
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Thesis: RE-OS AND OXYGEN SYSTEMATICS OF 

VARIABLY ALTERED ULTRAMAFIC 
ROCKS, NORTH CAROLINA 

  
 Tracey L. Centorbi, Master of Science, 2020 
  
Thesis directed by: Professor Richard J. Walker 

Department of Geology 
 
 

This study focuses on the origin and modification of six ultramafic bodies 

located in the Blue Ridge Province of North Carolina. The bodies consist mainly of 

harzburgites and dunites with associated chromites. Some of the bodies are associated 

spatially and genetically with mafic lithologies while others are fault bounded. All the 

bodies in the study are characterized by variations in their initial Os isotopic 

compositions, assuming a formation age of 490 Ma (187Os/188Osinitial 0.1114 to 0.1360). 

Most of the initial 187Os/188Os ratios are chondritic to subchondritic and can be 

explained by Re depletion during a partial melting event prior to ophiolite formation. 

By contrast, some initial 187Os/188Os ratios, particularly for those bodies in the Tallulah 

Falls formation, are suprachondritic suggesting the addition of radiogenic Os during a 

melt percolation or melt/rock reaction event, most likely during the event that led to 

the formation of the bodies. Oxygen isotopic δ18O values of the bodies range from 

+4.85 to +7.60 which overlap with and extend above mantle estimates. The cause of 



  

the higher values remains unresolved, but serpentinization and contamination by large 

amounts of crustal material can be excluded. It is concluded that the six bodies in this 

study have a common history as the residues of mantle partial melting, with chemical 

compositions and isotopic systematics similar to Phanerozoic ophiolite peridotites 

associated with the same collisional event, as well as modern abyssal peridotites. 

Nevertheless, Os isotopic characteristics indicate different processes acted within the 

bodies despite their relatively close spatial association. 
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Chapter 1: Introduction 
 

A discontinuous chain of more than 1000 ultramafic bodies extends from 

Alabama to Newfoundland within the Appalachian Mountains. It is well established 

that the history of the Appalachian orogeny involved complex structural relationships 

and a multi-metamorphic history for most of the significant formations and lithologies 

(Hatcher et al., 1989). Based on their ubiquity and distribution, the ultramafic bodies 

evidently played an integral role in the Taconic (~490 Ma) evolution of the 

Appalachian Wilson Cycle, yet numerous questions remain about the origin and history 

of these bodies.  

The ultramafic bodies in the Appalachians have been studied for their economic 

importance since Hunter et al. (1941) conducted the first systematic survey of chromite 

containing ultramafic bodies in the Eastern United States. In the Blue Ridge Province, 

more than 300 individual ultramafic bodies have been identified. In western North 

Carolina, the area of this study, the bodies are generally small and lenticular, 

approximately 0.2-0.6 km wide and 1.5-8.0 km long, and display relatively low degrees 

of serpentinization, which is unusual for ultramafic bodies in the crust. Most of the 

bodies are fault-bounded and do not appear to be associated with adjacent lithologies 

making their origins difficult to determine. Although the bodies are closely spaced, 

they are hosted in different formations and may not have been emplaced or 

subsequently modified by the same processes. Numerous studies have concluded that 

some of the bodies are heterolithic and record a history of multiple metamorphic events 

(Raymond and Abbott, 1987; Tenthorey et al., 1996; Berger et al., 2001; Raymond et 

al., 2003; Peterson et al., 2009; Raymond et al., 2016). 
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Figure 2-1: Regional overview map showing significant regional structures and the location of each of the ultramafic bodies in this study. The 

Brevard Zone divides the Blue Ridge Province to the west from the Inner Piedmont Province to the east. All the ultramafic bodies in this study are 

hosted in Blue Ridge formations. Map adapted from Lipin (1984). 
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Emplacement ages are difficult to determine as the bodies typically have limited 

primary phases and, in most cases, do not appear to be related to spatially associated 

rocks. The age of formation is not know precisely, but it is most likely to have been 

between the creation of the pre-metamorphic suture  Hayesville fault (460-500 Ma) to 

the west of the bodies and the formation of a back-arc spreading center 460-490 Ma 

(Massey and Moecher, 2005; Moecher et al., 2011). 

A variety of processes have been proposed for the origin of the North Carolina 

bodies. Options include the possibility that they are residual mantle following the 

melting events to produce basalt, possibly representing the ultramafic portions of 

dismembered ophiolites, or crustal cumulates (Carpenter and Chen, 1976; McSween et 

al., 1989; Peterson et al., 2009; Swanson and Raymond, 2010; Raymond et al., 2016). 

The bodies may have been emplaced as crystal mush, or as solid pods or lenses. The 

bodies may have been serpentinized and subsequently dehydrated (Scotford and 

Williams, 1983).  

For this study, six ultramafic bodies in the Western Blue Ridge Province are 

examined. Within these bodies, variations in composition, percentage of spinel and 

hydrous minerals, and degrees and type of alteration have been previously noted (Misra 

and Keller, 1978; McElhaney and McSween, 1983; McSween and Hatcher, 1985; 

Raymond et al., 2003; Swanson et al., 2005; Peterson et al., 2009; Raymond et al., 

2016). Some of the bodies have been genetically linked with associated mafic 

lithologies, while others are fault bounded. Ultramafic rocks in the six discrete bodies 

vary from pure dunite to harzburgite compositions with variable alteration of olivine 

and spinel within each body. In some samples, textures suggest that anhydrous 
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recrystallization has occurred. Some samples from the same bodies exhibit variable 

degrees of serpentinization.  

When attempting to understand the origin of these ultramafic bodies, three main 

questions arise. 1) What were the processes involved in the production of the rocks? 

These processes could include partial melting, crystal accumulation, refertilization, or 

melt-rock reaction, although these processes are not mutually exclusive. 2) Has there 

been subsequent processing or modification of the bodies following their 

emplacement? 3) Why do many of these bodies have such low degrees of 

serpentinization compared to most other global ultramafic bodies? Were they initially 

serpentinized and then later dehydrated or were they always relatively dry? 

Towards these ends, the major and trace element composition and the Re-Os 

and O isotopic systematics of whole rock powders, olivine, and chromite of six discrete 

ultramafic bodies are examined. In particular, the chemical and Re-Os isotopic 

compositions may reveal information related to melt depletion or post-crystallization 

effects such as refertilization and melt-rock reactions. For example, a comparison of 

the ultramafic bodies to the isotopic composition of the modern convecting upper 

mantle, also referred to as the depleted mid-ocean ridge basalt source mantle (DMM), 

may help to assess the origin and alteration history of the ultramafic bodies.  

Studies of the DMM based on mid-ocean ridge basalt (MORB), abyssal 

peridotites, and ophiolite peridotites have shown chemical and isotopic heterogeneities 

at a variety of scales from centimeters to meters (e.g. Dick et al., 1984; Sharma et al., 

1995; Workman and Hart, 2005; Schulte et al., 2009; Warren et al., 2009). These 

heterogeneities can be interpreted to reflect processes such as melt depletion, 
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refertilization, or melt-rock reactions (Allegre and Turcotte, 1986; Snow et al., 1994; 

Sharma and Wasserburg, 1996; Liu et al., 2009). For example, a comparison of 

presumed mantle derived materials to the model for the evolution of DMM may allow 

for the identification of primary mantle characteristics versus subsequent post-mantle 

processes. Further, comparing the Os isotopic compositions of whole rock samples to 

spatially associated, alteration-resistant spinel separates may be particularly useful for 

documenting the effects of metamorphism on these types of rock. Comparison of whole 

rock and olivine O isotope compositions are made to provide insight into alteration and 

assess whether there has been crustal contamination, or alteration via seawater or 

meteoric waters. Assessing the protoliths and later alteration histories may help place 

these bodies in a more robust tectonic framework that could help to improve 

understanding of the Appalachian Orogeny. 
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Chapter 2: Regional Geology 
 

The ultramafic bodies that are the focus of this study (Figure 2-1) are found in 

the Blue Ridge Province of the southern Appalachians and are hosted in the Tallulah 

Falls and Ashe Metamorphic Suite (AMS- hereafter called the Ashe) formations.  The 

Blue Ridge Province is separated from the Carolina Piedmont to the east by the Brevard 

shear zone. The Blue Ridge Province is generally interpreted to be a series of thrust 

sheets overlying Precambrian basement (Horton and Zullo, 1991; Hatcher and 

Goldberg, 1991).  

Within the Blue Ridge, the Tallulah Falls and Ashe formations are described as 

volcanic-sedimentary sequences which have been variably metamorphosed from 

greenschist to granulite and eclogite facies (Hatcher and Goldberg, 1991). The Tallulah 

Falls formation consists of metgraywackes, muscovite-biotite and aluminous schists, 

and amphibolites (Hatcher et al., 1984). The Ashe formation consists of amphibolite 

(possible metabasalt), pelitic schist, and quartzofeldspathic gneiss with isolated 

ultramafic pods (McSween et al., 1989). The Tallulah Falls and Ashe formations are 

geographically separated by the Ocoee Supergroup which has been interpreted to be a 

Precambrian rift valley graben structure.  Ultramafic rocks are present in both the Ashe 

and Tallulah Falls formations primarily as isolated fault bounded bodies.  

In the northern sections of the Appalachians, many of the ultramafic rocks are 

interpreted to be parts of nearly complete ophiolites formed in suprasubduction-zone 

settings (Elthon, 1991). In North Carolina, the origin of the bodies has been equivocal 

(Misra and Keller, 1978; Raymond, 1995). Some have been presumed to be portions 

of dismembered ophiolites based on composition and observed petrogenetic 
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relationships with other rocks in the area, although most are fault bounded and other 

genetically related portions of ophiolites are absent (Misra and Keller, 1978; 

McElhaney and McSween, 1983; McSween and Hatcher, 1985; Raymond et al., 2003; 

Swanson et al., 2005). Dating of ultramafic bodies is difficult due to limited primary 

phases. Determining the age of emplacement of these bodies has also remained 

problematic because metamorphic fabrics in the surrounding and presumed related 

formations differ from fabrics within some of the ultramafic bodies (Misra and Keller, 

1978; Raymond, 1995).  

Carpenter and Chen (1978) concluded that some of the ultramafic bodies in the 

southern Appalachians were emplaced after magmatic differentiation as either crystal 

mush or as serpentine that then recrystallized after emplacement.  More recently, Miller 

et al. (1998) concluded that associated plutons and dikes in the area were emplaced at 

approximately 400 Ma and suggested that the magmas were generated syntectonically 

in a convergent setting. McElhaney and McSween (1983) reported a Rb-Sr age 

constraint of 650-900Ma for one of the bodies examined in this study, the dunite body 

at Buck Creek in the Tallulah Falls formation.  

Several of the presumably genetically related rocks in the region show evidence 

for complex metamorphic histories within the regional framework (Tenthorey et al., 

1996; Berger et al., 2001; Peterson et al., 2009). Peak metamorphic conditions for 

interfingering mafic lithologies in Buck Creek are calculated to be approximately 9-

10kbar and ca. 850°C (Tenthorey et al., 1996).  Rare earth element (REE) systematics 

have been used to constrain tectonic settings and relate suites of rocks in 

metamorphosed settings, given that most REE are not appreciably mobilized by 
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metasomatic fluids (Brookins et al., 1989). McDonough and Frey (1989) determined 

that pyroxenites from one of the bodies in this study, the Webster-Addie complex, have 

REE patterns consistent with a residual mantle-derived origin for the ultramafic 

portions of the body. Warner and Swanson (2010) concluded that the composition and 

mineral chemistry of the meta-ultramafic rock were originally the ultramafic cumulate 

portions of an ophiolite sequence that has since been dismembered. 

Most studies have concentrated on the Buck Creek mafic/ultramafic complex, 

the largest and most lithologically diverse body in the southern Blue Ridge Province. 

Observations of metamorphic fabrics suggest that Buck Creek is an anticline with a 

core of ultramafic rocks, although limited data do not permit an interpretation of the 

original intrusive structural or stratigraphic relationships. McElhaney and McSween 

(1983) concluded that the Buck Creek ultramafic bodies and spatially associated 

Chunky Gal amphibolites were in contact prior to metamorphism and deformation. The 

current proximity of amphibolites to the ultramafic rocks is consistent with a 

petrogenetic relationship, however, the mafic/ultramafic contact was not observed for 

Buck Creek due to lack of outcrop. Kuntz and Hedge (1981) suggested that the entire 

Buck Creek ultramafic complex is fault bounded. Tenthorey (1996) concluded that the 

ultramafic rocks at Buck Creek are basal oceanic crustal cumulates that have 

moderately high Sr contents consistent with formation in a continental rift or back-arc 

setting. Berger et al. (2001) concluded that the overall REE systematics of Buck Creek 

indicate a likely origin as an oceanic crustal cumulate. Peterson et al. (2009) integrated 

a variety of observations and suggested that Buck Creek originated as a mid-ocean-

ridge cumulate massif that was emplaced in a deep subduction-zone setting as a portion 
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of a lherzolite ophiolite type (LOT) ophiolite as described by Ishiwatari et al. (2003). 

Lherzolite ophiolite type (LOT), lherzolite-harzburgite ophiolite (LHOT) type, and 

harzburgite ophiolite type (HOT) ophiolites may correspond with ultraslow-, slow- to 

intermediate-, and fast-spreading centers, respectively. The geochemical affinities 

between the mafic and ultramafic rocks suggest that they were associated as a unit 

through much of the history of the complex.  

The possible petrogenetic relationship between the ultramafic rocks and 

surrounding rocks can be used to infer the metamorphic history of the bodies. At Buck 

Creek in particular, several studies have interpreted the peak metamorphic pressure of 

portions of the complex based on chromite veins in the host metamorphic rocks. In 

some places, these veins have sub-solidus reaction coronas between the plagioclase and 

olivine that suggest minimum pressures of 5 – 7 kbar (Trommsdorf and Evans, 1974). 

