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Polychlorinated biphenyls (PCBs) are a group of chlorinated organic compounds. They 

are persistent in the environment and can threaten the health of humans and wildlife. Urban 

stormwater runoff is considered as an important source of PCBs to aquatic environments. The 

objective of this study is to provide information on the occurrence and removal of PCBs in 

stormwater; specifically, the occurrence, concentrations, and biological transformations of 

stormwater PCBs were studied together with their removal. Concentrations of 209 PCB 

congeners were determined in surface stormwater sediments collected from various roadway 

sites and bioretention media. The total PCB concentrations ranged from 8.3 to 57.4 ng/g dry 

weight (dw), with a mean value of 29.2 ng/g dw. Land use had an impact on the concentration of 

PCBs, where higher stormwater sediment PCB concentrations were found in dense urban areas 

(average: 39.8 ± 10.5 ng/g) compared to highways passing through greenspace (average: 18.0 ± 

0.4 ng/g). PCB sorption tended to increase with the concentration of total organic carbon (TOC) 

and smaller particle size (< 75 µm) of stormwater particulate matter. In bioretention core 



  

 

samples, PCB concentrations decreased with bioretention media depth (from 30.0 � 2.0 ng/g at 

the surface to 21.2 � 4.8 ng/g at 40 cm depth), and with distance from the stormwater entrance 

(from 38.4 � 2.3 ng/g at the entrance to 33.2 � 2.9 ng/g at 3 m distance). A non-Aroclor 

congener, PCB 11, was detected in all samples, likely originating from yellow road paint. 

Putative organohalide respiring bacteria within Chloroflexi and aerobic PCB degrading bacteria 

containing the functional genes encoding for biphenyl dioxygenase (bphA) and ring cleavage 

(bphC) were detected in some of the stormwater sediments and bioretention media. The presence 

of such bacteria and a higher level of ortho-chlorinated biphenyls indicated the potential of PCB 

biotransformation in these samples. The performance of an on-campus bioretention indicated that 

bioretention is effective in removing PCBs from stormwater, with 64–92% reduction of 

dissolved PCB concentrations. Overall, urban stormwater is an important environmental source 

of PCBs. Bioretention has the potential to remove PCBs from stormwater via adsorption and 

biotransformation.   
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Chapter 1. Introduction 

1.1 What are PCBs? 

Polychlorinated biphenyls (PCBs) are a group of chlorinated organic chemicals with the 

formula C12H10-mClm. The structure of PCBs is shown in Figure 1-1. With different numbers and 

positions of the chlorine atoms, PCBs include 209 different congeners. PCBs were commercially 

produced for the first time in 1929 (Silverstone et al., 2012). Their manufacturing was ceased in 

1977 in the United States (U.S.) and later in other parts of the world because of their adverse 

effects on laboratory animals and humans (Kimbrough, 1995).  

 

Figure 1-1. Structural formula of PCBs. 

PCBs were widely manufactured and used in industrial processes because they are heat 

resistant and have anti-flammable characteristics (Kimbrough, 1995, ATSDR, 2000). The first 

major use of PCBs were as electrical fluids, with sealants as the second (Herrick et al., 2004, 

Kohler et al., 2005). Commercial PCB mixtures were manufactured in several countries with 

different trade names. These names include Aroclor in the U.S., Clophens in Germany, 

Phenoclors in France, Phenoclors and Pyralenes in France, Fenclors in Italy and Kanechlors in 

Japan (Safe, 1994). In the U.S., the Aroclors are identified by a four-digit code with the second 

two numbers indicating the percentage of chlorine by mass in the mixture (ATSDR, 2000). For 

example, Aroclor 1254 contains 54% chlorine. The most commonly manufactured Aroclors in 

the U.S. were A1016, A1232, A1242, A1248, A1254, A1260 (ATSDR, 2000).  
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1.2 What are the environmental challenges of PCBs? 

1.2.1 PCBs are persistent 

The octanol/water partition coefficients (log Kow) for PCBs range from 4.50 to 8.26 

(Hermanson and Johnson, 2007). Thus, PCBs are considered to be hydrophobic and the 

solubility in water decreases with increased number of chlorines (ATSDR, 2000). In addition, 

PCBs are inert and resistant to both acids and alkalis. They have thermal stability as well 

(ATSDR, 2000). 

Due to their high stability and the steric hindrance in their structure, PCBs are recalcitrant 

to biodegradation (Field and Sierra-Alvarez, 2008). PCBs are persistent in the environment and 

are classified as a group of persistent organic pollutants (POPs) (Jones and Voogt, 1999). POPs 

are a group of intentionally or inadvertently produced chemicals, which are resistant to 

photolytic, biological and chemical degradation (Ritter, 2007). Due to their long-life and harmful 

effects, PCBs and other POPs were listed in the Stockholm Convention (Stockholm Convention, 

2008), which means that they are hazardous and persistent chemicals to be reduced or 

eliminated. 

1.2.2 PCBs are toxic 

Sharing a similar structure with 2,3,7,8-tetrachlorodibenzo-p-dioxins (TCDDs), the 

coplanar PCBs can bind to the cytosolic aryl hydrocarbon receptor (AhR) and act as an agonist in 

organisms to cause toxic and biological effects (Safe, 1994, Van den Berg et al., 2006). Among 

the 209 congeners, 12 dioxin-like PCBs (DLPCBs): PCBs 77, 81, 126, 169, 105, 114, 118, 123, 

156, 167, 189 are of special concern (Van den Berg et al., 2006). The concept of toxic 

equivalency factors (TEFs) was developed and introduced to facilitate assessment and regulatory 

control of exposure to these dioxin-like and carcinogenic compounds (Van den Berg et al., 
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1998). TEF expresses the toxicity of such compounds in terms of equivalent amount of 2,3,7,8-

TCDD (Alcock et al., 1998). Toxic equivalency (TEQ) values are calculated based on the 

concentration and TEF of the DLPCBs. They are used by United States Environmental 

Protection Agency (EPA) to account for how dioxin and dioxin-like compounds vary in toxicity 

and to calculate the accumulated toxicity for mixed contaminant sites.  

1.2.3 Many PCB sources are current and PCBs are continuously released 

Even though the production of PCBs was banned in the United States in the late 1970s 

(Kimbrough, 1995), there are still many active PCBs sources (Andersson et al., 2015). This can 

cause (re)contamination of pristine or remediated sites (Diamond and Hodge, 2007). PCBs are 

continuously released from for instance old electrical or mining equipment and waste sites 

(Breivik et al., 2002, Li et al., 2010).  

In addition, before they were banned, PCBs were frequently added into sealant materials 

in windows and other building materials to increase their flexibility (Herrick et al., 2004, Kohler 

et al., 2005). Diamond et al. (2010) estimated the mass of PCBs in sealants in Toronto to be 12 

(0.14–231) tons. Since sealants were used in building construction, PCBs can be leached or 

washed from sealants and caulking on building exteriors. PCBs can also be released from these 

buildings over time and result in elevated PCB concentrations in indoor air (Diamond and 

Hodge, 2007). Increased air concentrations and subsequent atmospheric deposition of PCBs also 

contribute to PCBs in stormwater and surface waters (Diamond and Hodge, 2007). Besides, 

surface films, which are composed of biogenic compounds as the organic portion, accumulate on 

the surface of building materials (windows). The constituents of the surface films could be 

influenced by local sources like buildings themselves or plants. For example, of the 18 testing 

sites, the highest PCBs concentration was found in a building located right next to an electrical 
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plant that housed electrical transformers containing PCBs (Gingrich et al., 2001). As a result, 

buildings constructed before the 1970s might be important sources of PCBs released from 

building sealants and surface films (Diamond and Hodge, 2007). 

Another potential PCB source is construction and demolition waste (C&DW). Utilization 

of C&DW is practiced in many European countries (Butera et al., 2014). The crushed materials 

possess favorable geotechnical properties for construction of roads (Wahlström et al., 2000). 

However, in Denmark, PCBs were detected in all collected C&DW aggregates from recycling 

facilities receiving, crushing and selling C&DW, with a mean total PCB concentration at 17 

µg/kg total solid (range: 2–70 µg/kg total solid) (Butera et al., 2014). Most of the tested samples 

were used as road sub-base material. As a result, the roads and buildings using C&DW could 

also be sources of PCBs to the environment.  

Furthermore, public transportation corridors such as highways are often locations 

containing PCBs (Diamond et al., 2010). PCBs were found in road paint (3520 mg kg-1) and 

small capacitors (114000 mg kg-1), which indicated that these two groups of items are among 

current sources of PCBs (Jartun et al., 2009). Since 8% of PCBs were used as a plasticizer before 

1980, vehicle parts like the interiors from vehicles manufactured before 1980 could also be a 

source of PCBs (Scott and Snyder, 2015).  

1.2.4 Occurrence of PCBs in stormwater 

Since the 1960’s, urban stormwater runoff has been identified as an important source of 

pollution (Granier et al., 1990). Cole et al. (1984) found that PCBs (Aroclor 1260) were detected 

in urban runoff from one of 19 cities in the United States, and the concentration was 30 ng/L. 

The reason for the low detection rate and low concentration might be that Aroclors were the 

target compounds in this study instead of individual PCB congeners. Marsalek and Ng (1989) 
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determined the concentration of PCBs in runoff at three sites in Canada, ranging from 27 ng/L to 

179 ng/L. Granier et al. (1990) measured the concentration of PCBs at the outfall of a stormwater 

drain during three rain events in 1988 and 1989 in France. In this study, the mean concentrations 

of PCBs for each rain event were 130, 633 and 625 ng/L, with a range of 36–2600 ng/L. The 

mean concentration of PCBs in stormwater in Switzerland determined during the early 2000s 

ranged from values below the detection limit (Detection limit: 0.11–0.24 ng/L) to 403 ng/L 

(Rossi et al., 2004). The median concentration of seven selected PCBs in three urban areas in 

Paris and its suburb were 211, 259 and 468 ng/L, respectively (Zgheib et al., 2011). In a 

watershed in Hayward, California, PCBs concentrations in storm flow ranged from 3.98 to 109 

ng/L (Gilbreath and McKee, 2015). PCBs were detected in stormwater around the world, at 

various concentrations. 

Other stormwater studies also detected particulate matter and the particle-bound 

characteristics of PCBs. Jartun et al. (2008) found that the total concentration of seven PCBs in 

urban runoff sediment in the inner city of Bergen, Norway ranged between < 0.0004 and 0.704 

ng/g. Hwang and Foster (2008) studied PCBs in runoff entering the tidal Anacostia River, 

Washington, DC and found that stormwater contained levels of PCBs that ranged from 10 to 211 

ng/L. The concentrations of PCBs in the particulate matter in stormwater ranged from 31 to 755 

ng/g, accounting for more than 90% of the total PCBs in storm flow (Hwang and Foster, 2008). 

In addition, mean concentrations of seven selected PCBs (PCB 28, 52, 101, 118, 138, 153, 180) 

in stormwater in the eastern suburb of Paris, France ranged between 27 and 42 ng/L, while the 

concentrations in the particulate phase ranged between 10–50 ng/g (Zgheib et al., 2011). A study 

in Norway suggested that stormwater each year carried 0.4 g of seven selected PCBs into Lille 

Lungegårdsvannet Lake in Bergen via particles in stormwater (Andersson et al., 2015). This 
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indicated that stormwater plays an important role in carrying PCBs from source to receiving 

areas. These studies indicate that the worldwide concentration of PCBs in stormwater ranged 

from several ng/L to hundreds of ng/L and some urban areas in Paris exhibited the highest 

concentrations of PCBs with 633 ng/L as the mean concentrations. Due to their high persistence, 

PCB concentrations do not decline as fast as that of some other organic pollutants, such as 

bisphenol analogues, in environmental matrixes like soil and water (Danzl et al., 2009). These 

concentrations indicated that PCBs are persistent and removal methods are needed to decrease 

PCB concentrations in the environment.  

1.3 Current and potential solutions for PCBs in the environment 

1.3.1 Removal pathways for PCBs 

Several physical or chemical methods have been used to remediate PCB contaminated 

environments (ATSDR, 2000). For example, activated metal treatment can be used to remove 

PCBs from various materials, including PCB-containing caulks and paints (EPA, 2012). 

Laboratory testing results showed that the removal rates were over 80% for PCBs from paint and 

primer (EPA, 2012). However, the removal efficiency decreased for thicker sources. Thus, these 

methods may not be practical in many cases because they are expensive and energy-demanding, 

and may produce chlorine-containing products (ATSDR, 2000, Luo et al., 2008). 

On the contrary, biotransformation is a sustainable, energy-saving and relatively 

inexpensive method to remove PCBs from the environment (Luo et al., 2008). Some 

microorganisms and enrichment cultures have been reported to utilize and metabolize PCBs as 

carbon and/or energy sources (Abraham et al., 2002) under both aerobic and anaerobic 

conditions. As a result, bioremediation may be a solution for many PCB-contaminated sites.  
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Phytoremediation can also be used to remove PCBs from soils. Two PCB 

phytoremediation mechanisms are phytodegradation and rhizoremediation (Javorská et al., 2009, 

Gomes et al., 2013). PCBs can be taken up from soil and accumulate in the stems and leaves of 

the plants (Zeeb et al., 2006, Whitfield Åslund et al., 2007). The amount of phytoextraction is 

limited due to the hydrophobicity of PCBs (Passatore et al., 2014). However, the role of plants in 

PCB remediation is still worth studying, since plants can enhance bacterial activity by diffusing 

oxygen and providing nutrients (Passatore et al., 2014). 

1.3.2 Bioretention is an effective treatment for stormwater 

Bioretention is an infiltration-based stormwater control measure (SCM) and an 

increasingly popular best management practice (BMP) (DiBlasi et al., 2009, Li and Davis, 2014). 

Bioretention cells usually consist of a layer of hardwood mulch and porous soil media (Li and 

Davis, 2008). Above that, a vegetation mix can be planted to promote biological activity, soil 

quality, pollutant removal and positive aesthetics (Davis and McCuen, 2005). Bioretention has 

shown to be effective in improving stormwater quality with regards to the removal of particulate 

matter, metals, nutrients and pathogens, and the hydrologic condition of the developed landscape 

(Davis, 2007, Hunt et al., 2008, Li and Davis, 2008, David et al., 2015, LeFevre Gregory et al., 

2015).  

1.4 Research goals 

The hydrophobic nature of PCBs enables them to adsorb to particles and eventually 

sediments, especially sediments containing a high proportion of carbon (Choi and Al-Abed, 

2009). Hwang and Foster (2008) found that stormwater PCBs were significantly enriched in the 

particulate matter of stormwater runoff and PCBs on particulate matter accounted for more than 
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90% of the total PCBs in storm flow. Zgheib et al. (2011b) also found that PCBs were only 

observed in the particulate phase and they were below detection limit (< 30 ng/L) in the 

dissolved phase. This indicated that particulate matter should be the focus of PCB removal 

studies in stormwater. PCBs are expected to be removed via particulate matter removal processes 

such as sedimentation and filtration in stormwater due to the high affinity for adsorption to 

particulate matter. In addition, excellent capture of particulate matter via filtration-based SCMs 

were observed for suspended solids (load reduction ≥ 89%) (Houng and Davis, 2009, Landsman 

and Davis, 2018). Thus, PCB load reduction could be expected in filtration-based SCMs via total 

suspended solids (TSS) removal. 

Bioretention was reported to be a potential solution for the removal of polycyclic 

aromatic hydrocarbons (PAHs) from stormwater runoff with a reduction rate ranging from 31% 

to 99% (DiBlasi et al., 2009). Thus, PCBs are expected to be strongly retained in the bioretention 

media due to the similarity of the chemical characteristics for PAHs and PCBs primarily 

hydrophobicity.  

Reduction of PCB loadings to surface waters requires an understanding of the sources of 

PCBs in the watersheds (Hwang and Foster, 2008). Elimination of the point sources and 

identification of potential non-point sources will enable establishment of control measures. To 

achieve that, information about congener patterns is important. The abundance of specific 

congeners may indicate certain sources such as PCB 11 (3,3ʹ -dichlorobiphenyl), which is an 

unintentional by-product from the manufacturing processes of diarylide yellow pigments often 

used for road paint (Grossman, 2013). Also, comparison of congener profiles in stormwater 

contaminated with PCB products may also help in identification of the source. Zhang et al (2011) 

compared congener profiles in indoor air with exterior building sealants and found that some 
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indoor air samples grouped with sealant samples as a cluster, indicating they shared similar 

congener profiles thus the sealant was the PCB source. In addition, a quantitative understanding 

of PCB behavior in stormwater is essential in developing and maintaining SCMs targeting at 

PCB removal.  

PCBs can be biotransformed by microorganism. Under aerobic conditions, lower-

chlorinated congeners (< 5 chlorines) are good substrates and they act primarily as electron 

donors (Abraham et al., 2002). During the process, hydroxylation on the benzene rings as well as 

ring cleavage can occur (Passatore et al., 2014). Under anaerobic conditions, PCBs serve as 

electron acceptor and organohalide respiration takes place. During this process, the number of 

chlorines attached to highly chlorinated congeners is reduced (Passatore et al., 2014). Anaerobic 

respiration in the natural environment is very slow because the microorganisms use compounds 

other than oxygen as electron acceptors and gain less energy (Madigan et al., 2014). The process 

of biotransformation is affected by congener distribution and many environmental site-specific 

variables (Sinkkonen and Paasivirta, 2000). 

Potential for PCB transformation has been reported in bioretention media and river 

sediments. Flanagan and May (1993) detected metabolites of aerobic PCB biodegradation in 

upper Hudson River (NY) sediments and suggested PCB biodegradation occurs naturally in the 

environment. A study on sediments from Indiana Harbor and Ship Canal (IHSC) (IN) strongly 

suggested the presence of in situ dechlorination based on vertical PCB congener profile patterns 

(Liang et al., 2014). Both microorganisms capable of anaerobic PCB dechlorination and aerobic 

PCB degradation were reported from different PCB-contaminated sediment microcosms 

(Rodrigues et al., 2006, Kaya et al., 2016, Xu et al., 2016, Xu et al., 2019). Dehalococcoides 

mccartyi from Hackensack River (NJ) sediment were reported to be involved in the 
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dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin based on DNA-stable isotope probing 

results (Dam et al., 2019). In addition, biostimulation in the rhizosphere and root zone of plants 

like Austrain Pine (Pinus nigra) and Goat Willow (Salix caprea) could enhance the microbial 

PCB degradation potential in soil (Leigh et al., 2006).  

Bioremediation could also take place in bioretention cells (Davis et al., 2009). In an 

urban bioswale in New York, U.S., bphA genes have been detected (Gill et al., 2017). This 

indicated that PCB degrading bacteria were present and they had the potential to be active in the 

bioswale. In addition, the plants in the bioretention cell could potentially enhance the 

biotransformation of PCBs. Plants can diffuse oxygen in soil as well as release organic carbon or 

structural analogs of PCBs as degradation inducers from root exudates (Passatore et al., 2014). 

Thus, it is important to evaluate the potential of in-situ PCB biotransformation in stormwater 

particulate matter as well as bioretention system. 

Stormwater appears to be an important source of PCBs to the environment, but little 

information is available about occurrence and removal of PCBs in stormwater. Therefore, the 

overall research objectives of this study include: 

1) Provide background information about occurrence of PCBs in urban areas. 

2) Study the affiliation of PCBs with land use pattern and the characteristics of 

stormwater particulate matter. 

3) Evaluate the performance of bioretention regarding PCB removal. 

4) Evaluate the potential of PCB biotransformation in bioretention media and 

stormwater particulate matter. 

5) Use the above information to assist with SCM implementation and design 

recommendations for the effective PCB removal. 
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To achieve these objectives, both surface stormwater sediment samples and bioretention 

media core samples were collected at different urban areas in Maryland and the concentrations 

and congener distributions of PCBs were determined. The affiliation of PCB concentrations with 

land use pattern, particle size and total organic carbon (TOC) content were studied. In addition, a 

field study was conducted to investigate the removal of PCBs from urban stormwater through a 

bioretention system. The concentration of PCBs in both the dissolved phase and the particulate 

phase of stormwater was determined and the removal efficiency was calculated.  

To study the potential of PCB biotransformation in bioretention media, the presence and 

abundance of bacteria and their activity were assessed using molecular approaches including 

both DNA and RNA communities. The results are expected to show if bacteria capable of PCB 

transformation, including aerobic and anaerobic pathways, are present in the bioretention cells.  
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Chapter 2. PCBs in stormwater sediments: Relationships with land use 

and particle characteristics 

Abstract 

Polychlorinated biphenyls (PCBs) are classified as persistent organic pollutants (POPs). 

Concentrations of 209 PCB congeners as well as profiles of the ten homologs were determined in 

stormwater sediments collected from various (primarily roadway) sites with different land use. 

The total PCB concentrations ranged from 8.3 to 57.4 ng/g dry weight (dw), with a mean value 

of 29.2 ng/g dw. PCB concentrations varied with nearby land use. Higher stormwater sediment 

PCB concentrations were found in dense urban areas (average: 39.8 ± 10.5 ng/g) and residential 

areas (average: 35.3 ± 6.2 ng/g) compared to highways passing through greenspace (average: 

18.0 ± 0.4 ng/g). The number of chlorines per biphenyl ranged from 3.63 to 5.39 and the toxic 

equivalency (TEQs) of the PCBs were between 1.5 and 18.0 pg/g at all sites. A non-Aroclor 

congener, PCB 11, was detected in all samples and was dominant at two sites. PCBs were sorbed 

to smaller stormwater particulate matter (≤ 75 µm) at higher concentrations compared to larger 

particles (> 75 µm). PCB sorption tended to increase with the total organic carbon (TOC) of the 

particulate matter in the sediment samples. However, greater PCB mass (almost 80%) was 

present in the larger particles. Information on sediment PCB concentrations from different land 

uses, along with stormwater particulate matter data can allow the estimation of PCB loads and 

load reductions using stormwater control measures.  

This Chapter has been published as: Cao, S., Capozzi, S. L., Kjellerup, B. V., Davis, A. P., (2019). 

“Polychlorinated biphenyls in stormwater sediments: Relationships with land use and particle 

characteristics.” Water Research, 163, 114865. 
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2.1 Introduction 

Polychlorinated biphenyls (PCBs) are a group of chlorinated organic compounds derived 

from biphenyl with 1 to 10 of the hydrogen atoms substituted by chlorine; thus 209 different 

congeners exist. PCBs were commercially produced from 1929 to 1977 in the United States 

(U.S.) and widely used in industrial processes as coolants, in transformer oils and as flame 

retardants (Kimbrough, 1995). Aroclor is the trade name for specific PCB mixtures that were 

manufactured in the U.S. In other countries names such as Clophens, Phenoclors, Pyralenes were 

used (Safe, 1994). The Aroclors are identified by a four-digit code such as Aroclor 1254. The 

second two numbers in Aroclors indicate the percentage of chlorine by mass in the mixture 

(ATSDR, 2000). The most commonly manufactured Aroclors in the U.S. were A1016, A1232, 

A1242, A1248, A1254, A1260 (ATSDRs, 2000). 

Due to their high stability, PCBs are persistent in the environment and are classified as 

persistent organic pollutants (POPs) (Jones and Voogt, 1999, Stockholm Convention, 2008). In 

spite of the ban, PCBs are still being released into the urban environment (Andersson et al., 

2015). Buildings constructed before the 1970s can be sources of PCBs from building sealants 

and caulking (Diamond and Hodge, 2007, Zhang et al., 2011), while roads constructed with 

recycled construction and demolition waste (C&DW) also can serve as PCB sources (Wahlström 

et al., 2000, Butera et al., 2014). Increased air concentrations and subsequent atmospheric 

deposition of PCBs contribute to the presence of PCBs in stormwater and surface waters 

(Diamond and Hodge, 2007). Thus, runoff from building roof and wall surfaces may contain 

PCBs. 

Urban runoff/storm sewers are considered important sources of pollution for impaired 

rivers, streams, lakes, reservoirs and ponds, accounting for 13–19% of the total load (EPA, 
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2012). Other important probable sources include atmospheric deposition, agriculture, and 

contaminated sediments. 

