
ABSTRACT

Title of dissertation: PLANNING, MONITORING AND LEARNING
WITH SAFETY AND TEMPORAL
CONSTRAINTS FOR ROBOTIC SYSTEMS

Zhenyu Lin, Doctor of Philosophy, 2019

Dissertation directed by: Professor John S. Baras
Department of Electrical and Computer Engineering

In this thesis, we address the problem of planning, monitoring and learning

in robotic systems, while considering the safety and time constraints. Motion and

action planning for robotic systems is important for real, physical world applications.

Robots are capable of performing repetitive tasks at speeds and accuracies that far

exceed those of human operators and are widely used in manufacturing, medical

fields and even transportation.

Planning commonly refers to a process of converting high-level task specifica-

tions into low-level control commands that can be executed on the system of interest.

Time behavior is a most important issue for the autonomous systems of interest,

and it is critical for many robotic tasks. Most state of the art methods, however, are

not capable of providing the framework needed for the autonomous systems to plan

under finite time constraints. Safety and time constraints are two important aspects

for the plan. We are interested in the safety of the plan, such as “Can the robot

reach the goal without collision?”. We are also interested in the time constraints for

the plan, such as “Can the robot finish this task after 3 minutes but no later than

5 minutes?”. These type of tasks are important to understand in robot search and

rescue or cooperative robotic production line.

In this thesis, we address these problems by two different approaches, the

first one is a timed automata based approach, which focuses on a more high-level,

abstracted result with less computational requirement. The other one involves con-

verting the problem into a mixed integer linear programming (MILP) with more

low-level control details but requires higher computational power. Both methods

are able to automatically generate a plan that are guaranteed to be correct. The

robotic systems may behave differently in runtime and not able to execute the task

perfectly as planned. Given that a robotic system is naturally cyber-physical, and

malfunctions can have safety consequences, monitoring the system’s behavior at run-

time can be key to safe operation. Therefore, it is important to consider both time

and space tolerances during the planning phase, and also design runtime monitors

for error detection and possible self-correction. We provide an optimization-based

formulation which takes the tolerances into account, and we have designed runtime

monitors to monitor the status of the systems, as well as an event-triggered model

predictive controller for self-correction.

Learning is another very important aspect for the robotics field. We hope to

only provide the robot with high-level task specifications, and the robot learns to

accomplish the task. Thus, in the next part of this thesis, we discussed how the

robot could learn to accomplish task specified by metric interval temporal logic,

and how the robot could replan and self-correct if the initial plan fails to execute

correctly.

As the field of robotics is expanding from the fixed environment of a production

line to complex human environments, robots are required to perform increasingly

human-like manipulation tasks. Thus, for the last aspect of the thesis, we considered

a manipulation task with dexterous robotic hand - Shadow Hand. We collected the

multimodal haptic-vision dataset, and proposed the framework of self-assurance

slippage detection and correction. We provided the simulation and also real-world

implementation with a UR10 and Shadowhand robotic system.

Planning, Monitoring and Learning with Safety and Temporal
Constraints for Robotic Systems

by

Zhenyu Lin

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor John S. Baras, Chair/Advisor
Professor Yiannis Aloimonos, Dean’s Representative
Professor Cornelia Fermüller
Professor Behtash Babadi
Professor Michael Otte

c© Copyright by
Zhenyu Lin

2019

Acknowledgments

This thesis becomes possible with the kind support and help of many people.

I owe my gratitude to all the people who supervised, supported, encouraged and

inspired me during my Ph.D. life. I will cherish the graduate study experience

forever.

First and foremost, I would like to express my deepest gratitude to my advisor,

Professor John S. Baras for giving me an invaluable opportunity to work on such

thought-provoking and extremely interesting research problems. I am always im-

pressed by his deep insights on the real-world problems and enthusiasm in handling

challenges every time we meet. I thank him for his invaluable guidance, unstinting

support, and all the inspiring advice, which motivated me to become a more inde-

pendent researcher in the past four years and will continue guiding me in my future

career.

I would like to thank my colleagues at the System Engineering Integration

Laboratory (SEIL) and Autonomy Robotics and Cognition Lab (ARC), who have

enriched my graduate life in many ways. Many thanks to Dr. Dipankar Maity, Dr.

Aneesh Raghavan, Dr. Ren Mao, Dr. Wentao Luan and Dr. Yuchen Zhou who have

given me a lot of advice on both research problems and industrial fields. I would

like to thank my office-mate Usman A. Fiaz for all the meaningful discussions and

Charles A. Meetan for working together on the robotic experiments.

I also would like to express my sincere appreciation to Dr. Behtash Babadi,

Dr. Cornelia Fermuller, Dr. Yiannis Aloimonos and Dr. Michael Otte for serving on

ii

my thesis committee and for the influential discussions and feedback. Also I would

like to thank Mrs. Kim Edwards for her great administrative support.

I would like to express my deepest gratitude to my parents and other family

members for the constant support, encouragement and acknowledgment.

Lastly, I would like to acknowledge the support offered by NSF grant CNS-

1544787, DARPA through ARO grant W911NF1410384, AnthroTronix grant UMD-

09142016, and ONR grant N00014-17-1-2622.

iii

Table of Contents

Acknowledgements ii

Table of Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Main contributions . 3
1.2 Thesis Organization . 4

2 Timed Automata Approach for Manipulator Planning 6
2.1 Related Work . 6
2.2 Preliminaries . 8
2.3 From MITL to timed automata . 14
2.4 Case Study . 16
2.5 Chapter Summary . 20

3 Safety Monitor for Manipulation Tasks 21
3.1 Related Work . 21
3.2 Modeling of Hybrid System . 23
3.3 Runtime Monitoring . 25

3.3.1 Model Monitor Design . 25
3.3.2 Safety Monitor Design . 26
3.3.3 3-valued LTL . 26

3.4 Implementation . 29
3.5 Chapter Summary . 31

4 MITL based Reinforcement Learning with Runtime Monitoring and Self-
Correction 32
4.1 Related Work . 33
4.2 Preliminaries . 35
4.3 Monitor Guided Modular Q-learning 40

4.3.1 Classical Q-learning Algorithm 41
4.3.2 Modular Q-Learning Algorithm 42
4.3.3 Reward Function . 46

iv

4.4 Runtime monitoring and self-correction 49
4.5 Case Studies . 50
4.6 Chapter Summary . 53

5 Optimization-based Motion Planning for Robotic Systems with Space and
Time Tolerances 55
5.1 Related Work . 56
5.2 Preliminaries . 58
5.3 Maximum Space-Time Tolerances Planning 61
5.4 Mixed Integer Linear Programming 64

5.4.1 MTL to Mixed Integer Linear Constraints 65
5.5 Runtime Monitoring and Self-Correction 68

5.5.1 Event-triggered Model Predictive Control 69
5.6 Case Studies . 69
5.7 Chapter Summary . 75

6 Statistics-Based Slippage Prediction and Correction with Object Classifica-
tion using a Dexterous Robotic Hand 77
6.1 Related Work . 77
6.2 Related Work . 79
6.3 Data Description . 82

6.3.1 Haptic Data . 83
6.3.2 Visual Data . 83
6.3.3 Indexing of the data . 83
6.3.4 Data Pre-Processing . 84
6.3.5 Tactile Data Aggregation . 86

6.4 Slippage Detection Algorithm . 87
6.4.1 Slippage Detection using Correlation Coefficient of Two Time

Series . 90
6.5 Slippage Correction Algorithm with Weight Estimate 93

6.5.1 Weight Estimation . 94
6.5.2 Container Classification . 95
6.5.3 Mathematical Model for BioTac Sensor - Force Estimation . . 96
6.5.4 PD Controller . 98

6.6 Chapter Summary . 98

7 Conclusion 100

Bibliography 103

v

List of Tables

4.1 Four sub-task monitors for φ1, each could guide the robot to satisfy
the specification . 52

5.1 Number of constraints and computation time 75

6.1 Comparison slippage prediction using different methods and window
size . 94

vi

List of Figures

2.1 Environment Model in Simulation . 11
2.2 Environment Model . 11
2.3 Manipulator Model . 12
2.4 Agent Model, each node is a state-action pair. For example, node 0

represents (pos0, hold). For simplicity purpose, we assume the same
guard condition for all edges. 14

2.5 The timed automaton for pUq. The inputs and outputs of the states
are specified in the second line of each state. pq̄ means the inputs are
[1, 0] and q̄ means the inputs can be [0, 1] or [0, 0], and = 1 means
the output is 1. Transitions are specified in the format of guard|reset.
In this case all the transitions have guard z ¿ 0 and reset clock z. All
states in this automaton are Buchi accepting states except spq̄. The
Buchi accepting states are highlighted. 15

2.6 The timed automaton for the generator part and the checker part of
♦Ia for motion planning. 2m is the number of clocks required for the
timed eventually (♦I) operator . 16

2.7 The Resulting timed automaton in UPPAAL of φ1. The purple col-
ored texts under the state names represent invariants. The green
colored texts along the edges represent guard conditions, while the
blue ones represent clock resets. The Buchi accepting states are rep-
resented by a subscript b in state names. 18

2.8 The Resulting timed automaton for checker part in UPPAAL of φ2. . 19
2.9 The Resulting timed automaton for generator part in UPPAAL of φ2. 19

3.1 Hybrid Automaton Model for Manipulator 24
3.2 The corresponding monitor automaton for φm 28
3.3 Model monitor built in Stateflow. Current local state is highlighted

in blue boundary. Figure shows the sample state during the runtime
monitoring. The robot is currently at state (pos obj, hold). 29

3.4 Complete Simulink Model considering robot dynamics 30

4.1 The monitor automaton for property φ = (¬d U e)∧ (♦d), the yellow
states are the “neutral states”, the green state is the “good state”
and the red state is the “bad state” 37

vii

4.2 Task Planning Workspace. The red circle is the starting point, a, b, c, d, e
are the locations of interests. obs is the set of obstacle locations, and
the obstacles are marked in black. 40

4.3 Two sub-task MITL monitors for Mφ. Note that in (a), clock con-
straint is added to the transition with condition c, but in (b) no clock
constraint is added to the transition with condition c. This is because
the root task is different for (a) and (b). x is the clock variable. ẋ = 0
means the clock is deactivated and x will not change. ẋ = 1 means
the clock is active and x will increase by one after taking an action. . 44

4.4 Q-learning in the extended space for specification φ = (♦[2,3]A) ∧
(�¬O). The state represents location A turns green only within the
time interval [2,3]. 45

4.5 LTL3 monitor automaton Mφ for φ = ((¬d U e)→ ♦[8,15]d) ∨ (¬a U
(b→ ♦[5,10]c) ∧ ♦a) ∧ (�¬obs). Transitions with multiple labels such
as a ∧ b are removed since it is impossible to be at position a and b
at the same time. 46

4.6 Resulting path by following the sub-task monitor Mφ,3
sub = {b, c, a}.

Runtime environment remains the same as the learning environment. 52
4.7 Resulting path by following the sub-task monitor Mφ,3

sub = {b, c, a}
initially and switch to Mφ,4

sub = {b, c, e, d} when the robot figures out
“a” is not reachable. 53

5.1 Limitations of the point-wise quantitative semantics: signals ω1, ω2

and ω3 are considered as satisfying ♦[a,b](x > 0) from t = 0 at the
same degree. 62

5.2 Resulting path with maximum space and time tolerances for φ1. The
blue text shows the time that the robot enters each green region. . . . 70

5.3 Monitoring runtime sequence (blue line) with space and time toler-
ances. The monitor indicates that the runtime sequence also satisfies
φ. No correction is needed and MPC never turns on. 71

5.4 Resulting trajectory for φ1 with self-correction. The blue dashed line
indicates the predicted path at t = 8. The red line shows the path
with self-corrections. The reference trajectory is marked in black. . . 72

5.5 Triggering instances for MPC. The MPC module has turned on for 4
seconds in total. 73

5.6 Resulting path with maximum space and time tolerances for φ2 . . . 73
5.7 Resulting trajectory for φ2 with self-correction. The blue dashed line

indicates the predicted path at t = 6. The red line shows the path
with self-corrections. 74

5.8 Triggering instances for MPC. The MPC module has turned on for
11 seconds in total. 74

6.1 Experiment setup for collecting haptic-vision dataset. Bb pellets are
used as the filler and we use a funnel to ensure a constant pouring rate 81

6.2 BioTac Sensor Schematic and Electrode Locations 82

viii

6.3 BioTac Sensor Data Types . 83
6.4 Median Flow Tracker is used to determine t∗j . In this experiment,

first slippage is detected at frame 48 and t∗j=1.6s 84
6.5 150 electrode data samples on FF, TH and MF, before t∗ for three

different experiments. The sensor data has been normalized by sub-
tracting the values at rest. 85

6.6 Empirical Distributions for three different electrodes on first finger at
t∗j . 88

6.7 Comparison of the correlation sum when using average sample se-
quence from the dataset (black line) versus using a random single
sample sequence from the dataset (red line). 93

6.8 Force estimation from Biotac SP sensor pdc readings. (a) shows the
force measuring setup. (b)-(f) show the force to pdc ratio for each of
the finger. The pdc value is saturated at around 3N for all fingers.
Below the 3N range, the pdc-force ratio is almost linear for all fingers
except the thumb. 94

6.9 Vibration sensor readings (Pac) for different types of containers dur-
ing one experiment . 95

6.10 Implementation of the slippage correction algorithm with a dexterous
robotic hand. We tested the algorithm with different containers and
in both cases the robot is able to prevent slippage. 97

6.11 Simple Coulomb Friction Model . 97

ix

Chapter 1: Introduction

Automated generation of behaviors not only receives increasing attention, the

ability to flexibly plan intelligent behavior can indeed significantly improve the qual-

ity of numerous systems involving autonomous agents.

In this thesis, we propose five research problems to explore planning, moni-

toring and learning in autonomous Systems, while considering the safety and timed

temporal logic constraints.

In the first problem, we consider the automated generation of behaviors for

a robotic manipulator with time constraints. Consider a task where a humanoid

robot has to pick up several objects from a shelf and place them on a dining table

in a certain amount of time. This task requires planning and control at several

stages. The robot has to grasp the objects, manipulate them in a correct order

while avoiding obstacles, and place them on a correct surface within a certain time

interval. However, performing this task with one low-level controller specification

is impractical. It is important to figure out the correct sequence of subtasks given

the timed constraint for each task. We propose a timed automata based approach

for manipulator planning, using metric interval temporal logic (MITL). We first

construct the automaton model for the environment, the robot, and the agent (which

1

is essentially the product automaton of the environment and the robot). Then the

task specification is given in MITL formula, and is transformed into timed automata.

Finally we took the product of the agent and the timed automata and an optimal

timed path is then synthesized using the UPPAAL verification tool.

The second problem, due to the uncertainty in the environment, the veri-

fication results obtained with respect to the system and environment models at

design-time might not be transferable to the system behavior at run time. For au-

tonomous systems operating in dynamic environments, safety of motion and collision

avoidance are critical requirements. We propose a two-phase process for our safety

monitoring problem. In the design phase, we obtain an execution sequence for the

robot which satisfies some desired specifications and has correctness guarantee. For

the runtime phase, we model the robot as a hybrid system and we build a model

monitor to check whether the execution sequence at runtime matches the desired

execution sequence, and a safety monitor to check the runtime safety specifications

of the system.

The third problem, we present a modular Q-learning framework to deal with

the robot task planning, runtime monitoring and self-correction problem. The task

is specified using metric interval temporal logic (MITL) with finite time constraints.

We first construct a runtime monitor automaton using three-valued LTL (LTL3),

and a sub-task MITL monitor is constructed by decomposing and augmenting the

monitor automaton. During the learning phase, a modular Q-learning approach is

proposed such that each module could learn different sub-tasks. During runtime,

the sub-task MITL monitors could monitor the execution and guide the agent for

2

possible self-correction if an error occurs.

For the forth problem, we present a generic optimization based method for the

motion planning problem with robotic agents. We consider both the space toler-

ance and time tolerance for the motion planning under signal temporal logic (STL)

constraints, and our goal is to maximize the combined space and time tolerances.

We provide a way to generate the exact control commands, and also consider toler-

ances by formulating a MILP problem. An event-trigger model predictive controller

(MPC) has also been designed for self-corrections during the runtime.

Finally, for real-world implementation, We provide our framework of self-

monitoring and self-correction for the slippage prediction and correction problem

with the UR10-Shadow Hand robotic system. When grasping an object, humans

are able to prevent the object from slipping from their grasp by constantly adjusting

their grip. This is possible due to our highly sensitive slip detection capabilities.

However, objects slipping from the grasp of a robotic hand is difficult to detect and

correct. We take advantage of both the haptic data from Biotac sensors and the

synchronized video data from a camera to apply a statistical based approach to slip

prediction and correction, and the ability to classify objects as either rigid or soft

in order to prevent over exertion of the robotic grasp.