Based on meta-troctolites within Buck Creek, Tenthorey et al. (1996) proposed a 

multistage process of metamorphism for the complex with initial burial under dry 

conditions with temperatures up to 800°C and pressures of 5-7 kbar. A second 

metamorphic episode is proposed to have occurred at approximately 850°C and 9-10 

kbar, and that may have involved partial hydration of the rocks based on sapphirine-

bearing assemblages.  

The variations in metamorphic conditions and diverse compositions of the 

ultramafic bodies make interpretation of their origins difficult. Raymond et al. (2016) 

attempted to put the range of variation among the ultramafic bodies into the context of 

ophiolite petrologic types as described by Ishiwatari et al. (2003). The Buck Creek and 

Webster-Addie complexes represent LHOT or LOT type while bodies to the northeast 
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along strike represent HOT-type and LOT-type fragments. This may suggest that the 

back-arc basin in which these bodies formed was rotating, causing faster spreading to 

the south than to the north, or the bodies may represent different levels of crustal 

extraction. 

Detailed descriptions of specific samples and images of thin sections in both 

plane-polarized (PPL) and cross-polarized light (XPL) are provided in Appendix 2.  
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Chapter 3: Analytical Methods 
 

Thin section billets were cut from each sample to assess textures, mineral 

composition, and alteration. For bulk sample powder preparation, rocks were examined 

for weathered surfaces and veins, which were excluded from the processed fractions. 

Chromium spinel grains were separated from the silicate portion of some samples using 

a Franz isodynamic magnetic separator. Whole rock samples were ground in an agate 

Shatterbox until finely powdered. Chromium spinel separates were hand-picked using 

tweezers and a binocular microscope and then ground to a fine powder using an agate 

mortar and pestle under ethanol.  

 

3-1: X-ray Fluorescence 
 

Whole rock powders were analyzed via X-ray fluorescence (XRF) at Franklin 

& Marshall College in Lancaster, PA. The methods used for XRF analysis have been 

described in detail in Boyd and Mertzman (1987). The major elements Si, Ti, Al, Fe, 

Mn, Mg, Ca, Na, K, and P trace elements Sr, Zr, Cr, and V were analyzed from material 

cast in the lid of a crucible. The trace elements Rb, Sr, Y, Zr, Nb, Ni, Ga, Cu, Zn, U, 

Th, Co, Pb, Sc, Cr, and V were analyzed from sample powder pressed into a briquette. 

An X-ray line and mass absorption correction were calibrated using La, Ce, and Ba. 

The data were acquired and reduced by a Philips 2404 X-ray fluorescence vacuum 

spectrometer equipped with a 102-position sample changer and a 4 kW Rh X-ray tube. 

Loss on ignition (LOI) was determined by heating an aliquot of sample at 950°C for 

one hour. Ferrous Fe was titrated using a method modified from Richen and Fahey 

(1962). Total Fe content was determined as Fe2O3T. Internal reproducibility (2σ) based 
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on repeated analyses of sample 98-54 was 0.12% for Al2O3, 0.09% for Fe2O3T, 0.93% 

for MgO, 0.04% for CaO, 16% for V, 3% for Ni, and 1% for Co. The percent deviation 

of the standard BVHO-1 from accepted values is 0.94% for Al2O3, 2.29% for Fe2O3T, 

1.94% for MgO, 0.18% for CaO, 2% for V, 5% for Ni, and 9% for Co.  A table of XRF 

analytic standards is included in Appendix 1 (Table A-1). 

 

3-2: Electron Microprobe Analysis 
 

Olivine and chromium-rich spinel compositions were analyzed by standard 

wavelength dispersive spectroscopy (WDS) using a JEOL JXA-8900 electron probe 

microanalyzer (EPMA) at the Center for Microscopy and Microanalysis at the 

University of Maryland.  Thin sections were coated with ~300Ǻ carbon, and were 

analyzed with an accelerating voltage of 15 kV, a sample current of 50 nA (chromium 

spinel) or 20 nA (olivine), and a beam diameter of 3 mm. The instrumentation was 

calibrated before each session using a variety of standards to ensure operation within 

accepted parameters. Olivine grains were analyzed for Mg, Co, Al, Ca, Si, Mn, Cr, Fe 

and Ni, while chromium spinel grains were analyzed for Mg, Co, Al, Si, Mn, Cr, Fe, 

Zn, Ni, and Ti. Raw X-ray intensities were corrected using a CIT-ZAF algorithm. 

Spinel samples were initially assumed to be pure Fe2+ and later reevaluated based on 

the cation chemistry after Droop (1987). Precision was based on the analysis of sample 

measurements to determine minimum detection limits and uncertainty for each 

element. For olivine analyses, the minimum detection limits were 0.01 wt% for Mg, 

Co, and Mn, 0.02 wt % for Al, Ca, Si, Cr, and Fe, and 0.03 wt % for Ni. For chromite 

analyses, the minimum detection limits were 0.01 wt% for Mg, Co, Al, and Si, 0.02 
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wt% for Mn, Ce, Ni, Fe, and Ti, 0.04 wt% for Zn. Precision as 2σ error of the mean 

was determined as weight %: Mg- 0.16, Co- 0.01, Al- 0.05, Ca- 0.02, Si- 0.40, Mn- 

0.04, Cr- 0.01, Fe- 0.22, Ni- 0.03. A table of analyses of the Forsterite Fo90 standard 

is included in Appendix I (Table A-2). 

 

3-3: Rhenium-Osmium Isotopic Analysis 
 

Rhenium and Os were analyzed at the Isotope Geochemistry Laboratory at the 

University of Maryland. For Re and Os analysis, powdered samples were digested in 

Pyrex Carius tubes using approximately 3 g of concentrated HCl and approximately 6 

g of concentrated HNO3 and equilibrated with Re-Os spikes after the methods of Shirey 

and Walker (1996). Typically, seven samples were processed with one total analytical 

blank (TAB) analysis per batch. The amount of sample powder added to Carius tubes 

varied from approximately 0.01-1.0 gram of chromite to ~2.0 grams of whole rock 

powder. Spike solutions of known concentration were added to the sample with the 

intention of attaining a ~1:1 Os ratio of spike to sample. Each tube was sealed using an 

oxygen-propane torch. Tubes were put in metal jackets and placed in an oven at 220 - 

240°C for at least 24 hours.  

Osmium was loaded onto platinum filaments and coated with BaOH. Isotopic 

compositions were analyzed using negative thermal ionization mass spectrometry (N-

TIMS) on a VG Sector 54 mass spectrometer with 7 faraday cups in a static mode, or 

on an NBS 12” 68º sector mass spectrometer (Bobcat I) with an electron multiplier at 

the University of Maryland. All total analytical blanks (TAB) were analyzed on the 

Bobcat I. Sample concentrations were blank corrected using the Os TAB which ranged 
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from 2.0 to 4.5 pg during this study. External precision was monitored by analyzing a 

UMD Os standard (187Os/188Os = 0.11385) during each session. On the VG Sector 54, 

35 ng Os standards were measured while on the Bobcat I, 150 pg standards were 

measured. For the Bobcat I, the average 187Os/188Os was 0.1143±0.0003 (2σm) 

determined from 6 analyses yielding an external uncertainty of ±0.26% (2σm). For the 

VG Sector 54, the 187Os/188Os of the standard was 0.1138±0.0001 (2σm) determined 

from 15 analyses yielding an external uncertainty of ±0.05% (2σm). Blank corrections 

were negligible (<<1%) for most Os analyses. Tables of Os standard analyses for the 

Bobcat-1 (Table A-5) and VG Sector-54 (Table A-6) are included in Appendix 1. 

The Re isotopic composition of samples and total analytical blank (TAB) were 

analyzed using a Nu-Plasma multi-collector inductively coupled plasma mass 

spectrometer (MCICPMS) at the University of Maryland (Table A-4). The Re was 

dissolved in a 2% nitric solution for introduction through an Aridus I membrane 

desolvation system. A 200 ppt UMD 185Re/187Re standard was analyzed during each 

session for sample to standard bracketing and isotopic ratios of the samples were 

normalized to 0.5975. Rhenium concentrations were blank corrected for the TAB 

which ranged from 1.6 to 12.4 pg for the seven TAB measured during this study. Blank 

corrections were minor (0.8%) or better for most Re analyses. Analytical uncertainties 

for Re were typically ± 2% (2σm). 

 

3-4: Whole Rock Oxygen Isotopic Analysis 
 

Whole rock oxygen isotopic determinations from bulk rock powders were made 

at the Mineralogical Laboratories at Indiana University using the method of Clayton 
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and Mayeda (1963). Powdered whole rock samples were loaded into pure nickel 

reaction tubes in quantities allowing for a five-fold addition of reagent. The reaction 

tubes were heated to 250°C for two hours in a box with air dried with P2O5 in order to 

remove adsorbed gases and water. The reaction tubes were then treated with a cold 

BrF5 treatment for 20 minutes several times to remove any oxygen-bearing compounds 

that may have formed on the walls of the reaction tubes. The reaction vessels were then 

evacuated, charged with BrF5, closed, and heated to 600-700°C for 12-14 hours.  

Oxygen was collected and purified as it passed through a series of cold traps. The 

quantity of oxygen generated was measured and reacted with a heated graphite disk to 

convert it to CO2. The CO2 was transferred to a sample tube in order to be measured 

via mass spectrometer using a Finnigan MAT 252 stable isotope ratio mass 

spectrometer with results reported in standard delta notation. Results were corrected 

relative to repeated analyses of the standard San Carlos olivine (5.4 ± 0.3‰). Analytical 

uncertainty was less than 0.46‰ and blanks were less than 1 μmol. 

 

3-5: Oxygen Isotopic Analysis of Olivine 
 

Individual olivine grains weighing 1.3 – 1.6 mg were analyzed using established 

procedures. A metallic stage with sample wells was loaded with the olivine samples 

and standards. The stage was then placed into a lasing chamber and the air was 

evacuated. The chamber was pre-fluorinated for at least 24 hours to remove any water 

molecules adhering to the surfaces. Oxygen analyses are particularly susceptible to 

perturbation by water in the chamber and vacuum lines, so this step is of critical 

importance and has proven successful.  
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Olivine oxygen isotopic determinations were made via laser fluorination at the 

Stable Isotope Laboratory at the University of Maryland. Measurements were made 

with a 25-W Synrad CO2 laser and BrF5 after Sharp (1990) and Farquhar and Rumble 

(1998) on a Finnigan Delta Plus mass spectrometer. Data are reported using the delta 

notation relative to standard mean ocean water (SMOW) by assuming a mass-

dependent δ18O value of 5.8 ‰ for the University of Wisconsin (UWG-2) garnet 

standard (Valley et al., 1995), analyzed concurrently with the olivine samples. The 

UWG-2 garnet standard is used to correct analyses based on the accepted δ18O value. 

Stability of the vacuum line and internal reproducibility the were monitored using the 

University of Maryland Gore Mountain Garnet (UMDGMG) standard (Farquhar and 

Rumble, 1998) and individual olivine grains from the Simcoe xenolith (Sim9) suite 

after Widom and Farquhar (2003). The UWG-2 standards were averaged and a 

correction factor relative to the accepted value was applied to the samples.  Valley et 

al. (1995) found that analyses were susceptible to slight variations in the vacuum within 

the line. During this study, it was also noted that variability of was seen in individual 

stages when analyses were performed on different days. Standard analyses average 

δ17O of 3.04±0.03‰ and δ18O of 5.80±0.08‰. A table of oxygen standard analyses is 

included in Appendix 1 (Table A-7). 
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Chapter 4: Results 
4-1: Major Elements 
 

Whole rock major element oxide compositions are compared to the primitive 

mantle (PM) estimates of McDonough and Sun (1995) in Table 4-1 and Figure 4-1. All 

samples are depleted in Ti, Al, Ca, and P relative to PM. None of the samples have K 

above the detection limit of 100 ppm K2O. The normalized abundance diagram reveals 

that Fe ranges from slightly enriched to slightly depleted relative to the primitive 

undepleted mantle (PM) estimate (Figure 4-2). Although all the ultramafic rocks in the 

study are peridotites, they can be further subdivided into dunite and harzburgite via 

IUGS classification scheme (Figure 4-3). Given their variable states of modification 

resulting from metamorphism, all the rocks are classified here based on their chemical 

composition. Data from the ~6 Ma Taitao Ophiolite in Chile are included in the figure 

for comparison. 

 The ultramafic rocks in this study are depleted in most incompatible major 

elements when compared to the primitive mantle composition. In particular, Al2O3 

ranges from 0.03-1.36 wt. %, compared to a PM estimate of 4.4 wt. %. The correlation 

of Al2O3 with MgO appears to follow the melting trend proposed by Niu (1997) and 

suggests relatively high degrees of partial melt extraction (Figure 4-4). Other melt 

depletion trends, as can be seen in plots of MgO versus Al2O3 (Figure 4-3), Al2O3 

versus CaO (Figure 4-4), and MgO versus CaO (Figure 4-5) are broadly consistent with 

variable extents of melting and coincident with melting trends recorded by abyssal 

peridotite data (Brandon et al., 2000) and ophiolite peridotite data (Büchl et al., 2002 

and 2004; Godard et al., 2000; Schulte et al., 2009). The Mg# (Mg2+/(Mg2+ + Fe2+)) 
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was calculated from Fe2O3T and MgO. The Fe2+ content was calculated as 0.85 of 

Fe2O3T based on the studies of MORB glass iron ratios of Cottrell and Kelley (2011) 

and Bezos et al. (2005). The Mg #’s range from 0.886 to 0.944. 
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Table 4-1: Major element oxide compositions of whole rock powders determined by XRF analysis. Major oxides are given in weight %. All samples 

were below detection in K2O so it has been excluded from the table. Not all samples were analyzed for FeO. 

