2ref

∫ 1/B

1/Bmax

dλ

λ

(( ∂
∂α
K̂(α, λ, ϕ)

)2

Î2(α, λ, ϕ)

|v|||
v

+ 2
∂

∂α

(
∂
∂α
K̂(α, λ, ϕ)

Î(α, λ, ϕ)

)
|v|||3

v3

)
(5.115a)

p⊥ = − πw(ψ)

2
√

2ε2ref

∫ 1/B

1/Bmax

dλ

λ

(( ∂
∂α
K̂(α, λ, ϕ)

)2

Î2(α, λ, ϕ)

(
λvB

2|v|||
+
|v|||
v

)

+ 2
∂

∂α

(
∂
∂α
K̂(α, λ, ϕ)

Î(α, λ, ϕ)

)(
3λ|v|||B

2v
+
|v|||3

v3

))
. (5.115b)

Derivatives are computed assuming εref is held constant. The bounce integrals are

defined with respect to ϕ such that Î(α, λ, ϕ) = Îi if ϕ ∈ [ϕ−,i, ϕ+,i] and Î(α, λ, ϕ) = 0

if λB(α, ϕ) > 1. The same convention is used for K̂(α, λ, ϕ). We prescribe the

following adjoint perturbation,

F[ξ2, δχ2(ψ)]−∇ ·Pε = 0 (5.116a)

ξ2 · n̂|SP = 0 (5.116b)

δIT,2(ψ) =
V ′(ψ)

2π
〈Iε〉ψ. (5.116c)

The adjoint bulk force must be consistent with parallel force balance from (5.25),
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which is equivalent to the condition,

∇||p|| =
∇||B
B

(p|| − p⊥). (5.117)

This can be shown to be satisfied by (5.115), noting that the λ integrand vanishes

at 1/B such that there is no contribution from the parallel gradient acting on the

bounds of the integral. There is also no contribution to the parallel gradient from

the bounce-integrals, as |v||| vanishes at points of non-zero gradient of Î(α, λ, ϕ) and

K̂(α, λ, ϕ).

Upon application of the fixed-boundary adjoint relation (5.36) and integration by

parts, we obtain the following expression for the shape gradient,

Gε =

(
p⊥ +

δB ·B
µ0

)
SP

. (5.118)

See Appendix M for details of the calculation. The approach demonstrated in this

Section could be extended to compute the shape gradients of other figures of merit

involving bounce integrals, such as the Γc metric for energetic particle confinement

[169] or the variation of the parallel adiabatic invariant on a flux surface [58].

5.5.6 Departure from quasi-symmetry

Quasi-symmetry is desirable as it ensures collisionless confinement of guiding cen-

ters. This property follows when the field strength depends on a linear combination

of the Boozer angles, B(ψ, ϑB, ϕB) = B(ψ,MϑB −NϕB) for fixed integers M and N

[22, 175] (Appendix 5.5.6). Several stellarator configurations have been optimized to

be close to quasi-symmetry (e.g., [57, 106, 149, 197]) by minimizing the amplitude of

symmetry-breaking Fourier harmonics of the field strength. We will consider a figure

of merit that does not require a Boozer coordinate transformation; instead, we use a

general set of magnetic coordinates (ψ, ϑ, ϕ) to define our figure of merit.

In Boozer coordinates [21, 97] (ψ, ϑB, ϕB) the covariant form for the magnetic
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field is,

B = I(ψ)∇ϑB +G(ψ)∇ϕB +K(ψ, ϑB, ϕB)∇ψ. (5.119)

Here G(ψ) = µ0IP (ψ)/(2π), where IP (ψ) is the poloidal current outside the ψ sur-

face. The poloidal current can be computed using Ampere’s law and expressed as an

integral over a surface labeled by ψ, SP (ψ),

IP (ψ) =
1

µ0

∫ 2π

0

dϕB · ∂x

∂ϕ
= − 1

2πµ0

∫
SP (ψ)

d2xB · ∇ϑ× n̂. (5.120)

The quantity I(ψ) = µ0IT (ψ)/(2π), where IT (ψ) is the toroidal current inside the ψ

surface (5.16). We quantify the departure from quasi-symmetry in the following way,

fQS =
1

2

∫
VP

d3xw(ψ)
(
B×∇ψ · ∇B − F (ψ)B · ∇B

)2
. (5.121)

Here w(ψ) is a radial weight function and,

F (ψ) =
(M/N)G(ψ) + I(ψ)

(M/N)ι(ψ)− 1
. (5.122)

If fQS = 0, then the field is quasi-symmetric with mode numbers M and N [97], which

can be shown using the covariant (5.13) and contravariant (5.119) representations of

the magnetic field assuming B = B(ψ,MϑB −NϕB) for fixed M and N . Note that

fQS quantifies the symmetry in Boozer coordinates but can be evaluated in any flux

coordinate system.

We consider perturbation about an equilibrium with fixed toroidal current (5.74).

The perturbations to the Boozer poloidal covariant component is computed using the

transport theorem (5.3),

δG(ψ) = − 1

4π2

∫
SP (ψ)

d2x
(
∇ · (B×∇ϑ) ξ1 · n̂ + δB×∇ϑ · n̂

)
. (5.123)

In arriving at (5.123) we have used the fact that spatial derivatives commute with

shape derivatives. The first term accounts for the unperturbed current density

through the perturbed boundary, and the second accounts for the perturbed current
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density through the unperturbed boundary. The contribution from the perturbation

to the poloidal angle can be shown to vanish. Upon application of (5.20) we obtain,

noting that
∫
SP (ψ)

d2xA = V ′(ψ)〈A|∇ψ|〉ψ for any quantity A,

δG(ψ) = −V
′(ψ)

4π2

〈
ξ1 · ∇ψ∇ · (B×∇ϑ)

− 1
√
g

∂x

∂ϕ
· ∇ × (ξ1 ×B)− δχ′1(ψ)

√
g2

∂x

∂ϕ
· ∂x

∂ϑ

〉
ψ

, (5.124)

Applying the transport theorem (5.3), the shape derivative of fQS takes the form,

δfQS(SP ; ξ1) =
1

2

∫
SP

d2x ξ1 · n̂M2w(ψ) +
1

2

∫
VP

d3xw′(ψ)δψM2

+

∫
VP

d3xw(ψ)M
(
δB ·A + S · ∇δB + B×∇δψ · ∇B − δG(ψ)B · ∇B

ι(ψ)− (N/M)

)
+

∫
VP

d3xw(ψ)M
(

F (ψ)

ι(ψ)− (N/M)
δχ′1(ψ)B · ∇B − δψF ′(ψ)B · ∇B

)
, (5.125)

where M = B × ∇ψ · ∇B − F (ψ)B · ∇B, A = ∇ψ × ∇B − F (ψ)∇B, and S =

B×∇ψ − F (ψ)B. After several steps outlined in Appendix N, the shape derivative

can be written in the following way,

δfQS(SP ; ξ1) =

∫
VP

d3x
(
ξ1 ·FQS + δχ′1(ψ)IQS

)
+

∫
SP

d2x ξ1 · n̂BQS, (5.126)

with,

FQS =
1

2
∇⊥

(
w(ψ)M2

)
+
(

(b̂×∇ψ)∇||B + F (ψ)∇⊥B
)
w(ψ)B · ∇M

+ B× (∇× (∇ψ ×∇B))w(ψ)M−B∇⊥
(
w(ψ)S · ∇M

)
+ κBw(ψ)S · ∇M

−∇ψ∇B ·∇×
(
w(ψ)MB

)
+

1

4π2

(
−∇⊥

(
w(ψ)V ′(ψ)〈MB · ∇B〉ψ

(ι(ψ)− (N/M))

)
(B · ∇ψ ×∇ϑ)

+
w(ψ)V ′(ψ)〈MB · ∇B〉ψ

ι(ψ)− (N/M)

(
∇ψ∇ · (B×∇ϑ)−B×∇× (∇ψ ×∇ϑ)

))
(5.127a)
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BQS = −1

2
w(ψ)M2 +Bw(ψ)S · ∇M− w(ψ)M∇B ×B · ∇ψ

+
w(ψ)V ′(ψ)〈MB · ∇B〉ψ

4π2(ι(ψ)− (N/M))
(B · ∇ψ ×∇ϑ) (5.127b)

IQS = −w(ψ)M∇ψ ×∇ϕ ·A + w(ψ) (S · ∇M) b̂ · ∇ψ ×∇ϕ

+
w(ψ)MB · ∇B
ι(ψ)− (N/M)

F (ψ)−

〈
V ′(ψ)

4π2
√
g2

∂x

∂ϕ
· ∂x

∂ϑ

〉
ψ

 . (5.127c)

In (5.127a), ∇|| = b̂ · ∇ and ∇⊥ = ∇ − b̂∇|| are the parallel and perpendicular

gradients.

We can now prescribe an adjoint perturbation which satisfies,

F[ξ2, δχ2(ψ)] + FQS = 0 (5.128a)

ξ2 · n̂|SP = 0 (5.128b)

δIT,2(ψ) =
V ′(ψ)

2π
〈IQS〉ψ. (5.128c)

We note that FQS satisfies the parallel force balance condition (b̂ ·FQS = 0) implied

by (5.25). Upon application of the fixed-boundary adjoint relation we obtain the

following shape gradient,

GQS =

(
BQS +

δB2 ·B
µ0

)
SP

. (5.129)

5.5.7 Neoclassical figures of merit

In Section 5.5.5, we considered a figure of merit that quantifies the geometric de-

pendence of the neoclassical particle flux in the 1/ν regime. In applying this model,

several assumptions are imposed, such as a small radial electric field, Er, low colli-

sionality, and a simplified pitch-angle scattering collision operator. In this Section,

we consider a more general neoclassical figure of merit arising from a moment of the

local drift kinetic equation, allowing for optimization at finite collisionality and Er. It
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is assumed here that the collision time is comparable to the bounce time but shorter

than the time needed to complete a magnetic drift orbit. In Chapter 4, an adjoint

method is demonstrated for obtaining derivatives of neoclassical figures of merit with

respect to local geometric quantities on a flux surface. The adjoint method described

in this Section will extend these results, such that shape derivatives with respect to

the plasma boundary can be computed.

Consider the following figure of merit,

fNC =

∫
VP

d3xw(ψ)R(ψ). (5.130)

Here R(ψ) is a flux surface averaged moment of the neoclassical distribution function,

f1, which satisfies the local drift kinetic equation (DKE),

(v||b̂ + vE) · ∇f1 − C(f1) = −vm · ∇ψ
∂fM
∂ψ

, (5.131)

where vE = E × B/B2 is the E × B drift velocity, vm · ∇ψ is the radial magnetic

drift velocity (4.3), fM is a Maxwellian (M.3), and C is the linearized Fokker-Planck

operator. For example, R can be taken to be the bootstrap current,

Jb =
∑
s

〈B
∫
d3v f1sv||〉ψ

ns〈B2〉1/2ψ

, (5.132)

where the sum is taken over species. We note that the geometric dependence that

enters the DKE when written in Boozer coordinates only arises through the quanti-

ties {B,G(ψ), I(ψ), ι(ψ)}. Thus for simplicity, Boozer coordinates will be assumed

throughout this Section.

The perturbation to R(ψ) at fixed toroidal current (5.74) can be written as,

δR(ψ) = 〈SRδB〉ψ +
∂R(ψ)

∂G(ψ)
δG(ψ) +

∂R(ψ)

∂ι(ψ)
δχ′1(ψ). (5.133)

Here SR is a local sensitivity function which quantifies the change to R associated

with a perturbation of the field strength δB defined in the following way. Consider the

perturbation to R resulting from a change in the field strength at fixed G(ψ), I(ψ),
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and ι(ψ). The functional derivative of R(ψ) with respect to B(x) can be expressed

as,

δR(δB;B(x)) =
〈
SRδB(x)

〉
ψ
. (5.134)

This is another instance of the Riesz representation theorem: δR is a linear functional

of δB, with the inner product taken to be the flux surface average. Thus SR can be

thought of as analogous to the shape gradient (5.4).

The quantities {SR, ∂R(ψ)/∂G(ψ), ∂R(ψ)/∂ι(ψ)} can be computed with the ad-

joint method described in Chapter 4 with the SFINCS code [140]. Here we consider

SFINCS to be run on a set of surfaces such that (5.130) can be computed numerically.

The derivatives computed by SFINCS will appear in the additional bulk force required

for the adjoint perturbed equilibrium. We consider perturbations of an equilibrium

at fixed toroidal current (5.74). The shape derivative of fNC can be computed on

application of the transport theorem (5.3),

δfNC(SP ; ξ1) =

∫
SP

d2x ξ1 · n̂w(ψ)R(ψ) +

∫
VP

d3x δψ
∂

∂ψ

(
w(ψ)R(ψ)

)
+

∫
VP

d3xw(ψ)

(
∂R(ψ)

∂G(ψ)
δG(ψ) +

∂R(ψ)

∂ι(ψ)
δχ′1(ψ) + 〈SRδB〉ψ

)
. (5.135)

After several steps outlined in Appendix O, the shape derivative is written in the

following form,

δfNC(SP ; ξ1) =

∫
VP

d3x
(
ξ1 ·FNC + δχ′1(ψ)INC

)
+

∫
SP

d3x ξ1 · n̂BNC , (5.136)
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with,

FNC = −∇(R(ψ)w(ψ))−∇ψ(∇×B) · ∇ϑ∂R(ψ)

∂G(ψ)
w(ψ)

B2√g
〈B2〉ψ

+
w(ψ)

〈B2〉ψ
∂R(ψ)

∂G(ψ)
B×∇×

(
∂x

∂ϕ
B2

)
+G(ψ)B2∇

(
w(ψ)

〈B2〉ψ
∂R(ψ)

∂G(ψ)

)

− κw(ψ)SRB +B∇⊥(w(ψ)SR) (5.137a)

BNC = w(ψ)R(ψ)− w(ψ)B2

〈B2〉ψ
∂R(ψ)

∂G(ψ)
G(ψ)− w(ψ)SRB (5.137b)

INC =
∂R(ψ)

∂G(ψ)

w(ψ)B2

〈B2〉ψ
√
g

∂x

∂ϕ
· ∂x

∂ϑ
+ w(ψ)

∂R(ψ)

∂ι(ψ)
− w(ψ)SRb̂ · ∇ψ ×∇ϕ. (5.137c)

We consider the following adjoint perturbation,

F[ξ2, δχ2(ψ)] + FNC = 0 (5.138a)

ξ2 · n̂|SP = 0 (5.138b)

δIT,2(ψ) =
V ′(ψ)

2π
〈INC〉ψ. (5.138c)

The adjoint bulk force FNC is chosen to satisfy parallel force balance required by

(5.25). Upon application of the fixed-boundary adjoint relation we obtain the shape

gradient,

GNC =

(
BNC +

δB2 ·B
µ0

)
SP

. (5.139)

5.6 Conclusions

We have obtained a relationship between 3D perturbations of MHD equilibria

that is a consequence of the self-adjoint property of the MHD force operator. The

relation allows for the efficient computation of shape gradients for either the outer

plasma surface using the fixed-boundary adjoint relation (5.36) or for coil shapes using

the free boundary adjoint relation (5.33). The computation of the shape gradient of

several stellarator figures of merit has been demonstrated with both the adjoint and

172



direct approach. The application of the adjoint relation provides an O(NΩ) reduction

in CPU hours required in comparison with the direct method of computing the shape

gradient, where NΩ is the number of parameters used to describe the shape of the

outer boundary or the coils. For fully 3D geometry, NΩ can be 102 − 103. Thus,

the application of adjoint methods can significantly reduce the cost of computing the

shape gradient for gradient-based optimization or local sensitivity analysis.

We have demonstrated that the self-adjointness relations (Section 5.3) can be

implemented to efficiently compute the shape gradient of figures of merit relevant

for stellarator configuration optimization. The shape gradient is obtained by solving

an adjoint perturbed force balance equation that depends on the figure of merit of

interest. For the volume-averaged β and vacuum well parameter (Sections 5.5.1 and

5.5.3), the additional bulk force required for the adjoint problem is simply the gradient

of a function of flux, and so it can be implemented by adding a perturbation to the

pressure profile. For the magnetic ripple on axis (Section 5.5.4), the required bulk

force takes the form of the divergence of a pressure tensor that only varies on a

surface through the field strength. As the ANIMEC code currently treats this type

of pressure tensor, this adjoint bulk force is implemented with a minor modification

to the code. Computing the shape gradient of ε
3/2
eff with the adjoint approach also

requires the addition of the divergence of a pressure tensor. However, this pressure

tensor varies on a surface through the field line label due to the bounce integrals that

appear (5.115). Thus the variational principle used by the ANIMEC code cannot

be easily extended for this application. Similarly, the shape gradients for the quasi-

symmetry (Section 5.5.6) and neoclassical (Section 5.5.7) figures of merit require an

adjoint bulk force that is not in the form of the divergence of a pressure tensor. This

provides an impetus for the development of a flexible perturbed MHD equilibrium

code that could enable these calculations. While several 3D ideal MHD stability

codes exist [7, 204, 219], only the CAS3D code has been modified in order to perform
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perturbed equilibrium calculations [28, 173]. A discussion of such linear equilibrium

calculations for adjoint-based shape gradient evaluations is presented in Chapter 6.

It should be noted that the adjoint approach we have outlined can not yield

an exact analytic shape gradient, as error is introduced through the approximation

of the adjoint solution. Throughout, we have assumed the existence of magnetic

surfaces as the 3D equilibrium is perturbed. Therefore a code such as VMEC or

ANIMEC, which minimizes an energy subject to the constraint that surfaces exist, is

suitable. Generally VMEC solutions do not satisfy (5.10) exactly [174], as they do not

account for the formation of islands or current singularities associated with rational

surfaces. Furthermore, the parameters ∆P and ∆I introduce additional numerical

noise. As demonstrated in Section 5.5.1.1, these parameters must be small enough

that nonlinear effects do not become important yet large enough that round-off error

does not dominate. We have demonstrated that the typical difference between the

shape gradient obtained with the adjoint method and that computed directly from

numerical derivatives is . 5%. These errors should not be significant for applying

the shape gradient to an analysis of engineering tolerances. The discrepancy between

the true shape gradient and that obtained numerically, with the adjoint approach

or with finite-difference derivatives, may become problematic as one nears a local

minimum during gradient-based optimization, as the resulting shape gradient may

not provide an actual descent direction. This furthermore motivates the development

of a perturbed equilibrium code that could eliminate this source of noise.

As demonstrated, this adjoint approach for functions of MHD equilibria is quite

flexible and can be applied to many quantities of interest. Because of the demon-

strated efficiency in comparison with the direct approach to computing shape gradi-

ents, we anticipate many further applications of this method.
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Chapter 6: Linearized equilibrium solutions

As discussed in Chapter 5, the application of the adjoint approach for computing

the shape gradient of functions of MHD equilibria requires solutions of linearized MHD

equilibrium equations. In the examples presented thus far, these linearized solutions

were approximated by adding a small perturbation to a nonlinear MHD equilibrium,

such as a perturbation to the prescribed toroidal current or pressure profiles. This

approximation introduces error associated with the choice of the amplitude of the

perturbation and limits the types of objective functions that can be treated. In this

Chapter, we discuss an approach to compute the necessary linearized equilibrium

solutions based on a variational method.