Most previous stormwater studies have primarily addressed the presence of dissolved 

PCBs and did not consider particulate matter in stormwater as a separate phase for PCB transport 

(Granier et al., 1990, Rossi et al., 2004, Gilbreath and McKee, 2015). A few studies evaluated 

particulate matter and the particle-bound characteristics of PCBs (Hwang and Foster, 2008, 

Jartun et al., 2008, Zgheib et al., 2011b). Hwang and Foster (2008) found that PCBs in 

stormwater particulate matter accounted for more than 90% of the total PCBs in storm flow. This 

indicates that particulate matter should be the focal point when evaluating PCBs in stormwater. 

Hwang and Foster (2008), however, studied only 85 of the 209 PCB congeners. Jartun et al. 

(2008) studied seven PCBs (PCB 28, 52, 101, 118, 138, 153 and 180) in urban runoff sediments. 

Similarly, Zgheib et al. (2011) also focused on these seven PCB congeners because they were 

listed as priority pollutants in urban stormwater (Zgheib et al., 2008). Thus, information about all 

209 congeners in stormwater particulate matter is lacking. 

In order to reduce PCB loadings to surface waters, an understanding of the sources of 

PCBs in the watersheds is required (Hwang and Foster, 2008). To achieve this goal, information 

about concentrations of all 209 congeners is important. The abundance of some specific 

congeners may indicate certain sources. Also, comparison of congener profiles in stormwater 

contaminated with PCB products may assist in source identification. One congeners of special 

concern is PCB 11 (3,3¢-dichlorobiphenyl), which is an unintentional by-product from the 

manufacturing process of diarylide yellow pigments (Grossman, 2013). 

Because PCBs are sorbed to particulate matter, they are expected to be removed from 

stormwater via particulate matter removal processes such as sedimentation and filtration. Thus, it 
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is important to study the affiliation of PCBs with particulate matter based on particle size. 

However, most relevant studies focused on the organic carbon fraction instead of particle size 

(Bucheli and Gustafsson, 2003, Choi and Al-Abed, 2009, Beless et al., 2014). Little research has 

been completed regarding PCB concentration and particle sizes (Ghosh et al., 2003), especially 

as related to stormwater (Marsalek and Ng, 1989, Andersson et al., 2015).  

The objectives of the current study were (1) to evaluate PCB concentrations and congener 

distributions for stormwater particulates collected near urban areas, (2) to identify potential 

sources of stormwater PCBs in urban areas, and (3) to use the above information to assist with 

stormwater control measure (SCM) implementation and design recommendations for the 

effective removal of PCBs from urban stormwater runoff. To address these objectives, surface 

sediment/soil samples were collected from parking, highway, and residential areas in Maryland 

(U.S.), and tested for PCBs. 

2.2 Materials and methods 

2.2.1 Sampling sites  

Samples were collected from September 2016 to July 2018. Seven sampling sites were 

included in this study to represent different land uses: 1) dense urban area: stormwater gutters 

along roadways in Bladensburg (BBG-U), and Baltimore (BTM-U), MD; 2) institutional area: an 

inlet to a bioretention cell at the University of Maryland (UMD-I) College Park campus; 3) 

commercial area: a SCM near a 4-lane state highway (BV-C); 4) greenspace: a stormwater 

channel adjacent to a highway (R1-G) and a stormwater gutter along roadways through wooded 

areas in Laurel, MD (R2-G); and 5) residential area: storm drains in a residential area in College 

Park, MD (CP-R). Figure S2-1 shows a map of sampling sites in this study. At BBG-U, two 

sample were collected from the gutter, one (BBG-U1) was at 1 m and the other (BBG-U2) was 2 
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m from the drainage point. The sample from the Baltimore roadway (BTM-U) was collected 

from the catch basin of a gutter by Dr. James Hunter from Morgan State University. At UMD-I, 

one sediment sample was collected at the entrance of the stormwater inlet to a bioretention cell. 

Three samples were collected at BV-C: at the entrance (BV-C1) and the discharge (BV-C2) of 

the rip-rap channel to the bioretention SCM as well as inside the SCM (BV-C3). At R1-G, two 

sediment samples were collected at two parallel locations in the stormwater channel (R1-G1 and 

R1-G2). One sediment sample was sampled from the gutter at R2-G. At CP-R, three samples 

were collected: from the gutter nearby (CP-R1) and near two different storm drains (CP-R2 and 

CP-R3). Site names with short descriptions, as well as sampling details are summarized in Table 

S2-1.  

At each site, samples were collected once. Temperature difference in very different 

periods could affect the solubility and volatility of PCBs. In addition, the frequency of rain could 

affect the age of the sediments and PCBs accumulated in them. Thus, all samples were collected 

during May to September, with an antecedent dry period ranging from 1 to 7 days. The 

temperature ranged from 23°C to 30°C during sample collection. During the collection process, a 

clean and sterile stainless-steel soil scoop was used to collect surface sediments (0�10 cm deep) 

at different sites. To minimize biological and chemical transformations, all samples were stored 

at -20°C in the dark in glass containers with PTFE lids until analysis.  

2.2.2 Sediment fractionation 

Selected sediment samples were separated into three fractions, as done by Kim and 

Sansalone (2008). Briefly, wet sieving (No. 200 sieve, ELE INTERNATIONAL, Canada) was 

performed to separate the “sediment” fraction (> 75 µm) from the other two fractions. The 

filtrate was transferred to an Imhoff cone and settled for 2 h. The “settleable” fraction (~ 25 to 75 
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µm) was settled out in the Imhoff cone and the remaining fraction was defined as the 

“suspended” fraction (< 25 µm). The suspended fraction accounted for < 1% of the total 

sediment mass in all collected samples thus this fraction was not further studied. The > 75 µm 

fraction and the 25�75 µm fraction were air dried in the fume hood for two days until they 

appeared dry.  

Clean sea sand (Merck, U.S.) was used as laboratory blank control (triplicate) and was 

exposed to the same treatments as the samples (triplicate).  

2.2.3 Extraction of PCBs  

Microwave-assisted extraction (MAE) (MARS 6, CEM, U.S.) was used to extract PCBs 

from the sediment samples. The extraction method was based on Lopez-Avila, et al. (1995) with 

minor modifications. Briefly, six grams of air dried sample was weighed and transferred to PTFE 

extraction vessels (100 mL, CEM, U.S.). Then 36 mL hexane (95% n-hexane for organic residue 

analysis)-acetone (HPLC grade, Honeywell) (1:1) was added into the vessels. Prior to extraction, 

20 µL of the mixed solution of surrogates [0.5 µg mL-1 tetrachloro-m-xylene (TCMX), 2,4,6-

trichlorobiphenyl (PCB 30) and 2,2¢,3,4,4¢,5,6,6¢-octachlorobiphenyl (PCB 204)] was added into 

each sample to calculate the recovery of the extraction procedure. Extractions were performed at 

115°C for 10 min at 1000 W. After extraction, the vessels cooled to room temperature before 

they were opened. The extracts were settled by gravity for 30 min and the supernatants were 

transferred into 60 mL amber vials. The residues were washed with five mL of hexane and 

settled for 30 min. Five mL of hexane-acetone (1:1) and five mL of acetone were added 

separately to wash the residues as mentioned above. The supernatants were combined and then 

concentrated under nitrogen flow to less than 100 µL. Finally, 1 mL of hexane (HPLC grade) 

was added to dissolve the extracts. Extracts were stored at -20 °C until cleanup.  
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2.2.4 Cleanup of PCB extracts  

The cleanup method was based on EPA method 3611B (EPA, 1996) and 3620C (EPA, 

2014) with minor modifications. Briefly, alumina (Fisher Scientific, U.S.) was heated at 550°C 

for at least 24 h and cooled to room temperature in a desiccator. Deionized (DI) water was added 

(30 μL DI water/g alumina) to deactivate it to 3%. Columns for cleanup were made with six g of 

the prepared alumina, a layer of oven dried sodium sulfate (Fisher Scientific, U.S.) to remove 

water from the extracts, and glass wool (Acros Organics, Germany) at the bottom of a glass 

disposable pipet (Pyrex, U.S.).  First, 20 mL hexane was added to equilibrate the column. Then 

the extracts were transferred into the column and the effluent was collected. The amber vials 

were rinsed with 15 mL of hexane and the rinsate was added into the column. The collected 

effluent was reduced in volume with nitrogen flow to concentrate the samples to less than 1 mL 

and spiked with 20 µL of the mixed solution of internal standards [0.5 µg mL-1 4-bromobiphenyl 

(4-BB) and 2,2¢,4 ,5,5¢-pentabromobiphenyl (penta-BB)]. Hexane (HPLC grade) was added to 

the concentrated effluent to reach a final volume of 1 mL and the samples were vortexed for 10 s 

before being transferred into GC vials for further analysis. 

2.2.5 PCB analysis  

Samples were analyzed by gas chromatography/electron capture detector (GC-ECD) 

(7890B, Agilent Technologies, U.S.) equipped with an Agilent J&W HP-5ms column (60 m x 

250 μm x 0.25 μm). The samples were autosampled (Autosampler 7693, Agilent Technologies, 

U.S.) with an injection volume of 1 μL. Helium was used as the carrier gas. The temperature 

program (Table S2-2) was developed based on a congener-specific PCB analysis method used 

for analysis of PCB 11 (Guo, 2013). Target compounds, surrogate standards, and internal 

standards were purchased from AccuStandard (U.S.) and Restek (U.S.). 
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2.2.6 Quality control  

All laboratory materials were made either of glass or PTFE to avoid sample 

contamination. To avoid contamination during sample preparation, all glassware used were 

cleaned by detergent, rinsed with hexane, acetone, methanol and DI water, and baked in a muffle 

furnace at 550°C for 4 h. PTFE containers were cleaned by detergent, ultrasonicated with hexane 

and acetone, and rinsed with DI water. During each run, clean hexane vials were added at the 

beginning and the end of each run to avoid significant carry over from previous runs. The results 

from the laboratory blanks and clean hexane at the end of each run indicated that carry over did 

not occur between samples. 

For each sample, an extra treatment group (triplicate) was prepared as a standard control. 

The standard control treatment was treated the same way as other treatments except for the 

addition of surrogate standards or internal standards. This treatment was carried out to confirm 

the standards were not present in the sediment samples.  

All 209 PCB congeners were analyzed and 131 peaks were detected in the samples. All 

peaks were verified by mass spectrometry by m/z and retention time (5977A MSD, Agilent 

Technologies, U.S.). Detection limits for PCB congeners ranged from 0.0008 to 0.33 ng/g. The 

method detection limits were obtained by dividing the instrument detection limits by the sample 

masses. For statistical analysis, all values below the detection limits were substituted with half of 

the detection limits. Concentrations of the target compounds were compared to average 

concentrations in laboratory blanks and calculated based on Audy et al. (2018). If the blank 

average was < 10% of the amount in the sample (178�195 congeners), no correction was applied. 

If the blank average was 10�35% of the concentration in the samples (11�21 congeners), the 

average concentration in the blanks were subtracted from the sample. If the blank average was 
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above 35% (3�10 congeners), the compound was reported as below the detection limit in the 

sample. 

The measured concentrations of mono- to tetra-CBs were corrected for the recovery of 

TCMX and the measured concentrations of penta- to deca-CBs were corrected for the recovery 

of PCB 204. Average surrogate recoveries were 73.0% for TCMX (range: 54.8�91.9%) and 

83.0% for PCB 204 (range: 50.8�114.0%). All were within the acceptable range of 50�125% 

(Hermanson and Johnson, 2007). 4-BB was the internal standard for mono- to tetra-CBs and 

penta-BB was the internal standard for penta- to deca-CBs.  

2.2.7 Total organic carbon (TOC) measurement  

Total carbon (TC) and inorganic carbon (IC) were measured using a TOC analyzer 

(TOC-L, Shimadzu, Japan) with solid sampling module (SSM-5000A). All sediment samples 

were measured in triplicate. TOC was calculated by subtracting IC from TC.  

2.2.8 Data analysis 

Concentrations of the homologs were calculated based on data from GC analysis. 

Concentrations were equally distributed between congeners when there was co-elution. 12 

dioxin-like PCBs (DLPCBs: PCBs 77, 81, 126, 169, 105, 114, 118, 123, 156, 167, 189) are of 

special concern due to their elevated toxicity and their individual concentrations were also 

calculated. The average number of chlorines per biphenyl was determined based on a molar 

average. 

For the comparison of two groups of data, F-tests were performed to test the equality of 

two variances and Student t-tests were performed to examine differences among different sites 
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and sediment fractions. Statistical significance was set at p < 0.05. For comparison of three 

groups of data, pairwise t-tests was performed, and Holm’s sequential Bonferroni method was 

applied to correct the results by reducing the possibility of type I error (Bunzel et al., 2013, 

Huang et al., 2018). 

2.3 Results and discussion 

2.3.1 PCB concentrations at different land uses 

PCBs were detected in the samples from all the studied sites (Figure 2-1). The highest 

total PCB concentration (51.6 ± 5.6 ng/g) in this study was found in BBG-U1, 1 m from a 

stormwater inlet (Figure 2-1A). BBG-U2 had a total PCB concentration of 36.4 ± 1.4 ng/g. The 

second highest PCB concentration (41.4 ± 5.6 ng/g) was found in CP-R, from the residential area 

(Figure 2-1C), where a parking area and residential buildings are nearby. UMD-I, collected at the 

entrance of the bioretention cell, contained high concentrations of PCBs, at 37.3 ± 6.3 ng/g 

(Figure 2-1G). BTM-U contained PCBs at 31.5 ± 2.3 ng/g (Figure 2-1B). Total PCB 

concentrations varied at BV-C (Figure 2-1D). The lowest PCB concentrations in this study were 

found at R1-G (17.8 ± 3.9 ng/g) and R2-G (18.3 ± 1.1 ng/g) (Figure 2-1E and 2-1F).  

The concentrations of total PCBs in stormwater particulate matter (9.8�51.6 ng/g) were in 

the range of concentrations observed in several previous studies (< 0.4–755 ng/g, Table S2-3). 

Zgheib et al. (2011b) measured concentrations of seven selected PCB congeners, with values 

ranging from below 10 ng/g to 60 ng/g in the particulate matter in stormwater, higher than those 

in this study (< 0.00167–1.92 ng/g). Potential reasons for the higher concentrations found in 

Zgheib et al. (2011b) include 1) the area in the Zgheib study was a watershed in a dense urban 

area with commercial centers, apartments and buildings, and 2) the study was carried out at least 
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six years ago in France, where PCBs were banned several years later than the U.S. (Zgheib et al., 

2011). 

The consensus-based threshold effect concentration (TEC) based on various sediment 

quality guidelines for PCBs in freshwater ecosystems is 59.8 ng/g (MacDonald et al., 2000); for 

a total PCB concentration below 59.8 ng/g, harmful effects on sediment-dwelling organisms are 

unlikely to be observed. The interim sediment quality guidelines (ISQGs) and the probable effect 

levels (PEL) for PCBs in freshwater sediment are 34.1 ng/g and 277 ng/g, respectively (CCME, 

2001). Both sediment samples from the BBG gutter, as well as sediment samples from CP-R1, 

CP-R2 and UMD-I bioretention cells were above the ISQGs for PCBs in freshwater sediment, 

suggesting adverse effects from PCBs exposure, but were below the consensus-based TEC and 

PEL. All the other samples were below the ISQG, indicating a low possibility of adverse effects 

at these sites. 

Both BBG-U samples as well as UMD-I had similar PCB homolog patterns. Penta- to 

hepta-CBs were the most dominant among all the homologs. Di-CBs also had a high abundance 

at UMD-I, accounting for 25.1 ± 2.0% of total PCBs. BTM-U was also similar to BBG-U, where 

PCBs with two, five and six chlorines dominated. All three CP-R residential samples had similar 

homolog patterns. Di-CBs and hexa-CBs were dominant, followed by penta-CBs and tetra-CBs. 

At the BV-C SCM, the two channel locations (BV-C1 and BV-C2) showed similar homolog 

patterns; penta- and hexa-CBs were the most dominant. However, the homolog pattern inside the 

SCM (BV-C3) was different from that in the rip-rap channel. Tetra- to hexa-CBs were present at 

high concentrations (1.64 ± 0.31 ng/g, 2.33 ± 0.60 ng/g) compared to other homologs. At R1-G 

and R2-G, di-CBs was the most dominant homolog (7.61 ± 1.55 and 7.03 ± 1.13 ng/g, 

respectively). The amounts of mono- to tetra-CBs and penta- to deca-CBs were similar at these 
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two sites. This result was noticeably different from the other sites, where the concentrations of 

penta- to deca-CBs were higher than mono- to tetra-CBs.  

The highest number of chlorines per biphenyl was found in BBG-U (1 m from the 

stormwater inlet, Table 2-1). Highly chlorinated PCBs (Cl ≥ 5) mainly experience 

biotransformation through dechlorination; anaerobic conditions are essential for this process. The 

process however is slow compared to degradation of lower chlorinated PCBs (Cl £ 4), which can 

be degraded aerobically (Payne et al., 2011, Passatore et al., 2014). Products of anaerobic 

dichlorination act as substrates for the aerobic biodegradation processes (Passatore et al., 2014). 

Except for CP-R1, R1-G, R2-G, and BV-C3, all the other samples had a chlorine number greater 

than four. The lowest numbers of chlorines were found at R1-G and R2-G, due to the dominance 

of di-CBs at these two sites. 

The easier loss of chlorines in the meta and para positions results in an increase in the 

level of ortho-chlorinated PCBs during microbial dechlorination (EPA, 2004). Thus, the low 

levels of ortho-chlorinated PCBs in BBG-U, CP-R2, CP-R3 and R2-G suggest limited or no 

reductive dechlorination (Table 2-1). The level of ortho-chlorinated PCBs at the other sites were 

at least four-fold higher, which suggest impacts from microbial dechlorination. The level of 

ortho-chlorinated PCBs in BTM-U was high compared to BBG-U samples, indicating 

dechlorination taking place at this site. A lower chlorine number per biphenyl in BTM-U could 

also support the occurrence of dechlorination. 
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Figure 2-1. Concentrations of total PCBs, homologs, mono- to tetra-CBs, and penta- to deca-CBs 

in the surface sediment samples at different sites: A: BBG-U (gutter), B: BTM-U (catch basin in 

storm inlet) C: CP-R (Student t-test was not performed at this site because CP-R3 had only 

duplicates), D: BV-C (bioretention SCM), E: R1-G (stormwater channel), F: R2-G (gutter), G: 

UMD-I (bioretention).  See text for more details on sampling locations (significance levels: * = 

0.05; ** = 0.01; *** = 0.001). 
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Table 2-1. Number of chlorines per biphenyl, concentrations of Dioxin-like congeners, TEQPCB and level (mol%) of ortho-chlorinated 

PCBs at different sites; ranges and means of PCBs based on land use. 

Site 
Approximate 
Land use 

Cl per 
biphenyl 

Dioxin-like 
PCBs (ng/g) 

TEQPCB 
(pg/g) 

Mol% of ortho-
chlorinated PCBs 

PCB ranges* 
(ng/g) 

PCB means* 
(ng/g) 

BBG-U1 Dense urban 5.39 ± 0.14 2.36 ± 0.18 5.72 ± 1.88 0.41 ± 0.03 

31.5–51.6 39.8 
BBG-U2 Dense urban 4.99 ± 0.05 2.08 ± 0.21 6.34 ± 0.22 0.59 ± 0.13 
BBG-U1_> 75 

fraction 

Dense urban 5.64 ± 0.08 2.62 ± 0.04 7.48 ± 0.45 0.47 ± 0.05 
BBG-U1_25–75 

fraction 

Dense urban 5.65 ± 0.01 9.57 ± 0.26 40.3 ± 3.60 0.24 ± 0.03 
BTM-U Dense urban 4.47 ± 0.05 1.88 ± 0.03 18.0 ± 1.30 4.85 ± 0.42 
BV-C1 Commercial 4.37 ± 0.07 0.91 ± 0.08 2.03 ± 0.28 1.50 ± 0.35 

9.77–37.3 22.1 

BV-C2 Commercial 4.33 ± 0.09 2.28 ± 0.27 2.94 ± 0.97 4.76 ± 0.05 

BV-C3 Commercial 3.95 ± 0.04 0.45 ± 0.04 1.48 ± 0.06 2.54 ± 1.33 

UMD-I_> 75 

fraction 

Institutional 4.42 ± 0.05 1.42 ± 0.10 4.45 ± 0.42 4.19 ± 0.43 

UMD-I_25–75 

fraction 

Institutional 5.06 ± 0.07 2.85 ± 0.44 7.34 ± 1.39 2.30 ± 0.71 

UMD-I_Total Institutional 4.44 ± 0.11 1.75 ± 0.53 4.74 ± 1.24 3.31 ± 0.96 

R1-G Greenspace 3.63 ± 0.20 0.55 ± 0.29 5.16 ± 6.81 1.69 ± 2.46 17.8–18.3 18.0 
R2-G Greenspace 3.63 ± 0.21 0.87 ± 0.02 5.93 ± 0.78 0.78 ± 0.014 

CP-R1 Residential 3.92 ± 0.05 2.95 ± 0.31 14.8 ± 3.10 4.10 ± 0.27 
28.9–41.4 35.3 CP-R2 Residential 4.58 ± 0.14 1.72 ± 0.01 10.6 ± 4.70 0.53 ± 0.02 

CP-R3 Residential 4.42 ± 0.01 2.09 ± 0.08 9.04 ± 0.59 0.68 ± 0.06 

Note: * Ranges and means of PCBs based on land use were determined using complete samples only and do not include size-

fractionated samples. 
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Comparison of sites 

Results from this study suggest an influence of land use on the PCB concentrations and 

homolog patterns. The ranges and means of PCB concentrations based on different land uses are 

summarized in Table 2-1. Higher PCB concentrations were found in dense urban areas (average: 

39.8 ng/g) and residential areas (average: 35.3 ng/g) compared to greenspace (average: 18.0 

ng/g). A similar trend was also found in a study carried out in France (Zgheib et al., 2011). In the 

Zgheib et al. study, the median concentration of seven selected PCBs (PCB 28, 52, 101, 118, 

138, 153, 180) in stormwater was greatest in a highly dense area, at 468 ng/L. The median 

concentrations in residential area and dense urban area were lower, at 211 ng/L and 259 ng/L, 

respectively. 

The building fronting the BBG samples was brick, built in 1968. PCBs can be leached or 

washed from sealants and caulking on building exteriors. Also, elevated PCB concentrations in 

indoor air could vent into the outdoor air. The total emission of PCBs estimated from one 

intensively studied office in Toronto, Canada was 280�5879 ng/h, and up to 90% of total losses 

could be to the outdoors based on the air exchange rate (Zhang et al., 2011). Additionally, 

stormwater runoff could wash flakes of material containing PCBs from the surface of older 

buildings. This is supported by research which found that among 80 buildings constructed from 

1945 to 1980 in Toronto, Canada, the mean concentration of PCBs was 4630 mg kg-1 (of 

sealants) (Diamond et al., 2010). Diamond et al. (2010) also estimated that concentrations of 

PCBs in sealants and caulking were geographically higher in residential areas within buildings 

constructed during 1950 to 1970.  
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Brick research/educational buildings dating from the 1970’s to 1990’s are 50 to 100 m 

away from UMD-I. The CP-R residential buildings, primarily built from wood, were constructed 

in 2011. 

The SCM at BV-C is about 40 m from a low-rise commercial building built in 1986 and 

is surrounded by a small parking lot (approximately 40 spots) on the rip-rap channel side. On the 

other sides, it is surrounded by a 4-lane highway and local roads. The stormwater treatment 

media elevation was high at the end of the channel, which allowed sediments to deposit and not 

enter the SCM, possibly causing a higher PCB concentration at the end of the channel.  

No buildings were nearby R1-G and R2-G, a major difference compared to the other 

sites. Instead these two highways traversed through forested areas. As a result, the lower levels 

of PCBs detected in the sediments at these locations could be a consequence of the absence of 

buildings surrounding the collection site. Therefore, the measured PCB concentrations at these 

two sites can be assumed to result only from highway sources. 