1.1 Main contributions

This thesis focuses on trust autonomy and the main contributions of this thesis

are the followings:

3

• We provide solutions for automated generation of behaviors for a robotic ma-

nipulator, such that the manipulator is able to accomplish given tasks under

time constraints. Two different methods are proposed, the first method is

based on translating the system model and task specifications into timed-

automata and the second method formulates the task planning problem into

a mixed-integer-linear-programming (MILP) problem.

• We propose the design of runtime safety monitors, such that the robot is able

to detect when the runtime execution deviates from the planning phase.

• We provide a learning framework for the robotic agent, such that it learns to

satisfy tasks with time constraints.

• We consider both space and time tolerances during the planning, and we design

a event-trigger model predictive controller to ensure the specifications are not

violated.

• We collect and arrange the multimodal haptic-vision dataset, and proposed

the framework of self-assurance slippage detection and correction. We pro-

vided the simulation and also real-world implementation with a UR10 and

Shadowhand robotic system.

1.2 Thesis Organization

The chapters of this thesis were written such that they can be read inde-

pendently. Chapter 2 considers the automated generation of behaviors for a robotic

4

manipulator with time constraints using a timed automata based approach. Chapter

3 discusses the design of model monitor and safety monitor to track the runtime exe-

cutions. Chapter 4 discusses our modular Q-learning framework with temporal logic

specifications under finite time constraints. Chapter 5 proposes an optimal setup

for robot planning while considering both space and time tolerances. In Chapter 6

we propose a slippage prediction and correction framework with dexterous robotic

hand. The implementation on a UR10-Shadowhand robotic system is discussed. We

conclude the thesis in Chapter 7.

5

Chapter 2: Timed Automata Approach for Manipulator Planning

Motion and action planning for robotic manipulator is important for real,

physical world applications. Consider a task where a humanoid robot has to pick

up several objects from a shelf and place them on a dining table. This task requires

planning and control at several stages. The robot has to grasp the objects, manip-

ulate them in a correct order while avoiding obstacles, and place them on a correct

surface. However, performing this task with one low-level controller specification is

impractical. It is important to figure out the correct sequence of subtasks. In this

section, we will consider the problem of automated generation of behaviors for a

robotic manipulator with time constraints. We begin by a review of related works

and then put forward our improvement ideas.

2.1 Related Work

Over the past decade, automated synthesis of correct-by-design controllers

complying with complex behavior specifications for robot planning has attracted a

great deal of research. Classical Boolean logic allows to formulate specifications φ

over a set of propositions Π. Each proposition π ∈ Π can either be true or false.

Linear Temporal Logic (LTL) extends the Boolean logic by operators with tem-

6

poral semantics. Consequently, specifications can be expressed over a sequence of

propositions instead of a single set. This additional expressiveness makes temporal

logics useful for specifying the desired behavior of autonomous systems, effectively

capturing the temporal evolution of these systems. This also provides a basis to

effectively plan valid actions of a system by combining the automaton of the specifi-

cation with the system model, for example in [14] [15] [8]. A hierarchical procedure

to address planning under LTL specification is described as follows: the robot dy-

namics is abstracted into a finite, discrete transition system, a discrete plan that

meets the specification is synthesized and next translated into a controller for the

original system. LTL specification does not emphasize on time constraints. For real

applications, a robot might be required to perform a specific task within a certain

time bound, rather than at some arbitrary time in the future. Time bounded motion

planning has been done in heuristic ways [17] and also by using mixed integer linear

programming (MILP) framework [16]. MITL, a modification of Metric Temporal

Logics (MTL), disallows the punctuation in the temporal interval, so that the left

boundary and the right boundary have to be different. In general the complexity of

model checking for MTL related logic is higher than that of LTL. The theoretical

model checking complexity for LTL is PSPACE-complete [18]. The algorithm that

has been implemented is exponential to the size of the formula. MTL by itself is

undecidable. The model checking process of MITL includes transforming it into

a timed automaton [5] [3]. Most aforementioned work considers the case of plan-

ning for mobile robot, and the time constraint is only considered when the position

changes. In this chapter, we will consider the automated generation of behaviors for

7

a robotic manipulator with both time constraints for position changes (move from

position A to position B) and time constraints for performing actions (grasping an

object, releasing an object). We propose a timed automata based approach for ma-

nipulator planning, using metric interval temporal logic (MITL). We first construct

the automaton model for the environment, the robot, and the agent (which is es-

sentially the product automaton of the environment and the robot). Then the task

specification is given in MITL formula, and is transformed into timed automata.

Finally we took the product of the agent and the timed automata and an optimal

timed path is then synthesized using the UPPAAL verification tool. A part of this

chapter is published in [1].

2.2 Preliminaries

Definition 2.1. (Linear Temporal Logic) The syntax of LTL formulas are defined

according to the following grammar rules:

φ ::= T |π | ¬φ1 |φ1 ∧ φ2 | eφ1 |φ1 U φ2 |φ1 Rφ2 (2.1)

With LTL formulas φ1, φ2, propositions π ∈ Π, and the Boolean constant T “true”.

The syntax includes the Boolean operators ¬ “not” and ∧ “and”, as well as the tem-

poral operator e “next”, U “until”, and “release”. The following derived operators

are defined to extend the above operators:

• “or”: φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2)

8

• “implies”: φ1→ φ2 := ¬φ1 ∨ φ2

• “eventually”: ♦φ1 := > U φ1

• “always”: �φ1 := ⊥Rφ1

LTL formulas are defined over a sequence σ of atomic propositions Π. At each

discrete point in time t ∈ N, a set of propositions π ∈ Π given by σ(t) denotes which

propositions are true π ∈ σ(t) or false π /∈ σ(t). A sequence is called finite if it is

bounded by a maximum time T and then we say that the sequence has length T.

Definition 2.2. (Metric Interval Temporal Logic)

The syntax of MITL formulas are defined according to the following grammar

rules:

φ ::= > |π | ¬φ1 |φ1 ∧ φ2 | eφ1 |φ1 UI φ2 | (2.2)

where e I ⊆ [0, ∞]. UI symbolizes the timed Until operator. Sometimes we will

represent U[0,∞] by U. Other Boolean and temporal operators such as conjunction

(∨), eventually within I (♦I), always on I (�I) etc. can be represented using the

grammar described in the definition. For example, we can express time constrained

eventually operator ♦Iφ≡ T UIφ and so on. In this section, all the untimed temporal

logic here is transformed into until operator and all the timed operator is transformed

to eventually within I, to make it easier to generate a timed automaton.

• σ(t) |= π iff π ∈ σ(t)

• σ(t) |= ¬φ1 iff σ(t) 2 φ1

9

• σ(t) |= φ1 ∧ φ2 iff σ(t) |= φ1 and σ(t) |= φ2

• σ(t) |= eφ1 iff σ(t+ 1) |= φ1

• σ(t) |= φ1 UI φ2 iff ∃ s ∈ I such that σ(t + s) |= φ2 and ∀s′ ≤ s it holds that

σ(t+ s′) |= φ1

Definition 2.3. (Environment Model). The environment model is given by a labeled

transition system defined as

L = (VL, EL,ΠL,∧L)

consisting of

(1) a set of vertices VL

(2) a set of edges between locations EL ⊆ VL × VL

(3) a set of atomic propositions ΠL

(4) a labeling function ∧L: VL → {0, 1}

(5) transition conditions δ: Q → α

Vertices VL represent locations of interest in the environment. For example, a

vertex can denote an area or specific position. The edges EL represent navigation

actions in order to change the location to a different one. An edge exists between

two vertices if there is a navigation action between the respective locations such

that the transition condition is satisfied.

10

Figure 2.1: Environment Model in Simulation

Figure 2.2: Environment Model

A simple location graph is considered for now, which includes four different

locations, which are initial location, object location, goal location and an obstacle

location. The transition between different nodes can happen only when the action

is “move” or “carry”, and it will stay at current position when the action is “hold”.

Definition 2.4. (Robot Model). The manipulator model is given by a labeled tran-

sition system defined as

11

R = (SR, AR,ΠR,∧R)

consisting of

(1) a set of states SR of the robot,

(2) a set of available actions AR ⊆ SR × SR

(3) a set of Boolean formulas α = αi ∈ α(i)

(4) transition conditions δ: Q × Q → α defined below.

Figure 2.3: Manipulator Model

A simple location graph is considered for now, which includes four different

locations, which are initial location, object location, goal location and an obstacle

location. The transition between different nodes can happen only when the action

is “move” or “carry”, and it will stay at current position when the action is “hold”.

Definition 2.5. Product Automaton The product of two finite automaton F = F(i)

× F(j) := (Q,Q0, α, δ,F) is constructed as:

12

(1) a set of states Q = Q(i) ×Q = Q(j),

(2) a set of initial states Q0 = {(qi, qj) ∈ Q : qi ∈ Q(i)
0 , qj ∈ Q

(j)
0 }

(3) a set of Boolean formulas α = αi ∧ αj : αi ∈ α(i), αj ∈ α(j)

(4) transition conditions δ: Q × Q → α defined below.

The transition conditions of the product F need to capture the conditions of

both NFAs F(i) , F(j) and thus, are given by δ : ((qsi , q
s
j), (q

t
i , q

t
j)) → δ(i) (qsi , q

t
i) ∧

δ(j) (qsj , q
t
j). A robotic agent is then described by a combination of its external envi-

ronment and its internal state model. This combination can be done automatically

from the product of two models given above.

Definition 2.6. (Agent Model). The agent model is given as a product automaton

A = L
⊗

R = (SA, AA,ΠA,∧A)

consisting of

(1) a set of states SA = VL×SR combining location and internal state of the agent,

(2) a set of actions AA ⊆ SA × SA,

(3) a set of Boolean formulas α = αi ∧ αj : αi ∈ α(i), αj ∈ α(j),

(4) transition conditions δ: Q × Q → α defined below.

Each node in the agent model is a position-action pair, and our goal is to find

a sequence of position-action pair that satisfy the specifications.

13

Figure 2.4: Agent Model, each node is a state-action pair. For example, node 0
represents (pos0, hold). For simplicity purpose, we assume the same
guard condition for all edges.

Definition 2.7. Timed Automata A timed automaton is a 4-tuple:A = (L,X, l0;E)

• L is a finite set of locations

• X is a finite set of clocks

• l0 ∈ L is an initial location

• E ⊆ L×C(X)×2X×L is a set of edges, where C(X) are the clock constraints

edge = (source location, clock constraint, set of clocks to be reset, target

location)

2.3 From MITL to timed automata

Similar to what has been described in [5], in order to transform MITL spec-

ifications into timed automata, we first change every temporal logic operator into

14

a timed signal transducer, which is a temporal automaton that accepts input and

generates output. The transformation of Until operator and timed Eventually op-

erator is summarized in Figs. 2.5 and 2.6. The IOTA for timed eventually (♦Ia)

is decomposed into two automata, the generator generates predictions of the future

outputs of the system, while the checker verifies that the generated outputs actually

fit the inputs. Detailed derivations and verifications of the models can be found

in [5]. The composition between them is achieved through the shared clock vari-

ables. Additional synchronization (’ch!’) is added in our case to determine the final

satisfaction condition for the control synthesis. A finite time trajectory satisfies the

MITL, when the output signal of the generator automaton.

Figure 2.5: The timed automaton for pUq. The inputs and outputs of the states are
specified in the second line of each state. pq̄ means the inputs are [1, 0]
and q̄ means the inputs can be [0, 1] or [0, 0], and = 1 means the output
is 1. Transitions are specified in the format of guard|reset. In this case
all the transitions have guard z ¿ 0 and reset clock z. All states in this
automaton are Buchi accepting states except spq̄. The Buchi accepting
states are highlighted.

The overall framework is summarized as follows:

1. We construct the agent model by taking product of the environment model

15

(a) Timed Automaton for the generator (b) Timed Automaton for the checker

Figure 2.6: The timed automaton for the generator part and the checker part of ♦Ia
for motion planning. 2m is the number of clocks required for the timed
eventually (♦I) operator

and the robot model. We denote the agent model as A

2. MITL formula is translated to IOTA, denoted as M.

3. IOTA M is then taken product with the agent automaton model A, we con-

struct the timed automaton G = A
⊗
M

4. The resulting timed automata are then automatically transformed to an UP-

PAAL model with additional satisfaction condition verifier.

5. An optimal timed path is then synthesized using the UPPAAL verification

tool.

2.4 Case Study

In this section we provide case study for two manipulation scenarios. The first

one considers a pick-and-place manipulation task without specifying time constraint,

16

while the second one includes a time constraint in the specification.

Example 2.1. (Example 1.) Given a task of robot grasping an object at a certain

position and moving it to the goal position, while always avoiding the obstacle. The

MTL formula could be expressed as follows:

φ1 = (¬ pos goal U pos object) ∧ (¬ pos goal U grasp) ∧ (♦ pos goal) ∧ (� ¬

pos obs)

which requires do not go to goal position until the robot has visited object posi-

tion and has grasped the object, and eventually move to the goal position. During the

whole process, the robot should never collide with the obstacle. The sequence found

by UPPAAL which satisfies the LTL formula is (See figure 5):

As shown in figure 2.7, the path found by UPPAAL is loc0 → loc6 → loc16

→ loc13 → loc17 → loc42 → loc50 → loc35 → loc51 b , which corresponds to the

following action sequence: (pos0, hold) → (pos0, move) → (pos3, move) → (pos3,

hold)→ (pos3, grasp)→ (pos3, carry)→ (pos0, carry)→ (pos1b, carry)→ (pos1b,

release). By following the execution sequence, the robot is guaranteed to satisfy the

given MITL formula. Here pos0 is the intial position, pos3 is the object position,

pos1b is the goal position.

Example 2.2. (Example 2.) We then consider another example which involves

time constraints. We want the robot to pick up the object after 5 seconds but no

later than 10 seconds, while avoiding the obstacle. The MITL formula could be

written as follows:

17

Figure 2.7: The Resulting timed automaton in UPPAAL of φ1. The purple colored
texts under the state names represent invariants. The green colored
texts along the edges represent guard conditions, while the blue ones
represent clock resets. The Buchi accepting states are represented by a
subscript b in state names.

φ2 = (¬ grasp U pos object) ∧ (♦[5,10] grasp) ∧ (� ¬ pos obs)

Similar to Example 1, we use UPPAAL to find the execution sequence, and

the resulting path is shown in Fig 2.8. The sequence found by UPPAAL is (loc117,

loc139)→ (loc117, loc133)→ (loc125, loc133)→ (loc126, loc133)→ (loc118, loc133)

→ (loc118, loc133) → (loc16, loc133), which again corresponds to ((pos init, hold),

t = 0)→ ((pos init, hold), t ∈ [0, 1])→ ((pos init, move), t ∈ [1, 2])→ ((pos object,

move), t ∈ [2, 3]) → ((pos object, hold), t ∈ [3, 4]) → ((pos object, hold), t ∈ [4, 5])

18

Figure 2.8: The Resulting timed automaton for checker part in UPPAAL of φ2.

Figure 2.9: The Resulting timed automaton for generator part in UPPAAL of φ2.

→((pos object, grasp), t ∈ [5, 6]) As can be seen from the result, the robot waits

1 time unit at position 3, such that it could meet the requirement of grasping the

object after 5 seconds.

19

2.5 Chapter Summary

In this section, we have considered the automated generation of behaviors for

a robotic manipulator while considering time constraints for both position changes

(move from position A to position B) and for performing actions (grasping an object,

releasing an object). We showed the execution sequence generated by UPPAAL for

two different cases, and both of them satisfied the given specification. As the number

of possible positions and number of possible actions increase, a major drawback is

the state space explosion, which makes the planning practically unusable. The

future direction we want to investigate is to see whether there are ways to aggregate

“unimportant” states.

20

Chapter 3: Safety Monitor for Manipulation Tasks

Due to the uncertainty in the environment, the verification results obtained

with respect to the system and environment models at design-time might not be

transferable to the system behavior at run time. For autonomous systems operat-

ing in dynamic environments, safety of motion and collision avoidance are critical

requirements. In this section, we will consider the run time monitoring for safety

executions. We propose a two-phase process for our safety monitoring problem.

In the design phase, we obtain an execution sequence for the robot which satisfies

some desired specifications and has correctness guarantee. For the runtime phase,

we model the robot as a hybrid system and we build a model monitor to check

whether the execution sequence at runtime matches the desired execution sequence,

and a safety monitor to check the runtime safety specifications of the system.