 

Sample SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O P2O5 LOI Total Fe2O3T Mg # 
Buck Creek:              
Buck 03-1 39.30 0.02 0.53 1.29 8.69 0.17 47.23 0.13 0.02 0.01 1.78 99.17 10.95 0.910 
Buck 04-1 39.29 0.01 0.74 13.59  0.18 45.15 0.15 0.05 0.01 0.91 99.17 13.59 0.886 
Pow 04-1 38.73 0.02 0.65 1.59 10.56 0.20 45.35 0.09 0.03 0.01 1.84 99.07 13.33 0.888 
Ellijay:               
Ell 03-1 39.45 0.01 0.61 10.20  0.16 45.56 0.08 0.05 b.d. 1.30 96.12 10.2 0.912 
Ell 03-2 40.55 0.10 0.62 9.95  0.16 46.07 0.08 0.06 b.d. 0.16 97.50 9.95 0.915 
Ell 04-T 38.86 0.01 0.05 1.97 6.40 0.15 48.54 0.05 0.02 0.01 2.75 98.81 9.08 0.926 
Webster-Addie:              
Add 03-1 40.74 0.01 0.37 10.20  0.15 47.70 0.19 0.06 b.d. 2.49 99.41 10.2 0.916 
Add 03-2 36.09 0.03 0.85 3.70 5.58 0.16 44.48 0.18 0.05 0.01 4.61 95.74 9.9 0.913 
Add 03-3 39.85 b.d. 0.35 9.72  0.14 48.34 0.07 0.06 b.d. 1.86 98.54 9.72 0.921 
Add 03-4 37.07 0.02 1.36 11.25  0.20 44.92 0.09 0.06 0.01 1.11 94.98 11.25 0.903 
Newdale:               
New 03-1 41.85 b.d. 0.15 8.83  0.12 47.98 0.08 0.06 b.d. 3.62 99.08 8.83 0.927 
New 04-1 42.22 b.d. 0.34 8.05  0.11 48.07 0.24 0.06 b.d. 1.73 99.09 8.05 0.933 
New 04-2 45.05 b.d. 0.33 7.43  0.10 46.27 0.09 0.04 b.d. 4.67 99.31 7.43 0.936 
New 04-3 39.42 0.01 0.03 2.20 4.83 0.12 48.17 0.11 0.01 0.01 4.33 99.24 7.57 0.937 
Daybook:               
Day 03-1 39.73 0.01 0.03 1.13 6.10 0.12 50.17 0.13 0.01 0.01 2.14 99.58 7.91 0.937 
Day 03-2 39.98 0.01 0.21 1.23 5.71 0.11 49.06 0.40 0.02 0.01 2.70 99.44 7.58 0.938 
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Frank:               
Frk 04-1 45.36 b.d. 0.60 6.40  0.15 45.92 0.75 0.05 b.d. 12.08 99.23 6.4 0.944 
Frk 04-2 38.87 0.01 0.74 2.48 5.10 0.15 44.08 0.16 0.02 0.01 7.98 99.60 8.15 0.927 
Frk 04-3 39.49 0.01 0.07 1.16 5.38 0.12 50.86 0.08 b.d. 0.01 2.48 99.66 7.14 0.943 
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Figure 4-1.  Abundance diagram of cation data for ultramafic whole rock (recalculated to 

anhydrous) and normalized to primitive mantle estimates (McDonough and Sun, 1995; 

Workman and Hart, 2005). 

 

 

Figure 4-2.  Calculated CIPW norms for whole rock peridotites. Peridotite data (open 

diamonds) from Taitao Ophiolite provided for comparison (Schulte et al., 2009). 
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Figure 4-3.  Plot of MgO versus Al2O3 of North Carolina whole rock peridotites recalculated 

to anhydrous.  Dunite samples are represented by circles, harzburgite samples by squares. For 

this graph and following graphs, primitive mantle (PM) estimate for MgO and Al2O3 is from 

McDonough and Sun (1995), the depleted mantle (DMM) estimate is from Workman and Hart 

(2005), abyssal peridotite data are from Brandon et al. (2000), Taitao Ophiolite data are from 

Schulte et al. (2009), Troodos ophiolite data are from Büchl et al. (2002, 2004), Shetland 

ophiolite peridotites are from O’Driscoll et al. (2012, 2018), Oman ophiolite peridotites are 

from Godard et al. (2000), and Twin Sisters Dunite is from Govindaraju (1994). 
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Figure 4-4.  Plot of Al2O3 versus CaO (recalculated to anhydrous) of North Carolina whole 

rock peridotites. PM estimate for Al2O3 (McDonough and Sun, 1995) and CaO and DMM are 

from (Workman and Hart, 2005).  See Figure 4-3 for other references. 

 

Figure 4-5.  Plot of MgO versus CaO (recalculated to anhydrous) of North Carolina whole rock 

peridotites. PM estimate for MgO (McDonough and Sun, 1995) and CaO and DMM are from 

(Workman and Hart, 2005).  See Figure 4-3 for other references. 
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4-2: Trace Elements 
 

Trace element data are provided in Table 4-2. Concentrations of U, Th, and Ba 

were all below detection limits and therefore excluded from the table. Samples were 

enriched in Nb, Pd, Co, and Ni relative to primitive mantle (PM) (Figure 4-6). Samples 

were depleted in Sr, Y, Sc, V, Ga and Cu relative to PM with the exceptions of Add 

03-4 which was enriched in V and Pow 04-1 which was enriched in Cu. Most samples 

ranged from modestly depleted to slightly enriched in Cr content. However, Ell 03-1, 

Ell 03-2, Add 03-2, and Add 03-4 show significant enrichment relative to PM of 

approximately 2.5, 1.5, 2.6, and 3.4 wt. % respectively.  

 Incompatible refractory elements, such as V, show a positive correlation with 

Al2O3 (Figure 4-7). For the samples for which there are analyses, compatible trace 

elements like Ni and Co scatter in relation to Al2O3 and MgO (Figures 4-8, 4-9, 4-10).  
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Table 4-2: Trace element compositions of whole rock powders determined by XRF analysis. Trace element concentrations given in weight %. U, 

Th, and Ba analyses were below detection limits and excluded from the table. Some samples were only analyzed for Sr, Zr, V and Cr- noted as nd. 

Sample Rb Sr Y Zr V Ni Cr Nb Ga Cu Zn Co Sc Pb 
Buck Creek:              
Buck 03-1 <0.5 1 1.1 9 13 2520 2162 1.4 0.6 3 39 150 5 4 
Buck 04-1 <2 nd 3 16 nd 2674 nd nd nd nd nd nd nd 
Pow 04-1 <0.5 2 <0.5 9 20 2105 3325 1.2 1.2 50 72 198 5 4 
Ellijay:               
Ell 03-1 nd <2 nd 6 47 nd 24960 nd nd nd nd nd nd nd 
Ell 03-2 nd <2 nd 4 26 nd 15590 nd nd nd nd nd nd nd 
Ell 04-1 <0.5 1 0.8 9 12 1930 5183 1.4 <0.5 1 47 136 3 5 
Webster-Addie:              
Add 03-1 nd <2 nd 6 21 nd 1838 nd nd nd nd nd nd nd 
Add 03-2 <0.5 2 0.7 9 34 2381 25890 1.4 1.1 5 49 130 5 5 
Add 03-3 Nd <2 nd 4 18 nd 7553 nd nd nd nd nd nd nd 
Add 03-4 nd <2 nd 7 89 nd 34130 nd nd nd nd nd nd nd 
Newdale:               
New 03-1 nd <2 nd 5 10 nd 2396 nd nd nd nd nd nd nd 
New 04-1 nd <2 nd 6 13 nd 2830 nd nd nd nd nd nd nd 
New 04-2 nd <2 nd 5 10 nd 2989 nd nd nd nd nd nd nd 
New 04-3 <0.5 1 0.5 9 7 3040 2451 1.3 <0.5 <1 32 117 1 2 
Daybook:               
Day 03-1 <0.5 1 <0.5 10 4 2867 1553 1.5 <0.5 <1 31 120 3 3 
Day 03-2 <0.5 2 1 9 13 2860 2440 1.7 <0.5 <1 34 116 5 4 
Frank:               
Frk 04-1 nd 4 nd 6 18 nd 3249 nd nd nd nd nd nd nd 
Frk 04-2 <0.5 3 0.8 10 5 3155 1982 1.2 <0.5 <1 38 113 3 3 
Frk 04-3 <0.5 1 1 9 17 2645 2473 1.4 <0.5 <1 46 108 4 3 
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Figure 4-6.  Abundance diagram trace element data for ultramafic whole rocks normalized to 

primitive mantle estimates (McDonough and Sun, 1995; Workman and Hart, 2005). Rb, Ba, 

U, and Th were below detection limits and have been excluded from the figure. 
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Figure 4-7.  Plot of V vs. Al2O3 (recalculated to anhydrous) for whole rock samples. The 

primitive mantle (PM) estimate for MgO and Al2O3 is from McDonough and Sun (1995), 

depleted mantle (DMM) is from Workman and Hart (2005). See Figure 4-3 for other references. 

 

  

Figure 4-8.  Plot of Ni vs. MgO (recalculated to anhydrous) for whole rock samples. See Figure 

4-7 for other references. 
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Figure 4-9.  Plot of Co vs. MgO (recalculated to anhydrous) for whole rock samples. See Figure 

4-7 for other references.  

 

    

Figure 4-10.  Plot of Ni vs. Al2O3 (recalculated to anhydrous) for whole rock samples. See 

Figure 4-7 for other references. 
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4-3: Olivine and Chromite Compositions 
 

Averaged major element compositions of olivine and chromite grains analyzed 

in polished thin sections via electron microprobe are provided in Tables 4-3 and 4-4. 

Results are provided in oxide weight % along with the analytical uncertainty for each 

element. The Mg# is calculated as (Mg2+/(Mg2+ + Fe2+)) and Cr# is calculated as 

(Cr3+/(Cr3+ + Al3+)). For chromite, the oxide weight % of FeO and Fe2O3 were 

calculated from the total measured FeO and adjusted stoichiometrically according to 

Droop (1987). All measurements were taken in eight sessions. Analytical uncertainty 

and minimum detection limits were calculated as averages. For elements below 

minimum detection limits, they are reported as b.d. in the table. 

For olivine, individual points on the core and rim of grains as well as some 

grains too small to reliably discriminate between the two regions were measured. The 

number of individual spot measurements are noted, and core and rim analyses were 

averaged separately. If differences beyond statistical uncertainty were found, they are 

represented in the table as core and rim. For samples with no variation between core 

and rim, an average of both regions is reported.  Not all elements varied between core 

and rim. Multiple grains showed insignificant variation in most elements but significant 

variation in Mg and Fe. Calculated Mg#’s of olivine range from 0.855 to 0.940 with 

overlap between different samples and locations.  

The chromites did not exhibit zoning between the core and rim for most 

samples. The number of individual spot measurements are noted, and for samples with 

zoning, core and rim analyses were averaged separately.  The Cr #’s range from 0.745 

to 0.961 while Mg #’s range from 0.065 to 0.522. 
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Figure 4-11. Mg# of whole rock determined by XRF analysis versus Mg# of olivine grain cores 

determined by EPMA. Circles are dunites and squares are harzburgites. The Ellijay sample is 

strongly banded with centimeter thick layers of olivine alternating with half centimeter layers 

of chromium spinel. The olivine analyzed were located in the dunitic layers. 
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Table 4-3. The average major element composition of olivine based on electron microprobe analyses. Values are in oxide weight %. All grains were 

measure in situ from thin sections. 

 

 Sample # data 
points   SiO2   Al2O3  Cr2O3  FeO    MnO    MgO    NiO    CoO    CaO    Total   Mg# 

Buck Creek:             
Buck 04-1 n = 6 core 40.43 0.02 b.d. 9.29 0.12 49.36 0.42 0.02 0.05 99.71 0.904 

 n = 4 rim 40.90 0.02 b.d. 9.29 0.11 50.22 0.36 0.03 b.d. 100.92 0.906 
Pow 04-1 n = 6 core 40.30 b.d. b.d. 10.78 0.15 48.69 0.35 0.03 b.d. 100.32 0.889 

 n = 5 rim 40.85 b.d. b.d. 10.51 0.14 48.38 0.36 0.04 b.d. 100.28 0.891 
Ellijay:              
Ell 03-1 n = 8 core 39.71 b.d. b.d. 13.85 0.25 45.92 0.46 0.04 b.d. 100.23 0.855 

 n = 7 rim 40.29 0.07 b.d. 9.45 0.14 48.57 0.43 0.04 0.12 99.10 0.902 
Ell 04-1 n = 6 core 40.68 b.d. b.d. 8.87 0.11 50.32 0.31 0.03 b.d. 100.32 0.910 

 n = 8 rim 41.08 b.d. b.d. 8.68 0.10 50.08 0.25 0.02 b.d. 100.22 0.911 
Webster-Addie:             
Add 03-2 n = 11 core 40.80 b.d. b.d. 9.25 0.10 50.22 0.24 0.03 b.d. 100.65 0.907 

 n = 11 rim 40.61 b.d. b.d. 9.46 0.10 50.27 0.23 0.03 b.d. 100.70 0.905 
Add 03-3 n = 14 core 40.75 b.d. b.d. 8.21 0.08 50.85 0.31 0.02 b.d. 100.24 0.918 

 n = 9 rim 40.78 b.d. b.d. 8.30 0.08 50.61 0.36 0.03 b.d. 100.16 0.916 
Add 03-4 n = 5 core 41.54 b.d. 0.02 6.55 0.11 51.89 0.24 0.03 b.d. 100.36 0.934 

 n = 3 rim 41.74 b.d. b.d. 6.55 0.09 51.97 0.26 0.02 b.d. 100.64 0.934 
 n = 3 inclusion 41.70 0.02 b.d. 6.36 0.09 52.20 0.29 0.03 b.d. 100.70 0.936 