6.1 Introduction

There are several existing techniques for computing linearized ideal MHD equi-

libria. As will be shown directly in the following Section, a linearized equilibrium

state is a stationary point of an energy functional. This energy functional is re-

lated to the potential energy that appears in ideal MHD stability analysis, WP [ξ] =

−1
2

∫
VP
d3x ξ · F[ξ], where ξ is the displacement vector and F[ξ] is the MHD force

operator (6.3). For this reason, ideal MHD stability codes can be augmented for

perturbed equilibrium calculations. One approach is based on the Direct Criterion

of Newcomb (DCON) code [80], which minimizes the potential energy by solving an

Euler-Lagrange equation for the displacement vector. This method has been extended

with the Ideal Perturbed Equilibrium Code (IPEC) [182, 183], which couples applied
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plasma boundary perturbations to perturbations of currents in the vacuum region.

This code models axisymmetry-breaking perturbations on tokamak equilibria for the

study of mode-locking [61] and neoclassical toroidal viscosity (NTV) [152]. Modifica-

tion of DCON is currently underway to enable stability calculations for stellarators

with stepped-pressure equilibria [81].

The Code for the Analysis of the MHD Stability of 3D Equilibria (CAS3D) has

similarly been modified for perturbed MHD equilibrium calculations. To evaluate

ideal MHD stability, CAS3D solves an eigenvalue problem to obtain a minimum of

WP [ξ]/WK [ξ], where WK [ξ] = 1
2

∫
VP
d3x ρ|ξ|2 is the kinetic energy associated with

the displacement vector ξ and ρ is the density. As perturbed equilibria are stationary

points of an energy functional similar to WP [ξ], not WP [ξ]/WK [ξ], such stability codes

based on eigenvalue calculations need to be modified in order to compute perturbed

equilibrium states. The CAS3D code allows the option to normalize WP [ξ] by a

modified energy functional such that perturbed equilibrium states can be computed

[28, 173]. This technique has been used to study the effect of boundary perturbations

on magnetic island width [174].

While several 3D MHD stability codes exist [7, 204, 219], they cannot be directly

used to compute perturbed equilibrium states relevant for stellarator optimization

problems. For stability studies, it is often sufficient to consider only symmetry-

breaking modes (modes that break period symmetry or stellarator symmetry), while

optimization is typically performed assuming preservation of symmetry. Furthermore,

none of the existing codes enable the addition of a general bulk force perturbation as

is required for our adjoint approach.

There are additional limitations that motivate us to consider the development of

an independent linearized equilibrium code. The DCON and CAS3D1 approaches

minimize their respective energy functionals assuming that the displacement vec-

1This assumption is made in the original version of CAS3D [204]. There exists the option to
retain the terms in the energy functional involving ∇ · ξ in a more recent version [172].
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tor is divergenceless. This assumption implies that2 〈ξ · ∇ψ〉ψ vanishes [153, 204],

where 〈. . . 〉ψ is the flux-surface average (A.10). This places a significant restriction

on ξψ ≡ ξ · ∇ψ that cannot generally be satisfied in addition to the Euler-Lagrange

equation. Therefore, modes that are constrained by 〈ξψ〉ψ = 0 cannot be included in

the Euler-Lagrange equation. In axisymmetry, this disallows the toroidal mode num-

ber n = 0. In stellarator geometry with discrete NP -symmetry, this disallows modes

where n is an integer multiple of NP (sometimes called the N = 0 mode family

[204]). This assumption is valid for stability problems, as such modes corresponding

to fixed-boundary perturbations are always stable [204]. However, for stellarator op-

timization and tolerance calculations, these modes cannot be ignored. Rather than

assume that ∇ · ξ = 0, for adjoint calculations it is much more convenient to assume

that ξ ·B = 0, which enables the inclusion of these modes. Finally, the postprocessing

of results differs significantly between stability and perturbed equilibria applications.

The development of such a 3D perturbed equilibrium code could substantially reduce

the computational complexity of gradient-based optimization by enabling the appli-

cation of the adjoint approach to many critical objective functions. Such a tool would

also allow for the analysis of the response of an equilibrium to boundary perturba-

tions without resorting to a full nonlinear calculation. This capability would improve

fixed-boundary optimization when an adjoint method is not available for sensitivity

and tolerance studies.

In Section 6.2, we present the proposed method to compute linearized equilib-

rium states with the addition of an arbitrary bulk force. This method is based on

a variational principle similar to that used in the DCON code. In Section 6.3, we

analyze the behavior of classes of modes of the displacement vector in the simplified

geometry of a screw pinch. In this way, we highlight key numerical challenges and

2This arises from noting 〈∇·ξ〉ψ = V ′(ψ)−1d/dψ
(
V ′(ψ)〈ξ · ∇ψ〉ψ

)
, thus V ′(ψ)〈ξ ·∇ψ〉ψ must be

a constant. As ξ · ∇ψ must vanish at the origin due to regularity while V ′(ψ) is finite at the origin,
the quantity V ′(ψ)〈ξ · ∇ψ〉ψ = 0.
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proposed solution methods. Finally, in Section 6.4, we demonstrate this method for

the computation of the shape gradient of a figure of merit of interest for stellarator

optimization.

6.2 Variational approach for linearized equilibrium solutions

We consider a base equilibrium magnetic field satisfying MHD force balance,

(∇×B)×B = µ0∇p, (6.1)

with prescribed pressure p(ψ) and rotational transform ι(ψ). We would like to com-

pute linearizations about this state satisfying,

F[ξ] + δF = 0, (6.2)

where the MHD force operator is

F[ξ] =

(
∇× δB[ξ]

)
×B

µ0

+
(∇×B)× δB[ξ]

µ0

−∇
(
δp[ξ]

)
, (6.3)

and δF is a bulk force perturbation. The perturbed magnetic field can be expressed

in terms of the displacement vector ξ,

δB[ξ] = ∇× (ξ ×B) , (6.4)

under the assumption that the rotational transform ι(ψ) is preserved by the perturba-

tion. In this Chapter, we will not consider the effect of perturbations to the rotational

transform, although such effects are necessary to compute the shape gradient of cer-

tain figures of merit. Assuming the pressure profile is fixed by the perturbation, then

we can also express the perturbation to the local pressure in terms of the displacement

vector,

δp[ξ] = −ξ · ∇p. (6.5)
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The linearized force balance equation is solved subject to a boundary condition,

ξ · n̂
∣∣
SP

= δx · n̂, (6.6)

for a prescribed boundary perturbation δx · n̂. We can express this PDE (6.2) with

boundary condition (6.6) in an equivalent variational form involving the energy func-

tional,

W [ξ] =

∫
VP

d3x ξ ·
(
F[ξ] + 2δF

)
+

1

µ0

∫
SP

d2x n̂ ·
(
ξδB[ξ]

)
·B. (6.7)

Stationary points of W [ξ] subject to the boundary condition (6.6) are equivalent to

solutions of (6.2). While (6.2) is a coupled set of PDEs involving two components of

the displacement vector, the application of the variational principle will allow us to

arrive at an Euler-Lagrange equation that is a coupled set of ODEs for one component

of the displacement vector.

We now demonstrate that stationary points of (6.7) with respect to ξ subject to

the boundary condition (6.6) indeed correspond with solutions of (6.2). We perform

the first variation with respect to ξ,

δW [ξ; δξ] =

∫
VP

d3x
(
δξ ·

(
F[ξ] + 2δF

)
+ ξ · F[δξ]

)
+

1

µ0

∫
SP

d2x n̂ ·
(
δξδB[ξ] + ξδB[δξ]

)
·B. (6.8)

We now apply the self-adjointness of the MHD force operator (5.7), repeated here for

convenience,∫
VP

d3x
(
ξ1 · F[ξ2]− ξ2 · F[ξ1]

)
− 1

µ0

∫
SP

d2x n̂ ·
(
ξ2δB[ξ1] ·B− ξ1δB[ξ2] ·B

)
= 0, (6.9)

to obtain,

δW [ξ; δξ] = 2

∫
VP

d3x
(
δξ ·

(
F[ξ] + δF

))
, (6.10)
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where the boundary term vanishes due to (6.6). As δW [ξ; δξ] must vanish for any

δξ, we obtain (6.2) as our Euler-Lagrange equation. Thus stationary points of W [ξ]

correspond with solutions of (6.2).

We can now obtain a simplified Euler-Lagrange equation from manipulations of

our energy functional (6.7). A vector identity is applied in order to obtain,

W [ξ] =

∫
VP

d3x

[
− δB[ξ] · δB[ξ]

µ0

+ ξ · J× δB[ξ] + ξ · ∇ (ξ · ∇p) + 2ξ · δF
]
. (6.11)

The energy functional now does not depend on second derivatives of the displacement

vector. This form of the energy functional is further simplified in Appendix P. We

apply another vector identity to obtain,

W [ξ] =

∫
VP

d3x

[
− δB[ξ] · δB[ξ]

µ0

+ ξ · J× δB[ξ]− (ξ · ∇p)∇ · ξ + 2ξ · δF
]

−
∫
SP

d2x ξ · n̂ξ · ∇p. (6.12)

We can drop this boundary term, as variations that respect the boundary condition

(6.6) will automatically make it vanish. We note that this energy functional is the

same (to within overall constants) as (12) in [80] if γ = 0, though we have allowed

for the inclusion of an additional bulk force.

Minimization of W [ξ] is performed upon expressing the magnetic field in a mag-

netic coordinate system (Appendix A.3),

B = ∇ψ ×∇ϑ− ι(ψ)∇ψ ×∇ϕ. (6.13)

From the assumption that ξ·B = 0, in such a coordinate system, the energy functional

only depends on the radial,

ξψ = ξ · ∇ψ, (6.14)

180



and in-surface,

ξα = ξ ·
(
∇ϑ− ι(ψ)∇ϕ

)
, (6.15)

components of the displacement vector. Furthermore, we note that no radial deriva-

tives of ξα appear in the energy functional, as we can express the perturbed magnetic

field as,

δB = ∇ξα ×∇ψ +∇×
(
ξψ
(
ι(ψ)∇ϕ−∇ϑ

))
. (6.16)

Upon further manipulations of the energy functional (Appendix P), we also note that

ξα only appears under derivatives with respect to ϑ and ϕ in the first three terms of

the energy functional (6.11). Given certain constraints on the bulk force perturbation

that can always be satisfied (Appendix Q), we are free to choose
∫ 2π

0
dϑ
∫ 2π

0
dϕ ξα = 0

on all surfaces. This reflects the fact that constant shifts of ξα on a surface do not

change the perturbed magnetic field.

We express the radial component of the displacement vector in a Fourier series,

ξψ(ψ, ϑ, ϕ) =
∑
m,n

(
ξψcm,n(ψ) cos(mϑ− nϕ) + ξψsm,n(ψ) sin(mϑ− nϕ)

)
(6.17)

= Ξψ ·Fψ.

Here Ξψ is interpreted as a vector of Fourier amplitudes and Fψ is a vector of the

Fourier basis functions. We similarly expand ξα in a Fourier series,

ξα =
∑

m,n;max(|m|,|n|) 6=0

(
ξαcm,n(ψ) sin(mϑ− nϕ) + ξαsm,n(ψ) cos(mϑ− nϕ)

)
(6.18)

= Ξα ·Fα.

As we are free to shift ξα by a constant on each surface, we can take the m = 0, n = 0

mode of ξα to vanish. If the equilibrium geometric quantities have a definite parity

with respect to ϑ and ϕ and the prescribed boundary perturbation and bulk force per-

turbation maintains this parity, then ξψ will have the same parity as the equilibrium
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and ξα will have the opposite parity. For example, if the equilibrium is stellarator

symmetric [53] (the cylindrical coordinates satisfy R(ψ,−ϑ,−ϕ) = R(ψ, ϑ, ϕ) and

Z(ψ,−ϑ,−ϕ) = −Z(ψ, ϑ, ϕ)) and this parity is maintained by the perturbation, only

the cosine series is needed for ξψ and the sine series is needed for ξα. We will as-

sume stellarator symmetry for the remainder of this Chapter for simplicity of the

presentation.

We similarly express the bulk force perturbation in a magnetic coordinate system,

δF = δFψ∇ψ + δFα
(
∇ϑ− ι(ψ)∇ϕ

)
. (6.19)

This results from the parallel force balance condition (6.2), which implies that δF·b̂ =

0.

The energy functional can be expressed schematically as,

W [Ξψ,Ξα] =

∫
VP

dψ

[
Ξ
′

ψ(ψ) ·
(
Aψ′ψ′Ξ

′

ψ(ψ)
)

+ Ξψ ·
(
AψψΞψ + Aψψ′Ξ

′

ψ(ψ) + Iψ

)
+ Ξα ·

(
AααΞα + Aαψ′Ξ

′

ψ(ψ) + AαψΞψ + Iα

)]
, (6.20)

upon integration over ϑ and ϕ. Explicit forms for the coefficient matrices are provided

in Appendix P.

We now perform variations with respect to the in-surface component,

δW [Ξψ,Ξα; δΞα] =

∫
VP

dψ δΞα ·
[
2AααΞα + Aαψ′Ξ

′

ψ(ψ) + AαψΞψ + Iα

]
, (6.21)

where we have noted that Aαα can be made symmetric due to the self-adjointness

of the MHD force operator. (The explicit form given in Appendix P is evidently

symmetric.) Thus the in-surface component can be expressed in terms of the ra-

dial component of the displacement vector using the corresponding Euler-Lagrange

equation,

2AααΞα + Aαψ′Ξ
′

ψ(ψ) + AαψΞψ + Iα = 0. (6.22)
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As shown in Appendix P, Aαα is invertible, so we find the reduced energy functional

to be,

W [Ξψ] =

∫
VP

dψ

[
Ξψ ·

(
CψψΞψ + Cψψ′Ξ

′

ψ(ψ) + Kψ

)
+ Ξ

′

ψ(ψ) ·
(
Cψ′ψ′Ξ

′

ψ(ψ) + Kψ′

)
− 1

4
Iα ·A−1

ααIα

]
, (6.23)

with,

Cψψ = Aψψ −
1

4
AT
αψA−1

ααAαψ (6.24a)

Cψψ′ = Aψψ′ −
1

2
AT
αψA−1

ααAαψ′ (6.24b)

Cψ′ψ′ = Aψ′ψ′ −
1

4
AT
αψ′A

−1
ααAαψ′ (6.24c)

Kψ = Iψ −
1

2
AT
αψA−1

ααIα (6.24d)

Kψ′ = −1

2
AT
αψ′A

−1
ααIα. (6.24e)

We now perform variations with respect to Ξψ,

δW [Ξψ; δΞψ] =

∫
VP

dψ δΞψ ·
[
2CψψΞψ + Cψψ′Ξ

′

ψ(ψ) + Kψ

− d

dψ

(
CT
ψψ′Ξψ + 2Cψ′ψ′Ξ

′

ψ(ψ) + Kψ′

)]
, (6.25)

to obtain the following Euler-Lagrange equation,

2CψψΞψ + Cψψ′Ξ
′

ψ(ψ) + Kψ −
d

dψ

(
CT
ψψ′Ξψ + 2Cψ′ψ′Ξ

′

ψ(ψ) + Kψ′

)
= 0. (6.26)

We define our vector of unknowns as,

−→u =

 Ξψ

CT
ψψ′Ξψ + 2Cψ′ψ′Ξ

′
ψ(ψ)

 , (6.27)

so that our Euler-Lagrange equation takes the form,
←→
L 1
−→u +

←→
L 2
−→u ′(ψ) +

−→
b = 0,
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with,

←→
L 1 =

 CT
ψψ′ −I

2Cψψ 0

 (6.28a)

←→
L 2 =

 2Cψ′ψ′ 0

Cψψ′ −I

 (6.28b)

−→
b =

 0

Kψ −K′ψ′(ψ)

 . (6.28c)

Currently this is an implicit system of differential equations. When
←→
L 2 is invertible,

this system can be transformed into an explicit system of ODEs. If det
(
Cψ′ψ′

)
= 0

at a point ψ = ψs and C−1
ψ′ψ′ ∼ 1/(ψ − ψs) to leading order near ψs, then ψs is a

regular singular point. At such points, additional care must be taken in obtaining

numerical solutions to the Euler-Lagrange equation. In analogy with regular singular

points of an uncoupled ODE, power series solutions can be constructed near ψs using

a matrix form of Frobenius analysis (Chapter 4 in [41]). As discussed in [80], for the

Euler-Lagrange equation under consideration, such singular points occur when ψ = 0,

ι = 0, or mι(ψ) − n = 0 for any m and n included in the spectrum for ξψ and ξα.

This singular behavior is discussed in more detail in Section 6.3.

This coupled set of second-order ODEs is solved with a boundary condition of

Ξψ(0) = 0 and Ξψ(ψ0) specified according to the prescribed boundary perturbation,

ξψcm,n(ψ0) =

∫ 2π

0
dϑ
∫ 2π

0
dϕ δx · ∇ψ cos(mϑ− nϕ)∫ 2π

0
dϑ
∫ 2π

0
dϕ cos(mϑ− nϕ)2

, (6.29)

where ψ0 is the flux label on the plasma boundary SP . As ∇ψ vanishes at the origin,

we require that Ξψ(0) = 0 such that the displacement vector remains finite.

The approach presented in this Section is very similar to that of the DCON ap-
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proach, with several important distinctions. (1) Rather than assuming ∇ · ξ = 0,

we have assumed b̂ · ξ. This allows us to include n = 0 modes in our displacement

vector in axisymmetry and n that are an integer multiple of the number of periods

in NP symmetry. (2) We have allowed for the inclusion of a general bulk force, given

it is consistent with the conventions we have adopted for our displacement vector

(b̂ · ξ = 0 and ξαc0,0 = 0). (3) DCON solves an initial value problem by integrating a

set of linearly-independent solutions that are regular at the axis. We instead solve a

BVP. (4) Our treatment of singular surfaces differs slightly from that of DCON, as is

described in Section 6.3.4.

6.3 Screw pinch analysis

To further analyze the behavior of the solutions to the linearized equilibrium

equations, we will consider the simplified geometry of a one-dimensional screw pinch.

A screw pinch is an infinite cylindrical device with field lines that lie on surfaces of

constant radius r. The field lines generally have both a toroidal (ẑ) and poloidal (θ̂)

component. We assume a cylindrical coordinate system with r̂ × θ̂ · ẑ = 1 where

all equilibrium quantities only depend on r. The infinite length of a screw pinch is

approximated by a cylindrical torus with major radius R0 � 1,

B = ψ′(r)

(
ẑ

r
+ ι(r)

θ̂

R0

)
. (6.30)

Here ψ(r) is the toroidal flux label,

2πψ(r) =

∫ 2π

0

dθ

∫ r

0

dr′ r′B · ẑ, (6.31)

and ι(r) is the rotational transform,

ι(r) = R0
B · ∇θ
B · ∇z

, (6.32)
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the number of poloidal rotations of the field line through a z displacement of 2πR0.

