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Superconducing Radio-Frequency (SRF) cavities are the backbone of a new gen-

eration of particle accelerators used by the high energy physics community. Nowadays,

the applications of SRF cavities have expanded far beyond the needs of basic science.

The proposed usages include waste treatment, water disinfection, material strength-

ening, medical applications and even use as high-Q resonators in quantum computers.

A practical SRF cavity needs to operate at extremely high rf fields while remaining in

the low-loss superconducting state. State of the art Nb cavities can easily reach quality

factors Q > 2× 1010 at 1.3 GHz.

Currently, the performance of the SRF cavities is limited by surface defects which

lead to cavity breakdown at high accelerating gradients. Also, there are efforts to

reduce the cost of manufacturing SRF cavities, and the cost of operation. This will

require an R&D effort to go beyond bulk Nb cavities. Alternatives to bulk Nb are

Nb-coated Copper and Nb3Sn cavities. When a new SRF surface treatment, coating

technique, or surface optimization method is being tested, it is usually very costly



and time consuming to fabricate a full cavity. A rapid rf characterization technique

is needed to identify deleterious defects on Nb surfaces and to compare the surface

response of materials fabricated by different surface treatments. In this thesis a local

rf characterization technique that could fulfill this requirement is presented.

First, a scanning magnetic microwave microscopy technique was used to study

SRF grade Nb samples. Using this novel microscope the existence of surface weak-links

was confirmed through their local nonlinear response. Time-Dependent Ginzburg-

Landau (TDGL) simulations were used to reveal that vortex semiloops are created

by the inhomogenious magnetic field of the magnetic probe, and contribute to the

measured response.

Also, a system was put in place to measure the surface resistance of SRF cavi-

ties at extremely low temperatures, down to T = 70 mK, where the predictions for

the surface resistance from various theoretical models diverge. SRF cavities require

special treatment during the cooldown and measurement. This includes cooling the

cavity down at a rate greater than 1K/minute, and very low ambient magnetic field

B < 50 nT. I present solutions to both of these challenges.
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around the 4K Can. (d) Helmholtz-coils for active magnetic field
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Still can are shown here. Red lines correspond to the location of
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Fig. 4.1 Schematic of a scanning probe microscope (SPM). A probe is
scanned over the sample, by either moving the probe or the sam-
ple itself. The probe-sample interaction, which is different de-
pending on the type of microscope, produces a feedback signal
which is used to adjust the probe-sample separation distance d.
Both the interaction signal and the position are recorded and an-
alyzed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Fig. 4.2 (a) Schematic representation of a capacitively coupled probe and
an inductively coupled probe. A capacitively coupled probe can
be formed by connecting an STM tip to the inner conductor of
a coaxial cable. An inductively coupled probe can be created by
forming a loop using the inner conductor of a coaxial cable and
shorting it with the outer conductor. (b) Top view of surface cur-
rent distribution (K) induced on the surface of a superconductor
by a coaxial loop probe placed 12µm above the sample. The com-
putations have been performed with CST-Microwave Studio for
an input power of 1W . This figure is reproduced from [98]. . . . 66

Fig. 4.3 Intermodulation distortion (IMD) response (�) and surface resis-
tance (◦) vs the circulating power inside the resonator. The data
is measured on a MgB2 stripline resonator at T = 2.5K (Blue)
and T = 20K (Red). Note that the IMD is presented in a log
scale while the surface resistance is presented on a linear scale.
This figure is reproduced from Ref. [107]. . . . . . . . . . . . . . . 70

Fig. 4.4 (a) Gapped-ring core writer head and recording medium struc-
ture for longitudinal magnetic recording. (b) Single pole writer
head and recording medium structure with a magnetic under-
layer for perpendicular magnetic recording. A reading head that
utilizes the giant magneto-resistance (GMR) effect to measure the
magnetization of the recording layer is used in both cases. This
figure is reproduced from Ref. [111]. . . . . . . . . . . . . . . . . . 73

Fig. 4.5 (a) A picture of a Seagate magnetic writer probe, with glider and
transmission line. (b) The close-up view of the pads at the end
of transmission line that are used to make electrical connection
to the writer head. Pads 3− 4 are connected to the writer head.
(c) A close up view of the writer head, the red area highlighted
in (d). (d) the top view of the glider where the magnetic writer
head is deposited. (e) A close-up view of the glider. . . . . . . . . 75

Fig. 4.6 (a) SEM image of the Western Digital Dragonfly probe’s glider.
(b) Magnified view of the read and write heads shown with a red
box in (a). The reader and writer heads are separated by several
layers of magnetic shielding. . . . . . . . . . . . . . . . . . . . . . . 77

xv



Fig. 4.7 (a) HFSS simulation of a magnetic writer a height d above a per-
fectly conducting sample. We model the probe as a 200nm ×
200nm×3µm ferrite rod perpendicular to the surface, driven by
a 10 turn gold wire. This rod is part of a bigger magnetic yoke
structure. The diameter of the coil is 1.2µm and the probe is
d = 200nm away from the surface of the sample. Yellow arrows
indicate the direction of current flow. (b) Distribution of the mag-
nitude of surface current density |~Jsur f | on the sample surface.
The colorbar indicates the magnitude of surface current density
in a linear scale. The loop is excited by a I = 50mA RF current
at f = 1.5GHz frequency. The x and y axes are the same as the
ones defined in Fig. 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . 77

Fig. 4.8 (a) The shape of the main pole of the writer head as deduced
from [117] and [118]. (b) Schematic of the HFSS simulation.
The main pole and the return pole, both of which are simulated
as ferrites, are located 50nm above the superconductor, which is
modeled as a perfect conductor. (c) The full design of the writer
head as done in our HFSS simulation. The x and y axes are same
as those defined in Fig. 4.5. . . . . . . . . . . . . . . . . . . . . . . 79

Fig. 4.9 The spatial distribution on the surface of the superconductor sim-
ulated by the HFSS model shown in Fig. 4.8. The contour plot of
magnitude of the magnetic fields component normal to the sur-
face. The x and y axes are same with the ones defined in Fig. 4.5. 79

Fig. 4.10 (a) The spatial distribution of the magnetic field normal to the
surface under the writer probe, calculated using the Stoner−Wohlfarth
model for our type of write head. The probe is positioned 17nm
above the magnetic medium with no soft magnetic underlayer.
(b) The y−line cut at x = 0. (c) The x−line cut at y = 0. The x
and y axes are same with the ones defined in Fig. 4.5. . . . . . . 81

Fig. 4.11 (a) Schematic of the dry pulsed-tube cryostat manufactured by
Entropy Cryogenics. (b) Picture of the fully closed cryostat. (c)
Picture of the cryostat when vacuum can is taken off (d) Picture
of the cryostat with only 4K can. (e) Picture of the top plate of the
cryostat which houses the pulsed-tube, rf feed-through, dc wiring
feed-through and the pressure sensor. (f) Inside of the cryostat,
both rf conections and dc wiring are thermalized at each stage. . 82

Fig. 4.12 Photograph of the Experimental setup. The magnetic writer head
is connected to an SMA coaxial connector by directly soldering it
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Fig. 4.13 (a) Schematic of experimental setup. A microwave (MW) source
is used to generate an rf signal and feed it to the magnetic writer
probe. The sample response magnetic field is coupled back to
the probe and measured with a spectrum analyzer. (b) The pic-
ture of the measurement setup on the rack. (c) Sketch of the
probe-sample interaction. The magnetic probe is approximated
as a current loop producing perpendicular magnetic field induc-
ing screening currents on the surface of the sample. This current
generates a response magnetic field that is coupled back to the
same probe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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Fig. 8.2 Snapshot of 3 vortex semiloops at time t = 73τ j during the rf
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Fig. 8.7 Summary of TDGL solutions for an oscillating parallel magnetic
dipole above a superconducting surface in the presence of a lo-
calized defect at ~rd = 0 x̂+ yd ŷ−12ẑ, where yd is varied from 0 to
16ξ(0). (a)-(e) Plots of vortex semiloops in the y-z cross-section
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Fig. 9.4 The frequency dependence of the critical field Hc1(ω) calculated
using Eq. (9.8) for T/Tc = 0.75,0.80, 0.85,0.90 and 0.95. Here
τ j(0)/τ|∆|(T ) =0.027, 0.031, 0.038, 0.053 and 0.097 with∆(T )/∆(0) =
1.74
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Introduction to Superconductivity

1.1 History and Hallmarks

1.1.1 Discovery of “practically zero” resistance

Superconductivity is a macroscopic quantum state, a rare phenomena where

a material exhibits dissipationless transport of electrical current. Superconductivity

was discovered by Heike Kamerlingh Onnes, at Leiden University in the Netherlands.

Onnes was the first scientist to successfully liquefy helium, in July, 1908 [1]. Later, he

used his novel cooling capability to study the low temperature resistance of metals.

The goal was to test whether a metal cooled down to absolute zero (or very cold

temperatures, since absolute zero cannot be physically achieved) would have zero

resistance (suggested by Dewar), some residual resistance (Matthiessen’s rule) or zero

conductance, as Kelvin has suggested [2].

After performing several measurements with platinum, Onnes proceeded with a

measurement of mercury (Hg), which ended up being the first ever confirmed super-
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conductor [4, 5]. The historic entry in his laboratory notebook reads: “Kwik nagenoeg

nul” which can be translated as “Mercury[’s resistance] practically zero [at 3 K]” [1].

Onnes found that the resistance of mercury drops by a factor of ≈ 400 below 4.2 K

temperature (he later refined his measurement setup and measured much lower resis-

tance, see Fig. 1.1). The emergence of zero resistance by itself wasn’t very surprising,

in fact Onnes believed that Einstein’s theory of quantum oscillators [6] predicts such

zero resistance, however the drop in resistance was too big to be explained by Ein-

stein’s model [7]. Needless to say, Onnes made his team check for short circuits, but

each time the same drop in resistance at 4.2 K temperature was observed [1]. Onnes

presented the results at the first Solvay Conference [8, 9], and the field of "Supercon-

Fig. 1.1 The resistance of mercury (Hg) as a function of absolute temperature, reproduced
from Table.IV of [3]
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ductivity" was born, with perfect dc conductance being it’s first hallmark. Also the

first parameter was defined, the superconducting critical temperature Tc below which

the superconducting state emerges.

For the next 15 years after 1908, liquid helium was produced only in Onnes’s

lab in Leiden. Having a monopoly in helium liquefaction, the Onnes lab was the birth

place of other superconductors like lead (Pb), tin (Sn), thallium (Tl), indium (In) [10]

and became the mecca for physicists who wished to see the most advanced demonstra-

tion of superconductivity at the time: persistent current in a loop of superconducting

wire. Onnes dreamed about possible applications of his game changing finding, like

creating magnets which could generate 10 tesla magnetic fields, however he was dis-

appointed to find out in 1914 that applying magnetic field, or high current, in that

manner destroys the superconducting state. The field at which the superconducting

state is lost is called the critical field Hc (or Bc = µ0Hc). The current density at which

the superconducting state is lost is called the critical current density Jc, which is just

the current density at which the wire generates Hc at the surface. Both of these pa-

rameters are temperature dependent.

1.1.2 The Meissner Effect

The next breakthrough in superconductivity came from Walther Meissner’s lab

in Germany, after they were successful in liquefying helium as well. While trying to

study the nature of superconducting current, Meissner discovered that upon transition

into the superconducting state, the material spontaneously expels a static magnetic
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Fig. 1.2 Meissner effect in a superconductor, a superconductor cylinder inside a magnetic
field. Superconductors completely expel magnetic flux. (Source: The Feynman Lectures on
Physics, Volume III [11])

field [12] (Fig. 1.2). The perfect conductance already implied diamagnetism, but the

common belief at the time was that a superconductor would seal any magnetic field

present during the transition into the superconducting state, and screen any changes

afterwards. Meissner’s discovery, later dubbed the "Meissner effect", showed that su-

perconductors exhibit perfect diamagnetism, which is now the second hallmark of

superconductivity.

The third Hallmark of superconductivity is macroscopic quantum effects such as

flux quantization. Before describing this effect some theoretical framework has to be

introduced, therefore I postpone this discussion till Sec. 1.2.5.
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1.2 Phenomenological Theories of Superconductivity

1.2.1 Gorter-Casimir Two Fluid Model

Paul Ehrenfest believed that the transition into the superconducting state is a

thermodynamic phase transition and treated it as such. The Meissner effect was the

missing part of the puzzle, and led to the development of the Two Electron Fluids

model by Cornelius Gorter and Ehrenfest’s student Hendrik Casimir [13, 14]. This

model postulates the existence of two mixed fluids inside a superconductor, each with

it’s own velocity and inertia. The electron condensate behaves like superfluid and is

in a completely ordered state (has no entropy). Only a fraction of the total electrons

make up this condensate and are represented with ns/ne, where ns is the superfluid

electron density and ne is the total electron density. This fraction equals 0 above and

at the transition temperature (a.k.a critical temerature Tc) and goes to 1 as T → 0.

The rest of the electrons (nn = ne−ns) behave as a normal electron gas would. Gorter

and Casimir found that the following temperature dependence of ns provides a fairly

accurate representation of experimental results:

ns

ne
= 1−

T 4

T 4
c

. (1.1)

The Gorter-Casimir model gives an accurate and simple model for the thermodynamic

properties of superconductors, like the jump in specific heat at Tc and it’s temperature

dependence near Tc. Another important outcome was the temperature dependence
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of Hc, again near Tc only.

1.2.2 London Equations

The Gorter-Casimir two-fluids model explained the thermodynamics of super-

conductors but not the electrodynamics. The first phenomenological model for that

came from the London brothers (Heinz and Fritz London) who proposed two equa-

tions (known as the London equations) [15–17],

~E=
∂

∂ t

�

Λ~Js

�

and (1.2)

~B= − ~∇×
�

Λ~Js

�

, (1.3)

where ~E and ~B are electric and magnetic fields, ~Js is the superfluid current density

and Λ =
m

nse2
is a positive material-dependent constant. These two equations can be

combined into one using the definition of the magnetic vector potential (~E = −
∂ ~A

∂ t

and ~B= ~∇× ~A),

~Js = −
1

Λ
~A . (1.4)

Note that Eq. (1.4) has an implicit gauge choice, namely the Coulomb gauge

where ~∇ · ~A = 0. A good motivation for Eq. (1.4) comes from quantum mechanics.
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The canonical momentum can be written as ~P =
�

m~v+ e~A
�

. In order to get a zero-

momentum state the average velocity of the condensate should be:

〈 ~vs〉= −
e

m
~A . (1.5)

Given ~Js = nse 〈 ~vs〉 you get Eq. (1.4). Using Eq. (1.4), Ampere’s law ( ~∇× ~B = µ0
~Js)

and the vector identity ~∇× ~∇× ~B= ~∇×
�

~∇ · ~B
�

−∇2~B= −∇2~B since ~∇· ~B= 0 we get:

∇2~B=
1

λ2
L

~B or ~B(z) = ~B(0)e−z/λL , (1.6)

where λL =
p

Λ/µ0 =

√

√

√

√

√

m

µ0nse2
is the London penetration depth and ẑ is the nor-

mal to the surface of the superconductor (z = 0). Physically the London equations

imply that if a superconductor is exposed to magnetic field, it will generate surface

currents which will shield the magnetic field from it’s interior. The surface currents are

concentrated on a length scale given by the penetration depth λL. The temperature

dependence of the penetration depth comes from the temperature dependence of ns

as was introduced in Sec. 1.2.1. As T → Tc, ns → 0, hence λL →∞, and the super-

conductor gradually looses it’s ability to screen magnetic field. Note that the existence

of Cooper pairs was unknown thus the values for mass, charge and number density in

the equation of penetration are off by a factor of 2 as I will discuss in Sec. 1.3.
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1.2.3 Ginzburg-Landau (GL) Theory

In 1950, Soviet physicists Vitaly Ginzburg and Lev Landau proposed a phe-

nomenological model of superconductivity [18]. The starting point of this theory was

London’s proposal that the superconducting state is a macroscopic coherent quantum

state [19]. Both London theory and the Gorter-Casimir model failed to describe the

destruction/suppression of superconductivity by currents/magnetic field (While the

Gorter-Casimir model incorporates the existence of a critical field Hc, it can’t explain

the suppression of superconductivity at fields close to, but lower than, Hc). Hence the

goal of the GL model was to fix this shortcoming of London theory.

Ginzburg and Landau introduced a complex order parameter Ψ(~r) which rep-

resents the superconducting state. The order parameter is a measure of the local

strength of the superconducting state and is defined as |Ψ(~r)|2 = ns(~r) where ns(~r)

is the superfluid density at position ~r, as was introduced in Sec. 1.2.1. Near Tc the

thermodynamic free energy density FGL can be expanded as a power series in |Ψ|.

Spatial variations in Ψ were introduced through
ħh2

2m

�

� ~∇Ψ
�

�

2
and magnetic effects were

included by replacing ~∇→ ~∇− i
e

ħh
~A(~r) as in the Schrödinger equation,

Fsc(~r) =Fn(~r)+α(~r, T )|Ψ|2+
β(~r, T )

2
|Ψ|4+

ħh2

2m

�

�

�

�

�

�

�

�









~∇−
ie

ħh
~A









Ψ

�

�

�

�

�

�

�

�

2

+
1

2µ0

�

� ~∇× ~A− ~Ba

�

�

2
,

(1.7)
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where Fsc is the free energy density of the superconducting state, Fn is the free en-

ergy density of the normal state and α(~r, T ) and β(~r, T ) are the temperature (T) and

position-dependent phenomenological expansion parameters, ~A(~r) is the magnetic

vector potential, ~Ba = ~Ba(~r, t) is the externally applied magnetic field, and i =
p
−1.

The GL equations can be obtained by minimizing the thermodynamic free energy den-

sity Eq. (1.7). This procedure is outlined in great detail in Sec. 7.1.1. In the GL model

the superfluid current is given by [20]:

Js =
e2

m
|Ψ|2









ħh

e
~∇θ − ~A









, (1.8)

where θ is the phase of the order parameter. This is the gauge-invariant version of

Eq. (1.4).

While the Ginzburg-Landau model was derived as a phenomenological model, in

1959 Gor’kov was able to derive the same equation from BCS theory (to be introduced

in Sec. 1.3) in the limit where the temperature is close to the superconducting critical

temperature [21] (Described in more detail in Sec. 7.1.2). Due to the simplicity of the

GL model, and it’s ability to analyze inhomogeneous superconductors with defects

and interfaces, etc., researchers continue to use it to analyze complex phenomena in

superconductors even after the introduction of the BCS theory.

9



1.2.4 Coherence Length

The London equations postulate that the value of the current density at a given

point depends on the value of magnetic vector potential ~A solely in that point. Pip-

pard studied the effect of the mean free path on the London penetration depth and

found that the addition of impurities considerably alters the penetration depth without

producing a corresponding change in the thermodynamical properties of the material

[22]. To account for the effect of mean-free path Pippard introduced the coherence

length ξ, to quantify the length scale over which the superconducting wavefunction

Ψ can vary. Inspired by Chamber’s nonlocal generalization of Ohm’s law, Pippard pro-

posed the following replacement for Eq. (1.4):

~Js(~r) = −
3

4πξ0Λ

∫

V

�

�

~r− ~r′
�

· ~A
�

~r′
�

�

�

�~r− ~r′
�

�

4

�

~r− ~r′
�

e−|~r−~r′|/ξd ~r′ . (1.9)

The coherence length ξ is related to mean-free-path l and the coherence length

of the pure material ξ0 through ξ−1 = ξ−1
0 + l−1. From the Heisenberg uncertainty

principle Pippard estimated the pure material coherence length (usually called Pip-

pard coherence length) to be ξ0∝ ħhvF/kB Tc, where vF is the Fermi velocity; ħh and kB

are fundamental constants of nature.
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1.2.5 Flux quantization

Flux quantization was first predicted by London in 1948 [19], although he had

a missing factor of 2 since his prediction preceded the discovery of Cooper pairs (see

Sec. 1.3), the electron pairs which are fundamental for superconductivity. The argu-

ment is very simple. Consider a closed superconducting ring. The current in any point

within the ring is given by Eq. (1.8). The total magnetic flux through the ring can be

calculated as follows:

Φ≡
∫

S

·~B ~ds =

∮

C

~A · ~dl =

∮

C









ħh

e
~∇θ −

m~Js

e2 |Ψ|2









· ~dl , (1.10)

where S is a surface that terminates on a closed loop C . If the contour for the integral

is chosen deep inside the superconductor, Js = 0 and
∮

~∇θ · ~dl = 2πN , where N is a

positive or negative integer, or zero. Hence total flux inside a superconductor has to

be quantized in units of h/e. Later, when BCS theory was published it was thus clear

that the charge e should be replaced by e∗ = 2e due to the charge of a Cooper pair,

giving a clear definition for a superconducting flux quantum Φ0 = h/2e.

Flux quantization was shown experimentally in two independent studies by

Deaver and Fairbank [23], and Doll and Nabauer [24] both of which were done in

1961. It was the first demonstration of the influence of quantum mechanics on a

macroscopic scale.
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1.2.6 Superconducting Vortices

Right after the introduction of the GL model (Sec. 1.2.3) , one of Landau’s stu-

dents, Alexei Abrikosov, classified superconductors into Type I and Type II based on

their response to an applied magnetic field. A type I superconductor completely ex-

pels magnetic field until a critical magnetic field Hc level is reached above which the

superconducting state is lost. But when a type II superconductor is subjected to an

external magnetic field above its lower critical field Hc1, it enters into the vortex state,

and when the magnetic field amplitude reaches the upper critical field Hc2, the super-

conducting state is lost. The vortex state is a state where a mixture of superconducting

Fig. 1.3 The structure of an Abrikosov vortex in a thin film superconductor under the influ-
ence of magnetic field perpendicular to the surface of the film. The order parameter is sup-
pressed in the core which has the size of ≈ ξ and magnetic field penetrates laterally through
the superconductor on a length scale≈ λ. The total magnetic flux in a vortex is exactly Φ= Φ0.
The supercurrent flows in the region between the normal core and the rest of the supercon-
ductor. Source: Applied Superconductivity and Cryoscience Group, University of Cambridge,
Department of Materials Science and Metallurgy [25].
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domains and Abrikosov vortices can coexist [26].

An Abrikosov vortex is made up of supercurrent circulating around a normal core

(Fig. 1.3). When a superconducting vortex system is subjected to an electric current, it

experiences a Lorentz force perpendicular to the direction of the current and magnetic

field. The Lorentz force causes the vortex to move, creating an effective friction force

due to flux motion [27]. The friction force is associated with quasiparticle excitations

in the vortex core due to their interaction with the lattice, and generally increases with

vortex velocity [28]. This friction force leads to a finite energy dissipation although

the losses can be orders of magnitudes lower when compared to any normal state

conductor.

1.2.7 The Josephson effect

In 1962, Brian Josephson, who was a graduate student at Cambridge University

at the time, published his paper on tunneling between superconductors separated by

an insulating barrier [29]. He postulated that since the superconducting state is a

quantum state, it should be able to leak Cooper pairs through a thin barrier between

two superconductors, resulting in a current which is proportional to the sine of the

phase difference between the two superconductors, the effect which was later named

"the Josephson effect".

Feynman has provided an elegant discussion of the Josephson effect based on

quantum mechanics [11]. Given a junction with complex order parameters ΨL =

|ΨL| eiθL on the left and ΨR = |ΨR| eiθR on the right (as in Fig. 1.4), the two supercon-
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Fig. 1.4 Schematic of a Josephson Junction (JJ): Two superconductors are separated by a
thin insulator of thickness L ≤ ξ.

ducting order parameters can be related as follows:

iħh
∂ΨL

∂ t
= ULΨL + KΨR and

iħh
∂ΨR

∂ t
= URΨR + KΨL ,

(1.11)

where K is the coupling constant depending on the geometry of the junction, UL and

UR are the potential energies on two sides of the junction. Setting the phase differ-

ence across the junction as δ(t) = θR(t) − θL(t) and the potential difference across

the junction V = (UR − UL)/e∗ one gets the Josephson equations for the current and

voltage:

J = Jc sinδ and

V = Φ0

∂ δ

∂ t
,

(1.12)

14



where Jc =
2K

ħh
|ΨL| |ΨR| and K is the coupling constant which depends on the geometry

of the junction (area, thickness).

Josephson tunneling is an example of a quantum mechanical phenomena of "tun-

neling through a potential barrier" on a macroscopic scale, hence it is a "macroscopic

quantum effect". The discovery of JJs is as revolutionary as the invention of transis-

tors was in semiconductor technology. Combining two or more JJs in a loop creates a

superconducting quantum interference device (SQUID) which is one of the most sensi-

tive magnetometers to date. Today JJ’s are in the heart of superconducting qubits, the

building blocks of superconducting quantum computers, and SQUIDs made of JJs are

at the core of superconducting electronics, mainly rapid single flux quantum (RFSQ)

devices. Feynman foresaw a future where the usage of quantum mechanics is main-

stream, and concluded one of his lectures on superconductivity with the following

quote [7]:

“...this means that the quantum mechanical laws which have been buried

in the esoteric works of theoretical physicists who deal only with atoms, must

now become the common knowledge of technicians who are going to work with

electric circuits and so forth.”

– Richard Feynman

I myself have already reaped the benefits of this technology. As I will mention

in Chapter 3, an extremely sensitive magnetometer based on JJs was used to survey

the ambient magnetic field in-situ inside the dilution refrigerator at mK temperatures.
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I will also be using the Josephson effects to model the nonlinear response produced

by the weak links on the surface of Nb in Chapter 6.

1.3 Bardeen, Cooper and Schrieffer (BCS) Microscopic The-

ory of Superconductivity

All the theories described in Sec. 1.2 were "phenomenological", i.e. based on

a minimum number of assumptions inspired by observed phenomena. The existence

of an "order parameter" was postulated, but no microscopic justification was given.

For almost 50 years after the discovery of the superconductivity, there was no mi-

croscopic theory capable of fully describing it. And it was definitely not for lack of

trying, the most renowned physicists of the time, great names in science like Joseph

John Thompson, Albert Einstein, Niels Bohr, L’eon Brillouin, Ralph Kronig, Felix Bloch,

Lev Landau, Werner Heisenberg, Max Born, and Richard Feynman [7] have tried to

postulate a microscopic theory, but failed [30]. Einstein famously said [31]:

“Given our ignorance of quantum mechanics of composite systems we are

far away from being able to convert these vague ideas into a theory.”

– Albert Einstein

However each of these failed attempts provided an inspiration for the next step.

In 1950 Reynolds et al. [32] and Maxwell [33] independently studied several

isotopes of mercury and found that the critical temperature Tc is a function of the
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Fig. 1.5 An electron (red circle  ) moving through the ion lattice (blue circle  with +
signs) distorts the lattice. Because of the slow ion dynamics the distorted lattice then attracts
the second electron moving in the opposite direction later in time, resulting in net attractive
electron-electron interaction.

atomic mass M , with the lighter isotopes having higher critical temperatures Tc ∝

M−1/2. It was clear that any microscopic theory should include the effect of the lattice.

Bardeen and Pines studied the role of electron-electron interactions in determin-

ing the electron-phonon interaction in metals [34]. They found that there could exist

a weak attractive phonon-induced interaction between electrons. If we put it simply,

when an electron moves through the lattice, it would deform the lattice, by attract-

ing positive ions. When the second electron passes through the lattice, it would be

attracted to ions in the deformed lattice, resulting in net attraction between electrons

Fig. 1.5. This is referred to as a retarded interaction.

In 1956, Cooper showed that if the interaction between two electrons near the

Fermi level is attractive, and that interaction is considered on the background of the

Fermi sea, those electrons can form a bound state, no matter how weak that interaction

force is [35, 36]. The bound state means that the total energy of two electrons is
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smaller than the energy of two independent free electrons, thus these electrons are

bonded together in a pair, usually referred to as Cooper pair. The Cooper pair is the

central ingredient of BCS Theory.

The next step in the development of the BCS theory came from Bardeen’s student

Schrieffer, who found the right wave function to describe the superconducting state.

Now all ingredient’s were ready for the development of one of the most outstanding

intellectual achievements in theoretical physics, the BCS theory.

According to BCS, electrons in the superconducting state form into Cooper pairs

and condense into a coherent ground state. This behaviour is very similar to the

behaviour of Bosons, but the onset starts at the critical temperature Tc. The ground

state of the condensate and the energy of the quasiparticle excitation states with the

lowest energy are separated by 2∆BCS, where ∆BCS is the BCS energy gap, which can

be computed from the self-consistent gap equation

1= ν(0)Ve f f

∫ ħhωD

0

dε
Æ

ε2 +∆2
BCS

tanh









Æ

ε2 +∆2
BCS

2kB T









, (1.13)

where ν(0) is the density of states (DOS) at the Fermi Energy, Ve f f is the interaction

potential (which is assumed to be constant) that creates Cooper pairs and ωD is the

Debye frequency (cutoff frequency for the lattice vibrations). At T = 0 Eq. (1.13) can

be solved analytically,

∆BCS(0) =
ħhωD

sinh
�

1/ν(0)Ve f f

� . (1.14)
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Fig. 1.6 The temperature dependence of BCS superconducting gap ∆BCS calculated from
Eq. (1.13).

Clearly, the energy gap is related to the electron-phonon interaction, but not in a form

that could be expanded in a power series, hence the perturbation theory that was used

by many others failed.

The zero temperature BCS energy gap ∆BCS(0) can be related to the critical

temperature Tc as follows:

∆BCS(0) = 1.764kB Tc . (1.15)

These results are universal (independent of material), but are derived under the

weak-coupling approximation, i.e. ν(0)Ve f f � 1 . Nevertheless, many materials have

been experimentally tested to have ∆BCS(0)/kB Tc ratio close to 1.764. The tempera-

ture dependene of the BCS gap is plotted in Fig. 1.6 and can be best approximated as

∆BCS(T )≈ 1.74∆BCS(0)









1−
T

Tc









1/2

near Tc.

In reality BCS theory is very simplistic because it doesn’t include much of the
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details of a material’s properties. In order to work with real materials, like Nb, one

has to account for strong-coupling effects, which will result in slight modifications of

the BCS equations. The strong coupling effects can be included in theory through the

electron-phonon spectral function αω
2F(ω)which can be obtained from tunneling ex-

periments. The spectral function αω
2F(ω) contains the essential information related

to the electron-phonon coupling and characterizes the scattering of quasiparticles that

is mediated by the exchange of a phonon with energy ħhω. One of the proposed equa-

tions for the ratio of the order parameter to the critical temperature was derived by

Mitrovic, Zarate and Carbotte [37] as follows:

2∆BCS(0)

kB Tc
= 3.53









1+ 12.5









kB Tc

ħhωln









2

ln









ħhωln

kB Tc

















, (1.16)

where
kB Tc

ħhωln
is an indication of coupling strength and ωln is the averaged phonon

frequency:

ωln ≡ ex p

















∫∞
0

dω

ω
αω

2F(ω)ln(ω)

∫∞
0

dω

ω
αω2F(ω)

















. (1.17)
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1.4 Applications

Superconductor technology is widely used in industrial applications where high

current and low loss are required. With technological advancements in the fabrica-

tion of high-quality superconducting materials and significant reduction in cryocooler

prices, superconductor-enabled devices like magnetic resonance imaging (MRI), high

performance microwave and radio frequency (RF) filters, low-noise and quantum-

limited amplifiers, or fast digital circuits based on rapid single flux quantum (RSFQ)

logic devices became feasible [38, 39].

Another useful large-scale application of superconductors can be seen in particle

accelerators. Extremely low losses in superconducting radio frequency (SRF) cavities

allows one to use them to accelerate particles in continuous wave (cw) mode, rather

then using copper cavities which are used in pulsed mode. SRF cavities will be dis-

cussed in great detail in Chapter 2.
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2

Superconducting Radio-Frequency Cavities

2.1 The International Linear Collider

The biggest discovery in particle physics in the last decade was the discovery of

the Higgs boson [40–42], a particle named after Peter Higgs who received the 2013

Nobel Prize in physics "for the theoretical discovery of a mechanism that contributes

to our understanding of the origin of mass of subatomic particles". The Higgs boson

was the final particle predicted by the Standard Model. The Standard Model of par-

ticle physics is the best self-consistent model that encapsulates our understanding of

fundamental particles and fundamental forces (except gravity) [43]. However, the

Standard Model leaves certain issues of particle physics (for example dark matter, the

excess of matter over antimatter) unaddressed [44, 45].

The Higgs boson has a central role in the Standard Model and is responsible for

the generation of the masses of all elementary particles [46]. The properties of the

Higgs boson are precisely specified by the Standard Model, hence precise and detailed

study of these properties is needed to validate these predictions, or to formulate exten-
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sions that would account for any observed discrepancies between the experimentally

observed properties and Standard Model predictions.

Currently the Higgs boson is being studied at the Large Hadron Collider (LHC)

in Geneva, Switzerland. As the name suggests, it’s a collider where protons are ac-

celerated and set to a collision course. In reality, the subconstituents of the proton,

quarks and gluons, are colliding. The true initial states of the colliding particles are

thus unknown and model-dependent assumptions are needed to analyze the data, re-

sulting in relatively low-precision analysis. Furthermore, there are a lot of Standard

Model events in the background that have to be subtracted from the data, which adds

to the noise [47].

The proposed International Linear Collider (ILC) is designed as a 200−500GeV

linear electron-positron collider, both of which are fundamental particles with known

properties. The ILC will be able to perform model−independent precise measure-

ments of the Higgs boson’s properties. The ILC can also be used to study some unique

properties of the Higgs boson, for example one could measure and verify whether it

is indeed a zero-spin particle, as the Standard Model predicts [44, 48].

Superconducting TESLA style cavities will be the heart of the ILC [50]. A super-

conducting TESLA cavity (see Fig. 2.1) is a 9-cell combination of Nb superconducting

radio frequency (SRF) cavity resonators each having it’s lowest TM mode resonating

at 1.3 GHz [51]. These cavities will be kept at 2K by superfluid helium. Electrons will

be accelerated via the radio-frequency (rf) electric fields inside these cavities. Approx-

imately 16000 Nb SRF cavities will be employed in the ILC [52, 53].
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Fig. 2.1 A superconducting TESLA cavity made from bulk Nb. Source: Fermilab ILC−SRF
R&D webpage [49].

2.2 Superconducting Radio Frequency (SRF) Cavity

A Superconducting Radio Frequency (SRF) cavity is an rf resonator cell made

of superconducting material. For the purposes of this thesis an SRF cavity refers to

elliptical cells used in a TESLA cavity, [51] which are best suited for usage in high-

energy linear accelerators (linacs) where charged particles move at nearly the speed

of light. Nb is the most dominant material used in SRF applications because it has

the highest superconducting critical temperature (Tc = 9.3K) and super-heating field

(Bsh ≈ 240mT) among the elemental superconductors at ambient pressure, while

being a good heat conductor at typical SRF operating temperatures [54].

During normal operation an SRF cavity is subjected to high rf magnetic field

parallel to the internal superconducting surface. The highest electric field is along

the accelerating axis and the highest magnetic field on the equator of the cylindrical

cavity as shown in Fig. 2.2. In a TESLA cavity 9 such cells are combined together and

operated in a "πmode" where the rf field oscillation phase shift between each adjacent
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Fig. 2.2 Cross section of a single cell cylindrical Superconducting Radio Frequency (SRF)
cavity resonator. The fundamental mode of this resonator corresponds to the case where rf
magnetic field amplitude peaks at the equator and the rf electric field amplitude peaks along
the symmetry axis of the cavity.

cell is π radians. This allows a charged particle bunch to continuously accelerate.

2.3 Surface Resistance

One of the key objectives in SRF cavity operation is to maximize the acceleration

while minimizing the dissipated power in the cavities. Unfortunately, in a supercon-

ductor only the dc electrical resistance goes to zero. In Sec. 1.2.1, I described the

existence of the normal fluid, a portion of the electrons which remain in the normal

state. The microscopic theory also describes the existence of some number of unpaired

electrons which are called quasiparticles, the amount of which exponentially depends
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on temperature, at least ideally. Any rf electromagnetic field will cause dissipation in

a superconductor due to the finite inertia of the quasiparticles. For a conventional su-

perconductor with a uniform gap on the Fermi-surface (s-wave superconductor) like

Nb, the BCS surface resistance can be approximated at low temperatures as follows

[55–57]

RBCS(T )≈
µ0

2σnω
2λ3∆

kB T
ln









2.246kB T

ħhω









ex p









−
∆

kB T









, (2.1)

where σn is the normal state conductivity, ω is the frequency of the rf field, λ is the

effective penetration depth, ∆ is the BCS energy gap and T is temperature. This

approximation is valid when T < Tc/2 and ħhω<∆.

Eq. (2.1) indicates that as T → 0 the resistance should go to zero exponentially.

However, experimental evidence suggests that there is some temperature-independent

residual resistance which never goes away, see Fig. 2.3. For this reason it is customary

to split the experimentally measured surface resistance into a BCS resistance and a

residual resistance,

Rs = RBCS + Rres . (2.2)

This should not be interpreted as if Rres cannot be explained within the frame-

work of BCS, per se, rather it is merely used to quantify the deviation of surface resis-

tance from Eq. (2.1), independent of the physical reasons behind it.

Eq. (2.1) show the BCS surface resistance is proportional toω2 hence one could

try to operate at lower frequencies to minimize loss. However, the internal surface
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Fig. 2.3 The surface resistance of an SRF cavity at 1.3 GHz frequency as a function of tem-
perature. The T → 0 limit shows a saturation of resistance contrary to what is predicted by
Eq. (2.1). This figure is reproduced from [51].

area of the cavity (A) is inversely proportional to the resonant frequency A∝ ω−1
res,

and Rres is frequency independent, thus at lower frequencies RBCS � Rres. To lower

the resonant frequency ωres, one needs to increase the surface area A, consequently

increasing the total loss. As a result, the optimal resonant frequency range for an SRF

cavity is f = 0.3− 3GHz.

2.4 Q-factor

The dissipation of the cavity is quantified through the "quality factor" Q defined

as the number of rf cycles it takes to dissipate the energy stored in the cavity U , by a
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factor of 1/e [58, p.45]:

Q =
ωU

Pd
=
ωµ0

∫

V
|H(~r)|2 dV

Rs

∮

S
|H(~r)|2 ds

=
G

Rs
, (2.3)

where Pd is the power dissipated in cavity walls, ω is the resonant frequency, G is

the geometry constant and the surface integral is taken over the interior surface of

the cavity of volume V . For a 1.3GHz Nb SRF Tesla cavity G = 270Ω [51] and given

the fact that state of the art SRF cavities regularly reach Q > 2× 1010, it corresponds

to about Rs(Nb) = 15nΩ surface resistance at T = 2K . For comparison the surface

resistance of copper at T = 2K and f = 1GHz is about Rs(Cu) = 1mΩ [59], which is

about 106 times larger then Rs(Nb), demonstrating the superiority of superconducting

rf cavities.

2.5 Residual Resistance

The residual resistance can be caused by several types of extrinsic sources such

as trapped magnetic flux, magnetic impurities, dislocation tangles, non-equilibrium

quasiparticles [60] or various types of surface defects. There are some efforts to ex-

plain the residual resistance within the framework of BCS theory by attributing it to

the existence of sub-gap states due to nonideal surfaces [61]. Also the Fermilab group

was able to show that at low powers the cavity loss can be attributed to the existence

of two-level-systems (TLS) on the inner surface of the cavity [62, 63], most likely in
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the native oxides of Nb.

Specifically, Gurevich and Kubo [64] calculated the surface impedance of a su-

perconductor with a thin dirty layer on the surface. They assumed this dirty layer

would broaden the gap peaks in the density of states (DOS) and create subgap states

[65]. The Gurevich/Kubo model shows that as a result of gap broadening, the BCS

surface resistance no longer has exponential dependence given by Eq. (2.1), even at

T � Tc. According to this model, the temperature dependences of surface resistance

calculated for different values of ΓD ynes, which parametrizes the smearing of the gap

(see Eq. (3.2)), overlap at higher temperatures and show measurable difference only

at very low temperatures (see Fig. 3.1). Thus, measurement of Nb SRF cavity surface

resistance at very low temperatures is needed to investigate the possible mechanisms

responsible for the residual loss. This will be the topic of Chapter 3 where I describe

the system I built to measure the surface resistance of SRF cavities down to mK tem-

peratures.

2.6 Q-disease

In the early days of SRF research a Nb SRF cavity would be first tested in a

vertical stand which could rapidly cool down the cavity, and then later installed hor-

izontally in an accelerator module. It was observed that the quality factor measured

in a vertical test and the quality factor measured in the accelerator module would be

inconsistent, with the latter being much lossier. This effect is usually referred to as
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"Q-disease" [66] by SRF scientists.

It was observed that high purity Nb is more susceptible to Q-disease. Also it was

noted that Q-disease could be mitigated if the cavity is warmed up to room tempera-

ture and cooled down to cryogenic temperatures rapidly. Halbritter et al. performed

one of the most consequential experiments: A cavity was cooled down and held at

several different intermediate temperatures for 24 hours. It was found that not all

intermediate temperatures can cause the Q-disease, but there exists a certain "Danger

Zone" corresponding to T between 75K and 150K (see Fig. 2.4) [67] where the in-

crease in losses occured. To avoid Q-disease, one must perform rapid cooldown and

try to avoid remaining in the danger zone for more than one hour [66].

Current agreement in the SRF community is that hydrogen migration is respon-

sible for the Q-disease. At around T = 120K hydrogen is very mobile and can diffuse

to a distance of about 0.3mm in one hour. Hydride islands thus form near the sur-

face of Nb adding to the surface loss. There are some recent experimental efforts to

directly observe the formation of these hydrides [68]. The Q-disease can be avoided

if the cavity is baked at T = 500−900°C for several hours. A more detailed overview

of the Q-disease is given in Ref. [66]. The Q-disease is of concern to me, because to

cool down an SRF cavity to mK temperatures, I mount it inside a dry dilution refriger-

ator with limited cooling power. Without any modifications, at best, the cooling rate

of 8K/hour was achieved in the danger zone. To increase the cooling rate I built a

custom liquid nitrogen precooling system that I will discuss in Chapter 3.