Add 04-1 n = 6 core 41.48 b.d. b.d. 6.58 0.10 52.25 0.29 0.01 b.d. 100.73 0.934 
 n = 4 rim 41.35 b.d. b.d. 6.77 0.11 52.07 0.28 0.03 b.d. 100.62 0.932 
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Newdale: 
New 04-1 n = 12 core 41.41 b.d. b.d. 7.17 0.08 51.98 0.40 0.03 b.d. 101.08 0.929 

 n = 12 rim 41.26 b.d. b.d. 7.23 0.08 51.81 0.35 0.03 b.d. 100.78 0.928 
New 04-2 n = 12 core 41.03 b.d. b.d. 7.10 0.07 52.14 0.46 0.03 b.d. 100.83 0.930 

 n = 12 rim 41.05 b.d. b.d. 7.08 0.06 51.75 0.49 0.03 b.d. 100.46 0.929 
New 04-3 n = 12 core 41.31 b.d. b.d. 6.72 0.07 52.35 0.39 0.03 b.d. 100.88 0.933 

 n = 12 rim 41.27 0.02 b.d. 6.72 0.07 52.39 0.42 0.03 b.d. 100.91 0.933 
  n = 3 inclusion 41.34 0.06 0.44 6.06 0.06 52.76 0.42 0.02 b.d. 101.16 0.940 

Daybook:              
Day 03-1 n = 12 core 41.33 b.d. b.d. 7.06 0.07 52.10 0.44 0.03 b.d. 101.02 0.930 

 n = 12 rim 41.31 b.d. b.d. 7.14 0.06 52.06 0.43 0.02 b.d. 101.03 0.929 
Frank:              
Frk 04-2 n = 6 core 40.94 b.d. b.d. 8.12 0.08 50.58 0.40 0.04 b.d. 100.17 0.918 

 n = 6 rim 41.04 0.03 b.d. 8.14 0.07 50.56 0.39 0.03 b.d. 100.27 0.918 
Frk 04-3 n = 6 core 40.98 b.d. b.d. 6.30 0.06 52.30 0.47 0.02 b.d. 100.15 0.937 

 n = 6 rim 41.10 b.d. b.d. 6.32 0.07 51.85 0.45 0.02 b.d. 99.83 0.937 
Frk 04-4 n = 6 core 40.62 b.d. b.d. 7.83 0.08 50.64 0.30 0.03 b.d. 99.51 0.921 
  n = 6 rim 41.45 b.d. 0.03 8.05 0.07 49.85 0.49 0.02 b.d. 99.97 0.918 

b.d. indicates measurement was below detection limits. 
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Table 4-4. The average major element composition of chromite based on electron microprobe analyses. Values are in oxide weight %. 

 

 Sample # data 
points   SiO2 TiO2 Al2O3 Cr2O3 FeO Fe2O3 MnO MgO NiO ZnO CoO total Cr# Mg# 

Buck Creek:                
Buck 04-1 n = 7  0.11 1.34 1.89 38.66 29.58 25.49 0.61 1.65 0.11 0.43 0.12 99.99 0.940 0.090 
Buck 04-4 n = 4  0.11 1.29 1.25 39.75 30.33 25.01 0.68 1.18 0.06 0.21 0.12 99.99 0.961 0.065 
Pow 04-1 n = 6  16.94 0.74 2.94 22.73 22.30 12.54 0.45 20.85 0.15 0.16 0.09 99.88 0.868 0.522 
Ellijay:                 
Ell 03-1 n = 12  0.03 0.11 4.98 57.46 20.90 8.80 0.50 7.41 0.03 0.16 0.09 100.47 0.886 0.387 
Ell 04-1 n = 18  0.50 0.20 1.16 41.23 27.28 25.79 0.60 2.87 0.13 0.24 0.13 100.14 0.960 0.155 
Webster-Addie:                
Add 03-2 n = 10 core 0.02 0.16 9.23 53.08 24.08 7.08 0.65 5.60 0.02 0.28 0.12 100.31 0.794 0.293 

 n = 8 rim 0.06 0.32 6.86 53.38 25.61 8.36 0.73 4.33 0.02 0.37 0.13 100.15 0.841 0.231 
Add 03-3 n = 12 core 0.03 0.17 12.23 53.28 22.16 3.89 0.59 7.16 0.02 0.32 0.12 99.96 0.745 0.365 

 n = 12 rim 0.98 0.38 7.09 52.46 24.78 6.45 0.69 5.50 0.04 0.33 0.13 98.83 0.834 0.278 
Add 03-4 n = 16  0.08 0.26 9.25 53.2 24.16 6.26 0.66 5.54 0.02 0.34 0.13 99.91 0.803 0.284 
Add 04-1 n = 2  0.03 0.17 10.68 53.51 23.97 4.77 0.64 5.73 0.02 0.41 0.13 100.06 0.772 0.299 
Newdale:                 
New 04-1 n = 12 core 0.01 0.07 7.36 54.75 22.59 8.28 0.57 6.37 0.05 0.29 0.12 100.46 0.834 0.336 

 n = 9 rim 0.04 0.08 6.76 53.92 23.02 8.90 0.58 5.86 0.06 0.31 0.12 99.62 0.841 0.315 
New 04-2 n = 12 core b.d. 0.03 6.19 56.35 22.33 8.25 0.58 6.41 0.03 0.31 0.12 100.60 0.860 0.339 

 n = 9 rim 0.01 0.04 6.72 55.67 22.32 8.36 0.57 6.51 0.04 0.31 0.12 100.68 0.847 0.342 
Daybook:                 
Day 03-1 n = 16 core 0.03 0.17 3.05 54.95 24.76 12.26 0.66 4.55 0.08 0.32 0.12 100.96 0.924 0.246 

 n = 13 rim 0.06 0.20 3.01 53.26 24.97 13.71 0.66 4.42 0.09 0.29 0.13 100.80 0.923 0.240 
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Frank:                 
Frk 04-1 n = 8  0.30 0.03 2.35 48.27 25.33 18.77 0.98 3.84 0.07 0.37 0.11 100.42 0.935 0.210 
Frk 04-2 n = 8  0.03 0.11 1.36 48.88 26.45 20.25 0.66 3.20 0.16 0.36 0.13 101.59 0.960 0.177 
Frk 04-3 n = 9  0.02 0.06 5.47 57.34 22.66 8.38 0.54 6.25 0.06 0.42 0.12 101.33 0.876 0.330 
Frk 04-4 n = 9   0.03 0.06 4.82 47.69 24.54 17.36 0.52 4.65 0.14 0.34 0.12 100.27 0.870 0.252 
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4-4: Isotopic systematics – Rhenium-Osmium 
 
 Results of Re-Os analyses are reported in Table 4-5. In the Table, γ(Os)i notation 

is the percent derivation from a chondritic reference at 490 Ma. The age of 490 Ma for 

γOs was chosen to approximate the timing of the formation of protoliths, prior to the 

peak of the Taconian orogeny and development of the nearby Hayesville thrust (Miller 

et al., 1998; Massey and Moecher, 2005).  

Whole rock Re and Os concentrations range from 0.001 to 0.814 ppb and 0.129 

to 16.1 ppb respectively (Figure 4-12). Most samples have Re concentrations that are 

lower than the average Re concentration of upper oceanic mantle peridotite (~0.3 ppb). 

Osmium concentrations are generally in the range reported for upper mantle peridotites, 

although vary considerably (e.g. Meisel et al., 1996; Walker et al., 1996; O’Driscoll et 

al., 2012). Chromite separate Re and Os concentrations range from 0.002 to 4.71 ppb 

and 1.65 to 339 ppb respectively. Concentrations of Re and Os in spinels are 

comparable to other ophiolite derived chromites. Concentrations of Os are in the range 

seen in other ophiolite complexes apart from the extremely high concentrations (311 

and 339 ppb) in distinct 1 cm thick chromitite layers from Ellijay.  

Duplicate analyses of some chromite separates were completed by W. Minarik 

and are included in the table. Concentrations of Re and Os of these analyses vary from 

8 to 45% for five duplicates compared to those determined in this study but all isotopic 

ratios agree within ±1%. No replicates of whole rock samples were performed.  

Analytical uncertainty of the 187Os/188Os ratio is given immediately following 

each value. 187Os/188Os ratios for chromite separates within each location vary <2% 

except for Ellijay where there is a 4.8% difference between strongly layered chromite 



 

36 
 

and disseminate chromite with weakly layered chromite falling between the two 

extremes (Figure 4-13). The 187Os/188Os ratios between locations show variations of up 

to 10%, significantly beyond analytical uncertainties.  

For most samples, there is agreement between initial Os isotopic ratios in the 

whole rock and chromite separates (Figure 4-14). Since chromite can be resistant to 

alteration, agreement likely means that the isotopic ratios are representative of primary 

values. A lack of agreement between whole rock and chromite initial Os isotopic values 

for the one Ellijay sample is likely a calculation artefact. It most likely had Re added 

to it after ophiolite formation. 

 

  

Figure 4-12. Rhenium vs. Os concentrations of dunite (circles), harzburgite (squares) whole 

rock, and chromite separates (triangles). Data from the Taitao (Schulte et al., 2009) and 

Shetland (O’Driscoll et al., 2012, 2018) Ophiolites are provided for comparison. Note the log 

scale for both axes.  



 

37 
 

   

Figure 4-13. 187Re/188Os vs. 187Os/188Os isotopic compositions of dunite (circles), harzburgite 

(squares) whole rock, and chromite separates (triangles). Data from the 492 ± 3 Ma Shetland 

ophiolite (O’Driscoll et al., 2012, 2018) are provided for comparison. A 490 Ma chondritic 

reference isochron was calculated with an initial 187Os/188Os of 0.126. 

 

Figure 4-14. γOs(490Ma) of whole rock vs. γOs(490Ma) of chromite separates for dunite (circles) 

and harzburgite (squares). γOs(t) notation describes % difference between the initial Os 

isotopic composition of samples compared to a chondritic reference value at 490 Ma.      
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Table 4-5:  Re-Os and O isotopic data for whole rock and spinel separates.  The uncertainties reported are two standard deviations of the mean (2σm) 
of the mass spectrometry data sets and are shown in parentheses following each value. γOs is calculated for 490 Ma. TMA are and TRD are Re-Os 
model ages after Shirey and Walker (1998), 'f' indicates a future model age. a Spinel separate duplicates analyzed by W. Minarik 
 

Sample Rock Type Re         
(ng/g) 

Os         
(ng/g) 

187Re/188Os 187Os/188Os±2σ 187Os/188Os 
(490 Ma) 

γ(Os) 
490Ma 

TMA           

(Ga) 
TRD           

(Ga) 
Ol δ18O 

(‰) 
WR δ18O 

(‰) 

Buck Creek: 
       

    
buck 03-1 dunite 0.0377 0.969 0.1876 0.1348±0.0002 0.1332 +7.7 f f +5.29 +5.69 
buck 03-1 spinel sep 0.2912 21.35 0.0658 0.1339±0.0001 0.1334 +7.8 f f   
buck 03-1a spinel sep 1.881 46.72 0.1942 0.1350±0.0002 0.1334 +7.8 f f   
buck 04-1 dunite 0.2322 3.540 0.3164 0.1351±0.0015 0.1325 +7.1 f f  +7.60 
buck 04-4 harzburgite 0.0300 0.129 1.117 0.1290±0.0001 0.1199 -3.1 0.22 f  +6.19 
buck-str harzburgite 0.0269 1.241 0.1044 0.1343±0.0003 0.1334 +7.8 f f   
pow 04-1 dunite 0.1994 1.560 0.6171 0.1411±0.0002 0.1360 +10.0 3.79 f +5.17 +5.58 
Ellijay:            
ell 03-1 chromitite 0.6000 16.06 0.1801 0.1314±0.0001 0.1299 +5.0 f f +6.34 +6.98 
ell 03-1T spinel sep 0.0514 339.4 0.0007 0.1327±0.0001 0.1327 +7.2 f f   
ell 03-1a spinel sep 0.0064 311.1 0.0001 0.1323±0.0002 0.1323 +7.0 f f   
ell 03-2 harzburgite 0.4316 1.141 1.822 0.1264±0.0002 0.1114 -9.9 f 0.11 +5.19 +6.01 
ell 03-2 spinel sep 0.0022 14.37 0.0008 0.1266±0.0001 0.1266 +2.3 0.07 0.08   
ell 03-2a spinel sep 0.0361 11.47 0.0152 0.1266±0.0002 0.1265 +2.3 0.07 0.07   
ell 04-T dunite 0.0272 0.184 0.7126 0.1296±0.0004 0.1237 +0.01 0.58 f   
ell 04-T spinel sep 0.1872 4.322 0.2087 0.1249±0.0001 0.1232 -0.4 0.30 0.32   
ell 04-1 dunite 0.0801 4.719 0.0818 0.1292±0.0001 0.1285 +3.9 f f  +6.39 
ell 04-1 spinel sep 0.9341 135.5 0.0332 0.1298±0.0001 0.1295 +4.7 f f   
Addie:             
add 03-1 dunite 0.1146 1.228 0.4495 0.1263±0.0001 0.1226 -0.9 f 0.13 +5.41 +5.67 
add 03-1 spinel sep 0.0794 19.99 0.0191 0.1246±0.0016 0.1245 +0.6 0.38 0.37   



 