We note that θ and z/R0 are magnetic coordinates for this system. The MHD force

balance equation (6.1) for this geometry becomes,

d

dr

(
µ0p(r) +

1

2r2

(
ψ′(r)

)2
)

+
ι(r)ψ′(r)

rR2
0

d

dr

(
rι(r)ψ′(r)

)
= 0, (6.33)

where ι(ψ), p(ψ) and ψ0 ≡ ψ(r = 1) are prescribed. The solution is obtained for

r ∈ [0, 1] with the boundary condition ψ(r = 0) = 0.

Due to the toroidal and poloidal symmetry of this equilibrium, each of the Fourier

modes of the displacement vector decouple from each other, and we can consider each

mode independently. Although the Euler-Lagrange equation is solved for ξψ(ψ), it is

more straightforward to analyze the nature of the solutions in terms of ξr(r) = ξ ·∇r.

Thus we will discuss the Euler-Lagrange equation in terms of modes of ξr,(
ξrcm,n

)′′
(r) = B1(r)

(
ξrcm,n

)′
(r) +B2(r)ξrcm,n(r) +B3(r). (6.34)

We consider a bulk force perturbation of the form,

δF =
∑
m,n

δFm,n
rc (r) cos

(
mθ − n z

R0

)
r̂

+ δFm,n
αs (r) sin

(
mθ − n z

R0

)(
1

r
θ̂ − ι(r)

R0

ẑ

)
, (6.35)

and a boundary condition given by,

ξr(1) =
∑
m,n

ξrcm,n(1) cos

(
mθ − n z

R0

)
. (6.36)
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6.3.1 m = 0, n = 0 mode

We begin with a discussion of the m = 0, n = 0 mode. The coefficients appearing

in the Euler-Lagrange equation (6.34) become,

B1(r) =
R2

0 − r2ι(r)(ι(r) + 2rι′(r))

r(R2
0 + r2ι(r)2)

− 2ψ′′(r)

ψ′(r)
(6.37a)

B2(r) =
(3R2

0 − r2ι(r)2)ψ′(r)− 2rR2
0ψ
′′(r)

r2(R2
0 + r2ι(r)2)ψ′(r)

(6.37b)

B3(r) = −µ0
r2δF 0,0

rc (r)

(1 + r2ι(r)2/R2
0)ψ′(r)2

. (6.37c)

We note that the Euler-Lagrange equation exhibits regular singular behavior at r = 0.

To study the regular singular behavior near the axis in more detail, we expand the

toroidal flux as,

ψ(r) =
ψ2

2
r2 +O(r4), (6.38)

where ψ2 is some constant, which follows from noting that ψ(r) must be even in r

from (6.33). From the indicial equation for the homogeneous problem with B3(r) = 0,

we find the leading order behavior to be ξrc0,0(r) ∼ r±1 near the origin. The negative

root will be excluded given our boundary condition on the axis; thus, we expect a

smooth solution for the radial displacement vector. The leading order behavior of the

inhomogeneous problem will depend on the bulk force perturbation of interest.

We first demonstrate a perturbed equilibrium with an imposed boundary pertur-

bation and no force perturbation,

ξrc0,0(1) = 1 δF 0,0
rc (r) = 0. (6.39)

The boundary value problem is solved with MATLAB’s bvp4c routine,3 which em-

ploys an implicit Runge-Kutta method with adaptive mesh refinement [128]. Given

that the coefficients become singular on the axis, the axis is not included on the com-

3https://www.mathworks.com/help/matlab/ref/bvp4c.html
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putational grid, and the inner boundary condition is imposed at a point near the axis,

ψmin. For the calculations in this Chapter, we use ψmin ∼ 10−10 − 10−8. (While some

numerical methods for BVPs do not require the evaluation of the ODE at the bound-

ary points, such as finite-difference or collocation methods, our numerical method

requires evaluation at the origin.)

The Euler-Lagrange equation is computed for a VMEC [111] equilibrium, approx-

imating a screw pinch by imposing a large aspect ratio boundary,

R(ψ0, θb) = R0 + a cos(θb) Z(ψ0, θb) = a sin(θb), (6.40)

with a = 1 and R0 = 103. The angle θb ∈ [0, 2π] is used to parameterize the boundary.

The profiles are taken to be p(ψ) = 103 − 5 × 102
(
ψ/ψ0

)
+ 2.5 × 102(ψ/ψ0)2 and

ι(ψ) = 104 + 5 × 103(ψ/ψ0) + 2 × 103(ψ/ψ0)2. The equilibrium flux and profiles are

presented in Figure 6.1.

We compare the numerical solution of the Euler-Lagrange equation with the

displacement vector computed from finite-difference calculations with the nonlinear

VMEC code. We impose a perturbed boundary of the form,

δR(ψ0, θb) = ∆ cos(θb) δZ(ψ0, θb) = ∆ sin(θb). (6.41)

We apply a two-point centered difference derivative with a step size of ∆ = 10−2.

The resulting displacement vector is computed from,

ξψ(ψ, ϑ) = δR(ψ, ϑ)
∂ψ(R,Z)

∂R
+ δZ(ψ, θ)

∂ψ(R,Z)

∂Z
, (6.42)

where δR(ψ, ϑ) and δZ(ψ, ϑ) are the measured changes in the cylindrical coordinates

at fixed flux label and straight field line poloidal angle. The result of the calculation

is shown in Figure 6.2, where we observe good agreement between the finite-difference

188



0 0.2 0.4 0.6 0.8
10

12

14

16

18

(
)/

R
0

(a)

0 0.2 0.4 0.6 0.8
750

800

850

900

950

1000

p(
)

(b)

0 0.2 0.4 0.6 0.8 1
r

0

0.2

0.4

0.6

0.8

(c)

Figure 6.1: Equilibrium (a) rotational transform and (b) pressure profiles used for
screw pinch calculations. (c) Equilibrium flux computed with these profiles.
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Figure 6.2: Benchmark of screw pinch m = 0, n = 0 mode with applied boundary per-
turbation (6.39). The solution of the Euler-Lagrange equation (6.34) with coefficients
(6.37) is compared with a finite-difference VMEC calculation.

and Euler-Lagrange results with a volume-averaged error,

∆V =

∫
VP
d3x

(
ξrVMEC − ξrEuler-Lagrange

)2

∫
VP
d3x

(
ξrVMEC

)2 , (6.43)

of 2.79× 10−5.

We next consider a perturbed equilibrium state corresponding to the addition of

a bulk force in the form of the gradient of a scalar pressure perturbation,

ξrc0,0(1) = 0 δF 0,0
rc (r) = −δp′(r). (6.44)

This type of bulk force perturbation is necessary to compute the shape gradient for

the vacuum magnetic well and beta figures of merit discussed in Chapter 5. We

take δp(r) = p(r), the unperturbed pressure profile. The Euler-Lagrange solution is
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Figure 6.3: Benchmark of screw pinch m = 0, n = 0 mode with applied pressure per-
turbation (6.44). The solution of the Euler-Lagrange equation (6.34) with coefficients
(6.37) is compared with a finite-difference VMEC calculation.

compared with a finite-difference VMEC calculation,

δp(ψ) = ∆p(ψ), (6.45)

computed with a two-point centered-difference stencil of amplitude ∆ = 10−2. The

resulting displacement vectors are displayed in Figure 6.3, where we again observe

good agreement between the linearized solution and its approximation with a finite-

difference derivative of the nonlinear solution. The volume-averaged fractional differ-

ence (6.43) between the solutions is found to be 1.18× 10−4.
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6.3.2 n = 0, m 6= 0 modes

We next consider the behavior of the n = 0, m 6= 0 modes. The coefficients

appearing the Euler-Lagrange equation (6.34) are,

B1(r) = −1

r
− 2ι′(r)

ι(r)
− 2ψ′′(r)

ψ′(r)
(6.46a)

B2(r) =
m2 − 1

r2
(6.46b)

B3(r) = −µ0R
2
0

mδFm,0
rc + δ

(
Fm,0
αs

)′
(r)

mι(r)2ψ′(r)2
. (6.46c)

In addition to the regular singular point on the axis, we note that the coefficients

become singular when ι(r) = 0. This class of equilibria is typically not of interest, so

we will not consider this type of singularity. Expanding the displacement vector as a

power series near the origin, we find the leading order behavior of the homogeneous

solution to be ξrcm,0 ∼ r−1±m. As ψ(r) ∼ r2 to leading order near the axis, we note that

ξψcm,0 ∼ ψ±|m|/2. In order to satisfy the boundary condition at ψ = 0, the minus solution

is excluded. As ξψcm,0(ψ) becomes non-smooth at the origin, additional care must be

taken in obtaining the numerical solution. We find that the accuracy is improved

by solving the BVP on a grid in
√
ψ rather than ψ, as the solution is expected

to be a smooth function of
√
ψ (ξψcm,0(

√
ψ) ∼

(√
ψ
)m

). To ensure the accuracy of

the coefficients near the axis, we additionally employ a near-axis expansion of the

equilibrium equations to O(r6) (Appendix R). The incorporation of the near-axis

solution becomes important when linearizing about equilibria computed with the

VMEC code, which exhibits poor resolution near the magnetic axis.

To demonstrate this method, we perform a benchmark of the homogeneous prob-

lem with an m = 1 boundary perturbation,

ξrc1,0(1) = 1 δF 1,0
rc (r) = 0. (6.47)

The same equilibrium profiles are used as those in Section 6.3.1. We perform a
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Figure 6.4: Benchmark of screw pinch m = 1, n = 0 mode with applied boundary per-
turbation (6.47). The solution of the Euler-Lagrange equation (6.34) with coefficients
(6.46) is compared with a finite-difference VMEC calculation.

benchmark between solutions of the Euler-Lagrange equation and finite-difference

approximations with VMEC equilibria. A boundary perturbation of the form,

δR(ψ0, θb) = ∆ cos(2θb) δZ(ψ0, θb) = ∆ sin(2θb), (6.48)

is imposed. The amplitude of the perturbation is taken to be ∆ = 10−2, and the

perturbed equilibrium state is computed with a two-point centered-difference stencil.

The resulting displacement vector is presented in Figure 6.4. We indeed find

that the displacement vector has very sharp derivatives near the origin, though our

numerical method can reproduce the solution obtained from VMEC. The volume-

averaged fractional error between the solutions is found to be ∆V = 5.67× 10−4.
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6.3.3 m = 0, n 6= 0 modes

We next consider the m = 0, n 6= 0 modes, for which the coefficients of the

Euler-Lagrange equation take the form,

B1(r) =
1

r
− 2ψ′′(r)

ψ′(r)
(6.49a)

B2(r) =
3

r2
+
n2

R2
0

− 2

R2
0

ι(r)
(
ι(r) + rι′(r)

)
−

2(1 + r2

R2
0
ι(r)2)

rψ′(r)
ψ′′(r) (6.49b)

B3(r) = −µ0

r
(
nrδF 0,n

rc (r) + rι(r)
(
δF 0,n

αs

)′
(r) + δF 0,n

αs

(
2ι(r) + rι′(r)

))
nψ′(r)2

. (6.49c)

Although the ODE exhibits a regular singular point at the axis, we expect regular

behavior of the homogenous solution near the origin, as the indicial equation implies

that ξrc0,n(r) ∼ r.

6.3.3.1 Analytic solutions

We can compare numerical solutions of the Euler-Lagrange equation with an an-

alytic solutions in certain limits. Assuming ι = 0 and p = 0, we find that the

equilibrium flux (6.33) satisfies ψ(r) = ψ0r
2. We consider a perturbed equilibrium

problem corresponding to a boundary perturbation and no force perturbation,

ξrc0,n(1) = 1 δF 0,n
rc (r) = 0. (6.50)

In this case, we recover the modified Bessel equation,

n2r2

R2
0

(
ξrc0,n

)′′(nr
R0

)
+
nr

R0

(
ξrc0,n

)′(nr
R0

)
−

(
1 +

n2r2

R2
0

)
ξrc0,n

(
nr

R0

)
= 0. (6.51)

The two solutions are I1(nr/R0) and K1(nr/R0), the modified Bessel functions of the

first and second kind. As the solution must be finite at the origin we find,

ξrc0,n(r) =
I1

(
nr
R0

)
I1

(
n
R0

) . (6.52)
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Figure 6.5: Benchmark of screw pinch m = 0, n = 1 mode with an applied bound-
ary perturbation (6.50). The solution of the Euler-Lagrange equation (6.34) with
coefficients (6.49) is compared with an analytic solution (6.52).

A comparison between the n = 1 Euler-Lagrange solution and analytic solution is

given in Figure 6.5. The volume-averaged fractional error between the solutions is

∆V = 1.22× 10−3.

We now consider the inhomogeneous problem with a bulk force given by δF 0,n
rc (r) =

1/(rµ0). In this case, our Euler-Lagrange equation takes the form of an inhomoge-

neous modified Bessel equation,

n2r2

R2
0

(
ξrc0,n

)′′(nr
R0

)
+
nr

R0

(
ξrc0,n

)′(nr
R0

)
−

(
1 +

n2r2

R2
0

)
ξrc0,n

(
nr

R0

)
+

r

(2ψ0)2 = 0. (6.53)
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Figure 6.6: Benchmark of screw pinch m = 0, n = 1 mode with a bulk force perturba-
tion δF 0,1

rc = 1/r. The solution of the Euler-Lagrange equation (6.34) with coefficients
(6.49) is compared with an analytic solution (6.54).

The solution satisfying the BVP is given by,

ξrc0,n(r) =
R0

(2ψ0)2 rn2I1

(
n
R0

)(rI1

(
nr

R0

)(
−R0 + nK1

(
n

R0

))

+ I1

(
n

R0

)(
R0 − nrK1

(
nr

R0

)))
. (6.54)

We note that xK1(x) ∼ 1 +
(
A+B log(x)

)
x2 for constants A and B near x = 0, so

our displacement vector is not smooth. We find that the numerical solution depends

very sensitively on the accuracy of the coefficients, and it becomes useful to employ

the axis expansion described in Appendix R. We compare the resulting numerical

and analytic Euler-Lagrange solutions in Figure 6.6. The volume-averaged fractional

error (6.43) between the numerical Euler-Lagrange solution and analytic solution is

∆V = 6.14× 10−5.
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6.3.4 m 6= 0, n 6= 0 modes

Finally, we consider modes with m 6= 0 and n 6= 0, for which the Euler-Lagrange

coefficients take the form,

B1(r) = −1

r
+

2n2r

n2r2 +m2R2
0

+
2mι′(r)

n−mι(r)
− 2ψ′′(r)

ψ′(r)
(6.55a)

B2(r) =
2n2rµ0p

′(r)

(n−mι(r))2ψ′(r)2
+
n2(−3 + 2m2) + n4r2

R2
0

+
m2(m2−1)R2

0

r2 + 4n3

n−mι(r)

n2r2 +m2R2
0

(6.55b)

B3(r) = −µ0
n2r2 +m2R2

0

(n−mι(r))2ψ′(r)2
δFm,n

rc − µ0
mR2

0 + nr2ι(r)

(n−mι(r))2ψ′(r)2
(δFm,n

αs )′ (r) (6.55c)

− µ0

nr
(
−2mnR2

0 + 2(n2r2 + 2m2R2
0)ι(r) + (n2r3 +m2rR2

0)ι′(r)
)

(n2r2 +m2R2
0)(n−mι(r))2(ψ′(r))2

δFm,n
αs .

By expanding the solution in a power series, we note the behavior of the solution

varies as ξrcm,n ∼ rm−1 near the origin. Thus, as for modes with n = 0 and m 6= 0,

ξψ will vary with fractional powers of ψ. The numerical treatment of these modes

benefits from accurate calculations of the coefficients with the near-axis expansion.

In addition to the regular singular point at r = 0, we note that there will also be a

singular point on surfaces where ι(r) = n/m.

One method to treat singular surfaces relies on a series expansion of the displace-

ment vector within a boundary layer near the singularity. The method of Frobenius

yields two independent solutions of the second-order ODE,

ξrseries(r) = A1ξ
r,1(r) + A2ξ

r,2(r), (6.56)

near a resonant surface at r = rs. A numerical solution of the ODE, ξrnum(r) is

integrated from the axis to the beginning of the boundary layer at r = rs − rb.

The two constants, A1 and A2, are fixed by matching the numerical solution and

its derivative at rs − rb. The series solution is then evaluated at the other edge of

the boundary layer at rs + rb. The numerical solution is integrated to the plasma

boundary at r = 1 using the initial conditions ξrnum(rs + rb) = ξrseries(rs + rb) and
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(ξrnum)′ (rs + rb) = (ξrseries)
′ (rs + rb). A shooting method is used to solve the BVP.

This technique is similar to that used in the DCON [80] code. However, in DCON

only one independent series solution is considered, as the other is not an element of

the required function space for the generalized Newcomb crossing criteria.

While the above method can reproduce the singular behavior of the Euler-Lagrange

equation, as will be demonstrated shortly, it is not always desirable to include such

singular behavior in the Euler-Lagrange solutions. If the perturbed current density

varies as ∼ 1/(r− rs) near the rational surface, this will drive infinite classical trans-

port [97], which is unphysical. An alternative is to smooth the coefficients artificially

as,

Bsmooth
1 (r) = B1(r)sign(n−mι(r)) n−mι(r)√

(n−mι(r))2 + ε
(6.57a)

Bsmooth
2 (r) = B2(r)

(n−mι(r))2

(n−mι(r))2 + ε
, (6.57b)

where ε � 1 is a scalar chosen to account for the smoothing by classical diffusion.

When ε→ 0, the Euler-Lagrange equation remains unchanged. For small but finite ε,

the coefficients are only modified in the vicinity of rs. This is similar to a technique

used in the IPEC [181] code.