3.1 Related Work

Mitsch et al. use differential dynamic logic to verify safe obstacle avoidance

for autonomous robotic ground vehicles with the dynamic window algorithm. Pas-

sive safety and passive friendly safety properties are proposed. Both properties

are verified with respect to an environment which contains stationary as well as

21

moving obstacles. The autonomous vehicle is modeled as a hybrid system which

describes the continuous physical motion of the robot as well as its discrete control

choices. The paper in [20] presents the ModelPlex approach, which combines offline

verification of CPS models with runtime validation in order to provide correctness

guarantees for system executions at runtime. The method uses theorem proving

with sound proof rules to synthesize three runtime monitors, i.e. model monitor,

controller monitor and prediction monitor, from hybrid system models. The first

monitor checks the system execution for deviations from the system model. The

second monitor tests the current controller decisions of the system implementation

for compliance with the system model, while the prediction monitor evaluates the

worst-case safety impact of the current controller decisions with respect to the pre-

dictions of a bounded deviation plant model. LTL3, which is the 3-valued LTL,

is designed for reasoning about LTL properties for finite executions and has been

used for runtime verification [52]. LTL3 specifications could be transformed into a

monitor automaton, where the transitions of the states are based on runtime sensory

information. If the monitor automaton goes to the “bad” states, it implies that a

fault is detected at runtime and the execution should be stopped. Runtime monitors

can be used to sidestep the problem of verifying a (needfully) complex model of a

robotic system. Instead of specifying and verifying the entire system, the proper-

ties that the system has to exhibit are extracted and specified as a monitor of the

system. Runtime monitors can mitigate the problem of the reality gap (between a

model and the real world) especially when used to compliment offline verification.

Given that a robotic system is naturally cyber-physical, and therefore malfunctions

22

can have safety consequences, monitoring the system’s behaviour at runtime can be

key to safe operation.

3.2 Modeling of Hybrid System

Definition 3.1. (Hybrid Automaton). A hybrid automaton is described by a tuple

(Loc, Edge,
∑

, X, Init, Inv, Flow, Jump) where the symbols have the following

meanings.

• Loc is a finite set l1, l2, ...ln of (control) locations that represent control modes

of a hybrid system.

•
∑

is a finite set of event names.

• Edge ⊆ Loc ×
∑
× Loc is a finite set of labelled edges that represent discrete

changes of control mode in the hybrid system. Those changes are labelled by

event names taken from the finite set of labels
∑

.

• X is a finite set {x1, x2, ..., xm} of real-valued variables. We write Ẋ for the

set of dotted variables {ẋ1, ..., ˙xm} which are used to represent first derivatives

of the variables during continuous evolutions (inside a mode),and we write X′

for the primed variables {x1
′, ..., xm′} that are used to represent updates at the

conclusion of discrete changes (from one control mode to another).

• Init, Inv, Flow are functions that assign three predicates to each location.

Init(l) is a predicate whose free variables are from X and which states the pos-

sible valuations for those variables when the hybrid system starts from location

23

l. Inv(l) is a predicate whose free variables are from X and which constrains

the possible valuations for those variables when the control of the hybrid system

is in location l. Flow(l) is a predicate whose free variables are from X
⋃
Ẋ and

which states the possible continuous evolutions when the control of the hybrid

system is in location l.

• Jump is a function that assigns to each labelled edge a predicate whose free

variables are from X
⋃
X ′ . Jump(e) states when the discrete change modeled

by e is possible and what the possible updates of the variables are when the

hybrid system makes the discrete change.

Figure 3.1: Hybrid Automaton Model for Manipulator

24

3.3 Runtime Monitoring

Runtime monitors can mitigate the problem of the reality gap (between a

model and the real world) especially when used to compliment offline verification.

Given that a robotic system is naturally cyber-physical, and therefore malfunctions

can have safety consequences, monitoring the system’s behavior at runtime can be

key to safe operation. We propose a two-phase process for our safety monitoring

problem. In the design phase, we obtain an execution sequence for the robot which

satisfies some desired specifications and has correctness guarantee. For the runtime

phase, we model the robot as a hybrid system and we build a model monitor to check

whether the execution sequence at runtime matches the desired execution sequence,

and a safety monitor to check the runtime safety specifications of the systemi.e, the

model monitor and the runtime safety monitor.

3.3.1 Model Monitor Design

In order to design the model monitor, we construct a hybrid system model [4]

for the manipulator, where the transition is based on the sensory information. The

hybrid system model is demonstrated in Fig 3.1. Five different modes are considered,

“hold” represents that the end-effector is staying at its current position, “move”

represents that the end-effector is moving, “grasp” represents the action of closing

the gripper, “carry” represents that the end-effector is moving while holding an

object, and “release” represents the action of opening the gripper. The construction

of the model monitor is then straight forward. In each state si, we test the previous

25

state si−1 and check whether the transition follows the desired trace in design phase.

If an error is detected, the execution should be stopped.

3.3.2 Safety Monitor Design

For designing the safety monitor, instead of specifying and verifying the entire

system, the safety properties that the system has to exhibit are extracted and spec-

ified as a monitor of the system. We specify additional runtime safety specifications

in LTL. LTL semantics is defined over infinite traces and a running program can

only deliver a finite trace at a monitoring point. To formalize satisfaction of LTL

properties for a finite trace at run time, in [52] the authors propose semantics for

LTL3, where the evaluation of a formula ranges over three values {>, ⊥, ?} (de-

noted LTL3). The value ‘?’ expresses the fact that it is not possible to decide on the

satisfaction or violation of a property, given the current program finite trace. We

denote the set of all finite words over
∑

by
∑∗ and the set of all infinite words by∑ω . For a finite word u and a word w, we write u · w to denote their concatenation.

3.3.3 3-valued LTL

LTL semantics is defined over infinite traces and a running program can only

deliver a finite trace at a monitoring point. To formalize satisfaction of LTL proper-

ties at run time, in [1], the authors propose semantics for LTL, where the evaluation

of a formula ranges over three values {>, ⊥, ?} (denoted LTL3). The value ‘?’

expresses the fact that it is not possible to decide on the satisfaction or violation of

26

a property, given the current program finite trace. We denote the set of all finite

words over
∑

by
∑∗ and the set of all infinite words by

∑ω . For a finite word u

and a word w, we write u · w to denote their concatenation.

Definition 3.2. (LTL3 semantics). Let α ∈
∑∗ be a finite trace. The valuation of

an LTL3 formula φ with respect to α, denoted by [α |= φ], is defined as follows:

[α |= φ] =



> if ∀ω ∈
∑ω : α · ω |= φ

⊥ if ∀ω ∈
∑ω : α · ω 6|= φ

? otherwise

Note that the syntax [α |= φ] for Ltl3 semantics is defined over finite words

as opposed to α |= φ for Ltl semantics, which is defined over infinite words. For

example, given a finite program trace σ = a0a1...an , property ♦p holds iff ai |= p,

for some i, 0 ≤ i ≤ n. Otherwise, the property evaluates to ?. LTL3 specifications

could be transformed into a monitor automaton [52], where the transitions between

the states are based on runtime sensory information. If the monitor automaton

goes to ”bad” state, we should stop the execution. For example, in the pick-and-

place example, we require that whenever the manipulator is grasping the object, the

manipulator should not start moving until the force sensor confirms that the object

is grasped firmly.

Definition 3.3. (LTL Monitor Automaton). Let φ be an LTL formula over predi-

cates Pred. The monitor automaton Mφ of φ is the unique deterministic finite-state

27

automaton (DFA) Mφ = (Pred,Q, q0, δ, λ), where Q is the set of states, q0 is the

initial state, δ ⊆ Q × Pred × Q is the transition relation, and λ is a function that

maps each state in Q to a values in {>,⊥, ? }, such that for any finite trace α ∈
∑∗:

[α |= φ] = λ(δ(q0, α))

For example, after the robot received a command of grasping (closing the

gripper), we require the coordinate of all joint positions should remain the same

until the force sensor has confirmed that the grasping is finished (for example, Force

> 1N).

φm = �(grasp→ (v = 0) U (Force > 1))

Figure 3.2: The corresponding monitor automaton for φm

28

3.4 Implementation

Figure 3.3: Model monitor built in Stateflow. Current local state is highlighted
in blue boundary. Figure shows the sample state during the runtime
monitoring. The robot is currently at state (pos obj, hold).

In order to perform the runtime analysis, the behavior described in the robot

and obstacle models had to be transferred in executable source code. The transfor-

mation from UPPAAL models to executable source code was done using automata-

based programming. We built the robot model in Matlab/Simulink and the runtime

monitors with Stateflow. The model monitor is shown in figure 3.3, where the states

correspond to the position-action pair, and the guard condition for the transition

depends on the sensory information. For example, the robot position state changes

from current state to a new state pos new when ‖Xee − pos news‖ < δ , where δ

is the tolerance threshold and Xee is the end-effector position calculated using the

forward kinematics equation; the robot action state changes from “hold” to “move”

when the velocity of the end-effector is not 0 and also when the force of the gripper

is 0 (i.e, not holding anything).

The safety monitor is shown in figure 3.2, where we require the coordinate of

29

Figure 3.4: Complete Simulink Model considering robot dynamics

all joint positions should remain the same until the force sensor has confirmed that

the object is indeed grasped by the gripper (for example, Force > 1N). If the model

monitor detects a violation, then the verified properties in the design phase may no

longer hold for the system. If the safety monitor detects a “bad” state, it means the

LTL3 specifications for the safety requirement is violated. Provably safe fail-safe

actions should be taken in these situations.

We conducted 5 different experiments which includes 1 correct execution and

4 faulty executions. The task specification for the robot is given as φ1 = (¬

pos goal U pos object) ∧ (¬ pos goal U grasp) ∧ (♦ pos goal) ∧ (� ¬ pos obs) and

the additional safety requirement is φm = �(grasp → (v = 0) U (Force > 1)) as

discussed before. The faulty executions include the robot receives “grasp” command

at wrong positions, the robot receives “release” command at wrong positions, the

robot moves to a wrong position, and the robot starts moving before the grasping

30

finishes. All 4 faulty executions are successfully detected, where the first three

cases are detected by the model monitor and the last case is detected by the safety

monitor.

3.5 Chapter Summary

In this section, we first modeled the manipulator as a hybrid system, then

we dicussed the design of two runtime monitors. A model monitor is designed to

monitor the correctness of the task execution, and a safety monitor is designed

based on LTL3 specifications to guarantee the safety during the execution. In the

following chapters, we will discuss possible ways for self-correction while error has

been detected in the runtime.

31

Chapter 4: MITL based Reinforcement Learning with Runtime Mon-

itoring and Self-Correction

In this chapter, we present a modular Q-learning framework to deal with the

robot task planning, runtime monitoring and self-correction problem. The task is

specified using metric interval temporal logic (MITL) with finite time constraints.

We first construct a runtime monitor automaton using three-valued LTL (LTL3),

and a sub-task MITL monitor is constructed by decomposing and augmenting the

monitor automaton. During the learning phase, a modular Q-learning approach is

proposed such that each module could learn different sub-tasks. During runtime,

the sub-task MITL monitors could monitor the execution and guide the agent for

possible self-correction if an error occurs. Our experiments show that under our

framework, the robot is able to learn a feasible execution sequence that satisfies

the given MITL specifications under finite time constraints. When the runtime

environment becomes different than the learning environment and the original action

will violate the specifications, the robotic agent is able to self-correct and accomplish

the task if it is still possible.

32

4.1 Related Work

Guiding a mobile robot to accomplish the desired tasks safely and quickly is

one of the essential topics in robotic planning. To adapt to unknown environments,

learning ability is important for mobile robots. Reinforcement learning has widely

been applied to robot path planning [70], and in recent years, researchers start to

associate reinforcement learning with temporal logic constraints. Linear temporal

logic (LTL) allows one to specify more complicated mission tasks that are hard to

express and to achieve by conventional methods in classical reinforcement learning

[49]. Reinforcement learning with linear temporal logic (LTL) specifications has been

considered in several recent studies, such as [57] [65] [66] [72] [73]. The basic idea

is to translate the temporal logic specification into an automata-based structure,

model the agent as a markov decision process (MDP) and construct a product

MDP for assigning the rewards. Time behavior is a most important issue for the

autonomous systems of interest, and it is critical for many robotic tasks. The

above methods with LTL, however, are not capable of providing the framework

needed for the autonomous systems to plan under finite time constraints. Metric

Interval Temporal Logic (MITL) and signal temporal logic (STL) allows finite time

constraints to be added to the specifications. Reinforment learning with MITL and

STL are considered in [74] and [68], respectively. However, both works make the

assumption that the runtime environment is the same as the training environment

and only a single objective is considered. In practice, this is not always the case.

During runtime execution, there may be additional obstacles in the environment;

33

and a robotic investigation task could be specified as: “Investigate either position

a or position b, and return the information to position c”, where the task could

be accomplished by multiple ways. In this chapter, we propose a sub-task monitor

design based on the temporal logic specifications, and enables the re-planning ability

for the robotic agent when the runtime environment is different from the training

environment. Traditional Q-learning algorithms will have trouble executing the

task correctly if the environment has changed since the Q values are trained and

stored offline. We propose a modular Q-learning method which is able to monitor

the runtime task execution, and try to self-correct if the original plan fails. A

number of two-valued semantics for LTL on finite traces have been proposed [75]

[76] [77]. In monitoring a property, there arise at least three different situations: in

the first case, the property is satisfied after a finite number of steps, independently

of the future continuation; second, the property is shown to evaluate to false for

every possible continuation, and third, the finite, already observed prefix still allows

different continuations leading to either satisfaction or falsification. However, all

the two-valued logic must evaluate to true or false prematurely since it cannot

reflect the third and inconclusive case properly. LTL3, which is the 3-valued LTL,

is designed for reasoning about LTL properties for finite executions and has been

used for runtime verification [52]. Runtime monitor design for robotic agents and

distributed system has been discussed in [62] [1]. We propose to first convert the

untimed temporal logic specifications into a LTL3 monitor automaton, and then

leverage the unique deterministic property to design our sub-task MITL monitor

automaton by decomposing and augmenting the LTL3 monitor automaton.

34

The contributions of this chapter are as follows. First, we propose the design of

the sub-task MITL monitor automaton by decomposing and augmenting the LTL3

monitor automaton, and use it to guide the modular Q-learning process, where

each module could learn a different sub-task from the specification. Second, we

propose to define reward functions for each learning module based on the sub-task

monitor progression. Finally, we use the sub-task MITL monitors to guide possible

self-corrections when re-planning is needed during runtime.

4.2 Preliminaries

Definition 4.1. An atomic proposition is a statement about the system variables (x)

that is either True (>) or False (⊥) for some given values of the state variables.

Definition 4.2. (Linear Temporal Logic) The syntax of LTL formulas are defined

according to the following grammar rules:

φ ::= T |π | ¬φ1 |φ1 ∧ φ2 | eφ1 |φ1 U φ2 |φ1 Rφ2 (4.1)

With LTL formulas φ1, φ2, propositions π ∈ Π, and the Boolean constant T “true

”. The syntax includes the Boolean operators ¬ “not” and ∧ “and”, as well as the

temporal operator e “next”, U “until”, and “release”. The temporal operators “or”:

φ1 ∨ φ2, “implies”: φ1→ φ2, “eventually”: ♦φ1, “always”: �φ1 can be represented

using the grammar described in the definition.

To formalize satisfaction of LTL properties at run time, in [52], the authors

35

propose semantics for LTL3, where the evaluation of a formula ranges over three

values {>, ⊥, ?} (denoted LTL3). The value ‘?’ expresses the fact that it is not

possible to decide on the satisfaction or violation of a property, given the current

program finite trace. We denote the set of all finite words over
∑

by
∑∗ and the

set of all infinite words by
∑ω . For a finite word u and a word w, we write u · w

to denote their concatenation.

Definition 4.3. (LTL3 semantics). Let α ∈
∑∗ be a finite trace. The valuation of

an LTL3 formula φ with respect to α, denoted by [α |= φ], is defined as follows:

[α |= φ] =



> if ∀ω ∈
∑ω : α · ω |= φ

⊥ if ∀ω ∈
∑ω : α · ω 6|= φ

? otherwise

Note that the syntax [α |= φ] for LTL3 semantics is defined over finite words

as opposed to α |= φ for LTL semantics, which is defined over infinite words. For

example, given a finite program trace σ = a0a1...an , property ♦p holds if and only

if ai |= p, for some i, 0 ≤ i ≤ n. Otherwise, the property evaluates to ?. LTL3

specifications could be transformed into a monitor automaton [52] to monitor the

runtime execution. In the following context, we denote the states that are evaluated

to “>” as “good states” (green), states that are evaluated to “⊥” as “bad states”

(red), and states that are evaluated to “?” as “neutral states” (yellow).

Definition 4.4. (LTL3 Monitor Automaton). Let φ be an LTL formula over atomic

propositions AP . The monitor automaton Mφ of φ is the unique deterministic finite-

36

state automaton (DFA) Mφ = (AP,Qφ, q0, δ, λ), where Qφ is the set of states, qφ0 is

the initial state, δ ⊆ Qφ×AP×Qφ is the transition relation, and λ is a function that

maps each state in Qφ to a values in {>,⊥, ? }, such that for any finite trace α ∈
∑∗:

[α |= φ] = λ(δ(qφ0 , α))

Figure 4.1: The monitor automaton for property φ = (¬d U e) ∧ (♦d), the yellow
states are the “neutral states”, the green state is the “good state” and
the red state is the “bad state”

For example, Fig 4.1 shows the monitor automaton for property φ = (¬d U

e) ∧ (♦e), where λ((0, 0)) = λ((1, 1)) = ?, λ((−1, 1)) = ⊥ and λ((1,−1)) = T.