39 
 

add 03-2 dunite 0.0690 8.350 0.0398 0.1262±0.0001 0.1258 +1.7 0.15 0.14 +5.35 +6.06 
add 03-2 spinel sep 0.0160 19.77 0.0039 0.1264±0.0002 0.1263 +2.1 0.11 0.11   
add 03-3 dunite 0.0271 1.028 0.1268 0.1245±0.0001 0.1235 -0.2 0.53 0.39  +5.52 
add 03-3 spinel sep 0.0216 15.93 0.0065 0.1244±0.0003 0.1243 +0.5 0.40 0.40   
add 03-4 dunite 0.0098 9.723 0.0048 0.1267±0.0001 0.1267 +2.4 0.06 0.06  +7.46 
add 03-4 spinel sep 4.709 110.8 0.2047 0.1268±0.0001 0.1252 +1.2 0.07 0.03   
add 04-2 pyroxenite 0.8144 3.142 1.250 0.1318±0.0001 0.1215 -1.8 0.33 f  +6.04 
Newdale:             
new 03-1 harzburgite 0.0009 2.260 0.0020 0.1225±0.0003 0.1225 -1.0 0.68 0.68 +5.70 +6.36 
new 03-1 spinel sep 0.0850 12.40 0.0330 0.1235±0.0001 0.1232 -0.4 0.57 0.54   
new 03-1a spinel sep 0.0240 4.801 0.0241 0.1213 0.1211 -2.1 0.90 0.86   
new 04-1 harzburgite 0.1424 3.955 0.1735 0.1234±0.0002 0.1220 -1.4 0.96 0.55  +6.87 
new 04-2 harzburgite 0.0152 3.372 0.0217 0.1238±0.0004 0.1236 -0.1 0.51 0.49 +7.36 +7.55 
new 04-2 spinel sep 0.0172 11.54 0.0072 0.1254±0.0001 0.1253 +1.3 0.24 0.26   
new 04-3 dunite 0.1213 0.921 0.6346 0.1223±0.0002 0.1171 -5.3 f 0.71 +5.84 +6.78 
new 04-3 spinel sep 0.0288 1.649 0.0841 0.1231±0.0004 0.1224 -1.0 0.71 0.59   
Daybook:            
day 03-1 dunite 0.3237 2.879 0.5414 0.1222±0.0004 0.1177 -4.8 f 0.73 +5.27 +6.70 
day 03-1 spinel sep 0.4391 26.12 0.0810 0.1228±0.0001 0.1221 -1.3 0.75 0.64   
day 03-2 dunite 0.0432 7.800 0.0267 0.1218±0.0001 0.1216 -1.7 0.83 0.78 +5.13 +6.47 
day 03-2 spinel sep 0.0114 52.29 0.0011 0.1224±0.0001 0.1223 -1.1 0.70 0.70   
dayb03-2a spinel sep 0.0810 41.56 0.0094 0.1217 0.1216 -1.7 0.82 0.80   
Frank:            
frk 04-1 harzburgite 0.0759 0.912 0.4015 0.1330±0.0001 0.1297 +4.8 - f +6.62 +7.01 
frk 04-2 harzburgite 0.0849 7.116 0.0574 0.1245±0.0001 0.1229 -0.7 0.65 0.56 +4.85 +5.25 
frk 04-3 dunite 0.0293 1.732 0.0815 0.1200±0.0001 0.1193 -3.6 1.31 1.06 +5.10 +5.16 
frk 04-3 spinel sep 0.1238 21.47 0.0278 0.1203±0.0001 0.1200 -3.0 1.09 1.01   
frk 04-4 peridotite 0.0171 2.693 0.0306 0.1225±0.0005 0.1223 -1.1 0.72 0.68  +6.23 
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4-5: Isotopic systematics – Oxygen 
 

The ẟ18O values for whole rock powders for all the bodies range from +5.16 to 

+7.60‰. The ẟ18O values for individual olivine grains range from +4.85 to +7.36‰, 

which agree with but extend above the estimated mantle peridotite values of 5.2 ± 0.1‰ 

(Massey et al., 1994) and 5.7 ± 0.5‰ (Eiler et al., 1998). For samples with both whole 

rock and olivine analyses, a comparison of the data sets is shown in Figure 4-15. 

 

Figure 4-15. Whole rock vs. olivine separate oxygen isotopic values of dunite (circles) and 

harzburgite (squares) relative to SMOW. 

 

For individual bodies, the Buck Creek whole rock ẟ18O values (n=4) average 

+6.27‰, while olivine analyses (n=2) average +5.23‰. Ellijay whole rock ẟ18O values 

(n=3) average +6.46‰, while olivine analyses (n=2) average +5.77‰. Addie whole 

rock ẟ18O values (n=4) average +6.18‰, while olivine analyses (n=2) average +5.38‰. 
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Newdale whole rock ẟ18O values (n=4) average +6.89‰, while olivine analyses (n=3) 

average +6.30‰. Daybook whole rock ẟ18O values (n=2) average +6.59‰, while 

olivine analyses (n=2) average +5.20‰. Frank whole rock ẟ18O values (n=4) average 

+5.81‰, while olivine analyses (n=3) average +5.52‰. In general, whole rock 

averages range slightly higher than olivine grains for the same sample although whole 

rock values overlap with olivine analyses for all bodies except Daybook. 
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Chapter 5:  Discussion 
5-1: Formation of the Ultramafic Bodies – Major and Trace 
elements 
 

Early studies such as Pearce and Cann (1973) developed discrimination 

diagrams to distinguish between ophiolites created in mid-ocean ridge (MOR) settings 

versus those generated in supra-subduction zone (SSZ) environments. Ishiwatari et al. 

(1985) and Boudier and Nicolas (1985) developed the means to classify ophiolites 

based on the degree of partial melting in the mantle assessed through petrologic and 

chemical or structural considerations. The degree of partial melting assessed through 

chemical variations was related to spreading rate and used to divide ophiolites into 

types which may correspond with ultraslow-, slow- to intermediate-, and fast-spreading 

centers. There is also a recognition that certain isolated ultramafic bodies may have 

similar origins to the ultramafic portions of traditionally recognized ophiolitic 

assemblages and therefore assessing these bodies through the ophiolitic paradigm can 

potentially be useful. Further, Dilek (2003) suggested that the variety of chemical 

fingerprints, evolutionary paths, and tectonic environments of origin for ophiolites can 

reasonably be expanded to those bodies that differ from the strict definition of an 

ophiolite agreed to by the 1972 Penrose Conference. 

To understand the origins of these bodies, it is useful to assess whether they 

exhibit chemical characteristics similar to a MORB cumulate, or a residue of partial 

melting of the DMM, equivalent to an abyssal peridotite. Although the ultramafic 

bodies examined here contain limited numbers of phases, it can be useful to compare 

the behavior of lithophile elements such as Mg, Al, Si, and Ti to that of the moderately 

siderophile (MSE) elements such as Ni, and the highly siderophile elements (HSE) 
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such as Re and Os. Under mantle partial melting conditions, a melt residue like abyssal 

peridotites will become depleted in SiO2, Al2O3 and CaO relative to PM while a 

primary melt like MORB will be enriched in these elements relative to PM. Generally, 

a mantle melt residue will be enriched in MgO and Cr2O3 relative to PM while a 

primary melt will be depleted in these elements. With higher degrees of partial melting, 

the Cr# of a residue will tend to increase while Mg# tend to decrease (Niu 1997).  

Enrichments and depletions resulting from partial melting of a mantle peridotite 

can be difficult to distinguish from those of a MORB cumulate. While a MORB melt 

may be enriched in incompatible elements relative to PM, when olivine crystallizes and 

is segregated at the bottom of a magma chamber, it will be enriched relative to the 

starting melts in elements compatible with crystallization and depleted in elements 

incompatible with crystallization. To assess these fractionations, data from the Twin 

Sisters dunite has been included for comparison. The Twin Sisters dunite has been 

interpreted to be the magma chamber cumulate of a MORB-like melt (Onyeagocha, 

1974). Dunite from this location is used as a whole rock standard (DTS-1) and therefore 

its major and trace element content is well constrained (Jochum et al., 2005). 

For all six bodies, there are depletions relative to DMM in CaO, TiO2, and 

Al2O3 while MgO and Cr2O3 are enriched relative to DMM (Figure 4-1). A positive 

correlation between MgO and Al2O3 provides evidence for the variable loss of a melt 

component (Figure 4-3) and is comparable to the depletion trends recorded in other 

ophiolite peridotites (Büchl et al., 2002,; Godard et al., 2000; Schulte et al., 2009). Melt 

depletion trends like MgO versus CaO (Figure 4-5) are also consistent with melt 
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depletion. The data are broadly consistent with a mantle partial melt residue although 

the Twin Sisters dunite, a magma chamber cumulate, also overlaps with the data. 

The trace element V can also be a sensitive indicator of mode of origin as it will 

be depleted relative to PM in mantle partial melt residue. However, V is sensitive to 

oxygen fugacity. For most samples examined here, V shows a clear positive correlation 

with Al2O3 (Figure 4-7) consistent with trends observed in abyssal peridotites. One 

sample each from Addie and Ellijay, however, plot off this trend. These samples are 

also considerably enriched in Cr, with approximately 3.5 and 2.5 wt. % Cr2O3 

respectively suggesting that V content may be dependent, to some extent, on the 

availability of chromite for compatible structural sites. Overall, trace element contents 

and trends are broadly consistent with a mantle partial melt residue although the data 

again overlaps with the Twin Sisters dunite. 

 

5-2: Formation of the Ultramafic Bodies – Chromite 
 

When compared to whole rock chemistry and petrologic characteristics, 

chromite or Cr-spinel is commonly used to discriminate among different types of 

ultramafic bodies. All of the bodies in this study contain Cr-spinel as an accessory 

phase so it is useful to compare the different bodies. Since chromite is common in the 

ultramafic section of many ophiolites and one of the earliest minerals to form, it can 

serve as a sensitive indicator of the petrogenesis of its host (e.g. Barnes, 2000; Walker 

et al., 2002; Arai et al., 2011; Zhou et al., 2014). The degree of mantle melting, mantle 

composition, and pressure-temperature conditions can lead to distinct variations in the 

composition of chromite making it a diagnostic indicator of different tectonic settings 
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(e.g. Irvine, 1967; Barnes and Roeder, 2001; Arai et al., 2011). Under higher degrees 

of partial melting, Cr# increases and Mg# decreases yielding an inverse correlation 

between these parameters (Dick and Bullen, 1984). 

Dunites are usually the products of melt focusing and should have higher Cr# 

and thus shift toward the upper right corner of Figure 5-1 (Kelemen et al., 2000; 

Standish et al. 2002). Fractionation of magnesium between the olivine and chromites 

would yield a different trend in the data than is evident in this study (Standish et al. 

2002) so although these chromites have likely been either partially melted to higher 

degrees than most ophiolites or altered to higher Cr# and lower Mg# by alteration, their 

diagnostic usefulness is not entirely negated. Regardless of the modifying effects, the 

Cr # and Mg# data are consistent with the residue of at least one episode of partial 

melting. 

When compared to primary ophiolite chromite described in Barnes and Roeder 

(1991), the chromite data for all the ultramafic bodies in this study lie outside of the 

fields said to encompass 90% of the ophiolite sampled in that study (Figure 5-1). This 

may be the result of higher degrees of partial melting, metamorphism that tends to drive 

Cr-spinel to more Fe-rich compositions, or the ophiolite data compiled by Barnes and 

Roeder are not representative of the full spectrum of ophiolite variability. Considering 

that only some of the data from Taitao Ophiolite fit into the 90% field, the possibility 

that the fields do not encompass the full range of ophiolite variability must be 

considered.  

There is modest overlap with the forearc peridotite field from Dubois-Côté et 

al. (2005) for some samples, although data for most of the studied samples lie outside 
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these fields. Forearc peridotites are hypothesized to form in the SSZ zones that may be 

the tectonic settings that have generated most of the ophiolites around the world (Dilek 

and Furnes, 2014). 

  

Figure 5-1: Plot of Mg# vs. Cr# for chromite grains. Data from the Taitao (Schulte et al., 2009) 

and Troodos (Büchl et al., 2002) Ophiolites are included for comparison. Note that values are 

reversed on the x-axis. The partial melting trend is from Dick and Bullen (1984) and Niu 

(1997), the ophiolite peridotite field is from Barnes and Roeder (1991), the forearc peridotite 

and boninite fields are from Dubois-Côté et al., (2005). 

 

The Cr-spinel can also be used as a means of assessing the tectonic setting in 

which ultramafic bodies have been generated. Most ophiolites are hypothesized to have 
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been generated in either MOR- or suprasubduction zone (SSZ-) type settings although 

~75% are thought to be associated with SSZ. As described by Dilek and Furness (2011), 

a SSZ setting is one in which oceanic crust forms above a subduction zone as the 

overriding plate is extended. The material generated in these zones can range from 

MORB-like melts to highly refractory boninite melts (Figure 5-2). 

 

 

Figure 5-2: Schematic of the setting in which a SSZ ophiolite may be generated. Image is 

adapted from Dilek and Furnes (2014). Slab rollback is thought to extend the overriding plate 

and may contribute to the development of ophiolites. A tectonic regime similar to this 

schematic is thought to have existed prior to the Taconic orogeny in the region that is North 

Carolina today. 

 

 

 When compared to whole rock chemistry and petrologic characteristics, 

chromite can be used to discriminate among different types of ultramafic bodies. The 



 

48 
 

Cr#’s generally increase from lherzolites to harzburgites due to partial melting (Dick 

and Bullen, 1984) or melt percolation processes (Büchl et al., 2004; Kelemen et al., 

1997). Ishiwatari (2003) used Cr# as an important parameter for classifying ophiolites. 

The LOT-type have Cr# 0.3-0.5, HOT-type 0.5-0.7 and LHOT-type 0.7-0.9. 

Derbyshire et al. (2013) found that Cr# greater than 0.60 correlated with ophiolites 

created in suprasubduction zones (SSZ) while Cr# less than 0.60 was more likely to be 

MOR origin. Chromite grains in this study have Cr#’s ranging from 0.75 to 0.96 

consistent with peridotites generated in SSZ (Derbyshire et al., 2013) and with the 

depleted LHOT-type ophiolites of Ishiwatari (2003).  

 To form chromitite deposits, Cr must be mobilized and concentrated from the 

upper mantle so chromites average large domains of the DMM (Büchl et al., 2004; 

O’Driscoll et al., 2015). Kamenetsky et al. (2001) found that Al2O3 and TiO2 

concentrations in chromites largely fell into two groups or fields which could be used 

as a means of discriminating between spinel created in SSZ settings versus MOR 

settings. Samples from this study more closely match the SSZ than the MOR field 

(Figure 5-3). When compared to the Taitao Ophiolite which was likely generated in a 

MOR setting, the North Carolina spinel are distinct and do not appear to overlap with 

the MOR field. The Twin Sisters chromite data to not appear to overlap with either the 

Taitao data or North Carolina data. While the Twin Sisters data are coincident with the 

SSZ field, they are disparate from the North Carolina data, particularly in terms of TiO2 

concentration. Therefore, it is most likely that these bodies were generated in a SSZ 

setting and a cumulate origin is less favored by the data than a residual origin. 
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Figure 5-3: Plot of spinel Al2O3 vs. TiO2 for chromite grains. Data from the Taitao Ophiolite 

(Schulte et al., 2009) and the Twin Sisters dunite (Onyeagocha, 1974) is included for 

comparison. The SSZ and MOR fields are from Kamenetsky et al. (2001). 