30



2.7 Trapped Magnetic Flux

Nb is a type II superconductor and can host magnetic vortices. One way vortices

can form is due to the external magnetic field that is trapped during the cool down

procedure. Although the cavities are usually shielded from ambient magnetic field, no

shielding can produce exactly zero magnetic field. There always exists a small range

near Tc where the ambient field H > Hc2(T ), offering the opportunities for vortices

Fig. 2.4 The quality factor as a function of accelerating gradient for a cavity which is held at
T = 60K , T = 75K , T = 100K , T = 125K and T = 175K for 24 hours and then cooled down
for testing. The quality factor of the cavity has severely degraded after being held at T = 75K
or T = 100K , while holding the cavity at T = 60K , T = 125K or T = 175K seems to have no
effect on the cavity performance. This figure is reproduced from [67].
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to form. These vortices can later be pinned due to the impurities within the bulk of

the cavity [69, 70] and can cause dissipation when subjected to rf magnetic field [71,

72].

Recent studies have shown that the amount of trapped magnetic flux depends

on the rate at which the cavity is cooled down through the critical temperature and

the level of the ambient magnetic field [73]. Decreasing the trapped magnetic flux

leads to better cavity performance.

2.8 Surface Defects and Vortices

Finally, the high-accelerating gradient performance of Nb SRF cavities is often

limited by breakdown events below the intrinsic limiting surface fields of Nb. These

breakdowns are often caused by point-like surface defects at discrete locations inside

the cavity [74, 75]. One limiting scenario is that a surface defect can facilitate the

entrance of vortex-semiloops which can lead to dissipation. The same defects can also

act as a pinning site for a trapped vortex.

Lately, various optical and other inspection techniques for cavities have been de-

veloped. For example, a temperature map of the cavity exterior is taken and hot spots

are identified [76, 77]. Then a high-resolution optical image of the cavity interior is

taken and pits and other defects are identified [75, 78]. Later, the correlation between

defects and hot spots is studied. As an example, a theory that describes the relation

between the breakdown field and the geometry of surface pits has been developed
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[79].

Currently, studies that focus on elemental composition and purity of the material

[80], dc critical magnetic field or superheating field [81], postmortem microanalysis

of hot and cold spots [82],[83] or various sophisticated optical inspection tools [75,

78] make up the backbone of SRF material science.

These efforts have resulted in advancements in cavity treatment recipes that

have led to SRF cavities with high gradients and high-quality factors > 3 × 1010 at

1.3 GHz and 2K. Sadly, there is a lack of detailed understanding of the causal links

among surface treatments, defects, and ultimate rf performance at low temperatures,

and there are many theoretical models being proposed to address the issue [56, 62,

69, 84]. Cavity uniformity will be one of the key requirements of the ILC; thus, the

ability to mass produce high-quality SRF cavities and diagnose them rapidly is very

important.

Currently, it is not possible to locally and directly probe rf performance of the

active interior surface of a cavity at low temperatures. That is why we built a near-field

magnetic microwave microscope that can be used to locally characterize the surface

in the cryogenic rf regime. The same microscope can also be used to find and classify

defects based on their nonlinear response signature. The microscope and the data will

be presented in Chapters 4 and 5.
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2.9 Beyond Nb

There is also interest in looking beyond Nb to superconductors like MgB2, Nb3Sn[85]

and other superconductor coatings, or the possibility of reducing the cost by using Nb-

coated copper cavities. For instance N b3Sn has higher critical temperature than Nb

Tc(Nb3Sn)= 18K , making it possible to operate accelerators at T = 4.2K inside ordi-

nary liquid Helium, rather than spending money and effort to get to T = 2K . While

N b3Sn is one of the best candidates to replace Nb in future particle accelerators, cur-

rently the progress is limited by surface defects and challenges in cavity fabrication

[85].

There is also a proposal to create superconductor/insulator multilayer thin-film

coatings with enhanced rf critical fields [86]. However, often it is very costly and/or

difficult to build full-size SRF cavities with high-quality versions of these new materials

to see if they really are superior. Hence there is a need to quantitatively examine these

materials at high frequencies and low temperatures using simpler methods that effec-

tively reproduce the demanding conditions found in operating SRF cavities, yet again

demonstrating the need for novel characterization techniques. Both the magnetic mi-

crowave microscope that I will introduce in Chapter 4, and the parallel plate resonator

that I will introduce in Chapter 11, can be very usefull tools for rf characterization of

superconductors, without the need to build a fully-functioning cavity.
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3

SRF Cavity Measurements at mK Temperatures

3.1 Motivation

There are several hypotheses regarding the origins of residual resistance in Nb

SRF Cavities. For example, in a recent article [64] Gurevich and Kubo showed that

subgap states in Nb could be responsible for the saturation of the surface resistance at

low temperatures.

The superconducting density of states (DOS) νs(E) for a BCS superconductor is

given by [36, p.70]

νs(E) =























ν(0)
E

p
E2 −∆2

if E >∆

0 if E <∆

, (3.1)

where ν(0) is the the DOS at the Fermi energy in the normal state and∆BCS is the BCS

energy gap. Eq. (3.1) predicts that there is a singularity at E = ∆BCS, and there are

no available states to occupy at energies below the superconducting gap. However
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I-V curves measured through tunneling experiments into superconductors showed no

such singularity. This is because the simple BCS picture does not account for the re-

tarded nature of the electron-electron attractive interaction. The quasiparticles have

a finite recombination time, which can be approximately accounted for by adding an

imaginary part to the energy E→ E− iΓD ynes [65], where ΓD ynes is the phenomenolog-

ical parameter used as a fitting parameter. The modified equation for νs(E) is given

by the phenomenological Dynes formula

νs(E) = Re















ν(0)

�

E − iΓD ynes

�

Ç

�

E − iΓD ynes

�2
−∆2

BCS















. (3.2)

Eq. (3.2) shows that the singularity in the DOS is now smeared out, and now there

are some states available even for E <∆BCS, and these are called the subgap states.

Gurevich and Kubo showed that a finite ΓD ynes value would lead to a nonzero

surface resistance even as T → 0. The low temperature surface resistance as a func-

tion of temperature calculated for several values of ΓD ynes/∆BCS is shown in Fig. 3.1.

Note that for T > ∆BCS/8kB the three curves converge, thus one cannot use the ex-

perimental data in that range to get a sense of the value of the ΓD ynes parameter. For

example, It would be very helpful to know how various surface treatment recipes af-

fect ΓD ynes. Currently SRF cavities are usually tested inside cryomodules filled with

superfluid helium. The lowest temperature one can reach there is about T ' 1.8K ,

which is equivalent to ∆BCS/kB T ≈ 10. This is the main motivation for this project,

namely to measure the surface resistance of an SRF cavity in the temperature range
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Fig. 3.1 Surface resistance (in units of R0 =
µ0

2σnωλ
3∆

2ħh
) as a function of temperature

calculated for several values of ΓD ynes = 0.06∆BCS (red), ΓD ynes = 0.03∆BCS (black) and
ΓD ynes = 0.01∆BCS (blue). The vertical dashed line indicates the lowest temperature accessible
in a conventional liquid helium testing. This figure is reproduced from Ref. [64].

that was never probed before.

While our initial motivation for cooling an SRF cavity to mK temperatures was

to test the Gurevich-Kubo model, such an investigation is well suited to study a wide

range of issues, from the severity of TLS losses in SRF cavities to the nature of residual

resistance of Nb3Sn cavities. Many theories describing the physical processes in a

superconductor are simplified as T → Tc or as T → 0. Having access to both regimes

can properly inform theoretical research in the SRF community.

37



3.2 Mounting an SRF cavity in a dillution refrigerator

In a collaboration with Dr. Gianluigi Ciovati (DOE Jefferson Labs) a full scale 2.2

GHz single-cell SRF cavity was installed inside our dilution refrigerator system. The

SRF cavity was suspended below the mixing chamber plate of the dilution refrigerator.

The base temperature of the mixing chamber plate without heat load is about 7mK .

A 6′′×6′′×3′′ rectangular OFHC copper plate was attached to the mixing chamber

of the dilution fridge via four 8′′ long OFHC copper cylinders with 1/2′′ diameter (see

Fig. 3.2). The thermal conductance of those copper cylinders was supplemented with

thermal braids connecting the copper plate to the mixing chamber plates. The plate

was cut in two and a 1.75′′ hole was cut in the center to accommodate the tube of

the SRF cavity. The cavity was clamped by this plate, and the two parts of the plates

were tightened together to provide maximum thermal connection, see Fig. 3.2. A

temperature sensor (Lakeshore Cernox CX-1010) was attached to the equator of the

cavity as shown in Fig. 3.3(a).

During the first cool down, it took the cavity 160 hours to reach the base tem-

perature of T ≈ 700mK . This is due to the large heat capacity of the stainless steel

(SS) flanges on the ends of the cavity Fig. 3.3(a). With a mass of 2.18kg and heat

capacity of approximately 1J/kgK at T = 1K [87], the SS flanges were responsible for

95% of the total heat capacity of the structure. Additionally, SS has very low thermal

conductivity at sub-K temperatures, and this adds to the cooling time. Replacing the

original SS flanges with OFHC copper flanges (see Fig. 3.3(b)) reduced the cooling
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Fig. 3.2 3-dimensional drawing of the 2.2 GHz Nb cavity (silver) and the copper support
structure (orange).

time to about 40 hours and the new base temperature at the equator of the cavity was

T = 70mK .

3.3 Liquid Nitrogen Precooling

As was discussed in Sec. 2.6, it is important to cool down the Nb SRF cavity

at a rate > 1K/min through the danger zone (75K < T < 150K) to avoid the Q-

disease. The rule of thumb is that the amount of time that the cavity temperature

spends between 75 K and 150 K should not exceed 1 hour. Even with copper flanges
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Fig. 3.3 (a) Nb SRF Cavity mounted below the mixing chamber plate of the dilution Fridge.
Note the stainless steel flanges on the Nb cavity. (b) Steel clamps replaced by OFHC Copper
equivalents.

and plenty of thermal braiding, the cooling rate observed in our cryostat does not meet

this requirement.

A novel liquid nitrogen (LN) system was designed and built to assist with the

cooling of the cavity (see Fig. 3.4). LN is supplied to a heat bath via a thin walled SS

tube running between the room temperature environment and the mixing chamber

plate. The heat bath is manufactured by making a pathway for LN inside a flat OFHC

copper disk (Fig. 3.4(d)). The exhaust nitrogen vapor is returned through a second

thin walled SS tube. The whole system is installed in an existing DN40 line-of-sight

feedthrough inside the dilution fridge.

It is important to make sure that the extra thermal link provided by the LN

precooling system does not raise the base temperature of the fridge. For this rea-
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Fig. 3.4 The first generation version of the LN precooling system. (a) The top part of the LN
precooling system is supported by a bellows mounted on the top of the cryostat. Blue arrows
indicate the path of the cold LN and the red arrows indicate the path of the warmer nitrogen
vapour returning from the heat bath. (b) The heat link between the mixing chamber plate and
room temperature can be disabled by slightly raising the whole structure. (c) The heat bath
rests on the mixing chamber plate and the thermal connection can be broken using the bellows
on the top of the cryostat. (d) The cross section longitudinal view of the heat exchanger. The
color gradient represent the relative temperature of LN, with blue being cold and red being
warm. White arrows indicate the direction of the flow.
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Fig. 3.5 a) Schematic of the LN precooling system (2nd generation). LN (blue arrows→) is
supplied through the inner tube of 2 coaxial SS tubes and the nitrogen vapour (red arrows
→) is extracted via the outer tube. b) Picture of the input and output lines on the top of the
cryostat. A safety pressure relief valve is installed in the return path. c) Picture of the LN
precooling system (highlighted by a yellow box) inside the dilution fridge.
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son, the whole system was mounted on a bellows, and once the cavity temperature

reaches T = 80K , the thermal link between the heat bath and the mixing chamber

plate was terminated by slightly lifting the whole structure out of contact with the

mixing chamber (MXC) plate using the bellows installed on the top of the refrigerator

(see Fig. 3.4(a) and (b)). With this modification the cooling rate was increased by an

additional 5K/hour, from 8K/hour to 13K/hour above T > 80K .

While the extra 5K/hour cooling rate is good progress, it is still below the needed

specification of 1K/min. In collaboration with BLUEFORS (the dilution fridge manu-

facturer) a more advanced version (2nd generation) of this system was designed and

installed as shown in Fig. 3.5. In the 2nd generation of the LN precooling system, the

liquid nitrogen is supplied via 2 thin walled coaxial SS tubes. Cold LN is fed from

the inner tube, and the warmer nitrogen vapour returns via the outer tube. The outer

tube is thermally attached to each stage of the cryostat providing additional cooling

power without raising the temperature on the LN on the input line.

Instead of detaching the system from the mixing chamber as was done in 1st

generation system, two valves are installed on both input and output lines on the

top of the cryostat to seal off the system once T < 80K is reached. Once the base

temperature is reached, the residual nitrogen gas inside the system freezes out, hence

does not affect the base temperature of the cryostat. The coaxial SS tubes have very

low thermal conductance, especially at cryogenic temperatures and do not raise the

base temperature. For safety reasons, a pressure relief valve is installed on the output

line. The liquid nitrogen was fed to the system at 30psi by pressurizing an LN dewar

with nitrogen gas. Also, previously the nitrogen vapour coming out of system was fed
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into the room. To avoid the danger of asphyxiation of the people in the lab due to

oxygen displacement by nitrogen gas, the outcoming nitrogen gas is now connected

to the gas exhaust system available in the lab. Additionally, the room was equipped

with oxygen sensors that would set off an alarm if the oxygen content of the air drops

too much.

With the 2nd generation LN precooling system in the cryostat the cooling rate

of the empty cryostat was ∂ T/∂ t ≈ −1K/min at the start of the cool down near

200K , see Fig. 3.6(a). When the SRF cavity was mounted on the mixing chamber

plate the cooling rate decreased to ∂ T/∂ t ≈ −0.5K/min. The overall time required

to reach the base temperature was deceased by about 15 hours, from 40 hours to

25 hours. However, as the temperature approached 120K , the extra cooling power

from LN diminished and the cooling rate at T = 160K with the cavity attached was

∂ T/∂ t ≈ −16K/hour, see Fig. 3.6(b). As a result the cavity remains in the danger

zone for about 4 hours, which is still longer than the requirement imposed by the Q-

disease. Perhaps this time can be reduced further by using liquid helium rather than

liquid nitrogen as the coolant.

The LN precooling system was able to partially mitigate the risk of having Q-

disease in the Nb SRF cavity, however it’s biggest benefit seems to be the reduction

of the required time to reach the base temperature of the cryostat. Especially in labs

where rapid cycling between mK temperatures and room temperature is needed, the

LN precooling system may be quite useful. The benefit of the LN system becomes

clearer when the thermal mass of magnetic shielding and perhaps a superconducting

magnet is considered. Also, warm nitrogen gas can be pumped through the LN system
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Fig. 3.6 a) The temperature measured at the mixing chamber of an empty cryostat. LN
precooling started at T = 205K b) The temperature measured at the equator of the cavity vs
time when no LN precooling is used (blue) and with LN precooling started at T = 160K (red).
Time is measured from the moment the cooldown is started.

to speed up the warmup process without contaminating the interior of the cryostat.

3.4 Magnetic Shielding

As was discussed in Sec. 2.7, trapped magnetic flux in the SRF cavity can lead to

dissipation and increase the total resistance. Therefore it is very important to shield

ambient magnetic field from the cavity when it is cooled through Tc. The ambient

magnetic field at the location of the cavity was measured by a Bartington single axis

cryogenic magnetometer and found to be |~B| = 200µT at room temperature, with

the component along the axis of the cavity being the largest (Bz = 126µT). This is

consistent with the measurements done using the internal magnetic sensors of a cell
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phone (Apple, iPhone 7).

Ideally, one should design a small magnetic shield around the experimental

setup, and cryoperm is the best candidate for cryogenic applications. However, given

the scale of our cavity, the estimated cost ranged between $10,000−$20, 000 depend-

ing on the vendor. Hence we opted for a combination of cheaper solutions.

Three levels of magnetic shielding were used. Firstly a 0.004′′ thick rectangular

Nickel−Iron−Cobalt Alloy foil which has relatively high magnetic permeability was

wrapped around the cavity and the support structure (see Fig. 3.7(a)). Secondly, 3

cylindrical µ−metal cans were demagnetized and were placed inside the still can (see

Fig. 3.7(e)), which is the smallest can of the cryostat. The 3 µ−metal cylinders are

coaxial, open on both ends and are supported by the bottom of the still can. To maxi-

mize the attenuation of the magnetic field, the µ−metal cans are separated from each

other. To avoid the creation of a thermal link between the still plate and the mixing

chamber plate, the height of the µ−metal is adjusted such that there is a 1cm gap

between the top of the can and the bottom of the mixing chamber plate. Lastly, 40

layers of METGLAS 2605SA− 1 foil was wrapped around the still can and 20 layers

were wrapped around the 4K can of the dilution fridge (Fig. 3.7(b) and (c). METGLAS

[88] is an amorphous metal (glassy metal) that retains high relative magnetic perme-

ability even at cryogenic temperatures [89]. The amount of METGLAS foil need for

the whole shielding cost only $250. Additionally, electric wires were wound around

the outermost can of the cryostat (at room temperature) in a Helmholtz-coil fashion

(Fig. 3.7(d)) to provide a cancellation field in the vertical direction at the location of

the SRF cavity.
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The magnetic field was measured in-situ using a Bartington single axis cryogenic

magnetometer (borrowed from Dr. G. Ciovati at Jefferson Lab) and a custom built

Superconducting Quantum Interference Filter (SQIF) Magnetometer [90]. Before the

start of the cool down, a dc current was applied to the Helmholtz-coil wires to actively

cancel any remnant magnetic field in the vertical direction at room temperature. As

the temperature is decreased the value of the magnetic permittivity of µ−metal and

METGLAS foil goes down, reducing their magnetic attenuation factor. Nevertheless,

with the combination of passive shielding and active cancellation, the magnetic field

at the location of the cavity never went above B = 50nT level as measured by the

cryogenic magnetometer in-situ.

However the METGLAS foil introduced a new challenge. With the METGLAS

foil mounted on the still can of the dilution refrigerator, the base temperature of the

SRF cavity was raised to about T = 1.3K . The problem was remedied by removing the

METGLAS foil from the still can. The METGLAS foil on the 4K can has less effect on

the base temperature of the SRF cavity, raising it to about T = 250mK . In conclusion

I can say that the METGLAS foil is an effective yet cheap alternative method to shield

ambient magnetic field, but it must be used at higher temperature stages of the dilution

fridge.
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Fig. 3.7 (a) High−µ alloy metal foil wrapped around the cavity. (b) METGLAS foil wrapped
around the Still Can. (c) METGLAS foil wrapped around the 4K Can. (d) Helmholtz-coils for
active magnetic field cancellation with the cavity equator positioned at the center of the two
coils. (e) Summary of the magnetic shielding shown in a cross-section view of the lower part
of the cryostat. Three 2mm−thick cylindrical µ metal shields that are sitting inside the Still
can are shown here. Red lines correspond to the location of METGLAS foil.
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3.5 Phase Locked Loop

At mK temperatures, the expected quality factor of an SRF cavity is Q > 2 ×

1010, corresponding to a resonance half width full maximum (HWFM) of about δ f ≈

100mHz given the f = 2.2GHz resonant frequency. Conventional network or spec-

trum analyzers can’t accurately detect such sharp resonance. Moreover, cavities are

prone to "Lorentz-force detuning". RF fields inside the cavity apply a Lorentz force on

surface currents inside the cavity leading to an outward force and a small distortion in

the cavity size and shape. Consequently, the resonant frequency of the cavity changes

as a function of circulating power. The change in the resonance frequency can be as

much as ∆ f = 600Hz, much larger that the resonance bandwidth [51]. A resonance

locking system is required to accurately measure the quality factor of such a cavity.

The phase locked loop (PLL) is a circuit that is capable of locking a stable mi-

crowave (MW) source to the phase of the cavity resonance (see Fig. 3.8 and Fig. 3.9).

The basic operation of this circuit is as follows. The MW signal fed into the cavity.

The transmitted signal is first amplified by a low-noise amplifier (Low Noise Factory,

LNF−LNC2_6A), then sent through the line stretcher and phase shifter to control the

phase, amplified again with a limiting amplifier (MITEQ, AFD4−020040−LM) and

mixed with the MW signal coming directly from the source to produce a dc signal that

depends on the the phase difference between the two MW signals. This dc signal is

then low-pass filtered, amplified and connected to the frequency modulation analog

input port of the source. To lock to the cavity resonance, frequency modulation is
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temporarily turned off and the phase shifter is used to adjust the phase such that the

feedback voltage is equal to zero. Once the frequency modulation is turned on, the

PLL is locked to the resonance. Table 3.1 lists the devices used in the PLL circuit. For

a comprehensive discussion on SRF cavity measurements see Refs.[91, 92].

Device Manufacturer Model

Microwave Source Keysight N5173B
RF divider Mini−circuits ZN2PD−63+

Variable attenuator Narda 4745−69
High Isolation (TTL) Switch Mini−circuits ZASWA-2-50DR+

High power amplifier Mini−circuits ZX60−6013E−S+
Isolator Narda 4923

Bi−directional coupler Krytar 502004030
directional coupler Narda
Low noise amplifier Low Noise Factory LNF−LNC2−6A

RF divider Mini−circuits ZNPD−63−S+
Attenuator Mini−circuits FW−10+

Delay line Variable Dielectric Communications 49956−911265−1
Phase shifter Narda 3753B

Limiting Amplifier Miteq AFD4-020040-LM
Mixer Mini−circuits Zem 4300

RF switch Radial R595F33115
High gain amplifier Mini−circuits ZHL−42+

Schottky diode Keysight 423B
Function generator HP 33120A

Power meter Agilent E4416B
Frequency counter EIP 576B

Oscilloscope Tektronix TDS3052

Table 3.1 The list of components used in the PLL shown in Fig. 3.8.

The power of the MW source is kept at the same level as the output of the limiting

amplifier. The combination of a variable attenuator and a high power amplifier are

51



used in the input line to adjust the power of the MW signal that goes to the cavity

(Pi). In my measurements the high power amplifier was never used, because we never

achieved the high quality factors that we anticipated. With a lossy cavity, too much

MW power applied to the cavity will lead to excessive heating of the cavity.

The PLL circuit is used in two different modes. First, in continuous wave (CW)

mode, the steady state value of incident (Pi), reflected (Pr) and transmitted (Pt) pow-

ers are measured with a power meter. At the same time the resonant frequency of the

cavity f0 is measured by a frequency counter. In the second mode, a transistor−transistor

logic (TTL) signal is generated by a function generator which is connected to the TTL

switch. This results in the pulsing of the power applied to the cavity and is referred

to as the pulsed mode measurement. Both the reflected power and the transmitted

power are amplified and converted to a voltage by using a Schottky diode. These

voltages are measured by an oscilloscope that displays the time variation of Pr(t) and

Pt(t).

3.6 Operating Procedure

Once the cavity is cooled down to the base temperature, the transmission S21( f )

through the cavity is measured with a Keysight (model N5242A) Vector Network An-

alyzer (VNA). First, the measurements are performed at Pi = 0dBm MW power and

an IF bandwidth of 500Hz, to detect the resonance peak. Then the 500Hz window

around the peak is remeasured with an IF bandwidth of 10Hz. This measurement
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Fig. 3.9 Pictures of the PLL setup. (a) The reflected signal is divided into two and sent to RF
Switches 1 and 2. Similarly the unamplified part of the transmitted power coming from the
directional couplers is sent to switch 1 and the part of the transmitted power that is amplified
by the low noise amplifier is sent to switch 2. The output of switch 1 goes to the power meter,
enabling measurement of either transmitted and or reflected power depending on the switch
setting. The output of switch 2 goes to the high gain amplifier followed by a Schottky diode.
This signal is sent to the oscilloscope to measure the decay time of Pt(t) and Pr(t). The loop
amplifier amplifies the output of the mixer and feeds it into the FM modulation port of the
MW source. (b) The main circuit of the PLL. The operation is described in the text. (c) Picture
of the MW equipment used in the PLL circuit.
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Fig. 3.10 Transmission through the cavity |S12| as a function of frequency measured by the
VNA. The data was taken with an IF bandwidth of 10Hz and 0 dBm applied power. The
resonant frequency is f0 = 2,266, 858,113Hz.

takes 3 minutes to complete. No averaging was used, as it can increase the noise

due to instability of the resonant frequency associated with Lorentz force detuning.

Fig. 3.10 shows the |S21( f )| at T = 200mK . Clearly, the expected HWFM is not mea-

surable with the VNA because it is smaller than the 1Hz resolution of the VNA. The

peak in |S21( f )| is used to get an estimate for the resonance frequency f0. Afterwards,

the PLL circuit is connected to the cavity and locked to the cavity resonance (the lock-

ing procedure is described in Sec. 3.5).

The same antennas that are used to drive the cavity can also contribute to the

loss. It is important to be able to differentiate between the measured total loss and

the losses due to the resistance of the inner surface of the cavity. These losses can be
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related through the quality factors

1

Q L
=

1

Q0
+

1

Q in
+

1

Qout
, (3.3)

where Q L is the loaded quality factor defined as the total energy stored in the cavity

U divided by energy dissipated per cycle and Q0 is the intrinsic quality factor defined

as U divided by energy dissipated per cycle in the cavity walls only. Here Q in and Qout

are the quality factors associated with the input and output antennas. It it useful to

define a coupling strength of an antenna βin =Q0/Q in and βout =Q0/Qout . In an SRF

cavity the pickup antenna is weakly coupled, hence βout � 1. To measure the intrinsic

quality factor Q0 of the cavity, one first needs to measure the loaded quality factor Q L,

then one must measure the coupling strength βin.

When the cavity is driven by some CW incident power Pi, it eventually reaches

the steady state where U and the reflected power Pr are given by [58]

U =
4βinPiQ0

(1+ βin)
2ω

and (3.4)

Pr =









βin − 1

βin + 1









2

Pi . (3.5)

One could simply measure the Pr and Pi in the steady state using the PLL (Fig. 3.8),

but this would give two different values for βin that satisfy Eq. (3.5), namely βin =
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1−
p

Pr/Pi

1+
p

Pr/Pi

when the antenna is undercoupled, or βin =
1+

p

Pr/Pi

1−
p

Pr/Pi

when the an-

tenna is overcoupled.

If the rf power is suddenly turned off after the cavity reaches it’s steady state,

the transmitted power Pt should decay exponentially with a decay time proportional

to the loaded quality factor τd =Q L/ω,

Pt(t) = Pt(0)ex p









−
t

τd









. (3.6)

Hence, Pt(t) can be measured to extract Q L. In the PLL circuit this is achieved

by installing a fast TTL−driven rf switch (Minicurcuits, ZASWA−2−50DR+) on the

path of the MW signal going to the cavity (see Fig. 3.8). A function generator is used

to drive the switch and pulse the rf power incident on the SRF cavity. The transmitted

signal is amplified and fed to a low-barrier Schottky diode detector which converts

it to a voltage signal, which is monitored on an oscilloscope. Fig. 3.11(a) shows the

transmitted power Pt as a function of time, as measured by the PLL. The RF power is

turned off at to f f = 0.4s and the data is the average over 10 cycles. The decay time

τd = 197.1ms was extracted from the exponential fit to Pt(t) on a log-log plot. The res-

onance frequency is measured by a frequency counter to be f0 = 2, 266,888, 357Hz.

Given this, the loaded quality factor can be estimated as Q L = 2.8× 109.

Similarly, the time dependence of reflected power Pr(t) can be used to determine

the value of coupling strength βin. In this case one should use data both when the rf

power is suddenly turned off after the cavity reached it’s steady state, and when the rf
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Fig. 3.11 (a) (blue) Transmitted power as a function of time after the input power is turned
off. (red) Exponential fit according to Eq. (3.6) with τd = 197.1ms. The measurement is
averaged over 10 cycles. (b) (blue) Reflected power as a function of time. The input power is
off for t < 0. The peak at to f f = 0.25s is smaller than the peak at ton = 0 indicating and that
the input antenna is undercoupled (βin < 1). Dashed lines indicate the moments RF power is
turned ON (green dashed line) or turned OFF (red dashed line). Note that a) and b) do not
correspond to the same measurement.

power is turned on to a quiet cavity. The time dependence of Pr(t) is given as follows:

Pr(t) =

























































1−
2βin

1+ βin









1− ex p(−
t − ton

2τd
)























2

Pi after RF is turned ON (t > ton)

4β2
inPi

(1+ βin)
2ex p(−

t − to f f

τd
) after RF is turned OFF (t > to f f ) ,

(3.7)

where we assume that the cavity was in steady state before the MW power was turned
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on or off. At t = ton and t = to f f Eq. (3.7) yields

Pr(ton) = Pi

Pr(to f f ) =
4β2

inPi

(1+ βin)
2

(3.8)

resulting in a simple equation for βin

βin =
1

2

√

√

√

√

√

Pr(ton)

Pr(to f f )
− 1

. (3.9)

So-called perfect coupling is achieved when Pr(ton) = Pr(to f f ), which corre-

sponds to βin = 1. According to Eq. (3.5) this corresponds to zero reflected power

Pr = 0 in steady state. Fig. 3.11(b) shows the measured Pr as a function of time, as

measured by the PLL. The RF power is turned on at ton = 0 and turned back off at

to f f = 0.25s. Here
Pr(ton)

Pr(to f f )
= 1.41 resulting in βin = 0.73.

In summary, the PLL can measure 6 parameters: the resonant frequency f0, the

incident power Pi, the steady state transmitted power Pt , the steady state reflected

power Pr and the pulsed transmitted and reflected powers Pt(t), Pr(t) after switching

events. The transmitted power Pt(t) and the resonant frequency f0 are used to cal-

culate the loaded quality factor Q L. Usually the pulsed reflected power Pr(t) is used

to evaluate whether the antenna is undercoupled or overcoupled and the steady state

reflected power Pr is used to calculate βin, the Pr(t) data measured using a Schottky
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diode is noiser than the steady state Pr which is measured using a power meter. Once

Q L and βin are known, the intrinsic (sometimes called the unloaded) quality factor of

the cavity is given as Q0 = Q L(1+ βin) (assuming βout � 1). Finally, the accelerating

gradient Eacc that electrons would experience in an SRF accelerator is calculated using

Eacc = ke

Æ

4βinQ L Pi/(1+ βin) , (3.10)

where ke depends on the resonant mode, the shape of the cavity, and number of cells.

ke is numerically calculated using computer simulations.

3.7 Summary of the measurements

The result of all SRF cavity measurements with the PLL curcuit is summirized in

Table 3.2. First, an untreated 2.2GHz SRF cavity was sent to us from Jefferson Lab.

It was used to test the support structure, test the liquid nitrogen precooling system

and the PLL. It was characterized on Aug 14, 2018 and then sent back to Jefferson

Lab (JLab) for surface treatment. Dr. G. Ciovati cleaned the cavity and measured it in

a liquid helium dewar (on Oct 10, 2018) before sending it back to us. A subsequent

measurement (Oct 23, 2018) at UMD showed that the quality factor is drastically

lower then the reference value obtained at JLab.
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During the test at JLab, the input antenna was tuned to match the anticipated

quality factors of Q > 8×1010. By definition βin =Q0/Q in and a lossy cavity like ours

will lead to a very small value of βin. Eq. (3.7) suggests that limβin→0 Pr(to f f ) = 0. This

makes any measurement of βin from time decay of reflected power Pr(t) impossible.

Two possible explanations for the low Q-value that I measured were identified,

the Q-disease, or a large ambient magnetic field in the UMD lab. The cavity was sent

back to JLab where it was remeasured (Nov 20, 2018). In this measurement, the

cavity was kept in the danger zone for Q-disease, 80-100 K for 16 h prior to final cool-

down and rf test, and it was shown that the quality factor is close to the reference

value, measured on Oct 10, 2018. Meanwhile, at UMD, we continued improving the

magnetic shielding, as discussed in Sec. 3.4.

On Jun 25, 2019, the cavity was tested with additional µ−metal cans used for

shielding, however at the time we did not have a reliable in-situ magnetometer to pre-

cisely measure the magnetic field at the cavity under cryogenic conditions. A cryogenic

fluxgate magnetometer was later borrowed from JLab and the METGLAS shielding was

characterized, as was discussed in Sec. 3.4.

Several measurements performed in September, 2019 showed that the cavity

had degraded to pre-treatment conditions (similar to the August, 2018 results). A

possible breach of the cavity vacuum was suspected. The cavity was next pumped

down using a standard turbo-molecular pump (Agilent V301). A measurement on

November 18, 2019 showed that the evacuation slightly increased the Q.

Lastly, the cavity was taken to the Laboratory for Physical Sciences at UMD to

check for leaks using an ion pump. With the help of Dr. Christopher J. Richardson and
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Dr. Alan Kramer, the cavity was pumped down and then left with it’s pumping valve

sealed for several days. When the valve was reopened enough pressure had built up

inside the cavity to saturate the ion-pump, confirming the vacuum leak hypothesis.

Overall, a LN precooling system was successfully built and tested. An effective,

yet inexpensive magnetic shielding solution was implemented. A PLL curcuit was

utilized to measure a quality factor of Q0 = 2.74× 109. The setup is ready for a full

scale cavity testing at mK temperatures, but repairs to the cavity are needed before

proceeding with further measurements.
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4

Magnetic Microwave Microscopy

4.1 Overview of Scanning Probe Microscopy

-what is the Universe made of?

For thousands of years philosophers and naturalists alike tried to find the an-

swer to this question. In fact, approximately 2500 years ago, the Greek philosopher

Democritus postulated the existence of small indivisible building blocks of matter that

he called "atomos"-uncuttable/indivisible. About 2000 years later, the microscope was

invented in Europe and was used to study biological matter. At first, the resolution

of a microscope was limited by it’s design and the quality of the lens used, before

a fundamental limit was reached, namely the diffraction limit. The light from two

points which are separated by the distance smaller than half the wavelength of the

light cannot be distinguished, introducing a ≈ 200nm resolution limit for an opti-

cal microscope. Electron Microscopes exploit this limit by using electrons instead of

visible light, since their De Broglie wavelength can be in the picometer range.

In 1982, Binnig et al. introduced a new approach to microscopy, the scanning
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Fig. 4.1 Schematic of a scanning probe microscope (SPM). A probe is scanned over the sam-
ple, by either moving the probe or the sample itself. The probe-sample interaction, which is
different depending on the type of microscope, produces a feedback signal which is used to
adjust the probe-sample separation distance d. Both the interaction signal and the position
are recorded and analyzed.

tunneling microscope (STM) [93]. In an STM a sharp conducting tip is used as a probe

and scanned over the sample at a constant distance d by using the quantum tunneling

current between the sample and the tip as a feedback signal (see Fig. 4.1). The value

of the tunneling current has exponential dependence on the tip-sample separation d

resulting in a ∼ 10pm (10−11m) resolution. Many other alternatives to STM were

later created, where a different probe and probe-sample interaction is used, together

forming the family of scanning probe microscopy (SPM) techniques. A comprehensive

list of SPM techniques is given in Ref. [94].
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4.2 Near-Field Microwave Microscopy

Near-field microwave microscopy (NFMM) is a technique that combines the

strength of SPM with the advantages of radio frequency (rf) surface characterization.

It is an SPM based technique where a cavity resonator with a small hole, transmission

line resonator, or a SQUID (described in Chapter 1) is used as a probe. The "near-field"

refers to the regime where the size of the probe is much smaller than the wavelength

of the rf signal used to examine the sample. In this regime the field has the charac-

teristics of the static field. While the instantaneous value of the electromagnetic field

oscillates with rf frequency, it’s amplitude is static with a spatial variation that depends

on the geometry of the probe and the surroundings environment [95, p.408]. The res-

olution of a NFMM strongly depends on probe-sample separation and the shape of the

probe, since these two govern the volume to which the electromagnetic fields will be

confined. Several generations of NFMMs were created in our group at UMD over the

years. For a detailed description of this technique please see Refs.[96, 97].

A NFMM can locally image the surface impedance of the sample. Depending

on the sample type one can extract the local value of surface conductance σ (or re-

sistance ρ), dielectric permittivity ε or magnetic permeability µ. Depending on the

probe, a near-field microwave microscope coupling to the sample can be either capac-

itive (through ~E) or inductive (through ~B). Fig. 4.2 shows the two probes that were

previously used in our Lab. To study the surface electrodynamics of a superconductor,

inductively coupled probes are often better suited because they induce screening cur-
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Fig. 4.2 (a) Schematic representation of a capacitively coupled probe and an inductively
coupled probe. A capacitively coupled probe can be formed by connecting an STM tip to the
inner conductor of a coaxial cable. An inductively coupled probe can be created by forming a
loop using the inner conductor of a coaxial cable and shorting it with the outer conductor. (b)
Top view of surface current distribution (K) induced on the surface of a superconductor by a
coaxial loop probe placed 12µm above the sample. The computations have been performed
with CST-Microwave Studio for an input power of 1W . This figure is reproduced from [98].

rents in the superconductor. An example current distribution induced on the sample

surface by an earlier generation probe is shown in Fig. 4.2(b).

4.3 Nonlinear response

The resolution of a NFMM can be further improved by using the nonlinear re-

sponse of the sample. The nonlinear response can be measured through either inter-

modulation or higher harmonic response. Both in dielectrics and superconductors the

n−th order nonlinear response Pnf of the sample depends on the applied power Pf as

Pnf ∝ (Pf )n. This implies that most of the response will be coming from a small area
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just below the probe where the input fields impinging on the sample are largest. This is

illustrated by the work of Yasuo Cho [99], who showed that the higher the order of the

harmonic response, the finer the resolution. However, harmonic response is weaker

at higher orders and the even harmonics are only created when there is a mechanism

to break the time reversal symmetry (such as superconducting vortices), hence the

lowest odd harmonic, the third harmonic response (THR), is usually measured.

The contributions to the nonlinear response of a superconductor can be classified

in terms of intrinsic nonlinear response and extrinsic response. Intrinsic nonlinear

response refers to the nonlinear response that is expected from a pure homogeneous

superconductor with no surface defects or edges. The superconducting current ~Js

is given as ~Js = nse ~vs, where ~vs is the superfluid velocity and ns is the superfluid

density. Externally applied currents and magnetic fields can deplete the superfluid

density ns = ns(| ~vs|) through the nonlinear Meissener effect, and it’s functional form

for J � Jc is given as follows:

ns(T, J = 0)

ns(T, J)
=

λ2(T, J)

λ2(T, J = 0)
∼= 1+









J

JN L









2

, (4.1)

where JN L is the nonlinear scaling current density [100, 101]. The value for JN L

and it’s temperature dependence can be used to identify the mechanism responsible

for the generation of nonlinear response, be it an intrinsic response or nonlinearity

due to a surface defect. It can be shown that the inductive nonlinear response of a

superconductor is proportional to the change in penetration depth with current∆λ=
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λ(T, J) − λ(T, J = 0) [102]. Lee calculated the third-harmonic response P3 f to be

[103]:

P3 f (T, Pf ) =
µ2

0ω
2λ4(T )

32Z0J4
N L(T )

P3
f Gdist(Pf ) , (4.2)

where Pf is the fundamental power used to drive the probe, Z0 is the characteristic

impedance of the transmission line and Gdist(Pf ) is the geometry factor that depends

on the spatial distribution of currents that are induced on the surface due to the MW

field generated by the probe. In the low power limit Gdist(Pf ) will be independent of

the power applied to the probe or the temperature of the sample.

For an s-wave superconductor the temperature dependence of JN L is given by

[100, 104]

JN L(T ) = Jc(0)









1−









T

Tc









2







√

√

√

√

√

√

√

1−









T

Tc









4

. (4.3)

The inhomogeneities and surface defects on the surface of a superconductor can serve

to locally suppress Jc and JN L, becoming extrinsic sources of nonlinear response.

Eq. (4.2) shows that if the nonlinear response of a sample is mapped, the locations

with low JN L will generate stronger harmonic response [105, 106]. This provides an

opportunity to create a magnetic microwave microscope that can detect the defects on

the inner surface of an SRF cavity as described in Sec. 2.8. The temperature and field-

dependence of the nonlinear response can provide enough information to deduce the

type of defect. In this thesis two separate sources of measured nonlinear response will

be presented in Chapters 6 and 8.
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There are further benefits of measuring the nonlinear response rather than linear

response. As was demonstrated by Oates [107], the nonlinear response is far more

sensitive to applied rf power than the linear response. Fig. 4.3 shows the data that

Oates obtained from a MgB2 thin film stripline resonator. When measured over the

same circulating power range, the intemodulation distortion (IMD) response spans

10 orders of magnitude while the surface resistance has changed only by a factor of

∼ 10, and only in a narrow range in the high power limit. This indicates that more

information can be extracted regarding the dynamics of a superconductor by using

non-linear response, rather than simply focusing on linear response. In addition to

that, Oates showed that the nonlinear response can be linked to the nonlinear surface

impedance of the sample [108], which is an important parameter for a SRF cavity

driven by high rf magnetic field. Finally, since the nonlinear response is generated

only by the superconductor, there is no background signal from reflected waves etc.,

thus very high signal-to-noise ratio is achieved.

4.4 Previous generations of Magnetic Microwave Micro-

scopes

Members of Anlage lab have been studying the nonlinear response of supercon-

ductors for 2 decades now. Over the years the resolution of the magnetic probe was

constantly refined and the experimental setup was upgraded multiple times. The first
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Fig. 4.3 Intermodulation distortion (IMD) response (�) and surface resistance (◦) vs the
circulating power inside the resonator. The data is measured on a MgB2 stripline resonator at
T = 2.5K (Blue) and T = 20K (Red). Note that the IMD is presented in a log scale while the
surface resistance is presented on a linear scale. This figure is reproduced from Ref. [107].

magnetic microscope in our group was built by Sheng-Chiang Lee [102]. Lee used a

probe made by shorting the inner conductor of the coaxial cable with the outer con-

ductor (see Fig. 4.2(b)) to measure the second and third order harmonic response of

a high-temperature superconductor, mainly YBCO. He imaged the harmonic response

over the YBCO grain boundary (GB) at mm scale, and showed enhanced nonlinear

signal at the location of the GB. He also extracted the geometry-free scaling current

density JN L from third-harmonic response.

Dragos Mircea improved on Sheng-Chiang Lee’s design and mechanically pol-

ished the outer radius of the loop probe to create a micro-loop that further refined the

resolution of the microscope. He also measured the phase of the harmonic response
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in addition to it’s amplitude, and found that there are both resistive and inductive

components to the harmonic response with the resistive component extending to tem-

peratures above Tc in under-doped YBCO [109].

Finally, Tamin Tai and Dragos Mircea were the first to use the conventional mag-

netic recording hard disk drive magnetic writer head as a magnetic probe, similar to

the ones I used. Using this new probe, Tai measured the linear response (reflected

signal S11( f )) of Nb as it transitioned from the normal to the superconducting states

and was able to fully interpret the data using a magnetic circuit model [110]. He also

measured nanoscale harmonic response of Nb and MgB2.