The specification requires position d is not visited until position e is visited, and

eventually d needs to be visited. Notice that state (−1, 1) and (1,−1) is a final state

with no outgoing transition to other states. This is because once verdicts > or ⊥

37

are reached, according to Definition 4.2.3, they cannot change.

Remark 4.1. However, there remain many properties which are non-monitorable:

consider for example the specification φ = �(a→♦b), which requires “once position

a has been visited, position b will always be visited eventually.” No finite word is a

good or bad prefix for φ and therefore, this property is always evaluated to an “?”

state. [64] discusses a more detailed evaluation of such an inconclusive state for

LTL3 by defining “presumably false” and “presumably true” states, where such kind

of evaluation is not possible using LTL.

Definition 4.5. (Metric Interval Temporal Logic) The syntax of MITL formulas

are defined according to the following grammar rules:

φ ::= > |π | ¬φ1 |φ1 ∧ φ2 | eφ1 |φ1 UI φ2 | (4.2)

where e I ⊆ [0, ∞]. UI symbolizes the timed Until operator. Sometimes we will

represent U[0,∞] by U. Other Boolean and temporal operators such as conjunction

(∨), eventually within I (♦I), always on I (�I) etc. can be represented using the

grammar described in the definition. For example, we can express time constrained

eventually operator ♦Iφ ≡ > UIφ and so on.

Definition 4.6. The semantics of any MTL formula φ is recursively defined over a

trajectory (ξ, t) as:

• (ξ, t) |= π iff (ξ, t) satisfies π at time t

• (ξ, t) |= ¬φ1 iff (ξ, t) does not satisfiy π at time t

38

• (ξ, t) |= φ1 ∧ φ2 iff (ξ, t) |= φ1 and (ξ, t) |= φ2

• (ξ, t) |= eφ1 iff (ξ, t+ 1) |= φ1

• (ξ, t) |= φ1 UI φ2 iff ∃ s ∈ I such that (ξ, t+ s) |= φ2 and ∀s′ ≤ s it holds that

(ξ, t+ s′) |= φ1

Definition 4.7. (Timed Automata) A timed automaton is a 4-tuple:A = (L,X, l0;E)

• L is a finite set of locations

• X is a finite set of clocks

• l0 ∈ L is an initial location

• E ⊆ L×C(X)×2X×L is a set of edges, where C(X) are the clock constraints

Definition 4.8. (Robot Model). The robot model R = (S, s0, A, T, AP, L) is a tuple

over a finite set of states S where A is a finite set of actions. T ⊆ S × A × S

is the transition relation, and s0 is the initial state. AP is a finite set of atomic

propositions and a labeling function L : S → 2AP assigns to each state s ∈ S a set

of atomic propositions L(s) ⊆ 2AP . Assume that the set of available actions at state

s is As ⊆ A. We use s
a
′
−→ s′ to denote a transition from state s ∈ S to state s′ ∈ S

by action a′ ∈ As.

In this section, we consider a grid-like environment where the state of the robot

is its location and the robot is able to move in four directions with different velocities,

i.e, the set of actions for the robot isA = {left1, right1, up1, down1, left2, right2, up2, down2},

where left1 means move one unit left, and up2 means move two units up, etc. We

39

could use the labeling function to assign the atomic proposition to each state. For

example, we could label the locations of interest using a, b, c, etc, and all locations

inside the black circles as “obs”. Then the specification φm = (¬aU b)∧♦a∧�¬obs

means “visit position b first (marked as yellow circle) before reaching position a

(marked as red circle), and eventually reaching position a while avoiding obstacles

at all times.”

Figure 4.2: Task Planning Workspace. The red circle is the starting point, a, b, c, d, e
are the locations of interests. obs is the set of obstacle locations, and
the obstacles are marked in black.

4.3 Monitor Guided Modular Q-learning

In this section, we discuss our modular reinforcement learning process guided

by the sub-task monitor. We first discuss how to generate the sub-task monitor

40

and guide our modular Q-learning process, and then we discuss how the sub-task

monitor automaton could be used to guide the runtime correction process.

4.3.1 Classical Q-learning Algorithm

The Q-learning algorithm [21] uses the notation Q(S, a) to represent the value

function. Here, (S, x) is called the state action pair. S is the state of a given agent

and a is the action we take at that state. q̂n can be viewed as the observation and

can be calculated as follows:

q̂n = R(Sn, an) + γmax
a
Qn−1(Sn+1, a). (4.3)

We then update our value function using the observations:

Qn(Sn, xn) = (1− αn−1)Qn−1(Sn, an) + αn−1q̂
n (4.4)

Here Sn is the current state and an is the action we take at this state. R(Sn, an)

is the immediate reward of a state action pair, αn is the step size at each iteration,

γ is the forgetting factor, and Sn+1 is the next state given the current state and

the action. The convergence of Q-learning is guaranteed as long as we visit every

state-action pair infinitely often and choose a suitable step size [21]. One drawback

of classical Q-learning is that once the training process is finished, the Q values for

every state and action pair become fixed. If the environment becomes different than

the training environment, the trained policy may no longer be correct.

41

4.3.2 Modular Q-Learning Algorithm

In practice, it is quite often we do not only have a single objective for the

robotic task. Karlsson [69] developed approaches to the problem of multiple-goal

reinforcement learning, where a separate learning module is created for each com-

ponent MDP. Following a similar idea, given a monitor automaton, we define a

sub-task monitor as follows:

Definition 4.9. (Sub-task LTL Monitor). Given a LTL3 monitor automaton Mφ =

(AP,Qφ, q0, δ, λ), a sub-task monitor Mφ
LTLsub is defined as a transition system start-

ing from q0, ending in a state q′ such that λ(q′) = >, and has the following property:

(1) each edge in Mφ has been visited at most once (2) transition to good or neutral

state accepts exactly one atomic proposition, all other atomic propositions leads to

bad states. (3) only one good state in a sub-task monitor

For example, Fig 4.5 shows the resulting LTL3 monitor automaton Mφ for

φ = ((¬dU e)→♦[5,10]d)∨ (¬aU (b→♦[10,20]c)∧♦a)∧ (�¬obs) while neglecting the

time constraints. The monitor automaton is generated automatically using ltl3tool1.

We could then build sub-task LTL monitors according to Definition 4.9. We then

generate the sub-task MITL monitor by augmenting time constraints according to

the atomic propositions and its corresponding root task.

Definition 4.10. (Root Task) An MITL formula with structure φ = (φ1 ∨ φ2 · · · ∨

φm) ∧ φs is equivalent to φ = (φ1 ∧ φs) ∨ (φ2 ∧ φs) · · · ∨ (φm ∧ φs). We denote each

1The tool is available on http://ltl3tools.sourceforge.net/

42

http://ltl3tools.sourceforge.net/

Fi = (φi ∧ φs) as the root task of the specification. The MITL formula is satisfied

by satisfying any of the root task.

In this chapter, we assume that it is not possible to accomplish two different

root tasks with the same execution sequence, i.e, for a finite sequence α, it is not

possible that [α |= Fi] and [α |= Fj] for i 6= j. This is often true in practice,

since otherwise there is no need to set different objectives for the robotic agent.

Under this assumption, we could always associate the sub-task LTL monitor with

its corresponding root task.

Definition 4.11. (Sub-task MITL Monitor). Given a sub-task LTL monitor Mφ
LTLsub

and its corresponding root task Fi, let Ω denote the set of atomic propositions for

root task Fi. If Fi contains temporal operators such as [·] U[t1,t2] ρ,♦[t1,t2]ρ, or �[t1,t2]

for ρ ∈ Ω, a sub-task MITL monitor Mφ
sub can be constructed by adding a clock

constraint t1 ≤ x ≤ t2 to the transition that accepts exactly ρ on Mφ
LTLsub.

Fig 4.3 shows two sub-task MITL monitors for the MITL specification φ.

Note that the unique construction of the sub-task MITL monitor is possible due

to the unique deterministic property of LTL3 monitor automaton [52], i.e, given a

finite trace α, the transition δ(qφ0 , α) is deterministic. This is not the case with the

traditional LTL to Büchi automaton construction, where the Büchi automaton is

non-deterministic [71].

Remark 4.2. In this work we consider each atomic proposition is only attached

to at most one clock constraints, i.e, specifications such as ♦[t1,t2]�[t3,t4]ρ are not

considered in this chapter.

43

(a) MITL monitor Mφ,3
sub (b) MITL monitor Mφ,4

sub

Figure 4.3: Two sub-task MITL monitors for Mφ. Note that in (a), clock constraint
is added to the transition with condition c, but in (b) no clock constraint
is added to the transition with condition c. This is because the root task
is different for (a) and (b). x is the clock variable. ẋ = 0 means the
clock is deactivated and x will not change. ẋ = 1 means the clock is
active and x will increase by one after taking an action.

44

We perform the reinforcement learning in the extended state space, Sexti =

S ×Qφ
i × V φ, where i ∈ {1, 2, · · · , N} is the index for the sub-task MITL monitor,

N is the total number of sub-task monitors for the given specification, and is equal

to the number of distinct simple paths (each edge in Mφ can be visited at most once

in a simple path) from q0 to q′, S is the state for the workspace, Qφ is the sub-task

MITL monitor state, and V φ is the set of clock valuations for the clocks in X. The

clock is initially deactivated by setting ẋ = 0, and will only activate once it reaches

a state with invariant ẋ = 1. Figure 4.4 shows an illustrative example for the extend

state space while considering the specification φ = (♦[2,3]A) ∧ (�¬O).

Figure 4.4: Q-learning in the extended space for specification φ = (♦[2,3]A)∧(�¬O).
The state represents location A turns green only within the time interval
[2,3].

45

Figure 4.5: LTL3 monitor automaton Mφ for φ = ((¬d U e)→♦[8,15]d)∨ (¬a U (b→
♦[5,10]c) ∧ ♦a) ∧ (�¬obs). Transitions with multiple labels such as a ∧ b
are removed since it is impossible to be at position a and b at the same
time.

4.3.3 Reward Function

Consider a task which requires a sequential order of visiting different positions

with time constraints, it is not enough to define our reward function only based on

the positions, since this could not capture neither the sequential requirement nor

the time constraints. In this work we propose to define our reward function over

the sub-task MITL monitor automaton based on the progression of satisfying the

temporal logic specification. Since each sub-task monitor is trained separately, the

reward function will also be different for each learning process.

Definition 4.12. (Sub-task Monitor Progression). Let Mφ
sub be a sub-task monitor,

Qφ
> be the “good” state , Qφ

⊥ be the “bad” state, and qφ is the current state. We

define the sub-task monitor progression using a metric d. d is the shortest distance

46

from qφ to Qφ
>. Note that Qφ

> has a d value of 0, and any state in Qφ
⊥ has a d value

of infinity.

With the definition of monitor progression, we could define the reward function

as follows. The reward function observes the current state s and action a and also

observes the subsequent state s′ and gives the agent a scalar reward according to

the following rule:

Rs
⊗
,a =



rp if [α |= φ] 6= ⊥ and d(s) > d(s′)

rn if [α |= φ] = ⊥ and d(s′) =∞

rs = 0 if [α |= φ] 6= ⊥ and d(s) = d(s′)

(4.5)

Assumption 4.1. (Safe exploration). We assume the robotic agent is able to recog-

nize the surrounding locations, i.e, the locations it could reach with one single action

from current position. During the learning process, the agent A receives an action

command a at state s, it will only execute the command if the next state s′ 6∈ Qφ
⊥.

The agent will receive a penalty for the action but the action will not be executed if

s′ ∈ Qφ
⊥.

The reward function will give a positive reward rp if the next state has a better

progression, i.e. smaller d value. It will give a negative reward rn if the next state is

a “bad state”. It will give a neutral reward rs = 0 if the progression stays the same.

Note that it is possible to get a positive reward even if the monitor automaton is at

a neutral state, as long as it progress to a smaller “d” value with the current action.

47

A separate Q-table is created for each sub-task MITL monitor.

q̂n = R(Sext,ni , an) + γmax
a
Qn−1
i (S

ext,(n+1)
i , a). (4.6)

We then update our value function using the observations:

Qn
i (Sext,ni , an) = (1− αn−1)Qn−1

i (Sext,ni , an) + αn−1q̂
n (4.7)

The complete procedure of our modular Q-learning framework is summarized in

Algorithm 1.

Algorithm 1 Monitor Guided Reinforcement Algorithm

1: Transform MITL specification φ into a LTL3 monitor automaton
2: Construct all sub-task MITL monitors according to Definition slowroman-

capiii@.1 - Definition slowromancapiii@.3
3: Select a sub-task Monitor Mφ,i

sub, ∀i ∈ {1, 2, · · · , N}
4: Construct the extended state Sexti

5: Initialize Q values for each of the module as 0
6: Start episode
7: Initialize the agent at a random location

• Choose exploit or explore according to ε-greedy exploration

• Receive reward based on the sub-task monitor progression (4.5)

• Update Q value based on equations (4.6) and (4.7)

8: End episode if the agent reaches a “good state”
9: Return to step 3 and repeat the process

48

4.4 Runtime monitoring and self-correction

During runtime, only one of the sub-task MITL monitors Mφ,i
sub will be selected

to guide the execution initially. Since there may be multiple ways of accomplishing

the task, one problem is which sub-task monitor we should use during runtime. We

could have different criteria on selecting our sub-task monitor during runtime execu-

tion. One possible choice could be selecting the shortest distance in the workspace

such that the specification is satisfied. Note that this does not necessary correspond

to the smallest number of states in the sub-task monitor automaton. Another pos-

sible choice could be selecting the highest accumulating rewards, which normally

corresponds to a path with less obstacles around. Another important problem is,

when the runtime environment becomes different than the training environment (e.g,

some of the states in the workspace becomes unreachable), the initial execution se-

quence may not be able to accomplish the task. We propose our self-correction

method given as below.

Proposition 4.1. (Runtime Self-Correction). Let Mφ
S denote the set of all sub-task

MITL monitors for the task φ. Assume the runtime execution is initally guided by

sub-task monitor Mφ,i
sub ∈ Mφ

S and α ∈
∑∗ be the finite timed trace until current

state s. The sub-task monitor will switch if at current state s, the agent receives an

action command a′ such that s
a
′
−→ s′ ∈ Qφ

⊥, and there exist another sub-task monitor

Mφ,j
sub such that λ(δ(qφ0 , α)) 6= ⊥, then the sub-task monitor will be switched to Mφ,j

sub.

During runtime execution, while only one module is guiding the execution

49

initially, other MITL monitors are running until they transit to a bad state. When

a sub-task MITL monitor enters the bad state, the monitor will be turned off and

infers that the corresponding sub-task is impossible to complete. Due to our safe

exploration Assumption 4.1, if the agent receives a command a at current state s

that leads to a bad state, i.e, s′ ∈ Qφ
⊥, the command will not be executed, however,

the current MITL monitor will be turned off and the agent will check if it is still

able to accomplish the task by switching to another MITL monitor.

4.5 Case Studies

In this section, we provide case studies for our monitor guided reinforcement

learning algorithm. The task is to find a feasible execution sequence that satisfies

the MITL specifications, starting from the initial position. The initial position of

the robot is marked as the red circle, and the black circles represent the obstacles.

The size of the environment is 20 by 20. (x,y) is the position of the robot in cartesian

space, x and y can take any integer values between 1 and 20. The robot could move

in four directions left, right, top, down with speed 1 or 2. We present the results

of two different scenarios: (1) the runtime environment is the same as the training

environment (2) the runtime environment is different than the training environment,

where a rectangle obstacle is added.

The task we consider in the case study is: “The robot can accomplish the task

by achieving either one of the objectives: (1) do not visit position d until information

is collected at position e, then once position e has been visited, eventually return to

50

position d between 8 and 15 time units to report the information; (2) do not visit

position a until information is collected at position b, and after visiting b, the robot

has to immediately visit position c between 5 and 10 time units without visiting

other locations, and eventually return to position a to report the information.” This

could be written using MITL as:

φ =((¬d U e)→ ♦[8,15]d) ∨ (¬a U (b→ ♦[5,10]c) ∧ ♦a) ∧ (�¬obs)

The resulting LTL3 monitor automaton Mφ is shown in Fig 4.5. Four sub-task

monitors of interest are presented in Table 1. Fig 4.6 shows the resulting path guided

by the sub-task MITL monitor Mφ,3
sub = {b, c, a} when the runtime environment is the

same as the training environment. The robot is able to satisfy the MITL specification

by visiting b,c and then a. Note that after visiting position b, the robot picks the

maximum speed (move 2 steps a time whenever it is possible) to reach position c,

since otherwise position c could not be reached within 10 time units after visiting

b. In contrast, the robot selects speed randomly moving from c to a, since there is

no time constraint for visiting a.

Fig 4.7 shows the resulting path when the runtime environment becomes dif-

ferent from the training environment. In this case, position a becomes unreachable.

Initially the robot still selects sub-task MITL monitor Mφ,3
sub = {b, c, a}, however, the

original execution sequence will lead to an obstacle while trying to reach position a.