 

 

5-3: Formation of the Ultramafic Bodies – Re-Os 
 

The highly siderophile and chalcophile natures of Re and Os make the isotopic 

system particularly useful to study the origin of ultramafic bodies when compared to 

the evolution of DMM. The decay of 187Re to the stable daughter isotope 187Os through 

β- emission has a half-life of 41.6 *109 years (Smoliar et al., 1996). During partial 

melting in the mantle, Re is moderately incompatible while Os is highly compatible. 

Mafic oceanic crust is, therefore, enriched in Re and highly depleted in Os relative to 

mantle sources. With time, oceanic crust becomes highly radiogenic. Conversely, when 
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mafic melt is removed from the DMM, the rate of growth of the 187Os/188Os ratio in the 

residual upper mantle is retarded. 

Abyssal peridotites are thought to be the residues of melt extraction that creates 

MORB. Abyssal peridotites have Os isotopic compositions that vary widely from 

0.114-0.167 (e.g. Snow and Reisberg, 1995; Brandon et al., 2000; Standish et al., 2002; 

Alard et al., 2005; Harvey et al., 2006; Liu et al., 2008; Aldanmaz et al., 2009; Lassiter 

et al. 2014; Gong et al., 2019) with an average 187Os/188Os of 0.125 (Snow and 

Reisberg, 1995; Brandon et al., 2000; Standish et al., 2002; Alard et al., 2005; Harvey 

et al., 2006; Liu et al., 2008). If a relatively robust age constraint is possible, a 

comparison of an isotopic evolution trajectory defined by data extracted from modern 

abyssal peridotites can be used to assess whether the ultramafic bodies have 

compositions consistent with average DMM at the time of formation. 

One means to assess the origin of ultramafic bodies is to consider initial isotopic 

ratios compared to MORB, abyssal peridotites, and ophiolite peridotites. To compare 

settings of different ages, it is useful to use the γOs(t) notation which describes the 

percentage difference between the Os isotopic composition of a sample at time (t) 

compared to a chondritic reference value at that time. Samples with γOs(t) >0 are 

described as enriched or suprachondritic which implies a long-term elevated 

187Re/188Os. Samples with γOs(t) <0 are described as depleted or subchondritic and imply 

a long-term decrease in 187Re/188Os (Shirey and Walker, 1998).  

Walker (2016) compiled Os data from 188 abyssal peridotites (average γOs -

1.3), 125 MORB (average γOs +4.7), and over 100 samples from the Unst, Leka, and 

Taitao Ophiolites (average γOs -0.1) into a representative histogram. When compared 
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to the compiled data, the North Carolina samples appear to be slightly more radiogenic 

than the chondritic reference (average γOs +1.1), approximately 2.5% more radiogenic 

than the modern abyssal peridotite average, only 1% more radiogenic than the ophiolite 

average, and approximately 3.5% less radiogenic than the MORB average (Figure 5-4) 

and exhibit a distribution broadly similar to abyssal peridotites. The data provide 

support for an origin as residues from the upper mantle.  

 

 

Figure 5-4. Histogram plot of γOs values of MORB, abyssal peridotite, ophiolite peridotite, 

and North Carolina peridotites adapted from Walker (2016). Average values are shown for 

comparison. Abyssal peridotite data are from Snow and Reisberg (1995), Luguet et al. (2001), 

Alard et al. (2005), Becker et al. (2006), Liu et al. (2009) and Lassiter et al. (2014). Ophiolite 

data are from Schulte et al. (2009) and O’Driscoll et al. (2012, 2015). 
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Nevertheless, when the bodies are assessed by host formation and geographic 

association rather than grouped together, a difference is noted (Figure 5-5). Values 

from the southern bodies hosted in the Tallulah Falls formation average +2.8. By 

contrast, the northern bodies hosted in the Ashe formation average -1.34, and closely 

match the abyssal peridotite average. This disparity between the northern and southern 

bodies suggests that while most major and trace element trends suggest a residual origin 

for these bodies, the possibility of different histories must be considered. 

When compared with major and trace elements, this disparity in histories 

between the bodies hosted in the Tallulah Falls versus Ashe formations, the Os isotopes 

differences in source must be considered. Herzberg et al. (2016) found that partitioning 

of Ni between melt and olivine is pressure dependent. For a given MgO content, lower 

Ni in olivine is associated with a greater depth of melt/olivine equilibration. When the 

Ni contents of the two bodies are compared (Figure 4-8), there is a distinction between 

the bodies hosted in the different formations. If the ultramafic bodies were derived from 

different depths within the SSZ, they could also be derived from Os isotopic reservoirs 

of different compositions. 
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Figure 5-5. Histogram plot of γOs values of North Carolina peridotites adapted from Walker 

(2016). Histogram (a) shows the southern bodies hosted in the Tallulah Falls formation and a 

γOs average value of +2.8 while (b) shows the northern bodies hosted in the Ashe formation 

with a γOs average value of -1.34. Vertical lines represent the average γOs values of MORB, 

abyssal peridotite, and ophiolite peridotites. 
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5-4: Metamorphism 
 

The application of Os isotopes in ophiolites faces some challenges. The mantle 

sections of almost all ophiolites are altered either through metasomatism or other 

metamorphic processes and constraining the effects of alteration can be difficult. In the 

Troodos Ophiolite Complex, Os isotopic compositions in some melt channels were 

significantly more radiogenic relative to PM while the surrounding harzburgites were 

only slightly suprachondritic suggesting that Os be modified during melt percolation 

(Büchl et al., 2002, 2004). This suggests that highly siderophile elements (HSE) like 

Os can be used as proxies for melting and enrichment processes in the mantle-derived 

materials but only if a careful assessment of the alteration history of the rock is possible. 

A considerable amount of Os isotopic heterogeneity exists among the 

ultramafic units in this region. Samples with very low Re/Os, thus requiring minimal 

age correction, are characterized by calculated initial Os isotopic compositions that 

vary by 12%. Further, the Os isotopic compositions exhibit differences beyond 

statistical uncertainty between bodies. Isotopic heterogeneity within units is relatively 

minor with the exception of Buck Creek and Ellijay. Buck Creek is likely to have seen 

granulite facies metamorphic conditions while Ellijay is the only body to exhibit thick 

interlayering between Cr-spinel and dunitic layers. The isotopic heterogeneity is 

generally consistent with earlier studies of abyssal peridotites and individual ophiolites 

(0.117-0.158; Snow and Reisberg, 1995; Brandon et al., 2000; Walker et al., 2004; 

Harvey et al., 2006; Schulte et al., 2009; O’Driscoll et al., 2012, 2018).  

One means of assessing alteration history is to evaluate the degree of 

serpentinization. The ultramafic bodies in this study exhibit low degrees of 
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serpentinization compared to abyssal peridotites and many ophiolite peridotites. Bulk 

rock LOI can be used as a proxy for degrees of serpentinization. When LOI is compared 

to γOs values, there is no obvious correlation with degree of serpentinization (Figure 

5-6), and the most radiogenic samples have considerably less LOI than samples with 

chondritic γOs values. Based on this observation, and the agreement between whole 

rock and chromite separate γOs values (Figure 4-14), it is concluded that the effects of 

serpentinization on the relative abundances of Os isotopes were minimal and the γOs 

values of these samples are due to mantle source heterogeneity or processes other than 

serpentinization.  

 

Figure 5-6. LOI vs. γOs(490Ma) of dunite (circles) and harzburgite (squares).  

  

Studies of abyssal peridotites and ophiolite peridotites have found that Os 

systematics may be explained by recent melt extraction events modifying ancient melt 

depletion trends (Harvey et al., 2006; Liu et al., 2008; Schulte et al., 2009; O’Driscoll 
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et al., 2012). If a rock has experienced a melt depletion event, Al2O3 should correlate 

with 187Os/188Os in the residue because, like Re, it is moderately incompatible. If the 

initial isotopic composition of the bodies adhere to an evolution trend consistent with 

the DMM, this can provide a means of reference for comparison (Reisberg and Lorand, 

1995; Walker et al., 1989, Rudnick et al. 2002).  Samples from Buck Creek, and one 

each from Ellijay and Frank do not fall on the trend expected for the DMM suggesting 

a later process superimposed on the earlier melting event (Figure 5-7). 

 

Figure 5-7. Al2O3 vs. γOs(490 Ma) of dunite (circles) and harzburgite (squares). The PM estimate 

is from McDonough and Sun (1995) and the DMM estimate is from Workman and Hart (2005) 

and Walker et al., (2002). 

 

Comparison of 187Os/188Os with Mg #, which is a marker of fertility, has also 

been found to produce a linear relationship if the peridotites have undergone a melt 

depletion event. For most samples, there is a strong negative correlation that 

corresponds with the melt depletion trend (Figure 5-8). However, the same Buck Creek, 
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Ellijay, and Frank samples do not fall on the trend again suggesting a later process has 

be superimposed upon the earlier melting event. 

  

Figure 5-8. Mg # vs. γOs(490 Ma) of dunite (circles) and harzburgite (squares). The PM estimate 

is from McDonough and Sun (1995) and the DMM estimate is from Workman and Hart (2005) 

and Walker et al. (2002). 

 

 

The source of the suprachondritic Os is difficult to assess. Chromite-whole rock 

pairs exhibit a general agreement in γOs composition. Chromite is more resistant to 

alteration which suggests that the initial isotopic values are of most samples have been 

retained through any later alteration process, including serpentinization (Figure 5-9). 

Some samples plot off the 1:1 reference line. The Ellijay sample which shows the 

lowest γOs value also shows an enrichment in Cr relative to other samples in the body 

but does not otherwise show any notable differences relative to other Ellijay samples 

or other bodies.  
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Studies of the Troodos, Shetland, and Leka ophiolites record more radiogenic 

Os relative to a chondritic reference (Büchl et al., 2002; O’Driscoll et al., 2012, 2015, 

2018). These more radiogenic values are associated with melt channels and reflect 

heterogeneities at the meter scale. Melt channels were not observed in this study nor 

was grid sampling employed. Most of these bodies have been extensively mined so by 

necessity, the samples in the study were not collected from the center of the body but 

nearer the margins or from float so a certain level of sampling bias must be considered. 

Absent further sampling and observation of the bodies, the nature of this Re and 

radiogenic Os enrichment may not be resolvable. 

 

 

5-5: Serpentinization and dehydration 
 
 The North Carolina ultramafic bodies in this study are unusual in that they 

exhibit relatively clean olivine and chromite with low degrees of serpentinization 

compared to many ophiolites. One of the hypotheses for this appearance is that the 

ultramafic bodies were serpentinized and subsequently dehydrated and recrystallized 

in an alteration event. Deschamps et al. (2013) found very minor changes in major 

element compositions over a broad range of serpentinization percentages therefore, 

major oxides are unlikely to discriminate between a peridotite that was serpentinized 

and subsequently dehydrated. The olivine crystals in the bodies do not have magnetite 

inclusions which is a textural suggestion that they have not been pervasively 

serpentinized, then dehydrated. Oxygen isotope ratios in potential mantle rocks can be 

used as a means of constraining the possibility contamination by crustal igneous rocks, 
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sediments, and fluids. Oxygen isotope data for both whole rock powders and olivine 

separates (Figure 5-10) were used to assess this possibility.  

Hydrothermal alteration under lower temperature conditions and by high 18O 

water would raise the ẟ18O values, and at high temperature with a low 18O water would 

reduce the ẟ18O values. Olivine oxygen isotope compositions provide a measure of the 

ẟ18O of the high temperature rock. If the whole rock values are shifted from equilibrium 

with the olivine, they will indicate alteration upon cooling. If the olivine is shifted from 

a mantle ẟ18O value, it will indicate recrystallization of an altered rock (e.g. Chiba et 

al., 1989; Eiler, 2000, 2001; Miller, 2001; Widom and Farquhar, 2003; Chaumba, 

2014). 

  

Figure 5-10: Distance along strike relative to the Georgia/South Carolina border vs. whole rock 

(filled symbols) and olivine separate (open symbols) oxygen isotopic values for dunite (circles) 

and harzburgite (squares). Tie lines link the same samples. Estimated mantle peridotite values 

of 5.7 ± 0.5‰ (Eiler et al., 1998) are for comparison. 
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 Little fractionation occurs between olivine and water at either high or low 

temperatures. Based on calculations derived from Clayton and Keiffer (1991) and Hu 

and Clayton (2003), αolivine-water at 750°C is 0.997 and 0.996 at 350°C when αforsterite-

calcite is divided by αcalcite-water. Seawater and meteoric water have a ẟ18O value of  0‰ 

therefore lower oceanic crust and serpentinized uppermost oceanic mantle that has 

interacted with seawater at high temperature will be driven to lower oxygen isotope 

values due to this interaction and may range in value to as low as +2‰ (Muehlenbachs 

and Clayton, 1976; Hart et al., 1999). The mantle-like ẟ18O values of the olivine suggest 

that the grains did not alter in the presence of meteoric or seawater and therefore could 

not likely have been serpentinized and subsequently dehydrated.  

The ẟ18O values for individual olivine grains from these bodies range from 

+4.85 to +7.36‰, and the values whole rock powders range from +5.16 to +7.60‰, 

which broadly agrees with, but extends above the estimated mantle value of 5.2 ± 0.1‰ 

(Massey et al. 1994) and 5.7 ± 0.5‰ (Eiler et al. 1998). Kyser (1986) found olivine 

oxygen isotopes ranging from +4.5 to 7.2‰ and Lecuyer and Gruau (1996) observed 

olivine oxygen isotopes ranging from +4.5 to 6.5‰ in samples from the Hess Deep. 