Overall, the results of this analysis suggest that buildings, and especially older buildings, 

contribute significantly as PCB sources in urban areas. Also, roads themselves may play a lesser 

role in PCB contamination compared to buildings. Since CP-R had comparatively new buildings, 

the relatively high PCB concentrations at this site may result from the use of recycled building 

materials or PCB byproducts from paints (Anezaki and Nakano, 2014). 

2.3.2 Comparison of congener profiles among different sites 

None of the sediment samples had a similar congener pattern with any Aroclor mixture, 

indicating that Aroclors were not the direct sources, or the Aroclor mixtures were weathered due 

to biodegradation and/or mixing. However, some congeners detected at relatively high 
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abundance in the sediment samples were also present in A1254 or A1260, indicating that some 

congeners may have originated from these Aroclors. Relative abundance (% of mass) of the 

dominant congeners are summarized in Table 2-2. PCB 11 was only congener detected at all 

sites at a relatively high abundance. It is a non-Aroclor congener and is inadvertently produced 

during the manufacturing of paint pigments (Hu and Hornbuckle, 2010). 

PCB 99, 110, 180, 193 and 194 were detected with high abundance in samples from 

BBG-U, BTM-U and UMD-I. PCB 99 and PCB 110 are important components of A1254. PCB 

99 is also a dechlorination product from A1260 (Fagervold et al., 2007). PCB 194 accounted for 

2.1% of the total PCBs in A1260 (Frame et al., 1996). PCB 194 showed no dechlorination after 

500 days of incubation with Baltimore Harbor sediment microcosms (Fagervold et al., 2007), 

indicating its stability. PCB 180 accounted for 11.4% of A1260. Overall, the dominant congeners 

in these sediment samples were present, and in some cases abundant, in A1254 and A1260. 

The CP-R congener fingerprints were different from the other sites, with PCBs 11, 14, 

141 and 161 dominating. PCB 141 accounted for 2.6% of total PCBs in A1260 and 1.0% in 

A1254 (Frame et al., 1996). PCB 99 was dominant at BV-C (4.5�22.5%). PCB 8 was detected 

with high abundance at this site. It was one of the major congeners detected in polycyclic-type 

pigments (Anezaki and Nakano, 2014). Overall, sediments from dense urban and institutional 

sites were dominated by congeners present in A1254; residential sites had smaller signatures of 

A1254. A1254 has been reported to have been added into sealants and caulking compounds 

(ATSDR, 2000). This information supports the hypothesis that old buildings remain as important 

PCB sources to stormwater. PCB 11 and 14 dominated in the sediments from greenspace (R1-G 

and R2-G). 
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Table 2-2. Relative abundance (% of mass) of the dominant congeners at different sites and 

A1254. 

 Sites A1254 

 BBG-U CP-R BTM-U UMD-I BV-C R1-G R2-G  

PCB 8     0.21-5.16   0.13 

PCB 11 1.48-3.27 1.28-10.0 11.18 15.2 3.19-3.38 8.97 30.90  

PCB 14 6.15-8.86 5.77-11.6  4.62 5.82-13.3 28.6 5.86  

PCB 96   2.07 4.56 0.66-2.30 1.45  0.04 

PCB 99 2.34-4.79 0.47-2.17  3.23 4.47-22.5 4.08 1.79 3.02 

PCB 110 2.40-2.90 0.160-1.30  2.21 1.56-3.28 1.01  9.29 

PCB 118  0.317-1.58   1.08-5.63   7.35 

PCB 141  1.64-4.00 2.09 1.06    0.98 

PCB 161  1.98-3.94     2.10  

PCB 180 3.17-4.09   3.21 1.88-2.71 1.97 1.15 0.67 

PCB 193 9.99-23.2  1.12 7.03 1.20-1.90 10.2  0.03 

PCB 194 4.11-9.19  1.24 2.96 0.517-1.38 3.90 1.19 0.01 

 

2.3.3 Concentrations and potential sources of PCB 11 

The concentration and relative abundance of PCB 11 at the different study sites showed 

that the highest concentration was found at UMD-I (Figure 2-2), ranging between 4.47 and 6.58 

ng/g; it was the most dominant congener and accounted for 15% of the total PCB masses. R2-G 

also had a high concentration of PCB 11 (5.66 ± 1.07 ng/g), accounting for 30.9% of total PCBs 

at this site. At the other sites, PCB 11 was also detected, but at lower concentrations compared to 
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UMD-I and R2-G, ranging from 0.33 ± 0.08 to 3.52 ± 0.10 ng/g. The relative abundance of PCB 

11 compared to total PCBs at these sites ranged from 1.3�11.2%. These results indicate that PCB 

11 is an important component of the total PCB fingerprint in urban stormwater and the 

surrounding area.  

 

 

Figure 2-2. Concentration and relative abundance of PCB 11 at different sites (bar represents 

concentration (left axis), x represents relative abundance (right axis)). 

 

Yellow flakes were noted in the UMD-I samples. The larger yellow flakes, 0.5�4 mm in 

diameter, were separated from the sediment by hand and both were analyzed separately for PCB 

concentrations. Without the large yellow flakes, the concentration of PCB 11 was 3.8 ± 0.7 ng/g 
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in the sediment, which was significantly different from the concentration (5.4 ± 0.1 ng/g) 

measured with the flakes included (p = 0.02). The separated yellow flakes were tested using the 

same procedure as the sediment and the concentration of PCB 11 was 182 ± 10 ng/g. The yellow 

flakes appear to be yellow traffic paint.  

PCB 11 has been detected as the major congener present in azo-type pigments (Anezaki 

and Nakano, 2014). It has been frequently detected in urban air (Chicago) and pigments or dyes 

(Hu et al., 2008, Hu and Hornbuckle, 2010). Among all 209 congeners, PCB 11 was found in 13 

of the 33 commercial paint pigments tested (Hu and Hornbuckle, 2010). Near New York/New 

Jersey Harbor, PCB 11 concentrations in the effluents of the two wastewater treatment plants 

which receive wastewater from pigment manufacturing plants ranged from 5 to 116 ng/L, while 

PCB 11 concentrations ranged from 0.0016 to 9.4 ng/L in the effluents from other wastewater 

treatment plants (Rodenburg et al., 2010). PCB 11 has been frequently detected in commercial 

goods, such as newspapers, magazines, and cardboard boxes (Rodenburg et al., 2010). Thus, 

PCB 11 is emerging as a marker of non-legacy PCB contamination.  

2.3.4 PCB concentration dependencies on particle size and TOC 

BBG-U1 and UMD-I samples were separated into > 75 µm and 25�75 µm size fractions.  

At BBG-U1, both fractions shared a similar homolog pattern and concentrations of all but mono-

and deca-CBs were significantly higher in the 25�75 fraction compared to the > 75 fraction (p < 

0.001, Figure 2-3A). In the 25�75 fraction, total PCB concentration was 180 � 6 ng/g, which 

was approximately three times of the concentration in the > 75 fraction (56.3 � 6.3 ng/g).  
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Figure 2-3. Concentrations of total PCBs, homologs, mono- to tetra-CBs, and penta- to deca-CBs 

in different fractions for (A) BBG-U1, 1 m from the entrance, (B) UMD-I (* reflects a 

significance level of 0.05; ** reflects a significance level of 0.01; *** reflects a significance 

level of 0.001).  

 

0

20

40

60

80

100

120

140

160

180

200

Total Mono Di Tri Tetra Penta Hexa Hepta Octa Nona Deca 1-4 5-10

Co
nc
en
tra
tio
n
(n
g/
g)

1 m from the entrance_>75 fraction

1 m from the entrance_25-75 fraction
***

***
***

***
***

***

***

***

***

***

***

A

0

10

20

30

40

50

60

70

80

90

Total Mono Di Tri Tetra Penta Hexa Hepta Octa Nona Deca 1-4 5-10

Co
nc
en
tra
tio
n
(n
g/
g)

UMD_I_> 75 Fraction

UMD_I_25-75 Fraction*

*

***
*

*

*

*

*

*

B



 34 

For UMD-I, hexa-and hepta-CBs were the most dominant in the 25�75 µm fraction, 

while di-CBs dominated the > 75 µm fraction. Both fractions had mono- and deca-CBs below 

detection limit (Figure 2-3B).  No significant difference was observed between the di-CBs in the 

two fractions (p = 0.10).  

Both sites showed higher proportion of ortho-chlorinated PCBs in the > 75 µm fraction, 

suggesting greater degree of PCB dechlorination in larger particles (Table 2-1). Larger particles 

have lower PCB concentrations and as a result lower toxicity to microorganisms (Abraham et al., 

2002). 

The > 75 µm fraction accounted for 98.1% of the total mass of the UMD-I sediment 

sample. As a result, 94.9% of the total PCB mass, 96.5% of mono- to tetra-CBs and 94.1% of 

penta- to deca-CBs were sorbed to the > 75 µm fraction. Thus, the removal of the particles larger 

than 75 µm, which is relatively easy to perform in a SCM because they are easy to settle or be 

filtered (Kim and Sansalone, 2008), can remove approximately 94% of the PCB mass applied to 

a SCM. For BBG-U1, the > 75 µm fraction accounted for 93.3% of the total sediment mass. 

When considering the mass of different BBG-U1 fractions, nearly 80% of total PCBs mass were 

sorbed to larger particles.  

PCB distribution based on particle size have been studied on sediment samples from 

Harbor Point, New York, where the fine fraction (< 63 µm) contributed approximately 80% of 

the PCB mass in the total sediment, attributed to their large surface area (Ghosh et al., 2003). 

This disagreement with the stormwater results may be attributed to the differences in the TOC of 

different particle size fractions and the particle mass distribution in the sediment samples, which 

were not mentioned. Carbonaceous particles contributed 60�90% of the PCBs in the sediment 
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samples even though they accounted for only 5�7% of the total mass (Ghosh et al., 2003). PCBs 

are generally associated with sediment or soil via two mechanisms: adsorbed to carbonaceous 

sorbents on the surfaces and absorbed within the sorbent matrix by solvation with amorphous 

organic carbons (Beckingham and Ghosh, 2016). In both processes, carbonaceous matter in 

sediments or soils plays an important role.  

The TOC content of BBG-U1 was 1.30%, which was higher than the value at 2 m 

(1.02%). Correspondingly, the total PCB concentration in the total sediment at BBG-U1 (51.6 ± 

5.6 ng/g) was significantly higher than that at BBG-U2 (36.4 ± 1.4 ng/g) (p = 0.01) (Figure 2-

1A). Also, the 25�75 µm fraction at BBG-U1, with TOC of 4.70%, had a significantly higher 

PCB concentration than the > 75 µm fraction (TOC: 1.63%, p < 0.01, Figure 2-3A). The TOC 

content in the UMD_I 25�75 µm fraction (9.54%) was higher than that in the > 75 µm fraction 

(1.14%); higher PCB concentrations were found in the 25�75 µm fraction.  

In both BBG-U and UMD-I, the total concentration of penta- to deca-CBs in the 25�75 

µm fraction was more than two times of the concentration in the > 75 µm fraction, correlating 

with the TOC contents of the two fractions. PCBs with more chlorines are more hydrophobic, 

resulting in a stronger sorption of PCBs to the organic matter on the sediment (ATSDR, 2000). 

Relations between PCBs and TOC in stormwater sediments were also found in a study in 

Norway, which reported that the concentration of seven selected PCB congeners was strongly 

correlated with the TOC content of sediments (using PCA) (Jartun et al., 2008).  

2.3.5 Toxic equivalency values  
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Of the 209 congeners, DLPCBs are of special concern due to their higher levels of health 

risks. DLPCBs are congeners which have been shown to exert toxic responses similar to those 

observed for 2,3,7,8-Tetrachlorodibenzodioxin (2,3,7,8-TCDD) (Van den Berg et al., 1998). 

Toxic equivalency factors (TEF) for DLPCBs were set by the World Health Organization 

(WHO) (Van den Berg et al., 1998, Van den Berg et al., 2006). Toxic Equivalency (TEQ) values 

are calculated by multiplying the mass concentrations of the 12 DLPCBs with the respective TEF 

(Table 2-1) and are used by the U.S. Environmental Protection Agency (EPA) to account for 

how dioxin and dioxin-like compounds vary in toxicity (EPA, 2018). The TEQPCB levels varied 

from 1.48 ± 0.06 pg/g to 14.8 ± 3.1 pg/g in the total sediment samples. All samples, except the 

25–75 µm BBG-U1 fraction, were below the safe sediment value of 20 pg TEQ/g (Eljarrat et al., 

2001). The TEQPCB levels fall within the range of 0.03 to 24.8 pg/g found in Northwest 

Mediterranean sediment (Eljarrat et al., 2001) and found in core samples in Indiana Harbor and 

Ship Canal (IHSC), Lake Michigan, U.S. (0.68–120 pg/g) and are similar to the TEQ value at the 

surface layer of one of the core samples (Martinez and Hornbuckle, 2011). The 25–75 µm 

fraction in BBG-U1 had the highest TEQPCB (40.3 ± 3.6 pg/g) due to the consistently high total 

PCB concentrations found in that fraction.  

Except for BTM-U and CP-R, all other samples were close to the U.S. background level 

(2–5 ppb TEQ/g) (EPA, 2010). BTM-U and CP-R had values larger than 9 pg TEQ/g, indicating 

higher risk potentials at these sites. However, PCBs have been found to account for 1%–84% of 

the total TEQs in sediments (Eljarrat et al., 2001). More information about other dioxin or 

dioxin-like compounds is therefore needed to assess the risk of these stormwater sediment 

samples. 

2.4 Conclusions 
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This study investigated the concentrations of all 209 PCB congeners as well as homolog 

distribution in stormwater sediments at seven sites with different land use patterns. Results from 

this study suggest that: 

• Land use pattern has an impact on PCB concentrations and homolog patterns in 

stormwater sediments. 

• Smaller stormwater particles had an increased tendency to sorb PCBs than larger 

particles. However, greater PCB mass (more than 80%) was present in larger 

particles. 

• Targeting sediments from high density urban areas could reduce a large portion of 

PCB stormwater load via particulate matter capture and removal.  

• PCB 11 was frequently detected in stormwater sediments and appears to be related to 

yellow pigments used in roadways. Additional studies are needed to clarify this 

relationship and to determine if pigments should be targeted as a nonpoint PCB 

source. 
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Appendix 

 

Figure S2-1. Map of sediment sampling sites in Maryland. 

 

Table S2-1. Summary of the sampling sites. 

Site Name Description Location (GPS 

coordinates) 

Drainage area Sampling 

time 

Sampling 

point 

UMD-I Bioretention 

on campus 

Along Regents 

Dr. (38.993593, -

76.939007) 

Road, sidewalk, 

parking lot, 

Sep 2016 Inlet 

entrance  
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teaching 

buildings 

R1-G Runoff 

channel on 

highway 

On MD Route 32 

(39.144314, -

76.820086) 

Highway June 2017 Two 

parallel 

locations in 

the channel  

BV-C SCM along 

Route 1 

Along MD Route 

1 (39.051953, -

76.897692) 

Roads, parking 

lot, commercial 

building 

Sep 2017 BV-C1: 

Inlet 

entrance, 

BV-C2: 

Inlet 

discharge  

BV-C3: 

inside SCM  

BBG-U Roadside 

gutter  

Along 52nd Ave. 

(38.933153, -

76.930882) 

Roads, 

buildings 

Sep 2017 BBG-U1: 1 

m from the 

drainage 

point 

BBG-U2: 2 

m from the 

drainage 

point 
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BTM-U Roadside 

gutter 

Liberty Rd. 

(39.3595387-

76.7739888) 

Roads, 

buildings 

May 2018 Catch basin 

of a gutter 

R2-G Roadside 

gutter 

On MD Route 

197 (39.047880, -

76.816826) 

Roads July 2018 6 m from 

the gutter 

CP-R Storm drain Along MD Route 

1 (39.011177, -

76.931005) 

Buildings, 

parking lot 

July 2018 CP-R1: 4 m 

from the 

gutter 

nearby 

CP-R2: 

around a 

storm drain 

receiving 

runoff from 

roofs and an 

electric box  

CP-R3: 

around a 

storm drain 

receiving 

runoff from 

roofs  
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Table S2-2. Temperature program for GC. 

Run Time (min) Rate (°C/min) Hold Time (min) Temperature (°C) 

0  0 70 

15.714 7 0 180 

60.714 1 0 225 

91.059 5.8 20 285 

102.36 11.5 10 300 

 

Table S2-3. Comparison of PCB concentrations in the particulate phase in stormwater (ng/g dw) 

analyzed in this study with concentrations reported from other locations around the world. 

Location Year  Compounds Mean Median  Range  ref 

Anacostia River, U.S. 2002 Total PCBs   31.0�755 (Hwang and 

Foster, 2008) 

Inner city of Bergen, 

Norway 

2005 7 PCBs 80 29 < 0.4�704 (Jartun et al., 

2008) 

East suburb of Paris, 

France 

2008 PCB28 20  20�30 (Zgheib et al., 

2011b) 
PCB52 10  < 10�20 

PCB101 20  < 10�40 

PCB118 20  < 10�40 

PCB138 50  30�60 

PCB153 50  30�60 
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PCB180 30  20�40 

A bioretention cell 

near campus parking, 

U.S. 

2016 Total PCBs 37.3  31.3�44.9 this study 

PCB28 0.0498  0.0303�0.0661 

PCB52   < 0.0167 

PCB101 0.188  0.173�0.204 

PCB118 0.166  0.132�0.217 

PCB138 0.640  0.538�0.860 

PCB153 0.583  0.480�0.686 

PCB180 1.198  1.096�1.425 

Route 32, U.S. 2017 Total PCBs 17.8  13.4�24.5 this study 

PCB28   < 0.0167�0.114 

PCB52   < 0.0167 

PCB101   < 0.00167�

0.216 

PCB118 0.0620  0.0422�0.0855 

PCB138 0.142  0.110�0.164 

PCB153 0.101  0.0859�0.121 

PCB180 0.351  0.270�0.469 

A SCM near Route 1, 

U.S. 

2017 Total PCBs 13.5  11.7�12.8 this study 

27.9  25.0�29.9 
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9.77  7.24�10.4 

PCB28   < 0.0167 

PCB52   < 0.0167 

PCB101   < 0.00167�

0.290 

PCB118 0.626  0.0986�1.85 

PCB138 0.189  0.110�0.298 

PCB153 0.128  0.0774�0.209 

PCB180 0.399  0.176�0.776 

A gutter in 

Bladensburg, U.S. 

2017 Total PCBs 51.6  46.3�57.4 this study 

36.4  34.8�37.5 

PCB28 0.267  0.167�0.394 

PCB52   < 0.0167 

PCB101 0.275  0.232�0.344 

PCB118 0.297  0.261�0.348 

PCB138 0.905  0.760�1.05 

PCB153 0.801  0.677�0.947 

PCB180 1.56  1.38�1.92 

Route 197, U.S. 2018 Total PCBs 17.8  17.3�19.5 this study 

PCB28   < 0.0167�0.440 
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PCB52   < 0.0167 

PCB101   < 0.00167 

PCB118 0.160  0.146�0.186 

PCB138 0.300  0.282�0.322 

PCB153 0.232  0.220�0.239 

PCB180 0.210  0.207�0.214 

A residential area in 

College Park, U.S. 

2018 Total PCBs 41.4  36.7�47.6 this study 

35.4  32.2�40.0 

28.9  27.6�30.3 

PCB28   < 0.0167�1.36 

PCB52   < 0.0167�1.53 

PCB101 0.0565  0.0413�0.0845 

PCB118 0.328  0.0537�0.678 

PCB138   < 0.0333�0.648 

PCB153 0.418  0.0193�0.740 

PCB180   < 0.00333�

0.180 

A gutter in Baltimore, 

U.S. 

2018 Total PCBs 31.5  28.9�33.0 this study 

PCB28 0.612  0.547�0.648 

PCB52   < 0.0167 
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PCB101 0.0584  0.0541�0.626 

PCB118 0.0211  0.0118�0.0302 

PCB138   < 0.0333 

PCB153   < 0.0167 

PCB180 0.197  0.196�0.200 
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Chapter 3. Evidence of organohalide respiration of PCBs in stormwater 

bioretention cells 

Abstract 

Core samples from bioretention cell media as well as surface stormwater sediment 

samples from seven urban areas were collected to assess the potential for biotransformation 

activity of polychlorinated biphenyls (PCBs). Based on DNA extracted from these samples, 

putative organohalide respiring bacteria within Chloroflexi were detected in all the samples. The 

putative organohalide respiring bacteria include Dehalobacter, Dehalogenimonas, and 

Dehalococcoides. Bacteria containing the functional genes encoding for biphenyl 2,3-

dioxygenase (bphA) or 2,3-dihydroxybiphenyl 1,2-dioxygenase (bphC) were detected in 25 of 

the 27 samples. Dehalococcoides mccartyi, which can transform PCBs by organohalide 

respiration, was identified in one of the samples. Expressed bacterial genes from putative 

organohalide respiring bacteria as well as genes encoding for bphA and bphC were obtained 

from the microbial community thus showing that organohalide respiration of PCBs and aerobic 

PCB degradation under both aerobic conditions occurred in the surface samples collected at the 

bioretention site. These findings show that bacteria capable of transforming PCBs were present 

in the stormwater bioretention cell thus illustrating that in situ PCB removal can take place in 

this environment. Presence and concentrations of 209 PCB congeners in the bioretention media 

were also assessed. The total PCB concentration ranged from 38.4 � 2.3 ng/g at the top layer of 

the inlet to 11.6 � 1.2 ng/g at 20–30 cm at 3 m from the inlet. The decreasing PCB concentration 

with depth indicated that bioretention is effective in retaining PCBs, which could support 

organohalide respiration of PCBs in the deeper parts of the bioretention media. The average 
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number of chlorines per biphenyl in the core samples was 4.41 � 0.24. The level of ortho-

chlorinated PCBs ranged from 1.65–3.19% thus showing that meta and para organohalide 

respiration occurred. These results provide preliminary evidence that bacteria capable of PCB 

transformation, including both aerobic organohalide respiration and aerobic degradation, were 

present and active in the bioretention.  
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3.1 Introduction  

Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) (Stockholm 

Convention, 2008) that are resistant to physicochemical treatments (ATSDR, 2000), making it 

difficult to eliminate PCBs from the environment. Since the 1960s, urban stormwater runoff has 

been identified as an important source of water quality impairment pollution incl. for PCBs 

(Granier et al., 1990). To prevent continued PCB contamination of surface waters, measures 

must be taken to remove PCBs from stormwater. Chemical treatment methods may not be 

practical in most stormwater applications because chemical methods can be expensive and 

energy-demanding, and may produce more toxic chlorine-containing products than present in the 

initial contamination (ATSDR, 2000, Luo et al., 2008). 

In contrast, biotransformation is a sustainable and potentially energy-saving and 

economical approach that can be used to remove PCBs from the environment (Luo et al., 2008). 

PCBs can be biologically transformed via two pathways: 1) aerobic degradation and 2) anaerobic 

organohalide respiration (Quensen et al., 1988, Flanagan and May, 1993). During aerobic 

degradation, lower-chlorinated congeners function as substrate and act as electron donors 

(Abraham et al., 2002). The two critical steps for this process are incorporation of two hydroxyl 

groups into the biphenyl ring structure (the ring fission reaction), which is catalyzed by the 

dioxygenase enzymes BphA (encoded by the bphA gene) and BphC (encoded by the bphC gene), 

respectively (Pieper, 2005, Petrić et al., 2011). The bottleneck process that is required prior to 

aerobic degradation of highly chlorinated PCBs is anaerobic organohalide respiration. Here, 

PCBs serve as electron acceptor and the chlorine substituent is replaced with hydrogen. 

Chlorines can be substituted at all three ring positions: para, meta, and ortho depending on the 

involved bacteria. Due to steric hindrance at the ortho position, chlorine substitution during 
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organohalide respiration is more likely to happen at flanked para and meta positions (Quensen et 

al., 1988).  

Several studies have reported on the potential for PCB biotransformation taking place in 

stormwater drainage areas and a bioswale (Kjellerup et al., 2012, Gill et al., 2017). Organohalide 

respiration was observed in soil samples collected in a stormwater drainage ditch in 

Mechanicsburg, PA. Additionally, in the soil aggregates, putative organohalide respiring bacteria 

(OHR) and biphenyl dioxygenase genes were detected (Kjellerup et al., 2012). In an urban 

bioswale stormwater control measure (SCM) in New York, NY, bphA genes were detected (Gill 

et al., 2017). 