Following Proposition slowromancapiii@.1, the agent switches the MITL monitor to

51

sub-
task
mon-
itors

atomic
proposi-
tions

corresponding states
in Mφ

Mφ,1
sub {e, d} (0, 0) → (1, 1) →

(1,−1)

Mφ,2
sub {b, e, d} (0, 0) → (4, 3) →

(1, 1)→

Mφ,3
sub {b, c, a} (0, 0) → (4, 3) →

(12, 12)→ (1,−1)

Mφ,4
sub {b, c, e, d}

(0, 0) → (4, 3) →
(12, 12) → (13, 13) →
(1,−1)

Table 4.1: Four sub-task monitors for φ1, each could guide the robot to satisfy the
specification

Figure 4.6: Resulting path by following the sub-task monitor Mφ,3
sub = {b, c, a}. Run-

time environment remains the same as the learning environment.

52

Mφ,4
sub = {b, c, e, d}. Unlike moving from b to c, the robot does not move full speed

(move 2 steps a time whenever it is possible) from position e to position d. This is

due to the time constraint that position d has to be visited between 8 and 15 time

units after visiting e.

Figure 4.7: Resulting path by following the sub-task monitor Mφ,3
sub = {b, c, a} ini-

tially and switch to Mφ,4
sub = {b, c, e, d} when the robot figures out “a” is

not reachable.

4.6 Chapter Summary

In this chapter, we have proposed a modular reinforcement learning frame-

work based on the design of sub-task monitors. Given a specification with time

53

constraints, we construct the LTL3 monitor automaton, and a set of sub-task MITL

monitors is then generated based on the LTL3 monitor automaton. A modular

Q-learning framework is used and we defined the reward function for each module

based on the sub-task monitor progression. During runtime execution, a sub-task

monitor is selected initially depending on the desired criterion to guide the robot

execution. When the task can not be accomplished, the robot is able to switch to

another sub-task monitor and tries to self-correct. Simulation results show that with

the framework we proposed, the robot is able to learn a feasible execution sequence

that satisfies the given MITL specification under finite time constraints. When the

runtime environment becomes different than the learning environment and the orig-

inal action will violate the specification, the robotic agent is able to self-correct and

accomplish the task if it is still possible.

54

Chapter 5: Optimization-based Motion Planning for Robotic Sys-

tems with Space and Time Tolerances

In previous chapters, we have considered automata-based approach for robot

planning. However, this relies on abstraction of the environment and many low-level

details are ignored. In this chapter we present an optimization-based approach for

robot planning, monitoring and self-correction problems under signal temporal logic

specifications (STL), where the exact control commands could be generated and both

space and time tolererances are considered. The STL specifications are translated

into mixed-integer linear constraints, and we generate the reference trajectory by

solving a mixed-integer-linear-programming (MILP) to maximize the overall space

and time tolerances. During runtime execution, a prediction module is constantly

evaluating the robustness degree of the predicted trajectory, and a self-correction

module based on event-triggered model predictive control (MPC) has been designed

to predict and correct possible future violations of the specifications. Simulation

results show that with our approach, the robotic agent is able to generate a path

that satisfies the STL specifications while maximizing space and time tolerances,

and able to make corrections when there are possible violations of the specifications

during runtime execution.

55

5.1 Related Work

Motion and task planning for autonomous robotic agents is important in many

real, physical world applications. Robotic agents have been deployed for agriculture

research, surveillance, and search and rescue operations. In recent years, a new

approach to the task planning problem for robotic agents has evolved by formulating

system specifications in temporal logics [12] [14] [16]. Linear temporal logic (LTL)

allows one to specify more complicated mission tasks that are hard to express and

to achieve by conventional methods [78].

However, LTL specifications do not emphasize finite time constraints. For

real applications, a robot might be required to perform a specific task within a

certain time bound, rather than at some arbitrary time in the future. Metric tem-

poral logic (MTL) [3] and Signal Temporal Logic (STL) [82] have been introduced

for motion planning with bounded time constraints. Task planning with bounded

time constraints has been investigated in [26] and [79] by solving a MILP problem.

An automata based approach for task planning with MTL specifications has been

considered in [1].

STL allows the specification of properties of dense-time and real-valued signals.

One main advantage of STL is the quantitative semantics which, in addition to the

yes/no answer to the satisfaction question, provide a real number that grades the

quality of the satisfaction or violation. This robustness information could be useful

in motion planning, since we normally want the robotic agents to stay far away from

the obstacles, and also to stay close to the center of the locations of interest. Motion

56

planning problems with STL have been investigated in [84] [85], and authors in [79]

and [83] have used STL for control synthesis together with Model Predictive Control

(MPC).

For autonomous systems operating in dynamic environments, the safety of

motion and time requirements for the task are critical. Due to the uncertainty in

the environment, the planning results obtained with respect to the system and envi-

ronment models at design-time might not be transferable to the system behavior at

run time. Therefore, allowing both space and time tolerances in the planning phase,

and the ability of runtime monitoring and self-correction are essential. Monitoring

problems for STL have been discussed in [80], [81] and [82]. [79] discusses MPC for

signal temporal logic specifications, but their approach requires solving the MILP

problem at each time step, and is not able to address the time robustness issue. [83]

considers the motion planning problem using STL and introduces the Discrete Av-

erage Space Robustness to maximize the space robustness. However, in their work

time robustness is not considered in the planning phase and the execution is as-

sumed to be perfect. To address these issues, in this work we divide the problem

into the following two parts: (1) offline control synthesis, (2) online monitoring and

self-correction. We first generate a path that considers both space and time robust-

ness, and then we design a prediction module and event-triggered MPC module for

the monitoring and self-correction.

The contributions of this chapter are as follows. First, we transform the robot

planning problem under signal temporal logic specifications into a mixed-integer

linear programming problem, while considering both the time tolerances and space

57

tolerances. To the best of our knowledge, this is the first work that considers both

space and time tolerances in the planning phase. Second, we have designed a mon-

itoring and self-correction framework for the runtime execution. A predicted tra-

jectory is generated at each time step, and we propose an event-triggered model

predictive control framework such that the robot is able to make self-corrections

when there is predicted error during runtime execution.

5.2 Preliminaries

Definition 5.1. An atomic proposition is a statement about the system variables

(x) that is either True(>) or False(⊥) for some given values of the state variables [13].

Definition 5.2. (STL semantics) The syntax of Metric Temporal Logic (MTL)

formulas are defined according to the following grammar rules:

φ ::= T |π | ¬φ1 |φ1 ∧ φ2 |�Iφ1 |φ1 UI φ2 | (5.1)

where I ⊆ [0, ∞]. UI symbolizes the timed Until operator. Sometimes we will

represent U[0,∞] by U. Other Boolean and temporal operators such as conjunction

(∨), eventually within I (♦I) etc. can be represented using the grammar described

in the definition. For example, we can express time constrained eventually operator

♦Iφ ≡ T UIφ and so on.

For any signal s, let st denote the value of s at time t and let (s, t) =

stst+1st+2 · · · be the part of the signal that is a sequence of st′ for t′ ∈ [t,∞).

58

Accordingly, the Boolean semantics of STL is recursively defined as follows:

• (s, t) |= (f(s) < d)⇔ f(st) < d,

• (s, t) |= ¬(f(s) < d)⇔ ¬((s, t) |= (f(s) < d)),

• (s, t) |= φ1 ∧ φ2 ⇔ (s, t) |= φ1 and (s, t) |= φ2,

• (s, t) |= φ1 ∨ φ2 ⇔ (s, t) |= φ1 or (s, t) |= φ2,

• (s, t) |= �[a,b]φ⇔ (s, t′) |= φ ∀t′ ∈ [t+ a, t+ b],

• (s, t) |= ♦[a,b]φ⇔ ∃t′ ∈ [t+ a, t+ b] s.t (s, t′) |= φ.

Thus, the expression φ1 UI φ2 means that φ2 will be true within time interval

I and until φ2 becomes true φ1 must be true.

Definition 5.3. (Space Robustness) STL is endowed with a metric called robustness

degree [82] (also called “degree of satisfaction”) that quantifies how well a given

signal s satisfies a given formula φ. The robustness degree is calculated recursively

according to the quantitative semantic:

• r(s, (f(s) < d), t) = d− f(st),

• r(s,¬(f(s) < d), t) = −r(s, (f(s) < d), t),

• r(s, φ1 ∧ φ2, t) = min(r(s, φ1, t), r(s, φ2, t)),

• r(s, φ1 ∨ φ2, t) = max(r(s, φ1, t), r(s, φ2, t)),

59

• r(s,♦[a,b]φ, t) = max
t
′∈[t+a,t+b]

r(s, φ, t′),

• r(s,�[a,b]φ, t) = min
t
′∈[t+a,t+b]

r(s, φ, t′),

Definition 5.4. (Time Robustness) The left and right time robustness of an STL

formula φ with respect to a trace s at time t are defined as follows

• θ−(s, f(s), t) = max(d ≥ 0s.t.∀t′ ∈ [t− d, t], (s, t) |= φ⇔ (s, t′) |= φ)

• θ+(s, f(s), t) = max(d ≥ 0s.t.∀t′ ∈ [t, t+ d], (s, t) |= φ⇔ (s, t′) |= φ)

The time robustness indicates how much the signal could be shifted to the left

(right) such that the specification is still satisfied.

Assumption 5.1. (Double Integrator dynamics) The dynamics of the robot is as-

sumed to be given by the following model:

X(k + 1) = A ·X(k) +B · U(k) (5.2)

A =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


B =



(∆t2/2) 0

0 (∆t2/2)

∆t 0

0 ∆t


(5.3)

X(t) =

[
x(t) y(t) ˙x(t) ˙y(t)

]T
(5.4)

60

where x(t), y(t) are the cartesian position of the robotic agent, and ˙x(t), ˙y(t)

are the velocities on each direction respectively. Let us denote the trajectory of the

system starting at t0 with initial condition x0 and input u(t) as Xx0,u
t0 = {X(s)|s ≥

t0,X(t + 1) = f(t,X(t), u(t)),X(t0) = x0}. For brevity, we will use Xt0 instead of

Xx0,u
t0 whenever we do not need the explicit information about u(t) and x0. Satisfac-

tion of a temporal specification φ by a trajectory Xt0 will be denoted as Xt0 |= φ.

5.3 Maximum Space-Time Tolerances Planning

Space and time tolerances are important for the planning problem. With

large space tolerances, the robot has a higher chance to satisfy the temporal logic

specifications when the trajectory deviates from the planning path. With large time

tolerances, the robot could handle the situation when the execution is slower or faster

than the plan. Therefore, it is important to take both space and time tolerances

into consideration. As shown in Fig 5.1, if space and time tolerances are not taken

into considerations, all three signals are considered as satisfying ♦[a,b](x > 0) from

t = 0 at the same degree. However, it is clear that the space tolerance of ω2 is small

(the specification will be violated if we disturb x a little) and the time tolerance

for ω3 is small (the specification will be violated if we shift the signal a little to the

right).

The planning problem considered in this chapter is to determine the optimal

trajectories such that the given temporal logic specifications are satisfied, and max-

imizing the space and time tolerances at the same time. The optimization problem

61

Figure 5.1: Limitations of the point-wise quantitative semantics: signals ω1, ω2 and
ω3 are considered as satisfying ♦[a,b](x > 0) from t = 0 at the same
degree.

could be formulated as follows:

max
X(t),u(t)

λ1r
φ
time(Xt0) + λ2r

φ
space(Xt0)

subject to X(t+ 1) = f(X(t), u(t))

umin ≤ u(t) ≤ umax

Xt0 |= φ

(5.5)

• rφtime(Xt0) and rφspace(Xt0) are the time and space tolerances for the trajectory

Xt0 over specification φ.

• The system dynamics are given in equation (5.2), and the control inputs are

bounded to [umin, umax].

62

• Xt0 |= φ is the constraint that the STL specifications are satisfied.

The temporal logic constraints φ is transformed into linear constraints and

will be described in details in the next section. The objective function we consider

here is to maximize the overall space and time tolerances, which is

rφ(Xt0) =λ1 · rφtime(Xt0) + λ2 · rφspace(Xt0) (5.6)

where λ1 and λ2 are the weight coefficients, and λ1 + λ2 = 1. rspace(Xt0) is

the space tolerance, which is defined similarly as the space robustness in Definition

5.3. rtime(Xt0) is the time tolerance, and our goal is to generate a trajectory that

is robust to time shifting. Therefore, we propose to extend the definition of time

robustness as follows:

For eventually (♦[ta,tb]A) operator, the time tolerance is defined as follows:

rφtime(Xt0) =

tb∑
t=ta

· 1

σ
√

2π
e(t− ta+tb

2
)2/2σ2 · PA

t (5.7)

where σ is a user-defined parameter indicating the standard deviation. Basically, we

want to maximize the time that the robotic agent is staying within the locations of

interests, and preferably in the middle of the allowed time interval. PA
t is a binary

variable and the value is 1 when the robot is within location A at time t and it is 0

otherwise. More detail discussion on how to construct PA
t will be described in the

next section.

63

For always (�[ta,tb]A) operator, the time tolerance is defined as follows:

rφtime(Xt0) =

tb∑
t=ta−τ

· 1

σ
√

2π
e(t−ta)2/2σ2 · PA

t

+

tb+τ∑
t=tb

· 1

σ
√

2π
e(t−tb)2/2σ2 · PA

t

(5.8)

where τ is a user-defined parameter and we want the robot to also satisfy the

specification before ta and after tb. Note that the satisfaction of the specifications is

already enforced by the constraint Xt0 |= φ, and we are maximizing the space and

time tolerances in the objective function based on that.

5.4 Mixed Integer Linear Programming

In this section, we demonstrate our approach to translate a time-bounded

temporal logic formula (constraint Xt0 |= φ in equation (5.3)) to mixed integer linear

constraints on state variables and inputs. We first need to express the temporal

constraint that x(t) lies within the area of interest P at time t in order to express

the requirement for the motion. Any convex polygon can be represented as an

intersection of several halfspaces. If the area of interest has a non-convex shape, we

could always decompose the polygon to convex ones and link them using disjunction

operators. A halfspace is expressed by a set of points, H = {x : hTi x ≤ ki}. Thus,

x(t) ∈ P is equivalent to x(t) ∈ ∩ni=1H(i). In order to translate the temporal

constraints with location atomic propositions into mixed integer convex (linear)

constraints, we use a similar method as discussed in [26].

64

In a polygonal environment, atomic propositions (AP), p ∈ Π, can be related to

states of the system using disjunction and conjunction of halfspaces. In other words,

the relationship between measured outputs such as the location of the robotic agent

and the halfspaces defines the propositions used in the temporal logic. Consider

the convex polygon case and let zti ∈ {0, 1} be the binary variables associated

with halfspaces {x(t) : hTi x ≤ ki} at time t = 0, · · · , N . We enforce the following

constraint zti = 1 if and only if hTi x ≤ ki by adding the convex (linear) constraints,

hTi x ≤ ki +M(1− zti)

hTi x ≥ ki −Mzti + ε

(5.9)

where M is a large positive number and ε is a small positive number. If we denote

PPt = ∧ni=1z
t
i , then PPt = 1 if and only if x(t) ∈ P at time t, and 0 otherwise.

Therefore, PPt is the binary variable that indicates whether the robotic agent lie in

area P at time t. Let p and q denote labels for some location in the environment.

The following Boolean operators, such as ¬, ∧, ∨, can be translated into linear

constraints. For t ∈ {0, 1, ..., N}, we denote the variables associated with formula φ

made up with propositions p ∈ Π at time t as P φ
t . The next subsection will discuss

the construction of P φ
t for different temporal logic specifications.

5.4.1 MTL to Mixed Integer Linear Constraints

Let p and q denote labels for some locations in the environment.

65

• The negation operation, φ = ¬p is modeled as

P φ
t = 1− P p

t (5.10)

• The conjunction operation, φ = ∧mi=1pi is modeled as

P φ
t ≤ P pi

t , i = 1, · · ·m,

P φ
t ≥ 1−m+

m∑
i=1

P pi
t

(5.11)

• The disjunction operation, φ = ∨mi=1pi is modeled as

P φ
t ≥ P pi

t , i = 1, · · ·m; P φ
t ≤

m∑
i=1

P pi
t (5.12)

Similarly, the temporal operators can be modeled using linear constraints as well.

Let t ∈ {0, 1, · · · , N − t2}, where [t1, t2] is the time interval used in the MTL.