6.3.4.1 Analytic solution near singular surfaces

To study the solutions of the Euler-Lagrange equation with m 6= 0 and n 6= 0

further, we consider a limit in which analytic solutions can be obtained. We will take

p′(ψ) = 0 and ι(r) = ι1r where ι1 is a constant. In this case the force-balance equa-

tion (6.33) gives us the following expression for the flux in terms of hypergeometric

functions,

ψ(r) =
r2ψ0 2F 1

(
1
2
; 3

4
; 3

2
;− r4ι21

R2
0

)
2F 1

(
1
2
; 3

4
; 3

2
;− ι21

R2
0

) . (6.58)
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We define a variable rs = n/(mι1) such that a singular surface occurs at r = rs. The

coefficients of the homogeneous problem can be expressed as,

B1(r) =
3

r − rs
− 5rs
r2 − rrs

− 6

r + r5ι21/R
2
0

− 2R2
0

rR2
0 + r3r2

sι
2
1

(6.59a)

B2(r) =
1 +m2

r2
+

4

rsr − r2
+
m2r2

sι
2
1

R2
0

+
2R2

0(r + rs)

r2(r − rs)(R2
0 + r2r2

sι
2
1)
. (6.59b)

In the limit of small shear, ει = ι1r
2
s/R0 � 1, we can approximate the coefficients as,

B1(r) =
3rs − 5r

r(r − rs)
+O

(
ε2ι
)

(6.60a)

B2(r) =
m2 − 1

r2
+O

(
ε2ι
)
. (6.60b)

In practice we choose a very small value for this expansion parameter (ει ∼ 10−4) so

that dropping the higher order terms is a very good approximation. For the m = 2,

n = 1 mode subject to a boundary perturbation,

ξrc2,1(1) = 1 δF 2,1
rc (r) = 0, (6.61)

we have the analytic solution,

ξrc2,1(r) = rRe

2F 1

(
3−
√

7; 3 +
√

7, 5, r
rs

)
2F 1

(
3−
√

7; 3 +
√

7, 5, 1
rs

)
 . (6.62)

We first consider the case in which rs = 2 such that a singular surface does not

appear within the volume. We compare the numerical solution of the Euler-Lagrange

equation with a finite-difference calculation with VMEC. We impose a boundary

perturbation of the form,

δR(ψ0, θb, φ) = ∆ cos(3θb − φ) (6.63a)

δZ(ψ0, θb, φ) = ∆ sin(3θb − φ), (6.63b)

where φ is the geometric toroidal angle. The perturbed field is computed with
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a two-point centered-difference stencil with amplitude ∆ = 10−4. The results of the

calculations are shown in Figure 6.7. We note that the Euler-Lagrange solution agrees

well with the analytic solution, with a volume-averaged difference of ∆V = 1.86×10−3,

but there is a small discrepancy between the VMEC solution and the analytic solution

near the edge, with a volume-averaged difference of ∆V = 9.60× 10−3. One possible

source of this error is the treatment of singularities by the VMEC code. While recent

results have indicated that VMEC equilibria can exhibit 1/x-like behavior near ratio-

nal surfaces [144, 160], the numerical solution is not truly singular on such surfaces,

and very large numerical resolution is necessary in order to see behavior resembling

a singularity. Therefore, we do not expect the displacement vector computed with

finite-difference VMEC to agree with the Euler-Lagrange solution. Although for this

equilibrium, ι does not resonate with the harmonics of the displacement vector, it

may resonate with other modes present in the nonlinear equilibrium.

Next we consider an equilibrium with a singular surface in the volume, rs = 0.5.

The Euler-Lagrange equation is solved with both the power-series method, which cap-

tures the singular nature of the solution, and the coefficient smoothing method (6.57)

with several values of ε. Again, we compare with a finite-difference VMEC solution

with a boundary perturbation given by (6.63). With the power-series method, we

find agreement between the Euler-Lagrange and analytic solutions. As expected, the

solutions with smoothed coefficients do not reproduce the analytic expression. How-

ever, neither of these approaches approximates the VMEC solution well. Although

the VMEC equilibrium is fairly well-resolved (701 flux surfaces, 10−12 force tolerance,

m ≤ 4 poloidal modes, |n| ≤ 4 toroidal modes), we do not observe a response near

r = rs. We may need to consider a revised treatment of the singularity to match the

behavior from VMEC better.
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Figure 6.7: Benchmark of screw pinch m = 2, n = 1 mode with a boundary pertur-
bation (6.61). The solution of the Euler-Lagrange equation (6.34) with coefficients
(6.55) is compared with an analytic solution (6.62) and a finite-difference calculation
from VMEC. This equilibrium does not contain a resonant surface within the volume.
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Figure 6.8: Benchmark of screw pinch m = 2, n = 1 mode with a boundary pertur-
bation (6.61). The solution of the Euler-Lagrange equation (6.34) with coefficients
(6.55) is compared with an analytic solution (6.62) and a finite-difference calculation
from VMEC. This equilibrium contains a resonant surface at r = 0.5 (ψ = 0.20).
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6.4 Tokamak shape gradient

We will now demonstrate the linearized equilibrium technique to compute the

shape gradient of the vacuum magnetic well figure of merit discussed in Chapter 5,

fW (SP ) =

∫
VP

d3xw(ψ), (6.64)

with,

w(ψ) = exp(−(ψ − ψm,1)2/ψ2
w)− exp(−(ψ − ψm,2)2/ψ2

w), (6.65)

where ψm,1 = 0.9ψ0, ψm,2 = 0.1ψ0, and ψw = 0.05ψ0. The shape gradient of fW

is obtained with an adjoint approach by computing a perturbed equilibrium state

corresponding to the addition of a bulk force with no displacement of the boundary,

δx · ∇ψ = 0 δF = −∇w(ψ). (6.66)

The resulting perturbed field, δB[ξ], is used to compute the shape gradient,

G =
δB[ξ] ·B

µ0

∣∣∣∣
SP

. (6.67)

We perform this calculation for an axisymmetric configuration with a plasma bound-

ary given by,

R(ψ0, θb) = R0 + a cos(θb) + b cos(2θb) (6.68a)

Z(ψ0, θb) = a sin(θb)− b sin(2θb), (6.68b)

with R0 = 3, a = 1, and b = 0.1. Owing to its toroidal symmetry, all of the

toroidal modes of the displacement vector decouple. Given the toroidal symmetry of

the bulk force perturbation, we only need to consider the n = 0 modes. Therefore,

the only singular point of the Euler-Lagrange equation is at the origin. As before,

the magnetic axis is not included on the computational grid, and the coupled BVP is

solved with the bvp4c routine. The radial displacement vector is computed retaining
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(a) (b)

(c)

Figure 6.9: The shape gradient of the vacuum magnetic well (6.64) is computed
for a tokamak equilibrium with triangularity (6.68) with the solution of the Euler-
Lagrange equation corresponding to the adjoint problem (6.66) and a finite-difference
approximation of the adjoint problem with VMEC (6.69).

modes m ≤ 30.

The resulting shape gradient obtained from the Euler-Lagrange solution is shown

in Figure 6.9 along with that computed with a finite-difference VMEC calculation,

δp(ψ) = ∆w(ψ). (6.69)

A two-point centered-difference derivative is computed with magnitude ∆ = 10. The

surface-averaged fractional difference between the Euler-Lagrange and VMEC solu-

tions is computed to be 7.3× 10−3.
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6.5 Conclusions

We have demonstrated a variational method for computing perturbed equilibrium

states corresponding to the addition of a bulk force or boundary perturbation. We

considered the simplified geometry of a screw pinch to demonstrate the behavior

of each of the modes of the displacement vector. Numerical solutions of the Euler-

Lagrange equation are benchmarked with finite-difference calculations of the nonlinear

equilibrium code, VMEC, and with analytic solutions in certain limits. Finally, we

employed this approach to compute the shape gradient of a figure of merit of interest

for stellarator optimization in toroidally symmetric geometry. We aim to apply this

approach for computing such shape gradients in stellarator geometry, though this task

may be somewhat more challenging. In fully 3D geometry, there may exist several

singular surfaces throughout a volume due to toroidal mode coupling, each of which

needs to be treated carefully,

While the Euler-Lagrange equation exhibits singular behavior at rational surfaces,

the equilibria computed with the VMEC code do not appear to exhibit any singular

response, as demonstrated in Section 6.3.4. If the goal is to linearize about VMEC

equilibria, we therefore may not want to solve the Euler-Lagrange equation exactly,

but to artificially smooth the coefficients appearing in the ODE. As an alternative,

artificial viscosity could be added to the Euler-Lagrange system with the addition of a

small term involving a higher-order derivative. This technique, commonly used in the

fluid dynamics community [67, 156], turns a singular ODE into an ODE with a sin-

gular perturbation. It remains to be demonstrated that the shape gradients obtained

from Euler-Lagrange solutions including such smoothing techniques can reproduce

the expected shape gradients computed with the VMEC code.

In addition to the demonstration for three-dimensional geometry, there are several

interesting extensions of the work discussed in this Chapter. As discussed in Chapter
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5, there are several figures of merit for which the adjoint problem requires the addition

of a perturbation to the prescribed toroidal current profile. This would necessitate

generalizing this formulation to allow for perturbations to the magnetic field that vary

the rotational transform profile. While the work in this Chapter has been applied to

compute the shape gradient with respect to the plasma boundary, it may be possible

to couple perturbations of the boundary to coil perturbations in order to compute

the coil shape gradient. This may benefit from a method similar to that used in

the IPEC code, in which the virtual casing principle is applied to couple boundary

perturbations to changes in the external magnetic fields.

The further development of this linear equilibrium approach would enable the

shape gradient of many additional figures of merit to be computed with an adjoint

method. Even if an adjoint method is not applied, the linear equilibrium approach

could prove very fruitful for gradient-based, fixed-boundary optimization. Replacing

a finite-difference calculation by an analytic derivative may reduce computational

cost and noise associated with the finite-difference step size, enabling more efficient

sensitivity and tolerance calculations for stellarator configurations.
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Chapter 7: Conclusions

In this Thesis, we have aimed to address fundamental challenges (Section 1.4.4) as-

sociated with stellarator optimization using the adjoint method and shape sensitivity

analysis:

1. Coil complexity

2. Non-convexity

3. High-dimensionality

4. Tight engineering tolerances.

The adjoint method allows us to efficiently compute derivatives in the context of sev-

eral problems of interest for stellarator optimization. These derivatives enable naviga-

tion through high-dimensional, non-convex spaces with gradient-based methods. We

demonstrate gradient-based optimization with adjoints in Chapter 3, for the design

of coil shapes with minimal complexity. Computing the shape gradient of coil metrics

to perturbations of the winding surface allows us to gain intuition about features of

configurations that enable simpler coils. We also demonstrate gradient-based opti-

mization of the local magnetic geometry for finite-collisionality neoclassical properties

in Chapter 5. While including such objective functions is typically prohibitively ex-

pensive for non-convex, high-dimensional optimization, we demonstrate convergence

toward a local optimum with a minimal number of function evaluations. With this

adjoint method, we also gain intuition of the sensitivity of the bootstrap current and

particle fluxes to perturbations in the field strength, informing engineering tolerances.
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Finally, in Chapter 5 we demonstrate an adjoint method for computing the plasma

surface and coil shape gradient for functions that depend on MHD equilibrium so-

lutions. Importantly, the coil shape gradient can be used to evaluate engineering

tolerances for such figures of merit (Section 2.1.3). While it has not yet been demon-

strated in this Thesis, these shape gradients can also enable efficient adjoint-based

optimization, either in the space of the plasma boundary or coil shapes. As dis-

cussed in Section 1.4, the direct optimization of coil shapes may result in coils that

can be more feasibly engineered than those resulting from the traditional two-step

optimization.

For several problems discussed in this Thesis, it is convenient to apply the discrete

adjoint method (Section 2.2.1). For the winding surface optimization problem in

Chapter 3, the forward problem is solved as a discrete linear system, so the discrete

adjoint operator can be obtained by simply taking the matrix transpose. A similar

discrete adjoint method was applied for neoclassical optimization in Chapter 4, as

the discretized form of the drift-kinetic equation takes the form of a linear system in

the SFINCS code.

Physical insight into the structure of the relevant equations can inform the de-

velopment of continuous adjoint methods (Section 2.2.2). For the neoclassical appli-

cation, the adjoint equation was obtained based on an inner product similar to the

free-energy norm from gyrokinetic theory. The self-adjointness of the linear Fokker-

Planck operator with respect to this inner product enabled straightforward calculation

of the adjoint operator. For the MHD application, the adjoint equation is obtained

by noting the self-adjointness of the MHD force operator, generalized to allow for per-

turbations of the rotational transform and currents in the vacuum region. Finally, in

Chapter 6, a variational method for solving the adjoint equations obtained in Chapter

5 is presented. Here we are able to borrow a variational method from MHD stability

theory to efficiently compute the adjoint equilibrium problem.
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7.1 Outlook

There are several natural extensions of the work presented in this Thesis.

7.1.1 Further development of adjoint methods

• The advancement of the adjoint approach for functions of MHD equilibria necessi-

tates the further development of a linearized equilibrium code, as outlined in Chap-

ter 6. While we have demonstrated this technique for axisymmetric equilibria, we

plan to extend it to 3D equilibria. In this way, adjoint methods for computing the

shape gradient of the departure from quasi-symmetry (Section 5.5.6), effective rip-

ple (Section 5.5.5), and several finite-collisionality neoclassical quantities (Section

5.5.7) could be demonstrated.

• In Chapter 3, we applied the adjoint method to compute derivatives with respect

to the winding surface parameters. Similarly, we can apply the adjoint method

to compute derivatives with respect to plasma surface parameters. This would

allow for the identification of plasma surfaces that do not require overly-complex

coils, facilitating the incorporation of coil considerations in plasma configuration

optimization [36]. Similar figures of merit (without derivative information) have

been used in the ROSE code [59].

7.1.2 Further application of derivatives

We have not yet taken full advantage of derivative information for stellarator

optimization problems.

• The analysis of sensitivity and tolerances presented in this Thesis is based on a

local model, using a linear approximation of a function with first derivative in-

formation. A more accurate global analysis can be computed from Monte-Carlo
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sampling, which typically requires many function evaluations to converge. Un-

certainty quantification can be accelerated through the application of a surrogate

model of the design space [238] with the incorporation of the uncertainty of the

data. A surrogate model is an approximation to an expensive simulation based on

a small number of evaluations of the function. The number of required evaluations

to build the surrogate is reduced with a gradient-enhanced Gaussian process re-

gression model [146]; thus the availability of adjoint-based gradients would enable

more accurate uncertainty quantification. In addition to sensitivity analysis, once

a surrogate is constructed, it can replace the expensive model during optimization,

allowing for more efficient local or global optimization.

• In particular, one type of surrogate function of interest is a neural network, which

can be trained more efficiently using derivative information. Neural networks with

certain choices of activation functions are differentiable, and can therefore be op-

timized with gradient-based optimization techniques. Gradient-based shape op-

timization with neural networks has proven fruitful in the field of aerodynamics

[222].

• Optimization under uncertainty methods optimize the expected value of an ob-

jective function by performing a sample average over a distribution of possible

deviations. These techniques can improve the robustness of the optimum by avoid-

ing small local minima and obtaining solutions with reduced risk. This technique

has proven effective for the optimization of coil shapes with increased tolerances

[150, 151], using a Monte-Carlo approach. To avoid the excessive cost of a Monte-

Carlo method, a linear or quadratic approximation can be made such that the

expectation value and variance can be computed with derivative information [3]

obtained with an adjoint method.

We look forward to the adoption of adjoint methods and shape optimization tools

for many stellarator design problems.
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Appendix A: Toroidal coordinate systems

In this Appendix, we briefly review coordinate systems for describing scalar and

vector fields in toroidal systems. Comprehensive introductions to this topic are pro-

vided in the textbook [54], the review article [97], and the tutorial [121].

A.1 Toroidal coordinates

In this Thesis, we often want to describe surfaces of toroidal topology or the

volumes enclosed by such surfaces. We can describe the position on a toroidal surface

by two angles (Figure A.1). A poloidal angle, denoted by θ, increases by 2π upon one

rotation the short way around the torus. A toroidal angle, denoted by φ, increases

by 2π upon one rotation the long way around the torus.

We will consider a volume, V , bounded by a toroidal surface, S. Suppose that we

use a set of continuously nested toroidal surfaces, Γ(r), as a radial coordinate r, such

that the position within this volume can be expressed as x(r, θ, φ). A vector field, A

Figure A.1: The position on a toroidal surface, S, is described by the toroidal and
poloidal angles. Figure adapted from [121].
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can be expressed in the basis of the gradients of the coordinates,

A = Ar∇r + Aθ∇θ + Aφ∇φ, (A.1)

the covariant form, or the derivatives of the position vectors with respect to the

coordinates,

A = Ar
∂x

∂r
+ Aθ

∂x

∂θ
+ Aφ

∂x

∂φ
, (A.2)

the contravariant form. The two basis vectors can be related through the dual rela-

tions,

∂x

∂xi
=

∇xj ×∇xk
∇xi · ∇xj ×∇xk

, (A.3)

where (xi, xj, xk) = (r, θ, φ) or cyclic permutations. Such a coordinate system is

generally non-orthogonal, so ∂x/∂xi is not necessarily parallel to ∇xi. Several useful

relations in non-orthogonal coordinate systems are summarized in Table A.1. For a

more detailed discussion, refer to Chapter 2 in [54].

A.2 Flux coordinates

If magnetic surfaces exist, indicating that the magnetic field is tangent to a set

of continuously nested toroidal surfaces, we can use the toroidal flux through such

surfaces as a coordinate, defined as,

2πψ ≡
∫
ST (ψ)

d2xB · n̂. (A.4)

In the above expression, ST (ψ) is an open surface such that ∂ST (ψ) is a loop on

Γ(ψ) that closes after one poloidal rotation (Figure A.2). The unit normal is n̂, often

chosen to point in the direction of increasing φ. Another choice for labeling magnetic
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Jacobian
√
g =

(
∂x
∂xi
× ∂x

∂xj

)
· ∂x
∂xk

=
((
∇xi ×∇xj

)
· ∇xk

)−1

Differential volume d3x = |√g|dxidxjdxk

Differential length dx =
∑3

i=1
∂x
∂xi
dxi

Differential surface area (constant xk) d2x = |√g||∇xk|dxidxj

Divergence of vector field ∇ ·A =
∑3

i=1
1√
g
∂
∂xi

(√
gAi
)

Curl of vector field ∇×A =
∑3

k=1
1√
g

(
∂Aj
∂xi
− ∂Ai

∂xj

)
∂x
∂xk

Gradient of scalar ∇q =
∑3

i=1
∂q
∂xi
∇xi

Table A.1: Summary of formulas used to describe the geometry of a non-orthogonal
coordinate system (x1, x2, x3). In the above, {i, j, k} is a cyclic permutation of
{1, 2, 3}. Table adapted from [121].

Figure A.2: The plasma domain, VP , is bounded by a toroidal surface, SP . We
make the assumption that there exists a set of toroidal magnetic surfaces, Γ(ψ). The
toroidal flux through each of these surfaces is defined by (A.4) with ST (ψ) an open
surface bounded by a poloidally closed curve on Γ(ψ), ∂ST (ψ).
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Figure A.3: The poloidal flux through the magnetic surface, Γ(ψ), is defined by (A.5)
with SP (ψ) an open surface bounded by a toroidally closed curve on Γ(ψ), ∂SP (ψ).

surfaces is the poloidal flux function, χ,

2πχ ≡
∫
SP (ψ)

d2xB · n̂, (A.5)

where SP (ψ) is an open surface such that ∂SP (ψ) is a loop on Γ(ψ) that closes after

one toroidal rotation (Figure A.3).