The olivine grains more closely approximate the oxygen isotopic compositions 

of the mantle at the time of formation while some whole rock samples reflect ẟ18O 

values higher than accepted mantle values. There are a number of possible explanations 

for this shift to higher ẟ18O values.  

Shifts to higher ẟ18O values might reflect incorporation of a portion of sediment 

or crustal material into these bodies at some point in their history. Sediments can have 

ẟ18O values of +10 to 20‰. If we assume a starting ẟ18O value of +5.7‰ and a crustal 



 

61 
 

component with a ẟ18O value of +12‰, the ẟ18O values could be shifted to +7.0‰ with 

an incorporation or mixing of 20% of the enriched material.  

Contamination by this volume of crustal material would also likely be seen in 

other parameters such as Mg#. When comparing Mg# to oxygen isotopes, it becomes 

clear that there is no correlation between these parameters (Figure 5-11). Some of the 

highest Mg#’s have low oxygen values and the highest oxygen value has an Mg# 

similar to DMM. It is evident that the source of the elevated oxygen values cannot have 

been high temperature interaction with seawater, meteoric water, or crustal materials, 

therefore, the elevated oxygen values likely reflect something else, such as source 

heterogeneity or late stage low-temperature processes.  

A late stage low temperature alteration must be considered to explain the 

elevated oxygen values. In the Oman ophiolite, Kelemen et al. (2011) found that when 

peridotite was thrust atop meta-sediments, the underlying formations produced CO2-

rich fluids that induced alteration at temperatures below 200°C. Steatization processes 

similar to this can produce alteration in peridotites at temperatures as low as 30°C. The 

alteration is concentrated along grain boundaries and fissures in the rock converting 

olivine to magnesite. These grain boundary alterations can be near isochemical for all 

elements except H2O and CO2 (Kelemen et al., 2011).  

Magnesite has ẟ18O values of +25 to 36‰.  If we assume a starting ẟ18O whole 

rock value of +5.7‰ and magnesite with a ẟ18O value of +25‰, the ẟ18O values could 

be shifted to +6.5‰ with a grain boundary alteration of 4%, values could be shifted to 

+7.6‰ with a grain boundary alteration of 10%. This percentage of grain boundary 

alteration could also explain some of the elevated LOI with low apparent degrees of 
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serpentinization. Magnesite is 50% CO2 therefore heating during analysis of pure 

mineral grains would have 51% LOI (Bishop et al., 2013). Magnesite alteration of 10% 

would then likely produce a LOI of at least 5%. Since this alteration is near isochemical, 

it would not perturb major and trace elements or Os isotopic compositions. Therefore, 

given the data, it is likely that the elevated ẟ18O values are due to low temperature late-

stage alteration of some of these ultramafic bodies. 
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Figure 5-11: Whole rock (a) and olivine (b) ẟ18O versus Mg# of whole rock samples. Circles 

represent dunite, squares represent harzburgite samples. DMM Mg# is from Workman and Hart 

(2005), ẟ18O value is from Eiler et al. (1998). 

 

 

(a) 

(b) 
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Chapter 6:  Conclusions 
 

This study investigates six ultramafic bodies located in the Blue Ridge Province 

of the Appalachian Mountains. Based on the major and trace element evidence 

including positive correlations between Al2O3 and MgO and Al2O3 and V, we suggest 

that these bodies are more similar to abyssal peridotites that MORB and therefore are 

likely the residue of at least one partial mantle melting event. The variable loss of a 

melt component is comparable to the depletion trends recorded in other ophiolite 

peridotites such as the Troodos, Taitao, Shetland, and Leka Ophiolites. Chromite data 

appear to exclude the possibility of creation of these bodies in a MOR setting but is 

consistent with a SSZ setting. 

 A typical feature of mantle peridotites from SSZ settings is considerable Os 

isotopic heterogeneity. In the case of the North Carolina peridotites, the γOs values 

share a similar distribution to abyssal peridotites and ophiolite peridotites and poor 

correlation with MORB γOs values. However, when the bodies are separated by host 

formation, Buck Creek in particular appears to suggest the addition of a radiogenic 

component subsequent to mantle extraction. Whether this component was melt 

percolation or melt/rock reaction adjacent to veins is unresolved at this time but it is 

unlikely to have been either recent or ancient Re addition. 

 The emplacement of these bodies has been the subject of debate. It has been 

hypothesized by other researchers that these bodies were once serpentinized and 

subsequently dehydrated. Oxygen isotopes in this study exhibited more variability than 

some ophiolite peridotites but with ẟ18O values ranging from +4.85 to +7.60‰ 

serpentinization and dehydration at high temperatures can be excluded as a possibility. 
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The source of the higher than average values is still uncertain, but the incorporation of 

the volume of a crustal component necessary to shift ẟ18O values to >+7‰ can be 

excluded due to the lack of enrichment in other parameters. It is likely that at least some 

of the elevated ẟ18O values are due to low temperature late-stage steatization or 

alteration of some of these ultramafic bodies. 
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Appendix I – Analytical Standards 
 

Table A-1 XRF Standards. Fe2O3T represents Fe2O3 total. Sample 98-54 is a sample repeatedly 

analyzed at Franklin and Marshall College. BHVO-1 is the standard.  

  
98-
54A 

98-
54B 

98-
54C 

Average 2σ BHVO-1 
Measured 

BHVO-1 
Accepted 

% 
Deviation 

SiO2 51.67 52.08 51.71 51.82 0.45 49.73 49.94 0.42 
TiO2 1.22 1.23 1.22 1.22 0.01 2.72 2.71 0.37 
Al2O3 18.10 18.15 18.03 18.09 0.12 13.67 13.8 0.94 
Fe3O2T 8.91 8.96 9.00 8.96 0.09 11.95 12.23 2.29 
MnO 0.17 0.17 0.17 0.17 0.00 0.17 0.17 0.00 
MgO 5.18 5.21 5.19 5.19 0.03 7.09 7.23 1.94 
CaO 7.77 7.81 7.79 7.79 0.04 11.38 11.4 0.18 
Na2O 3.98 3.97 3.97 3.97 0.02 2..41 2.26 6.64 
K2O 1.05 1.04 1.04 1.04 0.01 0.53 0.52 1.92 
P2O5 0.59 0.59 0.59 0.59 0.00 0.28 0.27 3.70 
LOI 1.24 1.19 1.23 1.22 0.07    
Total 99.88 100.40 100.10 100.1 0.6 99.93 100.53 0.60 

         
Rb 8.5 8.5 8.7 8.6 0.23 9.5 11 13.6 
Sr 792 789 789 790 . 393 403 2 
Y  25.1 25.3 25 25.1 0.3 27.7 27.6 0.4 
Zr 130 129 129 129 1 176 179 2 
V 200 184 189 191 16 311 317 2 
Ni 61 59 58 59 3 115 121 5 
Cr 102 83 82 89 23 296 289 2 
Nb 8.9 8.7 8.7 8.8 0.2 19.8 19 4.2 
Ga 20.7 20.3 20.7 20.6 0.5 21.1 21 0 
Cu 76 74 78 76 4 123 136 10 
Zn 85 83 83 84 2 101 105 4 
Ba 560 576 563 566 17 132 139 5 
U 0.5 0.7 0.9 0.7 0.4 0.8 0.4 100 
Th 0.6 1.2 0.8 0.9 0.6 1.3 1.1 18.2 
Co 31 30 31 31 1 41 45 9 
La 19 22 21 21 3 14 16 13 
Ce 42 43 42 42 1 36 39 8 
Pb 7 8 7 7 1 4 3 33 
Sc 22 21 21 21 1 31 32 3 
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Table A-2 Forsterite Fo90 olivine standard over a three-day period. Standard deviation (STD) 

is reported at the 1σ level. 

Fo (90) 
Standard MgO CoO Al2O3 CaO SiO2 MnO Cr2O3 FeO NiO Total 

OL-080204 48.99 0.053 n.d. 0.10 40.45 0.08 0.02 9.69 0.44 99.83 
OL-080204 49.18 0.033 0.01 0.10 40.63 0.09 0.01 9.26 0.37 99.68 
OL-080204 49.63 0.044 0.05 0.15 40.71 0.09 n.d. 9.51 0.38 100.56 
OL-080204 49.40 0.035 0.02 0.12 40.80 0.08 0.02 9.63 0.30 100.39 
OL-080204 49.27 0.038 0.00 0.08 40.79 0.09 0.02 9.59 0.41 100.30 
OL-080204 49.47 0.028 0.01 0.13 40.97 0.07 0.02 9.57 0.29 100.56 
OL-080304 49.60 0.046 n.d. 0.10 40.71 0.08 n.d. 9.40 0.38 100.33 
OL-080304 48.93 0.036 0.01 0.11 41.00 0.11 0.01 9.59 0.34 100.14 
OL-080304 49.64 0.012 n.d. 0.10 40.89 0.08 n.d. 9.30 0.30 100.32 
OL-080304 49.47 0.061 n.d. 0.17 40.94 0.09 0.03 9.57 0.38 100.71 
OL-080304 49.62 0.044 0.01 0.12 40.91 0.12 n.d. 9.44 0.41 100.66 

           
Average 49.38 0.039 0.01 0.12 40.80 0.09 0.01 9.51 0.37 100.32 

STD 0.26 0.013 0.01 0.03 0.16 0.01 0.01 0.14 0.05 0.33 

           
Accepted 

Composition 49.42    40.81 0.14  9.55 0.37 100.29 

% Deviation 
0.01

%       
0.15

% -36%   
0.73

% 
1.40

% 0.01% 
 

 

Table A-3 Typical Bushveld chromite standard analysis. Standard deviation (STD) is reported 

at the 1σ level. 

Standard MgO CoO Al2O3 MnO SiO2 Cr2O3 ZnO NiO FeO 
   

TiO2   Total 

Bush 10.71 0.05 15.0 0.40 0.00 45.9 0.06 0.09 25.49 0.56 98.2 
Bush 10.70 0.07 15.1 0.45 0.00 46.3 0.08 0.11 25.55 0.56 99.0 
Bush 10.55 0.07 14.9 0.41 0.00 46.1 0.06 0.07 25.59 0.53 98.2 
Bush 10.63 0.08 15.0 0.45 0.00 46.5 0.05 0.10 25.62 0.49 99.0 
Bush 10.67 0.06 14.8 0.43 0.00 46.6 0.09 0.10 25.55 0.5 98.9 

            
Average 10.65 0.07 15.0 0.43 0.00 46.3 0.07 0.09 25.56 0.53 98.7 
STD 0.06 0.01 0.1 0.02 0.00 0.3 0.02 0.02 0.05 0.03 0.4 
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Table A-4 Total Analytical Blank (TAB) Data. 

TAB Re (pg) Os (pg) 187Os/188Os 
6/7/2004 2.0 2.0 0.174 
7/7/2004 1.6 2.3 0.192 
11/24/2004 2.5 4.2 0.143 
3/11/2005 7.4 3.0 0.151 
5/10/2005 12.4 3.6 0.156 
6/6/2005 3.9 4.5 0.143 
7/5/2005 4.4  3.3 0.155 

 

 

Table A-5 Osmium standard analyses for VG Sector 54 TIMS. 2SDM represents the percent 

of standard deviation of the mean at the 2σ level. 

VG Sector 
54 187Os/188Os 2SDM 186Os/188Os 2SDM 190Os/188Os 2SDM 189Os/188Os 2SDM 

6/9/2004 0.1138 0.0100 0.1199 0.0046 1.9837 0.0008 1.2198 0.0009 
6/9/2004 0.1138 0.0427 0.1198 0.0174 1.9837 0.0022 1.2198 0.0025 
7/15/2004 0.1138 0.0233 0.1198 0.0137 1.9837 0.0017 1.2197 0.0027 
7/16/2004 0.1139 0.0365 0.1199 0.0183 1.9838 0.0021 1.2198 0.0022 
10/26/2004 0.1138 0.0314 0.1199 0.0165 1.9836 0.0019 1.2197 0.0019 
10/27/2004 0.1137 0.0524 0.1199 0.0242 1.9837 0.0026 1.2198 0.0041 
2/17/2005 0.1137 0.0641 0.1198 0.0221 1.9838 0.0022 1.2198 0.0038 
2/18/2005 0.1139 0.1080 0.1199 0.0476 1.9844 0.0041 1.2199 0.0072 
2/19/2005 0.1139 0.0606 0.1198 0.0216 1.9839 0.0025 1.2198 0.0037 
5/5/2005 0.1138 0.0630 0.1199 0.0195 1.9837 0.0027 1.2197 0.0031 
5/6/2005 0.1139 0.0370 0.1199 0.0118 1.9837 0.0016 1.2197 0.0020 
5/6/2005 0.1138 0.0338 0.1199 0.0148 1.9837 0.002 1.2197 0.0026 
7/7/2005 0.1138 0.0357 0.1199 0.0146 1.9837 0.0018 1.2198 0.0026 
7/9/2005 0.1137 0.0473 0.1199 0.0208 1.9837 0.0021 1.2198 0.0032 
7/9/2005 0.1139 0.0364 0.1199 0.0111 1.9837 0.0014 1.2198 0.0025 

         
average 0.1138 0.0455 0.1199 0.0186 1.9838 0.0021 1.2198 0.0030 
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Table A-6 Osmium standard analyses for NBS Bobcat TIMS. 2SDM represents the percent of 

standard deviation of the mean at the 2σ level. 