Bioretention has become an increasingly popular SCM, consisting of a layer of 

engineered media, typically hardwood mulch, and a layer of vegetation (Davis, 2007). Various 

active biological processes have been reported in bioretention systems. Biodegradation of oil and 

grease was found in the mulch layer in a bench-scale infiltration study (Hong et al., 2006), while 

biodegradation of naphthalene was observed with 12–18% of mineralization taking place in 

laboratory bioretention columns (LeFevre et al., 2012). Increased quantities of naphthalene 

dioxygenase genes were detected in the bioretention media, indicating the capacity for 

hydrocarbon biodegradation (LeFevre et al., 2012). Research concerning biotransformation of 

PCBs in bioretention media is lacking and is needed to sustainably treat PCBs in stormwater. 

Since PCBs have been detected in stormwater samples (Cole et al., 1984, Rossi et al., 

2004, Hwang and Foster, 2008, Jartun et al., 2008, Zgheib et al., 2011, Gilbreath and McKee, 

2015, Cao et al., 2019), it is important to study the potential of biotransformation in stormwater 

sediments and bioretention media. The objectives of this study were (1) to examine the presence 

of microorganisms capable of PCB transformation, including aerobic and anaerobic pathways in 
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stormwater sediments and bioretention media; (2) to evaluate the abundance of such 

microorganisms and the potential for PCB biotransformation using gene expression and 

bioinformatics approaches; (3) to relate the presence and abundance of microorganisms capable 

of PCB transformation with accumulated PCB concentrations in the bioretention media; and (4) 

to use the above information to suggest enhancements for sustainable PCB removal from 

stormwater. 

3.2 Materials and methods 

3.2.1 Sampling sites  

Surface stormwater sediment samples and bioretention media core samples were 

collected from September 2016 to July 2018. Surface sediment samples were collected at seven 

different sites, including sites near roadways (BBG and BTM), at an institutional area (UMD), at 

a commercial area (BV), surrounded by greenspace (R1 and R2) and at a residential area (CP). 

At each site, one to three samples were collected at different locations. Descriptions about the 

sampling sites are summarized in Table 3-1. More details about sampling process and PCB 

concentrations can be found in Cao et al. (2019). 
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Table 3-1. Summary of the sampling sites. 

Site Name Description Drainage Area Sampling Time 

BBG Roadside gutter Roads, buildings Sep 2017 

BTM Roadside gutter Roads, buildings May 2018 

UMD Bioretention on campus Road, sidewalk, parking lot Sep 2016 

BV SCM along Route 1 Roads, parking lot, 

commercial building 

Sep 2017 

R1 Runoff channel on highway Highway June 2017 

R2 Roadside gutter Roads July 2018 

CP Storm drain in a residential area Buildings, parking lot July 2018 

 

Media core samples were collected from a bioretention cell located on the University of 

Maryland campus (College Park, MD). The drainage area of the bioretention included concrete 

sidewalks as well as asphalt parking lots and roads (Figure 3-1). More details about the 

bioretention facility can be found in DiBlasi et al. (2009). The core samples were taken from the 

surface to 18–30 cm deep and split into 2 to 4 segments. Additional bioretention media samples 

at the top media layer as well as surface sediment samples for RNA analysis were collected in 

February 2020. They were stored in an RNA stabilization solution (DNA/RNA Shield, ZYMO 

RESEARCH, U.S.) and extracted within 24 h. 
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Figure 3-1. Overhead sketch of the bioretention cell at UMD [�: sampling site of the surface 

sediment samples (sample UMD); dots: sampling sites of the core samples (0, 0.3 m, 1 m and 3 

m from the inlet; collected using a JMC environmentalist’s subsoil probe [2 cm inner diameter, 

71 cm length])].  

 

3.3.2 PCB extraction and cleanup 

The core samples were extracted using microwave-assisted extraction (MAE) and 

cleaned with alumina as described in Cao et al. (2019). Briefly, 6 g of core samples and 36 mL of 

hexane/acetone mixture (v/v=1:1) were extracted at 115°C for 10 min at 1000 W. Before 

extraction, 20 µL of the mixed solution of surrogates [0.5 µg mL-1 2,4,6-trichlorobiphenyl (PCB 

30) and 2,2¢,3,4,4¢,5,6,6¢-octachlorobiphenyl (PCB 204)] was added into each sample to calculate 

the recovery of the extraction and cleanup process. After MAE, the supernatant was collected 
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and combined with the solvents after washing the samples. The extracts were ready for cleanup 

after concentrating to less than 100 µL. The extracts were loaded to a pre-activated alumina 

column and eluted with hexane. The elution was collected and concentrated under N2 flow. 20 

µL of the mixed solution of internal standards [0.5 µg mL-1 4-bromobiphenyl (4-BB) and 

2,2¢,4,4¢,5,5¢-hexabromobiphenyl (hexa-BB)] was added before GC analysis. 

3.2.3 PCB analysis 

Samples were analyzed using gas chromatography with electron capture detector (GC-

ECD) (7890B, Agilent Technologies, U.S.). The samples were analyzed with an Agilent J&W 

HP-5ms column (60 m x 250 μm x 0.25 μm) with the following temperature program: initial 

temperature at 70°C, 7°C/min to 180°C, 1°C/min to 225°C, 5.8°C/min to 285°C, held at 285°C 

for 20 min, 11.5°C/min to 300°C and held at 300°C for 10 min. The injection volume was 1 µL 

and N2 was used as the carrier gas. 

3.2.4 Quality control 

All laboratory materials for PCB analysis were made either of glass or PTFE to avoid 

sample contamination or loss. Detection limits for PCB congeners ranged from 0.0008 to 0.33 

ng/g. All values below detection limits were substituted with half of the detection limits. All the 

measured concentrations were corrected based on the recoveries of surrogates (Mono- to tetra-

CBs: using PCB 30; penta- to deca-CBs: using PCB 204). The acceptable range of recovery was 

50–125% (Hermanson and Johnson, 2007). Samples with surrogate recoveries less than 50% 

were not included in the final data analysis. Average surrogate recoveries were 72.6% (range: 

55.2–92.8%) for PCB 30 and 87.0% (range: 50.3–105%) for PCB 204.  

3.2.5 Extraction of DNA/RNA from surface sediments and bioretention media  
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Sediment samples were freeze-dried (FreeZone 6 PLUS, LABCONCO, U.S.) before 

DNA extraction. Sediment genomic DNA (gDNA) were extracted from 0.25 g of the dry 

sediment samples using a DNeasy PowerSoil Kit (Qiagen, U.S.). Sediment RNA were extracted 

using a ZymoBIOMICS TM DNA/RNA Miniprep Kit (Zymo Research, U.S.). Both gDNA and 

RNA were extracted according to the manufacturer’s protocols, with minor modifications. 

During the process of RNA extraction, gDNA was removed via DNase I treatment. A260/280 

and A260/230 were measured using a nanoDrop spectrophotometer (Nanodrop 2000, Thermo 

Scientific, U.S.) to check the quality of extracted DNA and RNA.  

cDNA was synthesized ProtoScript II Reverse Transcriptase (New England Biolabs, 

U.S.) and random primers. Briefly, reaction mixture I was prepared using 60 µM Random 

Hexamers (2 µL; Invitrogen, U.S.), 10 mM dNTP mix (1.25 µL; Invitrogen, U.S.) and RNase-

free water (3.75 µL; Zymo Research, U.S.). 3 µL of RNA sample was added to reaction mixture 

I and denatured at 70°C for 5 min. Reaction mixture II was prepared using 5X ProtoScript II 

Buffer (5 µL; New England Biolabs, U.S.), 0.1 M dithiothreitol (2.5 µL; New England Biolabs, 

U.S.), 20 U/µL SUPERase·In RNase Inhibitor (0.5 µL; Invitrogen, U.S.), 200 U/µL ProtoScript 

II Reverse Transcriptase (1.25 µL) and RNase-free water (5.75 µL). Denatured mixture I with 

RNA was mixed with 15 µL of Reaction mixture II. The new mixture was incubated at 42°C for 

1 hr and then inactivated at 70°C for 20 min. 

3.2.6 Detection of bacteria capable of PCB transformation   

Universal primers 27F and 1392R were used to amplify the 16S rRNA genes of total 

bacteria (Marchesi et al., 1998). Escherichia coli DNA was used as the positive control. Primers 

348F and 884R (Fagervold et al., 2005) were used to detect the putative OHR within the 

Chloroflexi in the samples, since all known bacteria capable of organohalide respiration are 
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found in this group. Primers 634F/799R (Yan et al., 2009), 1200F/1271R (He et al., 2003) and 

477F/647R (Grostern and Edwards, 2006) were used to detect the presence of Dehalogenimonas 

(DHG), Dehalococcoides (DHC) and Dehalobacter (DHB), respectively. DNA samples 

extracted from Dehalococcoides-containing microbial consortium (SDC-9) and the West Branch 

Canal Creek Consortium (WBC-2) culture were used as positive controls for anaerobic OHR. 

The bphA gene was amplified using primer sets 463F and 674R (Petrić et al., 2011), which 

targets the gene encoding for a dioxygenase catalyzing the first step of PCB transformation. 

P42U-F and P43D-R primers were used for the detection of bphC genes (Erb and Wagner-

Dobler, 1993). Burkholderia xenovorans LB400 were used as positive control for bphA and 

bphC genes. PCR products of the correct length were confirmed by electrophoresis using 1.5% 

agarose gel. Details about the applied primers are shown in Table 3.2. 

The abundance of total bacteria and Dehalogenimonas were estimated using qPCR 

targeting the bacterial 16S rRNA gene (341F/907R and 634F/799R, respectively) (Yan et al., 

2009, Kjellerup et al., 2012). PCR conditions are shown in Table 3-1. For total bacteria, the 

standard DNA template was PCR products from E. coli with primers 341F/907R. For 

Dehalogenimonas, the standard DNA template was PCR products from WBC2 with 463F/799R. 

The qPCR reactions were performed with CFX Connect Real-Time System (Bio-Rad, U.S.). 

With each primer set, no amplification of genes was observed in the negative control. 
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Table 3-2. Primers used for amplifying targeted sequences and cycling conditions. 

Primer Nucleotide Sequence (5’-3’) PCR 

fragment 

size (bp) 

Cycling Conditions Reference 

27F AGAGTTTGATCMTGGCTCAG 1380 5 min at 94°C, 30 s at 

94°C, 60 s at 55°C, 2 min 

at 72°C, 29 cycles, 7 min at 

72°C 

(Marchesi et 

al., 1998) 

1392R ACGGGCGGTGTGTRC 

348F GAGGCAGCAGCAAGGAA 554 2 min at 95°C, 45 s at 

95°C, 45 s at 58°C, 60 s at 

72°C, 40 cycles, 30 s at 

72°C 

(Kjellerup et 

al., 2012) 

884R GGCGGGACACTTAAAGCG 

463F CGCGTSGMVACCTACAARG 234 15 min at 95°C, 30 s at 

95°C, 60s at 60°C, 30 s at 

72°C, 40 cycles, 10 min at 

72°C 

(Petrić et al., 

2011) 674R GGTACATGTCRCTGCAGAA 

YTGC 

P42D CGCGGATCCGCGGGGCGC 

CACACCAATGACCA 

168 3 min at 95°C, 30 s at 

95°C, 60 s at 60°C, 3 min 

at 72°C, 35 cycles, 10 min 

at 72°C 

(Erb and 

Wagner-

Dobler, 1993) P43U CCCAAGCTTGGGACTTGT 

GGCCCCACATG 

477F GATTGACGGTACCTAACGA 

GG 

191 10 min at 94°C, 45 s at 

94°C, 30 s at 63°C, 30 s at 

72°C, 45 cycles, 10 min at 

72°C 

(Grostern and 

Edwards, 2006) 

647R TACAGTTTCCAATGCTTTAC 

G 

634F GGTCATCTGATACTGTTGG 

ACTTGAGTATG 

194 2 min at 94°C, 30 s at 

94°C, 45s at 57°C, 10 s at 

72°C, 40 cycles 

(Yan et al., 

2009) 

799R ACCCAGTGTTTAGGGCGTG 

GACTACCAGG 

1200F CTGGAGCTAATCCCCAAAG 

CT 

89 2 min at 50°C and 10 min 

at 95°C, 15 s at 95°C, 60s 

at 60°C, 40 cycles, 10 min 

at 72°C 

(He et al., 

2003) 

1271R CAACTTCATGCAGGCGGG 

341F CCTACGGGAGGCAGCAG 586 5 min at 94°C, 60 s at 

94°C, 60s at 60.2°C, 10 s at 

72°C, 40 cycles 

(Kjellerup et 

al., 2012) 907R CCGTCAATTCMTTTGAGTTT 

V3V4 

primer 

pair 

TCGTCGGCAGCGTCAGATG 

TGTATAAGAGACAGCCTAC 

GGGNGGCWGCAG 

~550 3 min at 95°C, 30 s at 

95°C, 30s at 55°C, 30 s at 

72°C, 25 cycles, 5 min at 

72°C 

(Klindworth et 

al., 2013) 

GTCTCGTGGGCTCGGAGAT 

GTGTATAAGAGACAGGACT 

ACHVGGGTATCTAATCC 
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3.2.7 Analysis of microbial community  

Microbial communities in surface sediment and bioretention media samples were studied 

using Illumina Mi-seq. For Illumina sequencing, primer sets targeting the 16S V3 and V4 region 

and putative anaerobic OHR within Chloroflexi (348F and 884R) were used to amplify the 

specific region of 16S rRNA genes, respectively (Table 3-2). 

3.2.8 Bioinformatic analysis 

Sequencing data were processed in the open source statistical and graphing software 

RStudio (rstudio.com). Low-quality reads were trimmed using a maximum EE value of 2 and the 

reads were truncated using dada2 and phyloseq R packages (McMurdie and Holmes, 2013), after 

which, the average quality score was above 20 for all samples. The reads were truncated at 

position 290 for forward reads and at position 256 for reverse reads for the sequencing results 

targeting putative OHR. For sequencing results targeting V3–V4 region, the reads were truncated 

at position 250 and 230, respectively. Sequence abundances in each OTU table were normalized 

by rarefaction based on the minimum read count per sample using the vegan R package. 

3.2.9 Data analysis 

For the comparison of two groups of data, F-tests were performed to test the equality of 

two variances and Student t-tests were performed to examine differences among different 

samples. Pearson correlation coefficients were calculated to study the relationship between two 

variables. All tests were performed in Microsoft Excel 2016. 

3.3 Results and discussion 
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3.3.1 Spatial distribution of PCBs in bioretention media 

The total PCB concentrations in the core samples ranged from 38.4 � 2.3 ng/g at the 

surface of the bioretention entrance to 11.6 � 1.2 ng/g at 20-cm deep and 3-m from the entrance 

(Figure 3-2). In order to protect aquatic biota, different degrees to which adverse biological 

effects are likely to occur as a result of exposure to PCBs in sediments were calculated. These 

guidelines can be used for stormwater sediments because they are similar environments with 

freshwater and sediments. PCB concentrations in all the core samples were below the consensus-

based threshold effect concentration (TEC: 59.8 ng/g) and the probable effect levels (PEL: 277 

ng/g). Concentrations below the TEC indicate that adverse effects are not expected to occur on 

sediment-dwelling organisms (MacDonald et al., 2000). However, samples collected at the 0–20 

cm section at the entrance were above the interim sediment quality guidelines (ISQGs) 

concentration (34.1 ng/g) thus adverse biological effects could happen as a result of exposure to 

PCBs in this sample. PCBs in other core samples were below ISQGs. Additionally, PCB 

concentrations higher than 1000 mg/kg may cause toxic effects on bacterial communities 

(Passatore et al., 2014). All the concentrations found in the bioretention media were below this 

level, indicating that the presence of PCBs would not cause toxicity nor reduction of activity in 

bacterial communities in the bioretention cell. 

Total PCB concentrations decreased as the depth increased (p < 0.05). Additionally, the 

farther away from the entrance (horizontally), the lower the measured concentrations were. This 

can be explained by PCBs sorbing onto the bioretention media when they make contact with the 

media, or are being filtered/settled out. The surface media near the entrance of the inlet received 

runoff more frequently compared to farther locations, especially during small storm events (< 

0.25 cm), which produced little runoff. As a result, the surface media near the entrance had a 
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higher potential for adsorption of PCBs in runoff. A similar media profile was found in a study 

on PAHs in this same bioretention facility (DiBlasi et al., 2009). PAH retention mainly took 

place in the surficial soil (0–10 cm) through sorption and particulate capture. Heavy metal 

accumulations in the bioretention cell media show a similar trend (Jones and Davis, 2013). Metal 

accumulation was governed by the distance from the inflow point and was greater toward the 

inflow point. A top-heavy accumulation pattern was found for most metals, like lead, zinc and 

copper (Li and Davis, 2008, Jones and Davis, 2013). 

In all the core samples, the concentrations of penta- through deca-CBs were higher than 

that of mono- through tetra-CBs. In the inlet entrance core sample, the concentration of penta- to 

deca-CBs was 1.5 times that of mono- to tetra-CBs.  The higher concentration of highly 

chlorinated PCBs compared to lowly chlorinated ones indicated that anaerobic organohalide 

respiration was more likely to impact PCB concentrations in the core samples than aerobic 

degradation if favorable conditions would be present, such as anaerobic and reduced media 

environment. Higher concentrations of more chlorinated PCBs were also found in a previous 

study on surface sediment samples (Cao et al., 2019). The finding of higher concentration of 

penta- to deca-CBs than that of mono- to tetra-CBs was in accordance with Gilbreath and McKee 

(2015), where results showed that the hexa- or higher chlorinated congeners were transported in 

larger proportions during storm flows due to higher Kow and as a result stronger associations with 

particles.  
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Figure 3-2. Concentrations of total PCBs, mono-to tetra-CBs, and penta-to deca-CBs in the 

bioretention media core samples at UMD [A: entrance of the inlet; B: 0.3 m from the entrance; 

C: 1 m from the entrance; D: 3 m from the entrance. Error bars represent the standard deviation 

from three samples (for samples from 0–10 cm at the entrance of inlet and 0–10 cm at 30 cm 

from the entrance, standard deviation was calculated from two samples)]. 
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PCBs in all core samples followed a similar homolog distribution pattern, with di-, tetra-, 

penta-, and hexa-CBs as the predominant homolog groups (Figure 3-3). The high abundance of 

di-CBs was attributed to the presence of PCB 11 (3,3'-PCB). PCB 11 was detected in all the core 

samples with the highest concentration for individual congeners. The concentration of PCB 11 

ranged from 0.49 to 5.29 ng/g. The relative abundance of PCB 11 in the core samples ranged 

from 4.2% to 15.0% of the total PCB concentrations. Prior study indicated the yellow roadway 

paints could be an active PCB 11 source (Cao et al., 2019). With vapor pressure higher than 10-4 

mm Hg, PCB 11 can evaporate into the atmosphere (ATSDR, 2000). Thus, it is unlikely that 

PCB11 will persist in the environment at high concentrations.  

Other dominant congeners found in surface stormwater sediments, including PCB 14, 

PCB 180, PCB 193, and PCB 194 (Cao et al., 2019), were also detected in the bioretention media 

at high concentrations. The relative abundance of these congeners ranged from 1.5–5.7%, 1.6–

11.9%, 1.3–4.5%, and 1.9–3.7%, respectively. PCB 180 and PCB 194 accounted for 11.4% and 

2.1% of the total PCBs in A1260 (Frame et al., 1996), respectively, indicating that A1260 could 

be one of the sources of PCBs in stormwater at this location. Additionally, PCB 70, which was 

present in A1242, A1248 and A1254, was also detected in the bioretention media (1.2–3.6%). 

The congener profile in the bioretention media suggested that PCB contamination in stormwater 

runoff came from a mixture of different sources. 



 62 

 

Figure 3-3. Relative abundance of homolog groups in the core samples from the bioretention 

cell. The size of the pies is proportional to the concentration in each sample (11.6–38.4 ng/g).  

 

The number of chlorines per biphenyl in the core samples were similar, ranging from 

4.13 to 4.75 with an average of 4.41 ± 0.24 (Table 3-3).  No trend could be found between 

chlorine numbers and depth or distance from the entrance. This indicated that the mobility of 

PCBs in the bioretention media was not related to the number of chlorines.  

The level of unflanked ortho-chlorinated PCBs, which is an indicator of organohalide 

respiration, ranged from 1.7 ± 0.03% to 2.7 ± 0.34%. The preferred loss of chlorines in the meta 

and para positions result in an increase in the level of unflanked ortho-chlorinated PCBs (EPA, 

2004). As a result, a high level of unflanked ortho-chlorinated PCBs indicates the presence of 

anaerobic organohalide respiration. The level of ortho-chlorinated PCBs found in the core 

samples were significantly higher (p < 0.001) than the values found in accumulated stormwater 
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sediment samples at a dense urban area, where the level was 0.50% (Cao et al., 2019). The 

fraction of unflanked ortho-chlorinated PCBs in Aroclor mixtures ranged from 0.2% to 2.4% 

(ATSDR, 2000). Five of the eleven core samples had a higher level of ortho-chlorinated 

congeners than the maximum value found in Aroclor mixtures (2.4% in A1016). The fraction of 

chlorines at different positions was also calculated and the results showed an increase of chlorine 

at the ortho-position (Figure 3-4). Both of these measures suggest that some amount of 

organohalide respiration took place in the bioretention media. 

 

Table 3-3. Number of chlorines per biphenyl, concentrations of dioxin-like congeners, TEQPCB 

and level (mol%) of ortho-chlorinated PCBs in the bioretention core samples. *Standard 

deviation is from three (a) or two (b) samples. 

 Cl per 
biphenyl 

Dioxin-like 
PCBs (ng/g) 

TEQPCB 
(pg/g) 

Mol% of ortho-
chlorinated 

PCBs 
Entrance 0–10 cm deep 4.65 ± 0.02 b 1.92 ± 0.05 b 6.03 ± 0.73 b 2.23 ± 0.18 b 

Entrance 10–20 cm deep 4.75 1.75 7.12 2.03 

0.3 m from Entrance 0–10 cm deep 4.47 ± 0.10 a 1.49 ± 0.10 a 4.85 ± 0.47 a 2.51 ± 0.20 a 

0.3 m from Entrance 10–20 cm deep 4.13 ± 0.18 a 1.29 ± 0.09 a 5.55 ± 0.36 a 3.19 ± 2.71 a 

0.3 m from Entrance 20–35 cm deep 4.25 ± 0.13 a 1.15 ± 0.27 a 4.87 ± 1.20 a 2.21 ± 0.10 a 

0.3 m from Entrance 25–30 cm deep 4.37 ± 0.23 a 0.90 ± 0.14 a 4.16 ± 1.22 a 2.73 ± 0.34 a 

1 m from Entrance 0–10 cm deep 4.39 ± 0.19 b 1.48 ± 0.08 b 4.90 ± 0.71 b 2.60 ± 0.07 b 

1 m from Entrance 10–18 cm deep 4.48 ± 0.24 a 1.01 ± 0.04 a 4.64 ± 0.22 a 2.17 ± 0.34 a 

3 m from Entrance 0–10 cm deep 4.52 ± 0.10 a 1.79 ± 0.10 a 5.84 ± 0.20 a 2.38 ± 0.56 a 

3 m from Entrance 10–15 cm deep 4.64 ± 0.07 a 1.78 ± 0.19 a 6.57 ± 0.58 a 1.70 ± 0.07 a 

3 m from Entrance 15–20 cm deep 4.30 ± 0.18 a 0.52 ± 0.03 a 2.23 ± 0.54 a 2.28 ± 0.33 a 
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Figure 3-4. Fraction of ortho-, meta-, para-chlorines in PCBs present in core samples from the  

UMD bioretention cell. [A: entrance of the inlet; B: 30 cm from the entrance; C: 1 m from the 

entrance; D: 3 m from the entrance. Error bars represent the standard deviation from three 

samples (for samples from 0–10 cm at the entrance of inlet and 0–10 cm at 30 cm from the 

entrance, standard deviation was calculated from two samples)]. 