The rotational transform quantifies the number of poloidal turns of a field line per

toroidal turn,

ι ≡ lim
n→∞

∑n
k=1 (∆θ)k

2πn
. (A.6)

Here (∆θ)k is the change in poloidal angle in toroidal rotation k and n counts the

toroidal turns. If flux surfaces exist, then the rotational transform can be computed

from the derivative of the poloidal flux with respect to the toroidal flux,

ι(ψ) = χ′(ψ), (A.7)

If a flux label, ψ, is used as one of the coordinates, known as a flux coordinate

system, then the contravariant form for the magnetic field simplifies,

B = Bθ ∂x

∂θ
+Bφ∂x

∂φ
, (A.8)

from the assumption that B · ∇ψ = 0. Given ∇ · B = 0 and using (A.3), we can

214



express the magnetic field as,

B = ∇ψ ×∇
(
θ − ι(ψ)φ+ λ(ψ, θ, φ)

)
, (A.9)

where λ(ψ, θ, φ) is 2π-periodic in θ and φ (Section 11.1 in [121]).

In a flux-coordinate system, the flux-surface average,

〈A〉ψ =

∫ 2π

0
dθ
∫ 2π

0
dφ
√
gA

V ′(ψ)
, (A.10)

appears in many calculations, where

V ′(ψ) =

∫ 2π

0

dθ

∫ 2π

0

dφ
√
g, (A.11)

is the differential volume associated with a change in flux. The flux-surface average

can be equivalently defined as the average over the infinitesimal volume between flux

surfaces,

〈A〉ψ = lim
∆V→0

1

∆V

(∫
VP (ψ)+∆V

d3xA−
∫
VP (ψ)

d3xA

)
, (A.12)

where VP (ψ) is the volume enclosed by a surface labeled by ψ and VP (ψ) + ∆V is the

volume of a neighboring surface. The flux-surface average is discussed in more detail

in Section 4.9 of [54].

A.3 Magnetic coordinates

A flux coordinate system can be defined with many choices of poloidal and toroidal

angles. With some choices of these angles, the contravariant expression for the mag-

netic field can simplify further. Given (A.9), the definition of the poloidal and toroidal

angles can be shifted to ϑ and ϕ such that the magnetic field can be expressed as,

B = ∇ψ ×∇
(
ϑ− ι(ψ)ϕ

)
. (A.13)

215



Such angles define a magnetic coordinate system. For example, one choice is ϑ =

θ + λ(ψ, θ, φ) and ϕ = φ. For any choice of ϕ, there is a corresponding choice of ϑ

that defines a magnetic coordinate system. With this choice of angles, the magnetic

field lines are said to be straight in the ϑ− ϕ plane,

dϑ(l)

dϕ(l)
=

B · ∇ϑ
B · ∇ϕ

= ι(ψ), (A.14)

with a slope given by the rotational transform. Here l measures length along a field

line such that df/dl = b̂ · ∇f for any quantity f , where b̂ = B/B is the unit vector

in the direction of the magnetic field.

From the covariant form for the magnetic field,

B = Bϑ∇ϑ+Bϕ∇ϕ+Bψ∇ψ, (A.15)

we can compute the net toroidal and poloidal currents enclosed by the surface labeled

by ψ,

IT (ψ) ≡
∫
ST (ψ)

d2xJ · n̂ =
1

µ0

∮
∂ST (ψ)

dl ·B =
1

µ0

∫ 2π

0

dϑBϑ (A.16a)

IP (ψ) ≡
∫
SP (ψ)

d2xJ · n̂ =
1

µ0

∮
∂SP (ψ)

dl ·B =
1

µ0

∫ 2π

0

dϕBϕ, (A.16b)

where ST is defined in Figure A.2 and SP is defined in Figure A.3. Under the ad-

ditional assumption that J · ∇ψ = 0, which follows from MHD force balance (1.3a)

with p(ψ), we can write the covariant form as,

B = I(ψ)∇ϑ+G(ψ)∇ϕ+K(ψ, ϑ, ϕ)∇ψ +∇H(ψ, ϑ, ϕ), (A.17)

where I(ψ) = µ0IT (ψ)/(2π) and G(ψ) = µ0IP (ψ)/(2π). See Section 2.5 in [97],

Section 9.2 in [121], and Chapter 6.5 of [54] for details.
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A.4 Boozer coordinates

As previously mentioned, there are many choices of magnetic coordinates corre-

sponding to different choices of toroidal angle, ϕ. Suppose we begin with a system

defined by (ψ, ϑ, ϕ) and want to transform for a system defined by (ψ, ϑ′, ϕ′). In

order for the primed system to remain a magnetic coordinate system, we must have

ϕ′ = ϕ + γ(ψ, ϑ, ϕ) and ϑ′ = ϑ + ι(ψ)γ(ψ, ϑ, ϕ), where γ(ψ, ϑ, ϕ) is 2π-periodic in

ϑ and ϕ. To construct the Boozer coordinate system [23], we will make a partic-

ular choice for γ to simplify the covariant form for the magnetic field (A.17). The

corresponding changes to the quantities appearing in the covariant form (A.17) are

H ′ = H −
(
ι(ψ)I(ψ) +G(ψ)

)
γ(ψ, ϑ, ϕ) (A.18a)

K ′ = K + γ(ψ, ϑ, ϕ)
(
ι(ψ)I ′(ψ) +G′(ψ)

)
. (A.18b)

Boozer coordinates are defined such thatH ′ = 0, or γ(ψ, ϑ, ϕ) = H(ψ, ϑ, ϕ)/(ι(ψ)I(ψ)+

G(ψ)). With this choice of transformation, we will denote ϑB = ϑ+ιγ and ϕB = ϕ+γ.

The covariant form becomes,

B = I(ψ)∇ϑB +G(ψ)∇ϕB +K(ψ, ϑB, ϕB)∇ψ. (A.19)

By dotting the covariant with the contravariant form, we obtain an expression for the

Jacobian,

√
g =

1

∇ψ ×∇ϑB · ∇ϕB
=
G(ψ) + ι(ψ)I(ψ)

B2
. (A.20)

We note that the Jacobian only varies on a surface through the magnetic field strength;

thus each of the contravariant and covariant components of the magnetic field, except

for K(ψ, ϑB, ϕB), possesses the same property. (The radial covariant component,

K(ψ, ϑB, ϕB), is related to the field strength through the MHD force balance equation

(1.3a).) For this reason, the Boozer coordinate system is extremely convenient for

analyzing guiding center motion and neoclassical transport, as we will in Chapter 4.
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Appendix B: Justification for current potential

In this Appendix, we justify the form for a continuous current density supported

on a toroidal surface, SC ,

JC(θ, φ) = n̂×∇Φ, (B.1)

where n̂ is the unit normal vector.

We consider an extension of JC in a neighborhood of SC of width ∆b,

J̃C(b, θ̃, φ̃) = JC(θ, φ), (B.2)

where we define extensions of θ and φ as,

θ̃(x) = θ(x− b(x)∇b) (B.3a)

φ̃(x) = φ(x− b(x)∇b), (B.3b)

or a normal projection onto SC . We consider b ∈ [−∆b
2
, ∆b

2
] to be a “thickened” region

of continuous current density. We impose the constraint that ∇ · J̃C = 0, expressed

in the (b, θ̃, φ̃) coordinate system (Table A.1),

1
√
g

∂
(√

gJ̃C · ∇b
)

∂b
+
∂
(√

gJ̃C · ∇θ̃
)

∂θ̃
+
∂
(√

gJ̃C · ∇φ̃
)

∂φ̃

 = 0, (B.4)

where
√
g = ∂x/∂b ·

(
∂x/∂θ̃ × ∂x/∂φ̃

)
By the definition of our extension, the first

term will vanish. In the limit that ∆b→ 0, the divergence-free condition is expressed
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as,

∇Γ · JC ≡
1
√
g

(
∂
(√

gJθ
)

∂θ
+
∂
(√

gJφ
)

∂φ

)
= 0, (B.5)

where we have expressed the current in the contravariant basis as JC = Jθ∂x/∂θ +

Jφ∂x/∂φ and ∇Γ· is the surface divergence (Appendix 3 in [229]). For a continuous

current density, Ampere’s law (1.3b) implies that ∇ · J = 0. Thus the equivalent

condition for a current supported on a surface is ∇Γ · JC = 0 [11]. The surface

divergence of a vector field tangent to a surface Γ (A · n̂ = 0 on Γ) defined in terms

of a general continuous extension, Ã in a neighborhood of Γ is,

∇Γ ·A ≡
(
∇ · Ã

) ∣∣
Γ
− n̂ ·

(
∇Ã

) ∣∣
Γ
· n̂. (B.6)

In (B.2), we have defined our extension such that ∇b ·
(
∇J̃C

)
= 0 such that the

second term in the above expression vanishes.

Given (B.5), we can write,

Jθ = − 1
√
g

∂Φ(θ, φ)

∂φ
(B.7a)

Jφ =
1
√
g

∂Φ(θ, φ)

∂θ
, (B.7b)

where,

Φ =

∫
dθ
√
gJφ. (B.7c)

In other words,

JC = n̂×∇Φ. (B.8)
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Appendix C: Adjoint derivative at fixed Jmax

We enforce Jmax = constant in the REGCOIL solve in order to obtain the regu-

larization parameter λ by requiring that the following constraint be satisfied within

a given tolerance,

G
(

Ω,
−→
Φ(Ω, λ)

)
= Jmax

(
Ω,
−→
Φ(Ω, λ)

)
− J target

max = 0. (C.1)

Here J target
max is the target maximum current density and

−→
Φ is chosen to satisfy the

forward equation (3.8),

−→
F
(

Ω,
−→
Φ , λ

)
=
←→
A (Ω, λ)

−→
Φ −

−→
b (Ω, λ) = 0. (C.2)

A log-sum-exponent function is used to approximate the maximum function, similar

to that used to approximate dcoil-plasma (3.24),

Jmax ≈ Jmax, lse =
1

p
log

(∫
SC
d2x exp (pJ)

Acoil

)
. (C.3)

We compute the total differential of
−→
F ,

d
−→
F (Ω,

−→
Φ , λ) =

∑
m,n

(
∂
←→
A (Ω, λ)

∂Ωm,n

−→
Φ − ∂

−→
b (Ω, λ)

∂Ωm,n

)
dΩm,n +

←→
A d
−→
Φ

+
(←→

A K−→Φ −
−→
b K
)
dλ = 0. (C.4)
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Here
←→
A K = ∂

←→
A /∂λ and

−→
b K = ∂

−→
b /∂λ. We left multiply by

←→
A −1 and solve for d

−→
Φ

such that d
−→
F (Ω,

−→
Φ , λ) = 0,

d
−→
Φ = −

∑
m,n

←→
A −1

(
∂
←→
A (Ω, λ)

∂Ωm,n

−→
Φ − ∂

−→
b (Ω, λ)

∂Ωm,n

)
dΩm,n

−
←→
A −1

(←→
A K−→Φ −

−→
b K
)
dλ. (C.5)

We also compute the total differential of G,

dG(Ω,
−→
Φ) =

∑
m,n

∂G(Ω,
−→
Φ)

∂Ωm,n

dΩm,n +
∂G(Ω,

−→
Φ)

∂
−→
Φ

· d
−→
Φ = 0. (C.6)

Using the form for d
−→
Φ (C.5), we compute dλ in terms of dΩm,n,

dλ =

(
∂G(Ω,

−→
Φ)

∂
−→
Φ

·
[
←→
A −1

(←→
A K−→Φ −

−→
b K
)])−1

×
∑
m,n

∂G(Ω,
−→
Φ)

∂Ωm,n

− ∂G(Ω,
−→
Φ)

∂
−→
Φ

·

←→A −1

(
∂
←→
A (Ω, λ)

∂Ωm,n

−→
Φ − ∂

−→
b (Ω, λ)

∂Ωm,n

)
 dΩm,n.

(C.7)

Using (C.5) and (C.7), the derivative of
−→
Φ with respect to Ωm,n subject to equations

(C.1) and (C.2) is given by the following expression,

∂
−→
Φ(Ω, λ(Ω))

∂Ωm,n

= −
←→
A −1

(
∂
←→
A (Ω, λ)

∂Ωm,n

−→
Φ − ∂

−→
b (Ω, λ)

∂Ωm,n

)
−

←→
A −1

(←→
A K−→Φ −

−→
b K
)

∂G(Ω,
−→
Φ)

∂
−→
Φ
·
[
←→
A −1

(←→
A K
−→
Φ −

−→
b K
)]

×

∂G(Ω,
−→
Φ)

∂Ωm,n

− ∂G(Ω,
−→
Φ)

∂
−→
Φ

·

←→A −1

(
∂
←→
A (Ω, λ)

∂Ωm,n

−→
Φ − ∂

−→
b (Ω, λ)

∂Ωm,n

)
 . (C.8)

Here
−→
Φ is understood to be a function of Ω and λ through (C.2) and λ is understood

to be a function of Ω through (C.1). We use the adjoint method to avoid solving a
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linear system involving the operator
←→
A for each Ωm,n,

∂
−→
Φ(Ω, λ(Ω))

∂Ωm,n

= −
←→
A −1

(
∂
←→
A (Ω, λ)

∂Ωm,n

−→
Φ − ∂

−→
b (Ω, λ)

∂Ωm,n

)
−

←→
A −1

(←→
A K−→Φ −

−→
b K
)

∂G(Ω,
−→
Φ)

∂
−→
Φ
·
[
←→
A −1

(←→
A K
−→
Φ −

−→
b K
)]

×

∂G(Ω,
−→
Φ)

∂Ωm,n

−

[(←→
A T

)−1 ∂G(Ω,
−→
Φ)

∂
−→
Φ

]
·

(
∂
←→
A (Ω, λ)

∂Ωm,n

−→
Φ − ∂

−→
b (Ω, λ)

∂Ωm,n

) . (C.9)

We introduce a new adjoint vector
−→
q̃ , defined to be the solution of,

←→
A T−→q̃ =

∂G(Ω,
−→
Φ)

∂
−→
Φ

. (C.10)

Equation (C.9) is then used to compute the derivatives of χ2
B with respect to Ωm,n,

∂χ2
B

(
Ω,
−→
Φ(Ω, λ(Ω))

)
∂Ωm,n

=
∂χ2

B(Ω,
−→
Φ)

∂Ωm,n

+
∂χ2

B(Ω,
−→
Φ)

∂
−→
Φ

· ∂
−→
Φ(Ω, λ(Ω))

∂Ωm,n

. (C.11)

This result can be written in terms of both adjoint variables, −→q and
−→
q̃ ,

∂χ2
B

(
Ω,
−→
Φ(Ω, λ(Ω))

)
∂Ωm,n

=
∂χ2

B(Ω,
−→
Φ)

∂Ωm,n

−−→q ·

(
∂
←→
A (Ω, λ)

∂Ωm,n

−→
Φ − ∂

−→
b (Ω, λ)

∂Ωm,n

)

−
−→q ·

(←→
A K−→Φ −

−→
b K
)

−→
q̃ ·
(←→

A K
−→
Φ −

−→
b K
)
∂G(Ω,

−→
Φ)

∂Ωm,n

−
−→
q̃ ·

(
∂
←→
A (Ω, λ)

∂Ωm,n

−→
Φ − ∂

−→
b (Ω, λ)

∂Ωm,n

) . (C.12)

The same method is used to compute derivatives of‖J‖2. So, to obtain the derivatives

at fixed Jmax, we compute a solution to the two adjoint equations, (3.22) and (C.10),

in addition to the forward equation, (3.8).
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Appendix D: Trajectory models

In the SFINCS coordinate system, the DKE can be written in the following way,

ẋ · ∇f1s + Ẋs
∂f1s

∂Xs

+ ξ̇s
∂f1s

∂ξs
− Cs(f1s) = − (vms · ∇ψ)

∂fMs

∂ψ
. (D.1)

To obtain the trajectory coefficients (ẋ, Ẋs, and ξ̇s) several approximations are made.

For example, any terms that require radial coupling (ψ derivatives of f1s) cannot be

retained, as this would necessitate solving a five-dimensional system.

Under the full trajectory model, the trajectory coefficients are chosen such that µ

conservation is maintained as radial coupling is dropped,

ẋ = v||b̂ +
Φ′(ψ)

B2
B×∇ψ (D.2a)

Ẋs = − (vms · ∇ψ)
qs

2TsXs

Φ′(ψ) (D.2b)

ξ̇s = −1− ξ2
s

2Bξs
v||b̂ · ∇B + ξs(1− ξ2

s )
1

2B3
Φ′(ψ)B×∇ψ · ∇B. (D.2c)

Under the DKES trajectory model, the E×B velocity is taken to be divergenceless,

vDKES
E =

B×∇Φ

〈B2〉ψ
, (D.3)

where the flux surface average of a quantity is (4.8). Under the DKES trajectory

model, the trajectory coefficients are taken to be,

ẋ = v||b̂ +
1

〈B2〉ψ
Φ′(ψ)B×∇ψ (D.4a)

Ẋs = 0 (D.4b)

ξ̇s = −1− ξ2
s

2Bξs
v||b̂ · ∇B. (D.4c)
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These effective trajectories are adopted in the widely-used DKES code [113, 230].
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Appendix E: Adjoint collision operator

We want to find an adjoint collision operator, C†s , that satisfies the following

relation, 〈∫
d3v

g1sCs(f1s)

fMs

〉
ψ

=

〈∫
d3v

f1sC
†
s(g1s)

fMs

〉
ψ

. (E.1)

The linearized Fokker-Planck collision operator can be written as,

Cs(f1s) =
∑
s′

CL
ss′(f1s, f1s′) =

∑
s′

Css′(f1s, fMs′) + Css′(fMs, f1s′), (E.2)

where s′ sums over species. The first term on the right hand side of (E.2) is referred

to as the test-particle collision operator, CT
ss′(f1s) = Css′(f1s, fMs′), and the second

the field-particle collision operator, CF
ss′(f1s′) = Css′(fMs, f1s′). The test and field

terms satisfy the following relations [198, 221],∫
d3v

g1sCss′(f1s, fMs′)

fMs

=

∫
d3v

f1sCss′(g1s, fMs′)

fMs

(E.3a)∫
d3v

g1sCss′(fMs, f1s′)

fMs

=
Ts′

Ts

∫
d3v

f1s′Cs′s(fMs′ , g1s)

fMs′
. (E.3b)

For collisions between species of the same temperature, we see that Cs(f1s) is self-

adjoint. The adjoint operator with respect to the inner product (4.14) is thus,

C†s = CT
s +

∑
s′

fMs

fMs′

Ts′

Ts
CF
s′s. (E.4)

225



Appendix F: Adjoint collisionless trajectories

We want to find an adjoint operator, L†0s, that satisfies,〈∫
d3v

g1sL0sf1s

fMs

〉
ψ

=

〈∫
d3v

f1sL†0sg1s

fMs

〉
ψ

, (F.1)

for both trajectory models, where L0s is defined in (4.10) with (D.4) for the DKES

trajectories model and (D.2) for the full trajectory model. Throughout we use the

velocity space element in SFINCS coordinates, d3v = 2πv3
tsX

2
sdξsdXs.