All my predecessors [98, 103, 104] greatly contributed to the collective knowl-

edge that our lab has about the nonlinear electrodynamics of superconductors. How-

ever, their measurements were performed on a cryogenic wafer-probe station (see

[104, p.35]) which relied on liquid helium or liquid nitrogen for continuous opera-

tion. The base temperate was about 4.5K, and the time available for measurement

was limited due the finite volume of the helium or nitrogen storage Dewar. Similarly,

both the magnetic loop probe and the earlier generations of magnetic writer probe

are inferior to the probes available to us today. This led to several improvements that

I will be discussing next.
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4.5 Magnetic Probe from Hard Disk Drive

Over the course of history, from the invention of steam engines and the industrial

revolution to the digital revolution, humanity has witnessed several game changing

moments. Today we are living at the dawn of another revolution. Artificial intelligence

(AI), machine learning (ML) and the internet of things (IOT) are completely chang-

ing how humans interact with the surrounding world. The success of AI depends on

the amount of data available for training. Nowadays everything around us is being

recorded, surveillance cameras on the streets, your browser history, health records,

geolocation, financial transactions, voice recordings... simply everything. This digital

data is the new currency for many businesses where you can get free service if you

willingly share your data. This is the age of "Big Data", but how is all of this data

stored?

Magnetic recording technology has enabled this data revolution, and as of now

continues to be the optimal method for data storage over prolonged periods of time.

In 1898, Valdemar Poulsen became the first person to successfully demonstrate the

possibility of magnetic recording by recording his own voice on a steel wire. Before the

development of computers, magnetic recording was mainly used in sound recording

for motion pictures and VHS home video recorders.

The need for magnetic recording surged with the widespread usage of comput-

ers. A magnetic recorder consists of a magnetic medium and a magnetic head, which

encodes the information by locally magnetizing the medium. Many designs for the
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Fig. 4.4 (a) Gapped-ring core writer head and recording medium structure for longitudinal
magnetic recording. (b) Single pole writer head and recording medium structure with a mag-
netic underlayer for perpendicular magnetic recording. A reading head that utilizes the giant
magneto-resistance (GMR) effect to measure the magnetization of the recording layer is used
in both cases. This figure is reproduced from Ref. [111].

magnetic writer heads had been tested, with the gapped-ring core writer heads dom-

inating the market in the early years. In this design, the electrical coils were wound

around a ring-shaped magnetic core with a small gap parallel to the surface of mag-

netic medium beneath it (see Fig. 4.4(a)). The time-dependent fringing magnetic

field, emerging from the gap, magnetizes the magnetic medium longitudinally. Ini-

tially, the same head was used as writer and reader, however with the development of

multilayer magnetic thin film technology, a separate reader head that uses the giant

magneto-resistance (GMR) effect became prevalent. The GMR head is much more

sensitive to magnetic fields, hence it can read the data at a faster speed.

To increase the storage density, perpendicular magnetic recording was proposed

in 1977, although the challenges in the design delayed practical implementation until
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2005. In this design a single pole writer head is used together with a soft magnetic

underlayer which provides the return path for the magnetic flux ((see Fig. 4.4(b)).

After 120 years of progress, currently available magnetic writer heads are truly

an engineering marvel. Nearly 1000 processing steps are needed to fabricate one

[112]. Once ready, the resulting product has sub−µm resolution and can operate at

GHz bandwidths as was independently verified by Koblischka et al.[113]. These prop-

erties make a magnetic writer head an appealing candidate to be used as a magnetic

microwave microscopy probe. Other researchers are already using magnetic writer

heads to drive nitrogen vacancy centers in diamond [114, 115] and for characteriza-

tion of superconducting microwave circuits [116]. For a "head to head" comparison

of magnetic writer heads with other magnetic probes reported in the literature, see

Section 1.2 of Ref. [104].

We obtained several batches of these near state-of-the-art heads from Dr. Mike A.

Seigler of Seagate Technology and Dr. Dragos I. Mircea of Western Digital Corporation.

A picture of a Seagate magnetic writer probe is shown in Fig. 4.5(a). This probe

consists of a glider, a transmission line and an aluminum assembly that holds the

glider and the transmission line together. The glider shown in Fig. 4.5(e) is the main

part of the probe and it houses the magnetic writer head that is shown in Fig. 4.4. The

bottom surface of the glider, the air bearing surface, is textured to provide a gliding

motion using the air-flow produced by the high revolution speed of the disk during the

operation of the hard-disk drive (HDD). Fig. 4.5(d) shows the top-view of the glider

where connections to the transmission line are highlighted. The red box indicates the

location of the actual magnetic writer pole (or yoke), and a magnified view is shown
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Fig. 4.5 (a) A picture of a Seagate magnetic writer probe, with glider and transmission line.
(b) The close-up view of the pads at the end of transmission line that are used to make electrical
connection to the writer head. Pads 3 − 4 are connected to the writer head. (c) A close up
view of the writer head, the red area highlighted in (d). (d) the top view of the glider where
the magnetic writer head is deposited. (e) A close-up view of the glider.
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in Fig. 4.5(c). Note that the size of the magnetic pole itself is around ∼100nm and

cannot be seen here, but can be seen in SEM image shown in Fig. 4.6.

Fig. 4.5(b) shows the pads in the end of the transmission line that is used to make

electrical connections to the probe. Pads 3− 4 are connected to the writer head. The

connection can be checked by measuring the resistance between pad 3 and 4 which

is Rwriter = 6Ω at room temperature. Note that the lines connected to the writer-head

are wider than the rest, because they are designed to support larger currents. Pads

7 − 8 and 9 − 10 are connected to 2 independent Tunnel-Magnetoresistance (TMR)

sensors which are used for the readout circuit. The purpose of the rest of the pads is

unknown to us as it is proprietary information. The width of the pads is about 250µm

which makes soldering a challenging task.

Fig. 4.6 shows the SEM image of the Western Digital Dragonfly probe’s glider.

The location of both the reader head and the writer head can be clearly seen in

Fig. 4.6(b). Note the amount of magnetic shielding around the write head and the

read head. These shields help to focus the writing and reading process to the small

area below the probe, greatly improving the resolution.

4.5.1 HFSS Simulations

Before using the magnetic writer probe in our microscope, we need to have a

qualitative understanding of it’s magnetic field distribution and the resulting screen-

ing currents on the sample surface. The ANSYS High Frequency Structure Simulator

(HFSS) software was used to simulate and visualize the surface currents induced on
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Fig. 4.6 (a) SEM image of the Western Digital Dragonfly probe’s glider. (b) Magnified view
of the read and write heads shown with a red box in (a). The reader and writer heads are
separated by several layers of magnetic shielding.

Fig. 4.7 (a) HFSS simulation of a magnetic writer a height d above a perfectly conducting
sample. We model the probe as a 200nm × 200nm × 3µm ferrite rod perpendicular to the
surface, driven by a 10 turn gold wire. This rod is part of a bigger magnetic yoke structure.
The diameter of the coil is 1.2µm and the probe is d = 200nm away from the surface of the
sample. Yellow arrows indicate the direction of current flow. (b) Distribution of the magnitude
of surface current density |~Jsur f | on the sample surface. The colorbar indicates the magnitude
of surface current density in a linear scale. The loop is excited by a I = 50mA RF current at
f = 1.5GHz frequency. The x and y axes are the same as the ones defined in Fig. 4.5.
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the sample by the magnetic probe. When a magnetic writer probe is used with su-

perconducting samples, the magnetic field will not be able to penetrate through the

sample, in contrast to the situation shown in Fig. 4.4. Fig. 4.7(a) shows the configu-

ration used for HFSS simulation. The superconducting sample is modeled as a perfect

conductor. Arrows indicate the direction of current flow. Fig. 4.7(b) shows the distri-

bution of the magnitude of surface current density ~Jsur f on the sample surface. From

our simulation we see that largest current is localized to a 500 nm diameter circle.

Later, a more rigorous study of the probe structure was performed by Eddie

Chang, an undergraduate researcher in our lab who worked under my supervision.

Unfortunately, many of the magnetic recording companies are not willing to share

information about the details of the writer head designs. To create the full picture we

had to rely on US patents, such as [117] and [118]. In this simulation, the main pole

of the writer head was designed as a 250nm × 250nm × 1µm long rod, whose final

250nm was tapered down to a 60nm×40nm rectangle, to enhance the magnetic field

(see Fig. 4.8(a)). Ten gold coil turns with 500nm diameter that are wound around

the main pole were used as excitation coils (see Fig. 4.8(b)). The return pole was

designed as a C shaped core that surrounds the main pole (see Fig. 4.8(c)), which

is very similar to a simulation performed by researchers from Seagate in Ref. [114,

115]. The superconducting sample is again modeled as a perfect conductor. The

probe is kept 50nm above the sample. Alumina is an electric insulator with a relatively

high value of thermal conductance. It is generally used to provide structural support

and aid with heat removal. Fig. 4.9 shows the simulated spatial distribution of MW

magnetic field as experienced by the superconductor.
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Fig. 4.8 (a) The shape of the main pole of the writer head as deduced from [117] and [118].
(b) Schematic of the HFSS simulation. The main pole and the return pole, both of which
are simulated as ferrites, are located 50nm above the superconductor, which is modeled as a
perfect conductor. (c) The full design of the writer head as done in our HFSS simulation. The
x and y axes are same as those defined in Fig. 4.5.

Fig. 4.9 The spatial distribution on the surface of the superconductor simulated by the HFSS
model shown in Fig. 4.8. The contour plot of magnitude of the magnetic fields component
normal to the surface. The x and y axes are same with the ones defined in Fig. 4.5.
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4.5.2 Numerical simulation by Seagate

Finally, the result of numerical simulation based on the Stoner−Wohlfarth model

[119] was provided by Mike Seigler of Seagate Technology for our type of write head.

The simulation was performed for 17 nm probe-sample separation and 60 mA excita-

tion current. The simulation was performed over the magnetic medium with no soft

underlayer present. Fig. 4.10 shows the result of this simulation: The peak rf field am-

plitude is greater than 600mT and the fields are localized to < 100nm length scales.

Note that when the probe is used with a superconducting sample the resolution will

likely be less impressive.

In summary, all models presented above agree in two key aspects: Magnetic

writer probe can produce rf strong magnetic fields (Br f > 600mT) localized to sub-

µm length scale. A near field magnetic microscope that utilizes these writer probes

can achieve sub-µm resolution. Furthermore, this microscope can be used to study

Nb and other materials at the regime most relevant to the SRF applications, the one

where rf field amplitude approaches the superheating field of the material Br f → Bsh.

In case of Nb which has the upper critical field of Bc2 = 200mT , this microscope can

locally drive the sample into the normal state, creating artificial hot spots.
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Fig. 4.10 (a) The spatial distribution of the magnetic field normal to the surface under the
writer probe, calculated using the Stoner−Wohlfarth model for our type of write head. The
probe is positioned 17nm above the magnetic medium with no soft magnetic underlayer. (b)
The y−line cut at x = 0. (c) The x−line cut at y = 0. The x and y axes are same with the
ones defined in Fig. 4.5.

4.6 Experimental setup

A new, completely dry cryogenic cryostat for cooling experiments to tempera-

tures below 2.7 K in a vacuum environment was installed in our lab. The cooldown

process for this new setup is fully automated in the sense that the user evacuates the

system and starts the helium compressor and everything else is automatic (requiring

no user intervention or control) down to the base temperature of the cryostat. The

cryostat can operate in a continuous manner at base temperature for weeks or months

at a time with minimal attention from the user and without consuming any cryogens

or gases. This new setup significantly improves our efficiency to perform measure-
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ments and gives us ability to collect vast amounts of measurement data with great

reproducibility.

Fig. 4.11(a) shows the schematics of the cryostat. The cryostat has three plates:

a room temperature top plate, a 70K plate and a cold plate; and three shielding cans:

outer vacuum can, 70K can and the 4K can. The diameter of the 4K can is 330mm

and it’s height is 305mm, this dictates the volume of the usable experimental space.

70 layers of super-insulation is wrapped around the 70K can (see Fig. 4.11(c). The

pulse tube is connected to the 70K plate and cold plate via copper braids to minimize

the vibration at the cold plate (see Fig. 4.11(f). For the same purposes, the pulse

tube is supported by a bellows that is mounted on the top plate. The top plate also

houses the feedthroughs for both rf and dc connections and a pressure sensor (see

Fig. 4.11(e). The base pressure of the cryostat at the cryogenic temperatures is 8 ×

10−8Torr. RF connection between the experiment and room temperature electronics

is made via Beryllium Copper semi-rigid coaxial cables, which are thermally anchored

at each stage (see Fig. 4.11(f)). The dc wiring for thermometers and a heater is also

thermalized at each stage.

Fig. 4.12 shows an example of a fixed-point measurement setup. In this case

a custom made copper holder is used to firmly hold the bulk sample, and the gap

between the sample and the copper holder is filled with indium foil. The copper holder

is thermally anchored to the cold plate of the cryostat. Another copper plate, not seen

in this picture is used to firmly press the probe against the sample, providing both

good probe-sample contact and thermalization for the probe. Slight modifications

to the setup are made each time depending on the shape of the sample. The raster
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Fig. 4.12 Photograph of the Experimental setup. The magnetic writer head is connected to
an SMA coaxial connector by directly soldering it to the pads on the end of writer probe’s
transmission line. The Nb sample is attached to the cold plate of the cryostat. The probe is in
direct contact with the sample in this fixed-point measurement case.

scanning efforts will be discussed separately in Chapter 10.

A Cernox thermometer is installed in close proximity to the sample. A Lakeshore

model 340 temperature controller is used to control the sample temperature by uti-

lizing a PID loop. The heater, which is not shown in the picture, is mount on the cold

plate just below the pulse tube. This arrangement minimizes possible temperature

gradients on the cold plate.

To measure the electrodynamic response of the superconductor, a microwave

signal is produced by a microwave source (HP 83620B) and sent to the magnetic
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writer probe inside the cryostat. Electrical contacts are made by directly soldering

SMA coaxial connectors to the pads on the end of the writer probe transmission line

(see Fig. 4.5 and Fig. 4.12). The probe produces an rf magnetic field which is mostly

perpendicular to the sample surface. The sample is in the superconducting state, so

to maintain the Meissner state, a screening current is induced on the surface (see

Fig. 4.13(b)). This current generates a response magnetic field that is coupled back

to the same probe, creates a propagating signal on the attached transmission line

structure. This signal is branched out using a directional coupler and is measured with

a spectrum analyzer (Agilent E4407B) at room temperature. Both linear and nonlinear

responses to an applied rf magnetic field are expected. To improve the signal-to-noise

ratio, stray nonlinear signals produced by the amplifiers and the spectrum analyzer

itself have to be suppressed. For this reason, high-pass filters are installed between the

probe and spectrum analyzer in order to block the fundamental input frequency signal

from reaching the spectrum analyzer and producing nonlinear signals (see Fig. 4.13(a)

and (b)). Also, due to device imperfections, the microwave source can also produce

some nonlinear signal which are suppressed by means of a low pass filter. The detailed

description of the microscope operation is given in Appendix A.

No external dc magnetic field is applied to the sample. The entire setup is

shielded from external magnetic field by a cylindrical superconducting shield installed

around the coldest enclosure of the cryostat.

The nonlinear response of the sample is measured as a function of frequency,

input microwave power and temperature. The data and the model fits are presented

in the next two chapters, Chapters 5 and 6.
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Fig. 4.13 (a) Schematic of experimental setup. A microwave (MW) source is used to gener-
ate an rf signal and feed it to the magnetic writer probe. The sample response magnetic field is
coupled back to the probe and measured with a spectrum analyzer. (b) The picture of the mea-
surement setup on the rack. (c) Sketch of the probe-sample interaction. The magnetic probe
is approximated as a current loop producing perpendicular magnetic field inducing screening
currents on the surface of the sample. This current generates a response magnetic field that is
coupled back to the same probe.
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4.6.1 Advantages of this method

Traditional microwave characterization techniques of samples usually provide

the response averaged over the entire surface of the sample. In superconductors, local

inhomogeneities like surface defects, grain boundaries, dislocations and the edges of

the sample generate strongest response, since the surface currents are enhanced there.

For example, the surface resistance measured from the SRF cavity that was presented

in Chapter 3, is an averaged response of the entire cavity with no information about

the source of the loss or it’s location.

The magnetic microwave microscope that we built can probe the electrodynamic

response of the superconductor at a local scale and is immune to edge effects. It can

be used to study the intrinsic response of the sample or to characterize the surface

defects one at a time. The amplitude of the magnetic field produced by the magnetic

writer probe is higher than the upper critical field of Nb, thus one can locally drive

the Nb into the normal state. This advantage can be utilized to study the SRF-grade

samples at the limits of their superconducting response and this is precisely where

they will be utilized.

By now it is clear that dc characterization methods (RRR, DC critical field mea-

surements etc.) are not sufficient and cannot be directly linked to RF performance of

the cavity at low temperatures. As I will describe in Chapter 7, there exists a finite

time-scale for the nucleation of vortices, hence a static characterization of the material

will completely miss this feature.
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5

Data from the Magnetic Microscope

The measured nonlinear response will be presented and discussed in this chap-

ter. Numerical fits to the data will be done in Chapter 6 and Chapter 7. Five SRF

grade bulk Nb and Nb thin film samples from 4 different labs around the world were

examined. Table 5.1 contains the list of samples with their type, origin and references

where further details can be found.

Sample ID Sample Type Source
Reference for

sample preparation

Sample 1 Nb film on Cu CERN [120, 121]
Sample 2 Bulk Nb Bieler group at Michigan

State university (MSU)
[122, 123]

Sample 3 Bulk Nb Gianluigi Ciovati’s group
at Jefferson Lab

[124]

Sample 4 Nb film on Cu Malyshev group at the
Accelerator Science
and Technology Centre
(ASTeC)

[125]

Sample 5 Nb film on Sapphire Valente-Feliciano group
at Jefferson Lab

[126]

Table 5.1 The list of samples measured for this thesis with their type, origin and references
where further details can be found.
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Fig. 5.1 Picture of Sample 1, Nb film on copper from CERN.

5.1 Sample 1 − Nb film on copper from CERN

First, a thin-film sample that was prepared at CERN by depositing Nb on a copper

substrate was measured. This Nb film was deposited using the high-power impulse

magnetron sputtering (HIPIMS) technique [127]. The HIPIMS plasma (containing

both Nb atoms and Nb ions, with a high fraction of Nb ions) was driven with rectan-

gular voltage pulses in a frequency range of 50− 500Hz and pulse duration range of

50−200µs. The peak discharge current density was kept in the range of 0.2−1A/cm2.

This sample is well characterized by point-contact tunneling spectroscopy, low-energy

muon spin rotation, and SEM. The point-contact tunneling measurements revealed

that the sample has a distribution of surface superconducting gap values with a peak

at ∆ = 1.48meV [121]. However, the tunneling data also shows a few locations

with large zero-bias conductance peaks. The sample has a fine-grain structure with

50-100-nm average grain size [120].
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Fig. 5.2 Temperature dependence of third-harmonic response P3 f from Sample 1 for f =
2.2GHz input frequency. (a) High input power limit with input powers Pr f = −25dBm (blue),
Pr f = −22dBm (red), Pr f = −19dBm (green). (b) Low input power limit with input powers
Pr f = −39dBm (blue), Pr f = −36dBm (red), Pr f = −33dBm (green), Pr f = −30dBm (cyan).
A peak in P3 f (T ) around Tc is expected from the Ginzburg-Landau (GL) model. Note the
periodicity as a function of temperature between 5K < T < 7K .

90



Fig. 5.2 shows the temperature dependence of the third-harmonic response power

P3 f for different values of rf input power Pr f . For a given Pr f , the sample is warmed

up to T = 10K (above Tc) to release any trapped flux, and then cooled down again.

The measurement is taken at 0.05K temperature steps. A PID loop is used to reach

0.02K stability in the temperature. The measurement is taken with video bandwidth

and resolution bandwidth of 1Hz with 5 times averaging. The noise floor of the spec-

trum analyzer with these settings is -160 dBm which at 5 GHz corresponds to 30,000

photons/s.

The peak in P3 f (T ) around Tc is expected from, for example, the Ginzburg−Landau

(GL) model [105]. This peak is the signature of the intrinsic nonlinearity arising from

the suppression of superfluid density by the surface current. The effect of this mod-

ulation of the superconducting order parameter is particularly large near Tc, where

the equilibrium order parameter is small in magnitude. From the low input power

response shown in Fig. 5.2(b) the Tc for this sample can be estimated as T ≈ 8.2K ,

above which the nonlinear response appears to be temperature independent.

The reproducibility of the third-harmonic response power was checked by re-

peating the same measurement after one week. Fig. 5.3 shows the dependence of the

third- harmonic response on the direction of the temperature sweep. A small hystere-

sis in temperature can be seen around Tc. The data shown in red is acquired under

identical conditions as the data shown in green, but was measured at the same location

with one week difference.

The nonlinear response above Tc comes from the magnetic writer probe itself.

One of the mechanisms responsible for the nonlinear response of the writer probe is
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Fig. 5.3 Third-harmonic response P3 f from Sample 1 as a function of temperature while
cooling down (blue) and warming up (green and red). The data is taken at input frequency
f = 2.2 GHz and input power Pr f =-40 dBm. The data shown in green color is acquired 1
week before the other two.

the hysteresis loop of the ferrite material that is used in the yoke of the writer head (see

Figs. 4.4 and 4.8). Also, high driving currents can saturate the magnetic parts of the

writer head which will stagnate the magnetic field generated by the probe. This could

be another mechanism responsible for the nonlinear response of the writer probe.

Fortunately, the nonlinear response of the probe is temperature independent

in the 3K-10K range used in my measurements and shows up as baseline nonlinear

response around −152dBm in Fig. 5.3. Dips below the baseline at T = 5K; T =

5.5K and T = 6.8K show the destructive interference between the superconductor

nonlinearity and the probe nonlinearity. It was previously observed that the third

harmonic nonlinear response has a phase that evolves rapidly with temperature below
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Tc [109], giving rise to this partial cancellation.

At higher input powers, nearly periodic peaks and dips in P3 f (T ) are observed

as a function of temperature (see Fig. 5.2(a)). As input power is increased the num-

ber of peaks also increases. The periodicity of the nonlinear response is clearer in a

linear scale (third-harmonic voltage V3 f ) than the logarithmic scale (third-harmonic

power P3 f in dBm). Assuming that the spectrum analyzer and coaxial lines have the

standard Z0 = 50Ω characteristic impedance, the third-harmonic voltage measured by

the spectrum analyzer can be related to the third-harmonic voltage as follows:

P3 f (Wat ts) =
V3 f (V )

2Z0
. (5.1)

Similarly we can can calculate the voltage applied to the magnetic writer probe as-

suming it also has Z0 = 50Ω impedance [128]. Since the exact magnitude of applied

magnetic field at the surface of the sample is not known, the input RF magnetic field

amplitude is presented in arbitrary units. The relation between applied RF power and

RF magnetic field in a.u. is written as:

Hr f (a.u.) = 1000
q

2Z0Pr f (Wat ts) . (5.2)

Fig. 5.4 shows a plot of measured third-harmonic response vs temperature (T ) and

applied rf field amplitude (Hr f ) at an f = 2.2GHz input frequency. In Fig. 5.4(a) the

third-harmonic response power is plotted on a logarithmic scale, whereas Fig. 5.4(b)

shows the equivalent third-harmonic voltage, calculated using Eq. (5.1). Fig. 5.5(a)
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Fig. 5.4 (a) Third-harmonic response power P3 f data (logarithmic scale) from Sample 1 as
a function of temperature T and applied rf power Pr f . (b) Third-harmonic voltage response
V3 f data (on a linear scale) vs temperature and applied rf field amplitude Hr f from Sample
1. The white dashed line shows the onset of nonlinear response that we attribute to vortex
nucleation as will be discussed in Chapter 8. The black dashed line shows the onset of periodic
response. The response is measured at input frequency of f = 2.2GHz.

94



shows a vertical line cut through this image (V3 f vs Hr f ) at a constant temperature

of T = 5.1K . To analyze the temperature dependence of the periodic response, the

RF field amplitudes corresponding to the dips in V3 f (Hr f ) were identified and defined

as Hpn(T ) where n stands for n’th dip and T is the temperature of the measurement.

As shown in the figure, Hp1, Hp2 and Hp3 are the rf field amplitudes corresponding

to the first three dips in V3 f (Hr f ). At all temperatures, the third-harmonic response

has a sharp jump at an onset field Hv(T ) (see the white dashed line in Fig. 5.4).

As the rf field amplitude Hr f is further increased, above a temperature-dependent

onset amplitude Hp0(T ), V3 f becomes periodic as a function of Hr f (see the black

dashed line in Fig. 5.4). Fig. 5.5(b) shows the temperature dependence of Hp1(T ),

Hp2(T ), Hp3(T ), Hp4(T ), Hp5(T ), Hp6(T ) and Hv(T ). Clearly, the Hp have the same

temperature dependence while Hv has a different temperature dependence, indicating

that they most likely have different origins.

5.2 Sample 2 − Bulk Nb from MSU

Also, a bulk Nb sample provided by the Bieler group (MSU) originating from a

Tokyo-Denkai large-grain Nb single crystal was examined. The surface of the sample

was mechanically polished and then electropolished. Later, the sample was strained to

40% elongation, cut in half, and two differently oriented halves (F and C) are welded

back together [122, 129]. The sample is then measured for a third-harmonic response

at several fixed positions on side C of the sample about 4 mm away from the weld.
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Fig. 5.5 (a) Third-harmonic response V3 f data at T = 5.1K and f = 2.2GHz measured on
Sample 1. (b) Hp1 (blue �), Hp2 (red ◦), Hp3 (green �), Hp4 (cyan +), Hp5 (red �), Hp6 (blue
×) and onset of nonlinearity Hv (black × markers) vs temperature.

This location experiences a brief thermal excursion that retains much of the deformed

dislocation defect structure as described in more detail in Fig. 16 of Ref. [122] and

Ref. [123]. This sample was shown in Fig. 4.12.

Fig. 5.6 shows the temperature dependence of the third-harmonic response power

P3 f for different values of rf input power Pr f . The measurement was performed both

during the cool down and warmup of the sample. No hysteresis in temperature was

observed. The nonlinear response of the sample goes to the noise floor of the spectrum

analyzer exactly at T = 9.2K . In this particular location no periodic response was ob-

served even at very high input powers Pr f . As was discussed before, the nonlinear

response above T > 9.2K comes from the probe itself and the dip at T = 7.5K when

measured with Pr f = −10dBm is the result of the destructive interference between
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Fig. 5.6 Temperature dependence of third-harmonic response P3 f from Sample 2 for f =
1.49GHz input frequency with input powers Pr f = −10dBm (blue), Pr f = −5dBm (red),
Pr f = 0dBm (green), Pr f = 5dBm (cyan) and Pr f = 10dBm (magenta). The measurement
is taken with video bandwidth and resolution bandwidth of 3Hz with 5 times averaging. The
noise floor of the spectrum analyzer with these settings is −155dBm.

different sources of nonlinear response.

Fig. 5.7 shows a plot of measured third-harmonic response (V3 f ) vs temperature

(T ) and applied rf field amplitude (Hr f ) at an f = 4.38GHz input frequency. The

measurement is performed on a different location than the one shown in Fig. 5.6. A

temperature-independent probe background calculated using Eq. (5.3) below is sub-

tracted from the data for clarity. One notes several families of nonlinear response

(separated by white and black dashed lines) that are roughly periodic as a function of

applied rf amplitude (see Fig. 5.9). Fig. 5.8 shows a vertical line cut through this im-

age (V3 f vs Hr f ) at a constant temperature of T = 9.0K . Similar to Fig. 5.4, Hp1, Hp2

and Hp3 are the rf field amplitudes corresponding to the first three dips in V3 f (Hr f ).
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Fig. 5.7 Third-harmonic voltage V3 f data vs temperature and applied rf field amplitude from
sample 2 measured at a 4.38GHz rf input frequency. A temperature-independent probe back-
ground nonlinearity (Eq. (5.3)) has been subtracted, resulting in some negative values of V3 f .

Interestingly, the onset of nonlinearity here is the same as the onset of periodic re-

sponse.

The probe background response was measured at 0.5K temperature intervals

between T = 9.4K and T = 10.0K . There is no temperature-dependent V3 f signal

above 9.3K , indicating that the superconducting sample is indeed the source of the

signal. The green dashed line in Fig. 5.8 shows the probe background averaged over

the temperatures between T = 9.4K and T = 10.0K . It was found that the probe

background can be fit to a polynomial

Vbg = c1H3
r f + c2H6

r f + c3H9
r f , (5.3)
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Fig. 5.8 Third-harmonic response V3 f data at T = 9.0K and f = 4.38GHz measured on
Sample 2. The probe background measured above Tc is shown as the green dashed line.

where the parameters c1, c2, c3 are unique to each magnetic writer probe and depend

on frequency. For the data shown in Figs. 5.7 and 5.8 c1 = 3.274×10−6nV/(a.u.)3,c2 =

5.943× 10−16nV/(a.u.)6 and c3 = 6.880× 10−26nV/(a.u.)9. Fig. 5.9 shows the tem-

perature dependence of the the dips Hpn(T ) extracted from the data shown in Fig. 5.7.

We find that Hpn decreases linearly with increasing temperature and reaches a finite

saturation value at Tc. To link the experimental data with the outcome of the current-

biased RSJ model that will be presented in Chapter 6, all dips Hpn(T ) are fit to a

straight line, then the slope of the line is defined as the "period" and the y-intercept is

defined as the onset of periodicity Hp0(T ) (see Fig. 5.10).
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Fig. 5.9 The first few Hpn and the onset of periodicity Hp0 (black dashed line) vs temperature
for sample 2. Three separate families of dips (blue, red, green) can be attributed to 3 separate
weak-links.

Fig. 5.10 Hpn vs n for the sample 2 at T = 9.0K . The solid line is a linear fit to the data. Hp0
is defined as the y-intercept of this fit. The "period" is defined as the slope of the fit line. In
this particular example, Hp0 = 70.1 a.u. and the period is 31.54 a.u.
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5.3 Sample 3 − Bulk Nb from Jefferson Lab

Another set of bulk Nb samples is provided by the Ciovati group at Jefferson Lab.

A high-purity fine-grain niobium sheet is cut into small samples by wire electrodis-

charge machining. Later, these samples are etched using buffered chemical polishing,

heat treated at 600°C, and etched again. Afterward, the samples are nanopolished to

obtain a surface with mirror-quality smoothness. Further details of sample prepara-

tion and characterization are available in ref. [124]. The data from this sample are

very similar to the data obtained from large−grain bulk Nb sample. Fig. 5.11 shows

representative nonlinear response data from sample F9 mentioned in Ref. [124].

5.4 Sample 4 − Nb film on copper from ASTeC

A set of Nb on copper thin-film samples was provided by the Malyshev group at

the Accelerator Science and Technology Centre (ASTeC) in Warrington, UK. Four sam-

ples are deposited by high-power impulse magnetron sputtering at 700°C and various

bias voltages on the Cu substrate [125]. The HIPIMS plasma is driven with rectangular

voltage pulses at a 200Hz frequency and 100µs pulse duration. The peak discharge

current for each pulse is approximately 40A. All Nb film depositions are continued

for 4 hours and the resulting films have a thickness of 1.4µm. The residual resistivity

ratio (RRR) is measured to be in the 42− 54 range, peaking for the film prepared at

0 bias voltage. Fig. 5.12 shows representative nonlinear response data from one of
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Fig. 5.11 (a) Third-harmonic data V3 f vs temperature and applied rf field amplitude Hr f
measured on Sample 3 at f = 5.07GHz rf input frequency. (b) Vertical line cut through this
image (V3 f vs Hr f ) at a constant temperature of T = 5.0K .
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Fig. 5.12 Third-harmonic response V3 f vs input rf field amplitude Hr f data measured on
Sample 4 at T = 7.5K and f = 4.855GHz rf input frequency.

those samples.

5.5 Sample 5 − Nb film on sapphire from Jefferson lab

A set of Nb thin-films were provided by the Valente-Feliciano group at Jefferson

Lab. The sample is coated using energetic condensation deposition in UHV via an

electron cyclotron resonance (ECR) Nb ion source with a continuous ion energy of

184 eV [126]. The sample has a thickness of 570 nm and is deposited on an Al2O3

substrate. The critical temperature is measured to be Tc = 9.18K and the RRR is 31.

Fig. 5.13 shows representative nonlinear response data from this sample. In this case,
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Fig. 5.13 Fifth-harmonic response V5 f vs input rf field amplitude Hr f data measured on Sam-
ple 5 at T = 4.2K and f = 1.361GHz rf input frequency on Nb thin-film.

the fifth-harmonic response V5 f is measured and a periodic response of V5 f vs Hr f is

observed. A similar behavior of V5 f (Hr f ) is observed in the CERN film, Sample 1. We

find that the driven RSJ model shows dips in V5 f and V7 f at the same Hr f as V3 f which

was confirmed by our measurements up to the 7th harmonic response.

5.6 Discussion

The first thing to note is that all superconducting samples that I have measured

show an abundance of nonlinear response at virtually all excitation field amplitudes

and all temperatures below Tc. For all the samples, a very similar periodic response
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of V3 f vs Hr f is observed, showing that this is a generic response of this material.

Overall, two types of nonlinear response are observed: a low-field nonperiodic and

a higher-field periodic response. All Nb samples show either periodic or low-field

response, or both, depending on the spatial location of the magnetic writer probe on

the surface of the sample. The intrinsic low-field nonlinear response calculated based

on the Ginzburg-Landau (GL) model near Tc has a strong dependence on the sample

thickness [105, 130]. Therefore, bulk Nb samples tend to have a weaker intrinsic

nonlinear response compared to thin-film Nb samples. In Chapter 6, I will present the

current-biased Resistively Shunted Junction (RSJ) model which can fully explain the

periodic nonlinear response. Some parts of the non-periodic response, particularly

the response shown in Fig. 5.5(a) can be well described using the nonlinear response

produced by vortex semiloops, and this mechanism will be discussed in Chapter 8.

Our understanding of the nonlinear response is limited by the knowledge of

the exact field distribution produced by the magnetic writer head on the sample sur-

face. Nonetheless, the magnetic probe is still a very useful tool that can be utilized

to compare rf responses across a variety of samples and to identify the source of the

nonlinearity. For instance, an important parameter in SRF cavities is the vortex nucle-

ation field, an estimate for which can be obtained by using the measured nonlinear

response. This can be achieved by comparing the temperature dependence and abso-

lute value of the onset of nonlinearity Hv(T ), where v stands for vortex, as we believe

that vortex nucleation is the reason for the sharp onset of nonlinear response at low

rf driving amplitude. This belief is supported by the measured temperature depen-

dence of Hv(T ) shown in Fig. 5.5(b) which is similar to the temperature dependence

105



of the lower critical field Hc1. Furthermore, the Time-Dependent Ginzburg Landau

simulations presented in Chapter 8 show that the magnetic writer probe used in my

experiment can drive vortex semiloops into the bulk of the superconducting sample.

The third-harmonic response generated by these vortex semiloops has a sharp onset

as a function of driving rf field amplitude, with the onset field corresponding to first

vortex nucleation. Of course, the distribution of rf magnetic field that the sample ex-

periences under the magnetic writer head is categorically different from the one it

experiences in an SRF cavity. The magnetic field created by the magnetic writer probe

is very "aggressive" and introduces a significant perpendicular component; hence, it

does not precisely replicate the parallel rf magnetic fields experienced inside a SRF

cavity. Also, the Hv is measured in arbitrary units and can not be used to get the ab-

solute value of the vortex nucleation field. However, one can use Hv to compare the

value of vortex nucleation field between 2 samples, with lower Hv indicating lower

vortex nucleation field, hence poorer performance in an SRF application.

The third-harmonic onset approach has been used to measure the lower critical

field of multilayer structures [131, 132], but the measurements are performed in the

kHz frequency range where the time dynamics of the superconductor can be substan-

tially different from the measurements performed in the GHz range. The relevant

time scales in superconductor response to electromagnetic stimulus will be discussed

in Chapter 9.
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6

Modeling of Harmonic Response

In this chapter I will model the periodic nonlinear response described in Chap-

ter 5. The Resistively Shunted Junction (RSJ) Model described here can accurately

describe the periodic response and extract some intrinsic parameters associated with

the source of this response, such as the BCS superconducting gap and critical temper-

ature. I will also show how two independent models, RSJ and the Vortex-semiloops

simulations discussed in Sec. 8.7, can be combined to fit the harmonic response mea-

sured at a single location.

6.1 Resistively Shunted Junction (RSJ) Model

6.1.1 Weak-links on the surface of Nb

The oxidation of Nb when exposed to air is a well-known and complex phe-

nomenon [133–136]. Oxygen forms a solid solution in Nb and produces materials

with a continuous range of transition temperatures below the bulk Tc of pure Nb (see
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Fig. 6.1 Illustration of oxidation in air of a smooth, single crystal Nb. Metalic NbOx and
Nb2O5, which is an insulator, form at the surface when Nb is exposed to air for 30 minutes.
RF magnetic field applied to such a surface will drive rf currents through this junction. Parts
of this figure are reproduced from [133].

Fig. 6.1). A thin Nb-oxide layer on the surface of Nb sandwiched with a Nb supercon-

ductor on both sides can create a superconductor-insulator-superconductor (SIS) or

superconductor-normal-metal-superconductor (SNS) Josephson junction [129]. The

linear and nonlinear rf impedance of weak-link Josephson junctions can be theoreti-

cally modeled in various ways [137–142]. Experimental data showing the rf response

of a weak-link Josephson junction in a high-temperature superconductor have been

presented in Ref. [137, 143, 144].

6.1.2 The response of a weak-link to RF stimulus

To model the periodic part of third-harmonic response as a function of applied

rf magnetic field shown in Figs. 5.4, 5.5, 5.7 and 5.8 we utilized the rf current-driven
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Fig. 6.2 The simplest circuit model for a Josephson Junction. The driving current flows
through 3 parallel branches: a capacitive branch due to an Insulating layer, an idealized Junc-
tion, and a resistive branch.

RCSJ Model by McDonald and Clem [139]. In this model the Josephson junction (JJ)

is modeled as an ideal short junction shunted by a resistance (R) and a capacitance

(C) to form a parallel circuit (see Fig. 6.2). In our experiment, the surface currents

bias a junction at or near the surface. For a small driving frequency compared to the

plasma frequency ωp =

√

√

√

√

√

2πIc

Φ0C
of the junction, the model can be simplified and the

capacitive branch can be ignored. Here Ic is the critical current of the junction and

Φ0 =
h

2e
is the magnetic flux quantum. The simplified circuit equations become:
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Ic sinδ+
V
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0

Φ0C

2π

∂ 2δ

∂ t2
= Iω sin(ωt) and

V =
Φ0

2π

∂ δ

∂ t
,

(6.1)

where δ is the gauge-invariant phase difference on the JJ, V is the potential difference

across the junction and Iω sin(ωt) is the rf current bias. Eq. (6.1) can be rearranged

as

IcR

ω
sinδ+

Φ0

2π

∂ δ

∂ (ωt)
=

IωR

ω
sin(ωt) . (6.2)

Eq. (6.2) has 2 key parameters: IcR/ω and IωR/ω. Eq. (6.2) is solved for a known

IcR and IωR using the classic Runge-Kutta method to obtain δ(ωt) and V (ωt). The

gauge-invariant phase δ(t) was solved with ω∆t/2π = 10−5 time steps until the

steady state solution is reached, which was defined as the time when the condition

|δ(t) − δ(t − 16π/ω)| < 10−4δ(t − 16π/ω) is satisfied at all times in the range of

(t − 16π/ω, t). Fig. 6.3 shows the gauge-invariant phase difference δ and voltage

across an RSJ for one RF period. The curves are the solutions to Eq. (6.2) forω/2π=

1GHz, IcR = 20µV and IωR = 20µV (red), IωR = 25µV (green) and IωR = 30µV

(blue). For the driving current less than the critical current of the junction Iω < Ic,

most of the current passes through the ideal junction branch (see Eq. (6.1)). For

Iω > Ic, parts of the current will be diverted to the resistive branch and generate a
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Fig. 6.3 Calculated gauge-invariant phase difference δ (top) and voltage (bottom) across an
RSJ as a function of normalized time ωt for one RF period in steady state. The calculation is
done using Eq. (6.2) with frequency of ω/2π = 1GHz, IcR = 20µV and IωR = 20µV (red),
IωR = 25µV (green) and IωR = 30µV (blue). Note that the 2π phase slips in δ(ωt) produce
voltage spikes across the junction, leading to harmonic response.

finite voltage across the junction, leading to a 2π phase-slip across the junction (see

Fig. 6.3). The total number of these phase-slips events within one rf cycle increases

with Iω.
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6.1.3 Weak-link harmonic response

In general, the voltage drop on the junction is nonsinusoidal in time and contains

harmonics and subharmonics of the driving frequency ω. After the solution for δ(t)

comes to steady state the Fourier transform of V (t) is taken to calculate the third-

harmonic voltage V3ω and phase Θ3ω across the junction,

V3ωeiΘ3ω = 2

∫ 2π/ω

0

, V (t)e3iωt d t (6.3)

where i =
p
−1. One can calculate the third-harmonic voltage V3ω across the junction

as a function of driving current amplitude Iω for a given critical voltage of the junction

IcR. Fig. 6.4 show an example for such a calculation done at ω/2π = 1GHz and

IcR = 20µV . The result closely resembles the experimental data shown in Figs. 5.4,

5.5, 5.7 and 5.8. The markers correspond to the three curves shown in Fig. 6.3. Each

peak in V3ω vs IωR corresponds to creating an additional 2π phase-slip across the

junction in the driving RF cycle.

Note that the separation between the dips as a function of IωR is constant. This

calculation was repeated for a very large range of IcR values. Using a procedure similar

to that outlined on page 93, the IωR amplitudes corresponding to the dips in V3ω(IωR)

were identified and defined as Hpn(IcR), where n stands for n’th dip. To uniquely relate

experimental data at a temperature T to the RSJ calculation at a constant IcR, all dips

Hpn(IcR) are fit to a straight line, then the slope of the line is defined as the "period"

and the y-intercept is defined as the onset of periodicity Hp0(IcR) (similar to Fig. 5.10).
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Fig. 6.4 Calculated magnitude (top) and phase (bottom) of third harmonic voltage across an
RSJ junction vs IωR for IcR= 20µV . The markers correspond to three curves shown in Fig. 6.3:
�-red line, ×-green line, and ◦-blue line. Each periodic feature in V3ω and Θ3ω correspond to
an additional 2π phase slip in the junction during each rf period.
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Fig. 6.5 (a) Solid lines: Hp1, Hp2, Hp3, Hp4, Hp5, Hp6, Hp7, Hp8, Hp9, Hp10 and Hp0 (dashed
line) vs IcR calculated from the RSJ model. (b) Period of the dips Hpn vs IcR. (c) Onset-to-

period ratio
Hp0

Period
vs IcR.