 

Dioxin-like PCBs (PCBs 77, 81, 126, 169,105,114, 118, 123, 156, 189) can exert toxic 

responses similar to those caused by 2,3,7,8-tetrachlorobenzodioxin (Van den Berg et al., 1998). 
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Due to their toxicity, the concentration of dioxin-like PCBs is of special concern. Toxic 

equivalency values (TEQs) were calculated to evaluate the toxicity of dioxin-like PCBs in the 

bioretention media. The TEQs ranged from 2.23 ± 0.54 to 6.57 ± 0.58 pg/g TEQPCB (Table 3-3), 

which were in the range of the TEQs found in Northwest Mediterranean sediment (0.03–24.8 pg 

TEQ/g) (Eljarrat et al., 2001). The lowest TEQ was found in the 20–30 cm deep sample at 3 m 

from the entrance. A Pearson correlation coefficient was calculated at -0.47, indicating no linear 

relationship could be found in TEQs regarding the depth and distance of the core samples. All 

the core samples were below the safe sediment value of 20 pg TEQ/g (Eljarrat et al., 2001). This 

finding indicated that the bioretention media samples at different locations of the bioretention 

were safe when only considering the dioxin-like congeners. 

3.3.2 Presence and abundance of bacteria capable of PCB transformation   

Quantitative PCR (Q-PCR) results showed that the gene copy number of total bacteria 

ranged from 3.23 ´ 106 � 1.71´ 105 to 2.92 ´ 109 � 1.78 ´ 108 copies g-1 sediment in the 

bioretention core samples (Figure 3-5). The gene copy number is approximate to the number of 

bacteria because the number of gene copies for each bacterium varies (Větrovský and Baldrian, 

2013). The gene copy number decreased when the soil depth increased, especially for core 

samples at 2 m and 3 m from the inlet entrance. This might be related to the higher abundance of 

nutrients and oxygen level in the top layer. The total carbon content decreased from 4.5% to 

1.5% in the top 30 cm and was stable at 1.5% at deeper layers. A similar trend was observed for 

total nitrogen in a previous study of the bioretention cell (Li and Davis, 2014). More bacteria as 

well as microbial activity found at the surface layer may be due to the higher abundance of 

nutrients like oxygen, nitrogen and phosphorus in the upper layers of the media.  
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Figure 3-5. Quantitative assessment of the abundance of total bacterial 16S rRNA genes in the 

core samples as well as surface sediment samples. Error bars represent standard deviation (n=3). 

 

PCR results showed that bacteria were present in all the sediment samples and 

bioretention core samples (Table 3-4). OHRs and sub-group of OHRs like Dehalococcoides, 

Dehalobacter and Dehalogenimonas were also detected. The functional genes encoding bphA 

and bphC also showed positive results in some of the stormwater sediments and bioretention cell.  
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Table 3-4. Presence of aerobic PCB degrading bacteria, putative OHR, and sub-group of OHR. 

(+ means presence of the target bacteria; - means absence of the target bacteria; blank means not 

analyzed). 

Sites PCB-
degrading 
bacteria 

(bphA gene) 

PCB-
degrading 
bacteria 

(bphC gene) 

Putative 
organohalide 

respiring 
bacteria 

DHG DHB DHC 

BBG1 + + + + - - 

BBG2 + + + + - + 

BTM + +  + - - 

BV1 + (+)  + - - 

BV2 + +  + - + 

BV3 + +  + + + 

CP1 + +  + - �-� 

CP2 + -  + - + 

CP3 + +  + - - 

R1 + + + + - + 

R2 + +  + + + 

Distance/ 
m 

Depth/ 
cm 

 

0 0–10 - + + + + - 

10–20 + + + + - - 

20–25 + + + + + - 

0.3 0–10 + + + + - + 

10–20 - + + + - - 

1 0–10 + + + + - + 

10–20 - (-) + + - + 

20–33 - + + + - - 

2 0–10 - + + + - - 

10–20 - (-) + + - + 

20–28 + + + + + + 

28–33  + + + + + 

3 0–10 + - + + + + 

10–20 + - + + - + 

20–28 - + + + + + 

28–35 - + + + - + 
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Putative OHR within Chloroflexi were present in all the bioretention core samples and 

three of the surface stormwater sediment samples, indicating the potential for organohalide 

respiration in these samples. The high detection frequency in the bioretention media samples 

could be related to anaerobic microsites inside soil particles and/or brief inundation periods 

following each storm event. Saturation could reduce the redox potential in bioretention cells to -

100 mv as it was observed in two raingardens in Haddam, CT (Dietz and Clausen, 2006).  

Anaerobic activities like denitrification were shown to occur during such conditions (Waller et 

al., 2018). Additionally, higher abundance of denitrifying bacteria was observed in the top media 

than deeper layers in SCMs, indicating the presence of anoxic microenvironment in the upper 

layers (Willard et al., 2017, Chen et al., 2019). These findings suggest that a favorable condition 

for organohalide respiration in bioretention cells could be present. Putative OHR were also 

detected in ten of the nineteen soil samples collected in a stormwater drainage ditch in 2012 in 

Mechanicsburg, PA, at 5´103 to 5´106 bacteria g-1 soil (Kjellerup et al., 2012). The presence of 

putative OHR within Chloroflexi in different environments indicated the potential of 

organohalide respiration in stormwater drainage and river sediments. 

For aerobic degradation, PCR using the bphA genes as a target showed positive results in 

all the surface sediment samples and seven of the bioretention core samples (Table 3-4). The 

detection rate of bphC (81%) was lower compared to bphA (100%) for the surface sediment 

samples. However, bphC (75%) was more frequently detected in the core samples than bphA 

(44%). Aerobic PCB degraders were also present in half of the soil samples from the stormwater 

drainage ditch mentioned above (Kjellerup et al., 2012), which means such bacteria are widely 

distributed in natural environments. bphA was also found in the sediment samples from Indiana 

Harbor and Ship Canal (IHSC) and a correlation between bphA gene abundance and PCB 
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concentration was observed (Liang et al., 2014). Therefore, the occurrence of bphA in different 

natural environments could be a microbial response to PCB contamination and indicate the 

presence of potential of in situ hydroxylation on the biphenyl rings. bphC genes were also 

detected in PCB-contaminated soil from a long-term electronic waste recycling area in Taizhou, 

China (Hu et al., 2016). The presence of both bphA and bphC genes suggested that aerobic PCB 

degradation occurred in these samples, which could lead to complete mineralization. 

Eight of 27 samples contained both putative OHR Chloroflexi and bphA/bphC. The co-

occurrence in these samples indicated that bacteria capable of simultaneous aerobic and 

anaerobic PCB transformation were present. For example, during a storm event, the media is 

saturated and an anaerobic environment exists. In this condition, anaerobic organohalide 

respiration could take place and the number of chlorines on the PCB molecules would be 

reduced. When the water is drained and the environment subsequently becomes aerobic, the 

presence of bphA/bphC genes indicated a potential of biphenyl ring deoxygenation and/or ring 

cleavage. The presence of bacteria capable of PCB transformation indicates that a microbial 

response to PCB contamination would be a solution for bioretention cells in the long term, 

including organohalide respiration of highly chlorinated congeners and subsequent aerobic 

degradation of low chlorinated congeners. 

The samples were further tested for OHR at the genus level with selected targets capable 

of organohalide respiration. Dehalobacter, Dehalogenimona and Dehalococcoides have been 

reported to each contain 10–36 reductive dehalogenase (rdh) genes (McMurdie et al., 2009, 

Maphosa et al., 2012, Siddaramappa et al., 2012) and are all capable of organohalide respiration. 

Dehalococcoides spp. are abundantly involved in organohalide respiration (Yoshida et al., 2007) 

and it was reported that they altogether can respire with 64 tetra- to nona-PCBs in A1260 
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(Bedard et al., 2007). Dehalococcoides strains were detected in six of the eleven surface samples 

and ten of the sixteen core samples. Yan et al. (2009) also detected Dehalococcoides in two of 

the eight contaminated groundwater samples from the PetroProcessors of Louisiana, Inc. 

Superfund site. The presence of this genus is crucial in the organohalide respiration of PCBs in 

various environments. 

Dehalobacter strains have been detected in one of five soil samples contaminated with 

the aliphatic organohalide tetrachloroethene (PCE) (Yoshida et al., 2007). Dehalobacter spp. 

could be responsible for PCB dechlorination (Wang and He, 2013) even though Dehalobacter 

had the lowest detection frequency in this study (two surface sediment and six bioretention core 

samples, Table 3-4). Dehalogenimonas were detected in all the collected surface sediment and 

core samples. A high detection frequency was also observed in Yan et al. (2009), where 

Dehalogenimonas strains were detected in all the eight groundwater samples tested in this study. 

Dehalogenimonas can respire using a variety of polychlorinated alkanes (Moe et al., 2009). The 

presence of such genera in different environments is a likely result of microbial response to PCB 

contamination and suggest that organohalide respiration is occurring in stormwater sediments 

and bioretention media. 

The abundance of Dehalogenimonas from different samples showed that higher levels 

were found in surface sediment than the core samples (Figure 3-6). Overall, Dehalogenimonas 

abundance was approximately six orders of magnitude lower than the presence of total bacteria, 

indicating the low abundance of Dehalogenimonas among all the bacteria in the bioretention 

media. Low relative abundance of Dehalogenimonas is commonly found in natural 

environments. In groundwater samples collected at the PetroPerocessors of Louisiana, Inc. 

Superfund site, abundance of Dehalogenimonas represented 0.0014–9.2% of total bacteria (Yan 
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et al., 2009). However, relative abundance of Dehalogenimonas of total bacteria could reach 16–

30% in sediment mesocosms (Qiao et al., 2018). Additionally, the relative abundance of 

Dehalogenimonas was not related to PCB concentration in the cores (Pearson correlation: -0.16). 

These results indicate that Dehalogenimonas were not the major bacteria performing 

organohalide respiration in either surface sediments or bioretention media or the PCB 

concentrations were higher than what Dehalogenimonas need for metabolism. The presence of 

all these genes indicate a potential of both organohalide respiration and aerobic degradation on 

PCBs in stormwater sediments as well as bioretention cells. 

 

 

Figure 3-6. Abundance of Dehalogenimonas in the bioretention core and surface sediment 

samples. All data points are averaged triplicate tests. Error bars represent standard deviation 

from three samples. 
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3.3.3 Microbial communities in surface and sediment samples 

A total of 6448 bacterial operational taxonomic units (OTUs) and 526 bacterial OTUs 

within Chloroflexi were distributed across all the samples. A way to estimate the number of 

species based on sampling effort is rarefaction analysis (Dodds and Whiles, 2020). The plateaus 

in all the rarefaction curves indicate that the majority of the resident phylotypes were collected in 

these samples (Figure 3-7).  

 

 

Figure 3-7. Rarefaction curves for sediment samples from different sites. 

 

Among the 40 phylogenetic groups, the most dominant bacterial phyla were 

Actinobacteria (20.2–34.6%), Proteobacteria (13.6–47.9%), Chloroflexi (0.3–18.4%), 

Cyanobacteria (0.3–38.3%) and Acidobacteria (1.2–15.6%) (Figure 3-8). The predominance of 

Chloroflexi and Proteobacteria was observed in the acclimated raw sludge during the anaerobic 



 73 

degradation of 2,4,6-trichlorophenol (Song et al., 2019). Some bacteria belonging to Chloroflexi 

are known to be obligate OHR (Dam et al., 2019).  

Looking at the relative abundance of OTUs based on primers for putative OHRs at class 

level in the bioretention cores and surface sediment samples, Chloroflexia (0–63.9%) and 

Ktedonobacteria (0–70.5%) were the most dominant classes (Figure 3-9). The class 

Dehalococcoidia, to which several genera capable of organohalide respiration belong, was 

detected in three of the six core samples and three of the eight surface sediment samples. The 

relative abundance of Dehalococcoidia ranged from 3.78–27.9% in these samples. The presence 

of Dehalococcoidia further demonstrated the potential of organohalide respiration in these 

samples. 
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Figure 3-8. Relative abundance of bacterial OTUs at the phylum level in core samples and 

surface samples. 
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Figure 3-9. Relative abundance of bacterial OTUs at class level of a monophyletic group within 

Chloroflexi at different sites. 
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Dehalococcoides, Dehalogenimonas and Dehalobacter were lower compared to PCR results, 

suggesting the low abundance of these anaerobic bacteria. The presence of different OHRs are 

prerequisite for organohalide respiration and more evidence on the activity of such OHRs are 

needed. 

In addition to the anaerobic OHR, bacteria potentially capable of aerobic degradation of 

PCBs were also explored. Rhodococcus was present in all the samples with a relative abundance 

ranging from 0.19% to 1.36% of total OTUs (Figure 3-10). Rhodococcus is an important genus 

because some strains were reported to degrade 45 PCB congeners from PCB mixture with mono- 

to octa-CBs (Seto et al., 1995). The presence of Rhodococcus in the samples suggested a 

potential for PCB degradation via aerobic pathways.  

Sequencing data indicated that Chloroflexi was an important component of the microbial 

communities in both surface sediment samples and bioretention core samples. Within the phylum 

Chloroflexi, bacteria capable of organohalide respiration such as Dehalogenimonas, 

Dehalococcoides, and Dehalobium exist. Bacteria capable of PCB degradation under aerobic 

conditions such as Rhodococcus were also detected in the stormwater sediments and bioretention 

cores. The presence of such microorganisms capable of PCB transformation is a prerequisite for 

PCB transformation. However, it is still not clear if the microorganisms are actually 

biotransforming PCBs. Examination RNA communities to test the activity of these 

microorganisms is still needed. 
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Figure 3-10. Relative abundance of bacterial OTUs belong to Rhodococcus genus. 
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more direct evidence than DNA when studying the activities in the microbial community (Gill et 

al., 2017). Based on the transcriptomic results, the presence of putative OHR and bphA/bphC 

genes showed that these bacteria were active at different locations in the bioretention cell at the 

time of sample collection. Thus, organohalide respiration and aerobic degradation were taking 

place at different locations in the bioretention.  

 

Table 3-5. Transcripts confirmed from PCB transforming bacteria. 

Sites PCB-degrading 
bacteria  

(bphA gene) 

PCB-degrading 
bacteria  

(bphC gene) 

Putative anaerobic 
dechlorinating 

bacteria 

Dehalogenimonas 

UMD - - + + 

En0–10 - - + + 

0.3En0–10 - + + + 

1En0–10 + + + + 

3En0–10 - + + + 

 

3.3.5 Potential of in situ biotransformation 

Although the presence and activity of organohalide respiration and aerobic PCB 

degradation were found in the stormwater sediments, the feasibility of in situ biotransformation 

is still unknown. The study on the in situ biotransformation of PCBs was scarce. Loss of about 

25% of the PCB mass was observed after 360 days in the nonbioaugmented treatment with PCB 

impacted sediment from Baltimore Harbor (Payne et al., 2013). The loss could be attributed to 

biostimulation of native microorganism by medium and/or abiotic factors such as volatilization. 

This indicated that with presence and activity of microorganisms capable of PCB transformation, 

PCB mass loss is expected in the long term. An 80% decrease by mass of PCBs was observed in 
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the mesocosm bioaugmented with both anaerobic Dehalobium chlorocoercia DF1 and aerobic 

Burkholderia xenovorans LB 400 (Payne et al., 2013). In this study, microorganisms capable of 

PCB transformation under both aerobic and anaerobic conditions were found in stormwater 

sediments and bioretention cells. The co-existence of both microorganisms could be an effective 

strategy to reduce PCB levels.  

Organohalide respiring rate of PCBs is positively related to cell density of the OHR 

before it reaches the limiting point (Needham et al., 2019). However, the primary rate-limiting 

factor for PCB transformation in the environment is the low native abundance of microorganisms 

capable of PCB transformation in sediments (Needham et al., 2019). Thus, an in situ treatment of 

bioaugmentation is needed to enhance PCB transformation in natural environments such as 

bioretention cells (Payne et al., 2011).  

3.3.6 Bioretention design and maintenance recommendations 

The decreasing trend in PCB concentration found in the bioretention core suggests that 

bioretention is efficient in retaining PCBs from stormwater. Higher PCB concentrations found in 

the surface layers indicates that a shallow cell design might be enough for PCB removal. In 

addition, in order to enhance performance and reduce costs, only the top layer of the existing 

bioretention media needs to be replaced. Brown and Hunt (2012) repaired two sets of 

bioretention cells by excavating the top 75 mm of media and both surface storage volume and 

infiltration rate were increased significantly. PCB concentration in the bioretention media as well 

as effluent samples should be inspected at least once a year to decide whether maintenance is 

needed for the bioretention. The vertical profile of PCBs in the media core could also suggest the 

depth of media needs to be excavated. 
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3.4 Conclusions 

PCBs were detected in the bioretention media core samples. Total PCB concentrations 

tended to decrease with increasing depth. Lower concentrations of total PCBs were found in 

media more distant along the flow path, indicating that PCBs were retained in the bioretention 

media when entering the bioretention cell. Bioretention is efficient in retaining PCBs from 

stormwater and a shallow cell design might be enough for PCB removal. Besides, when 

maintaining the existing bioretention, only the top layer of bioretention media needs to be 

replaced. The higher level of ortho-chlorinated biphenyls found in some of the bioretention core 

samples compared to Aroclors indicated the presence of organohalide respiration. 

Bacteria capable of PCB transformation via both aerobic and anaerobic pathways were 

detected in the DNA extracted from the surface sediment samples as well as core samples. Core 

samples had a higher detection rate of putative OHR than the surface sediment samples. This 

might be due to the potential anaerobic conditions in the bioretention cell when it was saturated. 

In some samples, both the putative OHR and functional genes encoding enzymes for biphenyl 

degradation were found, which indicated the co-occurrence of simultaneous aerobic and 

anaerobic PCB respiration. Anaerobic respiration usually takes longer time because of the lower 

activity of anaerobic bacteria. The lag phase for organohalide respiration ranged from less than 

10 days to 200 days (Adrian et al., 2009, Kjellerup et al., 2012). The benefit of using bioretention 

to treat PCBs in stormwater is that the bioretention media allows the cell to hold as much water 

as possible, including occasional ponding of water (Davis et al., 2009). This saturation can create 

anaerobic conditions and longer retention for anaerobic respiration to take place. During the 

process, some more-chlorinated PCBs become less-chlorinated PCBs (Cl ≤ 4) and they are ready 

to be degraded when the media becomes aerobic. The higher level of unflanked ortho-
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chlorinated congeners found in some bioretention media samples as well as vertical profile of 

different chlorines showed evidences of organohalide respiration.  

Similar to natural soil samples, Acidobacteria, Proteobacteria, and Chloroflexi were the 

most abundant phyla in the stormwater sediment and bioretention media. Within Chloroflexi, 

genera capable of organohalide respiration like Dehalococcoides, Dehalogenimonas and 

Dehalobium were detected. The genus of Rhodococcus, which is capable of PCB degradation, 

was also detected in all the tested samples. RNA based PCR results also showed positive signal 

for putative OHRs and PCB degraders. For PCB degraders, the detection frequency from RNA 

based results was lower than DNA based results. This indicates that OHRs and PCB degraders 

are active in the media. DNA results show information about total bacterial gene while RNA 

results represent expressed genes. RNA is probably more indicative when information about 

bacterial activity is needed. Both the DNA and RNA based results indicate potential of PCB 

biotransformation in stormwater sediments and bioretention cell. However, due to the low 

abundance of bacteria capable of PCB transformation, the organohalide respiring rate and 

degradation rate could be very low in these environments. Thus, in situ bioaugmentation is 

needed to enhance the treatment of PCB impacted bioretention media.  
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Chapter 4. PCBs in dissolved and particulate phase of urban stormwater 

before and after bioretention treatment 

Abstract 

Despite their ban more than four decades ago, PCBs are still present in the environment 

and urban stormwater runoff is considered an important source of PCBs to aquatic environments. 

In this study, the presence of PCBs in the dissolved phase and associated with particles, 

respectively, in stormwater influent and effluent samples from a bioretention cell was studied. 

The stormwater quality varied between events depending on various factors like dry period, 

season and amount of rainfall. In the influent samples, total PCB concentrations ranged from 67 

± 17 to 755 ± 23 ng/L and the concentration decreased by 64–92% after bioretention treatment to 

18.0 ± 4.8–57.8 ± 9.1 ng/L. The particulate phase in stormwater influent contained PCB 

concentrations at an average of 321 ng/g. A non-Aroclor PCB congener, 3, 3¢-dichlorobiphenyl 

(PCB 11), was detected in all the stormwater influent samples. Particle-bound PCBs contributed 

to 2.6–17.1% of PCB mass from both the aqueous phase and solid phase. This indicates that 

PCBs in liquid phase are also important and cannot be overlooked. The results of this study 

showed that bioretention cells can be efficient in removing total suspended solids and PCBs from 

stormwater runoff. The estimated PCB load reduction ranged from 91.5% to 98.4% via 

bioretention treatment. This study indicates that bioretention cells are important infrastructures in 

order to meet PCB total maximum daily loads in different watersheds by removing PCBs from 

stormwater. 
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4.1 Introduction 

Polychlorinated biphenyls (PCBs) are a group of chlorinated organic compounds widely 

produced in the U.S. during 1920s and 1970s. PCBs are toxic and can cause cancer and adverse 

skin and liver effects in humans (ATSDR, 2000). In 1979, the U.S. Environmental Protection 

Agency (EPA) issued final regulations banning the manufacture of PCBs and “non-closed” (open 

to the environment) uses of PCBs were prohibited (EPA, 1979). Aroclor is the trade name for 

commercial PCB mixtures that were manufactured in the U.S and in total 16 commercial 

Aroclors were manufactured with different physico-chemical properties (EPA, 2003).  

PCB burdens in water bodies can be problematic to human and aquatic life. In the U.S. 

total maximum daily loads (TMDLs) are of specific importance in implementing state water 

quality standards. A TMDL establishes the maximum amount of an impairing substance or 

stressor that a waterbody can assimilate and still meet Water Quality Standards (WQS), and 

allocates that load among pollution contributors (MDE). PCB TMDLs have been approved in 

some watersheds in Maryland (MDE, 2020). Urban runoff or stormwater drains are important 

sources of pollutants, including PCBs, to impaired rivers, streams, lakes, reservoirs and ponds, 

accounting for 13%–19% of impaired waters (EPA, 2012).  PCBs exist in urban stormwater as 

dissolved and affiliated with particulate phases (Granier et al., 1990, Hwang and Foster, 2008, 

Zgheib et al., 2011b, Cao et al., 2019). To address PCB contamination of stormwater, it is 

important to understand and minimize urban sources of PCBs and treat PCBs that are present in 

urban stormwater.  

Bioretention, also called rain gardens, is a low impact development (LID) technology for 

treatment of stormwater (Davis, 2007). Bioretention cells often consist of a layer of hardwood 
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mulch and porous soil-based media with vegetation on top (Li and Davis, 2008, Li and Davis, 

2014). Runoff from impervious areas flow into the bioretention cells and filter through the 

media. During the treatment process, hydrophobic pollutants like PCBs are retained in the 

bioretention media. PCBs are removed via particulate matter removal processes such as 

sedimentation and filtration in stormwater due to the high affinity of PCBs for adsorption to 

particulate matter (log Kow: 4.50–8.26) (Hermanson and Johnson, 2007). Bioretention systems in 

Daly City, California were effective in reducing PCB concentrations by 44% (from 730 pg/L to 

410 pg/L) (David et al., 2015). Additionally, removal of polycyclic aromatic hydrocarbons 

(PAHs) from stormwater has been documented with reduction rates ranging from 31% to 99% 

(DiBlasi et al., 2009). Due to similarities between the chemical characteristics of some PCBs and 

PAHs, PCBs with Kow values in the same range as PAHs are also expected to be retained in the 

bioretention media.  