F.0.1 DKES trajectories

The operator under consideration is,

L0s = v||b̂ · ∇+ v̂DKES
E · ∇ − 1− ξ2

s

2Bξs
v||b̂ · ∇B

∂

∂ξs
. (F.2)

Considering the contribution of the streaming term in (F.2) to the left hand side of

(F.1) we obtain,〈∫
d3v

g1sv||b̂ · ∇f1s

fMs

〉
ψ

= −

〈∫
d3v

f1sv||B · ∇
(
g1s/B

)
fMs

〉
ψ

. (F.3)

Here the identity 〈∇ · Q〉ψ = 1/V ′(ψ)∂/∂ψ
(
V ′(ψ)〈Q · ∇ψ〉ψ

)
for any vector Q has

been used. We next consider the contribution of the E×B drift term in (F.2),〈∫
d3v

g1sv
DKES
E · ∇f1s

fMs

〉
ψ

= −

〈∫
d3v

f1sv
DKES
E · ∇g1s

fMs

〉
ψ

. (F.4)
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Here we have used the identity,

〈B×∇ψ · ∇w〉ψ = 0, (F.5)

for any w. We consider the contribution of the mirror-force term in (F.2),〈∫
d3v

g1sξ̇s
fMs

∂f1s

∂ξs

〉
ψ

= −

〈∫
d3v

f1sξ̇s
fMs

∂g1s

∂ξs

〉
ψ

−
〈∫

d3v
v||
B

b̂ · ∇Bg1sf1s

fMs

〉
ψ

. (F.6)

Combining (F.3-F.6), we obtain〈∫
d3v

g1sL0sf1s

fMs

〉
ψ

= −
〈∫

d3v
f1sL0sg1s

fMs

〉
ψ

. (F.7)

Therefore, in the DKES trajectory model we obtain (4.27).

F.0.2 Full trajectories

The operator under consideration for the full model is,

L0s = v||b̂ · ∇+ vE · ∇+
(1 + ξ2

s )Xs

2B
vE · ∇B

∂

∂Xs

− 1− ξ2
s

2Bξs
v||b̂ · ∇B

∂

∂ξs
+
ξs(1− ξ2

s )

2B
vE · ∇B

∂

∂ξs
. (F.8)

The contribution to (F.1) from the streaming term in (F.8) is identical to that in the

case of the DKES trajectory model, (F.3). We next consider the contribution from

the E×B drift term in (F.8),〈∫
d3v

g1svE · ∇f1s

fMs

〉
ψ

= −

〈∫
d3v

f1sB
2vE · ∇

(
g1s/B

2
)

fMs

〉
ψ

, (F.9)

again using (F.5). The contribution from the Ẋs term in (F.8) is,〈∫
d3v

g1sẊs

fMs

∂f1s

∂Xs

〉
ψ

= −

〈∫
d3v

f1sẊs

fMs

∂g1s

∂Xs

〉
ψ

−
〈∫

d3v (3 + 2X2
s )(1 + ξ2

s )
g1sf1s

2fMsB
vE · ∇B

〉
ψ

. (F.10)
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The contribution from the mirror term in (F.8) is the same as in the case of the DKES

trajectories model (F.6). We consider the contribution from the final term in (F.8),〈∫
d3v

g1sξs(1− ξ2
s )vE · ∇B

2BfMs

∂f1s

∂ξs

〉
ψ

= −

〈∫
d3v

f1sξs(1− ξ2
s )vE · ∇B

2BfMs

∂g1s

∂ξs

〉
ψ

−
〈∫

d3v (1− 3ξ2
s )vE · ∇B

f1sg1s

2BfM

〉
ψ

. (F.11)

Combining (F.3), (F.9), (F.10), (F.6), and (F.11), we obtain〈∫
d3v

g1sL0sf1s

fMs

〉
ψ

= −
〈∫

d3v
f1sL0sg1s

fMs

〉
ψ

+ Φ′(ψ)
qs
Ts

〈∫
d3v (vms · ∇ψ)

f1sg1s

fMs

〉
ψ

. (F.12)

Therefore, under the full trajectory model we obtain (4.28).
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Appendix G: Symmetry of the sensitivity function

In this Appendix we discuss several symmetry properties of the local sensitivity

function, SR, defined through (4.41). The arguments that follow are similar to those

in Appendix C of [138]. Throughout we will assume that B is stellarator symmetric

and NP symmetric. We will show that this implies NP symmetry of SR. In the limit

that Er → 0, then SR also has stellarator symmetry.

G.0.1 Symmetry of SR implied by Fourier derivatives

First we would like to show that SR is stellarator symmetric if and only if ∂R/∂Bs
m,n =

0 for all m and n, where we express B in a Fourier series,

B =
∑
m,n

Bc
m,n cos(mϑB − nϕB) +Bs

m,n sin(mϑB − nϕB). (G.1)

The perturbation, δB, is decomposed similarly. We begin with the “if” portion of

the argument. From (4.41) we have,

∂R
∂Bs

m,n

= V ′(ψ)−1

∫ 2π

0

dϑB

∫ 2π

0

dϕB
√
gSR sin(mϑB − nϕB). (G.2)

Suppose ∂R/∂Bs
m,n = 0 for all m and n. The quantity (

√
gSR) can be represented

as a Fourier series,

(√
gSR

)
=
∑
m,n

Acm,n cos(mϑB − nϕB) + Asm,n sin(mϑB − nϕB). (G.3)

From (G.2), we see that Asm,n = 0 for all m and m. Thus the quantity (
√
gSR) must be

even under the transformation (ϑB, ϕB)→ (−ϑB,−ϕB). We now note that
√
g must
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be even from (4.37) under the assumption that B is stellarator symmetric. Therefore

SR must be stellarator symmetric, assuming that
√
g does not vanish anywhere, which

must be the case for any well-defined coordinate transformation.

We continue with the “only if” portion of the argument. Suppose SR is stellarator

symmetric. As
√
g is also stellarator symmetric, (

√
gSR) can be expressed in a Fourier

series as (G.3) with Asm,n = 0 for all m and n. Thus from (G.2) ∂R/∂Bs
m,n = 0 for

all m and n.

We next show that if B is NP symmetric, then SR is NP symmetric if and only if

∂R/∂Bc
m,n = 0 for all n that are not integer multiples of NP . We begin with the “if”

portion of the argument. From (4.41),

∂R
∂Bc

m,n

= V ′(ψ)−1

∫ 2π

0

dϑB

∫ 2π

0

dϕB
√
gSR cos(mϑB − nϕB). (G.4)

Suppose ∂R/∂Bc
m,n = 0 for all n which are not integer multiples of NP . Here (

√
gSR)

can be expressed in a Fourier series as (G.3) with Asm,n = 0 for all m and n. Inserting

the Fourier series into (G.4), we find that Acm,n = 0 for all n that are not integer

multiples ofNP . Thus (
√
gSR) must beNP symmetric. As

√
g must beNP symmetric,

this implies SR possesses the same symmetry.

Next we consider the “only if” portion of the argument. Suppose that SR is NP

symmetric. As
√
g is also NP symmetric, then (

√
gSR) can be expressed in a Fourier

series as (G.3) where the sum includes n that are integer multiples of NP . Inserting

the Fourier series into (G.4), we find that ∂R/∂Bc
m,n = 0 for all n that are not integer

multiples of NP .

G.0.2 Symmetry of Fourier derivatives

To continue, we need to show that ∂R/∂Bs
m,n = 0 for allm and n and ∂R/∂Bc

m,n =

0 for all n which are not integer multiples of NP . We begin with the NP symmetry

argument. We consider the symmetry of f1s implied by (D.1). Under the transfor-
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mation ϕB → ϕB + 2π/NP , we find that each of the trajectory coefficients remain

unchanged, as well as the source term and collision operator. Therefore we can con-

clude that f1s is NP symmetric. We can also note that each of the R̃ vectors are NP

symmetric, as well as
√
g. We consider the integrand that appears in the flux surface

average in (4.16),

Ds(ϑB, ϕB) =

∫
d3v

f1sR̃f
s

√
g

fMs

. (G.5)

Here the superscript and subscript on R̃ denotes that we consider the unknowns

corresponding to the distribution function of species s. We note that Ds(ϑB, ϕB +

2π/NP ) = Ds(ϑB, ϕB). The quantity R can be expressed in terms of Ds as follows,

R =
∑
s

V ′(ψ)−1

∫ 2π

0

dϕB

∫ 2π

0

dϑBDs. (G.6)

Next we consider the functional derivative ofR with respect to B, defined as in (4.40).

The derivative with respect to Bc
m,n can be thus defined as,

∂R
∂Bc

m,n

= V ′(ψ)−1

∫ 2π

0

dϕB

∫ 2π

0

dϑB

(∑
s

δDs

δB
−R

δ
√
g

δB

)
cos(mϑB − nϕB). (G.7)

As the functional derivative maintains the NP symmetry of Ds and
√
g, the quantity

in parenthesis in (G.7) can be expressed in a Fourier series containing only n that are

integer multiples of NP . Thus we see that the quantity ∂R/∂Bc
m,n = 0 for all n that

are not integer multiples of NP .

Next we consider a similar argument for stellarator symmetry. We begin by con-

sidering the symmetry of f1s implied by (D.1) in the case Er = 0. Under the transfor-

mation (ϑB, ϕB, v||)→ (−ϑB,−ϕB,−v||), we see that both the collisionless trajectory

operator and the collision operator maintain the parity of f1s, while the source term

is odd. Therefore, f1s must be odd under this transformation. In this case, we can

write f1s as,

f1s = f−a,s(Xs, ξs)f
+
b,s(ϑB, ϕB) + f+

a,s(Xs, ξs)f
−
b,s(ϑB, ϕB), (G.8)
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where f−a,s(Xs,−ξs) = −f−a,s(Xs, ξs), f
+
a,s(Xs,−ξs) = f+

a,s(Xs,−ξs), and analogous

expressions for f+
b,s and f−b,s.

We next note that each of the R̃f
s are odd under the transformation (ϑB, ϕB, v||)→

(−ϑB,−ϕB,−v||). As
√
g is even, then we can express R̃f

s

√
g in a similar way to (G.8),

R̃f
s

√
g = B−a,s(Xs, ξs)B

+
b,s(ϑB, ϕB) +B+

a,s(Xs, ξs)B
−
b,s(ϑB, ϕB). (G.9)

The integrand that appears in the flux surface average becomes,

Ds =

∫
d3v f−1

Ms

(
f−a,s(Xs, ξs)B

−
a,s(Xs, ξs)f

+
b,s(ϑB, ϕB)B+

b,s(ϑB, ϕB)

+ f+
a,s(Xs, ξs)B

+
a,s(Xs, ξs)f

−
b,s(ϑB, ϕB)B−b,s(ϑB, ϕB)

)
. (G.10)

We see that Ds is even with respect to the transformation (ϑB, ϕB) → (−ϑB,−ϕB).

The quantity R can be written as in (G.6) and the derivative with respect to a

stellarator asymmetric mode is

∂R
∂Bs

m,n

= V ′(ψ)−1

∫ 2π

0

dϕB

∫ 2π

0

dϑB

(∑
s

δDs

δB
−R

δ
√
g

δB

)
sin(mϑB − nϕB). (G.11)

The functional derivative with respect to B does not change the parity of Ds or
√
g,

thus we see that the quantity in parenthesis in the above equation is even with respect

to the transformation (ϑB, ϕB) → (−ϑB,−ϕB). Therefore, ∂R/∂Bs
m,n = 0 for all m

and n. A similar argument cannot be made if Er 6= 0, as the inhomogeneous drive

term in (D.1) no longer has definite parity. However, according to the arguments in

[112] the transport coefficients do obey this symmetry property.
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Appendix H: Derivatives at ambipolarity

In this Appendix, we derive an expression for derivatives of moments of the dis-

tribution function at fixed ambipolarity rather than fixed Er by determining the

relationship between geometry parameters, Ω, and Er. We begin by assuming that

the continuous adjoint approach outlined in Section 4.3.1 is used. The approach taken

here is analogous to that used in Appendix C, in which an additional adjoint equa-

tion is used to compute derivatives at a fixed constraint function for optimization of

stellarator coil shapes.

Consider the set of unknowns computed with SFINCS, F , which depends on

parameters Ω and Er. The total differential of F satisfies,

LdF (Ω, Er) =

(
∂S(Ω, Er)

∂Er
− ∂L(Ω, Er)

∂Er
F

)
dEr

+

NΩ∑
i=1

(
∂S(Ω, Er)

∂Ωi

− ∂L(Ω, Er)

∂Ωi

F

)
dΩi, (H.1)

which follows from (4.13). Consider Jr(Ω, F ), which depends on Er through F . The

total differential of Jr can be computed,

dJr(Ω, F (Ω, Er)) =

NΩ∑
i=1

∂Jr (Ω, F )

∂Ωi

dΩi +
〈
J̃r, dF (Ω, Er)

〉
, (H.2)
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which can be written using (H.1) and the solution to (4.50),

dJr(Ω, F (Ω, Er)) =

〈
λJr ,

(
∂L(Ω, Er)

∂Er
F − ∂S(Ω, Er)

∂Er

)〉
dEr

+

NΩ∑
i=1

∂Jr(Ω, F )

∂Ωi

+

〈
λJr ,

(
∂L(Ω, Er)

∂Ωi

F − ∂S(Ω, Er)

∂Ωi

)〉 dΩi. (H.3)

By enforcing dJr(Ω, F (Ω, Er)) = 0, we obtain the relationship between Er and Ω at

ambipolarity,

∂Er(Ω)

∂Ωi

∣∣∣∣
dJr=0

= −

〈
λJr ,

(
∂L(Ω, Er)

∂Er
F − ∂S(Ω, Er)

∂Er

)〉−1

∂Jr(Ω, F )

∂Ωi

+

〈
λJr ,

(
∂L(Ω, Er)

∂Ωi

F − ∂S(Ω, Er)

∂Ωi

)〉 . (H.4)

Consider a moment of the distribution function, R(Ω, F (Ω, Er)). The derivative with

respect to Ωi at fixed ambipolarity can thus be computed,

∂R(Ω, F (Ω, Er(Ω))

∂Ωi

=
∂R(Ω, F )

∂Ωi

+

〈
R̃, ∂F (Ω, Er(Ω))

∂Ωi

〉
, (H.5)

where Er is viewed as a function of Ω through (H.4). The first term corresponds

to the explicit dependence on Ωi, while the second contains dependence through F .

Here ∂F (Ω, Er(Ω))/∂Ωi satisfies,

L
∂F (Ω, Er(Ω))

∂Ωi

=

(
∂S(Ω, Er)

∂Ωi

− ∂L(Ω, Er)

∂Ωi

F

)
−
(
∂S(Ω, Er)

∂Er
− ∂L(Ω, Er)

∂Er
F

)〈
λJr ,

(
∂L(Ω, Er)

∂Er
F − ∂S(Ω, Er)

∂Er

)〉−1

×

∂Jr(Ω, F )

∂Ωi

+

〈
λJr ,

(
∂L(Ω, Er)

∂Ωi

F − ∂S(Ω, Er)

∂Ωi

)〉 , (H.6)
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from (H.1) using (H.4). Using (H.6) and (4.23), we find

∂R(Ω, F (Ω, Er(Ω))

∂Ωi

=
∂R(Ω, F )

∂Ωi

+

〈
λR,

(
∂L(Ω, Er)

∂Ωi

F − ∂S(Ω, Er)

∂Ωi

)〉

−

〈
λR,

(
∂L(Ω, Er)

∂Er
F − ∂S(Ω, Er)

∂Er

)〉

×

(
∂Jr(Ω,F )
∂Ωi

+

〈
λJr ,

(
∂L(Ω,Er)
∂Ωi

F − ∂S(Ω,Er)
∂Ωi

)〉)
〈
λJr ,

(
∂L(Ω,Er)
∂Er

F − ∂S(Ω,Er)
∂Er

)〉 . (H.7)

An analogous expression can be obtained using the discrete approach,

∂R
(

Ω,
−→
F
(
Ω, Er(Ω)

))
∂Ωi

=
∂R

(
Ω,
−→
F
)

∂Ωi

+

〈
−→
λR,

(
∂
−→
S (Ω, Er)

∂Ωi

− ∂
←→
L (Ω, Er)

∂Ωi

−→
F

)〉

−

〈
−→
λR,

(
∂
−→
S (Ω, Er)

∂Er
− ∂
←→
L (Ω, Er)

∂Er

−→
F

)〉

×

∂Jr
(

Ω,
−→
F
)

∂Ωi
+

〈
−→
λ Jr ,

(
∂
−→
S (Ω,Er)
∂Ωi

− ∂
←→
L (Ω,Er)
∂Ωi

−→
F

)〉
〈
−→
λ Jr ,

(
∂
−→
S (Ω,Er)
∂Er

− ∂
←→
L (Ω,Er)
∂Er

−→
F

)〉 , (H.8)

where (4.51) has been used.
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Appendix I: Derivation of generalized MHD self-adjointness relation

The quantity UP = UP1 +UP2 consists of two terms, accounting for changes to the

vector potential due to MHD perturbations,

UP1 =

∫
VP

d3x (δJ1 · ξ2 ×B− δJ2 · ξ1 ×B) , (I.1)

and changes to the rotational transform,

UP2 =

∫
VP

d3x
(
δχ1(ψ)δJ2 · ∇ϕ− δχ2(ψ)δJ1 · ∇ϕ

)
. (I.2)

The quantity UP1 can be expressed by using (5.26) and applying the divergence the-

orem to the pressure gradient terms,

UP1 =

∫
VP

d3x ξ2 ·
(
J× δB1 +∇p (∇ · ξ1)− F1

)
−
∫
VP

d3x ξ1 ·
(
J× δB2 +∇p (∇ · ξ2)− F2

)
. (I.3)

We will define δB̃1,2 = ∇ ×
(
ξ1,2 ×B

)
such that δB1,2 = δB̃1,2 − ∇δχ1,2(ψ) × ∇ϕ.

The terms in (I.3) due to δB̃1,2 can be evaluated using J = J||b̂ + b̂ × ∇p/B and

(5.10),∫
VP

d3x
(
ξ2 · J× δB̃1 − ξ1 · J× δB̃2

)
=

∫
VP

d3x
J||
B
∇ ·
(
(ξ1 ×B)× (ξ2 ×B)

)
+

∫
VP

d3x
1

B

(
(ξ2 · ∇p) b̂ · δB̃1 − (ξ1 · ∇p) b̂ · δB̃2

)
. (I.4)

The first term in (I.4) can be simplified using ∇ · J = 0 and noting that the per-

turbation can be written as ξ1,2 = ξψ1,2∇ψ + ξ⊥1,2b̂ × ∇ψ. Applying the identity

B · δB̃1,2 = −B2∇ · ξ1,2 − ξ1,2 · ∇B2 − µ0ξ1,2 · ∇p to the second term, the following
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expression can be obtained,∫
VP

d3x
(
ξ2 · J× δB̃1 − ξ1 · J× δB̃2

)
=∫

VP

d3x
(
(∇ · ξ2) ξ1 · ∇p− (∇ · ξ1) ξ2 · ∇p

)
. (I.5)

Hence we obtain the following expression for UP1 ,

UP1 =

∫
VP

d3x (−ξ2 · F1 + ξ1 · F2)

−
∫
VP

d3x
(
δχ′1(ψ)ξ2 · ∇ψ − δχ′2(ψ)ξ1 · ∇ψ

)
J · ∇ϕ. (I.6)

We now consider UP2 defined in (I.2). Applying (5.24) for the change in toroidal

current, integrating by parts in ψ, and combining the expressions for UP1 (I.3) and

UP2 (I.2), we obtain,

UP =

∫
VP

d3x (−ξ2 · F1 + ξ1 · F2) + 2π

∫
VP

dψ
(
δχ1(ψ)δI ′T,2(ψ)− δχ2(ψ)δI ′T,1(ψ)

)
−
∫
SP

d2x
(
δχ1(ψ)ξ2 − δχ2(ψ)ξ1

)
· n̂J · ∇ϕ. (I.7)

Next we combine UP (I.7) with UB (5.31) and UC (5.32) to obtain the free-boundary

adjoint relation (5.33).