Fig. 6.5(a) shows Hp0 to Hp10 vs IcR calculated from the RSJ model. The period is

found to be nearly constant as a function of IcR (see Fig. 6.5(b)). Hp0 linearly decreases

with IcR and saturates at low IcR values. This is consistent with the experimental data

shown in Fig. 5.9, where Hp0 saturates as T → Tc.

The results shown in Figs. 6.3 to 6.5 are calculated for f = 1GHz. However,

as evident from Eq. (6.2), these results can be generalized to other frequencies, by

means of the following scaling: IcR → IcR × f /1GHz, IωR → IωR × f /1GHz and

V → V × f /1GHz. For example the solutions of Eq. (6.2) for IcR = IωR = 10µV at

ω/2π = 1 GHz and the solution for IcR = IωR = 20µV at ω/2π = 2 GHz should be

identical.
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6.1.4 Fitting the measured third harmonic data

The challenging part of this model is to relate simulation results to experimental

data. From measurements we have Hr f in arbitrary units, while in the RSJ calculation

we have the biasing current IωR in µV . A scaling factor X scale =
IωR

Hr f
has to be found.

Also, V3ω is calculated across the junction, while the third harmonic response V3 f is

measured at the probe through a transmission line, which is lossy. Thus, a scaling

factor for harmonic signal Yscale =
V3ω

V3 f
is also required.

For the current-biased resistively shunted junction (RSJ) model, I realized that

the onset-to-period ratio uniquely and monotonically depends on IcR (see Fig. 6.5(c))

and does not depend on the choice of X scale. Thus the measured onset-to-period ratio

from the data taken at a constant temperature allows direct extraction of IcR(T ) for

the junction. To calculate IcR(T ) of the junction, for every temperature the onset-

to-period ratio
Hp0

Period
was calculated from the data. Then the unique value of IcR

corresponding to that onset-to-period ratio was identified. This procedure was then

repeated for each measurement temperature to find IcR(T ). Once IcR(T ) is known,

X scale(T ) is calculated as the ratio of Hp0 calculated from the RSJ model to Hp0 calcu-

lated from the experimental data, while Yscale(T ) is left as a free fitting parameter.

Fig. 6.6 show the RSJ fit to the third-harmonic response measured on Sample

2 and shown in Fig. 5.8. The onset-to-period ratio for this dataset was found to be

Hp0

Period
= 2.22 (see Fig. 5.10), which at f = 4.38GHz correspond to IcR = 49.4µV .
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Fig. 6.6 Third-harmonic response V3 f data at T = 9.0K and f = 4.38GHz measured on
Sample 2 (black ×markers). The probe background measured above Tc is shown as the green
dashed line. The RSJ fit with IcR= 49.4µV is shown as the red solid line.

The RSJ fit, which is shown as the red solid line in Fig. 6.6, is the result of complex

addition of the probe background and solution to the RSJ circuit equation (Eq. (6.2))

for IcR = 49.4µV and f = 4.38GHz. Eq. (5.3) is used to calculate the probe back-

ground shown as the green dashed line in Fig. 6.6. The probe background is assumed

to be constant as a function of temperature and in-phase with the Hr f . As a result of

the complex addition, some dips in V3 f (Hr f ) above Hr f > 200a.u. are lower than the

probe background.

This fitting procedure is repeated for each temperature. Note that three families

of periodic features are visible in Fig. 5.7, with different periods and onsets Hp0 (see

Fig. 5.9). Each of these families can be attributed to a separate weak-link and fit

independently. The summary of the fit parameters used is given in Table 6.1.
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An estimate of the applied rf field strength created by the probe on the surface

of the sample can be made as follows. At higher temperatures as T → Tc, the upper

critical magnetic field is given by Bc2(T )≈ 2Bc2(0)(1−T/Tc). By determining the Hr f

value at which the periodic nonlinear response is suppressed, and assuming Bc2(0) =

240mT [51, 126] and Tc = 9.3K , we can estimate the rf field experienced by the

defect to be 11.4µT/(ar b.unit). This approximately calibrates the vertical axis in

Fig. 5.7 and the horizontal axis in Fig. 6.6. Similarly, using the horizontal scaling

factor of < X scale >= 0.22µV/(ar b.units) obtained from the RSJ fit and an estimated

weak-link normal state resistance of Rn = 100Ω [129], we can estimate the driving

current flowing through the weak-link to be 2.2nA/(a.u.). Thus, for weak-link 1 in

Fig. 5.7, this would correspond to a maximum rf magnetic field amplitude of 13.7mT

and maximum driving current of Iω = 2.6µA with a zero-temperature critical current

of Ic(0) = 12.6µA.

Fig. 6.7 show the combined fit to the third-harmonic response measured on Sam-

ple 1 and shown in Fig. 5.5(a). The onset-to-period ratio for this dataset was found

to be
Hp0

Period
= 4.8, which at f = 2.2GHz correspond to IcR = 58.3µV . Next, the

horizontal axis scaling factor for the RSJ model is fixed to match the Hp0 from the RSJ

model to the Hp0 from the data.

The RSJ fit with this parameters does not account for the Hr f < Hp0 part of

the data. This "pedestal" low-field non-periodic part of the third harmonic data can

be attributed to intrinsic response due to vortex semiloops created by our magnetic

writer probe. This response is calculated by solving Time-Dependent Ginzburg Landau
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Fig. 6.7 Third-harmonic response V3 f data from Sample 1 at T = 5.1K and f = 2.2GHz
(black × markers). Also shown are the RSJ fit with IcR= 58.3µV (green dashed-dotted line),
time-dependent Ginzburg-Landau fit with Hdp = 12 (blue dashed line) (see Sec. 8.7), probe
background (cyan dotted line) and complete fit obtained by vector complex addition (red solid
line).

(TDGL) equations for a magnetic writer probe above the superconducting sample.

The magnetic writer probe was approximated to be a pointlike magnetic dipole with a

sinusoidal time-dependent magnetic moment ~Mdp(t), located at a height hdp above the

origin and parallel to the surface. This model is presented in great detail in Sec. 7.4.2.

In total the data shown in Fig. 6.7 have contributions from a nonlinear response

generated by the current-biased junction, intrinsic low-field nonlinearity modeled by

TDGL, and a temperature-independent probe background. A complex vector addi-

tion of all three contributions is performed for a full fit. The probe background was

measured at 10K and the phase of the probe background was assumed to be constant

and is set to zero, while the complex values of the model responses are included in
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the sum. The horizontal and vertical axis scaling factors for the TDGL model and the

vertical axis scaling factor for the RSJ model are the three fitting parameters.

6.1.5 Extracting BCS superconducting gap value

Fig. 6.8(a) shows the values of the IcR(T ) extracted from the fits to data mea-

sured on sample 1 (see Fig. 5.5) and Sample 2 (see Fig. 5.9). As a next step, the

Ambegaokar-Baratoff relations were used to estimate the superconducting gap ∆(T )

from IcR(T ) [145, 146]:

IcR(T ) =
π∆(T )

2e
tanh(

∆(T )

2kB T
) . (6.4)

Here we assume that the junction formed by the weak-link is an Superconductor-

Insulator-Superconductor (SIS) junction. Finally, the temperature dependence of the

superconducting gap ∆(T ) was fit to the temperature dependence of the gap pre-

dicted by BCS theory (see Eq. (1.13) and Fig. 1.6) [36] and ∆(0) was extracted (see

Fig. 6.8(b)). The resulting fitting parameters are summarized in Table 6.1.

Superconducting gap values obtained from fits shown in Table 6.1 are lower

than the bulk value ∆(0) = 1.55meV reported elsewhere [147]. Nb samples with

higher oxygen content tend to have lower superconducting gap values [133, 148].

Thus the superconducting gap value at a Nb/NbOx/Nb weak-link can be lower due to

a gradient in oxygen content. The fact that the responses from the three weak-links

on Sample 2 have different superconducting gap∆(0) values and Tc ’s shows that they
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Fig. 6.8 (a) IcR(T ) values extracted from the RSJ fit to the sample 1 data (black ◦ mark-
ers) and weak-link 1 (blue � markers), weak-link 2 (green × markers) and weak-link 3 (red
? markers) of sample 2. (b) Calculated superconducting gap from sample 1 data (black ◦
markers-dash-dotted line) and weak-link 1 (blue � markers-solid line), weak-link 2 (green ×
markers-dashed line) and weak-link 3 (red ? markers-dotted line) of sample 2.

likely have different oxygen content.

6.1.6 Discussion

In summary, the RSJ model can explain the periodicity in V3 f (Hr f ) that have

been observed in many samples that we have measured. This confirms the existence

of active weak-links on air-exposed SRF grade Nb samples.

The fact that we can distinguish the nonlinear response coming from three sep-

arate weak-links on Sample 2 demonstrates the strength of the nonlinear response ap-

proach to surface characterization. A single point measurement was sensitive enough

to study three surface defects simultaneously. The values for the < X scale > listed in
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Sample
Weak-Link ∆(0) Tc < X scale > < Yscale >

Family (meV ) (K) (µV/a.u.) (nV/nV )

Sample 1 - 0.25 6.76 1.61 22.85

Sample 2
1 0.80 9.28 0.22 68.56
2 0.35 8.41 0.12 120
3 0.33 7.28 0.11 125

Table 6.1 Summary of RSJ model fit parameters extracted from third-harmonic data on two
Nb samples. Weak-link number indicates the family number in the data.

Table 6.1 show that perhaps weak-link 1 is located closest to the probe, hence experi-

ences the highest driving current for the same applied rf field Hr f . Furthermore, the

weak-link 1 has the smallest value of < Yscale > among the three, indicating lower

attenuation of nonlinear response which reaffirms the hypothesis that weak-link 1 is

located closest to the probe.

I also demonstrate the ability to successfully differentiate between the sources

of local nonlinearity based on their dependence on rf field amplitude and temper-

ature. For example, in Fig. 6.7, we can clearly distinguish between the nonlinear

response generated by a weak-link and nucleation of vortex semiloops. The Hr f value

at which the vortex nonlinearity is measured is lower than the onset of junction non-

linear response Hp0. We attribute this to the fact that vortex-semiloops are created just

beneath the probe while the surface weak-link can be anywhere on the surface within

the writer head field of view. As evident by the spatial distribution of the magnetic

field generated by the magnetic writer probe (see Fig. 4.10), the rf field experienced

by the weak-link in this scenario can be considerably lower than the rf field on the

surface of the superconducting sample just below the probe.
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7

Ginzburg-Landau Simulations

7.1 Ginzburg-Landau Theory

7.1.1 Ginzburg-Landau Free Energy Functional

In 1950, 7 years before the BCS Theory, Ginzburg and Landau postulated the

complete fundamental equations for macroscopic superconductivity [18]. Their work

is praised as a triumph of physical intuition. The London equations for superconduc-

tor electrodynamics [15–17, 19] (Sec. 1.2.2), the Abrikosov vortex lattice[26], and

the Josephson relations [29, 149] (Sec. 1.2.7), all can be found as solutions to the

GL equations. The GL theory is a generic macroscopic model appropriate for under-

standing the electrodynamic response of superconductors subjected to static magnetic

fields and currents in the limit of weak superconductivity. GL theory is an example of

a mean-field theory, where the attention is given to the collective properties instead

of individual particles. Mean-field theories provide a good qualitative description of

phase transition behavior.
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Ginzburg and Landau started from the theory of second-order phase transitions,

which they had previously developed. The GL model defines a superconductor as

a charged Bose superfluid with particles of mass m∗ and charge e∗ and introduces

a complex-valued "order parameter" Ψ(~r), where ~r is position. The order parame-

ter is a measure of the local strength of the superconducting state and is defined as

|Ψ(~r)|2 = ns(~r) where ns(~r) is the superfluid density at position ~r. In the ordered (su-

perconducting) phase the order parameter is nonzero. If the superconducting state

is fully destroyed in any domain within the sample, that domain is said to be in the

non-ordered phase (normal state), and the order parameter has to go to zero there

Ψ(~r) = 0, hence ns(~r) = 0.

GL starts with an expression for the free energy of a superconductor in terms of

position-dependent order parameter and vector potential. The total Ginzburg-Landau

free energy has the form Ftot

�

Ψ(~r), ~A(~r)
�

=
∫

d3~rFGL(~r), where ~A is the magnetic

vector potential and the Ginzburg-Landau free energy density as a function position ~r

is [150]:

FGL(~r) =FL (Ψ(~r)) +Fgrad

�

Ψ(~r), ~A(~r)
�

+Umag

�

~A(~r)
�

. (7.1)

Here, FL is Landau term which is the same free energy density as in the Landau

mean field theory. FL does not include any direct effects of the externally applied

magnetic field. It is the free energy density which depends only on Ψ(~r, T ), where T

123



Fig. 7.1 FL vs |Ψ|2 for several α values (β = 1). Note the existence of a minimum in FL at
finite non-zero |Ψ|2 when α < 0.

is temperature and the analytic function of that dependence has the following form:

FL(Ψ) = α(~r, T )Ψ2 +
β(~r, T )

2
Ψ4 + ... (7.2)

where α(~r, T ) and β(~r, T ) are the temperature and position-dependent phenomeno-

logical expansion parameters. β < 0 corresponds to the ground state being at |Ψ(~r, T )|2 =

∞, thus we set β > 0. For any α > 0 (given β > 0) the ground state is the state with

no superfluid density |Ψ(~r, T )|2 = 0, representing the normal state.

Fig. 7.1 shows FL vs |Ψ|2 for several α values. Here we see that for α > 0 the

minima for FL occurs at Ψ = 0. This means that for any α > 0 the ground state is the

state with no superfluid density, thus the normal state. For α < 0 the minima for FL
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occurs at Ψ = Ψ∞, where |Ψ∞(T )|
2 is the bulk superfluid density in the absence of

external magnetic field,

Ψ∞(T ) =

√

√

√

√

√

−α (T )

β (T )
. (7.3)

Since a transition from the superconducting state to the normal state is expected

at the superconducting critical temperature Tc, one would expect α to change sign at

Tc. Furthermore, α is expected to be an analytic function of temperature, thus one

can postulate the following temperature dependence for α,

α(T ) = α
′
(T − Tc) . (7.4)

Substituting Ψ∞ back into Eq. (7.2) we get the condensation energy

Fsc −Fn =FL(Ψ∞) = αΨ∞
2 +
β

2
Ψ∞

4 = α
−α

β
+
β

2

α2

β2
= −

α2

2β
, (7.5)

with Fn being the free energy density of the normal state.

Fgrad is a kinetic energy term due to interaction of superconducting current and

magnetic field and is given by

Fgrad

�

Ψ(~r), ~A(~r)
�

=
ħh2

2m∗

�

�

�

�

�

�

�

�









~∇−
ie∗

ħh
~A









Ψ

�

�

�

�

�

�

�

�

2

. (7.6)
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Finally, Umag(~A) is the magnetic field energy density and given by

Umag(~A) =
1

2µ0

�

� ~∇× ~A− ~Ba

�

�

2
, (7.7)

where m∗ = 2me is the mass of the Cooper pair, e∗ = 2e is the charge of the Cooper pair,

~Ba = ~Ba(~r, t) is the amplitude of the externally applied magnetic field, and i =
p
−1.

Substituting Eq. (7.2), Eq. (7.6) and Eq. (7.7):

FGL(~r) = α(~r, T )Ψ2+
β(~r, T )

2
Ψ4+
ħh2

2m∗

�

�

�

�

�

�

�

�









~∇−
ie∗

ħh
~A









Ψ

�

�

�

�

�

�

�

�

2

+
1

2µ0

�

� ~∇× ~A− ~Ba

�

�

2
. (7.8)

Taking variational derivatives and minimizing the free energy with respect to Ψ

and ~A leads to the coupled Ginzburg-Landau equations [21, 36, 151–153]:

αΨ + β |Ψ|2Ψ +
ħh2

2m∗









~∇−
ie∗

ħh
~A









2

Ψ = 0 and (7.9)

1

µ0

~∇×
�

~∇× ~A− ~Ba

�

=
e∗ħh

2m∗i

�

Ψ∗ ~∇Ψ −Ψ ~∇Ψ∗
�

−
e2
∗

m∗
|Ψ|2 ~A , (7.10)

where α= α(~r, T ) and β = β(~r, T ).
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7.1.2 Gor’kov’s validation of GL theory

Although the Ginzburg-Landau theory precedes the Bardeen-Cooper-Schrieffer

(BCS) microscopic theory [154, 155], in 1959 Gor’kov was able to derive the same

equation from BCS theory in the limit where the temperature is close to the super-

conducting critical temperature [21]. To derive a GL like equation, Gor’kov had used

several assumptions, thus limiting the range of applicability of the GL model. Here

are the assumptions made by Gor’kov:

1) The order parameter Ψ is small, or more accurately ∆(T ) << kB T , where

∆(T ) is the BCS superconducting gap.

2) The length scale for the spatial variation of both the order parameter and the

magnetic field is larger than the coherence length.

3) The electrodynamics is in the local, London Limit ( i.e. the penetration depth

λ(T ) is larger than the coherence length ξ(T ) and mean free path l).

4) The magnetic fields are weak H << Hc(0), where Hc is the thermodynamic

critical magnetic field.

Here, I will discuss the relationship between the GL parameters, BCS parameters

and experimentally measured quantities. Later, in Sec. 7.3.2, I will evaluate the GL

parameters for real materials, mainly Nb.

Gor’kov showed that as temperature approaches Tc, the order parameter Ψ can
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Fig. 7.2 Blue solid line: Gorkov function χ(ρ) vs ρ using Eq. (7.12). Red dashed line: is the

large-ρ asymptotic behaviour
π2

7ζ(3)ρ
.

be related to BCS superconducting gap ∆ as [21, 151]:

Ψ =

p

7ζ(3)neχ(ρ)

4πkB Tc
∆, (7.11)

where |Ψ|2 and ne have units of inverse volume, whereas ∆ and kB Tc have units of

Energy. Here ζ(x) is the Riemann zeta function, ne is the number density of the

electrons in the normal metal and χ(ρ) is the function introduced by Gor’kov [151,

152]:

χ(ρ) =
8

7ζ(3)

∞
∑

n=0

1

(2n+ 1)2(2n+ 1+ρ)
, (7.12)
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where ρ =
ħhvF

2πkB Tc l
is a dimensionless parameter that is basically ρ =

ξ0

0.36πl
where

ξ0 =
0.18ħhvF

kB Tc
is the Pippard coherence length. The function χ(ρ) is plotted in Fig. 7.2

and its shows that for a superconductor in the clean limit, as ρ → 0,χ(ρ)→ 1, and

for a superconductor in the dirty limit ρ� 1,χ(ρ)→
π2

7ζ(3)ρ
.

Now that we know the relation between Ψ and ∆, Eq. (7.8), Eq. (7.9)) and

(Eq. (7.10)) can be rewritten with ∆ as the expansion variable:

FGL(~r) = α∆∆
2 +
β∆
2
∆4 + γħh2

�

�

�

�

�

�

�

�









~∇−
ie∗

ħh
~A









∆

�

�

�

�

�

�

�

�

2

+
1

2µ0

�

� ~∇× ~A− ~Ba

�

�

2
, (7.13)

α∆∆+ β∆ |∆|
2∆+ γħh2









~∇−
ie∗

ħh
~A









2

∆= 0 , (7.14)

1

µ0

~∇×
�

~∇× ~A− ~Ba

�

= −iγe∗ħh
�

∆∗ ~∇∆−∆ ~∇∆∗
�

− 2γe2
∗ |∆|

2 ~A . (7.15)

The coefficients α∆ = α∆(~r, T ) and β∆ = β∆(~r, T ) are defined by means of the

microscopic characteristics of superconductor [156, p.370]:

α∆(T ) = ν(T )ln(T/Tc) and (7.16)
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β∆(T ) =
7ζ(3)ν(0)

8π2kB
2T 2

. (7.17)

Note that as T → Tc, ln(T/Tc) → −(1 − T/Tc) which is in agreement with

Eq. (7.4).

By definition, in the absence of any field and as T → Tc the superconducting

energy gap is given as

∆∞(T ) =

√

√

√

√

√

−
α∆(0)

β∆(0)
=

√

√

√

√

√

8π2kB
2T 2ln(Tc/T )

7ζ(3)
≈

4kB Tc
p
η0

π

Æ

(1− T/Tc) . (7.18)

Here, ∆∞(T ) is the value of the superconducting gap in the bulk of a sam-

ple in the absence of external magnetic field and η0 ≡
π4

14ζ(3)
= 5.79. Note that

this result is consistent with the approximate temperature dependence of the BCS su-

perconducting gap ∆BCS(T ) ≈ 1.74∆BCS(0) (1− T/Tc)
1/2 near Tc that I discussed in

the end of Sec. 1.3. I shall introduce an effective parameter ∆∞(0) ≡
4kB Tc

p
η0

π
=

3.064kB Tc, and emphasize that it has a different value than the zero-temperature BCS

Gap∆BCS(0) = 1.764kB Tc because the assumptions used to derive this value are valid

only near the critical temperature Tc.

The temperature of dependence of α∆ and β∆ that is given in Eq. (7.16) and

Eq. (7.17) comes from the microscopic theory. However, this temperature dependence

can be modified to better fit the experimental evidence, as long as at T → Tc the
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theoretically predicted temperature dependence is preserved. For now, I will introduce

the temperature kernels fα(T ) and fβ(T )which show the temperature dependence for

the α∆ and β∆ parameters, and is given as follows [157]:

α∆(T ) = −ν(0) fα(T ) , where fα(T ) = 1− T/Tc and (7.19)

β∆(T ) =
7ζ(3)ν(0)

8π2kB
2Tc

2
fβ(T ) , where fβ(T ) =

T 2
c

T 2
. (7.20)

The third coefficient in Eq. (7.13), γ= γ(~r) is defined as follows [156, 158]:

γ=
π2neχ(ρ)

64meη0kB
2Tc

2
=
ν(0)πD

8kB Tcħh
, (7.21)

with D =
πħhv2

F

12η0kB Tc
χ (ρ) =



























vF l

3
if l < ξ0, i.e. Dirty limit

vFξ0/1.33

3
if l > ξ0, i.e. Clean limit

. (7.22)

Here EF , pF , and vF is the Fermi energy, momentum and speed, in that order.

ν(0) is the DOS at the Fermi Energy EF and D is the phenomenological electron diffu-

sion coefficient with l being the quasi-particle mean free path [152, 159]. The equa-
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tions used for the Fermi Energy and density of states are given below [160, 161]:

EF =
mev

2
F

2
=
ħh2

2me
(3π2ne)

2/3 , (7.23)

ν(0) =
mepF

2π2ħh2 =
me

2π2ħh2(3π
2ne)

1/3 . (7.24)

Note that all the masses m used in Gor’kov’s paper [21], Schmid’s paper [162]

and Kopnin’s book[158] correspond to free electron mass me. No effective Cooper pair

mass m∗ = 2me is considered in any of their equations. Hence the mass in Eq. (7.21)

is an electron mass me.

We can define the characteristic length for variation of ∆ (a.k.a. the GL coher-

ence length ξ) by considering a simplified case with no magnetic field. With ~A = 0

Eq. (7.14) can be simplified as:

∆

∆∞
+

�

�

�

�

�

�

�

�

∆

∆∞

�

�

�

�

�

�

�

�

3

−
γħh2

α∆
∇2
∆

∆∞
= 0 . (7.25)

The GL coherence length ξ can be defined as follows [156, 158, 163, 164]:

ξ(T ) =

√

√

√

√

√

γħh2

α∆(T )
=

√

√

√

√

√

πħhD

8kB Tc fα(T )
=

ħh
p

2m∗α(T )
. (7.26)

Similarly, the London penetration depth λ can be calculated from Eq. (7.15),
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ignoring ~∇∆ and taking the curl of both sides:

1

2µ0γe2
∗ |∆|

2∇
2~B = ~B . (7.27)

Eq. (7.27) is the same equation as Eq. (1.6) with a penetration depth that can

be expressed as follows:

λ2(T ) =
1

2µ0γe2
∗ |∆(T )|

2 , or (7.28)

λ(T ) =

√

√

√

√

√

β∆(T )

2µ0γe2
∗α∆(T )

=

√

√

√

√

√

πħhfβ(T )

4η0kB Tcµ0e∗2ν(0)D fα(T )
. (7.29)

Superconductors are classified into Type I and Type II based on their response

to an applied magnetic field. The ratio of London penetration length to GL coherence

length is an important parameter which determines the type of a superconductor. This

ratio is defined as the GL parameter κ:

κ(T ) = λ(T )/ξ(T ) =
1

e∗D

√

√

√

√

√

2 fβ(T )

η0µ0ν(0)
. (7.30)

A type I superconductor, where κ < 1/
p

2, has a positive surface energy, mean-

ing that extra energy is needed to create a new Superconductor/Nonsuperconductor

interface or boundary. Hence a type I superconductor completely expels magnetic

field until a critical magnetic field Hc level is reached above which the superconduct-
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ing state is lost. But a type II superconductor with κ > 1/
p

2 has negative interface

energy. That is why when a type II superconductor is subjected to an external mag-

netic field above its lower critical field Hc1, it enters into the mixed-state, and when

the magnetic field amplitude reaches the upper critical field Hc2, the superconducting

state is lost. The mixed-state is a state where a mixture of superconducting domains

and Abrikosov vortices can coexist [26].

While the assumptions used in the derivation of the GL equations are valid only

when T → Tc, it is in good agreement with experimental results for temperatures

down to 0.7Tc [160]. GL generalizes the theory of superconductivity beyond BCS

by explicitly considering inhomogeneous materials, including surfaces, interfaces, de-

fects, vortices, etc. It is is more flexible than BCS theory, which is only valid for ho-

mogeneous superconductors. Inhomogeneity in a superconductor can arise from the

presence of surfaces, contact with a normal metal, defects, or due to layered or gran-

ular structure. Apart from the GL model, the Bogoliubov-de Gennes (BdG) equations

[153, 165–167], Gorkov’s Green function method [158, 168, 169], the Matsubara for-

malism [170, 171] or Usadel’s equations [172] can be used to study inhomogeneous

superconductors [173]. However, none of them can offer the relative simplicity of the

GL model and the physical insights it offers compared to these other more microscopic

approaches.
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7.2 Time-dependent GL model

The GL model is a very successful, yet simple model. However the GL equa-

tions are static, thus cannot be used to study the temporal evolution of the order

parameter and the screening currents. This has motivated several authors to seek

a time-dependent generalization of the GL equations. In 1966, Schmid proposed a

time-dependent generalization of the GL equations that could be utilized to study

the dynamics of the order parameter [162]. He added a time dependence to the

electron-electron interaction and followed Gor’kov’s derivation [21] to derive the time-

dependent Ginzburg-Landau (TDGL) equations. Gor’kov and Eliashberg derived a

similar equation [174], but noted that for the case of a gapped superconductor, there

exists a singularity in the density of states vs energy spectrum which prohibits expand-

ing various quantities in powers of the gap ∆.

Gor’kov limited the use of TDGL to gapless superconductors, or to materials

with magnetic impurities or other pair-breaking mechanisms that would round off the

singularity in the BCS density of states [36]. Proximity to a boundary with a normal

metal, along with strong external magnetic fields and currents can also lead to gapless

superconductivity before completely destroying it. Of relevance to the case of SRF

cavities, numerous researchers have noted a substantial reduction in the singularity,

and broadening of the density of states spectrum, under SRF operating conditions

[61, 64] or with various types of impurities and imperfections in the near-surface

region [65, 147, 175–177]. Recently, researchers at Jefferson lab performed tunneling
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spectroscopy on Nb samples prepared for SRF applications and showed that at about

50% of locations on the surface the tunneling spectra showed a gapless spectra or

zero-bias conductance peaks [178]. Such conditions would also justify the use and

relevance of the TDGL equations to study the screening response of SRF cavities.

Once the GL free energy is known in its functional form (Eq. (7.13)), the re-

laxation dynamical equation can be written by considering how the order parameter

evolves after being slightly disturbed from its equilibrium value [158, 179]:

−Υ









∂

∂ t
+

i

ħh
e∗Φ









∆ (~r, t) =
δFGL( ~r, t)

δ∆∗
, (7.31)

where Υ plays the role of a friction coefficient and is inspired by Landau and Khalat-

nikov’s treatment of superfluid helium [180]. Here, the scalar electric potential Φ is

included to make the equation describing the dynamics of the superconducting order

parameter gauge invariant. The TDGL equations are then derived through the varia-

tional derivatives of the GL free energy equation (Eq. (7.13)) with respect to ∆∗ and

~A and are given as follows [162, 181]:

γħh2

D









∂

∂ t
+

i

ħh
e∗Φ









∆= −γħh2









~∇−
ie∗

ħh
~A









2

∆−α∆(~r, T )∆− β∆(~r, T ) |∆|2∆ ,

(7.32)
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σ









∂ ~A

∂ t
+ ~∇Φ









= −iγe∗ħh
�

∆∗ ~∇∆−∆ ~∇∆∗
�

− 2γe2
∗ |∆|

2 ~A−
1

µ0

~∇×
�

~∇× ~A− ~Ba

�

,

(7.33)

where ∆ = ∆(~r, T, t) is the time-dependent SC gap, ~A = ~A(~r, t) is the magnetic vec-

tor potential, ~Ba = ~Ba(~r, t) is the externally applied magnetic field, Φ = Φ(~r, t) is

the scalar electric potential, D is the phenomenological electron diffusion coefficient

given by Eq. (7.22),σ is the electric conductivity of the normal (non-superconducting)

state. For a gapless superconductor Gor’kov and Eliashberg were able to calculate the

characteristic relaxation rate for the order parameter to be τGL =
πħh

8kB(Tc − T )
which

is equal to τGL−1K ≈ 3 × 10−12 s for Tc − T = 1 K. It is evident from Eq. (7.32) that

Υ =
γħh2

D
and can also be written as Υ = |α∆(T )|τ∆(T ), where τ∆(T ) =

ξ(T )2

D
is a

characteristic time for the relaxation of the superconducting gap ∆ [158, 182]. From

Eq. (7.33) one finds that the characteristic time for the relaxation of magnetic vector

potential ~A is τ j = µ0λ
2σn [158].

Eq. (7.32) was first proposed by Schmid [162], following the derivation of the GL

equation from BCS [154, 155] by Gor’kov [174]. Eq. (7.33) is Ampere’s law ~∇×~B(~r) =

µ0

�

~Js(~r) + ~Jn(~r)
�

, where ~Jn(~r) = −σ
∂ ~A(~r)

∂ t
is the normal current and the supercurrent

is defined in Eq. (7.34).

The superconducting current can be obtained from the expectation value of the

137



momentum operator for a charged particle of charge e∗ in a magnetic field:

~Js(~r, t) = −iγe∗ħh
�

∆∗ ~∇∆−∆ ~∇∆∗
�

− 2γe2
∗ |∆|

2 ~A . (7.34)

7.3 TDGL simulations

7.3.1 Gauge invariance, boundary conditions and normalization

The TDGL equations are invariant under the following change of gauge [183,

184]:

∆(~r, t)→∆(~r, t)eiχ(~r,t) , (7.35)

~A(~r, t)→ ~A(~r, t) +
ħh

e∗
~∇χ(~r, t) , (7.36)

Φ(~r, t)→ Φ(~r, t)−
ħh

e∗

∂ χ(~r, t)

∂ t
, (7.37)

where χ(~r, t) is any (sufficiently smooth) real-valued scalar function of position and

time. One can fix the gauge as
∂ χ(~r, t)

∂ t
=

e∗

ħh
Φ(~r, t) in order to effectively eliminate

the electric potential at all times [184, 185].

To numerically simulate the superconducting domain, one must specify the bound-

ary conditions for the order parameter, current density, and vector potential. Accord-
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ing to de Gennes, on the boundary ∂Ω of the superconducting domain Ω the following

boundary condition should be enforced [153, 167]:









~∇−
ie∗

ħh
~A









∆ · n̂ =
i

b
∆ on ∂Ω , (7.38)

where n̂ is unit vector normal to the surface and b is a real constant that has units of

length and is known as the extrapolation length. In this work only the superconductor-

insulator boundary is considered where b = ∞. Any current passing through the

boundary between a superconducting domain and vacuum/insulator would be non-

physical, thus:









~∇−
ie∗

ħh
~A









∆ · n̂ = 0 on ∂Ω . (7.39)

It is useful to introduce dimensionless variables (denoted by twiddles ∼) to sim-

plify the simulation and normalize Eq. (9.3) and Eq. (7.33): The superconducting

gap is scaled according to ∆∞(0), ∆ → ∆∞(0)e∆ where ∆∞(0) =
4kB Tc

p
η0

π
is the

bulk superconducting density at zero temperature in the absence of external mag-

netic field as defined in Eq. (7.18). The spatial coordinates are scaled according

to the zero temperature GL coherence length ξ(0) ≡

√

√

√

√

√

πħhD

8kB Tc
(Eq. (7.26)), so that

(x , y, z)→ (ξ(0)ex ,ξ(0)ey ,ξ(0)ez), thus ~∇→
1

ξ(0)
~
e∇ 1. Time is scaled according to the

1Note that the zero temperature London penetration depth λ(0) can also be used as a normalization
length scale (See Ref. [184])
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characteristic time for the relaxation of the vector potential τ j(0), t → τ j(0)et where

τ j(0) ≡ µ0λ
2
0σn

2 and σn = 2e2ν(0)vF l/3 is the normal state conductivity at 0K [56,

181] (as opposed to the conductivity of non-superconducting current at any tempera-

ture denoted asσ(T )). The temperature is scaled according to the critical temperature

of the superconductor Tc, T → Tc
eT . The magnetic vector potential ~A→

Φ0

2πξ(0)
~
eA and

magnetic field ~B → Bc2(0)
~
eB, where Bc2 =

Φ0

2πξ(0)2
is the second critical field at zero

temperature and Φ0 =
h

e∗
is the magnetic flux quantum. The superconductor current

is scaled in terms of Jc, ~J →
Jc

κ
~
eJ , where Jc =

Φ0

2πµ0λ(0)ξ(0)2
=

Bc2

µ0λ(0)
is the critical

current density at T = 0 and B = 0, and κ is the GL parameter and is defined as

the ratio of two characteristic length scales κ ≡
λ

ξ
(see Eq. (7.30)). The normal state

conductivity is scaled with its zero temperature value σ→ σneσ and since it is nearly

constant in the temperature range of interest for Nb, it is set to eσ = 1. The "normalized

friction coefficient" is defined as the ratio between the two characteristic time scales

τ∆ and τ j, η ≡
τ∆

τ j
[182, 188]. For cases when the source of externally applied mag-

netic field is outside of the superconducting domain, the ~Ba term in Eq. (7.33) should

be dropped because ~∇× ~Ba = 0 everywhere within the superconducting domain.

Rewriting Eq. (9.3) and Eq. (7.33) using the newly introduced dimensionless

2This characteristic time scale is also used to normalize TDGL equations in Refs. [182, 184, 186–
188]
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quantities and dropping " ∼ " we have :

η
∂∆

∂ t
=
�

~∇− i ~A
�2
∆+ fα∆− fβ |∆|

2∆ , (7.40)

σ
∂ ~A

∂ t
=

1

2i

�

∆∗ ~∇∆−∆ ~∇∆∗
�

− |∆|2 ~A−κ2 ~∇× ~∇× ~A , (7.41)

~Js =
1

2i

�

∆∗ ~∇∆−∆ ~∇∆∗
�

− |∆|2 ~A , (7.42)

where the explicit parametric temperature dependence is contained in fα and fβ . It

should be stressed that the quantities σ, ∆, ~A, ~∇ and t appearing in these equations

are all their dimensionless versions.

7.3.2 Material parameters

The main objective of this work is to simulate the response of SRF grade Nb, thus

the parameter values must be chosen accordingly. Experimental values for relevant

parameters in these materials are summarized in Table 7.1.

Some of these parameters can be computed from purely theoretical considera-

tions. However, it would not be wise to expect complete agreement between the quan-

tities calculated using the phenomenological model and the quantities calculated using
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Parameter Name Symbol Value Reference

Effective penetration depth λe f f (0) 47 nm [189]
London penetration depth λL(0) 39 nm [189]
Coherence length ξ(0) 38 nm [189]
Second critical field Hc2 442 mT [190]
Critical temperature Tc 9.2 K [189]
Fermi velocity vF 1.37× 106 m/s [191]
Free electron density ne 5.56× 1028 m−3 [191]
Ginzburg-Landau time τGL 3.26× 10−13 s πħh/8kB Tc

electron phonon inelastic scatter-
ing time

τe 4.17× 10−12 s [192]

Normal state conductivity σn 2× 108 − 2× 109 S/m [193, 194]

Table 7.1 Measured values of SRF quality bulk Nb parameters used for numerical simulations.

the microscopic model. The phenomenological model is derived for T → Tc, hence

this is the range where an agreement between GL and BCS is expected.

At temperatures near Tc all superconductors are considered to be in the local

limit, because the penetration depth diverges. I should limit myself to dirty Nb since

this is where both TDGL and gTDGL are valid. According to Tinkham [36, p.103], in

the dirty local limit the temperature dependence of the penetration depth is given as

follows:

λe f f (T ) = λe f f (0)









∆(T )

∆(0)
tanh(

∆(T )

2kB T
)









−1/2

. (7.43)

Given that limT→Tc
tanh(

∆(T )

2kB T
) =
∆(T )

2kB T
and limT→Tc

∆(T )

∆(0)
= 1.74(1− T/Tc)1/2
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we can get the limiting value of penetration depth as follows:

lim
T→Tc

λe f f (T ) = λe f f (0)









∆2(T )

∆2(0)

∆(0)

2kB Tc









−1/2

=
λe f f (0)
p

2.67

1
p

1− T/Tc

=
28.76 nm
p

1− T/Tc

,

(7.44)

where I used λe f f (0) = 47 nm from Table 7.1. Using Eq. (7.29) along with ne listed

on Table 7.1 one finds:

λ(T ) =

√

√

√

√

√

β∆(T )

2µ0γe2
∗α∆(T )

=
15.94 nm
p

1− T/Tc

, (7.45)

where I used Eq. (7.21), Eq. (7.16) and Eq. (7.17) to evaluate γ, α∆(T ) and β∆(T ).

Clearly the result of Eq. (7.45) is in disagreement with the real material value ob-

tained in Eq. (7.44). I will address this issue later. For now let me perform the same

comparison for ξ. Again, according to Tinkham [36, p.119], the GL coherence length

ξ can be related to the Pippard’s coherence length ξ0 in the following fashion:

ξ(T )

ξ0
=

π

2
p

3

Hc(0)

Hc(T )

λL(0)

λe f f (T )
, (7.46)

where Hc is the superconducting critical field, which can be approximated near Tc as

Hc(T ) = 1.73Hc(0)(1− T/Tc). Using this, and the London penetration depth λL from
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Table 7.1 and effective penetration depth λe f f from Eq. (7.44) we get:

ξ(T ) =
27 nm

p

1− T/Tc

. (7.47)

Using Eq. (7.26) along with ne listed on Table 7.1 one finds:

ξ(T ) =

√

√

√

√

√

γħh2

α∆(T )
=

149.6 nm
p

1− T/Tc

. (7.48)

Yet again, the result of Eq. (7.48) is way off from the material value obtained in

Eq. (7.47). This is because until now I have neglected the fact that the effective mass of

the Cooper pair can be higher than the expected 2me. This can be caused by the band

structure of a material and phonon "dressing" effects [36]. Defects and impurities can

also change the penetration depth locally which one can attribute either to a change in

effective mass m∗ or local superfluid density ns. It’s effect is accounted for in the defi-

nition of γ in Eq. (7.21) which makes up for the neglect of this degree of freedom by

Gor’kov and Kopnin (note that γ appears in both Eqs. (7.45) and (7.48)). While there

are some proposed methods to measure the effective mass m∗ [195–197], sadly as of

today this value remains experimentally inaccessible. Note that the quantities ns l/m∗

appear together in the definition of γ (l does not explicitely appear in Eq. (7.21) and is

accounted for in χ(ρ); ne = 2ns). Thus it is customary to set m∗ = 2me and attribute

all local variations of penetration depth to local variations in superfluid density or

mean-free path. The parameter γ itself will have to be corrected as γ∗ =
n∗s

ns
γ where n∗s
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represents an effective superfluid density. This zero temperature effective superfluid

density n∗s (0) will be set to match the theoretical and experimental values listed in

Table 7.1. For Nb we shall use:

n∗s (0) =
(15.94 nm)2

(28.76 nm)2
ne/2= 8.54× 1027 m−3 < ns and

n∗s

ns
= 0.31 . (7.49)

Using this value of n∗s (0) will change γ to γ∗ = 0.31γ, and therefore using

Eq. (7.16) and Eq. (7.17) we find that λ(T ) = 28.75nm/
p

1− T/Tc and ξ(T ) =

89.92nm/
p

1− T/Tc, which are closer to the BCS values obtained using Eq. (7.44),

Eq. (7.48) and experimental numbers listed in Table 7.1. Note that λ(T ) and ξ(T ) also

depend on the value of mean-free path l and this dependence is plotted in Fig. 7.3.

Fig. 7.3 shows that both λ and ξ depend on the value of mean-free-path l,

through the diffusion coefficient D and parameter γ∗. The BCS surface resistance

also has l-dependence with a shallow minimum around l ≈ ξ(0) [56, 198]. Recently,

it was revealed that the residual resistance caused by trapped vortices also depends

on the mean-free-path value l [72] establishing l as one of the parameters that needs

to be tuned for optimal SRF performance. With the modified γ∗ one can compute

the time-scales governing the relaxation of the order parameter and magnetic vector

potential ~A for Nb in the dirty limit:

τ∆(0) =
ξ2(0)

D
=

γ∗ħh2

α∆(0)D
=

n∗s

ns
τGL(0) = 9.91× 10−14 s , (7.50)
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Fig. 7.3 Magnetic penetration depth λ(T ) (blue) and coherence length ξ(T ) (red) vs mean-
free path l, calculated using Eq. (7.26) and Eq. (7.29) where γ is calculated using Eq. (7.21)
with n∗s = 8.54× 1027 m−3 for Nb. Both quantities are multiplied by fα(T ) =

p

1− T/Tc to
show the temperature independent dependence on the mean free path.