In addition to infiltration and retention, biotransformation reactions can occur in 

bioretention cells (Davis et al., 2009). In an urban bioswale in New York, U.S., potential of 

aerobic biodegradation of PCBs was observed (Grill et al., 2017). Here, bphA genes, which 

catalyze the incorporation of two hydroxyl groups into the biphenyl ring, were detected in 

extracted DNA, and additionally expression of these genes was detected indicating active PCB 

biodegradation (Gill et al., 2017). Evidence of biotransformation of PAHs in bioretention was 

reported in both laboratory studies and field studies. In a column study mimicking a bioretention 

cell, naphthalene removal efficiency reached 78–93%, with adsorption, mineralization and plant 

uptake as the major removal pathways (LeFevre et al., 2012). Microbial communities present in 

soil samples collected from six raingardens in Minneapolis, MN mineralized naphthalene at an 

initial concentration of 10 mg/L (LeFevre et al., 2012).  
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In this study, the performance of an established bioretention system was evaluated with 

emphasis on PCB removal processes. The objectives of this study were 1) to determine PCB 

concentrations and congener distributions in the influent and effluent samples in a bioretention 

facility; 2) to characterize the partitioning of PCBs between dissolved and particulate phases in 

urban stormwater; 3) to estimate the annual PCB load reduction via adsorption and total 

suspended solids removal during bioretention treatment. 

4.2 Materials and methods 

4.2.1 Site description  

The evaluated bioretention cell was located on the University of Maryland Campus in 

College Park, MD (38°59'36.8"N 76°56'20.4"W). It had an area of 181 m2 (length = 50.3 m, 

width = 2.4–4.8 m) serving a drainage area of approximately 2800 m2, including asphalt parking 

lots, roads, and concrete sidewalks (DiBlasi et al., 2009). It had an underdrain system and was 

constructed in 2004. The bioretention was fully covered by mixed vegetation year-round. This 

bioretention cell has been part of several water quality research studies (e.g., Li et al., 2009, Li 

and Davis, 2014, Liu and Davis, 2014). 

4.2.2 Stormwater sample collection and hydrologic monitoring  

Stormwater was collected via grab samples and automated composite samples (ISCO 

6712FR, U.S.). Grab samples were collected from influent and the outlet of the bioretention cell 

during rain events (07/23/2019–12/13/2019). After installation of the autosampler (January 

2020) volume-weighted composite samples were collected. A cutthroat flume (91 cm ´ 20 cm, 

Tracom, U.S.) was used to measure the influent flow rate and for stormwater sampling. The 

underdrain was equipped with a 20-cm plug-in weir (Thel-Mar Company, U.S.) to measure the 
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effluent flow rate. A bubble flow meter (ISCO 730, U.S.) was installed at the flume and weir to 

measure the depth of the flow. Rainfall was recorded using a factory-calibrated tipping bucket 

rain gauge (ISCO 674, U.S.) connected with the influent autosampler. 

Twelve storms were collected (seven with autosamplers, five grab samples) and analyzed 

for pH, conductivity, TSS, particle size distribution (PSD), total organic carbon (TOC), dissolved 

organic carbon (DOC) and PCBs. The samples were stored on ice in glass jars with aluminum-

lined caps. After each rain event, the stormwater samples were stored in a cooler and transported 

to the laboratory within 24 h of collection. Stormwater pH and TSS were measured within 24 h 

after sample collection. For TSS, 1 µm glass microfiber filter paper (GF/B, Whatman) was used. 

For some events (Events I & III, see below), 0.7 µm glass microfiber filter paper (GF/F, 

Whatman) was used. The procedure for TSS measurement followed Standard Method 2540D 

(American Public Health Association et al., 1915). The limit of quantification (LOQ) for TSS 

was 0.1 mg/L. PSD was measured using a SALD-2300 particle size analyzer (Shimadzu, Japan). 

The detection limit of the PSD measurement was 0.1 ppm. TOC and DOC were analyzed using a 

TOC analyzer (TOC-L, Shimadzu, Japan). The calibration curve was made with glycine with a 

range of 1–100 mg/L. The method quantification limit for TOC and DOC was 1 mg/L. 

Conductivity was measured using a conductivity meter (B40PCID, symPHony, VWR, U.S.). 

Separation of the dissolved and the particulate phases for PCB analysis was performed by 

filtering samples through a 0.7 µm (the smallest pore size available) glass microfiber filter 

(GF/F, Whatman). PCBs in the filtered water were operationally designated as dissolved phase; 

the particles collected on the filters represented the particulate phase. 

4.2.3 Extraction of PCBs 
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4.2.3.1 Quantification of dissolved PCBs 

PCBs in the dissolved phase were concentrated using solid phase extraction (SPE), 

according to Liu et al. (2002) with modifications. Prior to concentration, 10 µL of a mixed 

solution of surrogates [0.5 µg mL-1 2,4,6-trichlorobiphenyl (PCB 30) and 2,2¢,3,4,4¢,5,6,6¢-

octachlorobiphenyl (PCB 204)] was added into each sample and sonicated for two hours to mix 

thoroughly. Biotage DVB (ISOLUTE 101, 500 mg/6 mL) SPE cartridges were conditioned with 

6 mL of methanol followed by 6 mL of deionized (DI) water, all at a flow rate of ~150 µL/s. One 

to two L of stormwater samples spiked with surrogate standards were percolated through the 

cartridges via Cole-Parmer PTFE tubing. Afterward, the cartridges were dried under vacuum for 

at least three hours. 12 mL of hexane (HPLC grade) was used to elute the PCBs from the 

cartridges. The elutes were collected and concentrated under nitrogen flow to less than 1 mL. 

Finally, the concentrated elutes were spiked with 10 µL of the mixed solution of internal 

standards [0.5 µg mL-1 tetrachloro-m-xylene (TCMX) and 2,2¢,4 ,5,5¢-pentabromobiphenyl 

(penta-BB)]. Hexane (HPLC grade) was added to the concentrated effluent to reach a final 

volume of 1.0 mL and the samples were vortexed for 10 s before being transferred into GC vials 

for further analysis. Controlled experiments showed that the recoveries ranged from 56.8% to 

120% for 17 selected di-to nona-CBs. 

4.2.3.2 Quantification of particle bound PCBs 

PCBs adsorbed to particulate matter were extracted using a microwave assisted extraction 

(MAE) (MARS 6, CEM, U.S.). Briefly, filters containing particle-bound PCBs were cut into 

pieces (5-mm rectangles) and transferred into PTFE extraction vessels (100 mL, CEM, U.S.). 

Clean filter paper was also cut into pieces and used as laboratory blank controls. The PCBs were 
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extracted using 20 mL hexane (95% n-hexane for organic residue analysis)-acetone (HPLC 

grade, Honeywell) (1:1) and cleaned up according to Cao et al. (2019) using alumina. 

4.2.4 PCB analysis 

Samples were analyzed by gas chromatography/electron capture detector (GC-ECD) 

(7890B, Agilent Technologies, U.S.) equipped with an Agilent J&W HP-5ms column (60 m × 

250 μm × 0.25 μm). The injection volume was 1 µL with helium as the carrier gas. The 

temperature program was: initial temperature at 70 °C, 7 °C/min to 180 °C, 1°C/min to 225 °C, 

5.8 °C/min to 285 °C, held at 285 °C for 20 min, 11.5 °C/min to 300 °C and held at 300 °C for 

10 min. 

4.2.5 Quality control 

All laboratory materials were made of glass or PTFE to avoid sample contamination and 

adsorption of PCBs. All glassware was cleaned by detergent, solvents and DI water and baked in 

a muffle furnace at 550°C for at least four h. All the PTFE containers were cleaned with 

detergent, ultrasonicated three times with hexane and acetone, and rinsed with deionized water. 

To avoid traces of organic contamination from the filters, the filters were baked at 550°C for 4 h. 

For each sample, an extra treatment group (triplicate) was prepared as a standard control to 

confirm the standards were not present in the original samples. 

The applied GC-ECD method could identify 209 PCB congeners in 131 peaks. The 

detection limits for PCB congeners ranged from 0.005 to 2 ng/L for dissolved PCBs, and 0.02 to 

8 ng/g for particulate bound PCBs. The method detection limits were obtained by dividing the 

instrument detection limits by sample volumes or masses. In the liquid samples, 4–41 peaks were 

detected, whereas 21–43 peaks were found in particle samples. For liquid samples, all values 
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below the detection limits were substituted with half of the detection limits. Due to the low 

amounts of particles in the samples, all values below detection limits in solid samples were 

substituted with zero. Concentrations of the targets were corrected based on concentrations in 

laboratory blanks according to Cao et al. (2019). Average surrogate recoveries were 79% for 

PCB 30 (range: 51–113%) and 100% for PCB 204 (range: 52–119%). All were within the 

acceptable range of 50–125% (Hermanson and Johnson, 2007). The reported concentrations 

were adjusted based on the recoveries. 

4.2.8 Data analysis. 

F-test was used to test the equality of two variances and two tailed two-sample t-test was 

used to compare the means between events as well as between influent and effluent samples. 

Statistical analysis was performed using Microsoft Excel 2019. 

Data of annual mass load per unit drainage area (L in g/ha-yr) from dissolved phase PCBs 

was calculated as: 

L = (PCFRVC)/105 

Where P is the average annual precipitation [1067 mm/yr for the State of Maryland 

(DiBlasi et al., 2009)]; CF is the correction factor for events that do not produce runoff (0.9); RV 

is the runoff coefficient for the drainage area (0.9); the values of CF and RV were chosen 

according to DiBlasi et al., 2009; C is the influent dissolved PCB concentration in ng/L  

Particulate PCB load was calculated by multiplying PCB concentrations in the particulate 

phase with TSS annual loads found in previous studies (Houng and Davis, 2009). Load reduction 

was calculated by subtracting the estimated annual PCB load out from annual PCB load in. 
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4.3 Results and discussion 

4.3.1 Hydrologic monitoring  

In this study, the hydrology data for seven precipitation events were recorded, where four 

resulted in bioretention underdrain outflow. The precipitation ranged from 4.3 to 28.7 mm per 

event with five events below 10 mm (Table 4-1). The shortest storm was Event VIII (2.33 h), 

while the longest precipitation event was 9.07 h (Event VII). Due to the low precipitation 

amounts (< 3 cm), the flow rate could not be calculated for the influent samples for all the 

events. 

 

Table 4-1. Precipitation characterization for the seven monitored events. 

Event 
No. Date Precipitation depth 

(mm) 
Precipitation Duration 

(h) With outflow 

VI Jan 4, 2020 4.3 2.87 X 

VII Jan 24, 2020 28.7 9.07 X 

VIII Feb 27, 2020 5.1 2.33 X 

IX Mar 13, 2020 5.1 2.40  

X Mar 15, 2020 4.6 8.93  

XI Mar 19, 2020 13.7 5.80 X 

XII Mar 23, 2020 8.9 3.67 X 

*Events I–V were not monitored for hydrology because the autosampler was not setup. 

4.3.2 Properties of stormwater influent and effluent 

For the collected stormwater samples, conductivity had a wide range for both the 

influents (79.0–334 µS/cm) and the effluents (82.4–569 µS/cm). This was in the conductivity 

range measured in 20 stormwater samples from Paris and its suburbs, which varied between 166 
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and 1316 µS/cm with 350 µS/cm as the median (Zgheib et al., 2012). Increased ionic strength 

was reported to decrease natural organic matter adsorption (Bjelopavlic et al., 1999). Thus, 

higher conductivity could have negative impact on the sorption of PCBs onto particulate matter.  

The pH values of the influent samples ranged from 7.66 to 8.44, indicating mild alkaline 

characteristics in these samples. This could be due to alkaline compounds washed off from the 

drainage area such as particles from cementitious pavement materials that can increase the pH of 

runoff (Kuang and Sansalone, 2011). The effluent pH varied from 6.70 to 7.85. For all events, 

the effluent samples had lower pH values than influent samples. This was also observed in a pilot 

scale bioretention box in Norway, with influent pH ranging 8.1–8.2, while the effluent pH ranged 

from 7.1–7.3 (Muthanna et al., 2007). The pH of the bioretention media will contribute to the 

decreased pH in the effluent. A batch experiment found that the adsorption of PCBs onto soil 

was affected by pH and the maximum adsorption occurred between pH 6.5 and 7.5 (Adeyinka 

and Moodley, 2019). Pardue et al. (1988) also found that mineralization rates of PCBs were 

highest at pH 6.5 and decreased at pH 5.5 and 8.0. Thus, since pH values were lower in the 

effluents than influents, the bioretention treatment could enhance the adsorption and 

mineralization of PCBs. 
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Table 4-2. Stormwater quality parameters of the influent and effluent samples. a The TSS 

concentration was calculated based on particles larger than 0.7 µm. b The TSS concentration was 

calculated based on particles larger than 0.22 µm. c Below quantification limit. d Below detection 

limit. e Data not available. 

 

Event 
No. 

 pH TSS 
(mg/L) 

Particle Size 
(µm) 

d10, d50, d80 

Conductivity 
(µS/cm)  

TOC 
(mg/L) 

 DOC 
(mg/L) 

I In 7.82 66.3 ± 5.5a 19.4, 65.7, 123 79.0 8.25 ± 0.21 7.77 ± 0.11 

Out 6.70 4.6 ± 0.5a < LODd 82.4 8.60 ± 0.35 8.48 ± 0.03 

II In 7.72 42.2b 136, 425, 1391 NAe NA NA 

Out 6.77 20.2b < LOD NA NA NA 

III In 7.66 184 ± 45.8a   < LOD 334.0 64.0 ± 5.17 34.0 ± 0.52 

IV In 7.79 48.3 ± 1.8 129, 840, 1339 94.5 13.4 ± 0.12 7.92 ± 0.21 

Out 6.94 < LOQc < LOD 88.5 28.0 ± 0.31 12.7 ± 0.28 

V In 8.44 110 ± 19.3 178, 893, 1412 181 25.9 ± 0.71 6.97 ± 0.16 

Out 6.85 < LOQ < LOD 240 10.9 ± 0.34 10.7 ± 0.32 

VI In 7.79 6.7 < LOD 122 18.2 ± 0.86 25.2 ± 0.50 

VII In 8.22 37.6 < LOD 182 8.76 ± 0.17 6.06 ± 0.02 

Out 7.06 4.4 < LOD 569 16.1 ± 0.08 15.0 ± 0.22 

VIII In 8.28 28.0 ± 1.37 < LOD 95.5 12.77 ± 0.23 5.76 ± 0.06 

Out 7.85 0.987 < LOD 245 NA NA 

IX In 8.01 35.1 ± 2.1 < LOD 122 14.7 ± 0.28 12.8 ± 0.04 

X In 8.11 11.0 ± 3.8 < LOD 93.5 9.48 ± 0.13 8.21 ± 0.10 

XI In 7.92 22.3 ± 0.8 < LOD 157 15.7 ± 0.53 10.6 ± 0.12 

Out 6.94 0.411 < LOD 170 NA 14.6 ± 0.11 

XII In 7.94 14.3 ± 0.8 < LOD 98.8 7.46 ± 0.14 7.40 ± 0.12 

Out 6.97 < LOQ < LOD 175 14.0 ± 0.07 13.8 ± 0.03 



 93 

For samples from Event I and III, suspended solids were filtered through 0.7 µm filters to 

obtain a sufficient amount to analyze. A step filtration approach showed that suspended solids 

ranging from 0.7 to 1.0 µm accounted for < 3.5% of suspended solids > 0.7 µm. Thus, the 

concentrations of suspended solids > 0.7 µm is mostly representative of TSS. Compared to 

influent samples, TSS concentrations in effluent samples had lower variability with a range < 0.1 

(limit of quantification) to 4.6 mg/L. These results showed that bioretention is effective in 

removing TSS from stormwater runoff, which has been found by many others. Earlier study on 

this bioretention cell found discharge TSS concentrations of < 1 to 37 mg/L (Houng and Davis, 

2009) demonstrating consistency and continued excellent performance for more than 15 years 

operation.  

Particle sizes can impact the affiliation of pollutants, including PCBs, with particulate 

matter in stormwater (Ghosh et al., 2003, Cao et al., 2019). PSD was measured for all the 

samples but for all effluent and 8 of 12 influent samples, PSD could not be determined (below 

detection limit) due to the low particulate matter content. The particles in Event I influent had a 

range of 5–400 µm (Figure 4-1), with a median particle size (d50) of 65.7 µm. The PSD from 

Event I differed significantly from that of Event II (p =0.01). The stormwater influent samples 

collected during Event II had a wider range (36–2346 µm) than those collected during Event I. In 

addition, the d50 in the influent sample of Event II was 425 µm, higher than the influent d50 from 

Event I (65.7 µm). Selbig and Bannerman (2011) studied d50 in runoff from urban source areas in 

Madison, WI, using wet sieve (> 32 µm) and particle analyzer (< 32 µm). They found d50 ranged 

from 42 to 200 µm. Only d50 from Event I fell in this range. Sansalone et al. (1998) found that 

the particles in urban stormwater from paved surfaces ranged from < 1 µm to > 10 mm, with d50 
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at 570 µm. This variation indicated the variability between each rainfall events and differences in 

analytical techniques.  

 

 

Figure 4-1. Particle size distribution (diameter of cumulative%) of the influent sample at the on-

campus bioretention system collected from Event I (A) and Event II (B). 

 

A 

B 
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TOC in both influent and effluent samples were measured for all the collected samples, 

ranging from 8.25 ± 0.21 and 64.0 ± 5.71 mg/L (Table 4-2). The highest TOC concentration was 

found in the influent samples from Event III, which also had the highest TSS concentration. In 

influent stormwater, TOC increased with increasing TSS in the sample (Pearson correlation: 0.88 

– data not shown). Except for Event VI, all influent samples had a significantly lower TOC 

concentration after filtration through 1 µm (p < 0.05). TOC in influent samples decreased by 

13.1–73.1% after filtration, indicating that this portion of TOC was made up by organic carbon 

from suspended solids. This relationship was also noted for effluent samples. For Events I and V, 

low TSS content was present in the effluent samples and the TOC decrease in filtered effluent 

samples was not significant.  

As a group of compounds with high hydrophobicity and octanol-water partitioning 

coefficient (log Kow: 4.50–8.26), PCB sorption by soils and sediments is dominated by physico-

chemical entrapment or covalent bonds with organic matter in the matrix (Yu et al., 2006, 

Kästner et al., 2014). The affiliation of particulate PCBs with TOC in stormwater sediments was 

also observed in our previous study (Cao et al., 2019). Thus, TOC in stormwater is expected to 

be positively related to the concentrations of PCBs, both in the liquid phase and particulate 

phase. TOC in different phases could also impact the partitioning of PCBs in the two phases. 

4.3.3 Dissolved PCBs in stormwater samples 

Dissolved PCBs were measured from sample collected in the bioretention discharge 

manhole on July 23, 2019 after the rain event (Figure 4-2). This sample was a mix of previous 

discharge, direct rainfall and effluent from the bioretention. The water sample from the discharge 

manhole contained a total PCB concentration of 159 ± 14.7 ng/L. The dissolved concentration of 

mono- to tetra- CBs (103 ± 9.80 ng/L) were higher than penta- to deca- CBs (56.4 ± 10.9 ng/L). 
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This is contrary to stormwater sediment samples (Cao et al., 2019) and could be explained by the 

fact that PCBs are hydrophobic and their solubility in water decreases with increased number of 

chlorines (ATSDR, 2000). The highly chlorinated congeners were likely sorbed onto the 

bioretention media when passing the bioretention cell, leaving a higher concentration of low-

chlorinated PCBs in the discharge. Among all the homologs, di-, tetra- and penta-CBs 

dominated. The average number of chlorines was 3.35 ± 0.23. The high abundance of di-CBs 

(36.5%) contributed a great portion to this. A non-Aroclor congener, PCB 11 (3, 3¢-

dichlorobiphenyl), was detected as one of the most abundant congeners (24.5 ± 3.29 ng/L), 

accounting for around 15.4% of total PCBs.  

 

Figure 4-2. Concentrations of total dissolved PCBs, homologs, mono- to tetra-CBs, and penta- to 

deca-CBs in the bioretention discharge manhole after a rain event on July 23, 2019. 
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Table 4-3. Concentrations of dissolved PCBs (ng/L), particulate PCBs (ng/g) and number of Cl 

per biphenyl in stormwater samples (Blank cell means data not available).  

 

 

Influent 

Concentrations of total dissolved PCBs from Events I, II, X, and XI varied significantly 

between the events, also indicating the variability of stormwater (Table 4-3). The highest total 

PCB concentration was measured in the influent sample from Event I (755 ± 23 ng/L). Total 

dissolved PCB concentrations in the influent samples from the other three events were lower, 

ranging from 67.5 � 17.2 to 164 � 8 ng/L. The lowest total PCB concentration was detected in 

the influent sample from Event X. Possible reasons for the variation in total PCB concentrations 

could be the difference in antecedent dry period length. Longer dry period provides more time 

for drainage areas to receive and accumulate PCBs before they were washed off. Event I 

experienced a dry period of 52 prior days, while that for the other events were fewer than four 

Event 
No. 

 Dissolved 
PCBs (ng/L) 

Particulate 
PCBs (ng/g) 

Cl per 
biphenyl 

(dissolved) 

Cl per 
biphenyl 

(particulate) 

I In 755 ± 23  3.37 ± 0.07  

Out 57.8 ± 9.1  2.53 ± 0.03  

II In 164 ± 8  2.86 ± 0.08    

Out 18.0 ± 4.8  3.34 ± 0.12  

III In 
 

169 ± 16    
 

3.80 ± 0.05 

III In 67.5 ± 17.2 156.8   3.05 ± 0.23 3.75 

XI In 83.2 ± 10.6 638 2.90 ± 0.10  2.63 

Out 29.4 ± 5.2 92.5 3.00 ± 0.13  3.96 
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days. Other reasons like DOC, TSS and PSD could also impact the concentration of PCBs in 

dissolved phase. 

Hwang and Foster (2008) reported 9.82 to 211 ng/L as the range of concentrations of 85 

PCBs (total + dissolved) in stormwater runoff entering the tidal Anacostia River, Washington, 

DC. The dissolved concentrations were below 30 ng/L for each of the seven PCBs (PCBs 28, 52, 

101, 118, 138, 153, 180) in a dense urban area in Paris suburb, France (Zgheib et al., 2011b). The 

concentration for Event I was higher than most of these reported concentrations. The dissolved 

PCBs from other events were in the range found by Hwang and Forster (2008). The use of 

analytical methods (extraction, GC detectors, etc.) with different sensitivities as well as various 

local PCBs sources and different PCBs selected could cause the variation in reported PCB 

concentrations in U.S. and France. 

The influent samples from Events I and II shared similar homolog distributions for 

dissolved PCBs, with di-, and tri-CBs as the most dominant homologs (di-CBs: 40.3–42.8%, tri-

CBs: 12.4–17.5%; Figure 4-3). Di-CBs were the most dominant homolog in both Events X and 

XI. Similar to samples from the discharge manhole, all of the samples except the ones from 

Event X had a significantly higher concentration of mono- to tetra-CBs than that of penta- to 

deca-CBs (p < 0.001). This was likely related to the lower Kow values of lower chlorinated PCBs. 

The average number of chlorines per biphenyl in the influent samples ranged from 2.86 ± 0.08 to 

3.37 ± 0.07.  The highest number was detected in Event I. This was due to high amounts of hexa- 

and hepta-CBs in Event I influent samples compared to the other three events. The average 

number of chlorines per biphenyl found in the aqueous phase were lower than that in the 

sediment sample near this site, which was 4.44 ± 0.11 (Cao et al., 2019).  
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In the influent sample from Event I, the concentration of dissolved PCB 11 was 154 ± 

16.8 ng/L, accounting for 20.8% of total dissolved PCBs. As for Event II, the dissolved 

concentration of PCB 11 was at 32.8 ± 1.38 ng/L in the influent sample, accounting for 20.2% of 

total dissolved PCBs. PCB 11 was also detected in the surface sediment sample collected near 

the same site. The relative abundance of PCB 11 in the liquid phase of stormwater from the two 

events was higher than that in the surface sediment sample (15%) (Cao et al., 2019). PCB 11 was 

also detected in influent samples from Events X and XI, but at lower concentrations (3.06 � 1.20 

ng/L and 4.47 � 0.62 ng/L, respectively).  