To obtain the fixed-boundary adjoint relation, the integral over the plasma volume

(5.29) can be related to a surface integral by applying the divergence theorem to arrive

at (5.35). Using (5.19) and applying several vector identities,

UP = − 1

µ0

∫
SP

d2x n̂ · (ξ1δB2 − ξ2δB1) ·B

− 1

µ0

∫
SP

d2x
(
δχ2(ψ)δB1 − δχ1(ψ)δB2

)
· ∇ϕ× n̂. (I.8)

Using (I.7) and expressing the second term in (I.8) as a perturbed current using

(5.24), the fixed boundary adjoint relation (5.36) is obtained.
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Appendix J: Alternate derivation of fixed-boundary adjoint relation

The MHD force operator,

F[ξ1,2] = J×
(
∇×

(
ξ1,2 ×B

))
+
∇×

(
∇×

(
ξ1,2 ×B

))
×B

µ0

+∇
(
ξ1,2 · ∇p

)
,

(J.1)

possesses the following self-adjointness property [20, 83],∫
VP

d3x
(
ξ2 · F[ξ1]− ξ1 · F[ξ2]

)
=

1

µ0

∫
SP

d2x n̂ ·
(
ξ1B · δB̃2 − ξ2B · δB̃1

)
, (J.2)

where δB̃1,2 = ∇ ×
(
ξ1,2 ×B

)
is the perturbed field corresponding to the MHD

perturbations. As we consider linearized equilibrium states that preserve p(ψ), the

perturbed pressure satisfies δp(ψ) = −ξ · ∇p. The force operator we adopt (J.1) is

the γ → 0 limit of the more general form of the force operator (5.9), which sometimes

includes the term ∇ (γp∇ · ξ).

For perturbations described by (5.19), (5.20) and (5.23) to (5.26), the force oper-

ator satisfies,

F[ξ1,2] = J×
(
∇δχ1,2(ψ)×∇ϕ

)
+
∇×

(
∇δχ1,2(ψ)×∇ϕ

)
×B

µ0

− δF1,2. (J.3)
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Using (J.3) and several vector identities, the left hand side of (J.2) can be written as∫
VP

d3x
(
ξ2 · F[ξ1]− ξ1 · F[ξ2]

)
=

∫
VP

d3x
(
δχ′1(ψ)ξ2 − δχ′2(ψ)ξ1

)
· ∇ψJ · ∇ϕ

− 1

µ0

∫
VP

d3x∇ψ ×∇ϕ ·
(
δχ′1(ψ)δB̃2 − δχ′2(ψ)δB̃1

)
− 1

µ0

∫
SP

d2x
(
ξ2δχ

′
1(ψ)− ξ1δχ

′
2(ψ)

)
· n̂ (∇ψ ×∇ϕ ·B)

−
∫
VP

d3x (ξ2 · δF1 − ξ1 · δF2) . (J.4)

In arriving at (J.4), we use J · ∇ψ = 0, which follow from MHD force balance (5.10).

Using (5.24) to re-express the first two terms on the right-hand side,∫
VP

d3x
(
ξ2 · F[ξ1]− ξ1 · F[ξ2]

)
= 2π

∫
VP

dψ
(
δIT,2(ψ)δχ′1(ψ)− δIT,1(ψ)δχ′2(ψ)

)
− 1

µ0

∫
SP

d2x
(
ξ2δχ

′
1(ψ)− ξ1δχ

′
2(ψ)

)
· n̂ (∇ψ ×∇ϕ ·B)

−
∫
VP

d3x (ξ2 · δF1 − ξ1 · δF2) . (J.5)

Using (5.19) and (J.2) we obtain (5.36).
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Appendix K: Interpretation of the displacement vector

For MHD perturbations such that δB = ∇ × (ξ ×B) the displacement can be

interpreted as a vector describing the motion of a field lines. Thus a normal per-

turbation to the surface of the plasma as in (5.4) can be expressed in terms of the

displacement vector,

δf(SP ; ξ) =

∫
SP

d2xGξ · n̂. (K.1)

For perturbations that allow for changes in the rotational transform it remains to be

shown that a similar relation can be found.

As we require that ψ remain a flux surface label in the perturbed equilibrium, the

Lagrangian perturbation to ψ at fixed position is

δψ = −δx · ∇ψ. (K.2)

The perturbed magnetic field, B′ = B + δB must remain tangent to ψ′ = ψ + δψ

surfaces; thus to first order in the perturbation,

0 = B′ · ∇ψ′ = B · ∇δψ + δB · ∇ψ. (K.3)

Applying the form for the perturbed field allowing for changes in the rotational trans-

form, δB = ∇×
(
ξ ×B− δχ(ψ)∇ϕ

)
, and using several vector identities, the following

condition is obtained

B · ∇ (δx · ∇ψ) = B · ∇ (ξ · ∇ψ) . (K.4)

This implies that δx·∇ψ = ξ ·∇ψ+F (ψ), where F (ψ) is some flux function which can
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be determined by requiring that the perturbation to the toroidal flux as a function of

ψ vanishes, δΨT (ψ) = 0.

The perturbed toroidal flux through a surface labeled by ψ contains two terms,

corresponding to the flux of the unperturbed field through the perturbed surface and

the perturbed field through the unperturbed surface,

δΨT (ψ) =

∫
∂ST (ψ)

dϑ
√
gδx · ∇ψB · ∇ϕ+

∫
ST (ψ)

dψdϑ
√
gδB · ∇ϕ. (K.5)

Using the form for δB, applying the divergence theorem, and noting that B · ∇ϕ =

√
g−1, the following condition is obtained,

δΨT (ψ) =

∫ 2π

0

dϑ (δx · ∇ψ − ξ · ∇ψ) . (K.6)

By requiring that δΨT (ψ) = 0, we find that F (ψ) = 0. Thus we can express shape

gradients in the form of (K.1) even when the rotational transform is allowed to vary.
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Appendix L: Details of axis ripple calculation

In this Appendix, we compute the shape derivative of the finite-pressure magnetic

well figure of merit from (5.101) and show that if we impose an adjoint perturbation

of the form (5.102), the shape gradient is given by (5.106).

We use the expression for the perturbation to the field strength (5.62) and δψ =

−ξ1 · ∇ψ with (5.101) to obtain,

δfR(SP ; ξ1) =

∫
SP

d2x ξ1 · n̂f̃R −
∫
VP

d3x
∂f̃R
∂ψ

ξ1 · ∇ψ

−
∫
VP

d3x
∂f̃R
∂B

1

B

(
B2∇ · ξ1 + ξ1 · ∇

(
B2 + µ0p

)
+ δχ′1(ψ)B · (∇ψ ×∇ϕ)

)
. (L.1)

The third term can be integrated by parts to obtain,

δfR(SP ; ξ1) =

∫
SP

d2x ξ1 · n̂

(
f̃R −

∂f̃R
∂B

B

)
+

∫
VP

d3x

(
∂2f̃R
∂B∂ψ

B − ∂f̃R
∂ψ

)
ξ1 · ∇ψ

+

∫
VP

d3x

(
−∂f̃R
∂B

Bξ1 · κ+B
∂2f̃R
∂B2

ξ1 · ∇B + δχ′1(ψ)
∂f̃R
∂B

b̂ · (∇ϕ×∇ψ)

)
, (L.2)

where the expression for the curvature in an equilibrium field (5.105) has been applied.

We compute one term that appears in the fixed-boundary adjoint relation (5.36)

using the prescribed adjoint bulk force perturbation (5.102a),∫
VP

d3x ξ1 · F2 =

∫
VP

d3x

(
−
∂2p||
∂B∂ψ

B +
∂p||
∂ψ

)
ξ1 · ∇ψ

+

∫
VP

d3x

(
∂p||
∂B

Bξ1 · κ−B
∂2p||
∂B2

ξ1 · ∇B

)
, (L.3)

where we have applied the parallel force balance condition (5.103). Therefore, if we
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impose p|| = f̃R, we obtain the following expression for the shape derivative of fR,

δfR(SP ; ξ1) =

∫
SP

d2x ξ1 · n̂

(
f̃R −

∂f̃R
∂B

B

)
−
∫
VP

d3x ξ1 · F2

+

∫
VP

d3x δχ′1(ψ)
∂f̃R
∂B

b̂ · (∇ϕ×∇ψ) . (L.4)

Upon application of the fixed-boundary adjoint relation we obtain (5.106) with (5.102).
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Appendix M: Details of effective ripple in the 1/ν regime calculation

Neoclassical transport in the 1/ν collisionality regime is discussed in many ref-

erences including [65], [42], and [116]. In this Appendix we sketch the computation

of ε
3/2
eff originally introduced in [168] and compute linear perturbations of fε (5.112),

showing them to take the form of (5.113).

In the 1/ν regime, the distribution function is ordered in the parameter ν∗ =

ν/(vt/L) � 1, where ν is the collision frequency, the thermal speed is vt =
√

2T/m

for mass m and temperature T , and L is a macroscopic scale length,

f1 = f−1
1 + f 0

1 +O(ν∗). (M.1)

In velocity space we use a pitch angle coordinate λ = v2
⊥/(v

2B), energy coordinate

ε = v2/2, and σ = sign(v||), where v⊥ =
√
v2 − v2

|| is the perpendicular velocity and

v|| = v · b̂ is the parallel velocity. We use the field line label, α, and length along a

field line, l, to describe location on a constant ψ surface. In the 1/ν regime the E×B

precession frequency is assumed to be small relative to the collision frequency, so the

drift kinetic equation (4.2) becomes,

v||
∂f1

∂l
= C(f1)− vm · ∇ψ

∂f0

∂ψ
, (M.2)

where the Maxwellian with density n is,

f0 = nπ−3/2v−3
t e−v

2/v2
t , (M.3)
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and the radial magnetic drift is,

vm · ∇ψ = (v2 + v2
||)

m

2qB3
∇ψ ×B · ∇B, (M.4)

for charge q. The drift kinetic equation to O(ν−1
∗ ) is,

v||
∂f−1

1

∂l
= 0. (M.5)

In the trapped portion of phase space, this implies that f−1
1 = f−1

1 (ψ, α, ε, λ), and in

the passing portion of phase space, this implies that f−1
1 = f−1

1 (ψ, ε, λ, σ). The drift

kinetic equation to O(ν0
∗) is,

v||
∂f 0

1

∂l
= C(f−1

1 )− vm · ∇ψ
∂f0

∂ψ
. (M.6)

In the passing region, this implies that f−1
1 is a Maxwellian, so it can be taken to

vanish. We employ a pitch-angle scattering operator,

C =
2ν(ε)v||
Bε

∂

∂λ

(
λv||

∂

∂λ

)
. (M.7)

The parallel streaming term in (M.6) is annihilated by the bounce averaging operation,

0 = 〈C(f−1
1 )〉b − 〈vm · ∇ψ〉b

∂f0

∂ψ
, (M.8)

where the bounce average of a quantity A is 〈A〉b = τ−1
∮
dl A/v|| and the bounce

time is τ =
∮
dl v−1

|| . The bounce-averaged equation (M.8) can be expressed in terms

of the parallel adiabatic invariant J =
∮
dl v|| using the relation,

〈vm · ∇ψ〉b =
m

qτ

∂J

∂α
. (M.9)

Integrating (M.8) with respect to λ we obtain,

∂f−1
1

∂λ
=

mε

2qλν(ε)

∂f0

∂ψ

(∮
dl
v||
B

)−1 ∫ λ

1/Bmax

dλ′
∂J

∂α
. (M.10)

Here Bmax is the maximum value of the field strength on the surface labeled by ψ.

We have used the boundary condition
(∮

dl v||/B
)
∂f−1

1 /∂λ|λ=1/Bmax = 0, as there is

245



no flux in pitch-angle from the passing region. The integration with respect to λ is

performed to obtain,

∂f−1
1

∂λ
= − m

6qλν(ε)

∂f0

∂ψ

(∮
dl
v||
B

)−1
∂

∂α

(∮
dl
v3
||

B

)
. (M.11)

The particle flux from f−1
1 is obtained by multiplying (M.6) by f−1

1 (∂f0/∂ψ)−1, inte-

grating over velocity space, and flux surface averaging,

〈Γ · ∇ψ〉ψ ≡
〈∫

d3v f−1
1 vm · ∇ψ

〉
ψ

=

〈∫
d3v f−1

1 C(f−1
1 )

(
∂f0

∂ψ

)−1
〉
ψ

. (M.12)

The velocity space integration is performed using the velocity-space Jacobian d3v =

2π
∑

σ Bε/|v|||dλdε. Upon integration by parts in λ and applying (M.11), the follow-

ing expression is obtained,

〈Γ · ∇ψ〉ψ =

− 4
√

2π

V ′(ψ)

(
m

3q

)2 ∫ ∞
0

dε

(
∂f0

∂ψ

)
ε5/2

ν(ε)

∫ 1/Bmin

1/Bmax

dλ

λ

∫ 2π

0

dα
∑
i

( ∂
∂α
K̂i(α, λ))2

Îi(α, λ)
, (M.13)

where the bounce integrals are defined by (5.111). The sum in (M.13) is taken over

trapping regions for particles with pitch angle λ on a field line labeled by α for left

bounce points ϕ−,i ∈ [0, 2π).

The parameter ε
3/2
eff quantifies the geometric dependence of the 1/ν particle flux.

It is defined in terms of the radial particle flux in the following way [168],

〈Γ · ∇ψ〉ψ = −32〈|∇ψ|〉2ψ
(
m

3q

)2
1

B2
0R

2
ε

3/2
eff

∫ ∞
0

dε

(
∂f0

∂ψ

)
ε5/2

ν(ε)
. (M.14)

We take our normalizing length and field values to be such that B0R = ε−1
ref 〈|∇ψ|〉ψ,

where εref is a reference aspect ratio. Comparing (M.13) with (M.14) we obtain the

expression for ε
3/2
eff (5.110). The corresponding expression (29) in [168] is obtained by

noting that ĤNemov = −(∂K̂/∂α)λ1/2B
3/2
0 and Î = 2ÎNemov, where ĤNemov and ÎNemov

are given in (30)-(31) of [168].
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The shape derivative of fε (5.112) is computed to be,

δfε(SP ; ξ1) =

∫
VP

dψ w(ψ)δ(V ′(ψ)ε
3/2
eff (ψ)). (M.15)

The perturbation to the bounce integrals is computed using the following identity

for the perturbation of a line integral QL =
∫ lL
l0
dl Q due to displacement of the

integration curve by vector field δx [9, 138],

δQL =

∫ lL

l0

dl

(
δx ·

(
−κQ+

(
I− t̂t̂

)
· ∇Q

)
+ δQ

)
+Q(lL)δlL −Q(l0)δl0,

(M.16)

where δQ is the perturbation to the integrand at fixed position, t̂ = x′(l) is the unit

tangent vector, κ = x′′(l) is the curvature, and δlL and δl0 are perturbations to the

bounds of the integral.

We compute the perturbation to the bounce integrals to be,

δÎi =

∮
dl

− v||
vB
κ · δx−

(
λv

2Bv||
+

v||
B2v

)
(δx · ∇B + δB)

 (M.17a)

δK̂i =

∮
dl

− v3
||

v3B
κ · δx−

(
3λv||
2Bv

+
v3
||

B2v3

)
(δx · ∇B + δB)

 , (M.17b)

where δB is the perturbation to the field strength (5.62) and δx is given by (5.22).

We note that δx · b̂ = 0 such that the perpendicular projection, (I − t̂t̂), is not

needed. There is no contribution due to the perturbation of the bounce points, as

the integrand vanishes at these points. The expressions (5.113)-(5.115) can now be

obtained by writing (M.15) in terms of the perturbations of the bounce integrals, using

ξ1 · ∇B + δB = −B
(
I− b̂b̂

)
: ∇ξ1− δχ′1(ψ)b̂ · (∇ψ×∇ϕ) and κ · ξ1 = −b̂b̂ : ∇ξ1.
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Appendix N: Details of departure from quasi-symmetry calculation

In this Appendix we compute the shape derivative of fQS (5.121) to obtain (5.126)-

(5.127c) by expressing each term in (5.125) in the desired form. The second term in

(5.125) is expressed using δψ = −ξ1 · ∇ψ,

1

2

∫
VP

d3xw′(ψ)δψM2 = −1

2

∫
VP

d3xM2ξ1 · ∇w(ψ). (N.1)

The third term in (5.125) is computed upon application of (5.20), the divergence

theorem, and noting that M = B ·A,∫
VP

d3xw(ψ)MδB·A = −
∫
SP

d2x ξ1·nw(ψ)M2−
∫
VP

d3xw(ψ)δχ′1(ψ)M∇ψ×∇ϕ·A

+

∫
VP

d3x ξ1 ·
(
w(ψ)M

(
B× (∇×A)

)
−Aw(ψ)B · ∇M+M∇

(
w(ψ)M

))
.