τ j(0) = µ0λ(0)
2σn =

1

η0

ns

n∗s

vF l/3

D
τGL = 1.81× 10−13 s . (7.51)

As I discussed in Sec. 7.3.1, in the simulation time is expressed in units of τ j(0),

consequently a frequency range of 500 MHz-5 GHz and mean-free-path value range

of 0− 500 nm corresponds to a period of rf oscillation in the range of 200− 6000τ j.

Hence, the period of rf magnetic field used in the simulations is chosen to be in the

same range
2π

ω
= 200− 6000τ j. Note that in the dirty limit

vF l/3

D
→ 1.
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The "normalized" friction coefficient is defined as :

η=
τ∆

τ j
=

ξ2/D

µ0λ(0)2σn
=



















































η0









n∗s

ns









2

= 1.78 for Nb in the dirty limit (l < ξ0)

η0









n∗s

ns









2

ξ0

1.33l
=

1.34

l/ξ0
for Nb in the clean limit (l > ξ0).

(7.52)

Many theoreticians argue that the value of the normalized friction coefficient η

should be fixed at η= η0 =
π4

14ζ(3)
= 5.79 [158], but Eq. (7.52) clearly indicates that

the value of η is tunable and it’s value is simply limited to be η ≤ η0 since ns > ne/2

would be nonphysical. In a clean limit superconductor η would also be proportional

to l−1 but that is where the applicability of the GL model is called into question, so

can be ignored.

7.3.3 Introduction and Treatment of Defects

The way a superconducting vortex is created and its dynamics when subjected to

alternating current has been, and will continue to be, the topic of many research pub-

lications [20, 28, 186, 199–203]. When a superconducting vortex system is subjected

to an electric current, it experiences a Lorentz force perpendicular to the direction of

the current and magnetic field. The Lorentz force causes the vortex to move, creating

an effective friction force and dissipation due to flux motion [27]. The friction force
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is associated with quasiparticle excitations in the vortex core due to their interaction

with the lattice, and generally increases with vortex velocity [28]. The dissipation can

be reduced by introducing pinning sites and creating a pinning force to counteract the

Lorentz force [199, 200, 202]. Artificial pinning centers and careful nanostructuring

can be used to optimize a superconducting material for a specific application. The

material design process can be guided by numerical simulation techniques that iden-

tify the location and the external magnetic field value at which a vortex is expected to

penetrate into the superconducting sample [204].

One of the strengths of the GL model is it’s ability to accurately describe the

interaction between vortices and sample inhomogeneities, material defects like mag-

netic inclusions, grain boundaries etc. Some common SRF surface defects, such as

lossy Nb-oxides and metallic Nb-hydrides near the surface of Nb [56] are either non-

superconducting or have lower critical temperature than Nb. There are several ap-

proaches to model such defects. Defects which are known to be insulators can be mod-

eled by adding such insulating domains into the simulation with appropriate boundary

conditions (see Sec. 7.3.1). Metallic inclusions, areas with suppressed Tc or the effect

of nonzero temperature, can be specified through modulations of the superconductor

critical temperature. For that purpose one can define dimensionless pinning coeffi-

cients ε(~r, T ) [204–209] which can range from ε(~r, T ) = 0 (strong order parameter

suppression) to ε(~r, T ) = 1 (full superconductivity). The effects of spatial variation of

the mean free path l(~r) (or effective mass m∗) can be specified through the diffusion
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coefficient at the defect location Dd(~r):

η
∂∆

∂ t
=

Dd(~r)

Dcl

�

~∇− ~A
�2
∆+ ε(~r, T )∆− |∆|2∆ , (7.53)

σ
∂ ~A

∂ t
=

1

2i

�

∆∗ ~∇∆−∆ ~∇∆∗
�

− |∆|2 ~A−
Dcl

Dd(~r)
κ2 ~∇× ~∇× ~A , (7.54)

where

ε(~r, T ) = fα(T, Tc(~r)) = 1−
T

Tcd
(~r)

. (7.55)

Here subscript d stands for "defect", cl stands for clean and Tc0
is bulk critical

temperature. We model the defect through a spatially varying Tcd
(~r)< Tc and Tcd

→ Tc

far from the defect. These pinning coefficients dictate the maximum possible value for

the superconducting gap ∆(~r, T ) at a given location and temperature in the absence

of external magnetic field and :

|∆(~r, T )|2 ≤ ε(~r, T ) =























1−
T

Tcd
(~r)

for T ≤ Tcd

0 for T > Tcd
.

(7.56)

One could also consider the spatial variation in temperature (T = T (~r)) due to

local heating or externally applied heating (like that produced by laser illumination

[210–212]) but in my models the temperature is constant and homogeneous every-

where.
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One can calculate the vortex pinning potential created by this kind of disorder

using the method outlined in reference [202]. Consider a point defect at the origin,

which means the defect extends on a scale smaller than the coherence length, hence

perturbs Tc or l only locally. This will lead to a small change in the total free energy

of the superconductor. Using Eq. (7.13)

δFtot =

∫

V

d3r
�

δα∆∆
2
∞ +

δβ∆
2
∆4
∞ +δγħh

2
�

� ~∇∆∞
�

�

2
�

, (7.57)

where δα∆ = δα∆(~r),δβ∆ = δβ∆(~r) and δγ = δγ(~r) represent small position de-

pendent changes in the phenomenological GL parameters, and the integral stands for

integration over the whole volume of the superconductor. Now consider the same

scenario with a vortex line directed along ẑ at location ~u(z) = ux(z) x̂+uy(z) ŷ relative

to the defect location. The change in the total energy will be

δFtot =

∫

V

d3r
�

δα∆∆
2
v(~r − ~u) +

δβ∆
2
∆4

v(~r − ~u) +δγħh
2
�

� ~∇∆v(~r − ~u)
�

�

2
�

, (7.58)

where∆v is the GL solution for the order parameter around a vortex, given by∆v(~r) =

reiθ

p

r2 + 2ξ2
∆∞ [156, p.79]. The vortex pinning potential Up(~r), is the free energy

difference between these two cases: namely the vortex being at position ~r and the
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vortex not being there. Hence using Eq. (7.57) and Eq. (7.58):

Up(~u(z)) = −
∫

d2r

�

δα∆
�

∆2
∞ −∆

2
v(~r − ~u(z))

�

+

+
δβ∆

2

�

∆4
∞ −∆

4
v(~r − ~u(z))

�

−δγħh2
�

� ~∇∆v(~r − ~u(z))
�

�

2
�

.

(7.59)

The simplest defect to model is a point defect (inside the superconductor), de-

fined as a defect with spatial extent smaller then the coherence length (for exam-

ple oxygen defects). Consider a point defect which locally suppresses Tc such that

δα∆ = Aδ(r) is now a Dirac delta function at the origin (and I take δβ∆ = 0 for

simplicity). Then:

Up(~u(z)) = −
∫

d2r

�

δα∆
�

∆2
∞ −∆

2
v(~r − ~u(z))

�

�

=

= −A(∆2
∞ −∆

2
v(−~u(z))) = −

2Aξ2

u(z)2 + 2ξ2
= −

U0

u(z)2 + 2ξ2
,

(7.60)

where U0 is the potential depth per unit length in the ẑ direction. This is very similar

to the pinning potential used in [72] and [213].

7.3.4 TDGL in COMSOL

COMSOL multiphysics simulation software [214] can be used to solve the TDGL

equations in both 2D and 3D domains [184, 215]. The main advantage of COMSOL is
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the intuitive interface of the software and automatic algorithm optimization. A critical

comparison of COMSOL and ANSYS simulation software was previously performed

[216], where the authors showed that COMSOL can complete the simulation 10 times

faster while reaching similar results. The accuracy of the software has been validated

by other researchers as well [217, 218]. COMSOL has an easy learning curve enabling

researchers to use the TDGL model as a tool without spending too much effort on

algorithm development [219].

The General Form Partial Differential Equation is one of the equations best suited

to be solved by COMSOL multiphysics simulation software and is given as:

d
∂ ~u

∂ t
+ ~∇ · ~Π= ~F . (7.61)

Here ~F is the driving term vector, d is the inertia tensor, ~u is a column vector

of all unknowns and ~Π is a column vector function of ~u. I can rewrite Eq. (7.53) and

Eq. (7.54) to be in this form. Redefine ∆ and ~A as:

∆= v1 + iv2 , (7.62)

where v1 and v2 are real functions of position and time.

~A= A1 x̂ + A2 ŷ + A3ẑ , (7.63)

where A1, A2 and A3 are real functions of position and time representing the magni-

tudes of the components of ~A in the x̂ , ŷ , ẑ directions.
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We thus have 5 independent unknown variables, and 5 equations (2 from Eq. (7.53),

real and imaginary; 3 from Eq. (7.54), 3 vector components). After some simple math-

ematical rearrangement I get an equation of the form of Eq. (7.61), where:

da =







































Dcl

Dd
D1 0 0 0 0

0
Dcl

Dd
D1 0 0 0

0 0 σD2 0 0

0 0 0 σD2 0

0 0 0 0 σD2







































, (7.64)
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~u=






























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v2
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A3


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
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, (7.65)
~Π=








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
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
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
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(7.66)

~F =












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






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�
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�
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�
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�

v2
1 + v2

2

�
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







,

(7.67)

where D1 = η, D2 =
1

κ2

Dd

Dcl
, E =

Dcl

Dd

�

fα (T, Tc(~r))− (v2
1 + v2

2 ) fβ (T, Tc(~r))
�

and v1x

stands for ∂ v1
∂ x , A2z stands for ∂ A2

∂ z and so on.

The boundary conditions at the superconductor-vacuum interface are as follows:

~Π · n̂= 0 on ∂Ω , (7.68)

~A · n̂= 0 on ∂Ω , (7.69)
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and

~∇× ~A= ~∇× ~Aex t on ∂Ω . (7.70)

For all the simulations presented in this work, the time-dependent study in the

COMSOL Multiphysics software was used. The Direct-MUMPS solver with the de-

fault parameters was used as the general solver and time-stepping was performed

using the Backward Differentiation Formula (BDF) solver. The maximum time-step

was constrained to 1. The free tetrahedral mesh was used.

7.4 Two-Domain TDGL and Inclusion of Superconducting

Screening

After reviewing some previously published TDGL simulations [184, 186, 207],

I noticed that usually Eq. (7.70) is enforced on the boundary of the superconductor.

However this implies that the superconducting screening current has no effect on the

magnetic field at the boundary and beyond the superconducting domain. This is phys-

ically incorrect for the situations of interest to us, be it a magnetic dipole above the

superconductor case or the case of a point defect on the surface of an SRF cavity.

The effect of screening currents is crucial when one is trying to simulate such spa-

tially nonuniform external magnetic field, and the resulting nonlinear response of the

superconductor.

To include the important physics of screening, my simulation is divided into
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Fig. 7.4 Schematic view of the superconductor and vacuum domains and boundary condi-
tions in my COMSOL simulations.

two domains: Superconductor and Vacuum (Fig. 7.4). The full coupled GL equa-

tions are solved in the superconductor domain, while only Maxwell’s equations are

solved in the vacuum domain, with appropriate boundary conditions at the interface.

Any finite value of ~A · ~n or ~∇∆ · ~n would lead to a finite current passing through the

superconductor-vacuum boundary (red box in Fig. 7.4), which is nonphysical, hence

Eq. (7.68) and Eq. (7.69) are enforced at the superconductor/vacuum interface. Any

externally applied magnetic field is introduced by placing a boundary condition on the

outer boundary of the vacuum domain (Eq. (7.70)). The vacuum domain is assumed

to be large enough that at the external boundary (blue box in Fig. 7.4) the magnetic

field generated by the superconductor is negligible. Fig. 7.4 schematically summarizes

this scenario.

Now I examine several key examples where it is crucial to include the screening

response of the superconductor to capture the interesting physics. Through these two
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examples our approach to solving the TDGL equations is validated.

7.4.1 Superconducting sphere in a uniform magnetic field

First consider the classic problem of a superconducting sphere immersed in a uni-

form magnetic field. Assume that the superconductor remains in the Meissener state.

It is known from the exact solution to this problem that there will be an enhancement

of the magnetic field at the equatorial surface of the superconducting sphere due the

magnetic flux that is expelled from the interior of the sphere. To test this approach to

solving the TDGL equations I created a model of this situation in COMSOL. Then the

response was simulated using the two-domain method, and the well-established stan-

dard single domain method. Later I compared both results with the exact analytical

solution for the magnetic field profile [220].

Fig. 7.5 shows the GL simulation of a superconducting sphere subjected to a uni-

form static external magnetic field. The boundaries of the spheres are shown with the

dashed lines, where the smaller sphere is the superconducting sphere, and the larger

sphere is the vacuum domain. The colors represent the amplitude of the ẑ-component

of the applied magnetic field in the y-z plane passing through the common center

of the spheres. Black lines show the streamline plot of magnetic field in the same y-z

plane. The streamline plot is defined as collection of lines that are tangent everywhere

to the instantaneous vector field, in this case to the direction of the magnetic field. The

simulation was initialized in a field free configuration and the external magnetic field

was applied at t = 0. The simulation was iterated for t = 1000τ j time steps after
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Fig. 7.5 Plot of TDGL two-domain solution for z component of magnetic field in a plane
through the center of the sphere in and around a superconducting sphere in the Meissner
state subjected to a uniform static external magnetic field in the z-direction. The dashed lines
show the boundaries of the spheres, with the smaller sphere being the superconducting sphere
with diameter 10ξ(0) and the larger sphere being the vacuum domain with diameter 40ξ(0).
The solution is obtained for temperature T = 0, GL parameter κ = 1 and external magnetic
field ~Bapplied = 10× 10−3Bc2ẑ. Black lines show the streamline plot of magnetic field, while
the color represents the value of magnetic field component Bz . The white line indicates the
equator, and the magnetic field along the white line is shown in Fig. 7.6.
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which the changes in |∆|2 were < 0.1% per iteration.

To test the reproducibility of the result, I later repeated the simulation, but this

time I increased the external magnetic field linearly in time from zero to 0.01Bc2 be-

tween time 0 and 500τ j. After this, the simulation was again iterated for t = 1000τ j

time steps. The results of these two simulations were identical.

Eq. (7.68) and Eq. (7.69) were enforced on the spherical superconductor-vacuum

boundary (r = 5ξ(0)) in both cases. When the two-domain method was used, the GL

equations were solved in the inner sphere (r < 5ξ(0)) and only Maxwell’s equations

were solved in the vacuum domain (5ξ(0)< r < 20ξ(0)). Eq. (7.70) was enforced at

the outer boundary of the simulation (r = 20ξ(0)). When the single domain simula-

tion method was used, Eq. (7.70) was enforced at the inner boundary of the simulation

(r = 5ξ(0)) and the vacuum domain was not utilized.

The top plot in Fig. 7.6 shows the profile of the z-component of magnetic field

(Bz) along a line through the center of the sphere, in a plane perpendicular to the

externally applied magnetic field (white line in Fig. 7.5) calculated from the single

domain simulation, the two-domain simulation and the analytic result. Inside the

sphere, the magnetic field profile calculated from the single domain simulation and

the two-domain simulation are very similar although not identical. The bottom plot

in Fig. 7.6 shows the difference between the TDGL simulation results and the analytic

solution. The field deep inside the sphere is strongly suppressed by the screening

currents. This can also be seen from the color-map in Fig. 7.5. The blue region inside

the sphere corresponds to the fully shielded portion of the sphere. However, there is

a region outside the sphere around the equator where the magnetic field is enhanced
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Fig. 7.6 Top: Magnetic field ẑ-component (Bz) profile through the center of sphere (white
line in Fig. 7.5). The results of a single domain TDGL model are shown in red, a two-domain
TDGL model in green, and the analytic solution is shown as a blue solid line. Bottom: The
difference between a two-domain TDGL model and the analytic solution is shown in green
and the difference between single domain TDGL model and the analytic solution is shown in
red. The biggest difference is observed at the surface.

(red color in Fig. 7.5).

At the surface of the sphere the magnetic field calculated from the two-domain

model reproduces the exact analytic solution, while the single domain model fails to

account for the enhancement of magnetic field on the equator of the sphere. This

disparity between the single domain model and analytic solution is caused by the

treatment of the boundary conditions. In the single domain model, Eq. (7.70) is en-

forced at the superconductor-vacuum interface, which completely ignores the effect

of screening currents. Thus a two-domain model should be used for any problem

where screening and the magnetic field profile at the surface of the superconductor is

important.
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7.4.2 Point magnetic dipole above a semi-infinite superconductor

To ensure that I can accurately simulate the screening currents produced by a

spatially nonuniform magnetic field, I numerically simulated the case of a static point

magnetic dipole placed at a height of hdp = 1ξ(0) above the surface of a semi-infinite

superconductor. The superconducting domain and vacuum domain are simulated in-

side two coaxial cylinders with equal radius R= 8ξ(0) with common axis along the ẑ

direction of the Cartesian coordinate system. The origin of this coordinate system is

located on the superconductor surface immediately below the dipole. The thickness

of the superconducting domain is hsc = 10ξ(0) and the height of the vacuum domain

is hvac = 5ξ(0). The GL parameter κ is set to 1.

The surface magnetic fields produced by the dipole are assumed to be below

the lower critical field Hc1, so that the superconductor remains in the Meissner state.

The simulation was started with a superconductor in the uniform Meissner state and

the dipole field equal to 0. Then, at time t = 0, the dipole magnetic field is turned

on, and the simulation is iterated in time until the relative tolerance of
∂ u

u
< 0.001

is achieved for all the variables in the column vector of all unknowns u (Eq. (7.61)).

At this point the static solution to the problem is obtained. Later the simulation was

repeated with external magnetic field linearly increasing with time over t = 0−500τ j

time interval before reaching a set constant value. The results of these two simulations

were identical.

I compared my TDGL results for the distribution of the surface screening current
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Fig. 7.7 The magnitude of the superconducting screening current density at the surface
Jscreening as a result of a perpendicular magnetic dipole placed hdp = 1ξ(0) above the su-
perconductor vs the horizontal distance from the dipole location obtained from GL simulation
(blue ×) and numerical solution for the same scenario obtained from Ref. [221] (red solid
line). Left inset shows a schematic of the dipole over the superconductor, while the right inset
shows the top view of the surface current distribution calculated by GL, which is azimuthally
symmetric.

density ~Jscreening(x , y) to numerical results obtained by Melnikov [221] for the case

of a perpendicular magnetic dipole. Fig. 7.7 shows a comparison of the calculated

screening current profiles. Both results show that there is a circulating screening cur-

rent centered directly below the dipole. Also note that the screening current reaches

zero at the outer boundary of the simulation. This indicates that a sufficiently large

domain was chosen for simulation and no finite size effects are expected. There is a

very good agreement between the two-domain GL simulation result and numerical re-

sults obtained by Melnikov, in the low magnetic field limit where there are no vortices

(Fig. 7.7). This, and the previous result, serve to validate my two-domain approach

to properly capturing the screening response of the superconductor.
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8

TDGL Modeling of the Near-Field Magnetic Microwave

Microscope

In Chapters 4 and 5 I described our microwave (MW) magnetic microscope and

some experimental data which can’t be fit using the models discussed in Chapter 6.

In this chapter I will present the TDGL simulation of the probe-sample interaction.

Even in the absence of defects, vortex semiloops can penetrate into a superconductor

subjected to a strong rf magnetic field, generating nonlinear rf response [20, 69].

The TDGL equations were described in great detail in Chapter 7. However, one

needs to keep in mind that TDGL is not a microscopic theory, thus some of the parame-

ters of the model are difficult to determine precisely for a given material of interest. For

this reason I focus on semi-quantitative results and use the phenomenological TDGL

equations mainly to give insight into the signals created by our near-field microwave

microscope, and to study rf vortex penetration into the surfaces of SRF cavities.
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8.1 Magnetic Dipole

The rf magnetic field produced by the magnetic writer probe sitting on top of a

sample is very similar to the magnetic field produced by a horizontal point magnetic

dipole with normalized magnetic moment Mdp(t)|| x̂ placed at a height hdp above the

sample. The normalized vector potential produced by such a dipole in free space is

given by [222]:

~Adp(x , y, z, t) =
Mdp(t)

�

x2 + y2 + (z − hdp)2
�3/2

�

− (z − hdp) ŷ + yẑ
�

, (8.1)

where the origin of the coordinate system is on the superconductor surface immedi-

ately below the dipole. While this is very different from a uniform and parallel mag-

netic field inside an actual SRF cavity, the dynamics of the vortex semiloops created

by this field should be very similar.

The superconducting domain and vacuum domain are simulated inside two

coaxial cylinders with equal radius R (see Fig. 8.1) with common axis along the ẑ

direction of the Cartesian coordinate system. The thickness of the superconducting

domain is hsc and the height of the vacuum domain is hvac in normalized units.

The boundary condition Eq. (7.70) is enforced at the top of the vacuum domain,

whereas a ~B = 0 boundary condition is enforced at the bottom and the sides of the

superconducting domain, since it is expected that the superconducting currents due

to the Meissner state will fully shield the externally applied magnetic field before it

reaches the outer boundary of the superconductor.
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Fig. 8.1 TDGL simulation setup for an oscillating horizontal magnetic dipole ~Mdp at fixed
height hdp above the superconductor surface. The magnetic probe is approximated as an
oscillating point magnetic dipole parallel to the surface. Red Arrows: Surface currents on
the horizontal (xy) superconductor/vacuum interface as calculated from the self-consistent
TDGL equations. Black Arrows: Externally applied magnetic field on a vertical plane (xz)
perpendicular to the superconductor surface and including the dipole.

The interaction between the probe and the sample was modeled by solving the

TDGL equations. In the simulation, we specify Mdp(t) indirectly through the the mag-

netic field experienced at the origin (on the superconductor surface immediately below

the dipole) ~B0(t) = ~∇× ~Adp(0, 0,0, t) = −
Mdp(t)

h3
dp

x̂ , where Mdp(t) = Mdp(0)sin(ωt).

The driving rf magnetic field profile is specified through the analytic equation for the

magnetic vector potential of a point dipole (Eq. (8.1)), therefore the dipole itself can

be placed either inside the vacuum domain hvac > hdp or beyond it hvac < hdp with-

out affecting the accuracy of the simulation. hvac is chosen to be large enough to be

consistent with Eq. (7.70) at the top of the vacuum domain.

The choice of material parameters is discussed in Sec. 7.3.2. The period of the
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dipole rf magnetic field was chosen to be
2π

ω
= 200τ j. The GL parameter κ = 1 [54]

and η is on the order of unity (parameters summarized in Table 8.1). It should be

noted that the relaxation time τ j ∼ ps with η ∼ 1 is "fast" in the sense that the order

parameter will quickly follow any variations in rf field or current.

The spatial distribution of the magnetic field at the surface of the superconduc-

tor is set through the value for the dipole height hdp. While the driving rf magnetic

field is specified through the analytic equation Eq. (8.1), the goal is to reproduce the

actual spatial distribution produced by the magnetic writer head at the surface of

the superconductor, which was provided by the manufacturer Sec. 4.5.2. To produce

a similar spatial distribution of the magnetic field, we set the dipole height to the

300nm− 500nm range which corresponds to hdp of 8− 12ξ(0) in normalized units.

8.2 Vortex semiloops

Consider a dipole that oscillates sinusoidally in time with frequency ω. In this

section we calculate the response of the superconductor to this external inhomoge-

neous and time-dependent magnetic field. Our objective is to describe a spatially-

inhomogeneous microwave frequency stimulus of the superconducting surface. In

this section a uniform superconductor domain with no defects is considered. The

simulation is started with the order parameter having a uniform value of ∆ = ∆∞

everywhere. At time t = 0 the externally applied magnetic field is turned on. Then
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Fig. 8.2 Snapshot of 3 vortex semiloops at time t = 73τ j during the rf cycle of period 200τ j .
In this view, one is looking from inside the superconducting domain into the vacuum domain.
Plots of |∆|2 are evaluated at the superconductor surface for an oscillating parallel magnetic
dipole above the superconductor. The three-dimensional silver surfaces (corresponding to
|∆|2 = 0.005) show the emergence of vortex semiloops. The simulation parameters are given
in Table 8.1.

the simulation is run for several rf cycles to reach the steady state solution.

Fig. 8.2 shows the results for such a simulation and the parameters are given in

Table 8.1. In this view, the viewer is looking from inside the superconducting domain

into the surface of the superconductor. As the time progresses the value of the local

rf magnetic field amplitude |~B0(t)| increases eventually exceeding the value of vortex

nucleation field at a given temperature Hv(T ). At first, a domain forms just below

the probe where the superconducting order parameter is suppressed by the externally

applied magnetic field and screening currents. Later in rf period, when the rf magnetic

field amplitude decreases back to zero, this "suppressed domain" diminishes and the

vortex semiloops emerge from it. In Fig. 8.2 three well-defined examples of such
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vortex semiloops are illustrated by the three-dimensional silver surface corresponding

to |∆|2 = 0.005. In this case, the simulation was run for 3 driving periods to stabilize

and the results shown in Fig. 8.2 are from the 4th driving period. In the upcoming

sections, I will describe the time evolution of these vortex semiloops, their dynamics

as a function of rf field amplitude and friction coefficient, and their interaction with

point defects embedded inside the superconductor.

Parameter Name

Sy
m

bo
l

Sc
al

e

Fi
g.

8.
2

Fi
g.

8.
3

Fi
g.

8.
4

Fi
g.

8.
5

Fi
g.

8.
6

Fi
g.

8.
7

Fi
g.

8.
8

Temperature T Tc 0 0.6 0.9 0.6 0.9 0.85 6.5
Applied RF field
amplitude

B0 Bc2 0.75 0.55 0.3 0.46-
0.84

0.3 0.3 0.4

Period of Applied
RF field

2π/ω τ0 200 200 200 200 200 200 200

Dipole height hdp λ0 8 8 12 8 12 12 12
Radius of the
simulation domain

R λ0 12 35 60 20 60 40 5-50

Height of
superconducting
domain

hsc λ0 6 20 50 8 50 25 30

Height of vacuum
domain

hvac λ0 3 20 25 4 25 15 15

Ginzburg-Landau
parameter

κ 1 1 1 1 1 1 1 1

Ratio of
characteristic
time scales

η 1 1.675 1 0.2 1 0.05-
5.79

0.5 1.675

Table 8.1 Values of parameters used for TDGL simulations of the oscillating magnetic dipole
above the superconductor.
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Fig. 8.3 Summary of TDGL solution for an oscillating parallel magnetic dipole above a super-
conducting surface. (a)-(f) Plots of |∆|2 evaluated at the superconductor surface at different
times for an oscillating parallel magnetic dipole above the superconductor. In the top part of
each panel, one is looking from inside the superconducting domain into the vacuum domain,
whereas in the bottom part of each panel, one is looking at the x-z cross-section plane towards
the +y axis. ~Mdp(t) is chosen such that ~B0(t) = 0.55sin(ωt) x̂ . The three-dimensional silver
surfaces (corresponding to |∆|2 = 0.005) show the emergence of vortex semiloops. (g)

�

� ~B0

�

� at
the surface vs time during the first half of the rf cycle. Red crosses correspond to field values
for snapshots (a)-(f). The simulation parameters are given in Table 8.1.

8.3 The evolution of vortex semiloops with time

The main goal of the simulation described in the previous section was to il-

lustrate vortex semiloops, as such the simulation was performed at T = 0 and in a

very small domain. To study the time evolution of this vortex semiloops a similar

simulation was performed at a higher temperature and a larger simulation domain.
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Fig. 8.3 shows results for this simulation, illustrating the order parameter space and

time dependence, and the parameters of simulation are given in Table 8.1. The sim-

ulation was run for 5 driving periods to stabilize, and the results shown in Fig. 8.3

are from the 6th driving period. We see that as ~B0(t) increases a suppressed |∆|2 do-

main (red region) forms at the superconductor surface immediately below the dipole.

At t = 50τ j the magnetic field reaches its peak value and the suppressed supercon-

ducting region reaches its deepest point inside the superconducting domain illustrated

by the silver surface in Fig. 8.3(c). Later (t > 50τ j), the amplitude of the external

driving magnetic field decreases, the suppressed |∆|2 domain rapidly diminishes and

vortex semiloops spontaneously emerge, become well-defined (Fig. 8.3(d),(e)), then

move back towards the surface and vanish there before the end of the first half of

the rf cycle. In the second part of the rf cycle, the same process is repeated but now

antivortex-semiloops enter the superconducting domain. The full solution animated

over time is available online as supplemental material to Ref. [20]. In this particular

scenario vortices and anti-vortices never meet, unlike the situation discussed in [104].

Fig. 8.4 shows another simulation result with the same period but otherwise

with a different set of parameters (listed in Table 8.1). Here the dipole is further

away from the surface, at hdp = 12ξ(0) and the temperature is set to T = 0.9Tc. Three

dimensional silver contour surfaces correspond to |∆|2 = 0.005. The two-dimensional

screening currents (white arrows) and two-dimensional order parameter (colors) are

plotted in the yz-plane. Three vortex semiloops are clearly visible in this x = 0 cross-

section cut. We see that the vortex semiloops penetrated somewhat deeper into the

superconductor than the suppressed order parameter domain.
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Fig. 8.4 Plots of |∆|2 (color) and ~Jsur f (arrows) evaluated at the two dimensional x = 0 plane
inside the superconductor at t = 50τ j for an oscillating parallel magnetic dipole above the su-
perconductor. White arrows indicate the currents induced inside the superconducting domain.
The three-dimensional silver surfaces (corresponding to |∆|2 = 0.005) show the emergence
of vortex semiloops and the suppressed superconducting domain. All model parameters are
listed in Table 8.1

8.4 The evolution of vortex semiloops with rf field ampli-

tude

One can also study the effect of the applied rf field amplitude, defined through

�

�~B0

�

�, on the number and the dynamics of vortex semiloops. Fig. 8.5 shows the bottom

view of the order parameter on the surface of the superconducting domain for different

values of the applied rf magnetic field amplitude, all at the same point in the rf cycle

(t = 50τ j and ~B0(t) at its peak value). As expected, the number of vortex semiloops

increase with increasing
�

�~B0

�

�. Once
�

�~B0

�

� = 0.6 is reached, a normal state |∆|2 = 0

domain emerges at the origin, as opposed to a suppressed |∆|2 domain observed at

lower rf field amplitudes. The simulation is performed with T = 0.6Tc, hdp = 8ξ(0)

and η= 1. The full solution as a function of peak applied magnetic field amplitude is

available online as supplemental material to Ref. [20].
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Fig. 8.5 a-h) Plots of |∆|2 evaluated at the superconductor surface at t = 50τ j for an oscillat-
ing parallel magnetic dipole above the superconductor as a function of dipole strength. In this
view, one is looking from inside the superconducting domain into the vacuum domain. The
maximum amplitude of applied rf field is shown as

�

�~B0

�

�. The silver three-dimensional surfaces
correspond to |∆|2 = 0.005 and show the suppressed order parameter domain and the vortex
semiloops. The parameters of the simulation are listed in Table 8.1.

8.5 The dependence of rf vortex dynamics on the friction

coefficient η

As we discussed in Sec. 7.3.2 the friction coefficient η depends on the purity of

the material which is defined through the value of the mean-free-path l. Furthermore,

different materials will have a different effective superfluid density n∗s which also leads

to tunableη. The parameterη governs the dynamics of the order parameter and vector

potential relaxation. However one should remember that there is a limiting value for

the friction coefficient η≤ η0 = 5.79 (see Eq. (7.52)) [162, 188].

In this section I entertain the possibility that η can be tuned in the range of

η = 0 − 5.79. Fig. 8.6 shows the maximum extent of the rf vortex semiloop excur-

sion (dv defined in Fig. 8.4) and maximum extent of suppressed order parameter (dn

defined in Fig. 8.4) over the full rf cycle, as a function of η. In the case of vortex
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Fig. 8.6 Plot of the maximum extent (in units of ξ(0)) of excursion for the vortex semiloop
dv and the maximum extent for the suppressed superconductor domain dn in an rf cycle as a
function of friction coefficient η (log scale). The TDGL equations are solved at T = 0.9Tc for
a parallel magnetic dipole above the superconductor. The full list of simulation parameters is
given in Table 8.1.

semiloop excursion, lower η values lead to nucleation of vortex semiloops earlier in

the rf cycle, and that reach deeper into the superconductor. This in turn provides ad-

ditional channels for magnetic field penetration, effectively reducing the size of the

suppressed superconducting domain (decreasing dn for η < 0.3 in Fig. 8.6).

As the η value increases the maximum vortex excursion distance dv becomes

smaller than the suppressed superconducting domain depth dn. In this case the vortex

semiloops simply can’t detach from the suppressed superconductor domain resulting

in an effectively larger domain of reduced order parameter. We identify the vortices

in this case by regions of small radius of curvature on the surface of suppressed order
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parameter, as shown in Fig. 8.7(b) and (c), for example.

When the friction coefficient is increased further, the time scale for the relaxation

of the order parameter τ∆ approaches/or exceeds the period of the rf field. In this

case, no vortex semiloops develop, because there is simply not enough time within the

rf cycle for the vortex to nucleate. In this limit, the superconductor responds to a time

averaged value of the magnetic field < ~B2(t) >, instead of following the rf magnetic

field adiabatically [36]. The only effect of the rf magnetic field in this scenario is the

formation of a suppressed
�

�∆2
�

� domain at the superconductor surface immediately

below the dipole, similar to Fig. 8.3.(b). For large η this region of suppressed |∆|2 is

also reduced in size.

8.6 The effect of localized defects on rf vortex semiloops

Here I want to examine the effect of a single point-like defect on rf vortex nucle-

ation in a bulk sample. The procedure to model a defect was discussed in Sec. 7.3.3.

A simple defect can be created, for example by defining a Gaussian-in-space domain

with suppressed superconducting critical temperature Tcd , where 0< Tcd < Tc:

ε(~r, T ) = 1−
T

1− (1− Tcd) e
− (x−xd )2

2σx
− (y−yd )2

2σy
− (z−zd )2

2σz

, (8.2)

where (xd , yd , zd) are the central coordinates of the defect, σx ,σy ,σz are the stan-

dard deviations in the 3 coordinate directions, and T > Tcd all expressed in normal-
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Fig. 8.7 Summary of TDGL solutions for an oscillating parallel magnetic dipole above a su-
perconducting surface in the presence of a localized defect at ~rd = 0 x̂+ yd ŷ−12ẑ, where yd is
varied from 0 to 16ξ(0). (a)-(e) Plots of vortex semiloops in the y-z cross-section plane below
the dipole illustrated with a three-dimensional silver surface (corresponding to |∆|2 = 0.003)
at time t = 150τ j , when the applied magnetic field reaches its peak amplitude. (f)-(j) Plots
of vortex semiloops at time t = 180τ j . The defect is denoted by the red dot to the right of the
center. ~Mdp(t) is chosen such that ~B0(t) = 0.30sin(ωt) x̂ The full list of simulation parameters
is given in Table 8.1.

ized values. Fig. 8.7 shows a simulation which was done with parameters given in

Table 8.1. A localized defect with σx = σy = σz =
p

2 and Tcd = 0.2Tc is located at

~rd = 0 x̂ + yd ŷ − 12ẑ, where yd is varied from 0 to 20ξ(0), to represent a localized

defect that is centered at a depth of 12 coherence lengths (ξ(0)) below the surface

and offset various distances from the oscillating dipole. We observed very similar vor-
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tex semiloops in the time domain evolution as those shown above. However, one of

the vortex semiloops is now attracted towards the defect location (shown as red dot

in Fig. 8.7 and is distorted in shape. Furthermore, the vortex attracted by the defect

remains inside the superconductor longer compared to the other vortex semiloops.

Note that the semiloop disappears at the end of each half of the rf cycle, hence the

pinning potential of this defect is not strong enough to trap the vortex semiloop, only

to modify the rf behaviour. The strength of the defect depends both on its critical

temperature Tcd and size.

8.7 Fitting the third harmonic data

These simulations have proven very useful in understanding the measured third-

harmonic response of Nb materials subjected to intense localized rf magnetic fields.

In all the cases described in the previous section, the superconducting gap |∆|2 and

the vector potential ~A are first retrieved from the simulation. Using Eq. (7.42) the

screening super-current is calculated for each point in space and time. The response

magnetic field ~Bsc(t) generated by said currents at the location of the dipole is cal-

culated using the Biot-Savart law. This calculation is simplified due to the symmet-

ric nature of the problem. At the location of the dipole, magnetic field produced by

the superconductor is only in the x̂ direction. The third-harmonic response V3ω(B0)

recovered at the location of the dipole is obtained through Fourier transformation of

the calculated time-dependent response magnetic field ~Bsc(t). Later the TDGL-derived
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Fig. 8.8 The third harmonic response B3ω(B0) normalized by the maximum value vs the
radius of the simulation domain R. Note that hsc and hvac are varied proportionally with R.
The parameters of the simulation are listed in Table 8.1.

third-harmonic voltage V3ω was compared with the third-harmonic response measured

from experiment.

Many simulations were performed by varying temperature T , rf magnetic field

B0, dipole height hdp and friction coefficient η. The radius of the simulation domain

R, the height of the superconductor domain hsc and the height of the vacuum domain

hvac control the geometry, and some finite size effects can be seen for R < 30ξ(0)

(Fig. 8.8). However, at sufficiently high values of R, hsc and hvac, the third harmonic

response V3ω is independent of the simulation size. Note that larger geometry size

leads to larger meshes and longer run times due to limited computational power.

V3ω(B0) as a function of the peak magnetic moment of the dipole shows the

following behaviour. Harmonic response is small for smaller values of dipole magnetic

moments but increases rapidly above an onset magnetic moment value, reaches a peak

value and then slowly decreases back to a finite value, which depends on temperature,
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Fig. 8.9 Third-harmonic response V3 f data from Sample 1 at T = 5.1K and f = 2.2GHz
(black × markers). Also shown are the time-dependent Ginzburg-Landau fit with Hdp = 12
(blue dashed line), probe background (cyan dotted line), RSJ fit with IcR = 58.3µV (green
dashed-dotted line) (see Sec. 6.1), and complete fit obtained by vector complex addition (red
solid line).

height of the dipole and friction coefficient η. Note that this evolution is very similar

to the low Hr f < Hp0 part of the Nb on Cu sample data shown in Fig. 6.7 of Chapter 6

and re-plotted here (Fig. 8.9).

In total the data shown in Fig. 8.9 have contributions from a nonlinear response

generated by the current-biased junction, intrinsic low-field nonlinearity modeled by

TDGL, and a temperature-independent probe background. First, the steps discussed

in Chapter 6 for fitting the RSJ model are followed. Later, complex vector addition of

all three contributions is performed for a full fit (Fig. 8.9).

In conclusion, the TDGL model can be used to describe the "pedestal" low-field

non-periodic part of the third harmonic data measured from Nb samples, however no
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periodic response was observed from this model within the range of parameters that

were used in our simulations.
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9

Vortex-Semiloops inside SRF cavities

In Chapter 8, I examined the dynamics of vortex semiloops created by a point

magnetic dipole, as it is relevant to the magnetic microscopy experiment presented in

Chapter 4. In this section I will address the more general case which is appropriate for

SRF applications, a uniform parallel rf magnetic field
�

~B(t) = B0sin(ωt) x̂
�

above the

superconductor in the presence of a single defect on the surface. Additionally, I will

explore some other dynamic generalizations of GL theory, beyond the TDGL approach

that was presented in Sec. 7.2 and utilized in Chapter 8.

9.1 Numerical simulation of SRF cavity surface fields

The interior surface of an SRF cavity was simulated using the two-domain sim-

ulation method described in Sec. 7.4. In order to have truly uniform field in the nu-

merical simulation, the boundary between superconductor and vacuum is simulated

as an infinite plane. The superconducting domain and vacuum domain are simulated
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Fig. 9.1 (a)-(h) Plots of vortex semiloops illustrated with a silver surface (corresponding to
|∆|2 = 0.005) at different times for parallel rf magnetic field in the x̂ direction above the
superconductor. A localized defect is placed at the origin (~rd = 0 x̂ + 0 ŷ + 0ẑ) and defined
using Eq. (8.2) with σx = 6 and σy = σz = 1 and Tcd = 0.1. The color shows the order
parameter magnitude |∆|2 on the superconducting surface. (i)

�

� ~B0

�

� at the surface vs time
during the first half of the rf cycle. Red crosses correspond to field values for snapshots (a)-
(h). The simulation was performed for κ = 1, η = 1, B0 = 0.3Bc2 and 2π/ω = 1000τ j . Note
that this is a transient solution rather then a steady state solution.

inside 2 rectangular blocks instead of the cylindrical domain used in Chapter 8. The

block dimensions are L = 80ξ0 (along the field direction) and width W = 60ξ0. The

height of the superconducting domain is hsc = 20ξ0, and the height of the vacuum

domain is hvac = 10ξ0. The vacuum domain is placed on top of the superconducting

domain. To mimic the infinite domain periodic boundary conditions are applied in the

± x̂ and ± ŷ directions both for Ψ and ~A.
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Fig. 9.1 shows the solution for the order parameter in the case of externally

applied rf magnetic field parallel to the surface of the superconductor along the x̂ axis

direction. A localized defect (modeled with Eq. (8.2)) is placed on the surface at the

origin (~rd = 0 x̂+0 ŷ+0ẑ) withσx = 6 andσy = σz = 1 and Tcd = 0.1. The simulation

was performed for κ= 1, η= 1, B0 = 0.3Bc2 and 2π/ω= 1000τ0.

A transient solution starting from the zero field Meissner state is studied in this

case. A vortex semiloop penetrates into the superconducting domain at the site of the

defect as the rf field amplitude increases [223]. We consider vortex semiloops as a

unique type of vortex, distinctly different from parallel line vortices [132]. When the

amplitude of magnetic field is increased beyond that used in Fig. 9.1, we observe that

arrays of parallel line vortices nucleate into the superconductor. While no defect was

required to create vortex semiloops with the magnetic dipole source, a surface defect

is required to create such a vortex when parallel field is applied. The solution shown

in Fig. 9.1 is an initial transient solution, i.e. the simulation is not run for several

cycles to reach the steady state condition. When the vortex semiloop reaches the

boundary of the simulation in the field direction the results become nonphysical due

to artificial pinning of the vortex semiloop by the boundaries. This finite size effect is

currently limiting our ability to perform full rf parallel field simulation. Nevertheless,

the transient solution shown in Fig. 9.1 may give some insight into the development

of vortex semiloops in SRF cavities [69], and will be pursued later in this chapter.
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9.2 "Slow" TDGL

Until now I only utilized TDGL to study rf vortex dynamics. But Gor’kov had

limited the use of TDGL to gapless superconductors, or to materials with magnetic

impurities. However, for fully gapped superconductors like pure Nb, there are nom-

inally no magnetic or other types of pair-breakers and the relevance of the original

TDGL theory is called into question [36]. In this case, one must rely on inelastic

phonon-electron interactions to achieve equilibrium of the quasiparticle distribution.