NBS Bobcat 187Os/188Os 2SDM 190Os/188Os 2SDM 192Os/188Os 2SDM 

4/5/2004 0.1140 0.0001 1.9836 0.0097 3.0758 0.0029 
1/1/2005 0.1140 0.0001 1.9836 0.0010 3.0758 0.0029 
2/19/2005 0.1144 0.0002 1.9843 0.0018 3.0641 0.0039 
5/6/2005 0.1148 0.0004 1.9811 0.0059 3.0772 0.0109 
6/22/2005 0.1140 0.0003 1.9835 0.0019 3.0621 0.0053 
7/6/2005 0.1143 0.0026 1.9866 0.0046 3.0643 0.0091 

       
average 0.1142 0.0006 1.9838 0.0041 3.0699 0.0058 
 

 

Table A-7 The University of Wisconsin (UWG-2) garnet standard. Standard deviation (STD) 

is reported at the 1σ level. 

Standard δ 17O  δ 18O  δ 17O 

UWG-2 3.00 5.70 0.02 
UWG-2 3.05 5.86 -0.02 
UWG-2 3.03 5.78 0.01 
UWG-2 3.07 5.86 0.00 
average 3.04 5.80  
stdev 0.03 0.08 0.02 
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Appendix II – Sample Descriptions 
 

Chromite textures have been divided into common types by Lipin (1984). Clean 

chromite (Figure. A-1a), is the most common and occurs in all localities. Clean 

chromites do not contain inclusions and are fairly homogenous. Lattice chromite 

(Figure. A-1b) are characterized by the replacement of chromite by chlorite along the 

three crystallographic axes. Lattice-type chromite is present in the Buck Creek and 

Daybook bodies. Poikiloblastic chromite (Figure. A-1c) has a vuggy appearance and is 

found in the Frank, Addie, and Ellijay bodies. Most localities contain clean chromite 

and may contain one or more of the other types.  

 

 

Figure A-1: Back-scattered electron images with representative textures and structures of 

chromium spinel. Clean chromite (a) does not contain visible inclusions and has sharp grain 

boundaries. Lattice chromite (b) exhibits replacement of chromite by chlorite along three 

crystallographic boundaries. Poikiloblastic chromite (c) has a vuggy appearance and is 

commonly parted along the grain.  
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Buck Creek: 

The Buck Creek complex contains both mafic and ultramafic rocks in five 

distinct units: dunite, metatroctolite, edenite-margarite schist, actinolite-chlorite schist, 

and amphibolite (Berger et al. 2001).  Rocks from geographically distinct regions of 

this display different metamorphic textures ranging from slightly altered olivine with 

sharp 120º grain boundaries and relatively little chromite, to highly altered olivine with 

moderate amounts of lattice-type chromite. The Buck Creek ultramafic formation 

samples are from two distinct locations- Corundum Knob at the south-central edge of 

the body and a power line/stream cut on the eastern side of the body. Peridotites are 

found adjacent to sapphirine-bearing metatroctolites and apatite-containing pyroxenite. 

Samples from Corundum Knob (Buck 04-1, 04-4) contain extremely fractured and 

altered olivine with chromite found generally as inclusions. Chromites, which make up 

1-2% of the bulk rocks, exhibit lattice-type exsolution lamellae and have significant 

alteration to magnetite and kammererite. Bulk rocks are ~5% Orthopyroxene (Opx) and 

up to 50% serpentine minerals. Images of thin sections in both plane-polarized (PPL) 

and cross-polarized light (XPL) are provided for each sample. 

Buck 04-1 

 

 

1mm 
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Buck 04-4 

 

  

Samples from the power line and stream cuts (Pow04-1, Buck-str) have iron 

staining in hand sample. They contain 3-5% lattice-type chromite, altered to magnetite, 

contained mostly as inclusions within highly altered and fractured olivine. The bulk 

rock contains ~20% serpentine minerals, 1-2% Opx, and <1% Clinopyroxene (Cpx). 

These samples can be considered float as they were not collected from an intact 

outcrop. 

 

Pow 04-1 

 

 

1mm 

1mm 
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Buck-str 

 

 

Ellijay (Olivine #9): 

The Ellijay body consists of dunite and harzburgite containing chromite layers 

up to several centimeters thick that display some post-metamorphic brittle deformation. 

Some dunitic portions of the body also contain disseminated chromite. Ellijay has been 

quarried in the past and is now a pit with ultramafic rocks exposed along the sides as 

well as a great number of detached blocks in the excavated portion of the pit. Samples 

are physically distinct from each other in that some have strongly defined chromite 

layers, some have weakly defined diffuse layering, and others have no layering but 

abundant disseminated chromite. Thin sections show clean olivine interlayered with 

chromite in some portions of the body while other portions are strongly serpentinized. 

The strongly layered sample (Ell03-1) has two 2-3 cm wide bands of >95% euhedral 

interlocking chromite containing euhedral olivine and some serpentine minerals 

between the chromite layers with very sharp delineations in composition at the edges 

of the bands. Between the bands are areas of >90% fractured olivine with minor 

alteration along the grain boundaries. Minor amounts of small chromite and Opx are 

1mm 
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disseminated throughout the dunitic layers. Images of thin sections in both plane-

polarized (PPL) and cross-polarized light (XPL) are provided for each sample. 

Ell 03-1 

 

The weakly layered sample (Ell 04-1) had smaller chromite grains that grade 

into the dunitic domains of the rock. Dunitic portions contain minor disseminated 

chromite and Opx. Samples containing only disseminated euhedral chromite (Ell 03-2, 

04-1) contain >90% large olivine grains with 120° grain boundaries. Serpentine (2-3%) 

minerals occur along some grain boundaries. Chromite occurs as large euhedral grains 

comprising 2-3% of the bulk rock. 

 

Ell 04-1 

 

1mm 

1mm 
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Webster-Addie: 

The Webster-Addie complex consists of dunite, websterite, and enstatite 

pyroxenite in a 9.5 by 4.8 km ring structure. This location is unusual in that Cpx is 

uncommon in the myriad of ultramafic bodies in the southern Blue Ridge region, but 

this body is the type locality for Websterite. Contacts with the country rock are faulted 

and Miller (1953) concluded that the complex intruded as a sheet-like mass and was 

deformed and domed after emplacement. The deposit is cut by pegmatite veins. Thin 

sections exhibit a range of metamorphic textures from clean olivine and subhedral 

chromites with sharp grain boundaries to moderately altered olivine adjacent to 

chromites surrounded by thick chlorite (kammererite) rims.  

Addie dunitic and harzburgitic samples are from the southern portion of a ring 

structure also containing websterite and enstatite pyroxenite. The dunitic samples (Add 

03-2, 03-3, 03-4) contain 2-3% large euhedral chromites with poikiloblastic texture. 

Olivine is euhedral and transected by uneven fractures. Alteration of 5-7% begins along 

the fractures and grain boundaries. Addie peridotites contain large fractured euhedral 

olivine with alteration along the boundaries and in localized channels. Serpentinization 

comprises 10-15% of the bulk rock. Large euhedral chromites occur in weak layers and 

some contain olivine inclusions. One pyroxenite sample (add 04-2) is composed of 

bright green, coarsely crystalline interlocking grains of enstatite, no olivine, and small 

magnesian spinel. Images of thin sections in both plane-polarized (PPL) and cross-

polarized light (XPL) are provided for each sample. 
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Add 03-2 

 

Add 03-3 

 

Add 03-4 

 

 

1mm 

1mm 

1mm 
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Newdale: 

Newdale is described as a folded body exhibiting three distinct phases of 

deformation including one that predates the surrounding rock (Raymond and Abbott 

1997). The body is fault bounded. The dunite that dominates the site is crosscut by 

veins of talc, anthophyllite, tremolite, chlorite, magnetite, magnesite, and serpentine. 

In thin section, two populations of chromites dominate. Either large, fractured, but 

unzoned chromites are found with highly serpentinized olivine or small chromites are 

found predominately in areas of relatively unaltered olivine.  

All samples were collected from a small portion of the periphery of the body. 

Newdale samples (New 03-1, 04-1, and 04-2) exhibit regions of large, interlocking, 

fractured and grain boundary altered olivine distinct from concentrated channels of 

almost complete serpentinization that make up approximately 10% of the bulk rock. 

Chromites (3-5%) were euhedral but fractured and parted, Opx was 2-5%, and minor 

amounts of Cpx were contained in the bulk rock. Anthophyllite is observed in the hand 

samples but not in thin section. Images of thin sections in both plane-polarized (PPL) 

and cross-polarized light (XPL) are provided for each sample. 

New 04-1 

 1mm 
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New 04-2 

 

 

One sample (New 04-3) is iron stained in hand sample. It also has zones of clear 

and unfractured olivine with concentrated channels of fractured and extensively altered 

olivine in approximately 8% of the rock. Euhedral variably sized chromite composes 

1-2% of the rock, zoned Opx 10-15% and up to 1-2% is Cpx.  

 

New 04-3 

 

 

 

1mm 

1mm 
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Daybook: 

The Daybook body has been extensively mined and consists of dunite with 

minor Opx and chromium-rich spinel, chromitite, and harzburgite (Raymond and 

Abbott 1997). Swanson (1981) describes the original body as being surrounded by 

gneiss and amphibolites of the Blue Ridge Thrust sheet as well as intruded by quartz 

monzonite-granodiorite pegmatites which were not observed during this study. Dikes 

extend into the ultramafic body from an adjacent tabular granitoid pluton. Along the 

margins of these dikes veins extend which contain vermiculite, phlogopite, talc, 

magnesite, anthophyllite, tremolite, chlorite, antigorite, and lizardite. Swanson (1981) 

describes the contact with country rock as a metasomatic reaction zone consisting of 

anthophyllite with rocks ranging from relatively clean olivine with minor amounts of 

pyroxene and large fractured but unzoned chromites, to moderately serpentinized, 

zoned pyroxenes and chromites exhibiting lattice exsolution lamellae.  

The Daybook deposit has been extensively mined so all samples were obtained 

from mine waste piles. Chromite pods of up to 3m within the dunite have been reported 

but were not observed during this study. Daybook dunites (Day 03-1, 03-2) are mostly 

composed of olivine of equant polygonal grains that meet at 120° triple junctions with 

minor alteration along grain boundaries. Serpentine minerals (5%) are primarily 

confined to localized channels along with minor anthophyllite. Large fractured Cpx (1-

3%) and Opx (2-3%) can also be found. Chromite that occurs outside of the 

serpentinized channels is large, euhedral, with poikiloblastic textures. Chromite within 

the serpentinized channels is extensively altered with lattice-type exsolution lamellae. 
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Images of thin sections in both plane-polarized (PPL) and cross-polarized light (XPL) 

are provided for the sample. 

Day 03-1 

 

 

Frank: 

The contacts of the Frank body have been mapped as thrust faults (Raymond 

and Abbott 1997). The body consists of dunite, lherzolite, and metamorphic 

assemblages of anthophyllite, tremolite, talc chlorite, and serpentine. This study also 

noted lizardite. Some rocks contain olivine with sharp boundaries and virtually no 

chromite, while other rocks exhibit serpentinized olivine with abundant anthophyllite 

and large (1-2mm) chromite with poikiloblastic texture. Much of the deposit also 

contains secondary Opx.  

The Frank mine has been excavated to a depth of 30 meters, so all samples 

collected are from discrete blocks within the pit or piles along the edges. Frank 

harzburgites (Frk 04-1, 04-2, 04-4) have some textural and compositional variations. 

Both contain relatively unaltered olivine interspersed with highly serpentinized regions 

that comprise up to 30% of the bulk rock. Opx and Cpx are concentrated in these 

1mm 
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portions of the rock making up to 20% of the total rock. Frk 04-4 contains highly 

fractured and altered chromite (2-3%) as well as chromite blebs within veins. Frank 04-

2 has no chromite but minor pentlandite. Anthophyllite and lizardite were observed in 

hand sample but not in thin section. Images of thin sections in both plane-polarized 

(PPL) and cross-polarized light (XPL) are provided for each sample. 

Frk 04-1 

 

Frk 04-2 

 

 

Frank dunites (Frk 04-3) contain >90% equant polygonal olivine grains with 

120° borders and minor alteration along boundaries. Serpentine minerals (3-5%) are 

concentrated in highly serpentinized channels. Chromite (1-4%) is either large and 

1mm 

1mm 
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euhedral or very small with some alteration to magnetite. Minor zoned Opx and Cpx 

compose 1% of the bulk rock.  

 

Frk 04-3 

 

 

 

  

1mm 
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Glossary of Terms 
 

Partial melting – the process that occurs when a portion of the mantle melts; 

incompatible elements partition into the melt while compatible elements remain in the 

residue; the melt and residue have different bulk compositions 

Melt residue – the mantle material remaining after a partial melt has been extracted 

Melt depletion – incompatible elements partition into melt and are preferentially 

removed during a partial melting event 

MORB – mid-ocean ridge basalt created by the partial melting of the upper mantle 

DMM – the depleted MORB mantle, or the upper mantle that is the source of mid-

ocean ridge volcanism 

PM – a hypothetical undepleted reservoir that represents the composition of the mantle 

before mafic crust was extracted by partial melting 

Dunite – an ultramafic rock composed of >90% olivine and may contain minor 

amounts of pyroxene and chromite; a variety of peridotite 

Harzburgite – an ultramafic rock composed of 40 to 90% olivine with variable 

amounts of orthopyroxene and spinel; a variety of peridotite 

Lherzolite – an ultramafic rock composed of 40 to 90% olivine with orthopyroxene, 

clinopyroxene, and spinel; a variety of peridotite 

Peridotite – an ultramafic rock composed of mostly olivine and pyroxene with variable 

proportions of pyroxenes, spinel, plagioclase, and amphibole 

Websterite – an ultramafic rock composed of orthopyroxene and clinopyroxene; a 

variety of pyroxenite 
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Boninite – a mafic rock high in magnesium and silica but extremely depleted in 

incompatible trace elements; typical of suprasubduction zones 

Ophiolite peridotite – ultramafic rock layers at the stratigraphic base of an ophiolite 

sequence 

Abyssal peridotite – the residues of mantle melting beneath ocean ridges 

MORB cumulate – a collection of olivine, chromite, and other early crystallizing 

minerals that settle and accumulate from MORB melts, often in large magma chambers 

Refertilization – interaction between depleted peridotites and a melt formed deeper in 

the mantle 
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