PCB 11 can be synthesized from 3,3¢-dichlorobendizine in the manufacturing processes 

of azo-type pigments used in commercial paints (Anezaki and Nakano, 2014). It has been 

detected in various matrixes such as commercial paint pigments and consumer goods, urban air 

and wastewater treatment plants (Hu et al., 2008, Hu and Hornbuckle, 2010, Rodenburg et al., 

2010). In addition to PCB 11, PCB 4 (0.7–12.6%) and PCB 22 (1.4–20.9%) were also detected at 

elevated concentrations in the dissolved phase in influent samples. These congeners are found in 

Aroclors 1016 and 1242 (ATSDR, 2000) indicating that A1016 and 1242 could contribute to 

dissolved PCBs in stormwater. Additionally, PCB 4 is an ortho-chlorinated congener, which 

could be a product from organohalide respiration. The relative abundance of PCB 8 (0.6–20.0%) 

and PCB 14 (0.2–14.9%) was high in influent samples. PCB 8 was also detected in polycylic-

type pigments (Anezaki and Nakano, 2014). These two congeners, in addition to PCB 11, were 

dominant congeners in stormwater sediments (Cao et al., 2019), indicating the correlation 

between stormwater aqueous phase and stormwater sediments. The congener profile of dissolved 

PCBs indicated that PCBs in stormwater could come from legacy sources like Aroclors. Lower 

chlorinated Aroclor mixture like A1016 and 1242 were more related to stormwater dissolved 
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PCBs. Nonlegacy PCB sources could also contribute to particulate PCBs in stormwater and paint 

pigment is the major nonlegacy source. 

Effluent 

For Events I, II, and XI, the total dissolved PCB concentration was lower in the effluent 

samples than in the influent samples (Figure 4-3). This indicated that this bioretention was 

effective in removing dissolved PCBs from stormwater. The removal efficiency of the 

bioretention for dissolved PCBs ranged from 65–92.3% based on concentration in influent and 

effluent samples. Bioretention can remove PCBs from stormwater via sorption of PCBs to 

bioretention media. PCB removal (43.8% of dissolved + particulate PCBs, assumed) was also 

observed in a bioretention system in Daly City, California (David et al., 2015). Removal of other 

hydrophobic compounds like PAH (dissolved + particulate) was also observed in the same 

bioretention cell (31–99%) that was evaluated in this study (DiBlasi et al., 2009). The reported 

performance of bioretention in removing hydrophobic compounds including PCBs, show that 

bioretention is a promising treatment for dissolved stormwater PCBs. 

In the dissolved phase of the effluent sample from Event I, di- and tri-CBs had the 

highest abundance. Concentrations of congeners with four or more chlorines were close to 

detection limits of 0.005–0.1 ng/L. Thus, the average number of chlorines per biphenyl in this 

sample (2.53 ± 0.03) was lower than detected in the influent sample. This indicated that 

treatment of the bioretention system adsorbed some highly chlorinated PCBs during Event I. 

However, during Events II and XI, the opposite occurred, where the average number of chlorines 

per biphenyl in the effluent sample (3.34 ± 0.12 and 3.00 � 0.13) was higher than the influent 

sample. This was due to the high abundance of tetra-CBs in the effluent sample. When 
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comparing the homolog distribution of the influent and effluent samples, the concentrations of 

di- to hexa-CBs (except penta in Events II and X) decreased significantly in the effluent sample 

(p < 0.05). This means that, this bioretention system removed significant amounts of most PCB 

homologs present in the stormwater. The other homologs were not removed significantly due to 

their concentration close to detection limits in both influent and effluent samples. During Event 

II, the removal fractions for tetra- and penta-CBs were 70.7% and 30.8%, respectively, while the 

removal of di- and tri-CBs were > 92%. During Event III, the highest removal efficiency was 

achieved for di-CBs (93.4%). 

The concentration of dissolved PCB 11 was lower in the effluent samples, at 8.15 ± 2.92 

ng/L in Event I and 1.23 ± 0.17 ng/L in Event XI. PCB 11 was below quantification limit (< 0.5 

ng/L) in Event II effluent.  

For PCBs, the criterion to protect freshwater aquatic life is 14 ng/L as a 24-hour average 

(EPA, 1980). The low level is due to bioconcentration factors taken into consideration. Dissolved 

phase in all the measured effluent samples were above this value, and could cause possible 

toxicity to freshwater aquatic life. The PCB concentration to cause acute toxicity to freshwater 

aquatic life is > 2 µg/L (EPA, 1980). All the measured effluent samples from this study were 

below this value, meaning acute toxicity to freshwater aquatic life was not expected. The 

maximum contaminant level for PCBs in public drinking water supplies established by United 

States Environmental Protection Agency (EPA) is 0.5 ppb (EPA, 2009). Except for the influent 

sample from Event I, the other stormwater samples were below this level. The results from this 

study showed that after bioretention treatment, PCB levels in the effluent samples were much 

lower than the maximum PCB level allowed in public drinking water supplies and were not 

likely to cause acute toxicity to organisms when they are exposed to these samples. 
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Figure 4-3. Concentrations of dissolved total PCBs, homologs, mono- to tetra-CBs, and penta- to 

deca-CBs in stormwater influent and effluent samples at the -campus bioretention system from 
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Events I (a), II (b), X (no effluent) (c), and XI (d). Error bars represent the standard deviation for 

three samples. 

4.3.4 PCBs in the particulate phase in stormwater influent samples 

The total PCB concentrations found in the particulate phase ranged from 157 to 638 ng/g. 

These concentrations were higher than the concentrations found in the stormwater sediment 

samples in our previous study (mean: 29.2 ng/g, max: 57.4 ng/g) (Cao et al., 2019). The possible 

reason could be that the particles in stormwater are smaller than the surface sediment samples 

(which were deposited at the entrance of the bioretention). Smaller particles have higher 

tendency to sorb PCBs due to larger specific area and higher TOC content (Ghosh et al., 2003, 

Cao et al., 2019).  The smaller stormwater sediment particles (25–75 µm), contained PCBs at 

180 ± 6 ng/g from a dense urban area and at 66.0 ± 8.5 ng/g from an institutional area. 

Particles > 75 µm accounted for 98.1% of the total sediments left at the entrance of the same 

bioretention cell. PSD was not available for Events III, X and XI, but the d50 for particles from 

Event I was 65.7 µm, indicating that the size stormwater TSS could be smaller than stormwater 

sediments. 

In the solid phase, the concentration of mono- to tetra-CBs was higher than the 

concentration of penta- to deca-CBs. For Event III, the dominant homolog was penta-CBs, 

followed by di- and tri-CBs. Hwang and Foster (2008) also found a high abundance of penta-

CBs in the stormwater entering the tidal Anacostia River, Washington, DC (only one di-CB was 

measured). For Events X and XI, di-CBs were the most dominant, followed by tri-CBs. A low 

average chlorine number (2.63) was the result of high abundance of di-CBs (51.9%) in Event III 

influent. The average numbers of chlorines per biphenyl in other samples ranged from 3.75 to 

3.96. These values are higher than all the average numbers detected for dissolved PCBs in this 
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study. This is related to stronger affiliation between more chlorinated PCBs and particles due to 

their higher Kow values (ATSDR, 2000).   

In the solid phase of the influent samples, PCB 11 was detected at 34.7–193 ng/g, 

accounting for 20.4-30.2% of the total PCB concentration. Except for PCB 11, the dominant 

PCB congeners in the particulate phase was different from that in surface stormwater sediments 

(Cao et al., 2019), indicating different PCB sources. PCB 28 was the second dominant congener 

in the particulate phase, accounting for 8.3% of total PCB concentration. PCB 28 was present in 

Aroclors 1016, 1242 and 1248 (ATSDR, 2000). In addition, PCB 28 was reported to be one of 

the predominant end products during the organohalide respiration of Aroclor 1254 (Kaya et al., 

2016). The congeners PCB 12 (11.3%), PCB13 (11.3%), and PCB 19 (17.9%) were found at 

high abundance in the particulate phase of Event XI and were all present in Aroclor 1016 and 

1242 (ATSDR, 2000). In addition, PCB 12 and PCB 13 were detected at high concentration 

(PCB 12+13: 18.2 ng/g) in commercial paint pigments. This indicated that Aroclor 1016 and 

1242 and/or other nonlegacy sources may contribute as sources to PCBs to stormwater, while 

Aroclor 1254 and 1260 were probable sources to urban stormwater sediments (Cao et al., 2019). 

However, the predominance of PCB 28 indicated potential organohalide respiration of Aroclor 

1254 in the watershed. The possible reason for the difference between stormwater sediments and 

particulate phase is that stormwater sediments were settled before they were washed into SCMs 

like bioretention while TSS were more mobile.    

The total PCB concentration in the particulate phase was higher than the consensus-based 

threshold effect concentration for PCBs in freshwater ecosystems, which is 59.8 ng/g 

(MacDonald et al., 2000). This means PCBs in the particles could cause harmful effects on 
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organisms dwelling in these samples due to the partitioning effect of PCBs between particles and 

lipid phase of organisms. 

Using TSS concentrations to determine particulate-bound stormwater PCB 

concentrations, Event III influent sample contained 34.4 ng/L of PCBs in the particulate phase. 

The concentration of dissolved PCBs was not measured thus the mass of PCBs in the particulate 

phase could not be compared to the corresponding liquid phase.  

Previous studies reported that more than 90% of the total mass of PCBs in storm flow 

runoff were particle bound (Hwang and Foster, 2008, Zgheib et al., 2011b). However, particle-

bound PCBs appeared to play a less important role in total PCB contribution in this study. If 

using 152 ng/L from Event II as the total PCB concentration in the liquid phase for Event I, 

particle-bound PCBs only accounted for 18.4%. For Events X and XI, particle-bound PCBs only 

accounted for 2.6–17.1%. All these values suggested a less important role for particulate phase in 

the contribution of PCB mass in stormwater. 

Zgheib et al. (2011b) emphasized the importance of particular phase on PCB mass 

contribution because all the seven selected PCBs were below their quantification limit (30 ng/L) 

for each congener. However, in this study, the quantification limit for PCBs were < 30 ng/L and 

27 congeners were quantified in the liquid phase. Thus, concentrations of dissolved PCBs could 

be quantified and compared to the concentration found in particulate phase in this study. In 

addition, Hwang and Foster (2008) only reported PCB concentrations in the particulate phase as 

well as total PCBs in dissolved and particulate phase. Information about dissolved PCBs and 

particle concentration in the runoff samples were not reported. According to the information 

provided, the approximate range of particle-bound concentrations by Hwang and Foster was 

11.7–6125 ng/L. It is possible that runoff samples from Hwang and Foster’s study had a higher 
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particle concentration than this study. Additionally, Hwang and Foster’s study focused on one di-

CB (PCB 15) and congeners with three or more chlorines. This may result in underestimation on 

the total PCB concentration, since lowly chlorinated congeners (such as PCB 11) accounted for a 

significant portion in the dissolved phase. Similarly, the seven PCBs selected by Zgheib et al. 

(2011b) were PCBs with three to seven chlorines. As a result, in contrast to previous results, the 

dissolved phase cannot be overlooked when calculating the total PCB concentrations in urban 

stormwater. 

After bioretention treatment, PCB amounts adsorbed onto the particulate matter 

decreased. During Event XI, the total PCB concentration for effluent particles decreased to 92.5 

ng/g from 638 ng/g with 85.5% removal efficiency of PCBs. If taking the TSS concentration in 

both influent and effluent into consideration, the PCB concentration decreased from 14.2 ng/L to 

0.04 ng/L. The removal efficiency via bioretention was 99.7%. 
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Figure 4-4. Concentrations of particulate total PCBs, homologs, mono- to tetra-CBs, and penta- 

to deca-CBs in stormwater influent/effluent samples at the on-campus bioretention system from 

Events III (no effluent) (a), X (no effluent) (b), and XI (c). Error bars represent the standard 

deviation from two samples (a). 

4.3.5 Total PCB concentrations, loads, and reductions via bioretention  

Using the PCB concentrations from Event XI (638 ng/g and 92 ng/g) and TSS load data 

from previous study (Houng and Davis, 2009), PCB load reduction was estimated (Table 4-4). 
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particulate-bound PCB export by about 0.36 to 0.76 g/ha-yr (99.0-99.6%). The total load 

reduction of PCBs in both phases could be 0.86-7.16 g/ha-yr. The load reduction of PCBs via 

the particulate phase was lower compared to dissolved PCBs due to a higher mass of PCBs in the 

liquid phase compared to the particulate phase. The mass contribution of lower chlorinated 
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when reporting total PCBs (Hwang and Foster, 2008, Zgheib et al., 2011b). Instead, in this study, 

concentrations of all the 209 PCBs were recorded and di- to tetra- CBs were detected at higher 

concentrations than highly chlorinated PCBs. As a result, although the removal of particles in 

stormwater can reduce the mass of PCBs, dissolved PCBs must be further investigated.  

 

Table 4-4. TSS data used and estimated PCB load reduction via TSS removal. 

Location TSS load in 

(kg/ha-yr) 

TSS load out 

(kg/ha-yr) 

Estimated 

PCB load in 

(mg/ha-yr) 

Estimated 

PCB load out 

(mg/ha-yr) 

Estimated PCB 

load reduction 

(mg/ha-yr) 

College Park, 

MD 

1190 37 759 3.4 755.6 

Silver Spring, 

MD 

759 3.4 364 3.5 360.5 

 

Using 67.5-755 ng/L from this study as the concentration of dissolved PCB in the 

influent and the equation in Section 4.2.8, the estimated annual PCB loading from dissolved 

phase ranged from 0.58 to 6.52 g/ha-yr. Assuming the effluent volume is 50-80 % of the influent 

volume for this bioretention cell (Li et al., 2009), the annual PCB mass load in the dissolved 

phase after treatment from this bioretention cell was 0.08-0.40 g/ha-yr using the effluent 

dissolved PCB concentration in ng/L (18.0-57.8 ng/L from this study). This estimation indicated 

that bioretention has a potential to reduce dissolved PCBs by 0.5 to 6.4 g/ha-yr. The load 
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reduction of dissolved PCBs in stormwater via the bioretention ranges from 86.2 to 98.8%. 

When taking both the dissolved phase and particulate phase into consideration, the bioretention 

could reduce PCBs by 0.86-7.2 g/ha-yr (total PCB load reduction: 91.5-98.4%). In order to 

meet the TMDLs in MD for PCBs, the required load reduction (%) from stormwater ranged from 

51.6-93.0% (MDE, 2011, MDE, 2012, MDE, 2016). The percentage of load reduction calculated 

in this study met the required load reduction, indicating that bioretention can help to meet PCB 

TMDLs. 

4.4 Conclusions 

In order to evaluate the performance of a bioretention cell in treating PCBs in 

stormwater, the presence of PCBs in stormwater influent and effluent samples was evaluated. 

The partitioning of PCBs between dissolved phase and particulate phase was also studied. Our 

results showed that bioretention effectively decreased concentrations of TSS and PCBs (both 

dissolved phase and particulate phase) in stormwater. 

• Both dissolved and particulate PCB concentrations varied between events, ranging from 

67 ± 17 to 755 ± 23 ng/L, which was mainly attributed to the dry period prior to the rain 

event. 

• Particle-bound PCBs accounted for 2.6–17.1% of total PCBs detected in stormwater. As 

a result, the dissolved phase should not be ignored when studying and removing PCBs 

from stormwater. 

• Dissolved PCB concentrations were significantly decreased in the effluent compared to 

influent by 65–92.3% after bioretention treatment. 
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• Bioretention is effective in removing PCBs from stormwater via adsorption and TSS 

removal, with a load reduction at 91.5–98.4%. 
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Chapter 5. Polychlorinated biphenyls in roadway paint scrapings with 

focus on 3,3´-dichlorobiphenyl (PCB 11) 

Abstract 

Yellow and white paint samples collected from roadway lines and curbs were studied to 

assess the concentrations of polychlorinated biphenyls (PCBs) in road paints. Total PCB 

concentrations ranged from 162 ± 19.3 to 203 ± 22.1 ng/L in yellow paints, whereas white paints 

contained lower concentrations of PCBs (7.80 ± 0.01 ng/g to 60.1 ± 6.93 ng/g). 3, 3¢-

dichlorobiphenyl (PCB 11) is a marker of non-legacy PCB contamination and accounted for 

17%–91% of the total concentration of PCBs in yellow paints, but this congener was below the 

detection limit in white paints. Another congener that has been reported as a major congener in 

pigments, 2,2¢,5,5¢-tetrachlorobiphenyl (PCB 52), was also detected in both the yellow and white 

road paint samples. PCBs may be transported into the urban environment via the release of 

colloidal paint particles after binder degradation or through volatilization. The results from this 

study show that paints used on roadways contain PCBs, particularly yellow paint, and thus 

roadway paints could contribute towards the total level of PCBs in stormwater and the urban 

aquatic environment. More research is needed on the mass contribution from road paints on 

stormwater PCBs and their leaching characteristics. 
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5.1 Introduction 

Polychlorinated biphenyls (PCBs) consist of a group of 209 organic chlorine compounds 

widely used in the U.S. from 1929 to 1979. Aroclor is the trade name for industrially-produced 

PCB mixtures, (Kimbrough, 1995) but PCB 11 (3,3¢-dichlorobiphenyl) is a common non-Aroclor 

PCB congener that has been detected in various environments including urban air (Hu et al., 

2008), stormwater (Cao et al., 2019), wastewater and commercial products (Guo, 2013) after the 

1979 (U.S) ban (Vorkamp, 2016). PCB 11 is a by-product from manufacturing of diarylide 

derived yellow pigments and is therefore emerging as a marker of non-legacy PCB 

contamination (Rodenburg et al., 2010, Grossman, 2013). PCB 11 has been detected as one of 

the most abundant congeners in stormwater sediment samples collected in urban areas (Cao et 

al., 2019). Another congener, PCB 52 (2,2¢,5,5¢-tetrachlorobiphenyl), was also detected in azo-

type pigments (Hu and Hornbuckle, 2010, Liu et al., 2016). Unlike PCB 11, PCB 52 is an 

important component of Aroclors 1016, 1242, 1248 and 1254 (ATSDR, 2000). 

PCB 11 toxicity has often been ignored, since it is not included in the Aroclor mixtures. 

This congener can alter neuronal morphogenesis at low levels (0.22 ng/mL) in rats (Sethi et al., 

2017) and its metabolites (OH-PCB 11 and OH-PCB 11 sulfate) can significantly alter the 

growth of cells involved in cognitive and higher-order behaviors in neonatal rats (Sethi et al., 

2017). Other studies have also shown altered neuronal morphogenesis at 1 fM of PCB 11 (~0.22 

ng/mL) (Sethi et al., 2017). Therefore, PCB 11 may represent an underestimated problem in the 

environment that warrants further study. Additionally, PCB 52 can cause cyto- and genotoxicity 

and this congener has also induced pathologic changes in Rhesus monkeys at a dietary dose of 60 

μg/kg/day for 133 days (McNulty et al., 1980). 
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Review of the current literature indicated limited information identifying sources and fate 

of PCB11 in the environment (Guo, 2013, Vorkamp, 2016). Urban stormwater represents a 

growing concern as a PCB source and many jurisdictions are addressing PCB pollutants loads 

and reductions as part of Total Maximum Daily Load restrictions (Zgheib et al., 2012, David et 

al., 2015, Gilbreath et al., 2019, Wu et al., 2019). Therefore, additional research is needed to 

identify sources of PCB 11 as well as other PCBs in urban areas and to minimize their release 

and accumulation. Prior study has found that the concentration of PCB 11 decreased significantly 

after removing yellow flakes (apparently peeling from roadway markings) from stormwater 

sediments (Cao et al., 2019). Since PCB 11 is a by-product of the manufacturing of pigments, 

roadway paints may be an important source in urban areas. Thus, due to their wide use, roadway 

paints merit study as a possible urban PCB source. The objectives of this study were 1) to assess 

the concentration, mass, and congener pattern of PCBs in roadway paints with different colors, 

yellow and white; 2) to specifically evaluate the concentration and relative abundance of PCB 11 

and PCB 52 in different roadway paints; 3) to explore the potential mechanisms of PCB 

immobilization from paints as PCB sources to urban stormwater and the aquatic environment. 

5.2 Materials and methods 

5.2.1 Sampling sites 

Scraped paint samples were collected from seven on-campus sites at University of 

Maryland (UMD), College Park from April to June 2019. A clean knife with sharp blade was 

used to scratch the paint samples from traffic and curb lines. Flakes peeling off painted curbs 

were collected by hand. Among the seven samples, three samples contained yellow flakes 

peeling from curbs: 1) near a bioretention cell stormwater control measure (Yellow1: 
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38°59'36.8"N 76°56'20.4"W), 2) near a loading dock of research/educational building 1 

(Yellow2: 38°59'20.6"N 76°56'16.7"W), and 3) along a road near research/educational building 

2 (Yellow3: 38°59'35.5"N 76°56'28.9"W). One yellow sample was scraped from the yellow 

traffic line near an apartment building near the UMD campus (Yellow4: 38°59'34.4"N 

76°56'00.4"W). Additionally, three samples were scraped from white traffic lines on roads (W1: 

38°59'37.1"N 76°56'13.8"W) and parking lots (W2: 38°59'25.4"N 76°56'29.7"W, W3: 

38°59'35.3"N 76°56'23.1"W). In the laboratory, the collected flakes were ground into smaller 

pieces (< 2 mm) using a mortar and pestle and stored at room temperature.  

5.2.2 PCB extraction and analysis 

PCBs in the paints were extracted using microwave assisted extraction (MAE) (MARS 6, 

CEM, U.S.). Briefly, two grams of ground sample was added into each extraction vessel and 

clean sea sand (Merck, U.S.) was used as laboratory blank control. Surrogates standards 

[tetrachloro-m-xylene (TCMX), 2,4,6-trichlorobiphenyl (PCB 30) and 2,2¢,3,4,4¢,5,6,6¢-

octachlorobiphenyl (PCB 204)] were added into each sample prior to MAE. The filter papers and 

paint samples were extracted using 20 mL hexane (95% n-hexane for organic residue analysis)-

acetone (HPLC grade, Honeywell) (1:1) and cleaned up according to Cao et al.(Cao et al., 2019) 

Briefly, the extracts were loaded onto a column filled with glass wool (Acros Organics, 

Germany), prepared alumina (Fisher Scientific, U.S.) and sodium sulfate (Fisher Scientifc, U.S.). 

15 mL of hexane were used to elute the column and the effluent was collected for further 

analysis.  

5.2.3 PCB quantification 
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Samples were analyzed and PCBs were quantified using a gas chromatography/electron 

capture detector (GC-ECD) (7890B, Agilent Technologies, U.S.) equipped with an Agilent J&W 

HP-5ms column (60 m × 250 μm × 0.25 μm). The injection volume was 1 µL with helium as the 

carrier gas. The temperature program was: initial temperature at 70 °C, 7 °C/min to 180 °C, 

1°C/min to 225 °C, 5.8 °C/min to 285 °C, held at 285 °C for 20 min, 11.5 °C/min to 300 °C and 

held at 300 °C for 10 min. 

Target compounds (209 PCBs), surrogate standards, and internal standards [4-

bromobiphenyl (4-BB) and 2,2¢,4 ,5,5¢-pentabromobiphenyl (penta-BB)] were purchased from 

AccuStandard (U.S.) and Restek (U.S.). All laboratory materials were made either from glass or 

PTFE to avoid sample contamination and adsorption to the materials.  

The applied GC-ECD method was able to identify 209 PCB congeners present in 131 

separate peaks. The detection limits for PCB congeners ranged from 0.0025 to 1 ng/g for the 

paint samples. The method detection limits were calculated by dividing the instrument detection 

limits (0.005 to 2 ng/mL) by sample masses.  

5.2.4 Statistical analysis 

For the comparison of three or more groups of data, a pairwise t-test was performed. 

Holm’s sequential Bonferroni method was applied to correct the results by reducing the 

possibility of type I error. 