In his book [36], Tinkham claims that the electron-phonon scattering time τE is very

slow compared to the time scales defined by TDGL, namely τ∆ and τ j. In this limit

one can treat τ∆ and τ j as being so short that the order parameter and currents sim-

ply respond instantaneously to changes in externally applied fields. In this case one

can simply use the static GL equations with an effective temperature T ∗. The effec-

tive temperature arises due to the existence of non-equilibrium quasi-particles. This

effective temperature is given via the following equation:

kB (T
∗ − T ) =

π

4
τE

∂∆

∂ t
. (9.1)

Using this effective temperature in the static GL equation (Eq. (7.14)) gives an alter-

native time-generalized version of GL, which I refer to as "Slow" TDGL (expressed in
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normalized form):

η









2τE∆

ħh









∂∆

∂ t
=
�

~∇− i ~A
�2
∆+ fα∆− fβ |∆|

2∆ .
(9.2)

The main difference between TDGL Eq. (7.40) and "Slow" TDGL Eq. (9.2) is that in

"Slow" TDGL the relaxation time for the order parameter is enhanced by a factor of

τ∆(Slow−T DGL)/τ∆(T DGL)=
2τE∆

ħh
from the one given by TDGL. More importantly,

the relaxation time for the order parameter depends on the magnitude of the order

parameter |∆|, thus the relaxation rate is different inside the superconducting vortex

or at the surface of the cavity. I will not be directly utilizing this slow-TDGL model

in my simulations, because, as we will see in the next section, this "slow" version of

TDGL is one limiting form of a substantially generalized TDGL model.

9.3 Generalized TDGL (gTDGL) equations

It is well known that a superconductor with a finite energy gap will have a sin-

gularity in the spectral function at the gap frequency. This singularity is the reason

that Gor’kov and Eliashberg limited their treatment of TDGL to gapless superconduc-

tors. There are two important energy scales to be considered when deriving the TDGL
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equations, one on the order of kB T and another on the order of |∆|. In the origi-

nal derivation of the TDGL equations, only gapless superconductors were considered,

hence all physics and interactions happening at energy scales other then kB T were

neglected. In a superconductor with a finite gap, interactions on the order of |∆| can

make significant contributions when terms involving energy integrals are considered

together with the spectral function singularity mentioned before [224].

In order to extend the validity of the TDGL formalism to gapped superconduc-

tors, a generalized version of TDGL (gTDGL) was proposed [181, 225]. As Larkin and

Ovchinnikov pointed out in Ref. [161], the energy relaxation time of electrons τE in

metals is much longer then the average scattering time τs = l/vF , hence even weak

electric fields can lead to large changes in the electron energy distribution. The super-

conducting energy gap and the current density strongly depend on the shape of this

distribution function. Watts-Tobin and Kramer were able to show that in a dirty limit

superconductor, one can derive the phenomological equations which account for both

a finite superconducting energy gap and finite inelastic electron-phonon scattering

time.

Superconductors in the dirty limit, with a finite inelastic electron-phonon scat-

tering time τE subject to
p

DτE � ξ (or τE � τ∆, for Nb this condition is met for

Tc − T < 0.72K) can be better studied using gTDGL [181]. gTDGL does not require

strong limitations such as a large concentration of magnetic impurities and/or gapless

superconductivity [158], but it does require T ≈ Tc for Nb.
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The gTDGL equations can be written as follows [158, 164, 181, 225]:

ν(0)τGL(0)
Tc

T

1
Æ

1+ (Γ |∆|)2









∂

∂ t
+

1

2
Γ 2
∂ |∆|2

∂ t
+

i

ħh
e∗Φ









∆=

−γħh2









~∇−
ie∗

ħh
~A









2

∆−α∆(~r, T )∆− β∆(~r, T ) |∆|2∆ ,

(9.3)

where Γ =
2τE

ħh
is the inverse of an inelastic electron-phonon scattering energy scale.

Also note the extra Tc/T term on the left when compared to Eq. (7.32). While this

introduces a small correction to Eq. (7.32), it is insignificant as T → Tc. The authors

of this equation themselves conclude that the (Γ |∆|)2 term is not very significant, so

the use of the original and simpler TDGL equations, but with a reduced τGL value

to simulate the effect of finite Γ , is justified [225]. A more detailed derivation of

these equations can be found in Ref. [225]. For a proper historical background see

Ref.[224].

For consistency Γ has to be non-dimensionalized as eΓ =
2τE∆∞(0)

ħh
and the

gTDGL equations should be written using the dimensionless quantities introduced in
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Sec. 7.3.1 (and dropping " ∼ "):

η

Æ

1+ (Γ |∆|)2









∂

∂ t
+
Γ 2

2

∂ |∆|2

∂ t









∆=
�

~∇− i ~A
�2
∆+ fα∆− fβ |∆|

2∆ ,
(9.4)

where η≡
τ∆

τ j
. The gTDGL equation is a truly generalized equation, in the sense that

both the TDGL and the "slow" TDGL equations can be recovered in appropriate limits.

When Γ = 0 (i.e. strong inelastic scattering) the singularity of the density of states

at the gap edge is totally smeared out and the original TDGL equation Eq. (7.32) is

recovered. On other hand when Γ � 1 (i.e. slow quasiparticle energy relaxation) one

recovers the "slow" TDGL equation Eq. (9.2):

η

Æ

1+ (Γ |∆|)2









∂

∂ t
+
Γ 2

2

∂ |∆|2

∂ t









∆=







































η
∂∆

∂ t
for τE � ħh/|∆| (Γ � 1)

η









2τE∆

ħh









∂∆

∂ t
for τE � ħh/|∆| (Γ � 1).

(9.5)
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9.4 Relaxation times for amplitude and phase of ∆

The normalized Γ parameter for SRF Nb can be computed by simply using the

numbers from Table 7.1:

Γ =
2τE

ħh/∆∞(0)
=
p

η0

τE

τGL
= 30.78 . (9.6)

Note that it is difficult to experimentally measure τE, as such Γ has generally been

used as a fitting parameter in the literature [164]. In the end, all of these models are

phenomenological models.

Γ is associated with enhanced nonlinearity in the TDGL equations by increasing

the relaxation time for the amplitude of the order parameter, while decreasing it for

the phase of the order parameter. Writing the order parameter in terms of magnitude

and phase,∆= |∆| eiθ , the time dependent term on the left hand side of Eq. (9.4) can

be rewritten as follows:

η
q

1+ (Γ |∆|)2
∂ |∆|

∂ t
eiθ + i

η |∆| eiθ

Æ

1+ (Γ |∆|)2

∂ θ

∂ t
. (9.7)

leading to two distinct relaxation times: τ|∆| = η
Æ

1+ (Γ |∆|)2 andτθ =
η

Æ

1+ (Γ |∆|)2

for the magnitude and phase of the order parameter, respectively. Fig. 9.2 shows these

two time scales as a function of |∆| for dimensionless Γ = 30.78. Note that when

|∆| → 0 (for example inside the vortex core) one recovers the single TDGL relaxation
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Fig. 9.2 Relaxation times τ|∆| (blue) and τθ (red) vs normalized gap |∆|, for the case of Nb
in the dirty limit with η = 1.78 and Γ = 30.78. Inset shows the same plot vs linear |∆|. This
illustrates that the phase of the order parameter will relax more quickly than the amplitude
whenever |∆| is large. Note that as |∆| → 1, τ|∆|/τθ → 1+ Γ 2 ∼ 103.

time, but as |∆| → 1, the Γ |∆| term dominates the time dynamics of the full equation.

As |∆| → 1, τ|∆|/τθ → 1+ Γ 2 ∼ 103 which causes an issue for any numerical simu-

lation efforts. It is computationally challenging to simulate the physics that happens

in such vastly different timescales. For that reason in my simulations I simply assume

τθ = 0. However, this does not mean that
∂ θ

∂ t
is zero, it merely means that the relax-

ation of the phase happens so quickly that one can regard it as instantaneous, hence

τθ

∂ θ

∂ t
= 0.

The vortices are expected to nucleate into the superconductor when the mag-

netic field exceeds Hc1. However in reality, superconductors can remain vortex-free up

to a superheating field Hsh > Hc1 due to the interaction of the vortices with the screen-

ing currents on the surface of the superconductor. This creates a surface barrier for
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vortex nucleation, which is known as the Bean-Livingston surface barrier [226]. While

Hc1 is an intrinsic parameter of a material, Hsh strongly depends on the geometry of

the surface, and is defined as the field at which the Bean-Livingston barrier vanishes.

The superheating field of an SRF cavity is the key parameter that limits the cavity’s

peak accelerating gradient, as such many theoretical works are devoted to calculate

Hsh [227–229].

Longer relaxation times τ|∆| would mean that a longer time is needed to nucleate

a vortex since a vortex involves creation of a suppressed ∆ region. This would imply

that one can temporarily apply magnetic field higher then Hc1, and even Hsh (both

of which are conventionally measured with static magnetic field), and still retain a

full Meissner state, introducing an extra time barrier on top of the Bean-Livingston

surface barrier. This should increase the vortex-penetration field of a superconductor

at rf frequencies. Unless the instantaneous magnetic field Br f (t) exceeds the critical

field for a sufficiently long time, the vortex simply can’t nucleate.

Fig. 9.3 shows the relaxation times τ|∆|, τ j and τGL in Nb as a function of tem-

perature, calculated for various values of inelastic phonon-electron scattering time τE

and mean free path l. The GL timescale τGL does not depend on impurity concen-

tration and it’s temperature dependence was derived by Gor’kov and Eliashberg to

be τGL(T ) =
πħh

8kB(Tc − T )
(see Sec. 7.2). On other hand, the impurity concentration

can change the characteristic time for the relaxation of magnetic vector potential τ j

which depends on the value of the normal state conductance. Fig. 9.3 shows the tem-

perature dependence of τ j(T ) = µ0λ(T )2σn, where σn = 2e2ν(0)vF l/3 is the normal
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Fig. 9.3 Relaxation times τGL (blue), τ|∆| (red) and τ j (green) vs temperature for Nb with
Tc = 9.2 K. Also shown are periods corresponding to rf excitations with 200 MHz, 1GHz and
5 GHz frequencies.

state conductivity. In Fig. 9.3 τ j(T ) is calculated for l = 100nm and l = 1000nm,

which are the values of mean-free path appropriate for SRF Nb. The temperature

dependence of the penetration depth λ(T ) is defined through temperature kernels

fα(T ) and fβ(T ) as λ(T ) = λ(0)
Æ

fβ(T )/ fα(T ), where I used λ(0) = 39nm. Here

temperature kernels fα(T ) =
T 2

c − T 2

T 2
c + T 2

and fβ(T ) =
T 4

c

(T 2
c + T 2)2

are used since they

provide good agreement with experimental data on SRF cavities down to T = 3K

[230]. Finally, τ|∆|(T ) = τGL(T )
Æ

1+ (2τE∆(T )/ħh)
2 contains both the temperature

dependence of τGL(T ) and superconducting gap ∆(T ), assuming that τE is temper-

ature independent. Fig. 9.3 shows the temperature dependence of τ|∆|(T ) calcu-

lated for τE = 10−12s, τE = 10−11s and τE = 10−10s. Here I use a high temper-

ature approximation for the temperature dependence of the superconducting gap
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∆(T ) =
1.74

2
∆(0)

Æ

fα(T )/ fβ(T ) with ∆(0) = 1.55meV . The periods of rf excita-

tions with f = 200 MHz, f = 1 GHz and f = 5 GHz frequencies are also shown. It is

evident from Fig. 9.3 that as T → Tc the time scale τ|∆| approaches and even exceeds

the period of rf excitation. Consequently, one needs to consider the time dynamics of

vortex nucleation and cannot extrapolate the results of DC critical field measurements

to high frequencies. On the other hand, at low temperatures the dc values of Hsh are

likely appropriate.

One can calculate the following naive estimate for the frequency dependence of

the rf critical field Hc1(ω). Consider an rf field in the form H(t) = Hr f sinωt, where

f =ω/2π is the frequency and Hr f > Hc1(ω = 0). The time when the instantaneous

field first exceeds the dc critical field Hc1(ω = 0) is ωt1 = sin−1(Hc1(ω = 0)/Hr f ).

The instantaneous field remains above Hc1(ω = 0) until ωt2 = π−ωt1. In line with

my previous discussion I postulate that in order for a vortex to nucleate the condition

t2− t1 ≥ τ|∆| should be satisfied. This leads to an analytic equation for the frequency

dependence of the critical field Hc1(ω):

Hc1(ω) =
Hc1(ω= 0)

sin









π

2
−
ωτ|∆|

2









, (9.8)

which assumes ωτ|∆| < π. Very large enhancement of the frequency-dependent Hc1

are predicted. This dependence is plotted in Fig. 9.4. This estimate will lose valid-

ity as ω → 1/τ|∆|, since in the high-frequency regime the superconductor will start
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Fig. 9.4 The frequency dependence of the critical field Hc1(ω) calculated using Eq. (9.8) for
T/Tc = 0.75, 0.80,0.85, 0.90 and 0.95. Here τ j(0)/τ|∆|(T ) =0.027, 0.031, 0.038, 0.053 and

0.097 with∆(T )/∆(0) =
1.74

2

�

1− (T/Tc)4
�

. This calculation is performed for Γ = 30.78 and

η= 1.78.

responding to the time-averaged value of magnetic field [36].

One should also note that I am ignoring the fact that the order parameter will be

suppressed due the applied rf magnetic field even for H(t) < Hc1(ω = 0), which will

reduce Hc1(ω). Overall, this exercise is not a numerical estimate for the enhancement

of the Hc1(ω) or a prediction of a new phenomenon, it is only intended as a mental

exercise for the reader to highlight the difference between DC and RF behaviour and

to underscore the importance of studying the response of superconductors in the ap-

propriate regime. In the end, if the effect of the "time gap" was as massive as shown

in Fig. 9.4, it would have been proven experimentally by now.
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9.5 The dependence of Vortex Dynamics on Inelastic Scat-

tering Γ

To study the effects of the inelastic electron-phonon scattering parameter Γ , a

gTDGL simulation of the interior surface of the SRF cavity was created, similar to

that shown in Fig. 9.1. The superconducting domain was simulated as a block with

L = 120ξ(0), W = 30ξ(0) and hsc = 15ξ(0). The vacuum domain was simulated as a

separate block with hvac = 5ξ(0) placed on top of the superconducting domain. A sin-

gle defect is located on the surface and a parallel rf magnetic field is applied. Here we

study the properties of the rf vortex semiloops as a function of inelastic scattering in

the Nb. The simulation was performed at T = 0.7Tc, B0 = 0.35Bc2, 2π/ω = 5000τ0,

κ= 1.5 and η= 1. The simulation is run for 3 rf cycles to reach the steady state solu-

tion. Fig. 9.5 shows a snapshot of this simulation at t = 4200τ0 which corresponds to

the time when the vortex semiloop penetrates deepest into the superconductor within

the rf cycle for all values of Γ used in this simulation. Vortex semiloops are illustrated

with a silver surface (corresponding to |∆|2 = 0.075). As evident from this figure, the

depth to which vortex semiloops penetrate into the superconductor depends on the

value of the Γ parameter, with larger Γ corresponding to vortex semiloops remaining

closer to the surface.

One of the dissipation mechanisms in superconductors is the dissipation due to

moving vortices. As such, materials with larger Γ parameter values would result in less

dissipation due to the smaller distance travelled by the vortex semiloop in an RF cycle.
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Fig. 9.5 Snapshots at t = 4200τ0 of vortex semiloops illustrated with a silver surface (cor-

responding to |∆|2 = 0.075) simulated with different values of Γ =
2τE∆∞(0)

ħh
for parallel

rf magnetic field in the x̂ direction above the superconductor. The blue line represents the
free superconducting surface. The green line represents the boundaries of each simulation. A
localized defect is placed on the surface at the origin (~rd = 0 x̂ + 0 ŷ + 0ẑ) and defined using
Eq. (8.2) with σx = 4 and σy = σz = 2 and Tcd = 0.2. The simulation was performed for
κ= 1.5, η= 1, B0 = 0.35Bc2,T = 0.7Tc and 2π/ω= 5000τ0.
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Recently, an investigation of nitrogen doped Nb by scanning tunneling spectroscopy

was performed by Lechner et al. [178]. The authors found that there is an 8% prob-

ability to find a spot with large Dynes fitting parameter value ΓD ynes > 1.75∆(0) on

the surface of a baseline Nb sample, whereas the largest value of the Dynes fitting

parameter measured on the surface of a nitrogen doped Nb is ΓD ynes = 0.5∆(0). Large

Dynes parameter values are associated with the smearing of the superconducting gap.

And as I discussed in Chapter 7, it is more appropriate to treat superconductors with

a smeared gap, or gapless superconductors, with the standard TDGL model, which

corresponds to using gTDGL with Γ = 0. By the transitive property, we can say that

a larger Dynes fitting parameter value corresponds to a small value of Γ . Vortices can

nucleate much faster at locations with smaller Γ values, hence the elimination of such

locations could at least partially explain the recent success of nitrogen doped and

nitrogen infused SRF cavities, which show higher Q-factors and higher accelerating

gradients Eacc when compared to baseline Nb SRF cavities. [231].

Clearly, the Γ parameter has a strong effect on the nucleation of vortex semiloops.

One can simultaneously increase both the Q-factor and the peak accelerating gradi-

ent of the cavity (Eacc) by increasing the value of the Γ parameter on the surface, and

eliminating the locations with suppressed values of Γ . Researchers in the SRF commu-

nity are already considering several alternative superconductors that can be coated on

the inner surface of the Nb cavity to increase the vortex nucleation field. The values

of Tc and Hc1 are usually given as the main consideration when these materials are

chosen. My preliminary results presented in this chapter show that the value of the Γ

parameter in these new materials should receive a similar consideration.
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10

Surface Imaging Efforts

The next step for our Near-Field Magnetic Microscope is demonstrating the abil-

ity to raster scan over the samples and to create images of nonlinear response. As

was discussed in Chapter 4, the surface defects and inhomogeneities on the surface of

the superconductors will locally suppress JN L and thus should generate stronger har-

monic response (see Eq. (4.2)). Thus 2-dimensional maps of surface third-harmonic

response should clearly show the location of these surface defects (see Fig. 10.1 for

the principle of the imaging method). In this chapter I will summarize the preliminary

Fig. 10.1 Schematic illustration of the variation in nonlinear scaling current density JN L
(blue) and third-harmonic response P3 f (red) due to the local surface defects. The schematic
hierarchy of JN L attributed to some well-known defects is shown on the right side arrow. This
figure is partially reproduced from [104].
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scanning results and the experience gained so far.

10.1 2D scans of the Bi2Sr2CaCu2O8+x sample

The first attempt to produce 2-dimensional maps of third-harmonic response

was made inside the Desert Cryogenics wafer-probe station used by my predecessors.

This setup was equipped with 3 stepper motors, one on each Cartesian axis, that can

be used to scan the magnetic writer probe over the surface of the sample with 0.5µm

steps. For the detailed description of this setup please see [104, p.35 and p.145]).

A Bismuth strontium calcium copper oxide (Bi2Sr2CaCu2O8+x) (a.k.a BSCCO

and pronounsed "bisko") sample was provided by the Kenneth Burch’s group at Boston

College. The sample was prepared using a mechanical exfoliation technique. Fig. 10.2

shows an optical image of the sample. It had a superconducting transition temperature

Tc = 102 K, obtained from the onset of third-harmonic response P3 f (T ) that was

measured during the cool down.

Fig. 10.3 shows the spatially-resolved images of the nonlinear response of the

BSCCO flake sample at T = 89.5 K, f = 4.975 GHz and Pf =-6 dBm input power.

The measurement was performed across the edge of the sample shown in Fig. 10.2.

I was able to measure a 10 dB difference in nonlinearity response while scanning

perpendicular to and across the edge of the sample.

With this image we successfully demonstrate our ability to map-out the third-

harmonic response. The measured third-harmonic response is consistent across a large
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Fig. 10.2 Optical microscope image of the measured BSCCO flake sample. The scanned area
is shown by a black box in the inset, and the third-harmonic power image is shown in Fig. 10.3.

Fig. 10.3 Scanned Image of BSCCO sample at T = 89K at applied power Pf = −6dBm and
frequency f = 4.975 GHz. Colorbar shows the third-harmonic response P3 f in dBm. The
scanned area is shown as a black box in Fig. 10.2.

surface area (1200µm×200µm) and shows large contrast (10dB or 10 times) between

the sample and the substrate.
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Fig. 10.4 Schematic of the experimental setup for raster scanning and imaging of nonlinear
response. The probe is attached to an Attocube z-axis cryogenic piezo scanner, directly above
the superconducting sample which rests on top of a Cold Base attached to an Attocube xy
cryogenic scanner. The coldbase is thermally anchored to the cold plate of the cryostat. The
eye icon indicates the point from which images shown in Fig. 10.9 are captured. As described
in Chapter 4, a microwave (MW) source is used to generate an rf signal and feed it to the
magnetic writer probe. The sample response magnetic field is coupled back to the probe and
measured with a spectrum analyzer.
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Fig. 10.5 A picture of the experimental setup for raster scanning and imaging of nonlinear
response. The probe is attached to an Attocube z-axis cryogenic piezo scanner, directly above
the superconducting sample, which rests on top of a Cold Base attached to an Attocube xy
cryogenic scanner. The coldbase is thermally anchored to the cold plate of the cryostat by
means of copper braids. To strengthen the thermal link vacuum grease (Apiezon N Grease) is
applied between the sample and the Cold Base, and also between the Y-scanner and the Cold
Finger.
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10.2 Attocube positioning system

A low temperature positioning system was purchased from Attocube. The system

consists of 3 individual piezo material-based linear nanopositioners (2×ANPx101/RES/LT

and 1 × ANPz101/RES/LT) controlled by a ANC350/3/RES Piezo Motion Controller.

Each positioner has a built-in resistive encoder which can be used to read-out the cur-

rent position of the positioner with 200nm accuracy. Each positioner has a 5000µm

travel range. The stick-slip mechanism is used for the motion. This positioning system

was later integrated into the Entropy Dry Pulsed Tube cryostat.

Figs. 10.4 and 10.5 show the schematic diagram and a photograph of the micro-

scope. The ANPz101 nanopositioner was used as a stand alone scanner for the Z-axis

direction. The magnetic writer head is attached to the z-axis scanner using a custom

built OFHC copper holder. The ANPx101 nanopositioners were mounted on top of

each other to create an XY scanner. A base plate which is thermally anchored to the

cold plate of the cryostat is mounted on the free surface of the XY scanner. The sample

rests on top of this base plate. The sample is moved in the X and Y directions by the

XY axis scanner. The probe-sample separation is controlled by the Z-axis scanner. The

rf measurement procedure is the same as that described in Chapter 4, along with the

terminology for the magnetic writer probe pieces.
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10.3 Probe Z-scan over Sample

Our attempts to create a Tuning Fork based probe-sample separation control

were not successful (see Appendix B). Hence we decided that the probe should be

pushed against the surface and dragged across the surface of the sample to create

2D-surface images. To interpret the resulting 2D-surface image of third-harmonic

response, one should be able to decouple the features caused by the topography of

the sample and the features created by other parameters at the surface which are

relevant to SRF applications. Additionally one needs to identify the optimal Z-position

at which the 2D-surface images have the highest quality. Hence, one needs to study

the probe-sample interaction as a function of Z-position.

First the magnetic writer probe-sample interaction was studied at room tempera-

ture. Fig. 10.6 shows magnified optical images of the magnetic writer probe approach-

ing the flat sample. We see that as the probe approaches the sample it starts to bend

after touching the sample. At this point the writer pole of the magnetic writer probe

(see Figs. 4.5 and 4.6) is still far away from the sample. As the Z-scanner pushes the

probe closer to the sample it reaches the point when the probe lays flat on the sample

(Fig. 10.6(e)). Usually this is the best position to perform fixed-point measurements

discussed in Chapters 4 and 5. Also this is the configuration in which all 2-dimensional

scans are performed. If the probe is pushed further it causes a deformation in the sup-

port frame and the writer pole detaches from the sample (see Fig. 10.6(f)). Thus there

is a narrow window of Z-positions (on the order of 500µm) where the probe-sample
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Fig. 10.6 Optical images of the probe as it approaches the sample: (a) when probe is away
from the sample; (b),(c),(d) when probe is barely touching the sample; (e) when probe is
laying flat on the sample; and (f) when the Z-scanner is pushed too far and the front of the
probe where the writer pole is located moves away from the sample. Reflection of the probe
from the sample can be used to infer the probe-sample separation. The surface of the sample
is shown by the red line in (e).

interaction is optimal.

The bulk Nb sample which was described in Chapter 5 as Sample 2, was imaged

in this way. Figs. 10.7 and 10.8 show the low temperature third-harmonic response P3 f

vs the position of the Z-axis scanner as measured from the built-in resistive encoder.

Both Z-scans were measured at the same x-y location but at different frequencies.

Note that larger Z-position values correspond to the Z-scanner moving forward and the

probe approaching the sample at room temperature for the same run. Fig. 10.9 shows

optical images of the probe approaching this sample. We see that when Z < 2000µm

the probe is away from the sample (Fig. 10.9(a)). In this case the P3 f is nearly constant

both as a function of temperature and position. A small apparent temperature depen-
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Fig. 10.7 Third-harmonic response P3 f vs the position of the Z-axis scanner measured in
the superconducting state (blue curve measured at T = 6K) and the normal state (red curve
measured at T = 10K). Below Z < 2000µm the probe is far away from the sample and
the measured third-harmonic response can be attributed to the probe itself. For 2000µm <

Z < 2300µm the probe starts deforming and we have noisy spikes in P3 f (Z) both in the
superconducting and normal states. Above Z > 2300µm the probe lays flat against the sample
and we measure consistent and temperature dependent third-harmonic response. The data is
measured on a Bulk Nb (Sample 2 in Chapter 5) at frequency of f = 1.49GHz and Pf =
−5dBm input power.
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Fig. 10.8 Third-harmonic response P3 f vs the position of the Z-axis scanner measured in
the superconducting state (blue curve measured at T = 6K) and the normal state (red curve
measured at T = 10K). Below Z < 2000µm the probe is far away from the sample and
the measured third-harmonic response can be attributed to the probe itself. For 2000µm <

Z < 2300µm the probe starts deforming and we have noisy spikes in P3 f (Z) both in the
superconducting and normal states. Above Z > 2300µm the probe lays flat against the sample
and we measure consistent and temperature dependent third-harmonic response. The data is
measured on a Bulk Nb (Sample 2 in Chapter 5) at frequency of f = 1.8GHz and Pf = −5dBm
input power.
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Fig. 10.9 Optical images of the probe as it approaches the sample at room temperature: (a)
when Z = 1900µm and probe is away from the sample. (b) when Z = 2200µm and the
probe is barely touching the sample. (c) when Z = 2600µm and the probe is laying flat on
the sample. In these pictures one is looking from the location denoted with an eye icon in
Fig. 10.4.

dence for Z < 2150µm in Fig. 10.7 is insignificant since it corresponds to < 1% of the

nonlinear response power measured for Z > 2500µm at T = 6K . Once Z > 2000µm

is reached, the probe starts barely touching the sample (Fig. 10.9(b)). In this regime

the probe is being affected by the vibration in the cryostat (due to the active pulsed

tube and vacuum pump). It is also being continuously deformed as the z positioner

moves forward. The sample is entering and exiting the probe’s field of view in an

uncontrolled fashion. This results in noisy peaks and dips in P3 f (Z) both in the su-

perconducting state (T = 6K) and the normal state (T = 10K) as shown in Figs. 10.7

and 10.8. Once the Z position is increased further to Z > 2300µm, the probe is now in

good contact with the sample (Fig. 10.9(c)) and reproducible P3 f (Z) data can be mea-

sured. The P3 f (T ) measured from this sample in this regime was shown in Fig. 5.6,

where the third-harmonic response emerges sharply below T < 9.2K confirming the

fact that the measured response is generated by the superconducting sample.
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10.4 XZ-scan

The Z-scan described in the previous section is then repeated at an array of

X-positions to produce a 2-dimensional (XZ) scan of the sample third-harmonic re-

sponse. Fig. 10.10 shows the 2-dimensional (XZ) scan of the bulk Nb sample. The

third-harmonic response P3 f is measured at frequency f = 1.49GHz, temperature of

T = 6K and Pf = −5dBm input power. The measurement is performed in the fol-

lowing fashion: first the Z position is changed from Z = 3000µm to Z = 1500µm in

20µm steps. Once Z = 1500µm is reached, where the probe is away from the sample,

the X position is increased by 10µm and the probe is returned to Z = 3000µm. This

process ensures that the probe is not damaged by sliding it in the X-direction while it is

being pushed hard against the sample. The sample (shown in the inset of Fig. 10.10)

had a tilt which can be seen in the scanned image as well. The nonlinear response is

localized to 1600µm < X < 4000µm from which we can deduce that those are the

locations of the sample edges. There is a sharp contrast change in P3 f at X = 2510µm

which we don’t yet understand. The image was later digitally rotated 13° in the coun-

terclockwise direction. Later, the part of the data that is shown as bounded by 2 white

lines in Fig. 10.10 was averaged and plotted in Fig. 10.11. While the data in Fig. 10.11

is presented in a logarithmic scale and in dBm units, the actual averaging was done

in the linear power scale. From Fig. 10.11 we can estimate the width of the sample at

the location of the scan to be 2.94mm, assuming that the drop in



P3 f

�

(X ) at X = 0

and X = 2940µm corresponds to the edges of the sample.
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Fig. 10.10 2-dimensional (XZ) scan of the bulk Nb sample (Sample 2 in Chapter 5). The
third-harmonic response P3 f is measured at a frequency of f = 1.49GHz, temperature of
T = 6K and Pf = −5dBm input power. The image was taken by scanning in Z and rastering in
X. The data in the area bounded by two white line was averaged and is plotted in Fig. 10.11.
The inset show the picture of the sample where the location of the scan is shown with a red
line.

Fig. 10.11 Third harmonic response averaged over the area bounded by the white lines in
Fig. 10.10. The data is presented in a logarithmic scale in dBm units but the averaging is
performed in the linear scale.
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Since we now know the boundaries of the sample, the surface tilt was re-imaged

at higher input power. Fig. 10.12 shows the third-harmonic response P3 f that was

measured over the same line shown in the inset of Fig. 10.10 at Pf = 0dBm input

power. However now the measurement order was reversed: first the X position is

changed from X = 3000µm to X = 1500µm in 50µm steps. Once X = 1500µm is

reached the Z position is increased by 50µm and the probe is returned to X = 3000µm.

Here we recover the same tilt shown in Fig. 10.10. An interesting feature of both

measurements is the fact that the nonlinear response reaches it’s lowest value at or

near the surface of the sample. A good explanation for this would be the destructive

interference between the sample nonlinear response and that generated by the probe

itself, as seen by my predecessors with the magnetic writer microwave microscope (It

is discussed in section III.c of Ref. [128]).

10.5 Line Scans over a grain boundary in Bulk Nb

A bi-crystal bulk Nb tensile sample was provided by Tom Bieler’s group at Michi-

gan State University. The sample has a prominent grain boundary (GB) with 53° mis-

orientation angle between the grains. A picture of this sample and an SEM image of

the grain boundary are shown in Fig. 10.13. Further details about the sample (GB6-

10) preparation can be found in Ref.[232].

Fig. 10.14 shows the line scan of third-harmonic voltage across the GB. The data

was acquired by scanning in the X-direction at a constant Z = 1588µm value. This
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Fig. 10.12 Top: 2-dimensional (XZ) scan of the bulk Nb sample. The third-harmonic response
P3 f is measured at frequency of f = 1.49GHz, temperature T = 6K and Pf = 0dBm input
power. In this case the X value is scanned while the Z value is rastered. Bottom: Line scans
along the lines shown in the top panel. The new Z-direction is 13° tilted compared to the top
panel. Dips in P3 f (Z) around Z=0 are the result of the destructive interference between the
sample nonlinear response and that generated by the probe itself.
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Fig. 10.13 (a) Picture of the bi-crystal bulk Nb tensile sample. Yellow line shows the location
of the grain boundary and the red line shows an approximate location where the line scan
shown in Fig. 10.14 was measured. (b) SEM image of the grain boundary.
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Fig. 10.14 Third-harmonic response V3 f vs the position of the X-axis scanner measured at
frequency of f = 5.845GHz and temperature T = 4.5K . The measurement is performed
simultaneously at 3 different input rf amplitudes: Hr f = 200a.u. (blue), Hr f = 400a.u. (red)
and Hr f = 600a.u. (green).

value of Z corresponds to the probe laying flat against the sample as was inferred

from the P3 f (Z) measurement. The third-harmonic voltage V3 f (X ) measured at three

different input rf amplitudes Hr f shows a peak around X = 1100µm which roughly

corresponds to the location of the GB. The peak in V3 f is localized to about 400µm,

whereas the lateral extent of the GB itself is about 10µm. This might indicate that

other defects associated with the GB extend out to greater distances, suppressing the

nonlinearity current density scale, and enhancing V3 f .
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10.6 Conclusion

In conclusion, I provide several proof of principle level results on surface imaging

of non-linear response with the magnetic writer probe. I found that there is an optimal

range of Z-positioner values which can be used to perform 2-dimensional scans. Addi-

tionally I measured the third harmonic response from a GB and observed a peak in V3 f

as we have expected. We also identified several limitations of the imaging capabilities

of the microscope. Most importantly the samples should be flat with minimal surface

roughness and tilt, as we have only rudimentary probe-sample distance control.

The setup can be improved by implementing 2 key changes. Firstly the scanners

which I am using right now are in fact positioners and are not designed for nm pre-

cision measurements. An actual XYZ scanner system, such as those used in cryogenic

STM/AFM, can significantly improve the resolution and performance of our micro-

scope. Also, perhaps an alternative sample-probe separation control method should

be designed. One can either measure capacitance between the probe and the sample,

or attach mirrors to the probe and use an optical interferometer to measure the precise

location of the probe. Finally, several samples with known defect structures should be

measured to characterize our system.
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11

Microwave Surface Impedance measurements using

the Parallel Plate Resonator

Measuring the London penetration depth and surface resistance of a supercon-

ductor is very important when one considers using said superconductors in high-

frequency applications. The measured temperature dependence of the penetration

depth and surface resistance can be used to extract several key parameters like the zero

temperature penetration depth λ(T = 0), superconducting order parameter ∆(T ),

critical temperature Tc, quasi-particle scattering time τ, and the pairing symmetry of

the material. In superconductors, the pairing symmetry refers to the symmetry of

the bounded Cooper pair wave function. Conventional phonon-mediated pairing su-

perconductors like Nb, have an s-wave symmetry, whereas most Rare-earth Barium

Copper Oxide (ReBCO) high temperature superconductors (a.k.a. cuprates) generally

have a d-wave symmetry. The pairing symmetry of the superconductor also defines

the temperature dependence of it’s surface resistance. The low-temperature surface

resistance of an s-wave superconductor (neglecting the residual resistance discussed
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in Chapter 2) has an exponential dependence on temperature (Rs ∝ ex p






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



,

see Eq. (2.1)) whereas a d-wave superconductor has the power law dependence (Rs∝

T 2). Specifically for SRF purposes, where the low surface resistance is of the utmost

importance, only s-wave superconductors can be used. The pairing symmetry of a

new material can be quickly checked by fitting λ(T ) in the low temperature limit to

the following equation [233–235]:
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For s-wave p = 2

For d-wave p = 4/3 .

(11.1)

As I discussed in Chapter 2, when a new material is being considered for SRF or

any other high-frequency applications, it is often costly and/or difficult to fabricate a

full cavity for testing. There is growing interest in surface characterization techniques

that can be used on flat thin film and bulk superconducting samples. Another ap-

proach involves creating a superconducting test cavity where one side of the cavity is

replaced with the sample of interest [236]. This approach still requires large samples

(10 cm diameter). Additionally the MW losses on the cavity walls can be comparable

or sometimes even greater than the losses due to the sample. Hence this method can

only provide an estimate on the surface resistance of the sample.
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Fig. 11.1 Schematic of the Parallel Plate Resonator. A dielectric spacer is sandwiched between
two nominally identical superconducting films. Arrows show the rf magnetic fields Hr f (black)
and surface currents Jr f (white) corresponding to the T EM01 mode. The coupling to the PPR
is achieved by bringing 2 antennas close to the edge of the PPR. The antennas are made by
exposing a short part of the inner conductor and a portion of the outer conductor of a coaxial
cable. Schematic diagram not to scale.

11.1 Parallel Plate Resonator

In our lab, we used the surface characterization method originally proposed by

Taber [237]. In this approach, a dielectric spacer is placed between two flat and nom-

inally identical superconductors forming a parallel plate resonator (PPR) as shown

in Fig. 11.1. No direct electrical contacts are made to the superconducting samples,

preserving the open-circuit boundary conditions at the edges.

The TEM modes of the PPR can be excited by positioning 2 antennas near the

two corners of a PPR. Antennas are capacitively coupled to the PPR and the coupling

strength can be tuned by varying the physical distance between the antennas and the

PPR. The antennas are made by exposing a short part of the inner conductor and

a portion of the outer conductor of a coaxial cable. Other antenna designs like a
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microstrip line [238] or moon-shaped antenna [239] have been used by other authors.

The dimensions of the films used in the PPR are on the order of ∼ 1cm, whereas

the thickness of the dielectric spacer is < 500µm. Due to the thin height of the PPR,

the waves inside the PPR can be considered to be quasi-2D. Also, the fringing fields

on the edges of the PPR can be ignored when calculating the resonant frequencies of

the PPR. Consider a rectangular PPR resonator with length L, width W and dielectric

constant εr . The x̂ , ŷ , ẑ axes are aligned with the edges of the PPR with one of it’s

corners coinciding with the origin, as shown in Fig. 11.1. The electric field distribution

and the resonant frequency of the transverse electromagnetic (TEM) modes for this

PPR can be written as:

~E = E0 cos
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(11.2)

where n and m are the mode indices (n, m≥ 0, n+m≥ 1 and n, m ∈ Z), c is the speed

of light and the superconducting samples are modeled as perfect conductors. To avoid

mode degeneracy, it is best to avoid square (L =W ) samples. In fact, the exact shape

of the sample is not crucial for the measurement and will result in slightly different

electric distributions than the one given in Eq. (11.2).

A Keysight (model N5242A) Vector Network Analyzer (VNA) was used to mea-

sure the complex transmission S21( f ) through the cavity. The measured temperature
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dependence of the resonant frequency fres stems from the temperature dependence of

the penetration depth λ(T ), and can be written as [240]:

fres(T )

f0
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(11.3)

where d is the thickness of the dielectric spacer, t is the thickness of the supercon-

ducting sample and f0 is the resonant frequency corresponding to a perfect conductor

(i.e. λ= 0). Note that for extracting a value of λ(0) this method requires that a func-

tional form of the penetration depth temperature dependence is known beforehand

(like in Eq. (11.1)). A better approach to determine λ(T ) is to vary the thickness of

the dielectric spacer d at a constant temperature [239, 241].

The total energy lost during the oscillation can be obtained from the quality

factor of the resonance. This loss is caused by the resistive loss on the surface of the

superconductor, dielectric loss in the spacer, and the radiation loss from the edges of

the PPR. The total loss can be reduced by placing the PPR inside a conductive cavity.

In this case, the total loss can be written as [237]:

1/Q = crad d
︸︷︷︸

Radiation Loss

+

Dielectric Loss
︷︸︸︷

tanδ +
Rs

πµ0 fresd
︸ ︷︷ ︸

Superconductor Loss

, (11.4)

where crad is the radiation loss coefficient, tanδ is the loss tangent of the dielectric

spacer, and Rs is the assumed uniform surface resistance of the sample. As evident

from the equation above, when a thin dielectric spacer is used, loss due to the su-
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perconductor dominates. Again, the ideal approach to obtaining the absolute surface

resistance is to systematically vary the thickness of the dielectric spacer d. Never-

theless, at any temperature, Rs <
πµ0 fresd

Q
provides an upper bound on the surface

resistance.

The antennas should be weakly coupled to the PPR so that the loaded qual-

ity factor and unloaded quality factor are nearly identical. For more details on the

loaded and unloaded quality factors and the coupling strength of the antenna please

see Sec. 3.6.

11.2 Experimental Setup

Fig. 11.2(a) shows a picture of the PPR located inside the cavity, which is made

out of gold-plated OFHC copper. The dielectric posts are used to press and hold the

samples together. Later, this cavity is attached to a dipping probe and inserted into a

liquid helium dewar (see Fig. 11.2(a) and (b)). The dipping probe is made out of a

stainless steel tube that houses rf coaxial cables and dc wiring running from the top

of the probe (Fig. 11.2(c)) to the cavity(Fig. 11.2(a)). A thermometer and a heater

are installed on this cavity to monitor and control the temperature. Alternatively,

the dipping probe can be moved up and down relative to the liquid helium surface

to sweep the temperature, which is the case for the measurements presented here.

The relief valve shown at the bottom of Fig. 11.2(c) is used to relieve the helium gas
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Fig. 11.2 Picture of the experimental setup. (a) PPR inside the copper cavity. Two dielectric
posts are used to keep the samples together. Coupling antennas enter the cavity from two
small holes on the left side. A thermometer and a heater are installed to monitor and control
the temperature. The cavity housing the PPR is attached to the end of the dipping probe. (b)
The dipping probe is inserted into the liquid helium dewar. (c) Top part of the dipping probe.
Micrometers are installed to precisely move the rf coaxial cables up or down, which moves
the antennas away or towards the sample, hence tuning the coupling strength of the antennas
to the PPR. A relief valve is installed to relieve the helium gas pressure build up. (d) The
cavity housing the PPR is attached to the mixing chamber plate of the dilution fridge shown
in Fig. 3.5 of Chapter 3. An aluminium holder is designed to hold the antennas at the desired
position. Alternatively, the cavity can be attached to the cold plate of the dry pulsed-tube
cryostat shown in Fig. 4.11 of Chapter 4.
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pressure build up inside the dewar and the probe. If the dipping probe is removed

from the dewar, water from ambient air around the setup can condense on the sample

surface, damaging the sample. The same valve is used to supply a constant flow of dry

nitrogen gas to preserve the sample surface from contamination during the warmup.