(N.2)

The quantity A can be projected into the perpendicular direction as ξ1 ·b̂ = 0, noting

that,

b̂×
(
A× b̂

)
= −(b̂×∇ψ)∇||B − F (ψ)∇⊥B. (N.3)

Similarly, any terms in (N.2) involving ξ1 · ∇ can be expressed as ξ1 · ∇⊥. The

corresponding terms in (5.127a) are obtained using the expression for the curvature in

an equilibrium field. The fourth term in (5.125) is expressed in the following way upon
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application of (5.62), the divergence theorem, and noting that S · ∇ψ = ∇ · S = 0,∫
VP

d3xw(ψ)MS·∇δB =

∫
SP

d2x ξ1·nBw(ψ)S·∇M−
∫
VP

d3x ξ1·
[
B∇

(
w(ψ)S · ∇M

)]
+

∫
VP

d3xw(ψ)(S · ∇M)
(
δχ′1(ψ)b̂ · (∇ψ ×∇ϕ) +Bξ1 · κ

)
. (N.4)

We express terms involving ξ1 · ∇ as ξ1 · ∇⊥ to obtain the corresponding terms in

(5.127a). The fifth term in (5.125) is expressed in the following way upon application

of δψ = −ξ1 · ∇ψ, the divergence theorem, and several vector identities,∫
VP

d3xw(ψ)MB×∇δψ · ∇B = −
∫
SP

d2x ξ1 · n̂w(ψ)M∇B ×B · ∇ψ

−
∫
VP

d3x ξ1 · ∇ψ∇B · ∇ ×
(
w(ψ)MB

)
. (N.5)

The sixth term in (5.125) upon application of (5.124) is,

−
∫
VP

d3x
δG(ψ)w(ψ)MB · ∇B

ι(ψ)− (N/M)
=

1

4π2

∫
SP

d2x
w(ψ)V ′(ψ)〈MB · ∇B〉ψ

(ι(ψ)− (N/M))
(B · ∇ψ ×∇ϑ) ξ1 · n̂

− 1

4π2

∫
VP

d3x ξ1 · ∇
(
w(ψ)V ′(ψ)〈MB · ∇B〉ψ

(ι(ψ)− (N/M))

)
B · ∇ψ ×∇ϑ

+
1

4π2

∫
VP

d3x
w(ψ)V ′(ψ)〈MB · ∇B〉ψ

ι(ψ)− (N/M)

(
ξ1 ·

(
∇ψ∇ · (B×∇ϑ)−B×∇× (∇ψ ×∇ϑ)

))
− 1

4π2

∫
VP

d3x δχ′1(ψ)
w(ψ)V ′(ψ)〈MB · ∇B〉ψ√

g2(ι(ψ)− (N/M))

∂x

∂ϕ
· ∂x

∂ϑ
. (N.6)

In obtaining the corresponding terms in (5.127a), terms involving ξ1 ·∇ are expressed

as ξ1 ·∇⊥. The seventh term in (5.125) is expressed using δψ = −ξ1 ·∇ψ. Combining

all terms, we obtain (5.126)-(5.127c).
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Appendix O: Details of neoclassical figures of merit calculation

In this Section we compute the shape derivative of fNC (5.130) to obtain (5.136)-

(5.137c) by expressing each term in (5.135) in the desired form. Throughout Boozer

coordinates will be assumed.

The second term in (5.135) is expressed using δψ = −ξ1 · ∇ψ. The third term in

(5.135) can be computed using (5.124), noting that V ′(ψ)/(4π2√g) = B2/〈B2〉ψ in

Boozer coordinates and applying the divergence theorem,∫
VP

d3xw(ψ)
∂R(ψ)

∂G(ψ)
δG(ψ) = −

∫
VP

d3xw(ψ)
B2√g
〈B2〉ψ

∂R(ψ)

∂G(ψ)
ξ1 · ∇ψ(∇×B) · ∇ϑ

+

∫
VP

d3x

ξ1 · ∇

(
∂R(ψ)

∂G(ψ)

w(ψ)

〈B2〉ψ

)
B2G(ψ) +

w(ψ)

〈B2〉ψ
∂R(ψ)

∂G(ψ)
ξ1 ·B×∇×

(
∂x

∂ϕ
B2

)
+

∫
VP

d3x
w(ψ)δχ′1(ψ)B2

√
g〈B2〉ψ

∂R(ψ)

∂G(ψ)

∂x

∂ϕ
· ∂x

∂ϑ
−
∫
SP

d2xw(ψ)
B2

〈B2〉ψ
∂R(ψ)

∂G(ψ)
G(ψ)ξ1 · n̂.

(O.1)

The fifth term in (5.135) can be computed using (5.62), the divergence theorem, and

the expression for the curvature in an equilibrium field (5.105),∫
VP

d3xw(ψ)〈SRδB〉ψ =

∫
VP

d3x
(
ξ1 · ∇

(
w(ψ)SR

)
B −BSRw(ψ)ξ1 · κ

)
−
∫
VP

d3x δχ′1(ψ)SRw(ψ)b̂ · ∇ψ ×∇ϕ−
∫
SP

d2xw(ψ)SRBξ1 · n̂. (O.2)

The resulting terms can be combined to write the shape derivative in the form of

(5.136), noting that any terms involving ξ1 · ∇ can be expressed as ξ1 · ∇⊥.
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Appendix P: Linearized equilibrium energy functional and coefficient

matrices

P.1 Further simplification of energy functional

We will now further simplify the energy functional (6.11) using a magnetic coor-

dinate system. Each of the contravariant components of the perturbed magnetic field

are evaluated to be,

Qψ ≡ δB[ξ] · ∇ψ =
1
√
g

(
∂ξψ

∂ϕ
+ ι

∂ξψ

∂ϑ

)
(P.1a)

Qϑ ≡ δB[ξ] · ∇ϑ =
1
√
g

(
∂ξα

∂ϕ
− ∂ξψι

∂ψ

)
(P.1b)

Qϕ ≡ δB[ξ] · ∇ϕ = − 1
√
g

(
∂ξα

∂ϑ
+
∂ξψ

∂ψ

)
. (P.1c)

We also express the current density in the contravariant basis as,

J = Jϑ
∂x

∂ϑ
+ Jϕ

∂x

∂ϕ
. (P.2)

The first term in the energy functional is expressed as,

W1 ≡ −
1

µ0

∫
VP

d3x δB[ξ] · δB[ξ] (P.3)

= − 1

µ0

∫
VP

d3x

[(
Qψ
)2

gψψ +
(
Qϑ
)2

gϑϑ + (Qϕ)2 gϕϕ + 2QψQϑgψϑ

]
,

where gxixj = ∂x/∂xi ·∂x/∂xj are the metric coefficients. Here we have assumed that

ϕ = φ, the geometric toroidal angle, such that gϑϕ = gψϕ = 0.
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The second term in the energy functional is expressed as,

W2 ≡
∫
VP

d3x ξ · J× δB[ξ] (P.4)

=

∫
VP

d3x
√
g

(
ξψ
(
JϑQϕ − JϕQϑ

)
+Qψ

(
ξϑJϕ − ξϕJϑ

))
.

Here we can note that the radial component of MHD force balance yields p′(ψ) =

Jϑ − ι(ψ)Jϕ to write,

W2 =

∫
VP

d3x
√
g

(
ξψ
(
JϑQϕ − JϕQϑ

)
+Qψ

(
ξαJϕ − p′(ψ)ξϕ

))
. (P.5)

The third term in the energy functional can be expressed as,

W3 ≡
∫
VP

d3x ξ · ∇ (ξ · ∇p) (P.6)

=

∫
VP

d3x

ξψ ∂(ξψp′(ψ))

∂ψ
+ p′(ψ)

(
ξα
∂ξψ

∂ϑ
+
√
gQψξϕ

) .
Combining W2 and W3, we see that the energy functional indeed only depends on ξα

and ξψ,

W2 + W3 =

∫
VP

d3x

(
√
gξψ

(
JϑQϕ − JϕQϑ

)
+ ξαJ · ∇ξψ + ξψ

∂(ξψp′(ψ))

∂ψ

)
. (P.7)

We now can apply the divegernce theorem, noting that ∇·J = J ·∇ψ = 0, to obtain,

W2 +W3 =

∫
VP

d3x

(
ξψ
(
Jϕι′(ψ)ξψ − 2J · ∇ξα + ξψp′′(ψ)

))
. (P.8)

We now see that the first three terms of the energy functional only depend on ξα

through its ϑ and ϕ derivatives. Furthermore, given the restriction of δFα discussed

in Appendix Q, the m = 0, n = 0 mode of ξα will not enter the variational principle.

P.2 Explicit forms of coefficient matrices

We can now express the linear operators that couple the Fourier components of

ξα, ξψ, and ∂ξψ/∂ψ given the simplifications of the energy functional in the previous
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Section:

Aψ′ψ′ = −V
′(ψ)

µ0

〈
1(√
g
)2

(
gϕϕ + ι(ψ)2gϑϑ

)
FψFψ

〉
ψ

(P.9a)

Aψψ =
V ′(ψ)

µ0

〈
1(√
g
)2

[
− gψψ

(
∂Fψ

∂ϕ

∂Fψ

∂ϕ
+ ι(ψ)2∂Fψ

∂ϑ

∂Fψ

∂ϑ

)
(P.9b)

− gψψι(ψ)

(
∂Fψ

∂ϑ

∂Fψ

∂ϕ
+
∂Fψ

∂ϕ

∂Fψ

∂ϑ

)

+
(
µ0

(√
g
)2 (

Jϕι′(ψ) + p′′(ψ)
)
− gϑϑ

(
ι′(ψ)

)2
)
FψFψ

+ gψϑι
′(ψ)

(∂Fψ

∂ϕ
+ ι(ψ)

∂Fψ

∂ϑ

)
Fψ + Fψ

(
∂Fψ

∂ϕ
+ ι(ψ)

∂Fψ

∂ϑ

)]〉
ψ

Aψψ′ =
V ′(ψ)

µ0

〈
2ι(ψ)(√
g
)2

[
−Fψgϑϑι

′(ψ) + gψϑ

(
∂Fψ

∂ϕ
+ ι(ψ)

∂Fψ

∂ϑ

)]
Fψ

〉
ψ

(P.9c)

Aαα = −V
′(ψ)

µ0

〈
1(√
g
)2

[
gϑϑ

∂Fα

∂ϕ

∂Fα

∂ϕ
+ gϕϕ

∂Fα

∂ϑ

∂Fα

∂ϑ

]〉
ψ

(P.9d)

Aαψ′ =
2V ′(ψ)

µ0

〈
1(√
g
)2

[
gϑϑι

∂Fα

∂ϕ
− gϕϕ

∂Fα

∂ϑ

]
Fψ

〉
ψ

(P.9e)

Aαψ = −2V ′(ψ)

µ0

〈
1(√
g
)2

[(
−gϑϑι′(ψ)

∂Fα

∂ϕ
+ µ0

(√
g
)2

J · ∇Fα

)
Fψ (P.9f)

+ gψϑ
∂Fα

∂ϕ

(
∂Fψ

∂ϕ
+ ι(ψ)

∂Fψ

∂ϑ

)]〉
ψ

Iψ = 2V ′(ψ)
〈
FψδFψ

〉
ψ

(P.9g)

Iα = 2V ′(ψ) 〈FαδFα〉ψ , (P.9h)

where 〈...〉ψ is the flux-surface average (A.10).

P.3 Invertibility of Aαα

Obtaining the Euler-Lagrange solution for ξα requires inverting Aαα. We now

show that this matrix is, in fact, negative definite and thus invertible. For any non-
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zero vector Ξα, we can write the inner product with Aαα as,

Ξα · (AααΞα) = − 1

µ0

∫ 2π

0

dϑ

∫ 2π

0

dϕ

[
gϑϑ√
g

(
∂ξα

∂ϕ

)2

+
gϕϕ√
g

(
∂ξα

∂ϑ

)2
]
. (P.10)

We note that for a well-defined coordinate system, gϑϑ > 0, gϕϕ > 0, and
√
g > 0.

While either ∂ξα/∂ϕ or ∂ξα/∂ϑ may vanish, they will not vanish simultaneously

throughout the integrand as we have excluded the n = 0, m = 0 mode. Therefore,

the integrand will only vanish at isolated points. Thus the above integral is negative

definite, and Aαα is invertible throughout the volume.
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Appendix Q: Constraint on bulk force perturbation

As shown in Appendix P, the first three terms in the energy functional (6.11) only

depend on ξα through its derivatives with respect to ϑ and ϕ. In this Appendix, we

show that it is always possible to choose the in-surface component of the bulk force

perturbation, δFα, such that the final term in the energy functional,

W4 ≡
∫
VP

d3x ξαδFα, (Q.1)

does not depend on ξαc0,0 = 1
(2π)2

∫ 2π

0
dϑ
∫ 2π

0
dϕ ξα. As ξαc0,0 does not enter our variational

principle, we can take it to vanish. The condition that ξαc0,0 does not enter W4 is

equivalent to requiring that,

〈δFα〉ψ = 0, (Q.2)

on every surface, where 〈. . . 〉ψ is the flux-surface average (A.10). This follows from

the surface-averaged in-surface component of the linearized force-balance equation

(6.2), 〈
∂x

∂ϑ
· F[ξ]

〉
ψ

= 0. (Q.3)

This property of the MHD force operator holds for any equilibrium field that satisfies

MHD force balance (6.1). To see this we note that the flux-surface average can be

defined in terms of an average over the infinitesimal volume between flux surfaces ∆V
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(A.12). We can now apply the self-adjointness relation (6.9) to simplify (Q.3),〈
∂x

∂ϑ
· F[ξ]

〉
ψ

=

〈
ξ · F

[
∂x

∂ϑ

]〉
ψ

+ lim
∆V→0

1

µ0∆V

(∫
∂(VP+∆V )

d2x n̂ · ξB · δB
[
∂x

∂ϑ

]
−
∫
∂(VP )

d2x n̂ · ξB · δB
[
∂x

∂ϑ

])
,

(Q.4)

where we have noted that n̂ · ∂x
∂ϑ

= 0, as n̂ ∝ ∇ψ. The quantity δB
[
∂x/∂ϑ

]
=

∇ ×
(
∂x/∂ϑ×B

)
is shown to vanish by expressing B in contravariant form and

using the dual relations (A.3) between the contravariant and covariant basis vectors.

The remaining flux-surface averaged term can also be shown to vanish,〈
ξ · F

[
∂x

∂ϑ

]〉
ψ

=

〈
ξ ·

J× δB
[
∂x

∂ϑ

]
+

(
∇× δB

[
∂x
∂ϑ

])
×B

µ0

+∇
(
∂x

∂ϑ
· ∇p

)
〉
ψ

, (Q.5)

as ∂x
∂ϕ
· ∇ψ = 0 and δB

[
∂x/∂ϑ

]
= 0.

Therefore, we see that in order to satisfy linear force balance, δFα must be chosen

to satisfy the condition (Q.2). However, this property can always be imparted on a

bulk force arising from the adjoint formulation. Consider the fixed-boundary adjoint

relation (5.36) without perturbations to the rotational transform,∫
VP

d3x (ξ1 · F2 − ξ2 · F1)

− 1

µ0

∫
SP

d2x n̂ ·
(
ξ2δB[ξ1] ·B− ξ1δB[ξ2] ·B

)
= 0. (Q.6)

As δB[ξ] does not depend on ξαc0,0, we can choose to define the displacement vector such

that ξαc0,0 = 0. This is analogous to our convention that ξ ·B = 0, as δB[ξ] does not

depend on the parallel component of ξ. Given this convention for the displacement

vector, we can note that 〈δFα,2〉ψ and 〈δFα,1〉ψ do not enter the above adjoint relation.
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Therefore, we are free to choose our bulk force such that the desired constraint (Q.2)

is satisfied.
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Appendix R: Near-axis expansion of screw pinch equilibria

The MHD force-balance equation for a screw pinch is,

d

dr

(
µ0p(r) +

1

2r2

(
ψ′(r)

)2
)

+
ι(r)ψ′(r)

R2
0r

d

dr

(
rι(r)ψ′(r)

)
= 0. (R.1)

We note that (R.1) remains unchanged under the transformation r → −r, so ψ(r)

must be even in r. Thus near the origin we can express the flux function as,

ψ(r) =
ψ2

2
r2 +

ψ4

4!
r4 +

ψ6

6!
r6 +O(r8), (R.2)

under the assumption that ψ(0) = 0. We similarly express the rotational transform

and pressure profiles in a power series near the axis,

ι(ψ(r)) = ι0 + ι1ψ(r) +
ι2
2
ψ(r)2 +

ι3
3!
ψ(r)3 +O(ψ(r)4) (R.3a)

p(ψ(r)) = p0 + p1ψ(r) +
p2

2
ψ(r)2 +

p3

3!
ψ(r)3 +O(ψ(r)4). (R.3b)

The force-balance equation to O(r) becomes,

µ0p1ψ2 +
2ι20ψ

2
2

R2
0

+
ψ2ψ4

3
= 0, (R.4)

and to O(r3) it is,

µ0p2ψ
2
2

2
+

3ι0ι1ψ
3
2

R2
0

+
µ0p1ψ4

6
+
ι20ψ2ψ4

R2
0

+
ψ2

4

18
+
ψ2ψ6

30
= 0. (R.5)

In order to determine the power series expansion of ψ, we match the solution near

the axis with a numerical solution for ψ(r) at some chosen boundary location near
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the axis, rb. To perform an expansion to O(r2), ψ2 is chosen such that

ψ2 =
2ψ(rb)

r2
b

. (R.6)

To perform an expansion to O(r4), (R.4) is used to express ψ4 in terms of ψ2, and ψ2

is chosen such that ψ2r
2
b/2 + ψ4r

4
b/4! = ψ(rb),

ψ2 =
−µ0p1r

4
b − 8ψ(rb)

2r2
b

(
r2
b ι

2
0

R2
0
− 2
) (R.7a)

ψ4 = −3

(
µ0p1 +

2ι20ψ2

R2
0

)
. (R.7b)

To perform an expansion to O(r6), (R.4) and (R.5) are used to express ψ4 and ψ6

in terms of ψ2, and ψ2 is chosen such that ψ2r
2
b/2 + ψ4r

4
b/4! + ψ6r

6
b/6! = ψ(rb). The

resulting equation for ψ2 is quadratic, but only one solution is allowed in practice to

ensure that (ψ6r
6
b/6!)/(ψ2r

2
b/2 + ψ4r

4
b/4!) ∼ r2

b in the limit that rb � 1,

ψ2 = − R2
0

12ι0ι1r6
b

(
− 24r2

b +
12r4

b ι
2
0

R2
0

+ r6
b

(
µ0p2 −

8ι40
R4

0

)
(R.8a)

+ r2
b

[(
−24 + µ0p2r

4
b +

12r2
b ι

2
0

R2
0

− 8r4
b ι

4
0

R4
0

)2

+
48r2

b ι0ι1
R2

0

p1r
4
b

(
−3 +

2r2
b ι

2
0

R2
0

)
− 24ψ(rb)

]1/2)

ψ4 = −3

(
µ0p1 + 2

ι20
R2

0

ψ2

)
(R.8b)

ψ6 = 15

(
4µ0p1ι

2
0

R2
0

− µ0p2ψ2 +
8ι40ψ2

R4
0

− 6ι0ι2ψ
2
2

R2
0

)
. (R.8c)

We compare the resulting solution for ψ to a numerical solution of (R.1) using

MATLAB’s bvp4c routine. The solution is computed for r ∈ [0, 1] with a boundary

condition of ψ(0) = 0 and ψ(1) = ψ0. The same profiles are used as described in

Section 6.3.1. The axis expansion solution is matched with the numerical solution at

rb = 10−2. In Figure R.1 we present a comparison between the numerical solution

and axis expansion of ψ(r). As expected, the error in the axis expansion to O(rp)
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(a) (b)

Figure R.1: (a) The axis expansion solutions toO(r2), O(r4), andO(r6) are compared
with the numerical solution of ψ(r) near the axis. (b) The absolute error in the
expansion is shown, |

∑
n ψnr

n/n! − ψ(r)| where ψ(r) is the numerical solution. As
expected, the error in the axis expansion to O(rp) scales as |r − rb|p+2 near r = rb.

scales as ∼ |r − rb|p+2 as one moves away from r = rb.
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