• Eventually: φ = ♦[t1,t2]p is equivalent to

P φ
t ≥ P p

τ , τ ∈ {t+ t1, · · · , t+ t2}

P φ
t ≤

t+t2∑
τ=t+t1

P p
τ

(5.13)

66

• Always: φ = �[t1,t2]p is equivalent to

P φ
t ≤ P p

τ , τ ∈ {t+ t1, · · · , t+ t2}

P φ
t ≥

t+t2∑
τ=t+t1

P p
τ − (t2 − t1)

(5.14)

• Until: φ = p U[t1,t2] q is equivalent to

atj ≤ P q
j , j ∈ {t+ t1, · · · , t+ t2}

atj ≤ P p
k , k ∈ {t, · · · , j − 1}, j ∈ {t+ t1, · · · , t+ t2}

atj ≥ P q
j +

j−1∑
k=t

P p
k − (j − t), j ∈ {t+ t1, · · · , t+ t2}

P φ
t ≤

t+t2∑
j=t+t1

atj

P φ
t ≥ atj, j ∈ t+ t1, · · · , t+ t2

(5.15)

For the until operator, we define extra slack variables similar to [13] in order

to make the constraints linear in terms of the variables. The constraints for the

until operator could be interpreted as follows:

P φ
t =

[

j= t+ t1]t+ t2
∨

(∧k=j−1
k=t P p

k) ∧ P q
j)

Using this approach, we translate the given high level specification in STL (Xt0 |= φ)

to a set of mixed integer linear constraints. At the end, we add the constraint

P φ
0 = 1, i.e. the overall specification φ is satisfied. Since Boolean variables are only

introduced when halfspaces are defined, the computation cost of MILP is at most

67

exponential to the number of halfspaces times the discrete steps N .

5.5 Runtime Monitoring and Self-Correction

Let N be the horizon of the planning trajectory, and let Xr(t) and Ur(t) be

the reference states and control inputs for t ∈ [1, N] respectively. Note that Xr(t)

and Ur(t) could be obtained offline by solving the MILP in Problem 1. During

runtime, two threshold parameters θspace and θtime are defined to monitor the runtime

execution. θspace and θtime are the space and time tolerances we want to maintain for

the execution sequence. At time t′, we denote the observed states as Xo(t), where

t ∈ [1, t′]. The predicted states Xp(t) of the robot is generated based on the observed

states and the reference inputs until the end of the execution (t = N), i.e,

Xp(τ + 1) = f(Xp(τ), Ur(τ)), τ = t′, · · ·N − 1

Xp(τ) = Xo(τ) for τ = 1, · · · , t′
(5.16)

Let Xp
t denote the predicted trajectory at time t, we then evaluate the tolerance

rtime(X
p
t) and rspace(X

p
t) for the predicted trajectory. If at time t we have rtime(X

p
t) ≥

θtime and rspace(X
p
t) ≥ θspace, then it indicates the execution sequence is able to

satisfy the specification and there is no need for correction. We simply use Ur(t)

from offline calculation as the control inputs at time t. Otherwise, the event-trigger

MPC module will be activated and correct the execution.

68

5.5.1 Event-triggered Model Predictive Control

An event-triggered MPC is designed for runtime self-correction, where we

are constantly evaluating whether the predicted trajectory still satisfies the given

specification and maintains a specific tolerance degree. If rspace(X
p
t) < θspace or

rtime(X
p
t) < θtime at time t, it suggests possible violations for the specifications in

the future and the MPC module will be triggered. The MPC problem is formulated

as follows:

min
X(t),u(t)

τ=t+T∑
τ=t

(Xr(τ)−X(τ))TQ(Xr(τ)−X(τ))

subject to X(τ + 1) = f(X(τ), u(τ)), τ ∈ [t, t+ T − 1]

X(t+ T) = Xr(t+ T)

(5.17)

where T is the horizon. By solving the MPC problem, we try to bring the robot

back to the reference trajectory. Note that only the first step of the computed

optimal control strategy (denoted as u∗(t)) is implemented, i.e, at time t, we use

u∗(t) instead of Ur(t) as the control input. We will re-evaluate the predicted states

at the next time step iteratively until the end of the planning trajectory.

5.6 Case Studies

In this section, we consider two different case studies, where the first one has

tighter time constraints and the second one has tighter space constraints. The ex-

periments are run through YALMIP-CPLEX on a computer with 2.8GHz processor

69

and 8GB memory. The MPC has a horizon T=10. For both examples, we use

θspace = 0.3 and θtime = 4.

Figure 5.2: Resulting path with maximum space and time tolerances for φ1. The
blue text shows the time that the robot enters each green region.

We first consider a sequential task that the robot needs to visit position A

between 10 and 20 seconds, and visit B between 21 and 31 seconds, visit C between

32 and 42 seconds, and never be in the yellow regions Ois (i ∈ [1, k1], where k1 is

the number of obstacles). The STL specification is given as below.

φ1 = ♦[10,20]A ∧ ♦[21,31]B ∧ ♦[32,42]C ∧ (∧
i=1,···,k1

�¬Oi) (5.18)

Region A is represented as (x > 2 ∧ x < 3 ∧ y > 6 ∧ y < 7) and similarly

for other regions. The optimization problem is formulated as in equation (5.3). We

70

assume the velocity information is perfect when we are generating the reference

trajectory offline, and is not perfect with a white noise deviation added during

runtime execution. The resulting reference trajectory is shown in Fig 5.2. As can

be seen from Fig 5.2, the final path of the robot stays far away from the yellow

regions, and always goes through the center of the green regions for maximum space

robustness. The robot also slows down when it enters green regions to maximize

time robustness. Fig 5.3 shows that when the disturbance is small, the robot is able

to still satisfy the specification without any correction.

Figure 5.3: Monitoring runtime sequence (blue line) with space and time tolerances.
The monitor indicates that the runtime sequence also satisfies φ. No
correction is needed and MPC never turns on.

However, when the deviation is large, the MPC module will be turned on and

guide the robot to satisfy the desired specification with self-corrections. Note that

the blue dashed line in Fig 5.4 is the predicted trajectory at t = 8, and it is not able

71

Figure 5.4: Resulting trajectory for φ1 with self-correction. The blue dashed line
indicates the predicted path at t = 8. The red line shows the path with
self-corrections. The reference trajectory is marked in black.

to reach position C thus violating the specification. Fig 5.5 shows the triggering

instances of MPC, and the MPC module has been triggered for 4 seconds in total

in this example.

In the second example, we consider an environment with more obstacles but

with a relatively looser time constraints. The specification is given as below, where

we require the robot to eventually visit position A between 10 seconds and 20 sec-

onds, and eventually visit position C between 32 seconds and 42 seconds while

avoiding all k2 obstacles.

φ2 = ♦[10,20]A ∧ ♦[32,42]C ∧ (∧
i=1,···,k2

�¬Oi) (5.19)

72

Figure 5.5: Triggering instances for MPC. The MPC module has turned on for 4
seconds in total.

Figure 5.6: Resulting path with maximum space and time tolerances for φ2

73

Figure 5.7: Resulting trajectory for φ2 with self-correction. The blue dashed line
indicates the predicted path at t = 6. The red line shows the path with
self-corrections.

Figure 5.8: Triggering instances for MPC. The MPC module has turned on for 11
seconds in total.

74

Similarly, the offline planning is able to generate a path that maximize the

space and time tolerances as shown in Fig 5.6. It is clearly visible in this case

that the trajectory tends to stay in green regions as long as possible during the

required time interval for maximum time robustness. During runtime execution,

the blue dashed line in Fig 5.7 is the predicting trajectory at t = 6, and it reaches

position C at the last time step. The time robustness requirement is thus violated

and therefore MPC is triggered. Fig 5.8 shows the triggering instances of MPC,

and MPC has been triggered for 11 seconds in total in this example. Compared to

the first example, MPC has been triggered more frequently due to the complexity

of the environment (It is more likely to hit an obstacle). Table 1 summarizes the

number of linear constraints and computation time for each of the examples. Both

examples have similar computational complexity since the first example has a more

complicated task and the second example has a more complicated environment.

STL

Specifications

of

linear constraints

Computation

time (s)

φ1 3154 10123

φ2 2615 9673

Table 5.1: Number of constraints and computation time

5.7 Chapter Summary

In this chapter, we have presented an optimization-based approach for robot

planning, monitoring and self-correction problems under STL specifications with

finite time constraints. Our approach translates the STL specifications into mixed-

75

integer linear constraints, and the goal of the optimization problem is to maximize

the overall space and time tolerances under double integrator dynamics of the robotic

agent. During runtime execution, we consider a realistic situation where the veloc-

ity information is not perfect. A prediction module and a self-correction module

with event-triggered model predictive control have been designed to predict and

prevent possible future violations of the specifications. The simulation results show

promising performance of our approach to find an optimal solution, and the robotic

agent is able to make self-corrections during runtime execution when the velocity

information is noisy.

Since we have used a binary variable (z) with each halfspace, the problem

would be complex if the environment contains too many halfspaces. Therefore,

the future directions of this work could include task decomposition and reduction

of binary variables. Other aspects such as learning from the self-corrections, and

multi-robot cooperative planning could also be possible extension of this work.

76

Chapter 6: Statistics-Based Slippage Prediction and Correction with

Object Classification using a Dexterous Robotic Hand

Slip detection and correction plays a very important role in robotic manipu-

lation tasks, and it has long been a challenging problem in the robotic community.

In this chapter, we propose a complete framework to predict, detect and correct

slippage through the use of BioTac SP sensors attached to a five fingered dexter-

ous robotic hand. We take advantage of both the haptic data from these sensors,

combined with synchronized video data from a camera, to apply a statistical based

approach to slip prediction and correction, and the ability to classify objects as ei-

ther rigid or soft in order to prevent over exertion of the robotic grasp. We tested

our algorithm by adding weight to the empty container which was initially held

stably by the robotic hand, and our algorithm is able to predict and prevent the

slip for different types of containers.

6.1 Related Work

When grasping an object, humans are able to prevent the object from slipping

from their grasp by constantly adjusting their grip [32]. This is possible due to our

highly sensitive slip detection capabilities. However, the ability for a robotic hand

77

to grasp an object, detect when that object is slipping, and correct for that slippage

without exerting too much force on the object is difficult still today especially while

the weight of the object is changing at an unknown rate. In this work, the ability

for a robotic hand to autonomously detect the moment of slippage and be able

to stop this slippage without crushing the object was investigated using SynTouch

BioTac SP sensors attached to a five fingered robotic hand, the Shadow Dexterous

Hand. A statistics-based approach was used to detect the moment of slip, and a

weight estimation technique was used in order to apply enough force to stop the

object from falling while the weight of the cup was changing in real time. Lastly,

the object in the hand was classified as either rigid or soft so that the robotic hand

would adjust the correction algorithm based on the classified object. This was done

in order to prevent the robotic hand from exerting forces that would crush an object

while trying to prevent slippage.

The benefit of having a slip detection and correction through robotic hands

is immense. In [33], the authors state that there is a crucial need for limb-absent

people to have their artificial hands be able to detect and correct object slippage

when they do not have direct feedback from the robotic hand sensors. Our work

provides the ability for the robotic hand to autonomously detect object slippage and

correct for that slippage while preventing deformation of the object. As discussed

in [34], it is important for robotic hands to be able to pick up or catch an object

with an unknown mass and friction where the goal is to reliably hold the object

without the object slipping or over correcting for slippage and crushing the object.

Therefore, there is a need and use for dexterous hands that implement a slippage

78

detection and correction algorithm to prevent slippage while having the ability to

know the composition of the objects being held in the hand which was our goal of

this work.

The contributions of this work are as follows. First, we’ve collected a data-

set of synchronized haptic and vision data for slippage detection and correction

problems with BioTac SP tactile sensors and a high resolution camera. Second, we

analyzed the data-set to determine the empirical distribution and the correlation of

the haptic data around the moment of object slip. We discovered a certain pattern

in the correlation data analysis, and a median absolute deviation (MAD) method is

used to predict the slip time. Finally, we propose a control framework for slippage

detection and correction based on the sensor data in order to stop object slippage

in the robotic hand. As part of our control framework, the robotic hand is able to

correct object slippage and uses previous knowledge of the structure of the object

in order to prevent crushing the object. Self-managed safety and correctness are

essential for autonomy which is why it was crucial for our robotic hand to implement

the control algorithm autonomously.

6.2 Related Work

Over the years, there has been research that focused on using haptic data to

detect the moment an object starts slipping from a robotic end effector. The need of

haptic sensors that mimic the sensory capabilities of the human hand has been well

documented by N. Wettles, Jeremy A. Fishel and Gerald E. Loeb in [45] with their

79

discussion of their first BioTac sensor. There has been many experiments employing

some version of the BioTac sensors in order to detect and correct for object slippage.

In [38], researchers use the Pac (vibrational pressure) readings from BioTac

sensors attached to a three finger manipulator to detect micro-vibrations in order to

detect slippage. If 11 out of the 22 pressure samples in a time window were above

a certain threshold then a slippage was detected. For our experiment, the real time

data from 24 electrodes in each of the five fingers in a time window were used to see

if their data is correlated with the average electrodes data at the moment of slippage

over all slip experiments. Also, this previous paper did not go into stopping a cup

from slipping from the robotic hand while weight is being continuously added to the

cup instead the weight was changed while the object was on a table and then lifted

up.

There have been many papers using neural networks to decipher the BioTac

sensor readings in order to build their detection and correction algorithms. In [33],

M. Abd et al. constructed their slippage detection algorithm using data from BioTac

SP sensors and the application of an artificial neural network classifier. Their ap-

proach focused more on classifying the direction of an object slipping from a grasp.

Our approach relies on the statistics of the sensor data around the slippage time

which allows us to have a high accuracy of slippage detection while requiring a much

smaller data-set. We also focused more on preventing an object from slipping. The

approach of N. Wettels et al. [46] focused on using the BioTac electrode readings to

estimate the tangential and normal forces applied by the Otto Bock M2 hand to a

styrofoam cup. The cup was filled with water during their grasp control experiments

80

in order to see if the robotic fingers could correct for slippage caused by the contin-

uous increased weight of the flowing water. Using their grasp control algorithm, it

was possible to correct for the slippage of the soft cup, but as noted by the authors,

their robotic hand had issues with correcting for slippage caused by a rapid fill rate.

For our experiment, our robotic hand is able to correct for the slippage of rigid and

soft cups regardless of the rate of fill.

In [47], the authors used a Long Short Term Memory (LSTM) network to

detect slippage with tactile sensors. A cutoff significance threshold is set manually,

and slippage is detected if the output of the LSTM network exceeded the thresh-

old. The neural network approach is ad-hoc and relies on selecting a good cut-off

threshold and window size. With our approach, we discover a statistical pattern

using correlation analysis for the slip data which provides a more accurate detection

of the moment of slip as compared with the LSTM method.

Figure 6.1: Experiment setup for collecting haptic-vision dataset. Bb pellets are
used as the filler and we use a funnel to ensure a constant pouring rate

81

(a) BioTac Sensor Schematic (b) Timed Automaton for the checker

Figure 6.2: BioTac Sensor Schematic and Electrode Locations

6.3 Data Description

Eighty sets of synchronized haptic and visual data were collected for the slip-

page detection and correction experiment with different containers. Sixty four of

the experiments were conducted with a rigid container and the rest with soft con-

tainers. The schematic of the BioTac SP, a haptic sensor, is shown in figure 6.2. A

high resolution camera was used to record the visual data.

For each experiment, a bottle is initially securely held by the BioTac SP sensors

that are attached to the Shadow Hand fingers. The bottle is held at the same height

at the beginning of each experiment. During the experiment, weight is added to the

bottle at a consistent rate by pouring bb pellets into the bottle. The experiment is

run until the bottle slips completely from the hand. The visual data is synchronized

with the haptic data using the ROS platform [35] during the data collection process.

We additionally labelled the dataset with the frame number where the slippage

occurs.

82

6.3.1 Haptic Data

Haptic data is sampled at 100HZ. Each sample has a dimension of 5 × 29,

where 5 is the number of fingers and 29 is the number of sensor data for each finger.

There are 24 electrodes on each finger which are located as shown in figure ??. The

types of the sensor data are summarized in figure 6.3.

Figure 6.3: BioTac Sensor Data Types

6.3.2 Visual Data

A high resolution RGB camera (Logitech C922x) is used for collecting the

visual data. The camera is positioned at the side of the shadow hand, such that the

cup and robotic hand are in the middle of the image. Visual data is sampled at 30

frames per second. The resolution of the image is 1920 × 1080. The experimental

configuration is shown in 6.1.

6.3.3 Indexing of the data

Since the sampling rate of haptic data and vision data is different, at time t

seconds of the experiment, the index of haptic data is 100 · t, and the index of vision

83

data is 30 · t. Given a frame number Iv, the corresponding haptic data index Ih is

given by Ih = [100·Iv
30

], where [·] is the nearest integer operator.

Figure 6.4: Median Flow Tracker is used to determine t∗j . In this experiment, first
slippage is detected at frame 48 and t∗j=1.6s

6.3.4 Data Pre-Processing

In order to correct or prevent slippage, it is important to understand the

statistics of the sensor data before, during and after the moment of slip. We first

use a median flow tracking algorithm [36] to determine the time that the cup starts to

slip for each experiment of the dataset. The median flow tracker tracks the object

in both forward and backward directions in time and measures the discrepancies

between these two trajectories. Minimizing this Forward-Backward error enables

the tracker to reliably track the object. We use the tracker to track the object

grasped in the hand and detect if slippage occurs based on the velocity of the

object. As shown in figure 6.4, the blue bounding box indicates that we are tracking

84

(a) electrode 15 on first finger (FF)

(b) electrode 10 on thumb (TH)

(c) electrode 3 on middle finger (MF)

Figure 6.5: 150 electrode data samples on FF, TH and MF, before t∗ for three dif-
ferent experiments. The sensor data has been normalized by subtracting
the values at rest.