The micrometers on the top of the probe are used to fine tune the coupling strength

to the PPR by controlling the separation between the antenna and PPR. This allows

one to modify the coupling at any temperature.

The dipping probe method has several disadvantages. Firstly the base temper-

ature of the setup is 4.2K , which is not sufficiently cold to study many interesting

superconductors. Secondly, the moment the PPR is immersed below the liquid helium

surface, liquid helium flows between the samples resulting in a noticeable disconti-

nuity in the PPR resonant frequency. Lastly, nowadays liquid helium is an expensive

and increasingly scarce commodity [242], and in our Lab we have decided to move

away from liquid helium. To address these shortcomings, the PPR was moved inside

the dilution fridge (see Fig. 11.2(d)). The cavity was mounted on the mixing chamber

and an aluminium holder was used to hold the antennas at a fixed position. Using this

new approach, we gained the ability to measure the superconducting samples down

to 100mK temperatures, although losing the ability to adjust the coupling strength of

the antennas in-situ.

One feature of using a cavity to host the PPR is that it will have resonant modes of

it’s own. The measured complex transmission S21( f ) will show both the cavity modes

and PPR modes. Also, if a cavity mode happens to be in the vicinity of the PPR mode in

the frequency spectrum, these two modes can couple to each other. Such interaction
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will add skew to the PPR resonance distorting it from a standard Lorentzian curve

predicted by the lumped element model of a single isolated resonator [243]. Since

the metallic cavity is lossier than the superconducting sample, the PPR modes tend to

be sharper, due to their higher quality factor. Furthermore, the intrinsic properties of

a superconductor are strongly temperature dependent, thus the resonant frequency of

the PPR mode will have strong dependence on temperature variation. Additionally the

quality factor of the PPR peak is power dependent due to the nonlinearity associated

with the superconducting state. These properties can be used to distinguish the PPR

modes from the cavity modes.

To study the surface impedance one needs to extract the resonant frequency

and quality factor from transmission data S21( f ). To aid with this process, one should

design the cavity and PPR such that the cavity modes and PPR modes do not overlap.

Additionally the PPR modes can be shifted up and down in frequency by utilizing

dielectric spacers with different dielectric constants εr .

11.3 Boron doped diamond sample

Diamond is the hardest known natural material. Diamond is also an excellent

electrical insulator but with a very high thermal conductivity (2200W/m · K at room

temperature), in fact Diamond is a better thermal conductor than copper. These prop-

erties make usage of diamond in electronic applications very appealing. Recently, it

was discovered that the Boron-doped Diamond (B-diamond) exhibits superconductiv-
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Fig. 11.3 The shape of the B-diamond sample.

ity above liquid helium temperatures, both in bulk [244] and thin-film forms [245].

Early transport measurements showed a high upper critical value of Hc2(0) = 2.7T

on bulk B-diamond samples and Hc2(0) = 11.62T in B-diamond films deposited using

the Chemical Vapor Deposition (CVD) technique [246]. Later, Mandal et. al. demon-

strated that a Superconducting Quantum Interference Device (SQUID) made of B-

diamond can operate in a 4 Tesla field [247].

One of the key advantages of using diamond in electronics is the fact that by

controlling the dopant type and doping concentration one can create an insulator, a

semiconductor (both p and n type), or a superconductor, all using the same starting

material. For instance, Watanabe et al. demonstrated that they could create very uni-

form vertical SNS Josephson junctions solely with B-diamond by carefully controlling

the doping concentration during the deposition of the thin-film [248].

The high thermal conductivity and high stiffness of diamond might eventually

capture the interest of the SRF community as well. However, currently the costs as-

sociated with the production of B-diamond thin-films prohibits it’s usage in any of

the large scale applications. Nevertheless, with a PPR setup at our disposal, and ow-

ing to the fact that there is no literature available on the microwave performance
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of B-doped diamond, we proceeded with the following measurement. A B-diamond

thin-film sample was provided by Ramachandra Rao’s group at the Indian Institute of

Technology Madras. A 1.5µm thick film with 7.8×1021/cm3 Boron doping concentra-

tion was deposited on a silicon substrate using the hot filament chemical deposition

technique [249, 250]. The critical temperature of the film was obtained from dc re-

sistivity measurement to be Tc = 7.0K [251], which corresponds to the temperature

where resistance goes to zero. It has been shown that Tc vs Boron doping is a dome-

shaped curve in the noncrystalline B-diamond films [252]. This film has nearly the

optimum dopant concentration for superconductivity. However these films are known

to be granular [245, 253–257] and inhomogeneous on the sub-micron length scale.

The sample had an irregular shape, and was cut into two pieces to form a PPR.

The dimensions of the sample are shown in Fig. 11.3. A d = 500µm thick quartz

(SiO2) spacer was used as a dielectric spacer. The sample was first measured inside

liquid helium using the dipping probe. Fig. 11.4 shows the amplitude of the measured

transmission through the PPR at 3 different temperatures. As the temperature is in-

crease both the resonant frequency and quality factor shift to lower values. The rapid

shift of the resonance frequency as a function of temperature indicates that these are

the PPR modes.

Later the PPR setup was moved to the dry pulsed-tube Entropy cryostat shown

in Fig. 4.11 of Chapter 4. The same PPR formed with the B-diamond sample with a

d = 500µm thick quartz (SiO2) dielectric spacer was measured down to a tempera-

ture of 2.8 K. It was observed that one needs to wait for up to 10 minutes at each

temperature point for the sample to reach an equilibrium temperature. This is caused
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Fig. 11.4 Transmission through the cavity housing the B-diamond PPR, |S12| as a function
of frequency, measured by the VNA at T = 4.38K , T = 4.98K and T = 5.32K in the dipping
probe.

226



by low thermal conductivity of the teflon posts and the lack of helium vapor that was

present in the dipping probe setup. Finally, the PPR setup was moved inside a Blue-

Fors dilution fridge (see Fig. 11.2(d)) where measurements down to mK temperatures

were made. But in this case the dielectric quartz dielectric spacer was replaced with

a 430µm thick sapphire spacer.

Only the PPR peaks which do not extensively overlap with a cavity mode and

have Q > 20 were studied closely. Both the data measurement inside the dipping

probe and the Entropy cryostat showed 2 PPR peaks each which met this criteria. The

data measurement inside the BlueFors dilution fridge had only 1 PPR peak that met

my criteria. The model and the fitting procedure that is used to extract fres(T ) and

Q(T ) from this measurements is discussed in the next section.

11.4 Extracting fres and Q from the transmission data

An ideal resonator can be modeled as an RLC circuit where each element is

connected in series. The complex transmission coefficient of an RLC circuit in the

weak coupling limit and ignoring external measurement effects is given by [243]

S12( f ) =
Speak

1+ iQ









f

fres
−

fres

f









, (11.5)

227



Fig. 11.5 (a) Complex plane plot of the ideal resonator transmission S12( f ) (blue circle)
calculated using Eq. (11.5). The diameter of this circle is equal to Speak. The length of the
green arrow connecting the origin with a data point on the circle is equal to the measured
amplitude of the transmission |S21( f )|. The phase of the resonance φ which is defined as the
angle between the real axis and the line connecting the origin with a particular point is shown
in (b) (red solid line). At the resonant frequency Re {S21( fres)}= Speak and φ( fres) = 0.

where Speak = |S12( fres)| and i =
p
−1. This equation holds in the limit of weak

coupling, i.e. β1,β2 � 1, where β1 and β2 are the coupling strength of the in-

put and output antennas. Fig. 11.5 shows the complex plane plot of S12( f ) calcu-

lated using Eq. (11.5). The complex function S12( f ) forms a circle with a diameter

Speak = 2
p

β1β2 centered at (Speak/2,0). Eq. (11.5) can be used to derive the follow-

ing analytic equation for the phase of the resonance

φ( f ) = tan−1
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, (11.6)
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where the approximation is valid when f ' fres. Fig. 11.5(b) shows the phase of the

resonance φ vs frequency.

Some real world measurement effects like the crosstalk between the cables/an-

tennas and the phase shift introduced because the calibration plane is a finite distance

away from the coupling ports can cause corruption to the data. These effects result in

the translation and rotation of the measured S12( f ) data in the complex plane, away

from the simple resonance shown in Fig. 11.5. There are several methods that can be

used to extract the resonance frequency and quality factor from transmission S12( f )

data. The summary and head to head comparison of these methods can be found in

Ref.[243], where the authors show that the most accurate method to extract the fres

and Q from S12( f ) is the "Phase vs frequency fit".

11.4.1 Phase vs frequency fit

This method can account for the corruption to the data caused by the real world

measurement effects. Fig. 11.6 illustrates the steps involved in the phase vs frequency

fit method, which can be summarized as follows: First, the frequency range for the

peak is identified from |S12( f )| data (see Fig. 11.6(a)). Fig. 11.6(b) shows the phase

of S12( f ) = |S12( f )|eiφ( f ). To use this data first we need to unwind it’s phase φ( f ) (by

adding ±2π to the raw measured phase). Later the linear in frequency background

phase variation that is the result of phase delay caused by the un-calibrated coaxial

cables is removed, resulting in the clean phase vs frequency data shown in Fig. 11.6(c).

Fig. 11.6(d) shows the processed S12( f ) data (blue) in the complex S12 plane. A point
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Fig. 11.6 The steps of an Phase vs frequency fit method. Measured amplitude and phase of
S12( f ) is shown in (a) and (b) respectively. (c) shows the Phase of the S12( f ) after unwinding
and background subtraction. (d) Complex plane plot of S12( f ) (blue) and a circle fit (red)
to it after the phase unwinding. Yellow circle shows the coordinates of Sre f and the arrows
indicate the translation and rotation performed to arrive at the data shown in (e). (e) Complex
plane plot of S12( f ) after the translation to and rotation around the origin. (f) (Black) The
phase of the "clean" S12( f ) data shown in (e) and the Eq. (11.8) fit to this data with Q = 78,
fres = 6.444 GHz and θ0 = −0.048 (red).

in the complex S12 plane midway between the first and last S12( f ) data points is chosen

as the reference point Sre f (yellow circle). This represents an approximation to the

off-resonance S-parameter value. A circle (red circle in Fig. 11.6(d)) is then fit to the

data with the following weight assigned to each data point,

Wi = |S12( fi)− Sre f |2 . (11.7)
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This weighting convention ensures that the points closer to the resonance peak

(which is on the circle opposite to Sre f ) have highest weight. As the next step, the data

is first moved and then rotated such that Im{Sre f }= 0, Re{Sre f }< 0 and the center of

the fit circle coincides with the origin of the complex S12 plane (see Fig. 11.6(e)). This

removes all the external alterations to the data besides the noise. Fig. 11.6(f) shows

the clean phase of S12 data extracted from Fig. 11.6(e). Finally, Eq. (11.8) is fit to this

"cleaned" phase vs frequency data using three parameters:

θ ( f ) = θ0 + 2tan−1






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2Q
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
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





. (11.8)

Here, fres is the resonance frequency, Q is the quality factor and θ0 is an offset needed

to account for the errors associated with the choice of Sre f .

11.4.2 Multi-peak fit

The phase vs frequency fit method is a very accurate method. However, it works

best when a PPR peak |S12( f )| can be isolated from other signals. When multiple

PPR peaks are located very close to each other in the frequency spectrum, the peak

shapes becomes distorted, as in the 2nd peak in Fig. 11.4. In this case I propose an

alternative fitting approach. The phase of the S12( f ) data is unwrapped as was pre-

viously discussed. Then the number of peaks N contributing to the signal is iden-

tified. The measured S12( f ) data is the result of complex addition of transmission

that can be attributed to each individual peak and the background transmission due
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to real world measurement effects discussed above. The real and imaginary part

of the background transmission can be modeled as Re
�

S12,bg( f )
	

= x1 + x2 f and

Im
�

S12,bg( f )
	

= y1+ y2 f respectively. Parameters x1, x2, y1, y2 account for the cross-

talk between the cables and between the antennas. The contribution of each peak to

the real and imaginary parts of S12( f ) is r {1+ cos [θ ( f )]} and r sin [θ ( f )], respec-

tively, as derived from Eq. (11.5). Here r is the radius of each peak (see Fig. 11.5(a))

and θ ( f ) is the phase shown in Fig. 11.6(e), both of which are measured from the

center of the circle formed by the individual resonances in the complex S12 plot. The

S12,bg only accounts for the translation of the peaks in the complex plane. In order to

account for the rotation of each resonance peak in the complex plane, an additional

phase offset θ0 is introduced. Putting this all together, Eq. (11.9) contains all of these

contributions and is fit to the entirety of the S12( f ) data:

Re {S12( fi)}= x1 + x2 fi +
N
∑

j=1

r j

�

1+ cos
�

θ j( fi)
�	

,

Im {S12( fi)}= y1 + y2 fi +
N
∑

j=1

r j sin
�

θ j( fi)
�

,

θ j( fi) = θ0 j + 2tan−1
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(11.9)

Here i and j are indices for the data points and the peak number, respectively;

and fres, j and Q j are the resonant frequency and the quality factor of each peak (j

runs from 1 to N). In total for a dataset with N peaks there are 4N + 4 independent

parameters to be fitted. Fig. 11.7 shows a N = 3 peak fit to S12( f ) data performed
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Fig. 11.7 Multi-peak fit to S12( f ) data using Eq. (11.9) with N = 3: fres,peak1 = 6.443 GHz
and Qpeak1 = 69; fres,peak2 = 7.115 GHz and Qpeak2 = 52; fres,peak3 = 8.532 GHz and Qpeak3 =
5.2. Data collected from Boron-doped diamond PPR at T = 4.38 K in the dipping probe.

using Eq. (11.9). The third peak in this fit corresponds to a low-Q cavity mode, which

acts as a complex frequency dependent background to the 2 PPR peaks shown in

Fig. 11.7. The existence of this low-Q cavity mode was deduced from a separate

measurement with a wider frequency window under identical conditions.

11.5 Results

11.5.1 Penetration depth

The procedure described in the previous section was repeated for each temper-

ature providing fres(T ) and Q(T ) for the B-diamond films. Fig. 11.8 shows frequency
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Fig. 11.8 Temperature dependence of the resonant frequency fres(T ) extracted from PPR
measurement on B-diamond films inside the (a),(b) Entropy cryostat with 500µm Quartz di-
electric spacer (two modes measured simultaneously) and (c) dilution fridge with 430µm Sap-
phire dielectric spacer. Also shown are fits to the data using Eqs. (11.1) and (11.3) with p = 2
(blue),p = 4 (red),p = 4/3 (green). Inset in (c) shows the quantity fres(0)∆ fres(T )/ f 2

res(T )
vs temperature, which is proportional to ∆λ/λ(0). Solid red line is the fit to the data using
Eq. (11.10) with ∆(0) = 812µeV .

shift data for several PPR modes. The first thing to note about the data in Fig. 11.8

is the unusually large range of frequency shift of the modes, on the order of 1 GHz.

Given the large dielectric spacer thickness (d = 500µm) this implies that the change

in the penetration depth∆λ(T ) is unusually large. Eq. (11.3) can be fit to fres(T ) data

to extract an estimate of the zero temperature penetration depth λ(0) and the critical

temperature Tc. However one first needs to find out the functional form of λ(T ) to

be used in the fit. For this purpose the data measured inside the Entropy pulse tube

cryostat and the BlueFors Dilution fridge was fit using Eqs. (11.1) and (11.3) with

p = 2, p = 4 and p = 4/3. Fig. 11.8 show the results of these fits and the variance of

the fits are listed in Table 11.1.

Additionally one can look at the low temperature (T < Tc/3) behaviour of

fres(T ), where ∆λ(T )/λ(0) ∝ ∆ fres(T )/ f 2
res(T ). Here ∆ fres(T ) = fres(T ) − fres(0).
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In this regime, ∆λ(T ) for an s-wave superconductor has an exponential dependence

on temperature [235]:

∆λ(T )≡ λ(T )−λ(0) = λ(0)

√

√

√

√

√

π∆(0)

2kB T
ex p


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



−
∆(0)

kB T









, (11.10)

while∆λ(T ) for a clean d-wave superconductor has linear in temperature dependence

∆λ(T ) = aλ(0)kB T/∆(0) [258]. Inset of Fig. 11.8(c) shows the temperature depen-

dence of

fres(0)∆ fres(T )/ f 2
res(T ) in the low temperature limit (T < 3K). The low temperature

part of fres(T ) was fit using Eqs. (11.3) and (11.10) (see solid red line in the inset of

Fig. 11.8(c)), which yielded ∆(0) = 812µeV and λ(0) = 1.78µm.

λ(T )

λ(0)
=

�

1−
�

T

Tc

�p�−1/2

Dataset p = 2 p = 4 p = 4/3

Peak 1 measured in Entropy Cryostat 1.59× 10−5 1.4× 10−5 3.06× 10−5

Peak 2 measured in Entropy Cryostat 1.78× 10−4 1.43× 10−4 1.95× 10−4

PPR Peak measured in Bluefors DR 8.09× 10−6 7.15× 10−6 1.23× 10−5

Table 11.1 The variance
¬

�

fmeas(T )− f f i t(T )
�2¶

of the fits shown in Fig. 11.8.

Given the exponential temperature dependence of fres(0)∆ fres(T )/ f 2
res(T ) shown

in Fig. 11.8(c) and the p = 4 fit having the lowest variance in Table 11.1, I con-

clude that B-diamond is an s-wave superconductor and we are obligated to fit the
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fres(T ) data to the full BCS s-wave temperature dependence up to near Tc. Previous

specific heat, Hall effect, upper critical field, and resistivity measurements on bulk

B-diamond samples have also hinted that the conventional electron-phonon mecha-

nism is responsible for the emergence of superconductivity in B-diamond [259]. Ad-

ditionally STM measurements showed that single-crystal B-doped diamond was an

s-wave BCS superconductor with a superconducting gap to critical temperature ratio

of ∆(0)/kB Tc = 1.74 [255]. Using ∆(0) = 812µV obtained from the low tempera-

ture fres(T ) data extracted from the Boron doped diamond PPR measurement inside

the dilution fridge, and Tc = 6.45K extracted from the full temperature fit to the

same data, the superconducting gap to critical temperature ratio is calculated to be

∆(0)/kB Tc = 1.48 somewhat less than 1.764 which is expected from weak-coupled

BCS theory (see Eq. (1.15) in Chapter 1). However we believe that our film is a

heavily doped nanocrystaline material, and not a doped single crystal. Previous work

on nanocrystalline Boron-doped diamond films by scanning tunneling spectroscopy

showed a similar value for the gap ratio (0.63 <
∆(0)

kB Tc
< 1.54) [260]. The authors of

that work attributed this to an inverse proximity effect whereby the granular aspect of

the sample created a range of gap values at the nanoscale. Therefore the λ(0) value

that we extract is likely that of a composite granular material.

Finally all 5 data sets taken on the B-diamond films were fit to Eqs. (11.1)

and (11.3) with p = 4. The summary of the fits is given in Table 11.2. Surprisingly the

critical temperatures extracted from two separates modes within the same measure-

ment (lines 2-3 and 4-5 in Table 11.2) do not match. This suggests that the sample
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)

02/10/2015 500µm Quartz Dipping Probe 4.4-5.84 6.70 4.40 5.69
02/10/2015 500µm Quartz Dipping Probe 4.4-5.84 8.44 11.05 6.46
03/27/2017 500µm Quartz Entropy Cryostat 2.8-5.55 6.97 5.19 5.60
03/27/2017 500µm Quartz Entropy Cryostat 2.8-5.55 9.53 14.41 6.66
07/03/2017 430µm Sapphire Bluefors DR 0.025-6.20 7.52 3.42 6.45

07/03/2017 430µm Sapphire Bluefors DR† 0.025-3.00 7.43 1.78 -

Table 11.2 Summary of fits to data taken with PPR measurements on Boron-doped diamond
films. † Low temperature limit part of the data only.

may be inhomogeneous since the two modes send rf current through different parts of

the films. Also, I observed that the choice of the temperature range used for the fitting

significantly affects the result of the fitting. If the lowest temperature data point in the

dilution fridge measurement is omitted from the fit and the fit is repeated, with each

omission the value of the extracted zero temperature penetration depth continuously

decreases from λ(0) = 3.42µm to λ(0) = 2.52µm; On other hand, if the highest tem-

perature data point is omitted from the fit and the fit is repeated, with each omission

the value of the extracted zero temperature penetration depth initially increases from

λ(0) = 3.42µm to λ(0) = 6.6µm when the highest temperature used for the fit is 4.7

K, afterwards the extracted λ(0) decreases down to λ(0) = 1.8µm. This may explain

the large variation in the fitting parameters listed in Table 11.2. These measurements

were performed in 3 different setups with a different constraints on base tempera-

ture, hence both the dipping probe and Entropy cryostat measurements contain only
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a portion of the data that is needed to accurately determine λ(0).

The dilution fridge measurement covers the widest temperature range, thus can

be considered most accurate determination of the penetration depth, with λ(0) =

3.42µm. The extracted zero temperature penetration depth for this measurement is

significantly larger than the values reported for other conventional superconductors,

which range between 50nm − 500nm [261–264]. However it is not very surprising

since B-diamond is a low-carrier density material, and similar to the cuprate super-

conductors, the superconducting state is created by doping an insulator. An order of

magnitude estimate for the zero temperature penetration depth can be obtained using

the following equation from Sec. 1.2.2 (using conventional values for e∗ and m∗) and

the stated carrier density from the Rao group:

λ(0) =

√

√

√

√

√

m∗

µ0nse2
∗
=

√

√

√

√

√

m∗

µ0 · 7.8× 1021cm−3e2
∗
= 60.2nm,

which is much shorter than the value that we measured. The disparity between the

measured value and the theoretical estimate can be caused by a higher effective mass

of the Cooper pair than 2me as I discussed in Sec. 7.3.2.

An estimate for the zero temperature penetration depth of a granular supercon-

ductor can be obtained using Eq. (11.11) which is valid in the local limit [57]:

λ(0) = 105nm×

√

√

√

√

√

ρn

1µΩcm

1K

Tc
. (11.11)
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Fig. 11.9 Estimated zero temperature penetration depth λ(0) for various B-diamond films
calculated using Eq. (11.11) (black ◦). The normal state resistivity ρn and the critical temper-
ature Tc was taken from the data published in Ref.[252]. The red × shows the value of the
penetration depth extracted from my B-diamond PPR measurement inside the dilution fridge.

Here ρn is the normal state resistivity of the film measured at a temperature just above

the Tc. The dc transport measurements on several B-diamond films with various Boron

doping concentrations was performed by the same group who provided us with the

sample [252]. The ρn and Tc values for these films were plugged into Eq. (11.11) to

calculate an estimated value of the zero temperature penetration depth λ(0) shown

in Fig. 11.9. The value of the penetration depth extracted from my B-diamond PPR

measurement inside the dilution fridge is shown as the red × in Fig. 11.9 for compari-

son. Evidently, the value for the penetration depth extracted from the B-diamond film

PPR measurements is aligned with the values of the penetration depth extracted from

the dc transport measurements on similar films.
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11.5.2 Surface resistance

The measured quality factor can be used to estimate the surface resistance of the

boron doped diamond using Eq. (11.4). Since the dielectric loss and the radiation loss

are not precisely known, the calculated value provides an upper limit on the surface

resistance. Fig. 11.10 shows the effective surface resistance Rs(T ) =
πµ0 fres(T )d

Q(T )

extracted from the dilution fridge measurement of the B-diamond film (Note that

finite thickness corrections are not included here). The temperature dependence of

this data in the low temperature limit (T < Tc/2) was fit using Rs(T ) = RBCS(T ) +

R0, where the RBCS is the BCS surface resistance (Eq. (2.1)) and R0 accounts for the

assumed temperature independent dielectric loss and radiation loss (solid red line in

Fig. 11.10). The log-linear plot of Rs(T )− R0 and RBCS fit vs Tc/T are shown in the

inset of Fig. 11.10.

11.6 Conclusion

In this chapter, I present the preliminary results from our efforts to measure

the complex surface impedance of the superconducting Boron-doped Diamond films,

using the PPR technique. Using the multi-peak fit method presented in Sec. 11.4.2 I

extracted the resonance frequencies and quality factors of the PPR peaks despite the

fact that those peaks were partially overlapping with the nearby cavity modes in the

frequency domain. Without this method, one would have to redo the measurement
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Fig. 11.10 Upper bound on the surface resistance Rs of the boron doped diamond film. Data
taken at a frequency of f = 7.52 GHz (black stars). Also shown is the Rs(T ) = RBCS(T )+R0 fit
to the low temperature part of the data (T < 5.4 K) with R0 = 65.3mΩ, σn = 4.02× 105S/m
and ∆(0) = 1.34meV used as fitting parameters (red solid line). Here λ(0) = 3.42µm from
Sec. 11.5.1 was used for the value of the penetration depth. Inset shows the Rs(T ) − R0 vs
Tc/T in log-linear scale.

with a different dielectric spacer in order to decouple the PPR modes from the peaks

associated with the cavity modes.

Using the PPR technique, I measured the penetration depth of the B-diamond

films in the entire temperature range where the films are in the superconducting state.

As far as I am aware, this is the first-ever attempt to measure the penetration depth

of this material. The values of the zero temperature penetration depths extracted

from the 3 measurements (and tabulated in Table 11.2) are large when compared to

other conventional superconductors. One possible explanation for the high value of

the penetration depth that we measured on the B-diamond films is that these films

are highly granular, giving rise to a large effective screening length due to a combina-
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tion of Meissner and Josephson screening. This is consistent with numerous previous

studies showing granular behaviour in nanocrystalline B-doped diamond films [253,

256, 257, 260, 265]. The effective penetration depth of polycrystalline and nanocrys-

talline superconductors can be estimated using the Laminar Model [266], where the

superconductor is modeled as an array of identical superconducting grains separated

by a thin non-superconducting grain boundary. The grains are coupled to each other

through Josephson coupling. The effective penetration depth of such superconduc-

tors strongly depends on the coupling strength between the grain, approaching the

intrinsic value of the penetration depth of the grains in the strong coupling limit. Ad-

ditionally the effective penetration depth strongly depends on the grain size and can

be 2 orders of magnitude larger than the intrinsic penetration depth in the small grain

size limit. If this is the case for B-doped diamond film, the temperature dependence of

λ(T ) will be influenced by the temperature dependence of the Josephson penetration

depth at the grain boundary λJ(T ). This may help explain the strong dependence

of the extracted λ(0) on the temperature range used in the fitting that I discussed in

Sec. 11.5.1.

Similarly large values of penetration depth are observed in other amorphous

and granular superconductors: λ(0) > 0.51µm in Mo3Si [267], λL(0) = 0.575µm in

TiN [268], λ(0) = 0.645µm in Mo-Ge [269], λ(0) > 0.65µm in Nb3Ge [267] and

λ(0) = 1.2µm in granular aluminium film [270]. Additionally, as the value of the

penetration depth exceeds the thickness of the film t, the effective penetration depth

is enhanced due to finite size effects (λ→
λ2

t
(see Eq. (11.3) and Refs. [271, 272]).
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Such large values of penetration depth measured in B-diamond films make B-diamond

an appealing material to be used in applications where large inductance in needed,

such as microwave kinetic inductance detectors (MKID) or Superconducting Microres-

onator Bolometers [57].
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12

Conclusion and Outlook

In this thesis, I presented a complete set of experimental techniques and theo-

retical tools that I utilized to characterize the surface of SRF grade Nb cavity samples

at microwave frequencies.

In Chapter 3 I present the system we built to measure full-size SRF cavities at

mK temperatures. The setup includes a novel liquid nitrogen precooling system and a

cheap, yet effective magnetic shielding solution. This setup will be utilized by future

generations of researchers in the Anlage Lab to measure the surface resistance of SRF

cavities in otherwise inaccessible temperature ranges, and understand the origins of

residual resistance in SRF cavities.

In Chapter 4 I presented the Near-Field Magnetic MW Microscope, a tool that

can be used to study the MW response of new superconducting materials that are

being considered for usage in SRF applications, without the need to fabricate a full

cavity. The nonlinear response data measured on SRF grade Nb and presented in

Chapter 5 shows an abundance of features in both the P3 f (T ) and V3 f (Hr f ) data.

The numerical RCSJ model that I developed and presented in Chapter 6 provides an
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accurate explanation for the periodicity in V3 f (Hr f ). Using this model I was able to

confirm and experimentally validate the existence of weak-links on the surface of Nb.

Additionally, we can extract the Tc and the BCS gap∆(0) around these weak-links. We

show that the BCS gap is suppressed at the location of the weak-link. The existence of

such locations with the suppressed gap or even no gap was known from point-contact

tunneling (PCT) spectroscopy measurements [273]. One of the key advantages of

our technique is the fact that unlike PCT, the Near-Field Magnetic MW Microscope is

insensitive to a thin insulating layer of Nb2O5 which is known to be present on the

surface of any SRF grade Nb samples. Finally, in Chapter 10 I present the preliminary

2D-scan results and a line-scan over a grain boundary where we see the peak in P3 f

as expected.

In Chapters 7 and 8 I present the an analysis of vortex semiloops created by

my magnetic writer probe. The nonlinear response generated by these vortices and

the one measured from the experiment are in good agreement. This means that our

Near-Field Magnetic MW Microscope can be used to create 2D maps of the local vortex

nucleation field Hv(x , y). Later, in Chapter 9, I show that similar vortex semiloops can

be created by small surface defects in the interior of SRF cavities. While illustrations

of such vortex semiloops exist in the literature, this is the first full scale 3D-simulation

of such vortices to the best of my knowledge. As a last step, in Sec. 9.4 I describe the

importance of considering several relaxation times and not anticipating a certain RF

performance based on the DC measurement results. As my simulations indicate, there

exists a time-barrier for vortex nucleation, similar to the Bean-Livingston barrier, that

can shield the interior of the SRF cavity from magnetic vortices at sufficiently high
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frequencies.

In Chapter 11 I present the PPR technique, that can be used to measure the

temperature dependent complex surface impedance of a thin film sample at GHz fre-

quencies. This tool can be used to study the next generation of SIS miltilayer film

structures for use as SRF coatings, for example.
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APPENDIX A

Magnetic Microscope Operation Manual

Here I provide a step by step instruction on how to correctly operate the Near-

Field Magnetic MW Microscope described in Sec. 4.6.

A.1 Connecting to the writer head

First, one has to electrically connect the microwave source to the magnetic writer

head. This can be achieved by soldering an SMA RF coaxial connector (Digi-Key P/N:

SAM9950-ND) to the soldering pads at the end of the magnetic writer probe transmis-

sion line (pads 3 and 4 in Fig. 4.5.(b)). Alternatively, the RF connector can be soldered

to the pins of a socket adapter (Digi-Key P/N: A881AR-ND) which has soldering pads

that match the ones on the probe. It is important to use a lead-free solder, as lead

is a superconductor with Tc = 7.2K and can generate nonlinear response that would

contaminate the data.

To check the connection one should measure the resistance between the inner
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Fig. A.1 The reflection coefficient S11( f ) of the probe measured with a VNA at room temper-
ature.

and the outer conductors of the SMA connector, which should result in a ' 6Ω re-

sistance at room temperature. Note that at cryogenic temperatures this resistance

will decrease to ' 1Ω. Additionally, one can measure the reflection coefficient S11( f )

of the probe using a Vector Network Analyzer (VNA). S11( f ) should have broad dips

similar to the ones shown in Figs. A.1 and A.2.

A.2 Choosing the measurement frequency

The magnetic writer probes used in this thesis ("Dragonfly" probe by Western

Digital Corporation and typical perpendicular writer heads made by Seagate Technol-

ogy) are designed to operate best in the 1-2 GHz frequency window. However, my
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Fig. A.2 The reflection coefficient S11( f ) of the probe measured at T = 88K (blue) and
T = 107K (red), below and above the Tc of the sample. In this measurement the probe is in
contact with the BSCCO sample described in Sec. 10.1. The inset shows the amplitude of the
complex difference ∆S12 between these two measurements.

experience with these probes shows that there is an additional frequency window at

4-5.5GHz where I observed good coupling between the probe and the sample.

There are two methods employed to find the optimal measurement frequency.

First the reflection coefficient S11( f ) of the probe is measured at two temperatures,

one below and one above the critical temperature of the sample. The difference be-

tween these two reflection coefficients ∆S12( f ) = |S12(T = 88K)− S12(T = 107K)|

can be attributed to the transition of the sample into the superconducting state and

the frequency which corresponds to the maximum difference is the optimal frequency.

For example, in Fig. A.2 the optimal frequency is f = 4.975GHz. Note that with newer

versions of the probe that were made by Seagate Technology after 2016 ∆S12( f ) can

be immeasurably small.

Another method is to perform a similar comparison, but with the third-harmonic
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Fig. A.3 Third-harmonic response P3 f ( f ) measured on a bulk Nb sample at T = 8K (blue)
and T = 10K (orange) below and above Tc . There is enhanced third harmonic response
measured in the 4.3GHz < f < 5.5GHz frequency window when the sample goes into the
superconducting state.

response. Again, P3 f ( f ) is measured using the spectrum analyzer (for measurement

setup refer to Fig. 4.13) at two temperatures, one below and one above the critical

temperature of the sample. Fig. A.3 shows the third harmonic response P3 f vs fre-

quency measured on a bulk Nb sample at T = 8K and T = 10K . Clearly, there is

enhanced third harmonic response measured in the 4.3GHz < f < 5.5GHz frequency

window and in superconducting state. It this example f = 4.38 GHz is chosen as the

optimal measurement frequency.
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A.3 Finding optimal parameters

As I already discussed, each probe has it’s own optimal working frequency. In

addition, as was described in Sec. 10.3, there exist an optimal Z-position for mea-

surement as well. Furthermore, there is the range of optimal excitation powers for

the measurement, since if the input power is too low Pf < −40dBm the nonlinear

response is very weak and below the noise floor of the spectrum analyzer, whereas if

the input power is too high Pf > 10dBm the nonlinear response from the probe will

overwhelm the signal from the sample. Adding to the challenge sometimes the Tc of

the sample is unknown hence one doesn’t know what range of temperatures to use for

the measurement. The main question is how should one optimize all 4 parameters:

Z-position, frequency input power and temperature?

Here is the method I utilized. First I do a quick survey of all parameters by

performing quick measurements with a subset of parameters. For example for a Nb

sample, I do measurements at T = 4K , T = 6K , T = 8K and T = 10K . For input

power I use Pf = −5dBm and Pf = −15dBm, which from my experience is neither

too high nor too low. Scanning the frequency is a bit more tricky. First I scan the 1

GHz to 2.2 GHz frequency window in 100 MHz steps. Additionally I scan the 4 GHz to

5.5 GHz window, again with 100 MHz steps. Note that to switch between these two

windows, one has to physically change the low-pass and high-pass filters in Fig. 4.13.

And finally I perform a Z-position scan with 20µm steps over the predetermined Z-

position window. This window is determined at room temperature by identifying Z-
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position values at which the probe is fully away from the sample (see Fig. 10.6(a)),

and the probe is fully engaged with the sample (see Fig. 10.6(e)).

Later the data is analyzed to find the optimal frequency and Z-position for the

measurement. Then one can proceed with P3 f vs temperature and input power mea-

surement by scanning in input power and rastering in temperature.
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APPENDIX B

Tuning Fork based Probe-Sample Distance Control

Here I summarize an attempt to develop a probe-sample separation feedback

control to enable reproducible 2D scanning of the superconducting samples with the

magnetic write head. This method was based on Tuning Fork (TF) Atomic Force Mi-

croscopy (AFM). In a TF AFM a sharp tip is attached to a TF made of a piezoelectric

material such as quartz. An electrical signal can be used to drive this tuning fork to

oscillate on it’s resonant frequency. When the tip is brought very close to the sample

surface, it periodically contacts the surface. This interaction results in a shift in the

resonant frequency which depends linearly on the tip-sample separation.

In our setup a commercially available Tuning Fork Sensor Controller from NanoAnd-

More [274] was used. I then integrated a Magnetic Writer onto the tuning fork in a

well-known q-plus sensor design [275]. In this design one prong of the TF is fixed to

a large substrate (in our case a large piece of MACOR ceramic) and the probe is at-

tached to the other prong (see Fig. B.1). This arrangement allows one to use relatively

large/massive probes.

The unloaded TF was first measured and found to have fres = 99,922 Hz and
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Fig. B.1 Magnetic writer head attached to a quartz Tuning Fork in a q-plus sensor design.

Q = 2675. The Magnetic writer head was then attached to the TF in a q-plus sensor

design. The resonant frequency and the quality factor of this sensor was measured

to be fres = 21, 018 Hz and Q = 106 (see Fig. B.2). Such a low quality factor is

reasonable given the size and mass of the magnetic writer head. We then encountered

the following challenges:

1. The quality factor of the sensor is very low to the point that the controller can-

not drive it to self-resonance. This can potentially be remedied by removing

unnecessary parts of the probe.

2. The triangular frame hosting the transmission line acts like a mechanical anchor

on the TF. An alternative electrical connection to the head is needed.
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Fig. B.2 Fundamental tone of the sensor shown in Fig. B.1. Data shown in blue and a
Lorentzian fit with fres = 21,018 Hz and Q = 106 is shown in red.

3. The size of the actual writer pole is very small compared to the size of the probe

(see Figs. 4.5 and 4.6). For this sensor to work the probe and the sample have

to be extremely flat and perfectly aligned. Otherwise the writer pole will not

come close enough to the sample to create a strong enough current and generate

nonlinear response.

255



Bibliography

[1] D. van Delft and P. Kes, “The discovery of superconductivity,” Physics Today

63, 38 (2010) (cited on pp. 1, 2).

[2] R. de Bruyn Ouboter, “Heike Kamerlingh Onnes’s Discovery of Superconduc-

tivity,” Scientific American 276, 98 (1997) (cited on p. 1).

[3] Heike Kamerlingh Onnes, “Further experiments with liquid helium. H. On the

electrical resistance of pure metals etc. VII. The potential difference necessary

for the electric current through mercury below 4.19 K,” Commun. Phys. Lab.

Univ. Leiden 133a (1914) (cited on p. 2).

[4] Heike Kamerlingh Onnes, “Further experiments with liquid helium. C. On the

change of electric resistance of pure metals at very low temperatures etc. IV.

The resistance of pure mercury at helium temperatures,” Commun. Phys. Lab.

Univ. Leiden 120b (1911), reprinted in Proc. K. Ned. Akad. Wet. 13, 1274

(1911). (Cited on p. 2).

[5] Heike Kamerlingh Onnes, “Further experiments with Liquid Helium G. On the

electrical resistance of Pure Metals etc. VI. On the Sudden Change in the Rate

at which the Resistance of Mercury Disappears,” Commun. Phys. Lab. Univ.

Leiden 122b (1911), reprinted in Proc. K. Ned. Akad. Wet. 14, 113 (1911).

(Cited on p. 2).

256

https://doi.org/10.1063/1.3490499
https://doi.org/10.1063/1.3490499
https://doi.org/10.1038/scientificamerican0397-98
https://hdl.handle.net/2027/uva.x002433834
https://hdl.handle.net/2027/uva.x002433834
https://www.dwc.knaw.nl/toegangen/digital-library-knaw/?pagetype=publDetail&pId=PU00013358
https://www.dwc.knaw.nl/toegangen/digital-library-knaw/?pagetype=publDetail&pId=PU00013358
https://www.dwc.knaw.nl/toegangen/digital-library-knaw/?pagetype=publDetail&pId=PU00013242
https://www.dwc.knaw.nl/toegangen/digital-library-knaw/?pagetype=publDetail&pId=PU00013242


[6] A. Einstein, “Die Plancksche Theorie der Strahlung und die Theorie der spezi-

fischen Wärme,” Annalen der Physik 327, 180 (1907) (cited on p. 2).

[7] D. Goodstein and J. Goodstein, “Richard Feynman and the History of Super-

conductivity,” Physics in Perspective 2, 30 (2000) (cited on pp. 2, 15, 16).

[8] Heike Kamerlingh Onnes, “Sur les resistances electriques,” in Proceedings,

First Solvay Conference on Physics in Brussels (1911) (cited on p. 2).

[9] N. Straumann, “On the first Solvay Congress in 1911,” European Physical Jour-

nal H 36, 379 (2011) (cited on p. 2).

[10] Heike Kamerlingh Onnes, “Further experiments with liquid helium. II. On the

electrical resistance etc. (continiues). VIII. The sudden disappearance of the

ordinary resistance of tin, and the super conductive state of lead,” Commun.

Phys. Lab. Univ. Leiden 133d (1914), reprinted in Proc. K. Ned. Akad. Wet.

16, 673 (1914). (Cited on p. 3).

[11] R. P. Feynman, Feynman Lectures on Physics Vol III, edited by R. P. Feynman,

R. B. Leighton, and M. Sands (Addison-Wesley, 1965), available at https:

//www.feynmanlectures.caltech.edu/III_toc.html (cited on pp. 4, 13).

[12] W. Meissner and R. Ochsenfeld, “Ein neuer Effekt bei Eintritt der Supraleit-

fähigkeit,” Naturwissenschaften 21, 787 (1933) (cited on p. 4).

[13] C. Gorter and H. Casimir, “On supraconductivity I,” Physica 1, 306 (1934)

(cited on p. 5).

257

https://doi.org/10.1002/andp.19063270110
https://doi.org/10.1007/s000160050035
https://archive.org/details/lathoriedurayo00inst/page/n12/mode/2up
https://archive.org/details/lathoriedurayo00inst/page/n12/mode/2up
https://doi.org/10.1140/epjh/e2011-20043-9
https://doi.org/10.1140/epjh/e2011-20043-9
https://www.dwc.knaw.nl/toegangen/digital-library-knaw/?pagetype=publDetail&pId=PU00012901
https://www.dwc.knaw.nl/toegangen/digital-library-knaw/?pagetype=publDetail&pId=PU00012901
https://www.feynmanlectures.caltech.edu/III_toc.html
https://www.feynmanlectures.caltech.edu/III_toc.html
https://doi.org/10.1007/BF01504252
https://doi.org/https://doi.org/10.1016/S0031-8914(34)90037-9


[14] C. Gorter and H. Casimir, “The thermodynamics of the superconducting state,”

Z. Tech. Phys 15, 539 (1934) (cited on p. 5).

[15] F. London and H. London, “Supraleitung und diamagnetismus,” Physica 2, 341

(1935) (cited on pp. 6, 122).