5.3 Results and discussion 

5.3.1 PCBs in yellow paints 
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During the extraction of the yellow roadway paints, at least two different yellow colors of 

the extracts were observed indicating that different paint products were used. These paints could 

be manufactured from different batches or originate from different manufacturers. Analysis of 

concentrations of total PCBs, homologs, mono- to tetra-CBs, and penta- to deca-CBs in yellow 

paint samples from different sites showed that the total PCB concentrations per g was similar, 

ranging from 162 ng/g to 203 ng/g (Figure 5-1). Hu and Hornbuckle (2010) tested 33 

commercial paint pigments and found that PCBs were primarily detected in organic pigments at 

2 to 200 ng/g fresh weight. The level of PCBs found in azo-type pigments ranged from 7 μg/kg 

to 740 mg/kg (Anezaki and Nakano, 2014). Azo-pigments can be produced in all colors but the 

most important ones are yellow, orange and red (Vorkamp, 2016). All concentrations in this 

study were in this range (Figure 5-1). For the yellow paint samples, the concentration of mono- 

to tetra-CBs (139–199 ng/g) was significantly higher than penta- to deca-CBs (3.95–38.6 ng/g) 

(p < 10-6). Yellow2 had the highest concentration of penta- to deca- CBs, at 38.6 ± 6.00 ng/g. All 

other samples contained penta- to deca-CBs below 12.1 ng/g, indicating that lower chlorinated 

PCBs are more likely to be found in paints. 

The homolog distributions for Yellow1 and Yellow3 were similar, with di-CBs and tetra-

CBs dominant, indicating they could be the same paint. The homolog distributions of the other 

samples were different due to different types of pigments or different manufacturing processes 

(Hu and Hornbuckle, 2010). Yellow1 and Yellow3 congener distributions are similar to those of 

two mono-azo yellow pigments, where di-CBs were the most abundant, with limited presence of 

higher chlorinated PCBs (Hu and Hornbuckle, 2010). However, in Yellow2, tetra-CBs, penta-

CBs and di-CBs were the most dominant. In Yellow4, di-CBs had the highest concentration, 

with other homologs below 7.5 ng/g (close to the quantification limit of 0.0025 to 1 ng/g).  
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The average number of chlorines per biphenyl ranged from 2.1 ± 0.02 to 3.6 ± 0.01, 

where Yellow1, Yellow3, and Yellow4 all had chlorine numbers smaller than 2.5 because of the 

high abundance of di-CBs. The different homolog distribution for Yellow2 caused an increased 

average number of chlorines per biphenyl, which was significantly different from other samples 

(p < 10-6).  

 

Figure 5-1. Concentrations of total PCBs, homologs, mono- to tetra-CBs, and penta- to deca-CBs 

in the yellow paint samples (significance levels: * < 0.05; ** < 0.01; *** < 0.001).  

5.3.2 PCB 11 and other dominant congeners in yellow road paints 

PCB 11 was detected in all four paint samples, with a minimum concentration of 30.8 ± 

8.17 ng/g (Yellow2) (Figure 5-2) and highest of 185 ± 18.7 ng/g (Yellow4). The concentration of 

PCB11 was 182 ± 10 ng/g in yellow flakes separated from stormwater sediment samples (Cao et 
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al., 2019). The relative abundance of PCB 11 in Yellow2 was 17.4%. In contrast, the relative 

abundance of PCB 11 ranged from 68.4% to a high of 91.1% in the other three samples, 

indicating that PCB 11 was the most frequently detected congener in paint samples Yellow 1, 3 

and 4.  

During the manufacturing of azo pigments, the raw materials and intermediate products 

include compounds such as chlorinated aniline and chlorinated benzidines (Hu and Hornbuckle, 

2010). These chlorinated compounds have the potential to produce PCBs during side-reactions 

and PCB 11 can be synthesized from 3,3¢-dichlorobendizine (Hu and Hornbuckle, 2010, Anezaki 

and Nakano, 2014).  

  

Figure 5-2. Concentration and relative abundance of PCB 11 in yellow paint samples (bar 

represents concentration (left axis), x represents relative abundance (right axis)). 
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PCB 52 can be synthesized from 2,2¢,5,5¢-tetrachlorobendizine (Anezaki and Nakano, 

2014). It was detected up to 9.46 ± 0.73 ng/g in Yellow4. Concentrations of PCB 52 were lowest 

in Yellow1 (1.36 ± 0.52 ng/g) and Yellow3 (0.88 ± 0.34 ng/g). Other detected congeners with 

concentrations above 10 ng/g were PCB 25 (2,3¢,4-trichlorobiphenyl), PCB 40 (2,2¢,3,3¢-

tetrachlorophenyl), PCB 96 (2,2¢,3,6,6¢-pentachlorobiphenyl) and PCB 103 (2,2¢,4,5¢,6-

pentachlorobiphenyl). PCB 25 was one of the most abundant congeners found in an organic red 

colorant (Jahnke and Hornbuckle, 2019). PCB 40 was one of the major congeners found in one 

polycyclic-type pigment (Anezaki and Nakano, 2014). The frequent detection of such congeners 

indicates that PCBs can be produced during the manufacturing of various types of pigments. 

5.3.3 PCBs in white paints 

The total PCB concentrations in white paint (Figure 5-3) were lower than in yellow paint 

samples (p < 10-8). The total PCB concentration ranged from 7.8 ± 0.9 to 60.1 ± 6.9 ng/g in the 

three white samples and tri- to penta-CBs were the most dominant. No PCBs were found in the 

white pigments tested by Hu and Hornbuckle (2010), where the total PCB concentration was 

0.03 ng/g of colorant in the white colorant. In their study, the most dominant congener was PCB 

25. In this study, PCB 25 was found in White3, at 3.2 ± 0.17 ng/g. In contrast to the yellow 

paints, PCB 11 was not detected above the detection limit in any of the white samples, indicating 

that PCB 11 was not a byproduct during the manufacturing of white pigments. PCB 52 was 

detected in White3 at 1.32 ± 0.21 ng/g. White2 had the lowest number of chlorines per biphenyl 

(2.70 ± 0.30) of the three white pigments, while the other two had similar chlorine numbers (4.1 

± 0.05), which is higher than the yellow pigments. The variability in total PCB concentrations, 
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homolog distributions as well as chlorine numbers per biphenyl clearly shows the difference in 

composition for different types of pigments. 

   

Figure 5-3. Concentrations of total PCBs, homologs, mono- to tetra-CBs, and penta- to deca-CBs 

in white paint samples scraped from traffic lines (significance levels: * < 0.05; ** < 0.01; *** < 

0.001). 

5.3.4 Potential mechanisms for PCB mobilization from paints 

Rodenburg et al. (2010) presented evidence that pigments in consumer goods caused 

dispersion of PCB 11 throughout the environment at problematic levels. Roadway paints as a 

non-legacy PCB source has not been considered and mechanisms for PCBs mobilizing from 

painted surfaces into the urban environment have not been discussed. Due to the complexity of 
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the paint matrix and the environmental transport processes, several mechanisms could be 

involved.  

Paints consist of binder, pigments, extenders, solvents, and additives (Talbert, 2007). 

Binder is a polymer added to hold the pigments in place. When the paint binder is destroyed or 

photodegraded, paint colloids can be released from the painted surface (Barnes and Davis, 1996). 

These colloids are mobile and can be transported to other environments by stormwater. During 

the process, PCBs, especially those less chlorinated, could be dissolved in stormwater, since they 

have lower hydrophobicity.  

Surface/air transport can be a major pathway of PCBs release from paint. Jahnke and 

Hornbuckle found that all PCB congeners in applied paints can be volatilized (Jahnke and 

Hornbuckle, 2019) and accumulated on surface films formed on nearby buildings and washed 

away during rain events (Diamond et al., 2000, Lerner, 2002, Diamond and Hodge, 2007). 

Atmospheric PCBs released from roadway paints could also contribute to PCBs in stormwater 

via wet deposition, which could transport PCBs to surface waters. Jahnke and Hornbuckle (2019) 

also found that the presence of water accelerated the emissions of PCBs from colorants due to 

the full miscibility of colorants in water and the physical-chemical properties of the congeners. 

Another potential pathway is physical erosion of paint flakes peeling off the painted 

surface, where stormwater can transport the released flakes. Yellow flakes have been observed in 

stormwater sediments and PCB 11 was abundant in these samples (Cao et al., 2019).  

Due to its relative high volatility, PCB 11 can contribute to the amount of airborne PCBs 

(Hu et al., 2008, Hu and Hornbuckle, 2010). Although PCB 11 was found at high concentrations 

in roadway paint samples, it can be aerobically degraded after release into the environment via 
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dihydroxylation with 5,6-dihydrodiol (80%) and 4,5-dihydrodiol (20%) as two degradation 

products.(Haddock et al., 1995) The process could be catalyzed by biphenyl 2,3-dioxygenase, 

which is present in strains like Pseudomonas pseudoalcaligenes KF707 and Burkholderia sp. 

LB400 (Pieper, 2005).  

Only yellow and white pigments were evaluated in this study. Higher concentrations of 

total PCBs have been found in green pigments (284 ng/g) than all other pigment colors, with 

PCB 209 as the most abundant congener (Jahnke and Hornbuckle, 2019).  

While roadway paint contains PCB 11, it is likely not the only source of PCB 11 and 

other congeners in the urban environment. PCB 11 has been detected in commercial goods like 

newspapers, magazines, and cardboard boxes (Rodenburg et al., 2010, Guo et al., 2014) and 

could be released from discarded materials and be transported to waterways (Guo et al., 2014). 

Mass contributions of PCBs from roadway paints in urban areas are not clear. The leaching 

potential of pigments of different colors in road paints, and the transport pathways into the urban 

environment needs additional study. The high detection rate of PCB 11 in various environmental 

samples (air, water, and stormwater sediments) could be caused by their presence and release 

from paint pigments. Based on the concentrations of PCBs found in roadway paints as well as 

paint/air partition coefficients (Jahnke and Hornbuckle, 2019), their concentrations in water 

bodies may pose risk to aquatic life due to bioconcentration. In addition with the rising evidence 

of the toxicity of the low molecular weight congeners (Espandiari et al., 2003), more information 

is needed on the composition of roadway paints.  
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Chapter 6. Conclusion and recommendations 

6.1 Conclusions 

Surface sediment and bioretention media samples were collected to analyze the 

concentration of 209 PCB congeners as well as homolog distribution to evaluate the occurrence 

and removal of PCBs in urban stormwater. The presence of microorganisms capable of PCB 

transformation were tested in these samples. Additionally, the performance of an on-campus 

bioretention cell was evaluated, with emphasis on PCB removal. 

6.1.1 Occurrence of PCBs in surface sediments and bioretention media  

The average concentration of total PCBs ranged from 9.7 ± 1.6 ng/g to 51.6 � 5.6 ng/g in 

the surface sediment samples collected in urban areas. Land use had an impact on PCB 

concentrations in urban areas. Higher average PCB concentrations were found near dense urban 

areas (39.8 � 10.5 ng/g) and residential areas (35.3 ± 6.2 ng/g). Old buildings were found near 

these areas and they could be a source of PCBs due to the PCBs added into caulking and sealants 

before the 1970s. The PCBs found in these dense urban and residential areas were above the 

interim sediment quality guideline (ISQG) for sediment-dwelling organisms and could cause 

potential toxicity for aquatic organisms. The concentration of PCBs was positively related with 

the total organic carbon content (TOC) in the collected stormwater sediments. The PCB 

concentration varied with the particle size of the sediments. Particles > 75 µm had lower PCB 

concentrations than particles ≤ 75 µm (p < 0.01). However, PCBs sorbed to the larger particles 

made up the greatest mass by more than 80%. This indicated that removal of larger particles, 

which is easier to perform, could remove more than 80% of PCBs.�
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In the surface sediment samples, the most dominant homologs were penta- and hexa-CBs. 

The average number of chlorines per biphenyl in surface sediments ranged from 3.63 ± 0.21 to 

5.39 ± 0.14. PCBs found in the surface sediment samples could be either mixtures of several 

Aroclors or biodegraded products of Aroclors. Some PCB congeners detected at high 

concentrations were also abundant in Aroclor 1254, indicating that Aroclor 1254 could have 

contributed to the PCB contamination in these samples.  

Due to steric hindrance, chlorines at ortho positions are less likely to be replaced with 

hydrogen (i.d. dechlorination). Thus, the increase in the level of unflanked ortho-chlorinated 

congeners is an indicator of PCB biodegradation via organohalide respiration. The abundance of 

unflanked ortho-chlorinated biphenyls varied among the sites (0.41 ± 0.03% to 4.85 ± 0.42%). 

The abundance of unflanked ortho-chlorinated biphenyls found in the surface sediment samples 

were higher than the abundance of PCBs in Aroclor 1254 (0.03%) thus indicating that 

organohalide respiration occurred or PCB at these sites were from lowly chlorinated Aroclor 

mixtures.  

For bioretention media core samples (collected from an on-campus bioretention system), 

the total PCB concentration ranged from 11.6 � 1.2 ng/g to 38.4 � 2.3 ng/g. The concentration of 

PCBs decreased as the depth increased. In addition, the concentration of PCBs was lower at the 

locations toward the end of the bioretention compared to the inlet. Only the surface sample at the 

inlet entrance reached a value above the ISQG and thus could cause adverse effects on dwelling-

organisms. This indicated that bioretention is efficient in retaining PCBs and more filtration and 

sorption is taking place in the upper layer of the material. Spatial distribution of PCBs also 

indicated that shallow cell design (20 cm) is adequate for treating PCBs in stormwater.  
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The average number of chlorines per biphenyl in the bioretention media cores was 4.41 � 

0.24. No relationship was found between depth or distance from the inlet and the average 

chlorine numbers indicating that the number of chlorines per biphenyl had no spatial trends in 

the bioretention cell. The abundance of unflanked ortho-chlorinated biphenyl in the bioretention 

media core samples (1.65 � 0.04% to 3.19 � 2.71%) were in the same range as detected in the 

surface sediment. The higher level of ortho-chlorinated congeners than the maximum level found 

in Aroclors in five of the eleven samples indicated the occurrence of anaerobic organohalide 

respiration. A higher level of organohalide respiration could take place in the lower core sections 

because the fraction of ortho-chlorines increased with depth at each sampling location in the 

bioretention cell. 

6.1.2 Organohalide respiration in bioretention core 

Results from molecular analyses of bioretention samples indicated that bacteria capable 

of PCB biotransformation were present in both surface sediment and bioretention core samples. 

Higher bacterial abundance was found in surface layers compared to lower layers of the 

bioretention cell. The anaerobic organohalide respiring bacteria Dehalogenimonas were detected 

in all samples with gene copy ranging from 9 to 3.6 ´ 103/g sediment. The low abundance 

(0.0014–9.2% of total bacteria) of putative organohalide respiring bacteria in this environment 

indicated that low abundance of Dehalogenimonas was enough for PCB transformation or they 

were not the major bacteria performing that. In some samples both bacteria capable of 

organohalide respiration and bacteria performing aerobic PCB degradation were detected. 

Therefore, both aerobic and anaerobic PCB transformation could happen in the bioretention cell 

under different conditions. Identification of these bacteria showed that the most frequently 
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detected phyla in soil (such as Actinobacteria, Proteobacteria and Chloroflexi) were also the 

most abundant in stormwater sediments and bioretention media. Bacteria from the genera 

Dehalococcoidia, Dehalobium, Dehalogenimonas and Dehalobacter were found in six of the 

seventeen samples. Dehalococcoides mccartyi, a species confirmed capable of organohalide 

respiration of Aroclor 1260 (Wang and He, 2013), was found in the surface sediment from a 

stormwater control measure (SCM) in the commercial area. Bacteria within the genus 

Rhodococcus (capable of aerobic PCBs degradation) (Kim and Picardal, 2001), were detected in 

surface sediment and media core samples.  

To test if the bacteria capable of PCB transformation were active, RNA from surface 

sediment and the top layer of the bioretention media at UMD was collected. The RNA results 

showed that putative organohalide respiring bacteria were active in both the surface sediment 

sample and surface bioretention media samples collected at UMD. Bacteria capable of PCB ring 

deoxygenation and/or cleavage also showed activity at the top layer in the bioretention cell. The 

presence of active anaerobic organohalide respiring bacteria and active PCB transformation 

under both aerobic and anaerobic conditions in the bioretention cell. The expression of such 

genes showed the potential that these bacteria are actively biotransforming PCBs in the 

bioretention cell.  

6.1.3 Fate of PCBs in bioretention 

PCBs in stormwater before and after bioretention treatment were monitored. The 

concentration of dissolved PCBs in stormwater varied between events, ranging from 67 ± 17 to 

755 ± 23 ng/L. The concentration of dissolved PCBs decreased by 64–92% after the bioretention 

treatment, thus showing that bioretention is effective in removing dissolved PCBs from 

stormwater. PCB concentration in the particulate phase (157–638 ng/g) was higher than the 
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concentration found in the surface sediment samples collected in urban areas. This could be due 

to the smaller size of the particles in stormwater. In addition, bioretention treatment removed 

52.1–98.2% of TSS in stormwater. Therefore, more than 50% of particle-bound PCBs was in this 

case removed from stormwater via TSS removal. Particulate-bound PCBs accounted for 2.6–

17.1% of total PCB mass in stormwater, indicating that dissolved PCBs cannot be ignored when 

treating PCBs in stormwater. 

6.1.4 Concentration of PCBs in road paints 

PCB 11 is one of most frequently detected congeners from different environmental 

matrices and an unintentional byproduct from the manufacturing of yellow pigments. It also had 

a high detection rate in this study. PCB 11 was found in all of the stormwater samples, both the 

liquid phase and sediment samples. The relative abundance of PCB 11 ranged between 1.3% and 

30.9% of total PCB concentration in the surface sediment samples and bioretention media 

samples. PCB 11 accounted for 20.5% of the total dissolved PCBs in stormwater. Yellow paint 

flakes were noted in the surface sediment samples collected near UMD and the concentration of 

PCB 11 was significantly lower after picking out the yellow flakes (p < 0.05).  

Yellow traffic line paint could be a major source of PCB 11 in stormwater. Different 

commercial paints could be used at different locations and thus contain different components. 

Yellow road paints were scratched from different sites on the UMD campus and the 

concentration of total PCBs ranged from 162 � 19 ng/g to 203 � 22 ng/g in these flakes. The 

concentration of PCB 11 found in the yellow road paints ranged from 30.8 ng/g to 185 ng/g 

(17.4% to 91.1% of total PCBs). PCB 11 accounted for more than 68% of the total PCBs in three 

of the four samples. PCB 25, PCB 40, and PCB 52 were also found in the yellow road paints in 
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high concentration. White paints had reduced total PCB concentrations (7.80 ± 0.01 ng/g to 60.1 

± 6.93 ng/g) than yellow paints and the homolog distribution was different. Abundant congeners 

including PCB 25 and PCB 52 were found in white paints at a high concentration (PCB 25: 3.02 

± 0.17 ng/g, PCB 52: 1.32 ± 0.21 ng/g). PCB 11 was below the detection limit in the white paint 

samples, indicating that PCB 11 was not related to white pigment. The results indicated that road 

paints could be important source of PCBs, especially PCB 11, in urban areas. 

6.1.5 Estimation of PCB loads and load reductions in urban areas 

When solely considering the dissolved phase, the estimated annual PCB loading from 

stormwater ranged from 0.58 to 6.52 g/ha-yr. The annual PCB mass load in the effluent from a 

bioretention cell was 0.08-0.40 g/ha-yr. This estimation indicated that BMPs have a potential to 

reduce dissolved PCBs by 0.50 to 6.44 g/ha-yr. For the particulate phase, bioretention have a 

potential to reduce PCB export by 0.36 to 0.76 g/ha-yr via TSS removal. The total load reduction 

of PCBs in both phases could be 0.94-7.28 g/ha-yr (91.5-98.4%). The estimated load reduction 

indicated that bioretention treatment was a promising way to remove PCBs from stormwater in 

order to meet PCB TMDLs. 

The sources and receptors of PCBs in urban areas are shown in Figure 6-1. The 

highlighted concentrations and masses result from this study. Due to release from old buildings, 

dense urban areas and residential areas are more important PCB sources than greenspace. The 

estimated annual loading of PCBs from stormwater ranged from 0.94 to 7.28 g/ha-yr. This 

indicated that stormwater was an important source of PCBs in this urban area. Road paints also 

contained a high concentration of PCBs, but the mass contribution from road paints was not 

quantified. Via adsorption and TSS removal, bioretention cells have the potential to remove 
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0.86-7.16 g/ha-yr PCBs (91.5-98.4%). In addition, PCBs retained in the bioretention media 

could be transformed biologically. The presence of putative organohalide respiring bacteria and 

PCB degrading bacteria indicated the potential of PCB transformation in the evaluated 

bioretention cell. However, the mass reduction of PCBs via biotransformation could not be 

quantified because the degradation products of PCBs were difficult to detect. Anaerobic 

organohalide respiration does not reduce the concentration of PCBs, instead it reduces the level 

of chlorination, which is a required step for aerobic PCB degradation to take place. Aerobic PCB 

degradation will reduce the concentration due to the cleavage of the ring structure and the 

subsequent mineralization to CO2. 

 

Figure 6-1. Sources and receptors of PCBs in urban area. 
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6.2 Recommendations for PCB removal 

Bioretention is effective in reducing the concentration of dissolved PCBs as well as PCBs 

sorbed to particles. PCBs (based on mass) were to a larger extent accumulated at the top layer of 

the bioretention media compared to deeper parts of the geomedia, thus shallow bioretention cell 

design would enhance PCB removal in stormwater. This also means that when maintaining the 

bioretention cell, replacement of the top layers (5-10 cm) should be performed more frequently 

than lower layers. This will also help maintain bioretention infiltration rates (Davis et al., 2009). 

With information on the two biotransformation pathways of PCBs, new SCM designs can 

be developed that can target PCB reduction without compromising removal of other 

contaminants in stormwater. Dynamic aerobic and anaerobic conditions would improve PCB 

biotransformation efficiency by first transforming the highly chlorinated PCBs into less 

chlorinated PCBs under anaerobic conditions and then further degrading these procedures under 

aerobic conditions, thus obtaining complete mineralization of the organic compounds. Anaerobic 

conditions could be achieved by implementing internal water storage in bioretention facilities. In 

other studies, internal water storage improved the rate of denitrification significantly thus a 

combined effect could be obtained (Igielski et al., 2019). A shallow wetland could follow a 

bioretention cell to retain and treat PCB contaminated effluent (Figure 6-2). At the same time, 

the less-chlorinated PCBs remaining in the bioretention media are ready to be degraded when the 

media becomes aerobic. 
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Figure 6-2. Design of a bioretention with internal water storage followed by a wetland to treat 

stormwater PCBs. 

6.3 Recommendations for further research 

            Microbial communities of active microorganisms capable of organohalide respiration can 

be studied and compared to DNA results. RNA results can provide more specific information 

about the microbial activity taking place in bioretention media. In addition, mesocosms can be 

set up using the collected bioretention media to examine if the microorganisms in bioretention 

are capable of PCB biotransformation. More research is needed to design a SCM with anaerobic 

condition preceding aerobic conditions that can promote effective PCB biodegradation. 

In this study, only two storm events were analyzed for PCBs. More stormwater samples 

as well as rainfall data should be collected. Concentrations of PCBs in both dissolved phase and 

particulate phase need to be compared to find out the contribution of each phase. With rainfall 

information as well as influent and effluent volumes, total PCB mass as well as annual PCB 

mass load can be refined. Reduction in PCB mass load can also be refined with the above 

information. Such information can help evaluate the effectiveness of bioretention in PCB 
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removal from urban stormwater runoff. Information from this future study will help complete 

figure 5-1 by estimating the mass load of PCBs from stormwater runoff in urban area more 

accurately.  

Relative abundance of PCB 11 was up to 90% in one of the yellow paints scratched from 

a yellow traffic line. Information on the concentration of PCBs in yellow paints from different 

manufacturers is needed. Leaching characteristics of paints also needs to be studied using 

synthetic stormwater to avoid interference from real stormwater. The paint with the least PCBs 

and lowest leaching possibility should be recommended for public use. Loading of PCBs from 

road paints as well as construction and demolition waste (C&DW) should also be estimated to 

better evaluate the contribution of different sources to PCBs in urban areas (Figure 5-1). Only by 

understanding the importance of various sources, more specific measures can be taken to control 

PCBs in urban areas. 
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