85

the bottom of the cup. The text on the top left corner indicates the status of the

experiment, whether slippage is detected or not, and the first frame that slippage is

detected. We claim that slippage occurs if the velocity of the object is greater than

some small threshold ε. We denote t∗j as the first moment that slippage occurs for

the jth experiment.

6.3.5 Tactile Data Aggregation

Empirical Distribution Around Slippage Time t∗j : Once we have deter-

mined the slippage time t∗j for each j ∈ {1 · · · 64}, we then align our data based on t∗j

since we’re interested in the statistics around the slippage time. We denote the elec-

trodes data as xji,k(t), where j is the index for the experiment number, i ∈ {1 · · · 5}

is the finger index, k ∈ {1 · · · 24} is the electrode index, and t is the time index.

The empirical distributions of the electrodes data for all 64 experiments xi,k(t) are

calculated for t ∈ [t∗j − ta, t∗j + tb], where ta and tb are the constants to represent the

time around slippage occurs. ’

It is not necessary to use all 24 dimensions of tactile data, since some of the

sensors may not be in contact with the object during the slippage time interval.

We evaluate the empirical distribution of each electrode data in the time interval

[t∗j − ta, t∗j + tb], and we select the top five electrodes with most impact. We evaluate

the impact using entropy. The top 5 electrodes with maximum entropy empirical

distributions will be selected for the cross-correlation computation.

86

H(X) = −
∑
i

Pilog(Pi) (6.1)

6.4 Slippage Detection Algorithm

Once we have determined the slippage time t∗j for each experiment j ∈ {1 · · ·M},

where M is the total number of experiments in the dataset, we then align our data

based on t∗j since we are interested in the statistics around the moment of slip. We

denote the electrodes data as xji,k(t), where j is the index for the experiment num-

ber, i ∈ {1 · · ·nf}, is the index of the finger , k ∈ {1 · · ·ne} is the electrode index,

and t is the time sample index. nf is the number of fingers which is equal to 5 for

the Shadow robotic hand, ne is the number of electrodes which is equal to 24 for the

BioTac SP sensors attached to the Shadow Hand. Finger index 1 to 5 corresponds to

first finger (FF), middle finger (MF), ring finger (RF), little finger (LF) and thumb

(TH), respectively.

Figure 6.5 demonstrates the electrode data on different fingers for three dif-

ferent experiments. Figure 6.5 shows the electrodes data for time interval I =

[t∗j − ta, t
∗
j + tb], where ta and tb are the integer constants to represent the time

interval around when slippage occurs. For different experiments, some electrodes

on the fingers behave similarly before slippage occurs. For example as shown in fig-

ure 6.5(b), the readings for electrode 10 on the thumb decreases when approaching

t∗ for all three experiments. However, some electrodes will behave differently for

each experiment. Some electrodes’ value will not drastically vary while some will

87

(a) Distribution for x1,1(t∗1)

(b) Distribution for x1,7(t∗1)

(c) Distribution for x1,16(t∗1)

Figure 6.6: Empirical Distributions for three different electrodes on first finger at t∗j

88

increase and some will decrease, as shown in figure 6.5 (a), (b) and (c). Therefore,

we propose a statistical based method to detect slippage. This method calculates

the correlation between the realtime haptic data sequence XR and the pre-slip hap-

tic data sequence XH . The dimension of XH is XH ∈ I × nf × ne, where I is the

window size I = (tb + ta + 1). A single pre-slip haptic data sequence XS for the jth

experiment can be defined as follows:

XS(t, j, i, k) = xji,k(t) (6.2)

for t ∈ [t∗j − ta, t∗j + tb], i ∈ [1, nf], k ∈ [1, ne]. Then, we can calculate the average

pre-slip haptic data sequence of the dataset as follows:

XH(t, i, k) =
1

Ne

Ne∑
j=1

XS(t, j, i, k) =
1

Ne

Ne∑
j=1

xji,k(t) (6.3)

for t ∈ [t∗j − ta, t
∗
j + tb], i ∈ [1, nf], k ∈ [1, ne], Ne = 64 is the total number of

experiments in the dataset.

The realtime haptic data sequence XR has the same dimension as XH , and it

is updated with every new sample. Let tnow denote the current time index, then

XR(t, i, k) = xji,k(t) (6.4)

for t ∈ [tnow − (ta + tb), tnow], i ∈ [1, nf], k ∈ [1, ne].

89

6.4.1 Slippage Detection using Correlation Coefficient of Two Time

Series

The correlation between the realtime sequence XR and the pre-slip sequence

XH for electrode k on finger i at time t can be calculated as follows.

ρi,k(XR, XH) =
1

N − 1

N∑
j=1

(
XRj
− µXR

σXR

)(
XHj
− µXH

σXH

) (6.5)

where µ and σ are the mean and standard deviation of the haptic data sequence for

electrode k on finger i. N = (ta+tb+1) is the window size or number of observations

in the sequence. We select ta = tb = 75 (which is equivalently 0.75 seconds) in

order to understand the statistics around the moment of slippage. (N − 1) here

is the Bessel’s correction, which uses (N − 1) instead of N in the formula for the

sample variance and sample standard deviation. This method corrects the bias in

the estimation of the population variance. The total correlation is a sum of all the

electrode correlations.

ρ(XR, XH) =
5∑
i=1

24∑
k=1

ρi,k(XR, XH) (6.6)

During the testing phase, we calculate the cross-correlation between the real-

time haptic data and the haptic data that we collected for the interval around

the moment of slippage. From our experiments, we notice that at the moment of

slippage t∗, there is always a peak outlier appearing in the cross-correlation sequence,

90

as shown in Figure 6.7. Therefore, we could transfer our slippage prediction problem

into a peak outlier detection problem. A peak in the cross-correlation will suggest a

possible slip, and the forces applied on the object by the fingers should be increased

to prevent slippage.

This peak can be detected by measuring the median absolute deviation (MAD).

In statistics, the median absolute deviation (MAD) is a robust measure of the vari-

ability of a univariate sample of quantitative data [44]. Let C1, C2, · · · , CN be the

correlation sums sequence for a window size of N. Let C̄ denote the median of the

sequence. Then the Median absolute deviation could be calculated as follows:

MAD = median(|Ci − C̄|) (6.7)

The MAD may be used similarly to how one would use the deviation for the average.

In order to use the MAD as a consistent estimator for the estimation of the standard

deviation σ , one takes

σ̃ = k ·MAD (6.8)

where k is a constant scale factor, which depends on the distribution. In this work

we choose k = 1/Φ−1(3
4
) ≈ 1.4826 by assuming the correlation sequence is normally

distributed during the experiment. For our experiment, we claim a point is detected

as a peak outlier if Ci > 3σ̃. We selected different window sizes of 20, 50, 100, and

91

we compared the performance with different methods. The error is calculated as:

e =
|tdetect − t∗|

ttotal
(6.9)

where tdetect is the time index for the detected peak outlier, t∗ is the ground truth

from the dataset, and ttotal is the total length of the experiment. To evaluate the

performance of our algorithm, we compare the proposed algorithm with two other

algorithms. We summarized the algorithms as follows:

• Corr-MAD-All (proposed algorithm): Compute the total correlation between

the realtime sequence XR and XH .

• Corr-MAD-Single: Compute the total correlation between the realtime se-

quence XR and single sequence XS.

• DNN-LSTM: Detect the slippage using LSTM deep neural network.

For the DNN-LSTM approach, we construct a LSTM network similar to [47],

and use XR as input. We set a significance cut-off as 0.95. The results are shown in

table 6.1. As can be seen from the results, the proposed algorithm shows the best

performance. We also notice that for all different window sizes, Corr-MAD-ALL

always performs better than Corr-MAD-single. This is due to the fact that with a

randomly selected sequence, there are more uncertainties.

92

Figure 6.7: Comparison of the correlation sum when using average sample sequence
from the dataset (black line) versus using a random single sample se-
quence from the dataset (red line).

6.5 Slippage Correction Algorithm with Weight Estimate

During the testing phase, we calculate the cross-correlation between the real-

time haptic data and the haptic data we collected right before slippage occurs. A

high correlation will suggest a possible slippage, and the forces applied on the object

by the fingers should be increased to prevent slippage. For slippage correction, it is

important that the robotic hand is not over correcting or crushing the object. To

serve this purpose, we propose a weight-estimation algorithm and a PD controller

for slippage correction.

93

Method Used Window Size Average Error

Corr-MAD-single 20 7.41

Corr-MAD-ALL 20 6.67

Corr-MAD-single 50 8.23

Corr-MAD-ALL 50 5.47

Corr-MAD-single 100 7.75

Corr-MAD-ALL 100 2.77

DNN-LSTM 100 15.57

Table 6.1: Comparison slippage prediction using different methods and window size

Figure 6.8: Force estimation from Biotac SP sensor pdc readings. (a) shows the
force measuring setup. (b)-(f) show the force to pdc ratio for each of
the finger. The pdc value is saturated at around 3N for all fingers. Below
the 3N range, the pdc-force ratio is almost linear for all fingers except
the thumb.

6.5.1 Weight Estimation

In order to augment our correction algorithm, it is important to estimate the

weight of the grasped object and apply forces through the fingers accordingly. To

estimate the weight of the grasped object, we leverage the vibration sensor, Pac,

94

(a) Pac for a rigid container (b) Pac for a soft container

Figure 6.9: Vibration sensor readings (Pac) for different types of containers during
one experiment

from the fingers. The vibration sensor readings are significant only when the bb

pellets start to enter the container. As shown in Figure 1(b), the narrow funnel

ensures that the pouring speed is almost always constant. Therefore, the weight

increase from time t1 to t2 could be estimated as:

∆Wt1,t2 = IPac(t) ·
t=t2∑
t=t1

R (6.10)

where I is an indicator function and takes a value 1 when the vibration sensor has

a significant reading and 0 otherwise. R is a constant which decides the rate of the

weight increase and depends on the size of the funnel.

6.5.2 Container Classification

Additionally, we classify the container into two different classes, i.e. rigid

containers or soft containers. It is important to classify the container since we do

not want to apply a grasping force that will destroy the container if the container

95

is soft or fragile. As shown in Figure 6.9, we noticed that the vibration sensor

readings behave regularly for soft containers as compared to rigid containers. Once

the container is detected as a soft container, an additional threshold for the controller

will be set so that the container will not be crushed. This means that the robotic

hand will correct for slippage up to the threshold. There will be a warning message

displayed once this threshold is met, and the correction algorithm will be stopped.

This threshold can be adjusted based on user preferences such as deforming the cup

in order to stop the cup from slipping from the hand.

6.5.3 Mathematical Model for BioTac Sensor - Force Estimation

The BioTac sensor provides two different ways to estimate forces. One way

is through the pdc values which gives direct feedback of the fluid pressure inside

the silicone skin. The other way is from the electrodes which provide feedback of

the applied forces based on the area in contact with the BioTac surface. The pdc

readings from the BioTac SP sensors provide a estimate of the force applied to the

BioTac sensor when in contact with an object. However, it is necessary to calibrate

this pdc data to force data. Therefore, we collected the force data by pressing the

BioTac sensors against a Nextech DFS100 force gauge as shown by the setup in

6.8(a). This way we were able to collect pdc versus force data for all five fingers. As

shown in Figure 6.8(b)-(f), for all fingers the pdc value is saturated at around 3N.

For the range between 0N and 3N, a linear correlation between pdc value and force

is visible for all fingers.

96

(a) rigid container (b) soft container

Figure 6.10: Implementation of the slippage correction algorithm with a dexterous
robotic hand. We tested the algorithm with different containers and in
both cases the robot is able to prevent slippage.

Figure 6.11: Simple Coulomb Friction Model

97

6.5.4 PD Controller

In this section, we use a simple Coulomb friction model as shown in Figure

6.11, where we assume the tangential force is proportional to the normal force. We

assume the force applied by the thumb is equal to the combined force applied from

the FF, MF, RF and LF.

ff = µF (6.11)

where µ is the friction coefficient which is different for different objects. F is the

force applied by the thumb. Base on the results from previous section, the tangential

force is then proportional to the Pdc values from the sensor.

We implemented a PD controller based on the fluid pressure values from the

fingers.

u(t) = Kpe(t) +Kd
de(t)

dt
(6.12)

where u(t) is the control signal, and it corresponds to the motor voltage for the

finger joint. e(t) is the error signal, which represents the difference between the

desired force and the actual force applied on the object.

6.6 Chapter Summary

In this chapter, we investigated the slippage prediction, detection and cor-

rection problem using both haptic and visual data. We first described the data

collection process for our experiments. A median flow tracking algorithm was used

to determine the t∗j for each experiment, and we analyzed the statistics for the haptic

98

data around the moment of slippage. We proposed a slippage prediction algorithm

based on the median absolute deviation (MAD) of the correlation sequence, and

a correction algorithm which automatically increases the grasping force based on

weight estimation when the slippage has been predicted. Our algorithm shows high

accuracy to predict and prevent the slippage. Furthermore, we leverage the vibra-

tion sensors to classify objects as either rigid or soft in order to prevent over exertion

of the robotic grasp and prevent crushing the object.

99

Chapter 7: Conclusion

In this dissertation, we have addressed five problems on planning, self-monitoring

and learning for robotic agents.

For the first problem, we propose a timed automata based approach for manip-

ulator planning, using metric interval temporal logic (MITL). We have considered

the automated generation of behaviors for a robotic manipulator while considering

time constraints for both position changes (move from position A to position B)

and for performing actions (grasping an object,releasing an object). We showed the

execution sequence generated by UPPAAL for two different cases, and both of them

satisfied the given specification.

Due to the uncertainty in the environment, the verification results obtained

with respect to the system and environment models at design-time might not be

transferable to the system behavior at run time. Therefore, for the second problem,

we have considered the design of runtime monitors. We first modeled the manip-

ulator as a hybrid system, thenwe dicussed the design of two runtime monitors.

A model monitor is designed tomonitor the correctness of the task execution, and

a safety monitor is designedbased on LTL3 specifications to guarantee the safety

during the execution.

100

For the third problem, we present a modular Q-learning framework to deal with

the robot task planning, runtime monitoring and self-correction problem. Given a

specification with time con-straints, we construct the LTL3 monitor automaton, and

a set of sub-task MITL monitors is then generated by decomposing and augmenting

the monitor automaton. During the learning phase, a modular Q-learning approach

is proposed such that each module could learn different sub-tasks. Our results show

that during runtime, the sub-task MITL monitors could monitor the execution and

guide the agent for possible self-correction if an error occurs.

Next, for the forth problem, we have presented an optimization-based ap-

proach for robot planning, monitoring and self-correction under STL specifications

with finite time constraints. Our approach translates the STL specifications into

mixed-integer linear constraints, and the goal of the optimization problem is to

maximize the overall space and time tolerances under double integrator dynamics of

the robotic agent. During runtime execution, we consider a realistic situation where

the velocity information is not perfect. A prediction module and a self-correction

modulewith event-triggered model predictive control have been designed to predict

and prevent possible future violations of the specifications. The simulation results

show promising performance of our approach to find an optimal solution, and the

robotic agent is able to make self-corrections during runtime execution when the

velocity information is noisy

Finally, we investigated the slippage prediction, detection and correction prob-

lem using both haptic and visual data. We first described the data collection process

for our experiments. A median flow tracking algorithm was used to determine the

101

t∗ for each experiment, and we analyzed the statistics for the haptic data around

the moment of slippage. We proposed a slippage prediction algorithm based on

the median absolute deviation (MAD) of the correlation sequence, and a correction

algorithm which automatically increases the grasping force based on weight estima-

tion when the slippage has been predicted. Our algorithm shows high accuracy to

predict and prevent the slippage. Furthermore, we leverage the vibration sensors to

classify objects as either rigid or soft in order to prevent over exertion of the robotic

grasp and prevent crushing the object.

102

Bibliography

[1] Z. Lin and J. S. Baras, “Planning and Runtime Monitoring of Robotic Ma-
nipulator using Metric Interval Temporal Logic,” IEEE International Systems
Conference, 2019.

[2] Z. Lin, C. A. Meehan and J. S. Baras, “Statistics-Based Slippage Correction
with a Dexterous Robotic Hand,” Do Good Robotics Symposium, 2019.

[3] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing punctuality,”
Journal of the ACM (JACM), vol. 43, no. 1, pp. 116– 146, 1996.

[4] T.A. Henzinger, “The theory of hybrid automata,” Verification of Digital and
Hybrid Systems, Springer, Berlin, Heidelberg, 2000.

[5] O. Maler, D. Nickovic, and A. Pnueli, “From MITL to timed automata,” in
Formal Modeling and Analysis of Timed Systems, ser. Lecture Notes in Com-
puter Science, E. Asarin and P. Bouyer, Eds. Springer Berlin Heidelberg, 2006,
no. 4202, pp. 274–289.