[16] F. London, H. London, and F. A. Lindemann, “The electromagnetic equations

of the supraconductor,” Proceedings of the Royal Society of London. Series A

- Mathematical and Physical Sciences 149, 71 (1935) (cited on pp. 6, 122).

[17] H. London and F. A. Lindemann, “Phase-equilibrium of supraconductors in a

magnetic field,” Proceedings of the Royal Society of London. Series A - Math-

ematical and Physical Sciences 152, 650 (1935) (cited on pp. 6, 122).

[18] L. D. Landau and V. L. Ginzburg, “On the theory of superconductivity,” Soviet

Physics-JETP 20, 1064 (1950) (cited on pp. 8, 122).

[19] F. London, “On the Problem of the Molecular Theory of Superconductivity,”

Phys. Rev. 74, 562 (1948) (cited on pp. 8, 11, 122).

[20] B. Oripov and S. M. Anlage, “Time-dependent Ginzburg-Landau treatment of rf

magnetic vortices in superconductors: Vortex semiloops in a spatially nonuni-

form magnetic field,” Phys. Rev. E 101, 33306 (2020) (cited on pp. 9, 147,

163, 170, 171).

[21] L. P. Gor’kov, “Microscopic derivation of the Ginzburg-Landau equations in the

Theory of Superconductivity,” Soviet Physics-JETP 36(9), 4 (1959) (cited on

pp. 9, 126–128, 132, 135).

258

https://doi.org/https://doi.org/10.1016/S0031-8914(35)90097-0
https://doi.org/https://doi.org/10.1016/S0031-8914(35)90097-0
https://doi.org/10.1098/rspa.1935.0048
https://doi.org/10.1098/rspa.1935.0048
https://doi.org/10.1098/rspa.1935.0212
https://doi.org/10.1098/rspa.1935.0212
https://doi.org/10.1103/PhysRev.74.562
https://doi.org/10.1103/PhysRevE.101.033306
http://www.jetp.ac.ru/cgi-bin/dn/e_009_06_1364.pdf


[22] A. B. Pippard and W. L. Bragg, “An experimental and theoretical study of the

relation between magnetic field and current in a superconductor,” Proceedings

of the Royal Society of London. Series A. Mathematical and Physical Sciences

216, 547 (1953) (cited on p. 10).

[23] B. S. Deaver and W. M. Fairbank, “Experimental Evidence for Quantized Flux

in Superconducting Cylinders,” Phys. Rev. Lett. 7, 43 (1961) (cited on p. 11).

[24] R Doll and M Näbauer, “Experimental Proof of Magnetic Flux Quantization in

a Superconducting Ring,” Phys. Rev. Lett. 7, 51 (1961) (cited on p. 11).

[25] Applied Superconductivity and Cryoscience Group, University of Cambridge, De-

partment of Materials Science and Metallurgy, https://ascg.msm.cam.ac.uk/

(cited on p. 12).

[26] A. A. Abrikosov, “The magnetic properties of superconducting alloys,” Journal

of Physics and Chemistry of Solids 2, 199 (1957) (cited on pp. 13, 122, 134).

[27] J. Bardeen and M. J. Stephen, “Theory of the Motion of Vortices in Supercon-

ductors,” Phys. Rev. 140, A1197 (1965) (cited on pp. 13, 147).

[28] N. B. Kopnin, “Vortex dynamics and mutual friction in superconductors and

Fermi superfluids,” Reports on Progress in Physics 65, 1633 (2002) (cited on

pp. 13, 147, 148).

[29] B. D. Josephson, “Possible new effects in superconductive tunnelling,” Physics

Letters 1, 251 (1962) (cited on pp. 13, 122).

259

https://doi.org/10.1098/rspa.1953.0040
https://doi.org/10.1098/rspa.1953.0040
https://doi.org/10.1098/rspa.1953.0040
https://doi.org/10.1103/PhysRevLett.7.43
https://doi.org/10.1103/PhysRevLett.7.51
https://ascg.msm.cam.ac.uk/
https://doi.org/10.1016/0022-3697(57)90083-5
https://doi.org/10.1016/0022-3697(57)90083-5
https://doi.org/10.1103/PhysRev.140.A1197
https://doi.org/10.1088/0034-4885/65/11/202
https://doi.org/https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/https://doi.org/10.1016/0031-9163(62)91369-0


[30] J. Schmalian, “Failed Theroies of Superconductivity,” Modern Physics Letters

B 24, 2679 (2010) (cited on p. 16).

[31] A. Einstein, “Theoretische Bemerkungen zur Supraleitung der Metalle,” (1922),

English translation is availabe on https://arxiv.org/abs/physics/0510251

(cited on p. 16).

[32] C. A. Reynolds, B Serin, W. H. Wright, and L. B. Nesbitt, “Superconductivity of

Isotopes of Mercury,” Phys. Rev. 78, 487 (1950) (cited on p. 16).

[33] E. Maxwell, “Isotope Effect in the Superconductivity of Mercury,” Phys. Rev.

78, 477 (1950) (cited on p. 16).

[34] J. Bardeen and D. Pines, “Electron-Phonon Interaction in Metals,” Phys. Rev.

99, 1140 (1955) (cited on p. 17).

[35] L. N. Cooper, “Bound Electron Pairs in a Degenerate Fermi Gas,” Phys. Rev.

104, 1189 (1956) (cited on p. 17).

[36] M. Tinkham, Introduction to Superconductivity, 2nd ed. (Dover Publications,

Inc., Mineola, New York, 2004) (cited on pp. 17, 35, 119, 126, 135, 142–144,

174, 183, 193).
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[205] R. Geurts, M. V. Milošević, and F. M. Peeters, “Second generation of vortex-

antivortex states in mesoscopic superconductors: Stabilization by artificial pin-

ning,” Phys. Rev. B 79, 174508 (2009) (cited on p. 148).

[206] A. D. Hernández and D. Domínguez, “Dissipation spots generated by vortex

nucleation points in mesoscopic superconductors driven by microwave mag-

netic fields,” Phys. Rev. B 77, 224505 (2008) (cited on p. 148).

[207] S. Miyamoto and T. Hikihara, “Dynamical behavior of fluxoid and arrange-

ment of pinning center in superconductor based on TDGL equation,” Physica

C: Superconductivity and its Applications 417, 7 (2004) (cited on pp. 148,

155).

284

https://doi.org/10.1088/0953-2048/9/1/001
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/https://doi.org/10.1016/j.jcp.2015.04.002
https://doi.org/10.1103/PhysRevB.79.174508
https://doi.org/10.1103/PhysRevB.77.224505
https://doi.org/10.1016/j.physc.2004.10.001
https://doi.org/10.1016/j.physc.2004.10.001


[208] A. Aftalion, E. Sandier, and S. Serfaty, “Pinning phenomena in the Ginzburg-

Landau model of superconductivity,” Journal des Mathematiques Pures et Ap-

pliquees 80, 339 (2001) (cited on p. 148).

[209] A. Presotto, E. Sardella, A. L. Malvezzi, and R. Zadorosny, “Dynamical regimes

of ultrafast kinematic vortices in the resistive state of mesoscopic superconduc-

tors,” ArXiv preprint: 1910.04893 (2019) (cited on p. 148).

[210] Ž. L. Jelić, M. V. Milošević, J Van De Vondel, and A. V. Silhanek, “Stroboscopic

phenomena in superconductors with dynamic pinning landscape,” Scientific

Reports 5, 14604 (2015) (cited on p. 149).

[211] G. Ciovati, S. M. Anlage, C. Baldwin, G. Cheng, R. Flood, K. Jordan, P. Kneisel,

M. Morrone, G. Nemes, L. Turlington, H. Wang, K. Wilson, and S. Zhang, “Low

temperature laser scanning microscopy of a superconducting radio-frequency

cavity,” Review of Scientific Instruments 83, 034704 (2012) (cited on p. 149).

[212] G. Ciovati, S. M. Anlage, and A. V. Gurevich, “Imaging of the Surface Resistance

of an SRF Cavity by Low-Temperature Laser Scanning Microscopy,” IEEE Trans-

actions on Applied Superconductivity 23, 3500506 (2013) (cited on p. 149).

[213] L. Embon, Y. Anahory, A. Suhov, D. Halbertal, J. Cuppens, A. Yakovenko, A.

Uri, Y. Myasoedov, M. L. Rappaport, M. E. Huber, A. Gurevich, and E. Zel-

dov, “Probing dynamics and pinning of single vortices in superconductors at

nanometer scales,” Scientific Reports 5, 7598 (2015) (cited on p. 151).

[214] COMSOL Multiphysics Simulation Software, https://www.comsol.com/ (cited

on p. 151).

285

https://doi.org/10.1016/S0021-7824(00)01180-6
https://doi.org/10.1016/S0021-7824(00)01180-6
https://arxiv.org/abs/1910.04893
https://doi.org/10.1038/srep14604
https://doi.org/10.1038/srep14604
https://doi.org/10.1063/1.3694570
https://doi.org/10.1109/TASC.2012.2233253
https://doi.org/10.1109/TASC.2012.2233253
https://doi.org/10.1038/srep07598
https://www.comsol.com/


[215] L. Peng and C. Cai, “Finite Element Treatment of Vortex States in 3D Cubic Su-

perconductors in a Tilted Magnetic Field,” Journal of Low Temperature Physics

188, 39 (2017) (cited on p. 151).

[216] D. Salvi, D. Boldor, J. Ortego, G. M. Aita, and C. M. Sabliov, “Numerical model-

ing of continuous flow microwave heating: A critical Comparison of COMSOL

and ANSYS,” Journal of Microwave Power and Electromagnetic Energy 44,

187 (2010) (cited on p. 152).

[217] G. Gomes, “Comparison between COMSOL and RFSP-IST for a 2-D Benchmark

Problem,” in Proceedings, COMSOL Conference (Hannover 2008) (cited on

p. 152).

[218] M. Cardiff and P. K. Kitanidis, “Efficient solution of nonlinear, underdetermined

inverse problems with a generalized PDE model,” Computers and Geosciences

34, 1480 (2008) (cited on p. 152).

[219] Q. Du, “Finite element methods for the time-dependent Ginzburg-Landau model

of superconductivity,” Computers and Mathematics with Applications 27, 119

(1994) (cited on p. 152).

[220] E. A. Matute, “On the superconducting sphere in an external magnetic field,”

American Journal of Physics 67, 786 (1999) (cited on p. 157).

[221] A. S. Mel’nikov, Y. N. Nozdrin, I. D. Tokman, and P. P. Vysheslavtsev, “Experi-

mental investigation of a local mixed state induced by a small ferromagnetic

particle in YBaCuO films: Extremely low energy barrier for formation of vortex-

antivortex pairs,” Phys. Rev. B 58, 11672 (1998) (cited on p. 162).

286

https://doi.org/10.1007/s10909-017-1769-z
https://doi.org/10.1007/s10909-017-1769-z
https://doi.org/10.1080/08327823.2010.11689787
https://doi.org/10.1080/08327823.2010.11689787
https://doi.org/10.1016/j.cageo.2008.01.013
https://doi.org/10.1016/j.cageo.2008.01.013
https://doi.org/10.1016/0898-1221(94)90091-4
https://doi.org/10.1016/0898-1221(94)90091-4
https://doi.org/10.1119/1.19126
https://doi.org/10.1103/PhysRevB.58.11672


[222] T. Chow, Introduction to Electromagnetic Theory: A Modern Perspective, 1st ed.

(Jones & Bartlett Publishers., Boston, 2006) Chap. 4, pp. 146–150 (cited on

p. 164).

[223] A. Gurevich, “Maximum screening fields of superconducting multilayer struc-

tures,” AIP Advances 5, 17112 (2015) (cited on p. 182).

[224] C.-R. Hu, “New set of time-dependent Ginzburg-Landau equations for dirty

superconductors near Tc,” Phys. Rev. B 21, 2775 (1980) (cited on pp. 185,

186).

[225] R. J. Watts-Tobin, Y Krähenbühl, and L. Kramer, “Nonequilibrium theory of

dirty, current-carrying superconductors: phase-slip oscillators in narrow fila-

ments near Tc,” Journal of Low Temperature Physics 42, 459 (1981) (cited on

pp. 185, 186).

[226] C. P. Bean and J. D. Livingston, “Surface Barrier in Type-II Superconductors,”

Phys. Rev. Lett. 12, 14 (1964) (cited on p. 190).

[227] M. K. Transtrum, G. Catelani, and J. P. Sethna, “Superheating field of super-

conductors within Ginzburg-Landau theory,” Phys. Rev. B 83, 094505 (2011)

(cited on p. 190).

[228] D. B. Liarte, M. K. Transtrum, and J. P. Sethna, “Ginzburg-Landau theory of

the superheating field anisotropy of layered superconductors,” Phys. Rev. B

94, 144504 (2016) (cited on p. 190).

287

https://doi.org/10.1063/1.4905711
https://doi.org/10.1103/PhysRevB.21.2775
https://doi.org/10.1007/BF00117427
https://doi.org/10.1103/PhysRevLett.12.14
https://doi.org/10.1103/PhysRevB.83.094505
https://doi.org/10.1103/PhysRevB.94.144504
https://doi.org/10.1103/PhysRevB.94.144504


[229] V. Ngampruetikorn and J. A. Sauls, “Effect of inhomogeneous surface disorder

on the superheating field of superconducting RF cavities,” Phys. Rev. Research

1, 012015 (2019) (cited on p. 190).

[230] K. Saito, “Theoretical critical field in RF application,” in Proceedings, 11th

workshop on rf superconductivity (SRF2003, 2003), moo02 (cited on p. 191).

[231] P. Dhakal, “Nitrogen Doping and Infusion in SRF Cavities: A Review,” ArXiv

preprint: 2005.03149 (2020) (cited on p. 196).

[232] M. Wang, S. Balachandran, T. Bieler, S. Chetri, C. Compton, P. Lee, and A.

Polyanskii, “Investigation of the Effect of Strategically Selected Grain Bound-

aries on Superconducting Properties of SRF Cavity Niobium,” in 18th interna-

tional conference on rf superconductivity (2018), THPB026 (cited on p. 210).

[233] B. Mühlschlegel, “Die thermodynamischen Funktionen des Supraleiters,” Zeitschrift

für Physik 155, 313 (1959) (cited on p. 216).

[234] M Prohammer and J. P. Carbotte, “London penetration depth of d-wave super-

conductors,” Phys. Rev. B 43, 5370 (1991) (cited on p. 216).

[235] R. Prozorov and R. W. Giannetta, “Magnetic penetration depth in unconven-

tional superconductors,” Superconductor Science and Technology 19, R41 (2006)

(cited on pp. 216, 235).

[236] O. Malyshev, G. Burt, P. Goudket, L. Gurran, T. Jones, E. Jordan, D. Malyshev, S.

Pattalwar, and R. Valizadeh, “Test Cavity and Cryostat for SRF Thin Film Evalu-

ation,” in 6th international particle accelerator conference (2015), WEPHA052

(cited on p. 216).

288

https://doi.org/10.1103/PhysRevResearch.1.012015
https://doi.org/10.1103/PhysRevResearch.1.012015
http://accelconf.web.cern.ch/accelconf/srf2003/papers/moo02.pdf
http://accelconf.web.cern.ch/accelconf/srf2003/papers/moo02.pdf
https://arxiv.org/abs/2005.03149
https://arxiv.org/abs/2005.03149
https://doi.org/10.18429/JACoW-SRF2017-THPB026
https://doi.org/10.18429/JACoW-SRF2017-THPB026
https://doi.org/10.1007/BF01332932
https://doi.org/10.1007/BF01332932
https://doi.org/10.1103/PhysRevB.43.5370
https://doi.org/10.1088/0953-2048/19/8/r01
https://doi.org/10.18429/JACoW-IPAC2015-WEPHA052


[237] R. C. Taber, “A parallel plate resonator technique for microwave loss measure-

ments on superconductors,” Review of Scientific Instruments 61, 2200 (1990)

(cited on pp. 217, 219).

[238] M. S. Pambianchi, “Microwave Surface Impedance Investigation of the Super-

conducting Proximity Effect in Superconductor/Normal-Metal Bilayer Struc-

tures,” PhD dissertation (University of Maryland, 1995) (cited on p. 218).

[239] A. Y. Basovich, R. K. Belov, V. A. Markelov, L. A. Mazo, S. A. Pavlov, V. V. Ta-

lanov, and A. V. Varganov, “Parallel-plate resonator of variable spacer thickness

for accurate measurements of surface impedance of high-Tc superconductive

films,” Journal of Superconductivity 5, 497 (1992) (cited on pp. 218, 219).

[240] F. Gao, M. V. Klein, J. Kruse, and M. Feng, “Mode Coupling in Superconducting

Parallel Plate Resonator in a Cavity with Outer Conductive Enclosure,” IEEE

Transactions on Microwave Theory and Techniques 44, 944 (1996) (cited on

p. 219).

[241] V. V. Talanov, L. V. Mercaldo, and S. M. Anlage, “Measurement of the absolute

penetration depth and surface resistance of superconductors using the variable

spacing parallel plate resonator,” IEEE Transactions on Applied Superconduc-

tivity 9, 2179 (1999) (cited on p. 219).

[242] J. S. Carmin Chappell, The worldwide helium shortage affects everything from

mris to rockets-here is why, CNBC, (2019) https://www.cnbc.com/2019/

06/21/helium-shortage-why-the-worlds-supply-is-drying-up.html

(visited on 05/17/2020) (cited on p. 222).

289

https://doi.org/10.1063/1.1141389
http://anlage.umd.edu/Michael Pambianchi PhD Thesis.pdf
https://doi.org/10.1007/BF00618239
https://doi.org/10.1109/22.506455
https://doi.org/10.1109/22.506455
https://doi.org/10.1109/77.784900
https://doi.org/10.1109/77.784900
https://www.cnbc.com/2019/06/21/helium-shortage-why-the-worlds-supply-is-drying-up.html
https://www.cnbc.com/2019/06/21/helium-shortage-why-the-worlds-supply-is-drying-up.html


[243] P. J. Petersan and S. M. Anlage, “Measurement of resonant frequency and qual-

ity factor of microwave resonators: Comparison of methods,” Journal of Ap-

plied Physics 84, 3392 (1998) (cited on pp. 223, 227, 229).

[244] E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel’nik, N. J. Curro, J. D.

Thompson, and S. M. Stishov, “Superconductivity in diamond,” Nature 428,

542 (2004) (cited on p. 224).

[245] Y. Takano, M. Nagao, I. Sakaguchi, M. Tachiki, T. Hatano, K. Kobayashi, H.

Umezawa, and H. Kawarada, “Superconductivity in diamond thin films well

above liquid helium temperature,” Applied Physics Letters 85, 2851 (2004)

(cited on pp. 224, 225).

[246] Y. Takano, “Superconductivity in CVD diamond films,” Journal of Physics: Con-

densed Matter 21, 253201 (2009) (cited on p. 224).

[247] S. Mandal, T. Bautze, O. A. Williams, C. Naud, É. Bustarret, F. Omnès, P. Rodière,

T. Meunier, C. Bäuerle, and L. Saminadayar, “The Diamond Superconducting

Quantum Interference Device,” ACS Nano 5, 7144 (2011) (cited on p. 224).

[248] M Watanabe, R Kanomata, S Kurihara, A Kawano, S Kitagoh, T Yamaguchi, Y

Takano, and H Kawarada, “Vertical SNS weak-link Josephson junction fabri-

cated from only boron-doped diamond,” Phys. Rev. B 85, 184516 (2012) (cited

on p. 224).

[249] D. Kumar, M. Chandran, and M. S. Ramachandra Rao, “Effect of boron dop-

ing on first-order Raman scattering in superconducting boron doped diamond

films,” Applied Physics Letters 110 (2017) (cited on p. 225).

290

https://doi.org/10.1063/1.368498
https://doi.org/10.1063/1.368498
https://doi.org/10.1038/nature02449
https://doi.org/10.1038/nature02449
https://doi.org/10.1063/1.1802389
https://doi.org/10.1088/0953-8984/21/25/253201
https://doi.org/10.1088/0953-8984/21/25/253201
https://doi.org/10.1021/nn2018396
https://doi.org/10.1103/PhysRevB.85.184516
https://doi.org/10.1063/1.4982591


[250] M. Abdel-Hafiez, D. Kumar, R. Thiyagarajan, Q. Zhang, R. T. Howie, K. Sethu-

pathi, O. Volkova, A. Vasiliev, W. Yang, H. K. Mao, and M. S. Rao, “High-

pressure behavior of superconducting boron-doped diamond,” Physical Re-

view B 95, 1 (2017) (cited on p. 225).

[251] T. Venkatesan, personal communication, Oct. 9, 2014 (cited on p. 225).

[252] D. Kumar, M. Chandran, D. K. Shukla, D. M. Phase, K. Sethupathi, and M. S.

Ramachandra Rao, “Tc suppression and impurity band structure in overdoped

superconducting Boron-doped diamond films,” Physica C: Superconductivity

and its Applications 555, 28 (2018) (cited on pp. 225, 239).

[253] N. Dubrovinskaia, G. Eska, G. A. Sheshin, and H. Braun, “Superconductivity

in polycrystalline boron-doped diamond synthesized at 20GPa and 2700K,”

Journal of Applied Physics 99, 33903 (2006) (cited on pp. 225, 242).

[254] M. Nesládek, D. Tromson, C. Mer, P. Bergonzo, P. Hubik, and J. J. Mares, “Su-

perconductive B-doped nanocrystalline diamond thin films: Electrical trans-

port and Raman spectra,” Applied Physics Letters 88, 232111 (2006) (cited

on p. 225).

[255] B. Sacépé, C. Chapelier, C. Marcenat, J. Kacmarcik, T. Klein, M. Bernard, and

E. Bustarret, “Tunneling Spectroscopy and Vortex Imaging in Boron-Doped Di-

amond,” Phys. Rev. Lett. 96, 97006 (2006) (cited on pp. 225, 236).

[256] B. L. Willems, G Zhang, J Vanacken, V. V. Moshchalkov, I Guillamon, H Sud-

erow, S Vieira, S. D. Janssens, K Haenen, and P Wagner, “In/extrinsic granular-

291

https://doi.org/10.1103/PhysRevB.95.174519
https://doi.org/10.1103/PhysRevB.95.174519
https://doi.org/10.1016/j.physc.2018.09.005
https://doi.org/10.1016/j.physc.2018.09.005
https://doi.org/10.1063/1.2166645
https://doi.org/10.1063/1.2211055
https://doi.org/10.1103/PhysRevLett.96.097006


ity in superconducting boron-doped diamond,” Physica C: Superconductivity

470, 853 (2010) (cited on pp. 225, 242).

[257] L. Li, J. Zhao, Z. Hu, B. Quan, J. Li, and C. Gu, “Low-temperature electrical

transport in B-doped ultrananocrystalline diamond film,” Applied Physics Let-

ters 104, 182602 (2014) (cited on pp. 225, 242).

[258] P. J. Hirschfeld and N. Goldenfeld, “Effect of strong scattering on the low-

temperature penetration depth of a d-wave superconductor,” Phys. Rev. B 48,

4219 (1993) (cited on p. 235).

[259] V. A. Sidorov, E. A. Ekimov, S. M. Stishov, E. D. Bauer, and J. D. Thompson, “Su-

perconducting and normal-state properties of heavily hole-doped diamond,”

Phys. Rev. B 71, 60502 (2005) (cited on p. 236).

[260] F. Dahlem, P. Achatz, O. A. Williams, D. Araujo, E. Bustarret, and H. Courtois,

“Spatially correlated microstructure and superconductivity in polycrystalline

boron-doped diamond,” Phys. Rev. B 82, 33306 (2010) (cited on pp. 236, 242).

[261] T. J. Greytak and J. H. Wernick, “The penetration depth in several hard super-

conductors,” Journal of Physics and Chemistry of Solids 25, 535 (1964) (cited

on p. 238).

[262] S. M. Anlage and D.-H. Wu, “Magnetic penetration depth measurements in

cuprate superconductors,” Journal of Superconductivity 5, 395 (1992) (cited

on p. 238).

[263] R. Prozorov, R. W. Giannetta, A. Carrington, P. Fournier, R. L. Greene, P. Gup-

tasarma, D. G. Hinks, and A. R. Banks, “Measurements of the absolute value

292

https://doi.org/https://doi.org/10.1016/j.physc.2010.02.080
https://doi.org/https://doi.org/10.1016/j.physc.2010.02.080
https://doi.org/10.1063/1.4876130
https://doi.org/10.1063/1.4876130
https://doi.org/10.1103/PhysRevB.48.4219
https://doi.org/10.1103/PhysRevB.48.4219
https://doi.org/10.1103/PhysRevB.71.060502
https://doi.org/10.1103/PhysRevB.82.033306
https://doi.org/https://doi.org/10.1016/0022-3697(64)90141-6
https://doi.org/10.1007/BF00618140


of the penetration depth in high-Tc superconductors using a low-Tc supercon-

ductive coating,” Applied Physics Letters 77, 4202 (2000) (cited on p. 238).

[264] K Hashimoto, T Shibauchi, T Kato, K Ikada, R Okazaki, H Shishido, M Ishikado,

H Kito, A Iyo, H Eisaki, S Shamoto, and Y Matsuda, “Microwave Penetration

Depth and Quasiparticle Conductivity of PrFeAsO1−y Single Crystals: Evidence

for a Full-Gap Superconductor,” Phys. Rev. Lett. 102, 17002 (2009) (cited on

p. 238).

[265] G. Zhang, M. Zeleznik, J. Vanacken, P. W. May, and V. V. Moshchalkov, “Metal–

Bosonic Insulator–Superconductor Transition in Boron-Doped Granular Dia-

mond,” Phys. Rev. Lett. 110, 77001 (2013) (cited on p. 242).

[266] T. L. Hylton and M. R. Beasley, “Effect of grain boundaries on magnetic field

penetration in polycrystalline superconductors,” Physical Review B 39, 9042

(1989) (cited on p. 242).

[267] R. Wördenweber, P. H. Kes, and C. C. Tsuei, “Peak and history effects in two-

dimensional collective flux pinning,” Phys. Rev. B 33, 3172 (1986) (cited on

p. 242).

[268] M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M.

Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar

waveguide resonators,” Applied Physics Letters 97, 232509 (2010) (cited on

p. 242).

293

https://doi.org/10.1063/1.1328362
https://doi.org/10.1103/PhysRevLett.102.017002
https://doi.org/10.1103/PhysRevLett.110.077001
https://doi.org/10.1103/PhysRevB.39.9042
https://doi.org/10.1103/PhysRevB.39.9042
https://doi.org/10.1103/PhysRevB.33.3172
https://doi.org/10.1063/1.3517252


[269] N. Missert, “Sperconducting Transition in Amorphous Molybdenum-Germanium

Ultrathin Films and Multilayers,” PhD dissertation (Stanford University, 1989),

p. 110 (cited on p. 242).

[270] R. W. Cohen and B. Abeles, “Superconductivity in Granular Aluminum Films,”

Phys. Rev. 168, 444 (1968) (cited on p. 242).

[271] A. I. Gubin, K. S. Il’in, S. A. Vitusevich, M Siegel, and N Klein, “Dependence

of magnetic penetration depth on the thickness of superconducting Nb thin

films,” Phys. Rev. B 72, 64503 (2005) (cited on p. 242).

[272] N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U.

Klein, and M. Peiniger, “The effective microwave surface impedance of high

Tc thin films,” Journal of Applied Physics 67, 6940 (1990) (cited on p. 242).

[273] N. R. Groll, G. Ciovati, A. Grassellino, A. Romanenko, J. F. Zasadzinski, and

T. Proslier, “Insight into bulk niobium superconducting RF cavities perfor-

mances by tunneling spectroscopy,” ArXiv preprint: 1805.06359 (2018) (cited

on p. 245).

[274] Nano and More USA −Tuning fork sensor controller website, https://www.

nanoandmore.com/tuning-fork-sensor-controller, Accessed: 2020-05-

23 (cited on p. 253).

[275] F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 949

(2003) (cited on p. 253).

294

https://doi.org/10.1103/PhysRev.168.444
https://doi.org/10.1103/PhysRevB.72.064503
https://doi.org/10.1063/1.345037
https://arxiv.org/abs/1805.06359
https://www.nanoandmore.com/tuning-fork-sensor-controller 
https://www.nanoandmore.com/tuning-fork-sensor-controller 
https://doi.org/10.1103/RevModPhys.75.949
https://doi.org/10.1103/RevModPhys.75.949


Bakhrom Oripov
2671 Avenir Place, Apt 1342, Vienna, VA 22180, USA

bakhromtjk@gmail.com ● +1 (571) 201-2286 ● https://www.bakhromtjk.com/
https://www.linkedin.com/in/bakhromtjk/

SUMMARY ■ Enthusiastic and self-motivated scientist with 6 years of experience in condensed matter physics with
strong analytical and problem solving skills as demonstrated by 2 peer-reviewed publications and 16
conference report presentations.

■ Excellent team player and builder of scientific collaborations demonstrated by the peer reviewed
scientific publications with 11 coauthors from 4 leading National Laboratories around the world.

■ Strong leadership skills and experience supervising junior scientists. Mentor to 6 current and prospective
PhD student students from Tajikistan.

WORK
EXPERIENCE

Quantum Materials Center, University of Maryland
■ Graduate Research Assistant Jun 2014 – Aug 2020
In collaboration with scientists from several DOE National labs investigated the material limitations of
Superconducting Radio-Frequency cavities (SRF) which are used in next-generation particle accelerators
using various experimental techniques.
● Characterized the defects on the surface of SRF-grade Nb samples using
the Near-field Magnetic Microwave Microscopy

● Developed a superconducting RF cavity testing facility to measure the
residual losses at very low temperatures down to 50mK

● Studied the dynamics of vortex-antivortex semiloops inside a superconductor using
time-dependent Ginzburg Landau model and COMSOL Multiphysics simulation software

● Measured the surface resistance and absolute value of London
penetration depth of a Boron-doped diamond thin film superconductor using
parallel plate resonator technique

● Assisted with the writing of a $450, 000 proposal which was successfully funded
● Mentored 3 undergraduate students and 1 first year graduate student

Institute for Research in Electronics and Applied Physics, University of Maryland
■ Graduate Research Assistant Jan 2014 – Jun 2014

● Project: Built a Frequency-resolved optical gating (FROG) device for
femtosecond laser pulse characterization

EDUCATION

University of Maryland, College Park, Maryland, USA
Aug 2013 – Aug 2020■ Ph.D. in Physics

● Thesis: Superconducting RF Materials Science 
through Near-Field Magnetic Microscopy

● Adviser: Prof. Steven Anlage

Boğaziçi University, Istanbul, Turkey
■ B.S. in Physics (Honors List) Aug 2008 – Jul 2012

PUBLICATIONS [2] B. Oripov and S. Anlage, “Time-dependent Ginzburg-Landau treatment of RF Magnetic Vortices
in Superconductors: Vortex-Semiloops in a Spatially Nonuniform Magnetic Field”, Physical
Review E 101, 033306 (2020)

[1] B. Oripov et al, “High-Frequency Nonlinear Response of Superconducting Cavity-Grade Nb
Surfaces”, Physical Review Applied 11, 064030 (2019)

295



SKILLS AND
QUALIFICATIONS

● Research and analysis ● Scientific writing
● Experimental Design ● Team building and leadership
● Data Analysis ● Project Management
● Numerical Modeling ● Presentations and Public Speaking
● Remote Control of Hardware ● Measurement automation

■ Scientific Instruments Designed or Operated:
● Dilution Refrigerator ● Cryogenic Cryostat
● Cryogenic Probe Station ● Lock-in Amplifier
● Ultra-high Vacuum (UHV) systems ● Network Analyzers
● Scanning Electron Microscope (SEM) ● Spectrum Analyzer
● Scanning Probe Microscope (AFM, STM) ● Laser Systems
● Superconducting RF cavities ● Piezo Based Scanning Systems
● Parallel Plate and dielectric resonators ● Wire bonding
● Magnetic Field Shielding ● Milling machine

■ Computer skills:
● Scientific Computing ● C language
● COMSOL Multiphysics Modeling Software ● MATLAB
● High Frequency Structure Simulator (HFSS) ● Mathematica
● Solidworks 3D Modeling ● Python
● Code Optimization for Parallel Computation ● LATEX

■ Languages: English ● Russian ● Turkish ● Tajik ● Persian

TEACHING
EXPERIENCE

University of Maryland, College Park, MD, USA
■ Teaching Assistant, Department of Physics Aug 2013 – Dec 2013

● Led weekly discussion sections and hands-on laboratory sessions.
● Proctored and graded exams.
● Held weekly office hours.

State Educational Institution-Lyceum for Gifted Students, Dushanbe, Tajikistan
■ Physics Olympiad Team Mentor & Physics Teacher Aug 2012 – Jun 2013

● Selected and prepared students to represent Tajikistan in various
International Physics Olympiads

● Traveled with the Physics Olympiad team as team leader
● Taught physics classes
● Planned and organized hands-on activities that encourage active student participation:
mousetrap car race, spaghetti bridge, water rocket etc.

AWARDS &
SCHOLARSHIPS

■ Bronze Medal, 39th International Physics Olympiad (IPhO), Vietnam Jul 2008
■ Bronze Medal, 9th Asian Physics Olympiad (APhO), Mongolia Apr 2008
■ Bronze Medal , 4th Zhautykov Physics Olympiad (ZPhO), Kazakhstan Apr 2008
■ Gold Medal , Tajikistan Nationwide Physics Olympiad, Tajikistan Mar 2008
■ Honorable Mention, 38th International Physics Olympiad (IPhO), Iran Jul 2007
■ Honorable Mention , 8th Asian Physics Olympiad (APhO), China Apr 2007

PROFESSIONAL
AFFILIATIONS
& ACTIVITIES

■ Paper Reviewer for Applied Physics Letters Journal 2017 – Present
■ Member of American Physical Society 2013 – Present
■ Referee for Universal Project Olympiad 2017 – Present
■ Referee for Tajikistan Science Project Olympiad 2013
■ Bookkeeper at Tajik American Cultural Association 2013 – 2019

296



CONFERENCE
TALKS
& PRESENTATIONS

[11] B. Oripov and S. Anlage, “High Frequency Near-Field Magnetic Microscopy ,” at National
Institute of Standards and Technology (NIST) High Frequency Scanning Probe Microscopy
Workshop , Boulder, Colorado, Dec 2019.

[10] B. Oripov and S. Anlage, “Microwave Microscopy of Materials Limitations of Superconducting
RF Cavities,” in Cryogenic Engineering Conference and International Cryogenic Materials
Conference, Hartford, Connecticut, Jul 2019.

[9] B. Oripov and S. Anlage, “Microwave Microscopy of Materials Limitations of Superconducting
RF Cavities,” at American Physics Society March Meeting, Boston, Massachusetts, Mar 2019.

[8] B. Oripov, G. Ciovatti and S. Anlage, “SRF Cavity Residual Losses at mK Temperatures,” at 51st
Applied Superconductivity Conference, Seattle, Washington, Nov 2018.

[7] B. Oripov and S. Anlage, “Microscopic Investigation of Materials Limitations of Superconducting
RF Cavities,” at 51th Applied Superconductivity Conference, Seattle, Washington, Nov 2018.

[6] B. Oripov and S. Anlage, “Study of RF flux penetration on Nb for SRFApplications,” in American
Physics Society March Meeting, Los Angeles, California, Mar 2018.

[5] B. Oripov, S. Bae, T. Tai and S. Anlage, “Near-Field Nonlinear Microwave Microscopy of
Superconductors,” atRadio Frequency Scanning ProbeMicroscopyWorkshop, Boulder, Colorado,
Nov 2017.

[4] B. Oripov and S. Anlage, “Extreme and Local Electrodynamic Measurement of Nb for SRF
Applications,” at 50th Applied Superconductivity Conference, Denver, Colorado, Sep 2016.

[3] B. Oripov and S. Anlage, “Extreme Electrodynamic and Local HarmonicMeasurement of Nb Thin
Films,” at 7th International Workshop on Thin Films and New Ideas for Pushing the Limits of RF
Superconductivity, Jefferson Lab, Newport News, Virginia, Jul 2016.

[2] B. Oripov, T.Tai and S. Anlage, “Extreme and Local 3rd Harmonic Response of Niobium (Nb)
SC,” at American Physics Society March Meeting, Baltimore, Maryland, Mar 2016.

[1] B. Oripov, T.Tai and S. Anlage, “Microscopic Investigation of Materials Limitations of
Superconducting RF Cavities,” Poster presented at: 17th International Conference on RF
Superconductivity, Whistler, British Columbia, Canada, Sep 2015.

CO-AUTHORED
CONFERENCE
PRESENTATIONS

[7] B. Oripov and S. Anlage, “Microscopic InvestigationOfMaterials Limitations of Superconducting
RF Cavities,” Talk given by S. Anlage at TESLA Technology Collaboration, European
Organization for Nuclear Research (CERN), Geneva, Switzerland, Feb 2020.

[6] B. Oripov, G. Ciovatti and S. Anlage, “Superconducting Radio Frequency Cavity Residual Losses
at mK Temperatures,” Poster presented by S. Anlage at: 19th International Conference on RF
Superconductivity, Dresden, Germany, Jul 2019.

[5] B. Oripov and S. Anlage, “High-FrequencyNonlinear Response of Superconducting Cavity-Grade
Nb Surfaces,” Poster presented by S. Anlage at: 19th International Conference on RF
Superconductivity, Dresden, Germany, Jul 2019.

[4] B. Oripov and S. Anlage, “Microscopic Investigation of Materials Limitations of Superconducting
RF Cavities,” Talk given by S. Anlage at 8th International Workshop on Thin Films and New Ideas
for Pushing the Limits of RF Superconductivity, Laboratori Nazionali di Legnaro, Padua, Italy,
Oct 2018.

[3] B. Oripov and S. Anlage, “Measurements of local nonlinear rf response of superconductors using a
scannedmagnetic microwavemicroscope” Talk given by S. Anlage at 14th International Workshop
of High-Temperature Superconductors in High Frequency Field, Zao-Onsen, Yamagata, Japan,
Jun 2018.

[2] B. Oripov, S. Bae, T. Tai and S. Anlage, “Near-Field Nonlinear Microwave Microscopy of
Superconductors,” Talk given by S. Anlage at Radio Frequency Scanning Probe Microscopy
Workshop, Boulder, Colorado, Nov 2017.

[1] B. Oripov and S. Anlage, “Study of RF flux penetration on Nb for SRF Applications,” Talk given
by S. Bae at American Physics Society March Meeting, New Orleans, Louisiana, Mar 2017.

297


	Table of Contents
	List of Tables
	List of Figures
	List of Symbols and Units
	List of Abbreviations
	Introduction to Superconductivity
	History and Hallmarks
	Discovery of practically zero resistance
	The Meissner Effect

	Phenomenological Theories of Superconductivity
	Gorter-Casimir Two Fluid Model
	London Equations
	Ginzburg-Landau (GL) Theory
	Coherence Length
	Flux quantization
	Superconducting Vortices
	The Josephson effect

	Bardeen, Cooper and Schrieffer (BCS) Microscopic Theory of Superconductivity
	Applications

	Superconducting Radio-Frequency Cavities 
	The International Linear Collider
	Superconducting Radio Frequency (SRF) Cavity
	Surface Resistance
	Q-factor
	Residual Resistance
	Q-disease
	Trapped Magnetic Flux
	Surface Defects and Vortices
	Beyond Nb

	SRF Cavity Measurements at mK Temperatures 
	Motivation
	Mounting an SRF cavity in a dillution refrigerator
	Liquid Nitrogen Precooling
	Magnetic Shielding
	Phase Locked Loop
	Operating Procedure 
	Summary of the measurements

	Magnetic Microwave Microscopy 
	Overview of Scanning Probe Microscopy
	Near-Field Microwave Microscopy
	Nonlinear response
	Previous generations of Magnetic Microwave Microscopes
	Magnetic Probe from Hard Disk Drive
	HFSS Simulations
	Numerical simulation by Seagate

	Experimental setup
	Advantages of this method


	Data from the Magnetic Microscope 
	Sample 1 - Nb film on copper from CERN
	Sample 2 - Bulk Nb from MSU
	Sample 3 - Bulk Nb from Jefferson Lab
	Sample 4 - Nb film on copper from ASTeC
	Sample 5 - Nb film on sapphire from Jefferson lab
	Discussion

	Modeling of Harmonic Response
	Resistively Shunted Junction (RSJ) Model
	Weak-links on the surface of Nb
	The response of a weak-link to RF stimulus
	Weak-link harmonic response
	Fitting the measured third harmonic data
	Extracting BCS superconducting gap value
	Discussion


	Ginzburg-Landau Simulations 
	Ginzburg-Landau Theory
	Ginzburg-Landau Free Energy Functional
	Gor'kov's validation of GL theory

	Time-dependent GL model 
	TDGL simulations
	Gauge invariance, boundary conditions and normalization 
	Material parameters 
	Introduction and Treatment of Defects 
	TDGL in COMSOL

	Two-Domain TDGL and Inclusion of Superconducting Screening 
	Superconducting sphere in a uniform magnetic field 
	Point magnetic dipole above a semi-infinite superconductor 


	TDGL Modeling of the Near-Field Magnetic Microwave Microscope 
	Magnetic Dipole
	Vortex semiloops
	The evolution of vortex semiloops with time
	The evolution of vortex semiloops with rf field amplitude
	The dependence of rf vortex dynamics on the friction coefficient -eta
	The effect of localized defects on rf vortex semiloops
	Fitting the third harmonic data

	Vortex-Semiloops inside SRF cavities 
	Numerical simulation of SRF cavity surface fields
	"Slow" TDGL
	Generalized TDGL (gTDGL) equations
	Relaxation times for amplitude and phase of  
	The dependence of Vortex Dynamics on Inelastic Scattering 

	 Surface Imaging Efforts 
	2D scans of the Bi2Sr2CaCu2O8+x sample
	Attocube positioning system
	Probe Z-scan over Sample
	XZ-scan
	Line Scans over a grain boundary in Bulk Nb
	Conclusion

	 Microwave Surface Impedance measurements using the Parallel Plate Resonator 
	Parallel Plate Resonator
	Experimental Setup
	Boron doped diamond sample
	Extracting fres and Q from the transmission data
	Phase vs frequency fit
	Multi-peak fit 

	Results
	Penetration depth 
	Surface resistance

	Conclusion

	 Conclusion and Outlook
	 Magnetic Microscope Operation Manual 
	Connecting to the writer head
	Choosing the measurement frequency
	Finding optimal parameters

	Tuning Fork based Probe-Sample Distance Control 
	Bibliography
	Curriculum vitae