[6] Y. Zhou, D. Maity, and J. S. Baras, “Timed Automata Approach for Motion
Planning Using Metric Interval Temporal Logic,” European Control Conference
(ECC 2016), 2016.

[7] A. Nikou, J. Tumova, and D.V. Dimarogonas, “Cooperative task planning of
multi-agent systems under timed temporal specifications,” In American Control
Conference (ACC), 2016 (pp. 7104-7109).

[8] J. Tumova, and D.V. Dimarogonas, “Decomposition of multi-agent planning
under distributed motion and task LTL specifications,” In Decision and Control
(CDC), 2015 IEEE 54th Annual Conference on, pp. 7448-7453. IEEE, 2015.

[9] J. Tumova and D.V. Dimarogonas, “A receding horizon approach to multi-
agent planning from local LTL specifications,” In Proceedings of the American
Control Conference, pages 1775–1780, 2014.

[10] I. Filippidis, D.V. Dimarogonas, and K.J. Kyriakopoulos, “Decentralized multi-
agent control from local LTL specifications,” In Proceedings of the IEEE Con-
ference on Decision and Control (CDC), pages 6235–6240, 2012.

103

[11] A. Aniculaesei, D. Arnsberger, F. Howar, and A. Rausch, “Towards the Ver-
ification of Safety-critical Autonomous Systems in Dynamic Environments,”
Theor. Comput. Sci., 232:79–90, 2016.

[12] S. L. Smith, J. Tumova, C. Belta, and D. Rus, “Optimal path planning under
temporal logic constraints,” in 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2010, pp. 3288–3293.

[13] S. Karaman and E. Frazzoli, “Vehicle routing problem with metric temporal
logic specifications,” 47th IEEE Conference on Decision and Control, CDC
2008.

[14] A. Bhatia, M. R. Maly, L. E. Kavraki, M. Y. Vardi, “Motion planning with
complex goals,” Robotics Automation Magazine IEEE, vol. 18, no. 3, pp. 55-
64, 2011

[15] M. Kloetzer, C. Belta, “A fully automated framework for control of linear
systems from temporal logic specifications,” IEEE Transactions on Automatic
Control, vol. 53, no. 1, pp. 287-297, 2008.

[16] E. Wolff, U. Topcu, and R. M. Murray. Optimization-based trajectory gener-
ation with linear temporal logic specifications. In International Conference on
Robotics and Automation (ICRA), pages 5319–5325. IEEE, 2014.

[17] K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The path-
velocity decomposition,” The International Journal of Robotics Research, vol.
5, no. 3, pp. 72–89, 1986.

[18] A. P. Sistla and E. M. Clarke, “The complexity of propositional linear temporal
logics,” Journal of the ACM (JACM), vol. 32, no. 3, pp. 733–749, 1985.

[19] S. Mitsch, K. Ghorbal and A. Platzer, “On Provably Safe Obstacle Avoidance
for Autonomous Robotic Ground Vehicles,” Proceedings of Robotics: Science
and Systems, Berlin, Germany, 2013.

[20] S. Mitsch A. Platzer, “ModelPlex: Verified Runtime Validation of Verified
Cyber-Physical System Models,” Runtime Verification - 5th International Con-
ference, Toronto, ON, Canada, September, 2014.

[21] J. Tsitsiklis, Asynchronous stochastic approximation and Q-learning, Machine
Learning APA, 1994.

[22] R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction Volume 1,
MIT press Cambridge, 1998.

[23] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel, “Com-
bined task and motion planning through an extensible planner independent
interface layer,” in Int. Conf. on Rob. and Automation. IEEE, 2014.

104

[24] A. Pnueli, “The temporal logic of programs,” in Proc. 1977 18th Annu. Symp.
Found. Comput. Sci., 1977, pp. 46–57.

[25] J. Ouaknine and J. Worrell, “Some recent results in metric temporal logic,” in
Formal Modeling and Analysis of Timed Systems. Springer, 2008, pp. 1–13.

[26] Y. Zhou, D. Maity, and J. S. Baras, “Optimal Mission Planner with Timed
Temporal Logic Constraints”, European Control Conference (ECC 2015), 2015.

[27] K. He, M. Lahijanian, L.E. Kavraki and M.Y. Vardi, “Towards Manipulation
Planning with Temporal Logic Specifications”, IEEE Intl. Conf. Robotics and
Automation (ICRA), 2015.

[28] S. Karaman, R. G. Sanfelice, and E. Frazzoli, “Optimal control of mixed logical
dynamical systems with linear temporal logic specifications,” in 47th IEEE
Conference on Decision and Control. IEEE, 2008, pp. 2117–2122.

[29] Robotics e-Manual: OpenManipulator, http://emanual.robotis.com/

\docs/en/platform/openmanipulator/

[30] H. Ding, M. Zhou, and O. Stursberg, Optimal Path Planning in the Workspace
for Articulated Robots using Mixed Integer Programming, IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, October 11-15, 2009 St.
Louis, USA.

[31] S. Saha and A. Julius, “Task and Motion Planning for Manipulator Arms With
Metric Temporal Logic Specifications,” IEEE Robotics and Automation Let-
ters, VOL. 3, NO. 1, JANUARY 2018.

[32] R.S. Johansson and J.R. Flanagan, “Coding and use of tactile signals from the
fingertips in object manipulation tasks,” Nature Rev. Neurosci.,vol. 10, no. 5,
pp. 345–359, 2009.

[33] M.A. Abd, I.J. Gonzalez, T.C. Colestock, B.A. Kent, and E.D. Engeberg, “Di-
rection of Slip Detection for Adaptive Grasp Force Control with a Dexterous
Robotic Hand,” IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, 2018.

[34] A. Prach, O. Kouba, and D. S. Bernstein, “How Slippery Is Viscous Friction,”
IEEE Control Systems Magazine, 2019, pp. 73-82.

[35] M. Quigley, et al, “ROS: an open-source Robot Operating System,” ICRA
Workshop on Open Source Software, 2009.

[36] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-backward error: Automatic
detection of tracking failures”, International Conference on Pattern Recognition
, pages 2756–2759. IEEE, 2010.

105

http://emanual.robotis.com/\docs/en/platform/openmanipulator/
http://emanual.robotis.com/\docs/en/platform/openmanipulator/

[37] Y. Jonetzko, “Tactile based grasping with the biomimetic sensors BioTac and
the Shadow Dexterous Hand”, MS thesis, University of Hamburg, 2018.

[38] S. Zhe, et.al, “Force Estimation and Slip Detection/Classification for Grip Con-
trol using a Biomimetic Tactile Sensor”, 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), 2015.

[39] N. Glossas and N. Aspragathos,“Fuzzy logic grasp control using tactile sensors,”
Mechatronics, vol. 11, no. 7, pp. 899–920, 2001.

[40] H. Yussof, M. Ohka, H. Suzuki, and N. Morisawa, “Tactile sensing-based con-
trol algorithm for real-time grasp synthesis in object manipulation tasks of hu-
manoid robot fingers,” IEEE International Symposium on Robot and Human
Interactive Communication, 2008, pp. 377–382.

[41] J.M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K.J. Kuchenbecker,
“Human-inspired robotic grasp control with tactile sensing,” IEEE Transac-
tions on Robotics, vol. 27, no. 6, pp. 1067–1079, 2011

[42] M.O. Toole, K. Bouazza-Marouf, D. Kerr, and M. Vloeberghs, “Robust contact
force controller for slip prevention in a robotic gripper,”Proceedings of the
Institution of Mechanical Engineers, vol. 224, no. 3, pp. 275–288, 2010.

[43] E.D. Engeberg and S.G. Meek, “Adaptive sliding mode control for prosthetic
hands to simultaneously prevent slip and minimize deformation of grasped ob-
jects,” IEEE/ASME Trans. Mechatronics, vol. 18, no. 1, pp. 376–384, 2013.

[44] S.Michael. “Understanding Robust and Exploratory Data Analysis,” Journal
of the Royal Statistical Society: Series D (The Statistician) 320-321, 1984

[45] N. Wettels, J.A. Fishel, and G.E. Loeb, “Multimodal tactile sensor,” The Hu-
man Hand as an Inspiration for Robot Hand Development. Springer, Cham,
405-429, 2014.

[46] N. Wettels, A.R. Parnandi, J. Moon, G.E. Loeb, and G.S. Sukhatme, “Grip
Control Using Biomimetic Tactile Sensing Systems,” IEEE Transactions on
Mechatronics, vol. 14, no. 6, pp. 718-722, 2009.

[47] K. Wyk, J. Falco, “Slip Detection: Analysis and Calibration of Univariate
Tactile Signals,” arxiv 2018, https://arxiv.org/pdf/1806.10451.pdf.

[48] BioTac SP product manual. https://www.syntouchinc.com/wp-content/

uploads/2017/01/BioTac_Product_Manual.pdf

[49] S. Smith, J. Tumova, C. Belta, D. Rus, “Optimal path planning for surveil-
lance with temporal-logic constraints,” The International Journal of Robotics
Research, 2011.

106

https://arxiv.org/pdf/1806.10451.pdf
https://www.syntouchinc.com/wp-content/uploads/2017/01/BioTac_Product_Manual.pdf
https://www.syntouchinc.com/wp-content/uploads/2017/01/BioTac_Product_Manual.pdf

[50] C. Baier, J.P. Katoen, K.G. Larsen, “Principles of Model Checking,” MIT press,
2008.

[51] R. Alur, “Principles of Cyber-Physical Systems,” MIT press, 2015.

[52] A. Bauer, M. Leucker, C. Schallhart, “Runtime verification for LTL and TLTL,”
Technical Report TUM-I0724, TU Munchen, 2007.

[53] W. Powell, “What You Should Know About Approximate Dynamic Program-
ming,” Naval Research Logistics (NRL), 56(3), 239-249, 2009.

[54] A. George, W.B. Powell and S.R. Kulkarni, “Value Function Approximation
using Multiple Aggregation for Multiattribute Resource Management,”Journal
of Machine Learning Research, 2008.

[55] S. Safra, “On the complexity of omega-automata,” Annual IEEE Symposium
on Foundations of Computer Science, 1988.

[56] N. Piterman, “From nondeterministic Buchi and Streett automata to deter-
ministic parity automata,” Annual IEEE Symposium on Logic in Computer
Science, 2006.

[57] E.M. Wolff, U. Topcu and R.M. Murray, “Robust control of uncertain Markov
decision processes with temporal logic specifications,” IEEE 51st IEEE Confer-
ence on Decision and Control, 2012.

[58] R. Alur, S. Torre, “Deterministic generators and games for LTL fragments,”
TOCL, 2004.

[59] M. Alshiekh, R. Bloem, R. Ehlers, et al, “Safe reinforcement learning via shield-
ing,” arXiv preprint arXiv:1708.08611, 2017.

[60] P. Das, S.C. Mandhata, H.S. Behera, and S.N Patro, “An Improved Q-learning
Algorithm for Path-Planning of a Mobile Robot,” International Journal of Com-
puter Applications (0975 – 8887) Volume 51– No.9, 2012.

[61] A. Konar, L. Jain and A. Nagar, “A Deterministic Improved Q-Learning for
Path Planning of a Mobile Robot,” IEEE Transactions on Systems, Man and
Cybernetics: Systems, Vol. 43, No.5, 2013.

[62] M. Mostafa, and B. Bonakdarpour, “Decentralized runtime verification of LTL
specifications in distributed systems,” IEEE International Parallel and Dis-
tributed Processing Symposium, 2015.

[63] LTL3 tools, http://ltl3tools.sourceforge.net/

[64] Bauer, Andreas, Martin Leucker, and Christian Schallhart. ”Comparing LTL
semantics for runtime verification.” Journal of Logic and Computation 20.3
(2010): 651-674.

107

http://ltl3tools.sourceforge.net/

[65] M. Hasanbeig, A. Abate, D. Kroening, Logically-Constrained Reinforcement
Learning, https://arxiv.org/pdf/1801.08099.pdf, 2019.

[66] T. Icarte, Rodrigo, et al. ”Teaching multiple tasks to an RL agent using LTL.”
Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2018.

[67] L. Xiao, C. Vasile, and C. Belta. ”Reinforcement learning with temporal logic
rewards.” 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017.

[68] Aksaray, Derya, et al. ”Q-learning for robust satisfaction of signal tempo-
ral logic specifications.” 2016 IEEE 55th Conference on Decision and Control
(CDC). IEEE, 2016.

[69] J. Karlsson. Learning to Solve Multiple Goals. PhD thesis, University of
Rochester, 1997.

[70] W.D. Smart, and L.D. Pack Kaelbling. “Effective reinforcement learning for mo-
bile robots.” In Proceedings 2002 IEEE International Conference on Robotics
and Automation (Cat. No. 02CH37292), vol. 4, pp. 3404-3410. IEEE, 2002.

[71] P. Gastin, and D. Oddoux. “Fast LTL to Büchi automata translation.” In
International Conference on Computer Aided Verification, pp. 53-65. Springer,
Berlin, Heidelberg, 2001.

[72] Li, Xiao, Yao Ma, and Calin Belta. “A policy search method for temporal logic
specified reinforcement learning tasks.” American Control Conference, 2018.

[73] G.D. Giacomo, L. Iocchi, M. Favorito, and F. Patrizi. “Reinforcement Learning
for LTLf/LDLf Goals.” arXiv preprint arXiv:1807.06333, 2018.

[74] Z. Xu and U. Topcu. “Transfer of Temporal Logic Formulas in Reinforcement
Learning.” arXiv preprint arXiv:1909.04256, 2019.

[75] G.D. Giacomo, M.Y. Vardi, “Linear Temporal Logic and Linear Dynamic Logic
on Finite Traces,” In Twenty-Third International Joint Conference on Artificial
Intelligence. 2013.

[76] D. Giannakopoulou and K. Havelund. “Automata-based verification of tem-
poral properties on running programs. ” In ASE, 412–416. IEEE Computer
Society, 2001.

[77] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D.V. Campen-
hout. “Reasoning with temporal logic on truncated paths.” In Conference on
Computer Aided Verification. Warren A. Hunt Jr. and Fabio Somenzi, (ed.),
Vol. 2725 of Lecture Notes in Computer Science, pp.27–39. 2003

108

[78] L. Lamport, “The temporal logic of actions.” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 1994.

[79] R. Vasumathi, et al. “Model predictive control with signal temporal logic spec-
ifications.” 53rd IEEE Conference on Decision and Control. IEEE, 2014.

[80] T. Akazaki and H. Ichiro, “Time robustness in MTL and expressivity in hybrid
system falsification.” In International Conference on Computer Aided Verifica-
tion, pp. 356-374., 2015.

[81] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications
for continuous-time signals.” Theoretical Computer Science 410.42, 2009.

[82] A. Donze, and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals.” In International Conference on Formal Modeling and Analysis
of Timed Systems, pp. 92-106, 2010.

[83] L. Lindemann and D. V. Dimarogonas. “Robust motion planning employing
signal temporal logic.” 2017 American Control Conference (ACC). IEEE, 2017.

[84] E. Plaku, and S. Karaman, “Motion planning with temporal-logic specifica-
tions: Progress and challenges.” AI communications, 29(1), 151-162, 2016.

[85] L. Lindemann, D. Maity, J. S. Baras, and D. V. Dimarogonas, “Event-triggered
Feedback Control for Signal Temporal Logic Tasks.” In 2018 IEEE Conference
on Decision and Control (CDC), pp. 146-151. IEEE, 2018.

109

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Main contributions
	Thesis Organization

	Timed Automata Approach for Manipulator Planning
	Related Work
	Preliminaries
	From MITL to timed automata
	Case Study
	Chapter Summary

	Safety Monitor for Manipulation Tasks
	Related Work
	Modeling of Hybrid System
	Runtime Monitoring
	Model Monitor Design
	Safety Monitor Design
	3-valued LTL

	Implementation
	Chapter Summary

	MITL based Reinforcement Learning with Runtime Monitoring and Self-Correction
	Related Work
	Preliminaries
	Monitor Guided Modular Q-learning
	Classical Q-learning Algorithm
	Modular Q-Learning Algorithm
	Reward Function

	Runtime monitoring and self-correction
	Case Studies
	Chapter Summary

	Optimization-based Motion Planning for Robotic Systems with Space and Time Tolerances
	Related Work
	Preliminaries
	Maximum Space-Time Tolerances Planning
	Mixed Integer Linear Programming
	MTL to Mixed Integer Linear Constraints

	Runtime Monitoring and Self-Correction
	Event-triggered Model Predictive Control

	Case Studies
	Chapter Summary

	Statistics-Based Slippage Prediction and Correction with Object Classification using a Dexterous Robotic Hand
	Related Work
	Related Work
	Data Description
	Haptic Data
	Visual Data
	Indexing of the data
	Data Pre-Processing
	Tactile Data Aggregation

	Slippage Detection Algorithm
	Slippage Detection using Correlation Coefficient of Two Time Series

	Slippage Correction Algorithm with Weight Estimate
	Weight Estimation
	Container Classification
	Mathematical Model for BioTac Sensor - Force Estimation
	PD Controller

	Chapter Summary

	Conclusion
	Bibliography

